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INTRODUCTION

Knowing how to write code empowers you
to solve complex problems. By harnessing
the capabilities of modern CPUs, which can
accomplish billions of operations per second,
we can quickly and correctly work out the solutions to
difficult problems.

This is a book about solving engineering problems with Python. We’ll
learn how to code geometric primitives that will serve as the basis of more
complex operations, how to read and write from files, how to create vector
images and animated sequences to present the results, and how to solve
large systems of linear equations. Finally, we’ll put all this knowledge to-
gether to build an application that solves truss structure problems.

Who This Book Is For

This book is targeted at engineering students, graduated engineers, or just
about any person with a technical background who wants to learn how to
write applications to solve engineering problems.

A background in math and mechanics is a must. We’ll be using con-
cepts from linear algebra, 2D geometry, and physics. We’ll also use some
mechanics of materials and numerical methods, which are subjects common



to many engineering degrees. We won’t go too far into these topics to allow
a larger number of readers to find the material of the book useful. The tech-
niques learned in this book can later be used to solve problems that involve
more complex concepts.

To follow along, you’ll need to have some coding skills and basic Python
knowledge. This is not an introductory book to programming; there are lots
of other good books covering that. I can recommend Python Crash Course
by Eric Matthes (No Starch Press, 2019) if you’re looking for such a book.
There’s also a lot of great material online, from which I'd pick https.//real
python.com as my favorite. The official Python website is also full of good tu-
torials and documents: https.//www.python.org/about/gettingstarted, .

We’re going to write a lot of code, so I strongly recommend you have
a computer with you as you read and that you enter and test all the code in
this book.

What You'’ll Learn

In this book, we’ll explore techniques to write robust applications that cor-
rectly, and quickly, solve engineering problems. To ensure correctness, we’ll
be testing our code using automated tests. Every application you build should
be properly tested using automated testing, as we’ll discuss throughout the
book.

Engineering applications usually require some amount of data to be
fed in, so we’ll also learn how to read the input of our programs from a file,
parsing it using regular expressions.

Engineering applications typically need to solve a large system of equa-
tions, so we’ll cover how to write numerical methods that can do these com-
plex computations. We’ll focus on linear systems, but the same techniques
can easily be applied to write numerical algorithms for nonlinear equations.

Lastly, engineering applications need to produce a result. We’ll learn
how to write text to files that we can later inspect. We’ll cover how to pro-
duce beautiful vector diagrams and animated sequences to present the re-
sults of our programs. As they say, a diagram is worth a thousand words:
looking at a well-drawn diagram that describes the result with the most rele-
vant solution values makes programs much more valuable.

To illustrate all these concepts, we’ll conclude the book by building an
application that solves two-dimensional truss structures. This application
will have everything you need to build engineering applications. The knowl-
edge acquired building this application can easily be translated to writing
other kinds of engineering applications.

About This Book

In this section, we’ll explain three things: the meaning behind the title of
this book, the choice of Python, and the table of contents.

xxiv Introduction
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What Is the “Hardcore” About?

The word Hardcore in the title of this book refers to the fact that we’ll write
all the code ourselves, relying only on the Python standard libraries (libraries
that ship with Python); we won’t use any third-party library to solve equa-
tions or draw vector images.

You may be wondering why. If there’s code already written by someone
that does all this for us, why not simply use it? Aren’t we re-inventing the
wheel?

This is a book about learning, and to learn you need to do things your-
self. You’ll never understand the wheel unless you re-invent it. Once your
software skills are solid and you’ve written thousands of lines of code and
worked on a lot of projects, you’ll be in a good position to decide which ex-
ternal libraries fit your needs and how to leverage them. But if you use those
libraries from the beginning, you’ll get used to using them and take the so-
lutions for granted. It’s important to always ask yourself, how does this li-
brary’s code work to solve my problem?

Like anything else, coding takes practice. If you want to become good
at coding, you need to write a lot of code; there are no shortcuts. If you're
getting paid to write software or want to take an idea to market as fast as pos-
sible, then use existing libraries. But if you're learning and want to become
proficient in the art of writing code, don’t use libraries. Write the code your-
self.

Why Python?

Python is one of the most beloved programming languages. According to
Stack Overflow’s 2020 developer survey (hitps.//insights.stackoverflow.com/
survey/2020), Python is today’s third most loved language, with 66.7 percent
of its users willing to continue using it in the future, just behind TypeScript
and Rust (see Figure 1).

Rust 86.1%
TypeScript 67.1%
Python 66.7%
Kotlin 62.9%
Go 62.3%

Figure 1: 2020 most loved languages (source: Stack Overflow survey)

This same survey puts Python first when it comes to “desired” languages:
30 percent of the surveyed developers who are not currently using Python
expressed interest in learning it (see Figure 2).
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Python 30.0%
JavaScript 18.5%
Go 17.9%

TypeScript 17.0%
Rust 14.6%

Figure 2: 2020 most wanted languages (source: Stack Overflow survey)

These results are not surprising; Python is an extremely versatile and
productive language. Writing code in Python is a delight, and its Standard
Library is well equipped: for just about anything you want to do, Python has
something ready to help.

We’ll use Python in this book not only because of its popularity but also
because it’s easy to use and versatile. One nice thing about Python is that,
if you are reading this book but have no prior knowledge of the language, it
won’t take you long to get started. It’s a relatively easy language to learn and
the internet is filled with tutorials and courses to help you.

What Python is typically not seen as is a fast language, and indeed, Py-
thon’s execution times are not one of its strengths. Figure 3 below shows
a comparison of the execution times in seconds of the same three programs
written both in Python and in Go (a very fast language developed by Google).
In every case, Python takes much longer than Go to execute.

reverse-complement

source secs mem gz busy cpu load
Python 3 16.41 1,772,696 434 17.57 1% 78% 28% 0%
Go 3.73 826,488 611 4.10 88% 6% 2% 14%
k-nucleotide

source secs mem gz busy cpu load
Python 3 72.58 183,484 1967 276.33 95% 95% 94% 97%
@ 12.67 150,584 1722 47.44 95% 90% 93% 96%
fasta

source secs mem gz busy cpu load
Python 3  63.63 841,056 1947 127.80 58% 61% 44% 37%
Go 2.11 4,228 1358 5.66 69% 65% 64% 70%

Figure 3: Python benchmark (source: https://benchmarksgame-team
.pages.debian.net/benchmarksgame/fastest/python3-go.html)

So, don’t we care about speed? We do, but for the purposes of this book,
we care more about development time and the development experience.
Python has lots of constructs that make coding delightful; for example, things
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like filtering or mapping a collection can be done out of the box using Python’s
list comprehensions, whereas in Go, you need to do those operations using
good old for loops. For almost every program we’ll write, execution time will
never be a concern, as we’ll get more than acceptable results. The skills you
learn in this book will transfer to other, faster languages if you encounter
speed issues in your applications.

But before we start learning anything, let’s have a quick overview of the
topics you’ll find in this book.

Contents at a Glance

We’ll cover a lot of ground in this book. Each chapter builds on top of the
previous ones, so you’ll want to make sure to read the book in order and
work on the code each chapter presents.

The book includes the following chapters:

Part I: Basics

Chapter 1: A Short Python Primer Introduces some intermediate
Python topics that we’ll use throughout the book. We’ll cover how to
split our code into modules and packages, how to use Python’s collec-
tions, and how to run Python scripts and import modules.

Chapter 2: Two Python Paradigms Covers functional and object-
oriented programming paradigms and explores techniques to write code
in those styles.

Chapter 3: The Command Line Instructs you on how to use the com-
mand line to run programs and other simple tasks such as creating files.

Part II: 2D Geometry

Chapter 4: Points and Vectors Covers the most basic, but crucial, geo-
metric primitives: points and vectors. The rest of the book relies on the
implementation of these two primitives, so we’ll also learn about auto-
mated testing to make sure our implementations are bug-free.

Chapter 5: Lines and Segments Adds the line and segment geometric
primitives to our geometry toolbox. We’'ll take a look at how to check
whether two segments or two lines intersect and how to calculate the
intersection points.

Chapter 6: Polygons Adds rectangles, circles, and generic polygons to
our geometry toolbox.

Chapter 7: Affine Transformations Covers affine transformations, an
interesting algebraic construct we’ll use to produce beautiful images and
animations.
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Part III: Graphics and Simulations

Chapter 8: Drawing Vector Images Introduces the Scalable Vector
Graphics (SVG) image format. We’ll write our own library to produce
these images using our geometric primitives.

Chapter 9: Building a Circle from Three Points Takes all the knowl-
edge from the previous chapters to build our first application, one that
finds the circle that goes through three given points and draws the re-
sult to a vector image.

Chapter 10: Graphical User Interfaces and the Canvas Covers the

basics of the Tkinter package, which is used to build user interfaces in
Python. We’ll spend most of the time learning how to use the Canvas

widget, which is used to draw images to the screen.

Chapter 11: Animations, Simulations, and the Time Loop Guides
you through the process of creating an animation by drawing inside Tk-
inter’s Canvas. We’ll explore the concept of the time loop used by en-
gineering simulations and video game engines to render scenes to the
screen.

Chapter 12: Animating Affine Transformations Creates an appli-
cation that animates the effect of applying an affine transformation to
some geometric primitives.

Part IV: Systems of Equations

Chapter 13: Matrices and Vectors Introduces the vector and matrix
constructs and covers how to code these primitives, which will be ex-
tremely useful when we’re working with systems of equations.

Chapter 14: Linear Equations Shows how numerical methods can be
implemented to solve large systems of linear equations. We’ll implement
the Cholesky factorization method together; this algorithm will solve
the systems of equations that will appear in the next and last part of the
book.

Part V: Truss Structures

Chapter 15: Structural Models Reviews the basic mechanics of ma-
terials concepts we’ll use in this part of the book. We’ll also write the

classes to represent a truss structure. Using this truss structure model
we’ll build a complete structural analysis application.

Chapter 16: Structure Resolution Using the model built in the previ-
ous chapter, we’ll cover all the computations required to find the struc-
ture’s displacements, deformations, and stresses.

Chapter 17: Reading Input from a File Covers the implementation of
file reading and parsing so that our truss analysis application can rely on
data that’s stored as plaintext.



Chapter 18: Producing an SVG Image and Text File Discusses the
generation of SVG image diagrams based on the structure solution.
Here we’ll use our own SVG package to draw the diagrams, which will
contain all the relevant details such as the geometry of the deformed
structure and the stress label next to each bar.

Chapter 19: Assembling Our Application Explains how to put to-
gether the pieces built in the previous chapters to build the complete
truss resolution application.

Setting Up Your Environment

In this book, we’ll use Python 3 and provide instructions to work with Py-
Charm, a development environment program that’ll let us work effectively.
The code has been tested using Python versions 3.6 through 3.9, but it’ll
most likely continue to work equally well with future versions of the lan-
guage. Let’s download the code that accompanies the book, install the latest
Python 3 interpreter, and set up PyCharm.

Downloading the Book’s Code

All the code for this book is available on GitHub at https.//github.com/angel
solaorbaiceta/Mechanics. Again, while I strongly recommend that you write all
the code yourself, it’s a good idea to have it with you for reference.

If you are familiar with Git and GitHub, you may want to clone the repos-
itory. Also, I suggest fetching and pulling from the repository from time to
time, as I may add new features or fix bugs in the project.

If you are not familiar with the Git version control system or GitHub,
your best option is to download a copy of the code. You can do this by click-
ing the Clone button and choosing the Download ZIP option (see Figure 4).

Q Find file + Add file ~

Clone with HTTPS (2 Use SSH
Use Git or checkout with SVN using the web URL.

https://github.com/angelsolaorbaicet: [%)

Open in Desktop Download ZIP
12 hours ago

Figure 4: Downloading the code from GitHub

Unzip the project and place it inside the directory of your choice. As
you’ll see, I documented every package and subpackage in the project us-
ing README files (README.md). These files are usually found in software
projects; they explain and document the features of a project and also in-
clude instructions on how to compile or run the code. A README file is
the first thing you want to read when you open a software project, as they
describe how to configure the project and get the code running.
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README files are written using the Markdown format. If you want to know more
about this format, you can read about it here: https://www.markdownguide.org/.

The Mechanics project on GitHub contains more code than we cover in
this book. We didn’t want to make this book too long, so we couldn’t cover
everything included in the project.

For example, in Chapter 14, “Linear Equations,” we talk about numer-
ical methods to solve systems of linear equations and explain the Cholesky
factorization in detail. There are some other numerical methods in the pro-
ject, such as the conjugate gradient, which we don’t have time to cover in the
book; the code is there for you to analyze and use. There are also many auto-
mated tests that we skip in the book for brevity reasons; use those tests as a
reference when you write your own.

It’s time to install Python.

Installing Python

You can download Python for macOS, Linux, and Windows from https://
www. python.org/downloads/. For Windows and macOS you’ll need to down-
load the installer and run it.

Linux typically comes with Python preinstalled. You can check which
version is installed on your computer using the following command in the
shell:

$ python3 -V
Python 3.8.2

To install a version of Python on a Linux computer, you use the os pack-
age manager. For Ubuntu users using the apt package manager, this would
be

$ sudo apt install python3.8

For Fedora users, using the dnf package manager, this would be

$ sudo dnf install python38

If you are using a different Linux distribution, a quick Google search
should get you the instructions to install Python using your package
manager.

It’s important that you download a version of Python 3, such as 3.9,
which is the current version at the time of writing. Any version above 3.6
(included) will work.

Python versions 2 and 3 are not compatible; code written targeting Python 3 will
very likely not work with Python’s version 2 interpreter. The language evolved in a
non-backwards-compatible way, and some features in version 3 are not available in
version 2.
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Installing and Configuring PyCharm

As we develop our code, we’ll want to use an integrated development environ-
ment (or IDE for short), a program equipped with features that help us write
code more effectively. An IDE typically offers autocompletion features to let
you know what options you have available as you type, as well as build, de-
bug, and test tools. Taking some time to learn the main features of your IDE
of choice is worth the effort: it’ll make you much more productive during
the development phase.

For this book we’ll be using PyCharm, a powerful IDE created by Jet-
Brains, a company that makes not only some of the best IDEs on the market
but also its own programming language: Kotlin. If you already have some
Python experience and prefer to use another IDE, such as Visual Studio
Code, you’re welcome to do so, but you’ll need to figure out some things
on your own using your IDE’s documentation. If you don’t have a lot of pre-
vious experience with any IDE, I recommend you stick to using PyCharm so
you can follow along with the book.

To download PyCharm, head to https.//www.jetbrains.com/pycharm/ and
click the Download button (see Figure 5).

PyCharm

The Python IDE
for Professional Developers

DOWNLOAD

Full-fledged Professional oF Fri

Figure 5: Downloading PyCharm IDE

PyCharm is available for Linux, macOS, and Windows. It has two differ-
ent versions: Professional and Community. You can download the Commu-
nity version for free. Follow the installer steps to install PyCharm on your
machine.

Opening the Mechanics Project
Let’s use PyCharm to set up the Mechanics project you downloaded earlier so
you can play with it and have its code for reference.

Open PyCharm and click the Open option on the welcome screen. Lo-
cate the Mechanics project folder you downloaded or cloned from GitHub
and select it. PyCharm should open the project and configure a Python in-
terpreter for it, using the version of Python installed in your computer.
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Every project inside PyCharm requires that a Python interpreter be set.
Since you could have several different versions of Python installed on your
machine and because you may have chosen custom install locations, you
need to tell PyCharm which of those versions of Python you want to use
to interpret your project’s code and where to find Python’s interpreter in
your system. For Windows and Linux users, go the menu and choose File
> Settings. For macOS users, choose PyCharm » Preferences. In the Set-
tings/Preferences window, click the Project: Mechanics section in the left
column to expand it and choose Python Interpreter (see Figure 6).

Project: Mechanics » Python Interpreter For current project

Python Interpreter: [ ] Python 3.8 /usr/local/opt/python@3.8/bin/python3.8

v Project: Mechanics
Python Interpreter

Project Structure

Figure 6: Setting up the project’s Python interpreter

On the right side of the window, click the down arrow beside the Python
Interpreter field, and from the drop-down, choose the version of the Python
binary you installed on your computer. If you followed the previous instruc-
tions, Python should have been installed to a default directory where Py-
Charm can find it, so the interpreter should appear in the list. If you've in-
stalled Python somewhere else, you’ll need to tell PyCharm the directory
where you did so.

If you have any trouble setting the project’s interpreter, check PyCharm’s official
documentation: https://www.jetbrains.com/help/pycharm/configuring-
python-interpreter.html. This link contains a detailed explanation of the process.

Now that you've opened the Mechanics project, it should already be set
up. Open the README.md file inside PyCharm by double-clicking it. By
default, when you open a Markdown file in PyCharm, it’ll show you a split
view: to your left is the Markdown raw file and to your right is the rendered
version of the file. See Figure 7.

This README.md file explains the basic structure of the project. Feel
free to navigate through the links in the preview; give yourself some time to
read through the README files inside each of the packages. This will give
you a good sense of the amount of work we’ll do together throughout the
book.
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# Mechanics

Learn how to solve mechanics problems using Python 3 . Mechanics

## Packages
Learn how to solve mechanics problems using Python 3.
This project includes the following packages:
- [utils](./utils/README.md): utility functions to perform a variety of s PaCkages
- [geom2d](./geon2d/README .nd): two-dimensional geometry primitives and ¢
- [graphic](./graphic/READHE.md): graphic-related sub-packages: This project includes the following packages:
- [sval(./graphic/svqa/README.md): SVG images generation based on _gec
- [simulation](./graphic/simulation/README.md): Animation generation  + ulils: ulility functions to perform a variely of simple cperations
- [structures](./structures/READHE.md): truss structure resolution packag « geom2d:two-dimensional geometry primitives and operations
«» graphic: graphic-related sub-packages:
1| « svg: SVG images generation based on geomzd primitives
= simulation: Animation generation drawing on a tkinter canvas
+ structures: truss structure resolution package

Figure 7: README.md file with PyCharm’s split view

Creating Your Own Mechanics Project

Now that you have the Mechanics project you downloaded set up for refer-
ence, let’s create a new empty project where you can write your code. Close
the project if you have it open (select File » Close Project). You should see
the welcome page, as in Figure 8.

PyCharm

n 2020.1.2

== Create New Project
Open
Get from Version Control

Figure 8: PyCharm welcome
screen

From the welcome page choose Create New Project. You’'ll be asked to
name your project: use Mechanics. Then, for the interpreter, instead of the
default, which is New environment using, select the Existing interpreter
option (see Figure 9). Locate the version of Python you downloaded earlier
in the introduction and click CREATE.
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L N New Project
Location: Documents/Mechanics "

Project Interpreter: Python 3.8

O Mew environment using &

{useflocal/bin/python3.7

(@) Existing interpreter

Interpreter: & Python 3.8 fustilocalfopt/python®3. 8fhinfpython3. & -

CANCEL CREATE

Figure 9: PyCharm, creating a new project

You should have a new empty project created and ready for you to write
code. Let’s take a quick look at PyCharm’s main features.

PyCharm Introduction

Introduction

This section is by no means a thorough guide to using PyCharm. To get a
more complete overview of the IDE, you should read the documentation at
https.//www.jetbrains.com/help/pycharm. The official documentation is com-
plete and up-to-date with the latest features.

PyCharm is a powerful IDE, and its Community (free) version even
comes packed with lots of functionality; it makes working with Python a
delightful experience. Its user interface (UI) can be divided into four main
sections (see Figure 10).

Navigation bar On the top of the window is the navigation bar. To its
left is the breadcrumb navigation of the currently open file. To its right
are buttons to run and debug the program, as well as the drop-down list
that shows the current run configuration (we’ll cover run configurations
later in the book).

Project Tool window This is the directory structure of your project,
including all its packages and files.

Editor This is where you’ll write your code.

Terminal PyCharm comes with two terminals: your system’s terminal
and Python’s terminal. We’ll use both of them throughout the book.
We'll cover these in Chapter 3.


https://www.jetbrains.com/help/pycharm

Navigation

bar

Project Tool e

window

\ Python terminal Project /
System terminal

inferpreter
Figure 10: PyCharm Ul

PyCharm also includes the project’s Python interpreter in the lower-
right corner of the Ul You can change the interpreter’s version from here,
choosing from a list of versions installed on your system.

Creating Packages and Files

We can create new Python packages (we’ll cover packages in Chapter 1) in
your project using the Project Tool window. To create a new package, go

to the Project Tool window and right-click the folder or package where you
want to create the new package; from the menu that appears, select New »
Python Package. Similarly, select New » Python File to create Python files.
You can see these options in Figure 11.

You can also create regular directories with New » Directory and all
types of files using New P File, which will let you choose the file’s extension
yourself. The difference between a regular directory and a Python package
is that the latter includes a file named __init__.py that instructs Python’s in-
terpreter to understand the directory as a package with Python code. You’ll
learn more about this in Chapter 1.
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[ New ] £ File

2 Create bash file

Cut #X
% New Scratch File O%N
Copy

B8 Directory
Paste #V

[ Python Package

Find Usages XF7
[ Python File
F

Find in Path... L%

HTML File
Replace in Path... S #R

4 EditorConfig File
Inspect Code...

Resource Bundle

Refactor

Figure 11: PyCharm new package or file

Creating Run Configurations

A run configuration is just a way of telling PyCharm how we want our project
(or a part of'it) to run. We can save this configuration to use as many times
as we need. With a run configuration in place, we can execute our applica-
tion by simply pressing a button, as opposed to having to write a command
in the shell, which potentially entails copy-pasting parameters, inputting file-
names, and the like.

Among other things, a run configuration can include information about
the entry point for our application, what files to redirect to the standard in-
put, what environment variables have to be set, and what parameters to pass
to the program. Run configurations are a convenience that will save us time
when developing; they also allow us to easily debug Python code, as we’ll see
in the next section. You can find the official documentation for run config-
urations here: https://www.jetbrains.com/help/pycharm/run-debug-configuration
himl.

Let’s create a run configuration ourselves to get some hands-on experi-
ence. To do this, let’s first create a new empty project.

Creating a Test Project

To create a new project from the menu, choose File » New Project. In the
Create Project dialog, enter RunConfig for the project’s name, select the
Existing interpreter option, and then click CREATE.


https://www.jetbrains.com/help/pycharm/run-debug-configuration.html
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In this new empty project, add a Python file by right-clicking the Run-
Config empty directory in the Project Tool window and then selecting New
» Python File. Name it fibonacci. Open the file and enter this code:

def fibonacci(n):
if n< 3:
return 1

return fibonacci(n - 1) + fibonacci(n - 2)

fib 30 = fibonacci(30)
print(f'the 30th Fibonacci number is {fib_30}")

We’ve written a function to compute the nth Fibonacci number using a
recursive algorithm, which we then use to compute and print the 30th num-
ber. Let’s create a new run configuration to execute this script.

Creating a New Run Configuration
To create a new run configuration, from the menu select Run » Edit
Configurations; the dialog in Figure 12 should appear.

e e Run/Debug Configurations
v @ Templates Click the + button to create a new configuration based on templates
B Bash
= Compound
Python
> B Python docs
> Fg Python tests

Eptox

Configurations Available in Services
Confirm rerun with process termination
Confirm deletion from Run/Debug popup
Temporary configurations limit: &

CANCEL oK

Figure 12: The Run/Debug Configurations dialog

As you can see, there are a few templates we can use to create a new run
configuration. Each template defines parameters to help us readily create
the right kind of configuration. We’re only going to use the Python template
in this book. This template defines a run configuration to run and debug
Python files.

In the dialog, click the + button in the top-left corner and select Python
from the list of available templates (see Figure 13).
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Add New Configuration Click the - button to create a new configuration based on templates
Bash
2 Compound
Python ——

~ & Python docs
&t Docutils task
&t Sphinx task
v Ja Python tests
Jw Doctests
i Nosetests
Ko pytest
[ Twisted Trial
g Unittests

ez tox Configurations Available in Services

Confirm rerun with process termination

Confirm deletion from Run/Debug popup
Temporary configurations limit: 5

CANCEL 0K

Figure 13: Creating a new Python run configuration

Once you've chosen the configuration template, the right side of the
dialog displays the parameters we’ll need to provide for this configuration to
run our code. We only need to fill two of these parameters: the configura-
tion’s name and the script path.

Locate the Name field at the top of the dialog and enter fibonacci. Then
locate the Script path field under the Configuration section, and click the
folder icon to its right. Upon clicking this icon, a file dialog should open in-
side the project’s root folder, exactly where we’ve added our fibonacci.py file.
Choose this file as the script path. Your new configuration dialog should
look similar to Figure 14. Click OK.

> Run/Debug Configurations

- ~———  Allow parallel run Store as project file
v ' python
Configuration  Logs
fibonacei R —

> Templates Script path: gelsolaor o pyl G
Parameters: s
Environment
Environment variables:  PYTHONUNBUFFERED=1
Python interpreter: Python 3.8 fust/local/opt/python@3.8/bin/python3.8 -
Interpreter options: "
Working directory: JUser y onfig @
Add content roots to PYTHONPATH
Add source roots to PYTHONPATH
Execution
Emulate terminal in output console
Run with Python Console
Redirect input from: ]
Before launch
(O] CANCEL APPLY oK

Figure 14: The run configuration parameters

You’ve successfully created a run configuration. Let’s use it.
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Using the Run Configuration
In the navigation bar, toward the right, locate the run configuration selector.

Figure 15 shows this selector.
FIBONACCI > > &

Figure 15: The run configuration selector

In the drop-down list, select the run configuration you just created and
click the green play button to execute it. You should see the following mes-
sage in the shell of the IDE:

the 30th Fibonacci number is 832040

Process finished with exit code 0

You can also launch a run configuration from the menu by selecting
Run » Run ‘fibonacci’.

We’ve successfully used a run configuration to launch our fibonacci.py
script. Let’s now use it to learn about debugging Python code.

Debugging Python Code

When our programs are misbehaving and we don’t know why, we can debug
them. To debug a program, we can execute it line by line, one step at a time,
and inspect the values of the variables.

Let’s modify our fibonacci function a little bit before we debug the script.
Imagine that the users of this function are complaining about it being too
slow for large numbers. For example, they state they have to wait several
minutes for the function to compute the 50th Fibonacci number:

# this will fry your CPU... be prepared to wait
>>> fibonacci(50)

After careful analysis, we realize that our current implementation of the
fibonacci function could be improved if we cached the already computed
Fibonacci numbers to avoid repeating the calculations over and over again.
To speed up the execution, we decide to save the numbers we’ve already fig-
ured out in a dictionary. Modify your code like so:

cache = {}

def fibonacci(n):
ifn< 3:
return 1

if n in cache:
return cache[n]
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cache[n] = fibonacci(n - 1) + fibonacci(n - 2)
return cache[n]

fib 30 = fibonacci(30)
print(f'the 30th Fibonacci number is {fib_30}")

Before we start our debugging exercise, try to run the script again to
make sure it still yields the expected result. You can go further and try to
compute the 50th number: this time it will compute it in a matter of millisec-
onds. The following:

--snip--

fib_50 = fibonacci(50)
print(f'the 50th Fibonacci number is {fib_50}")

yields this result:

the 50th Fibonacci number is 12586269025

Process finished with exit code 0

Let’s now stop the execution exactly at the line where we call the
function:

fib 50 = fibonacci(50)

To do this, we need to set a breakpoint where we want the Python interpreter
to stop the execution. You can set a breakpoint in two ways: either click in
the editor, slightly to the right of the line number where you want to stop
(where the dot appears in Figure 16), or click your cursor anywhere in the
line, and then from the menu select Run » Toggle Breakpoints » Line
Breakpoint.

If you’'ve added the breakpoint successfully, you should see a dot like the
one in Figure 16.

1 “cache = {}

def fibonacci(n):
if n < 3:

return 1

if n in cache:
return cache[n]

cache[n] = fibonacci(n - 1) + fibonacci(n - 2)

return cache[n]

® fib_50 = fibonacci(5@)
print(f'the 50th Fibonacci number is {fib_5@}')

Figure 16: Setting a breakpoint in the code
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To launch the Fibonacci run configuration in debug mode, instead of
clicking the green play button, you want to click the red bug button (see
Figure 15) or select Run » Debug ‘fibonacci’ from the menu.

PyCharm launches our script and checks for breakpoints; as soon as it
finds one, it stops execution before executing that line. Your IDE should’ve
halted execution in the line where we set the breakpoint and displayed the
debugger controls in the lower part, as in Figure 17.

RunConfig - fibonacci.py

RunConfig > * fibonacci.py >

Project

<

RunConfig ~/PycharmPro cache = {}

® 1: Project

fibonacci.py
> |8 External Libraries
def (n)
ifn<3
return 1

H Scratches and Consoles

7: Structure

if n in cache
return cache[n]

cache[n] (n
return cache[n]

Debugger i3 fib_50

\ ¢

(50)

. FIBONACCI v

Debugger
stopped here

1) (n-2)

fib_50} ")

Debug:

Console

. fibonacci

Execution controls

Debugger

Frames

MainThread v

<module>, fibonacci.py:15

2: Favorites

Variables

Variables
v = {dict: 0} {}
={int} 0

> § Special Variables

4:Run 4, b Debug Terminal Python Console 6: TODO

Figure 17: PyCharm’s debugger

1511 LF UTF-8 4spaces Atom One Light

Q) Event Log

Python 3.8 2

The debugger has a bar near the top to control the execution of the pro-
gram (see Figure 18). There are a few icons, but we’re mainly interested in
the first two: Step over and Step into. With the Step over option, we can
execute the current line and jump to the next one. The Step into option
goes inside the function body of the current line. We’ll look at these two

in a minute.

The right side of the debugger has a Variables pane where we can in-
spect the current state of our program: the values of all the existing vari-
ables. For instance, we can see the cache variable in Figure 17, which is an

empty dictionary at the moment.

¥

A

Step over

Step info

Figure 18: Debugger execution controls
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Let’s now click the Step into icon in the execution control’s section of
the debugger. The execution enters the fibonacci function body and stops in
its first instruction (Figure 19).

RunConfig - fibonacci.py

RunConfig > « fibonaccipy > . FBONACCI v 3 ]

%.)‘ Project
i RunConfig ~/PycharmProjects/ cache = {
) fibonacci.py
@ > External Libraries
5 def th::m(n):@
S E scratches and Consoles 5 ifn<3:
& return 1
if n in cache
return cacheln]
cache[n] = fibonacci(n - 1) + fibonacci(n - 2)
return cache[n]
@ fib_50 = fibonacci(50)
print( fib_50}')
fibonacci()
Debug: , fibonacci -
Debugger Console v
Frames Variables
u MainThread - n = {int} 50
e fibonacci, fibonacci.py:5
<module>, fibonacci.py:15
s | Frames

, %3 Debug Python Console 03 Terminal (1 6: TODO QEvent Log

© PyCharm 2020.1.4 available: /f Update.. (30 minutes ago) 51 LF UTF-8 4spaces Atom One Light @ Python3.8 & &

Figure 19: Stepping into the fibonacci function

The debugger’s Variables pane now shows the n variable with its current
value, 50. This value also appears beside the fibonacci function definition, as
you can see in Figure 19 (both places are indicated with arrows).

The left side of the debugger displays the Frames pane. This pane con-
tains the stack frames of our program. Each time a function is executed,

a new frame is pushed to the stack with the function’s local variables and
some more information. You can go back and forth in time by clicking a
frame to inspect the state of the program before that function got called.
For instance, you can click the <module>, fibonacci.py:15 stack frame to go
back in time before the fibonacci function got called. To go back to the cur-
rent execution point, simply click the topmost stack frame, fibonacci,
fibonacci.py:5 in this case.

Try to continue debugging the program using the Step over and Step
into controls. Make sure you watch the cache and n variables as they change
their values. Once you’re done experimenting, to stop the debugging ses-
sion, you can either execute all the instructions in the program until it fin-
ishes or click the Stop button in the debugger. You can do this from the
menu by selecting Run » Stop ‘fibonacci’ or by clicking the red square icon
on the left side of the debugger.

Let’s try one last debugging exercise. Run the program again in debug
mode; when the execution stops at the breakpoint, click the Step over icon.
Inspect the cache variable in the Variables pane. As you can see, the cache is
now filled with all the Fibonacci numbers from 3 up to 50. You can expand
the dictionary to check all of the values inside, as in Figure 20.



Variables

+ v {.}cache = {dict: 4B} {3: 2, 4: 3, 5: 5,6: 8, 7: 13, B: 27, 9: 34, 10: 55, 11: 89, 12: 144, 13: 233, 14: 377, 15: 610, 16: 987,

3 ={int} 2
4 ={int} 3
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-
b7 ={int}13
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i 9 ={int} 34

I 10 = {int} 55
i 11 = {int) 89
012 = {int) 144
I 13 = {int} 233
i 14 = {int} 377

E1 15 = {int} RIN

Figure 20: Debugger variables

You can also interact with the current status of the program using the
debugger’s console (Figure 21). In the debugger view, click the Console tab
next to the Debugger tab. In this console, you can interact with the state
of the current program and do things like check whether a given Fibonacci

number is cached:

>>> 12 in cache
True

RunConfig >« fibonacci.py >
Project

RunConfig ~/PycharmProjects/

@ 1: Project
<

> | External Libraries

Z: Structure

RunConfig - fibonacci.py
. FBONACCI v SEON |

fibonacei.py if n in cache:
return cache[n]

[ Scratches and Consoles cache[n] = fibonacci(n - 1) + fibonacci(n - 2)
return cacheln]

® fib_50 = fibonacci(50)

16 print( fib_50/ )
Debug:  , fibonacci /
Debugger Console ) v
/usr/local/opt/python@3.8/bin/python3.8 "/Applications/PyCharm CE.app/Contents/plugins/python-ce/helpers/pydev/pydevd.py" —-multiproc —-qt-support=auto —cl|
pydev debugger: process 45126 is connecting
u
Connected to pydev debugger (build 201.8538.36)
L4 >>> 12 in cache
e -
H Debugger console
% 5: Debug Python Console [ Terminal 1 6 TODO Q) Event Log
®  PyCharm 2020.1.4 available: // Update... (today 07:19) 11 LF UTF-8 4spaces Atom One Light @ Python 3.8
Figure 21: Debugger console
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Summary

Introduction

In this introductory chapter, we’ve taken a look at the contents of the book
and the prerequisites you’ll need to follow along and make the best of it. We
also installed Python and configured our environment to work effectively
throughout the book.

The last section was a sneak peek into PyCharm and its powerful debug-
ging tools, but as you can imagine, we’ve barely scratched the surface. To
learn more about PyCharm debugging, take a quick look at the official docu-
mentation at attps:;//www.jetbrains.com/help/pycharm/debugging-code. html.

Now, let’s start learning about Python.


https://www.jetbrains.com/help/pycharm/debugging-code.html
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A SHORT PYTHON PRIMER

In this first chapter, we’ll take a look at some
of the Python features we’ll use throughout
the book. This is not meant to be an intro-
duction to Python; I'm assuming you have a ba-
sic understanding of the language. If you don’t, there
are plenty of good books and online tutorials that’ll

get you started.

We'll first explore how Python code can be split into packages and how
to import these packages into our programs. We’ll learn how to document
Python code and how to consult this documentation using Python. Then,
we’ll review tuples, lists, sets, and dictionaries, which are the most popular
Python collections.

Python Packages and Modules

Software projects of a reasonable size usually consist of lots of source files,
also called modules. A coherent bundle of Python modules is referred to as
a package. Let’s start our discussion on Python by taking a look at these two
concepts: modules and packages.
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Modules

A Python module is a file that contains Python code that’s meant to be im-
ported by other Python modules or scripts. A script, on the other hand, is a
Python file that’s meant to be run.

Python modules allow us to share code between files, which spares us
from having to write the same code over and over again.

Every Python file has access to a global variable named __name__. This
variable can have two possible values:

¢ The name of the module, that is, the name of the file without the
.py extension

e The string '_ main__'

Python determines the value of __name__ based on whether the file is im-
ported by some other module or run as a script. When the module is im-
ported inside another module or script, __name__is set to the name of the
module. If we run the module as a script, for example,

$ python3 my_module.py

then the value of __name__is set to '__main__'. This may seem a bit abstract
at the moment, but we’ll explain why we care about the _ name__ global vari-
able later in the chapter. As we’ll see, knowing if a given module is being
imported or run as a script is an important piece of information we’ll want
to consider.

As we write more and more Python modules for our project, it makes
sense to separate them into groups according to functionality. These groups
of modules are called packages.

Packages

A package is a directory containing Python modules and a special file whose
name is required to be __init__.py. Python’s interpreter will understand any
folder containing an__init__.py file as a package.
For instance, a folder structure like:
geom2d
[- _init_ .py
|- point.py
|- vector.py

is a Python package called geom2d containing two files, or modules: point.py
and vector. py.

The __init__.py file is executed whenever something is imported from
the package. This means that the __init__.py file can contain Python code,
usually initialization code. Most of the time, however, this __init__.py file
remains empty.



Running Files

When Python imports a file, it reads its contents. If this file contains only
functions and data, Python loads these definitions, but no code is actually
executed. However, if there are top-level instructions or function calls, Python
will execute them as part of the import process—something we usually don’t

want.
Earlier, we saw how when a file is run (as opposed to imported), Python
sets the _ name__ global variable to be the string '__main__'. We can use this

fact to execute the main logic only when the file is being run, and not when
the file is imported:

main__ ':
# only executes if file is run, not imported

if name ==

We’ll refer to this pattern as the “if name is main” pattern, and we’ll use it in
the applications we’ll write in this book.

Remember that when a file is imported, Python sets the _ name__ variable
to the name of that module.

Importing Code

Let’s say you had some Python code you wanted to use in multiple files. One
way to do that would be to copy and paste the code every time you wanted to
use it. Not only would this be tedious and boring, but imagine what would
happen if you changed your mind about how that code works: you’d need to
open every single file where you pasted the code and modify it in the same
way. As you can imagine, this is not a productive way of writing software.

Fortunately, Python provides a powerful system to share code: import-
ing modules. When module_b imports module_a, module_b gains access to the
code written in module_a. This lets us write algorithms in a single place and
then share that code across files. Let’s look at an example using two mod-
ules we’ll write in the next part of the book.

Say we have two modules: point.py and vector.py. Both modules are inside
the package we saw earlier:

geom2d
|- __init_ .py
|- point.py
|- vector.py

The first module, named point.py, defines the geometric primitive Point,

and the second one, vector.py, defines the Vector, another geometric primi-
tive. Figure 1-1 illustrates these two modules. Each module is divided into
two sections: a section in gray, for the code in the module that has been im-
ported from somewhere else, and a section in white, for the code defined by
the module itself.

A Short Python Primer 5
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Imported Imported
Self-defined . Self-defined
eraenne Point Vector ehaenne
point.py vector.py
module module

Figure 1-1: Two Python modules

Now, say we need our point.py module to implement some functional-
ity that uses a Vector (like, for example, displacing a point by a given vector).
We can gain access to the Vector code in vector.py using Python’s import com-
mand. Figure 1-2 illustrates this process, which brings the Vector code to the
“imported” section of the point.py module, making it available inside the en-
tire module.

from vector import Vector

/\

Imported Vector Imported
Self-defined Self-defined
eraeine Point Vector eraene
point.py vector.py
module module

Figure 1-2: Importing the Vector class from the vector.py

In Figure 1-2, we use the following Python command:

from vector import Vector

This command brings just the Vector class from vector.py. We’re not im-
porting anything else defined in vector. py.

As you’ll see in the next section, there are a few ways to import from
modules.

Different Import Forms

To understand the different ways we can import modules and names inside
a module, let’s use two packages from our Mechanics project.



Mechanics
|- geom2d
|- _init_ .py
|- point.py
|- vector.py

- _init__.py
|- matrix.py
|- vector.py

For this example, we’ll use the geom2d and egs packages, using two files, or
modules, inside of each. Each of these modules defines a single class that
has the same name as the module, only capitalized. For example, the mod-
ule in point.py defines the Point class, vector.py defines the Vector class, and
malrix.py defines the Matrix class. Figure 1-3 illustrates this package structure.

geom2d
point vector
’7 Point \‘ ’/ Vector \‘

il

vector

Vector

matrix
’/ Matrix \‘

Figure 1-3: Two packages from our Mechanics
project and some of their modules

L

With this directory set up in our minds, let’s analyze several scenarios.

Importing from a Module in the Same Package

If we are in module point.py from the package geom2d and we want to import
the entire vector.py module, we can use the following:

import vector

Now we can use the vector.py module’s contents like so:

v = vector.Vector(1, 2)

It’s important to note that since we imported the entire module and not
any of its individual entities, we have to refer to the module-defined entities
using the module name. If we want to refer to the module using a different
name, we can alias it:

import vector as vec

A Short Python Primer 7
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Then we can use it like so:

v = vec.Vector(1, 2)

We can also import specific names from a module instead of importing
the entire module. As you saw earlier, the syntax for this is as follows:

from vector import Vector

With this import, we can instead do the following:

v = Vector(1, 2)

In this case, we can also alias the imported name:

from vector import Vector as Vec

When we alias an imported name, we simply rename it to something
else. In this case, we can now write it as follows:

v = Vec(1, 2)

Importing from a Module in a Different Package

If we wanted to import the point. py module from inside the matrix.py mod-
ule, which is in a different package, we could do the following:

import geom.point

or equivalently

from geom import point

This lets us use the entire point.py module inside matrix.py:

p = point.Point(1, 2)

Once again, we can choose to alias the imported module:

import geom.point as pt

or equivalently

from geom import point as pt

Either way, we can use pt as follows:

p = pt.Point(1, 2)




We can also import names from the module, instead of bringing the
entire module, like so:

from geom.point import Point

p = Point(1, 2)

As before, we can use an alias:

from geom.point import Point as Pt

p = Pt(1, 2)

Relative Imports

Finally, we have relative imports. A relative import is one that refers to a mod-
ule using a route whose start point is the file’s current location.

We use one dot (.) to refer to modules or packages inside the same pack-
age and two dots (..) to refer to the parent directory.

Following our previous example, we could import the point.py module
from within matrix.py using a relative import:

from ..geom.point import Point

p = Point(1, 2)

In this case, the route ..geom.point means this: from the current direc-
tory move to our parent’s directory and look for the point.py module.

Documenting the Code with Docstrings

When we write code that other developers will use, it’s good practice to doc-
ument it. This documentation should include information about how to use
our code, what assumptions the code makes, and what each function does.

Python uses docstrings to document code. These docstrings are defined
between triple quotes (""") and appear as the first statement of the function,
class, or module they document.

You may have noticed how the code for the Mechanics project you down-
loaded earlier uses these docstrings. For example, if you open the matrix.py
file, the methods of the Matrix class are documented this way:

def set_data(self, data: [float]):

Sets the given list of 'float' numbers as the values of
the matrix.

The matrix is filled with the passed in numbers from left
to right and from top to bottom.
The length of the passed in list has to be equal to the

A Short Python Primer 9
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number of values in the matrix: rows x columns.

If the size of the list doesn't match the matrix number
of elements, an error is raised.

:param data: [float] with the values

:return: this Matrix

if len(data) != self. cols count * self. rows count:
raise ValueError('Cannot set data: size mismatch')

for row in range(self. rows_count):
offset = self._cols_count * row
for col in range(self._ cols count):
self. data[row][col] = data[offset + col]

return self

If you ever find yourself using this code and can’t figure something out,
Python has the help global function; if you give help a module, function,
class, or method, it returns that code’s docstring. For example, we could
get the documentation for this set_data method inside a Python interpreter
console as follows:

>>> from eqs.matrix import Matrix
>>> help(Matrix.set_data)

Help on function set data in module egs.matrix:
set_data(self, data: [<class 'float'>])
Sets the given list of 'float' numbers as the values of
the matrix.

The matrix is filled with the passed in numbers from left
to right and from top to bottom.

The length of the passed in list has to be equal to the
number of values in the matrix: rows x columns.

If the size of the list doesn't match the matrix number
of elements, an error is raised.

:param data: [float] with the values
:return: this Matrix

There are automated tools, like Sphinx (https.//www.sphinx-doc.org/), that
generate documentation reports in HTML, PDF, or plaintext using the doc-
strings in a project. You can distribute this documentation along with your
code so that other developers have a good place to start learning about the
code you write.


https://www.sphinx-doc.org/
https://www.sphinx�doc.org/

We won’t be writing the docstrings in this book as they take up consider-
able space. But they should all be in the code you downloaded, and you can
look at them there.

Collections in Python

Our programs often work with collections of items, sometimes very large
ones. We want to store these items in a way that is convenient for our pur-
poses. Sometimes we’ll be interested in knowing whether a collection in-
cludes a particular item, and other times we’ll need to know the order of our
items; we may also want a fast way of finding a given item, maybe one that
fulfills a particular condition.

As you can see, there are many ways to interact with a collection of items.
As it turns out, choosing the right way to store data is crucial for our pro-
grams to perform well. There are different collection flavors, each good for
certain cases; knowing which type of collection to use in each particular situ-
ation is an important skill every software developer should master.

Python offers us four main collections: the set, the tuple, the list, and
the dictionary. Let’s explain how each of these collections stores elements
and how to use them.

Sets

The set is an unordered collection of unique elements. Sets are most useful
when we need to quickly determine whether an element exists in a collection.
To create a set in Python, we can use the set function:

>>> s1 = set([1, 2, 3])

We can also use the literal syntax:

»> s1 = {1, 2, 3}

Notice that when using the literal syntax, we define the set using curly
brackets ({}).

We can get the number of elements contained inside a set using the
global len function:

>>> len(s1)
3

Checking whether an element exists in the set is a fast operation and can
be done using the in operator:

>>> 2 in s1
True

>>> 5 in s1
False

A Short Python Primer 11
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We can add new elements to the set using the add method:

>>> s1.add(4)
# the set is now {1, 2, 3, 4}

If we try to add an element that’s already present, nothing happens because
a set doesn’t allow repeated elements:

>>> sl.add(3)
# the set is still {1, 2, 3, 4}

We can remove an element from a set using the remove method:

>>> sl.add(3)
>>> si.remove(1)
# the set is now {2, 3, 4}

We can operate with sets using the familiar mathematical operations for
sets. For example, we can compute the difference between two sets, which is
the set containing the elements of the first set that aren’t in the second set:

>>> s1 = set([1, 2, 3])
>»>> s2 = set([3, 4])
>>> si.difference(s2)

{1, 2}

We can also compute the union of two sets, which is the set containing all
the elements that appear in both sets:

>>> s1 = set([1, 2, 3])
>>> s2 = set([3, 4])
>>> si.union(s2)

{1, 2, 3, 4}

We can iterate through sets, but the order of the iteration is not
guaranteed:

>>> for element in si:
print(element)

Tuples

Tuples are immutable and ordered sequences of elements. Immutable means
that, once created, the tuple cannot be changed in any way. Elements in a tu-
ple are referred to with the index they occupy, starting with zero. Counting
in Python always starts from zero.



Tuples are a good option when we’re passing a collection of ordered
data around our code but don’t want the collection to be mutated in any
way. For example, in code like:

>>> names = ('Anne', 'Emma')
>>> some_function(names)

you can be sure the names tuple won’t be changed by some_function in any way.
By contrast, if you decided to use a set like:

>>> names = set('Anne', 'Emma')
>>> some_function(names)

nothing would prevent some_function from adding or removing elements
from the passed-in names, so you’d need to check the function’s code to un-
derstand whether the code alters the elements.

In any case, as we’ll see later, functions shouldn’t mutate their parameters, so the
Sfunctions we’ll write in this book will never modify their input parameters in any
way. You might, nevertheless, use functions written by other developers who didn’t
follow the same rule, so you want to check whether those functions have these kinds of
side effects.

Tuples are defined between parentheses, and the elements inside a tu-
ple are comma-separated. Here’s a tuple, defined using literal syntax, con-
taining my name and age:

>>> me = ('Angel’, 31)

If we want to create a tuple with only one element, we need to write a comma
after it:

>>> name = ('Angel',)

It can also be created using the tuple function, passing it a list of items:

>>> me = tuple(['Angel’, 31])

We can get the number of items in a tuple using the len global function:

>>> len(count)
2

We can also count how many times a given value appears inside a tuple using
the tuple’s count method:

>>> me.count('Angel')
1

>>> me.count(50)
0

A Short Python Primer 13
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>>> ("hey', 'hey', 'hey').count('hey")
3

We can get the index of the first occurrence of a given item using the
index method:

>>> family = ('Angel', 'Alvaro', 'Mery', 'Paul', 'Isabel’, 'Alvaro')
>>> family.index('Alvaro')
1

In this example, we’re looking for the index of the string 'Alvaro', which
appears twice: at indices 1 and 5. The index method yields the first occur-
rence’s index, which is 1 in this case.

The in operator can be used to check whether an element exists inside a
tuple:

>>> 'Isabel’ in family
True

>>> 'Elena’ in family
False

Tuples can be multiplied by numbers, a peculiar operation that yields
a new tuple with the original elements repeated as many times as the multi-
plier number:

>>> ('ruby', 'ruby') * 4
("ruby', 'ruby', 'ruby', 'ruby', 'ruby', 'ruby', 'ruby', 'ruby')

>>> ('we', 'found', 'love', 'in', 'a', 'hopeless', 'place') * 16

('we', 'found', 'love', 'in', 'a', 'hopeless', 'place', 'we', 'found', ...

We can iterate through tuple values using for loops:

>>> for city in ('San Francisco', 'Barcelona’, 'Pamplona'):
print(f'{city} is a beautiful city')

San Francisco is a beautiful city
Barcelona is a beautiful city
Pamplona is a beautiful city

Using Python’s built-in enumerate function, we can iterate through the items
in the tuple with their indices:

>>> cities = ('Pamplona’, 'San Francisco', 'Barcelona')
>>> for index, city in enumerate(cities):
print(f'{city} is #{index + 1} in my favorite cities list')

Pamplona is #1 in my favorite cities list



San Francisco is #2 in my favorite cities list
Barcelona is #3 in my favorite cities list

Lists

The list is an ordered collection of nonunique elements referenced by their
index. Lists are well suited for cases where we need to keep elements in or-
der and where we know the index at which they appear.

Lists and tuples are similar, with the tuple’s immutability being the only
difference; items in a list move around, and items can be added and removed.
If you are sure the items in a large collection won’t be modified, use a tuple
instead of a list; tuple manipulations are faster than their list equivalents.
Python can do some optimizations if it knows the items in the collection
won’t change.

To create a list in Python, we can use the list function:

>>> 11 = list(['a’, 'b', 'c'])

Or we can use the literal syntax:

>>> 11 = ['a', 'b", 'c']

Note the usage of the square brackets ([]).
We can check the number of items in a list using the len function:

>>> len(11)
3

List elements can be accessed by index (the index of the first element is
Z€ero):

>>> 11[1]
b’

We can also replace an existing element in the list:

>>> 11[1] = 'm’
# the list is now ['a', 'm', 'c']

Be careful not to use an index that doesn’t exist in the list; it’ll raise an
IndexError:

>>> 11[35] = 'x'
Traceback (most recent call last):

File "<input>", line 1, in <module>
IndexError: list assignment index out of range

A Short Python Primer 15
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Items can be appended to the end of the list using the append method:

>>> 11.append('d")
# the list is now ['a', 'm', 'c', 'd']

Lists can be iterated, and the order of iteration is guaranteed:

>>> for element in 11:
print(element)

Q N 3 o

Often enough, we’re interested not only in the element itself but also in its
index in the list. In those cases, we can use the enumerate function, which
yields a tuple of the index and element:

>>> for index, element in enumerate(11):
print(f'{index} -> {element}")

0->a
1->m
2 ->cC
3->d

A new list can be created by taking contiguous elements from another
list. This process is called slicing. Slicing is a big topic that requires a section
of its own.

Slicing Lists

Slicing a list looks a bit like indexing into the list using square brackets, ex-
cept we use two indices separated by a colon: [<start> : <end>]. Here’s an
example:

>>> a = [1, 2, 3, 4]
>>> b = a[1:3]
# list b is [2, 3]

In the previous example, we have a list a with values [1, 2, 3, 4]. We
create a new list, b, by slicing the original list and taking the items starting at
index 1 (inclusive) and ending at index 3 (noninclusive).

Don'’t forget that slices in Python always include the element in the start index and
exclude the element in the end index.



Figure 1-4 illustrates this process.

[ 1 [2 3 4) ]

[2 3]
Figure 1-4: Slicing a list

Both the start and end indices in the slice operator are optional because
they have a default value. By default, the start index is assigned the first in-
dex in the list, which is always zero. The end index is assigned the last index
in the list plus one, which is equal to len(the_list).

>>> a = [1, 2, 3, 4]

# these two are equivalent:
>>> b_1 = a[0:4]
>>> b 2 = a[:]

In this example, both b_1 and b_2 lists are a copy of the original a list. By
copy we really mean they’re different lists; you can safely modify b_1 or b_2,
and list a remains unchanged. You can test this by doing the following:

>>> a = [1, 2, 3, 4]
>»> b = a[:]
>>> b[0] = 55

>>> print('list a:', a)
list a: [1, 2, 3, 4]

>>> print('list b:', b)
list b: [55, 2, 3, 4]

Negative indices are another trick you can use. A negative index is an in-
dex that is counted starting from the end of the list and moving toward the
beginning of the list. Negative indices can be used in slicing operations the
same way as positive indices, with a small exception: negative indices start
at -1, not at 0. We could, for instance, slice a list to get its two last values as
follows:

>>> a = [1, 2, 3, 4]
>>> b = a[-2:]
# list b is [3, 4]

Here we’re creating a new list starting at the second position from the end
all the way to the last element of the list. Figure 1-5 illustrates this.
Slicing lists is a versatile operation in Python.
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Figure 1-5: Slicing a list using negative indices

Dictionaries

A dictionary is a collection of key-value pairs. Values in a dictionary are mapped
to their key; we retrieve elements from a dictionary using their key. Finding
a value in a dictionary is fast.

Dictionaries are useful when we want to store elements referenced by
some key. For example, if we wanted to store information about our siblings
and wanted to be able to retrieve it by the name of the sibling, we could use
a dictionary. We’ll take a look at this in the following code.

To create a dictionary in Python, you can either use the dict function,

>>> colors = dict([('stoke', 'red'), ('fill', 'orange')])

or use the literal syntax,

>>> colors = {'stoke': 'red', 'fill': 'orange'}

The dict function expects a list of tuples. These tuples should contain
two values: the first one is used as the key, and the second is used as the
value. The literal version for creating dictionaries is much less verbose, and
in both cases the resulting dictionary is the same.

As with a list, we access values in a dictionary using square brackets.
However, this time we use the key of the value between the brackets, as op-
posed to the index:

>>> colors['stroke']
red

You can use anything that’s immutable as the key in a dictionary. Re-
member that tuples are immutable, whereas lists are not. Numbers, strings,
and booleans are also immutable and thus can be used as dictionary keys.

Let’s create a dictionary where the keys are tuples:

>>> ages = {('Angel', 'Sola'): 31, ('Jen', 'Gil"): 30}

In this example, we map the age to a key composed of a name and a sur-
name in a tuple. If we want to know Jen’s age, we can ask for the value in a
dictionary by using its key:

>>> age = ages[('Jen', 'Gil')]
>>> print(f'she is {age} years old')
she is 30 years old
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What happens when we look for a key that’s not in the dictionary?

>>> age = ages[('Steve', 'Perry')]

Traceback (most recent call last):
File "<input>", line 1, in <module>

KeyError: ('Steve', 'Perry')

We get an error. We can check whether a key is in a dictionary before
getting its value using the in operator:

>>> ('Steve', 'Perry') in ages
False

We can also get a set-like view of all the keys in the dictionary:

>>> ages.keys()
dict_keys([('Angel', 'Sola'), ('Jen', 'Gil')])

We can do the same for the values:

>>> ages.values()
dict_values([31, 30])

We can use the in operator to check for the existence of a value in both
the keys and values stored in Python dictionaries:

>>> ("Jen', 'Gil") in ages.keys()
True

>>> 45 in ages.values()
False

Dictionaries can be iterated in a few ways. Let’s imagine we have the fol-
lowing ages dictionary:

>>> ages = {'Angel': 31, 'Jen': 30}

We can use for loops to iterate through the dictionary keys:

>>> for name in ages.keys():
print(f'we have the age for {name}')

we have the age for Angel
we have the age for Jen

We can do the same for the values:

>>> for age in ages.values():
print(f'someone is {age} years old')

someone is 31 years old
someone is 30 years old
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And we can do the same for the key-value tuples:

>>> for name, age in ages.items():
print(f'{name} is {age} years old")

Angel is 31 years old
Jen is 30 years old

That’s about all we need to know about Python’s collections for now.
Let’s continue our Python tour by looking at destructuring collections.

Destructuring

Chapter 1

Destructuring or unpacking is a technique that allows us to assign values in-
side a collection to variables. Let’s look at some examples.

Imagine we have a tuple containing information about a person, includ-
ing her name and favorite beverage:

>>> anne_info = ('Anne', 'grape juice')

Say we want to have those two pieces of information in separate vari-
ables. We could separate them out like so:

>>> name = anne_info[0]
>>> beverage = anne_info[1]

This is perfectly fine, but we can do it in a more elegant way using de-
structuring syntax. To destructure the two strings inside the tuple into two
variables, we have to use another tuple with the variable names on the left
side of the assignment:

>>> (name, beverage) = anne_info

>>> name
"Anne’

>>> beverage
>>> 'grape juice'

We can also destructure lists. For example, if we had a list containing
similar information about another person, like

>>> emma_info = ['Emma’, 'hot chocolate']




we could destructure the name and favorite beverage using a list on the left
side of the assignment:

>>> [name, beverage] = emma_info

>>> name
"Emma’

>>> beverage
"hot chocolate’

The left-side tuple or list has to match the size of the one on the right
side, but there might be cases where we’re not interested in all of the un-
packed values. In such cases, you can use an underscore in those positions
where you want to ignore the corresponding value. For example,

[aJ ) C] = [1) 2, 3]

assigns the value 1 to variable a and assigns 3 to variable c, but it discards the
value 2.
This is another technique that helps us write more concise code.

Summary

This chapter has been a tour of some intermediate and advanced Python
techniques we’ll use throughout the book. We took a look at how Python
programs are made of modules bundled into packages and how to import
these modules from other parts of our code.

We also explained the “if name is main” pattern, which is used to avoid
executing portions of the code when the file is imported.

Then, we briefly touched on the four basic Python collections: tuples,
lists, sets, and dictionaries. We also looked at how to destructure, or unpack,
these collections.

Now let’s shift gears and talk about a few programming paradigms.
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TWO PYTHON PARADIGMS

Now that we’ve explored some topics in

the Python programming language, let’s
learn about the two main paradigms we can

use to write code. In this second chapter on

Python, we’ll discuss the functional and object-oriented
programming paradigms and the benefits each brings.
We’ll wrap up with a brief look at type hints. Let’s get
started.

Functional Programming

Functional programming is a programming paradigm, which means that it’s
a style of writing code we can decide to adhere to. For us to say “we’re writ-
ing functional-style code” we have to follow some simple rules that define
what functional programming is about.

The central elements of the functional programming paradigm are pure
functions and the immutability of data. We’ll break these concepts down in
the next sections.

Not all programming languages have good support for writing functional-
style code. For example, languages like C have no good support for it. On
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the other hand, there are languages, like Haskell, that are purely functional,
meaning you can only write functional-style code. By design, Python isn’t a
functional language, but it does have support for the functional program-
ming style.

Let’s learn about pure functions.

Pure Functions

Let’s quickly review the syntax for a Python function:

def function_name(parameters):
<function body>

The definition of a function starts with the def keyword followed by the name
of the function and the input parameters inside parentheses. A colon (:)
marks the end of the function header. The code in the body of the function
is indented one level.

A function, in the functional programming paradigm, is similar to the
mathematical concept of a function: a mapping of some input to some out-
put. We say a function is pure if

* It consistently returns the same outputs for the same set of inputs.

* It doesn’t have side effects.

A side effect happens when something outside the body of the function
is mutated by the function. A side effect also occurs when the function’s in-

puts are modified by the function, because a pure function never modifies
its inputs. For example, the following function is pure:

def make_vector between(p, q):
u=ql'x'] - pl'x']
v=aql'y']-pl'y']

return {'u': u, 'v': v}

Given the same input points p and q, the output is always the same vector,
and nothing outside the function’s body is modified. In contrast, the follow-
ing code is an impure version of make_vector:

last_point = {'x': 10, 'y': 20}

def make_vector(q):
u=q['x"] - last_point['x"]
v =q['y'] - last _point['y']
new_vector = {'u': u, 'v': v}
last_point = q

return new_vector




The previous snippet uses the shared state of last_point, which is mutated
every time make_vector is called. This mutation is a side effect of the function.
The returned vector depends on the last_point shared state, so the function
doesn’t return the same vector consistently for the same input point.

Immutability

As you saw in the previous example, one key aspect of functional program-
ming is immutability. Something is immutable if it doesn’t change with time.
If we decide to write code in the functional programming style, we make the
firm decision of avoiding data mutations and modeling our programs using
pure functions.

Let’s take a look at an example. Imagine we had defined a point and a
vector in the plane using dictionaries:

point = {'x':

vector = {'u':

5, 'y': 2}
10, 'v': 20}

If we wanted to compute the point resulting from displacing the existing
point by the vector, we could do it in a functional way by creating a new
point using a function. Here’s an example:

def displaced point(point, vector):
x = point['x'] + vector['u']
y = point['y'] + vector['v']

return {'x': x, 'y': y}

This function is pure: given the same point and vector inputs, the resulting
displaced point is consistently the same, and there is nothing that escapes
the function’s body that is mutated in any sense, not even the function para-
meters.

If we run this function, passing in the point and vector defined earlier,
we get the following:

>>> displaced_point(point, vector)
{'x"': 15, 'y': 22}

# let's check the state of point (shouldn't have been mutated)
>>> point
{'x':5, "y': 2}

Conversely, a nonfunctional way of solving this case could involve mutat-
ing the original point using a function like the following:

def displace point_in_place(point, vector):
point['x"] += vector['u']
point['y'] += vector['v']
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This function mutates the point it receives as an argument, which violates
one of the key rules of the functional style.

Note the use of in_place in the function name. This is a commonly used
naming convention that implies that the changes will happen by mutating
the original object. We’ll adhere to this naming convention throughout the
book.

Now let’s see how we’d go about using this displace_point_in_place
function:

>>> displace_point_in_place(point, vector)
# nothing gets returned from the function, so let's check the point

>>> point
{'x": 15, 'y': 22}
# the original point has been mutated!

As you can see, the function isn’t returning anything, which is a sign that
the function isn’t pure, because to do some kind of useful operation it must
have mutated something somewhere. In this case, that “something” is our
point, whose coordinates have been updated.

An important benefit of the functional style is that by respecting the im-
mutability of data structures, we avoid unintended side effects. When you
mutate an object, you may not be aware of all the places in your code where
that object is referenced. If there are other parts in the code relying on that
object’s state, there may be side effects you are not aware of. So, after the
object was mutated, your program may behave differently than expected.
These kinds of errors are extremely hard to hunt down and can require
hours of debugging.

If we minimize the number of mutations in our project, we make it more
reliable and less error prone.

Let’s now take a look at a special kind of function that has a central role
in functional programming: the lambda function.

Lambdas

Back in the 1930s, a mathematician named Alonzo Church invented lambda
calculus, a theory about functions and how they are applied to their argu-
ments. Lambda calculus is the core of functional programming.

In Python, a lambda function, or lambda, is an anonymous, typically short
function defined on a single line. We’ll find lambdas to be useful when pass-
ing functions as parameters to other functions, for instance.

We define a lambda function in Python using the lambda keyword fol-
lowed by the arguments (separated by commas), a colon, and the function’s
expression body:

lambda <argi>, <arg2>, ...: <expression body>

The expression’s result is the returned value.



A lambda function to sum two numbers can be written as follows:

>>> sum = lambda x, y: x +y
>>> sum(1, 2)
3

This is equivalent to the regular Python function:

>>> def sum(x, y):
return x +y

>>> sum(1, 2)
3

Lambdas are going to appear in the next sections; we’ll see there how
they’re used in several contexts. The place we’ll be using lambdas the most is
as arguments to the filter, map, and reduce functions, as we’ll discuss in “Fil-
ter, Map, and Reduce” on page 29.

Higher-Order Functions

A higher-order function is a function that either receives a function (or func-
tions) as input parameters or returns a function as its result.
Let’s take a look at examples for both cases.

Functions As Function Arguments

Imagine we want to write a function that can run a function a given number
of times. We could implement this as follows:

>>> def repeat_fn(fn, times):
for _ in range(times):

fn()

>>> def say_hi():
print('Hi there!')

>>> repeat_fn(say_hi, 5)
Hi there!
Hi there!
Hi there!
Hi there!
Hi there!

As you can see, the repeat_fn function’s first parameter is another func-
tion, which is executed as many times as the second argument times dictates.
Then, we define another function to simply print the string "Hi there!" to
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the screen: say_hi. The result of calling the repeat_fn function and passing it
say_hi is those five greetings.

We could rewrite the previous example using an anonymous lambda
function:

>>> def repeat_fn(fn, times):
for _ in range(times):

fn()

>>> repeat_fn(lambda: print("Hello!"), 5)
Hello!
Hello!
Hello!
Hello!
Hello!

This spares us from having to define a named function to print the message.

Functions As Function Return Values

Let’s take a look at a function that returns another function. Imagine we

want to define validation functions that validate if a given string contains a
sequence of characters. We can write a function named make_contains_validator
that takes a sequence and returns a function to validate strings that contain
that sequence:

>>> def make_contains_validator(sequence):
return lambda string: sequence in string

We can use this function to generate validation functions, like the following
one,

>>> validate_contains_at = make_contains_validator('@")

which can be used to check whether the passed-in strings contain the @ char-
acter:

>>> validate_contains_at('foo@bar.com")
True
>>> validate_contains_at('not this one')
False

Higher-order functions are a useful resource we’ll use throughout
the book.

Functions Inside Other Functions

Another convenient technique we’ll use throughout this book is defining a
function inside another function. There are two good reasons we may want
to do this: for one, it gives the inner function access to everything inside the
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outer function, without needing to pass that information as parameters; and
also, the inner function may define some logic that we don’t want to expose
to the outside world.

A function can be defined inside another function using the regular
syntax. Let’s take a look at an example:

def outer fn(a, b):
c=a+b

def inner_fn():
# we have access to a, b and c here

print(a, b, c)

inner_fn()

Here, the inner_fn function is defined inside the outer_fn function, and
thus, it can’t be accessed from outside this host function, only from within
its body. The inner_fn function has access to everything defined inside outer_fn,
including the function parameters.

Defining subfunctions inside of functions is useful when a function’s
logic grows complex and it can be broken down into smaller tasks. Of course,
we could also split the function into smaller functions all defined at the
same level. In this case, to signal that those subfunctions are not meant to
be imported and consumed from outside the module, we’ll follow Python’s
standard and name those functions starting with two underscores:

def public_fn():
# this function can be imported

def _ private_fn():
# this function should only be accessed from inside the module

Note that Python has no access modifiers (public, private, . ..); thus, all
the code written at the top level of a module, that is, a Python file, can be
imported and used.

Remember that the two underscores are just a convention that we have
to respect. Nothing really prevents us from importing and using that code.
If we import a function that starts with two underscores, we have to under-
stand that the function was not written by its authors to be used from the
outside, and we may get unexpected results if we call that function. By defin-
ing our subfunctions within the functions that call them, we prevent this
behavior.

Filter, Map, and Reduce

In functional programming, we never mutate a collection’s items, but in-
stead always create a new collection to reflect the changes of an operation
over that collection. There are three operations that form the cornerstone
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of functional programming and can accomplish every modification to a col-
lection we can ever think of: filter, map, and reduce.

Filter

The filter operation takes a collection and creates a new collection where

some items may have been left out. The items are filtered according to a

predicate function, which is a function that accepts one argument and returns

either True or False depending on whether that argument passes a given test.
Figure 2-1 illustrates the filter operation.

[ A B C D ]

Predicate

[ A D]
Figure 2-1: Filtering a collection

Figure 2-1 shows a source collection made of four elements: A, B, C, and
D. Below the collection is a box representing the predicate function, which
determines which elements to keep and which to discard. Each element in
the collection is passed to the predicate, and only those that pass the test are
included in the resulting collection.

There are two ways we can filter collections in Python: using the filter
global function and, if the collection is a list, using list comprehensions.
We’ll focus on the filter function here; we’ll cover list comprehensions in
the next section. Python’s filter function receives a function (the predicate)
and collection as parameters:

filter(<predicate_fn>, <collection>)

Let’s write a predicate lambda function to test whether a number is even:

lambda n: n % 2 ==

Now let’s use our lambda function to filter a list of numbers and obtain
a new collection with only even numbers:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8]

>>> evens = filter(lambda n: n % 2 == 0, numbers)
>>> list(evens)

[2, 4, 6, 8]

One thing to note is that the filter function doesn’t return a list, but rather
an iterator. Iterators allow for iteration over a collection of items, one at a
time. If you want to know more about Python iterators and how they work
under the hood, please refer to the documentation at https://docs. python.org


https://docs.python.org/3/library/stdtypes.html#typeiter

/3/library/stdtypes. html#typeiter and https://docs. python.org/3/glossary. himl#
term-iterator.

We can consume all the iterator values and put them into a list using the
list function we saw earlier. We can also consume the iterator using a for
loop:

>>> for number in evens:
print(number)

o OB~ N

Map
The map operation creates a new collection by taking each item in the source
collection and running it through a function, storing the results in a new col-
lection. The new collection is the same size as the source collection.

Figure 2-2 illustrates the map operation.

[ A B C D ]

Map

[ & & © ©O 1

Figure 2-2: Mapping a collection

We run our source collection made of items A, B, C, and D through a
mapping function, illustrated within a rectangle in Figure 2-2; the result of
the mapping is stored in a new collection.

We can map a collection either using the global map function or, if we
have a list, using list comprehensions. We’ll discuss list comprehensions in a
moment; for now, let’s study how to map collections using the map function.

The map global function receives two parameters: a mapping function
and a source collection:

map(<mapping_fn>, <collectiony)

This is how we would map a list of names to their length:

>>> names = ['Angel', 'Alvaro', 'Mery', 'Paul', 'Isabel’]
>>> lengths = map(lambda name: len(name), names)

>>> list(lengths)

[5, 6, 4, 4, 6]
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As with the filter function, map returns an iterator that can be consumed
into a list using the list function. In the previous example, the resulting list
contains the number of letters in each of the names in the names list: five let-
ters in Angel, six letters in Alvaro, and so on. We’ve mapped each name into
a number representing its length.

Reduce

The reduce operation is the most complex, but at the same time, it’s the most
versatile of the three. It creates a new collection that can have fewer items
than, more items than, or the same number of items as the original. To con-
struct this new collection, it first applies a reducer function to the first and
second elements. It then applies the reducer function to the third element
and the result of the first application. It then applies the reducer function to
the fourth element and the result of the second application. In this way, the
results accumulate. A figure will help here. Take a look at Figure 2-3.

[ A B C D ]

Reduce

@ A AB —= ABC-» ABCD

[ ABCD ]

Figure 2-3: Reducing a collection

The reduction function in this example concatenates every element in
the collection (A, B, C, and D) into a single element: ABCD.

The reducer function takes two parameters: the accumulated result and
an item in the collection:

reducer_fn(<accumulated result>, <item>)

The function is expected to return the accumulated result after the new item
has been processed.

There’s no global reduce function provided by Python, but there is a
package named functools with some useful operations for working with
higher-order functions, including a reduce function. This function doesn’t
return an iterator, but rather it returns the resulting collection or item di-
rectly. The function’s signature looks like this:

reduce(<reducer_fn>, <collection>)

Let’s work with an example:

>>> from functools import reduce

>>> letters = ['A', 'B', 'C', 'D']



>>> reduce(lambda result, letter: result + letter, letters)
"ABCD'

In this example, the reduce function returned a single item: 'ABCD', the
result of concatenating each letter in the collection. To start the reduction
process, the reduce function takes the first two letters, A and B, and concate-
nates them into AB. For this first step, Python uses the initial item of the
collection (A) as the accumulated result and applies the reducer to it and the
second item. Then, it moves to the third letter, C, and concatenates it with
the current accumulated result AB, thus producing the new result: ABC. The
last step does the same with the D letter to produce the result ABCD.

What happens when the accumulated result and the items of the collec-
tion have different types? In that case, we can’t take the first item as the ac-
cumulated result, and thus the reduce function expects us to provide a third
argument to use as the starting accumulated result:

reduce(<reducer_fn>, <collection>, <start result>)

For example, imagine that we have the collection of names from ear-
lier and we want to reduce it to obtain the total sum of the lengths of those
names. In this case, the accumulated result is numeric, whereas the items
in the collection are strings; we can’t use the first item as the accumulated
length. If we forget to provide reduce with the start result, Python is nice
enough to remind us by raising an error:

>>> reduce(lambda total_length, name: total_length + len(name), names)
Traceback (most recent call last):

File "<input>", line 1, in <module>

File "<input>", line 1, in <lambda>
TypeError: can only concatenate str (not "int") to str

For this case, we should pass 0 as the initial accumulated length:

>>> reduce(lambda total_length, name: total length + len(name), names, 0)
25

One interesting note here is that if the accumulated result and the items
of the collection have different types, you can always concatenate a map with
a reduce to obtain the same result. For example, in the previous exercise we
could have also done the following:

>>> from functools import reduce

>>> names = ['Angel', 'Alvaro', 'Mery', 'Paul', 'Isabel’]

>>> lengths = map(lambda name: len(name), names)

>>> reduce(lambda total_length, length: total_length + length, lengths)
25
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In this code we first map the names list into a list of the name lengths: lengths.
Then, we reduce the lengths list to sum all the values, with no starting value
necessary.

When reducing items using a common operation—like a sum of two
numbers or a concatenation of two strings—we don’t need to write a lambda
function ourselves; we can simply pass the reduce function an existing Python
function. For example, when reducing numbers, there’s a useful module
provided by Python named operator.py. This module defines functions to op-
erate with numbers, among others. Using this module, we can simplify our
previous example to the following:

>>> from functools import reduce
>>> import operator

>>> names = ['Angel', 'Alvaro', 'Mery’', 'Paul', 'Isabel’]
>>> lengths = map(lambda name: len(name), names)

>>> reduce(operator.add, lengths)

25

This code is shorter and more readable, so we’ll prefer this form throughout
the book.
The operator.add function is defined by Python as follows:

def add(a, b):
"Same as a + b."
return a + b

As you can see, this function is equivalent to the lambda function we de-
fined to sum two numbers. We’ll see more examples of functions defined
by Python that can be used with reduce throughout the book.

So far, all of our examples have reduced collections to a single value, but
the reduce operation can do much more. In fact, both the filter and map op-
erations are specializations of the reduce operation. We can filter and map a
collection using only a reduce operation. But this isn’t something we’ll stop
to analyze here; try to figure it out on your own if you feel motivated.

Let’s see an example where we want to create a new collection based
on the names list, where every item is the concatenation of all the previous
names with the current name separated by the hyphen character (-). The
result we’re looking for should be something like this:

['Angel', 'Angel-Alvaro', 'Angel-Alvaro-Mery', ...]

We can do this using the following code:

>>> from functools import reduce

>>> names = ['Angel', 'Alvaro', 'Mery', 'Paul', 'Isabel’]
>>> def compute_next_name(names, name):
if len(names) < 1:
return name



return names[-1] + '-' + name

>>> reduce(
lambda result, name: result + [compute_next_name(result, name)],
names,

[
['Angel', 'Angel-Alvaro', 'Angel-Alvaro-Mery', 'Angel-Alvaro-Mery-Paul', ...]

Here, we use compute_next_name to determine the next item in the se-
quence. The lambda used inside reduce concatenates the accumulated re-
sult, which is the list of stitched-together names, with a new list consisting of
the new item. The initial solution, an empty list, needs to be provided, since
once again the type of each item in the list (string) is different from the re-
sult (list of strings).

As you can see, the reduce operation is very versatile.

List Comprehensions

As mentioned earlier, we can filter and map lists in Python using list com-

prehensions. This form is typically preferred over the filter and map func-

tions when dealing with lists, as its syntax is more concise and readable.
A list comprehension to map items has the following structure:

[<expression> for <item> in <list>]

There are two parts to it:

*  for <item> in <list> is the for loop that iterates over the items in <Iist>.
*  <expression> is a mapping expression to map <item> into something
else.

Let’s repeat the exercise we did earlier where we mapped a list of names
to a list of the lengths of each name, this time using a list comprehension:

>>> names = ['Angel', 'Alvaro', 'Mery', 'Paul', 'Isabel’]
>>> [len(name) for name in names]
[5) 6} 4} 4) 6]

I hope you see why Python programmers favor list comprehensions over
the map function; the example almost reads like plain English: “length of
name for (each) name in names.” In the example, for name in names iterates
over the names in the original list and then uses the length of each name
(len(name)) as the result.

To filter a list using a list comprehension we can add an if clause at the
end of the comprehension:

[<expression> for <item> in <list> if <condition>]
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If we wanted to, for example, filter a list of names, this time keeping
only those that start with A, we could write the following list comprehension:

>>> [name for name in names if name.startswith('A')]
['Angel', 'Alvaro']

Note two things from this example: the mapping expression is the name itself
(an identity mapping, which is the same as no mapping), and the filter uses
the string startswith method. This method returns True only if the string has
the given argument as a prefix.

We can filter and map in the same list comprehension. For example,
let’s say we want to take our list of names and filter out those that have more
than five letters and then construct a new list whose elements are a tuple of
the original name and its length. We could do this easily:

>>> [(name, len(name)) for name in names if len(name) < 6]
[("Angel’, 5), ('Mery', 4), ('Paul’, 4)]

For comparison’s sake, let’s see what this would look like if we decided
to use the filter and map functions:

>>> names_with_length = map(lambda name: (name, len(name)), names)

>>> result = filter(lambda name_length: name_length[1] < 6, names_with_length)
>>> list(result)

[('Angel’, 5), ('Mery', 4), ('Paul', 4)]

As you can see, the result is the same, but the list comprehension version
is simpler and more readable. What'’s easier to read is easier to maintain,
so list comprehensions are going to be our preferred way of filtering and
mapping lists.

Let’s now turn our attention to the second paradigm we’ll be exploring
in this chapter: object-oriented programming.

Object-Oriented Programming

Chapter 2

In the previous section, we talked about functional programming and some
functional patterns. Now we’ll learn about another paradigm: the object-
oriented paradigm. As the function is to functional programming, the object
is to object-oriented programming. So, first things first: What’s an object?

There are several ways we could describe what an object is. I'm going
to deviate from the standard academic definition of an object in object-
oriented programming theory and try a rather unconventional explanation.

From a practical standpoint, we can think of objects as experts on a
given subject. We can ask them questions, and they will give us informa-
tion; or we can request that they do things for us, and they will do them.
Our questions or requests may require complex operations, but these ex-
perts hide the complexity from us so that we don’t need to worry about the
details—we just care about getting the job done.



For example, think of a dentist. When you go to the dentist, you don’t
need to know anything about dentistry yourself. You rely on the dentist’s
expertise to get your cavities fixed. You can also ask the dentist questions
about your teeth, and the dentist will respond using a language that you
can understand, hiding the real complexity of the subject. In this example,
the dentist would be an object you'd rely on for odontology-related tasks or
queries.

To request things from an object, we call one of the object’s methods.
Methods are functions that belong to a given object and have access to the
object’s internals. The object itself has some memory that contains data that
is typically hidden to the outside world, although the object may decide to
expose some of this data in the form of properties.

A method is a function that belongs to a class: it’s part of the class definition. It
needs to be called (executed) on the instance of the class where it’s defined. By con-
trast, a_function doesn’t belong to any class; it works on its own.

In Python’s parlance, any function or variable in an object is called an
attribute. Both properties and methods are attributes. We’ll be using these
equivalent terms throughout this chapter and the rest of the book.

Let’s now get practical and see how we can define and work with objects
in Python.

Classes

A class defines how objects are constructed and what characteristics and
knowledge they have. Some people like to compare classes to blueprints;
they are general descriptions of what information the object holds and what
it can do. Objects and classes are related but distinct; if the class is the blue-
print, the object is the finished building.

We define a new class in Python using the reserved class keyword. By
convention, class names start with an uppercase letter and use an uppercase
letter at the start of every new word (this case is commonly known as Pascal
case). Let’s create a class that models a coffee machine:

class CoffeeMachine:
def __init_ (self):
self. coffees brewed = 0

In this listing we define a new class representing a coffee machine. We
can use this class to generate new coffee machine objects, in a process re-
ferred to as instantiation. When we instantiate a class, we create a new object
of that class. A class is instantiated by calling its name as if it were a function
that’s returning the instantiated object:

>>> machine = CoffeeMachine()
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Now we have the machine object whose functionality is defined by the Coffee
Machine class (which is still empty, but we’ll complete it in the following sec-
tions). When a class is instantiated, its _init _ function is called. Inside this
_ init__ function, we can perform one-time initialization tasks. For example,
here we add a count of the number of brewed coffees and set it to zero:

def _init (self):
self. coffees brewed =

Notice the two underscores at the beginning of _ coffees_brewed. If you
remember from our discussion on access levels earlier, in Python, by default,
everything is visible to the outside. The double underscore naming pattern
is used to signify that something is private and no one is expected to access it
directly.

# Don't do this!
>>> machine.__coffees_brewed
0

In this case, we don’t want the outside world to access __coffees_brewed;
they could change the coffees brewed count at will!

# Don't do this!

>>> machine.__coffees_brewed = 5469
>>> machine.__coffees_brewed

5469

So if we can’t access __coffees_brewed, how do we know how many coffees
our machine has brewed? The answer is properties. Properties are a class’s
read-only attributes. Before we can discuss properties, however, we have
some syntax to cover.

self

If you look at the previous example, you'll see that we make frequent use of
a variable named self. We could use any other name for this variable, but
self is used by convention. As you saw earlier, we pass it to the definition of
every function inside the class, including the initializer. Thanks to this first
parameter, self, we gain access to whatever is defined in the class. In the

_ init__ function, for example, we append the _ coffees_brewed variable to
self; from that point on, this variable exists in the object.

The variable self needs to appear as the first parameter in the definition
of every function inside the class, but it doesn’t need to be passed as the first
argument when we call those functions on instances of the class. For exam-
ple, to instantiate the CoffeeMachine class, we wrote the following:

>>> machine = CoffeeMachine()

The initializer was called without parameters (no self here). If you think
about it, how could we possibly pass the initializer as self in this case if we
haven’t yet initialized the object? As it turns out, Python takes care of that



for us: we’ll never need to pass self to the initializer or any of the object’s
methods or properties.

The self reference is how different attributes of a class have access to the
other definitions in the class. For example, in the brew_coffee method we’ll
write later, we use self to access the _ coffees_brewed count:

def brew coffee(self):
# we need 'self' here to access the class' _ coffees_brewed count
self. coffees _brewed += 1

With an understanding of self, we can move on to properties.

Class Properties

An object’s property is a read-only attribute that returns some data. A prop-
erty of an object is accessed using dot notation: object.property. Following our
coffee machine example, we could add a coffees_brewed property (the num-
ber of coffees brewed by the machine), like so:

class CoffeeMachine:
def __init_ (self):
self. coffees_brewed = 0

@property
def coffees_brewed(self):
return self.__coffees_brewed

Then we could access it:

>>> machine = CoffeeMachine()
>>> machine.coffees_brewed
0

Properties are defined as functions using the @property decorator:

@property
def coffees_brewed(self):
return self. coffees brewed

Properties shouldn’t accept any parameter (except for the customary
self), and they should return something. A property that doesn’t return any-
thing or expects parameters is conceptually wrong: properties should just be
read-only data we request the object to give us.

We mentioned that @property is an example of a decorator. Python deco-
rators allow us to modify a function’s behavior. The @property modifies the
function of a class so that it can be consumed as if it were an attribute of
the class. We won’t use any other decorators in this book, so we won’t cover
them here, but I encourage you to read up on them if you’re interested.
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Properties get us information about an object. For instance, if we wanted
to know whether a given instance of a CoffeeMachine has brewed at least one
coffee, we could include a property like the following:

class CoffeeMachine:
def __init_ (self):
self. coffees brewed

@property
def has_brewed(self):

return self._ coffees_brewed > 0

--snip--

We can now ask instances of the CoffeeMachine class whether they’ve brewed
at all:

>>> machine.has_brewed
False

This machine hasn’t prepared any coffee yet, so how can we ask a
CoffeeMachine instance to brew a coffee for us? We use methods.

Class Methods

Properties allow us to know something about an object: they answer our
queries. To request an object to perform some task for us, we use methods.
A method is nothing more than a function that belongs to a class and has ac-
cess to the attributes defined in that class. In our CoffeeMachine class exam-
ple, let’s write a method to request it to brew some coffee:

class CoffeeMachine:
def __init_ (self):
self. coffees brewed = 0

@property
def coffees_brewed(self):
return self._coffees_brewed

@property
def has_brewed(self):
return self._ coffees_brewed > 0

def brew_coffee(self):
self.__coffees_brewed += 1

Methods get self as their first parameter, which gives them access to every-
thing defined inside the class. As we discussed earlier, when calling a method
on an object, we never pass self ourselves; Python does it for us.



Note that properties are like methods decorated with @property. Both properties
and methods expect self as their first argument. When calling a method, we use
parentheses and optionally pass it arguments, but properties are accessed without
parentheses.

We can call the brew_coffee method on an instance of the class:

>>> machine = CoffeeMachine()
>>> machine.brew_coffee()

Now that we’ve brewed our first coffee, we can ask the instance this:

>>> machine.coffees_brewed
1

>>> machine.has_brewed
True

As you see, methods have to be called on a particular instance of a class (an
object). This object will be the one responding to the request. So, whereas
functions are called without a particular receiver, like

a_function()

methods have to be called on an object, like

machine.brew_coffee()

Objects can only respond to the methods defined in the class that cre-
ated them. If a method (or any attribute for that matter) is called on an ob-
ject but this method wasn’t defined in the class, an AttributeError is raised.
Let’s try this. Let’s order our coffee machine to brew tea even though we
never gave it the instructions on how to do so:

>>> machine.brew_tea()
Traceback (most recent call last):
File "<input>", line 1, in <module>
AttributeError: 'CoffeeMachine' object has no attribute 'brew tea’

Okay, our object complained: we never told it we expected it to know how to
prepare tea. Here’s the key to its complaint:

'CoffeeMachine' object has no attribute 'brew _tea’

Lesson learned: don’t ever request an object to do something it wasn’t
taught; it'll just freak out and make your program fail.

Methods can accept any number of parameters, which in our class have
to be defined after the first mandatory argument: self. For example, let’s
add a method to our CoffeeMachine class that allows us to fill it with a given
amount of water.
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class CoffeeMachine:

def _init  (self):
self. coffees brewed = 0
self._ liters_of water = 0

def fill water_ tank(self, liters):
self. liters_of water += liters

We can fill the coffee machine instance by calling our new method:

>>> machine = CoffeeMachine()
>>> machine.fill _water_tank(5)

One last thing to know about methods before we move on is how power-
ful their dynamic dispatch nature is. When a method is called on an object,
Python will check whether the object responds to that method or not, but,
and here’s the key, Python doesn’t care about the object’s class as long as
this class has the requested method defined.

We can use this feature to define different objects that respond to the
same method (by same method we mean same name and arguments) and
use them interchangeably. For instance, we could define a new, more mod-
ern coffee-producer entity:

class CoffeeHipster:
def _init  (self, skill level):
self. skill level = skill level

def brew_coffee(self):
# depending on the _ skill level, this method
# may take a long time to complete.
# But apparently the result will be worth it?
--snip--

Now we can write a function that expects a coffee producer (any object whose
class defines a brew_cofee() method) and does something with it:

def keep_programmer_awake(programmer, coffee producer):
while programmer.wants_to_sleep:
# give the coder some wakey juice
coffee_producer.brew coffee()
--snip--

This function works with both an instance of CoffeeMachine and CoffeeHipster:

>>> machine = CoffeeMachine()
>>> hipster = CoffeeHipster()
>>> programmer = SleepyProgrammer('Angel')



# works!
>>> keep_programmer_awake(programmer, machine)

# also works!
>>> keep_programmer_awake(programmer, hipster)

For this technique to work, we need to make sure that the methods have
the same signature, that is, they’re called the same and expect exactly the
same parameters with the same names.

Magic Methods

There are some special methods our classes may define that are known as
magic methods or dunder methods (short for double underscore). These methods
aren’t typically called by us directly, but Python uses them under the hood,
as we’ll see in the following examples.

We’ve already used one such method: __init_ , which we used as the
initializer when instantiating objects. This __init_ method defines the code
that’s executed when a new instance of a class is created.

One prominent use case for magic methods (which we’ll use a lot through-
out the book) is overloading operators. Let’s see this through an example.
Imagine we implement a class to represent complex numbers:

class ComplexNum:
def __init_ (self, re, im):
self. re = re
self. im = im

@property
def real(self):
return self._re

@property
def imaginary(self):
return self. _im

How would we go about implementing the addition operation on ComplexNum
instances? A first option could be including a method called plus:

class ComplexNum:
--snip--

def plus(self, addend):

return ComplexNum(
self. re + addend. re,
self._im + addend._ im

Two Python Paradigms 43



44

Chapter 2

which we could use like so:

>»> cl
>> c2

ComplexNum(2, 3)
ComplexNum(5, 7)

>>> cl.plus(c2)
# the result is: 7 + 101

This is okay, but it would be nicer if we could instead use the + operator like
we do with any other number:

>> cl + c2

Python includes a magic method, _ add__; if we implement that method,
then we can use the + operator as shown earlier, and Python will call this
__add__method under the hood. So if we rename our plus method _ add
we can automatically add ComplexNums using the + operator:

s

class ComplexNum:
--snip--

def __add_ (self, addend):
return ComplexNum(
self. re + addend. re,
self._im + addend.__ im

)

There are more magic methods we can implement in our classes to per-
form subtraction, division, comparisons, and more. You can take a brief
look at Table 4-1 on page 70 for a reference of the operations we can im-
plement with magic methods. For example, subtracting two of our com-
plex numbers using the - operator would be as simple as implementing the
__sub__method:

class ComplexNum:
--snip--

def _sub__ (self, subtrahend):
return ComplexNum(
self. re - subtrahend._ re,
self. im - subtrahend. im

)

Now we can use the - operator:

>> ¢l - c2
# yields: -3 - 4i




What about comparing two instances for equality using the == operator?
Simply implement the __eq__ magic method:

class ComplexNum:
--snip--

def _eq_ (self, other):
return (self. re == other. re) and (self. im == other.__im)

Now we can easily compare complex numbers:

>> €l == 2
False

We’ll be using some magic methods throughout the book; they really
improve the readability of the code.
Let’s now change topics and learn about type hints.

Type Hints

Python type hints are a small help we can use when writing code to make sure
we don’t mistype the name of a method or property of a class.

For example, let’s use the implementation of a complex number from
the previous section:

class ComplexNum:

def __init_ (self, re, im):
self. re = re
self.__im = im

@property
def real(self):
return self._ re

@property
def imaginary(self):
return self._ im

Now say that we write a function that takes an instance of ComplexNum as an
argument, and we want to extract the imaginary part of the number, but
we’re a bit sleepy and mistakenly write the following:

def defrangulate(complex):
--snip--
im = complex.imaginry

Did you spot the typo? Well, since we know nothing about the complex argu-
ment, there’s no visual clue our IDE can give us. As far as the IDE knows,
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imaginry is a perfectly valid attribute name, and it won’t be until we run the
program and pass a complex number that we get an error.

Python is a dynamically typed language: it uses type information at run-
time. For example, it checks whether a given type of object responds to a
method at runtime, and if it doesn’t, an error is raised:

AttributeError: 'ComplexNum' object has no attribute 'imaginry'

A bit unfortunate, isn’t it? In this case, we know that this function only
expects instances of the ComplexNum class, so it would be nice if our IDE warned
us about that property being mistyped. And in fact, we can do this using
type hints.

In a function or method definition, a type hint goes after the argument
name, separated by a colon:

def defrangulate(complex: ComplexNum):
--snip--
im = complex.imaginry

'ComplexNum' object has no attribute 'imaginry'

As you can see, the IDE has signaled to us that ComplexNum has no attribute
named imaginry.

In addition to the types we define using classes, we can use Python’s
built-in types as type hints. For instance, the complex-number initializer ex-
pecting two floating-point numbers could be written like so:

class ComplexNum:
def _init_ (self, re: float, im: float):
self. re = re
self._im = im

And now our IDE would warn us if we tried to instantiate the class with the
wrong parameter types:

i = ComplexNumber('one', 'two')

Expected type 'float', got 'str' instead.

We can use float for floating-point numbers, int for integers, and str for
strings.

These type hints help us during development but have no effect at run-
time. We’ll be using type hints in many places throughout the book: it takes
no time to add them, and we get a bit of extra safety.



Summary

We discussed two programming paradigms in this chapter: functional pro-
gramming and object-oriented programming. Of course, both of these are
huge topics, and whole books could be, and have been, written about them.
We only scratched the surface.

We also talked about magic methods and type hints, two techniques
we’ll use extensively throughout the book.

In the next chapter, we’ll discuss the command line. After that, we’ll
start writing code.
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THE COMMAND LINE

Command line interfaces let us give direct

instructions to our computer. From the
command line, we can run programs, search

files, create and delete directories, connect to

the internet, and do much more. With two exceptions,
the applications that we’ll create in this book are all
designed to be executed from the command line. In
this chapter, we’ll briefly cover the basics of command
line interfaces. Feel free to skip this chapter if you al-
ready know how to use them.

Unix and Windows

Every operating system comes with a different flavor of a command line in-
terface, but they all have a similar purpose: issuing commands directly to the
operating system. Linux and macOS are both based on Unix, so they share a
common syntax and use similar command line processors, which are programs
that interpret your commands, issued in the form of plaintext, and translate
them into a language the machine can execute. Several Unix command line
processors exist; bash, bourne, and zsh are a few examples.
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The command line application in these systems is often called a shell,
terminal, or prompt. Apple had macOS come bundled with a bash shell, but
recently, it replaced bash with zsh, which is, arguably, more modern and fea-
ture rich. We won’t be worrying too much about the differences of these
shell flavors; for our purposes, we can think of them as interchangeable.

Windows has its own command line system, and it uses a different syn-
tax than macOS or Linux. Fortunately enough, since most developers are
more familiar with Unix-like shells, Windows decided to allow its users to in-
stall a Linux subsystem. In the next section, we’ll look at how to install this
Windows Subsystem for Linux (WSL) support in case you’re following this
book with a Windows machine.

Finding Your Shell

Chapter 3

If you are a Linux or macOS user, you don’t need to install any additional
software: your system comes with a shell. You can find it inside your applica-
tions directory.

If you'’re a Windows user, your system also has a command line, but we
won’t be using that one; we’ll install the WSL instead. This system will give
you access to a shell you can use to follow along with this book. Let’s look at
how to get it installed on your machine. If you aren’t a Windows user, feel
free to skip this section.

Installing the Windows Subsystem for Linux

The Windows Subsystem for Linux, WSL for short, is an installation of a Linux
operating system inside your Windows operating system. The WSL will let
you access Linux’s main tools, including the shell.

Since installation instructions tend to evolve with time, please refer to
the official documentation if you find any issue with the following steps. You
can find the official documentation at https://docs.microsoft.com/windows/wsl,
where you’ll also find detailed information and a step-by-step installation
guide.

As of the time of this writing, to install a Linux subsystem you first need
to enable the WSL optional feature in your machine. To do this, open the
PowerShell application as Administrator and then execute the following
command:

PS C:\> dism.exe /online /enable-feature
/featurename:Microsoft-Windows-Subsystem-Linux
/all /norestart

Note that you should write this command on a single line; I had to break the
line because it didn’t fit in the print version of the book. It may take a few
seconds to finish. Once the command has run, restart your machine.

When your machine is fully restarted, you can proceed to install any
Linux distribution (also known as distro) of your choice. If you have no


https://docs.microsoft.com/windows/wsl

favorite Linux distro, I suggest you install Ubuntu; it’s reliable and developer-
friendly.

To install a Linux subsystem, open the Microsoft Store and search for
Ubuntu (or your distro of choice). For this book, I'll be using Ubuntu’s 20
LTS version. Run the installer for the Linux subsystem; once the installation
process finishes, open it.

When you open your Linux subsystem for the first time, it’ll need to per-
form some installations, which may take a few minutes. As you will see, this
installation includes the Linux operating system and a shell to communicate
with it, but not the graphical interface. The shell will prompt you to create
a new username and password. Don’t hesitate to read the documentation
if you find yourself stuck at any point during the installation and configura-
tion of the system.

Taking a First Look at the Shell

When you open your shell, it shows something like the following:

angel@MacBook ~ %

You may see some different characters toward the end, but the first part is
the logged-in user and the name of the machine separated by an at sign:

[

<user>@<machine> ~ %

For the remainder of the book, we’ll use the dollar sign ($) to signify the
shell, and we won’t show the user and machine names:

$

Now that you know how to open a shell, let’s look at some useful com-
mands.

Files and Directories

Let’s try our first command: pwd (short for print working directory). Type pwd
in the shell and press ENTER or RETURN. This command shows the path of
the current directory, that is, the directory the shell is currently in:

$ pwd
/Users/angel

In this case, the shell is telling us the current working directory is angel,
which is inside the Users directory.

Using the whoami command, we can also ask the shell to tell us the cur-
rently logged-in user:

$ whoami
angel
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We can then list the contents inside the current directory using the 1s
command:

$1s

Desktop Downloads Music PycharmProjects
Applications Developer Library Pictures
Documents Git Movies Public

Moving Around

We can change directories using cd followed by the name of the directory we
want to go to:

$ cd Documents
$ pwd
/Users/angel/Documents

To go back one directory, to the parent directory, we use two dots:

$cd ..
$ pwd
/Users/angel

In these two examples of the cd command, we’ve changed directories
using relative paths. A relative path is a path that starts from the current loca-
tion. For example, if we want to change directories using a relative path, we
simply provide the route like so:

$ cd Documents/Video
$ pwd
/Users/angel/Documents/Video

We can use one dot (.) to signify the current directory. So, the following is
an alternative way of switching to the Documents/Video directory:

$ cd ./Documents/Video
$ pwd
/Users/angel/Documents/Video

We may also change directories using an absolute path, which is a path
relative to the root directory. The root directory’s name is simply a slash
character (/). Let’s try to change directories to the root directory using an
absolute path:

$cd/
$ pwd
/




Now let’s move back to our home directory. The home directory also
has a special shortcut name, a tilde (~):

$cd -
$ pwd
/Users/angel

Creating Files and Directories

We can create new directories using the mkdir command followed by the
name of the directory we want to create:

$ mkdir tmp/mechanics

Here we’ve just created a new directory named ¢mp inside the working direc-
tory, which has another new directory inside it named mechanics. We could
have done the same thing in two steps, first creating the tmp directory,

$ mkdir tmp

and then changing directories to tmp (cd tmp) and creating the mechanics
directory,

$ mkdir mechanics

The result is the same in both cases.
Let’s cd into that new directory:

$ cd tmp/mechanics

To create a new file, we can use the touch command followed by the
filename:

$ touch file.txt
$ 1s
file.txt

We can write some text to the file using input redirection, which we’ll
explain a bit more in the next section:

$ echo write me to the file » file.txt

This command is a bit more complex than the ones we’ve seen so far, and
it has two parts. The first part, on the left side of the > symbol, uses the echo
command to output write me to the file. We can run this command sepa-
rately to see what it does:

$ echo write me to the file
write me to the file
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As we can see, the echo command simply prints what we pass it. With the

> symbol, we can redirect the output target from the standard output (the

shell) to a file so that the message is written to the file instead of the shell.
To prove that we did this, let’s read the contents of the file using the cat

command:

$ cat file.txt
write me to the file

The cat command prints the contents of the file. The command is short for
concatenate and it concatenates the contents of the file passed to it. In fact,
we can pass cat to the same file twice to see the concatenated result:

$ cat file.txt file.txt
write me to the file
write me to the file

Let’s now delete the file and directories we just created.

Deleting Files and Directories

To remove a file, we use the rm command:

$ m file.txt

The file is now gone forever: there’s no trash bin or any other safety mech-
anism when working with the command line. We need to be extra careful
when deleting files or directories.

Let’s go back two directories to get out of the tmp/mechanics folder:

$cd../..
$ pwd
/Users/angel

If a directory is empty, we can remove it using the -d command line op-
tion. A command line option is an argument that we can pass to the command
to modify its behavior. Command line options appear in two forms: as a sin-
gle dash followed by one or more lowercase letters, as in -f, or as a double
dash followed by a single or compound word, as in --file or --file-name.

Removing an empty directory is done like so:

$ rm -d tmp
rm: tmp: Directory not empty

As you can see, the shell returned an error message because our tmp direc-
tory is not empty (it has a subdirectory). If we want to remove a directory
and all its subdirectories, we can use the -r option instead:

$ rm -x tmp




If the directory or any subdirectory had files inside, the previous com-
mand would fail. This command is useful when we want to remove direc-
tories that contain no files, because if a file is encountered, the command
won’t remove anything as a safety measure. To remove directories with files
inside, we can use the -rf option:

$ m -xrf tmp

You want to be extremely careful with the rm -rf command. You can do some
nasty, unrecoverable harm with this one.

Commands Summary

Table 3-1 summarizes the commands we’ve explored in this section.

Table 3-1: Shell Commands for Files and Directories

Command Description

whoami Displays the effective user ID

pwd Returns the working directory name

1s Lists the directory’s contents

cd Changes the directory

mkdir Creates a new directory

echo Writes arguments to the standard output
cat Concatenates and prints files

m Removes a file

m -d Removes an empty directory

m -t Removes a directory with other directories inside
m -rf Removes directories and files (recursively)

Using Windows Subsystem for Linux

Now that we know the basic commands we need to move around the directo-
ries of a machine, let’s take a look at some specifics when working with the
Windows Subsystem for Linux.

Finding Your C: Drive

Every time you open your Linux subsystem, the shell’s working directory will
be set to the Linux subsystem’s home directory. You can reveal this current
directory using the pwd command:

$ pwd
/home/angel

The WSL has its own directory structure disconnected from your com-
puter’s. But, since you’ll be writing the code for this book on your Windows
machine, you’ll need a way of accessing your C: drive. WSL offers a simple
way of accessing the C: drive.
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Your local drives are mounted inside a directory in your Linux subsys-
tem called /mnt. Let’s cd into /mnt and then list its contents:

$ cd /mnt
$ 1s
C d

It’s important to use the absolute path (starting with /) to navigate to /mnt.
The 1s command listed my two drives: C: and D:. To open one of them,
simply change directories:

$cdc

Now your WSL’s working directory is your C: drive. You can find your Users
home directory or whatever folder you’ll be using to write your code:

$ cd Users/angel

Ensuring Python’s Installation (Ubuntu)

Ubuntu comes already packed with Python version 3 installed. You can check
the installed version from the shell:

$ python3 --version
Python 3.8.2

You can update Python to its latest version using Ubuntu’s apt command
line tool. First you’ll need to update the apt package lists so that they are up-
to-date with the latest versions of the available software. You need to run this
command as superuser. You can do this by prefixing the command you want
to run with sudo, short for superuser do. Youw’ll need to provide your password
for any command you run as superuser:

$ sudo apt update
[sudo] password for angel: <write your password here>

When you write your password, you won’t see anything written in the
shell. As you type, the prompt will remain blank, mainly for security reasons.
Once the package lists are up-to-date, you can upgrade Python’s version:

$ sudo apt upgrade python3

Now you can be sure you have the latest stable release for Python’s version 3
available for Ubuntu. You are now ready to learn how to run Python scripts.

Running Python Scripts

Running a Python file using the command line is a straightforward process:

$ python3 <filename.py>
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It’s important that we use Python’s version 3 interpreter because we’ll use
some features available only in this version. As Python versions 2 and 3 can
both be installed on the same machine, the version 3 interpreter is named
with a 3 at the end.

Let’s create a Python file and execute it. In your shell, use the following
command to create a new Python file:

$ touch script.py

This will create a new file, script.py, in the shell’s working directory. Open
the file in PyCharm, or your editor of choice, and enter a print statement:

print('hello, World!")

Make sure to save the file. Let’s check that our script. py file was correctly
written:

$ cat script.py
print('hello, World!")

Finally, let’s execute our Python script from the command line:

$ python3 script.py
hello, World!

As expected, our program gives us a hello, World! greeting.

Passing Arguments to the Script

Command line programs can accept arguments. Let’s try this and accept
an argument in our Python script to personalize the greeting. Open the
seript.py file and modify it so that it now contains the following:

import sys

name = sys.argv[1] if len(sys.argv) > 1 else 'unknown'
print(f'Hello, {name}')

Python’s sys.argv is a list of the arguments passed in to the executing script.
This first item of the list is always the name of the executing program, in
this case, script.py. For this reason, we first need to check whether the list
of arguments contains more than one item to know whether the name was
passed to the program as an argument. If we detect that the user passed an
argument, we use it as the name of the person we want to greet, but if no
argument is passed, we default the name to unknown.

We can now run our program without arguments to get an impersonal
greeting:

$ python3 script.py
Hello, unknown!
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We can also pass the script a name to get a more personalized greeting:

$ python3 script.py Jenny
Hello, Jenny!

Standard Input and Output

Chapter 3

Programs executed in the shell can read and write data. When a program,
like our script.py from earlier, prints something, it appears as output in the
shell. Our earlier program outputted a string like Hello, Jenny! that was then
displayed in the shell. The shell’s screen is generally referred to as the stan-
dard output.

Redirecting the Output to a File

Earlier, we wrote the result of an echo command to a file by redirecting the
output with the > character.
Try this in your shell:

$ python3 script.py Jenny > greeting.txt
$ cat greeting.txt
Hello, Jenny!

This time, the result of the script.py program wasn’t printed to the shell’s
screen, but instead it was written to a new file, greeting. txt.

Using the > character, we can redirect the output of a program to a new
file. If the target file already exists, it gets overwritten. We can also use the
>> characters to append something to an existing file instead of creating a
new one:

$ python3 script.py Angel >> greeting.txt
$ cat greeting.txt

Hello, Jenny!

Hello, Angel!

This is a useful technique, and we’ll use it throughout the book to write
the result of our programs to an external file.

Redirecting the Input from a File

Much like we can redirect the shell’s standard output, we can redirect the
shell’s input. Let’s create a new script. Instead of reading a name from the
program’s argument, it prompts the user to write their name. First, create a
new empty file:

$ touch script2.py




Open the file and enter the following code:

print("What's your name?")
name = input()
print('Hello there, {name}')

If we run our new script now, it’ll prompt us to write our name:

$ python3 script2.py
What's your name?
Angel

Hello there, Angel

This program reads the name from the standard input, that is, the shell.
We had to write the name in the shell and press RETURN for our program
to read it. We can redirect the input from a file to our program, this time
using the < character. In this case, the program reads the contents of the file
instead of reading from the shell.

Let’s write a name inside a new file:

$ echo Mary > name.txt

Now, let’s redirect the input to be read from this file to our program:

$ python3 script2.py < name.txt
What's your name?
Hello there, Mary

This time, instead of having to write anything ourselves when the program
prompts for a name, the shell read in the contents of the name.txt file.

The applications we’ll write in this book will use input redirecting to
read the contents of an input file into our Python programs.

Using PyCharm’s Python Console

As we saw in the introduction of the book, PyCharm comes with two con-
soles: a Python console and your system’s shell. The former is especially
interesting as it allows us to run Python code directly as well as inspect all
the loaded symbols. You can open your PyCharm’s Python console by click-
ing the Python Console button in the lower bar or by selecting View » Tool
Windows » Python Console in the menu.

The Python console, as you can see in Figure 3-1, is divided into two
panes: the left pane is the console where you write Python code, and the
right pane includes a list of all the variables you’ve defined. Let’s do a practi-
cal exercise to learn how this works.
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Figure 3-1: PyCharm Python console

In the Python prompt, enter the following:

>>> names = ['Angel', 'Alvaro', 'Mary’', 'Paul', 'Isabel’]

Now the right pane includes a list of symbols that you can explore (see Fig-
ure 3-2). You can expand the names symbol to inspect the items inside the list.
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u
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> % Special Variables

Figure 3-2: Declaring a list of names

Let’s now write a function to filter a list of strings, keeping only those
that are shorter than a given length. Write the following in the console (note
the three dots marking the indentation when writing code in the console):

>>> def filter_ list_shorter than(lst, length):
return [item for item in 1st if len(item) < length]

cee

>>> filter list_shorter_than(names, 5)

['Mary', 'Paul']

If you want to keep a reference of the filtered list, you can save the result to a

variable:

>>> result = filter_ list_shorter_than(names, 5)

Now you can use the Python console’s right pane to explore the result list.

You can also import Python modules from the console. You can import
modules from your own project or from the standard library. For instance,
if you have the Mechanics project you downloaded earlier open in PyCharm,
you can import the Point class.
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>>> from geom2d import Point
>>> p = Point(10, 15)

Importing a module from the standard library is equally simple. For
instance, to import the JSONDecoder class from the json module, use the
following:

>>> from json import JSONDecoder

From time to time we may want to reload the console so that all the im-
ported modules and defined variables are cleared. This is a good idea, be-
cause the modules you import and the variables you define might interact
with the new code you write. We can reload the Python’s console by clicking
the reload button located at the top left of the console (see Figure 3-3).

O

Figure 3-3: Reloading the console

Take your time exploring PyCharm’s Python console, as you’ll find it
useful throughout the book; we’ll often test our code by running quick ex-
periments in it.

Summary

In this short chapter, we covered the basics of using the bash/zsh command
line. From this shell we can issue commands to the computer, and we’ll exe-
cute our Python scripts from here. We also explored the standard input and
output redirection, a technique we’ll use extensively throughout the book.

Without further ado, let’s start creating our Mechanics project. Let the
fun begin!
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PART I

2D GEOMETRY






POINTS AND VECTORS

Points and vectors are the basis of geom-

etry. In this book, we’ll use them as our
primitives, the building blocks for the rest of

our geometry library. For our geometry library

to be usable, it’s crucial that we implement points and
vectors using bug-free code. A bug in our code will
not only cause errors in the library’s functions but also
could propagate to all the other libraries we build on
top of it, giving us all sorts of false calculations.

In this chapter, we have two main tasks. First, we need to implement
classes to represent both points and vectors. Then, we need to make sure
our code is bug-free by unit testing, a process we’ll repeat throughout this
book. Before we can do either, though, we need to implement a few useful
methods.

Comparing Numbers

When it comes to representing real numbers, computers don’t have infinite
precision. Most computers use floating-point numbers to store these values,
which cannot represent every rational number, let alone irrational numbers.



Thus, when comparing floating-point numbers, you have to specify a toler-
ance: a number € as small as you need such that

la=-b| <e

where a and b are the two numbers you want to compare.

A tolerance’s order of magnitude needs to be consistent with the prob-
lem’s magnitudes and your desired precision. For example, it wouldn’t make
much sense to use a tolerance of 1E-2 mm when working with a planet’s
orbital lengths, which are on the order of millions of kilometers. Similarly, it
would be pointless to use a tolerance of 1E% cm when working with atomic
distances.

Before we start writing our primitives, we’ll need a way of knowing whether
two floating-point numbers can be considered equal or not given a tolerance
€. But we can’t rely on the computer to compare floating-point numbers,
as a different digit in the hundredth decimal is logically considered to be a
completely different number. So, we’ll start this chapter by writing a func-
tion that compares two numbers using a given tolerance. For our geometri-
cal calculations, we’ll use a default tolerance of lE_lo, which is an acceptable
level of precision for most of the calculations we’ll do throughout the book.

Open your project in the IDE, right-click the project’s root folder, and
select New » Python Package. Name it geom2d and click OK. This will be the
package for all of our geometry code.

Because the package name establishes that everything inside is in 2D, we won’t re-
peat this piece of information when giving names to our files and classes. Inside the
package, we’ll use names like point or segment instead of point2d or segment2d. If we
wanted to create a three-dimensional geometry package, geom3d, we’d still use point
and segment, only with different, three-dimensional implementations.

Create a new file by right-clicking the geom2d package folder and select-
ing New » Python File. Name it nums, leave the Kind drop-down as is, and
click OK.

With the file created, let’s implement our first comparison function.
Listing 4-1 has the code for our function.

import math

def are_close_enough(a, b, tolerance=1e-10):
return math.fabs(a - b) < tolerance

Listing 4-1: Comparing numbers

First, we import the math module, part of Python’s standard library that
contains useful mathematical functions. Our function takes two numbers,
a and b, and an optional tolerance parameter that will default to 1£719 if no
other value is provided. Last, we use the math library’s fabs function to check
whether the absolute value of the difference between a and b is smaller than
the tolerance, and we return the appropriate boolean.
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In practice, we’ll find there are two particular values we’re comparing
against: zero and one. To save us from repeatedly writing something like

are_close_enough(num, 1.0, 1e-5)

or

are_close_enough(num, 0.0, 1le-5)

let’s implement them as functions. After the previous function, add the
code in Listing 4-2.

--snip--
def is_close to_zero(a, tolerance=1e-10):

return are_close enough(a, 0.0, tolerance)

def is_close_to_one(a, tolerance=1e-10):
return are close_enough(a, 1.0, tolerance)

Listing 4-2: Comparing number to zero or one

Functions like the ones in Listing 4-2 aren’t strictly necessary, but they are
convenient, and they make the code more readable.

The Point Class

A point, according to Euclid’s first volume of the Elements, is “that of which
there is no part.” In other words, a point is an entity with no width, length,
or depth. It is just a position in space, something you can’t see with your
naked eye. Points are the basis of all Euclidean geometry, and everything
else in his writings is based on this simple concept. Accordingly, our geome-
try library will also be based on this powerful primitive.

A point consists of two numbers, x and y. These are its coordinates,
sometimes also called projections. Figure 4-1 depicts a point P and its coor-
dinates in the Euclidean plane.

v+ oP ¥l

U
X

Figure 4-1: A point P
in the plane

Let’s implement a class representing a two-dimensional point. As be-
fore, we’ll create a new file by right-clicking the geom2d package folder and
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selecting New » Python File. Name it point and click OK. Inside the file, en-
ter the code in Listing 4-3.

class Point:
def __init_ (self, x, y):
self.x = x
self.y =y

Listing 4-3: Our Point class

The coordinates are passed to the initializer method (__init_ ) and stored
as attributes of the class.
With our initializer written, let’s implement some functionality.

Calculating Distance Between Points

To compute the distance d(P, Q) between the two points P and Q, we use
Equation 4.1.

AP, Q) = \/(Qu = P2 +(Qy - Py (4.1)

Here, Py and Py are P’s coordinates, and Qx and Qy are Q’s coordinates. We
can see this graphically in Figure 4-2.

Py+ P
dr Q
Q4 Q
+ +
PX OX

Figure 4-2: Distance between the
points P and Q

We can implement our distance calculation in two ways. We could call
the method on a point p to compute the distance to another point g, as in
p.distance_to(q). We could also implement the same calculation as a func-
tion where both points are given as arguments: distance_between(p, g). The
former is the object-oriented style; the latter is functional. Because we’re do-
ing object-oriented programming here, we’ll go with the former.

Listing 4-4 has the code to implement Equation 4.1 in our class.

import math

class Point:
--snip--

def distance_to(self, other):
delta_x = other.x - self.x



delta_y = other.y - self.y
return math.sqrt(delta x ** 2 + delta_y ** 2)

Listing 4-4: Calculating the distance between two points

First, we need to import the math module, which loads a bunch of useful
mathematical operations into our class. We define the distance_to method
with self and other as arguments: self is the current point, and other is the
point we want to calculate the distance to. We then calculate the distance (or
delta) between the two coordinates and use the power (**) operator to square
both deltas and return the square root of their sum.

Now let’s test this out. Open the Python console from the IDE and try
the following:

>>> from geom2d.point import Point
>>> p = Point(1, 3)

>>> q = Point(2, 4)

>>> p.distance_to(q)
1.4142135623730951

Exciting! We’ve taken the first major step in building our geometry
library—Euclid would be proud. You can try that same operation with your
calculator and see whether our implementation yields the correct result.
Later in the chapter, we’ll automate a test that checks that the distance meth-
od yields the right result.

While we have the console open and p and q loaded, try the following:

>>>p
<geom2d.point.Point object at 0x10f8a2588>

>>> p.__dict__
{‘XI: 1, IyI: 3}

Evaluating point p yields a string telling us p is an object of the Point class
at memory position 0x10f8a2588. Note that the memory address you obtain
will likely be different than mine. Without knowing everything in the com-
puter’s memory (and reading hexadecimal), this description isn’t much help.
You can also inspect the __dict__ attribute of any class to get a dictionary of
all the attributes it holds. That gives you more interesting information about
the instance. Later in the chapter, we’ll be implementing a special method
that will help print a cleaner description of the object, something like (2, 5).

Let’s now focus our attention on overloading the + and — operators for
the Point class.

Addition and Subtraction Operators

The next basic operations we’ll need are addition and subtraction, opera-
tions that we’ll also implement for vectors. We’ll use these basic methods
quite often, both on their own and to build more complex methods. We

could implement them as normal methods, calling them with something
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like p.plus(q) and p.minus(q), but we can do better. Python allows us to over-
load + and - operators (as we learned in “Magic Methods” on page 43) so
that we can write p + qand p - qand have Python know to add and subtract
the points correctly. Overloading operators makes code like this much easier
to read and understand.

Overloading an operator in Python involves implementing a method us-
ing a specific name that corresponds to the operator. Then, when Python
finds the operator, it will replace it with the method you’ve defined and call
it. For the + operator, the name is __add__, and for —, itis _ sub__. Table 4-1
contains common operators we can overload in our classes.

Table 4-1: Python’s Overloadable Operators

Operator  Method Name Description

+ __add__(self, other) Addition

- __sub__(self, other) Subtraction

* __mul_ (self, other) Multiplication

/ _ truediv__(self, other) Division

% __mod__(self, other) Modulo

== __eq_ (self, other) Equality

1= _ ne_ (self, other) Inequality

< __1t_ (self, other) Less than

<= _le (self, other) Less than or equal to
> __gt_ (self, other) Greater than

>= __ge_ (self, other) Greater than or equal to

Let’s implement the addition and subtraction operations as methods.
Inside the Point class and after the distance_to method, add the code in List-
ing 4-5.

class Point:
--snip--

def _add_ (self, other):
return Point(

self.x + other.x,

self.y + other.y

def _sub_ (self, other):
return Point(

self.x - other.x,

self.y - other.y

)
Listing 4-5: Adding and subtracting points

The method __add__ creates and returns a new Point where its projec-
tions are the sum of the two parameters’ projections. This operation doesn’t
make a lot of sense algebraically speaking, but we may find it useful later.
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The method __sub__ does the same where the resulting projections are the
subtraction of the input points’ projections. Subtracting two points P — Q
yields a vector going from Q) to P, but we haven’t created a class for vectors
yet. We will refactor this code in the next section so that it returns a vector
instance.

Let’s implement our next major primitive: the vector.

The Vector Class

Similar to points, vectors in the Euclidean plane are composed of two num-
bers, called the coordinates, that encode a magnitude and a direction. The
vector (3, 5), for instance, can be understood as the displacement achieved
by moving 3 units in the positive direction of the horizontal axis and 5 units
in the positive direction of the vertical axis. Figure 4-3 depicts a vector p in
the Euclidean plane.

+
U

Figure 4-3: A vector p
in the plane

Many physical quantities are vectorial: they require both a magnitude
and a direction to be completely defined. For example, velocities, accelera-
tions, and forces are all vector quantities. Since vectors are so common, let’s
create a class to represent them.

Right-click the geom2d package folder and select New » Python File.
Name it vector and click OK. Then enter the code in Listing 4-6.

class Vector:
def __init_ (self, u, v):
self.u =u
self.v = v

Listing 4-6: Vector class

The implementation of Vector is similar to that of the Point class. The
coordinates are named u and v instead of x and y. This is just a convention to
avoid mixing points and vectors unwittingly.

Before we move on, let’s refactor the Point class’s __sub_ method so that
it returns a Vector. Recall that subtracting two points P — Q yields a vector
going from Q to P. Modify your point.py file so that it now matches the code
in Listing 4-7.
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import math

from geom2d.vector import Vector

class Point:
--snip--

def __sub_ (self, other):
return Vector(

self.x - other.x,

self.y - other.y

)

Listing 4-7: Refactoring Point __sub__ method

We'll take a closer look at this operation in “Vector Factories” on page 89,
where we’ll use this operation to create vectors.
Let’s now implement some useful methods for the Vector class.

Addition and Subtraction Operators

Like with points, adding vectors and subtracting them are common opera-
tions. For example, we can get the sum of two forces (which are vector quan-
tities) by summing the vectors representing them.

After the __init__ method, enter the code in Listing 4-8.

class Vector:
--snip--

def _add_ (self, other):
return Vector(

self.u + other.u,

self.v + other.v

)

def _sub_ (self, other):
return Vector(

self.u - other.u,

self.v - other.v

)

Listing 4-8: Vector addition and subtraction

In both the __add__and __sub__ methods, we create a new instance of
Vector to hold the addition or subtraction of projections.

Figure 4-4 depicts the addition and subtraction operations of two vec-
tors, p and §. Notice how subtracting p - § can be interpreted as the sum of
and —¢.
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Figure 4-4: A sum of two vectors: p + q and a subtraction of
two vectors: p — 4

Now you might be wondering if we’ll do the same thing for the other
operators. Addition and subtraction translate easily to the world of points
and vectors, but for something like the _mul__ operator (used to overload
the multiplication operation), it’s not as simple. It’s unclear whether mul-
tiplication would be the dot product, the cross product, or a vector scaling
operation. Instead of using a single operator, we’ll simply implement these
operations as methods with descriptive names: scaled_by, dot, and cross.

We’ll begin with scaling.

Scaling Vectors

To scale a vector 4, you multiply it by a magnitude k called a scalar, which will
stretch or shrink the vector. Mathematically, the scalar multiplication looks

like Equation 4.2:
N 2 k- uy
pa=pe{ o = f e (42)

Let’s create a scaling method in the Vector class. Enter the code in List-
ing 4-9 under the _ sub__method.

class Vector:
--snip--

def scaled by(self, factor):
return Vector(factor * self.u, factor * self.v)

Listing 4-9: Scaling a vector

In the previous code, we simply return a new Vector whose u and v at-
tributes are multiplied by factor, the passed-in scalar.

Displacing Points
Using the scaled method, we can implement another operation: displacing a
point P by a given vector # k times. Mathematically, that looks like Equation

4.3,
Px> {ux} <Px+k-ux)
k. = (4.3)
( Py Uy Py+k-uy
Graphically it looks like Figure 4-5.
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Figure 4-5: Displacing a point P
by a vector @ a given number
of times k (2 in this case)

Let’s implement it programmatically inside our Point class, as the dis-
placement subject is the point (Listing 4-10).

class Point:
--snip--

def displaced(self, vector: Vector, times=1):
scaled vec = vector.scaled by(times)
return Point(
self.x + scaled vec.u,
self.y + scaled vec.v

)

Listing 4-10: Displacing a point P by a vector ¢ a given number of times k

The method gets passed two arguments: a vector vector and a scalar
times. The vector is scaled according to times to produce the net displace-
ment. For instance, a vector (3,5) scaled with times = 2 would result in a dis-
placement of (6, 10). Note the parameter times gets a default value of 1, as
often the passed vector already has the desired length. The returned point
results from adding the coordinates of the source point and the displace-
ment vector’s coordinates.

Let’s try to move a point in the Python shell. Restart the console so the
previously imported Point and Vector classes don’t get in the way, and enter
the following:

>>> from geom2d.point import Point
>>> from geom2d.vector import Vector

Point(2, 3)

Vector(10, 20)

>>> p_prime = p.displaced(v, 2)
>>> p_prime.__dict__

{'x": 22, 'y': 43}

>>> p
>V

You can use a calculator to confirm that the math works as expected.

Vector Norms

A norm of a vector is its length. A unitary norm is a norm whose length is
exactly one unit. Vectors with a unitary norm are useful for defining direc-



tions; hence, we’ll frequently want to know whether a vector has a unitary
norm (whether it’s normal). We’ll also frequently want to normalize a vec-
tor: keep its direction but scale it to have a length of 1. The norm of a two-
dimensional vector is given by Equation 4.4.

]l = \JuF +u3 (4.4)

Let’s implement a property that returns the norm of Vector, and let’s
implement another property that checks whether the vector is normal. Both
are included in Listing 4-11.

import math

from geom2d import nums

class Vector:
--snip--

@property
def norm(self):
return math.sqrt(self.u ** 2 + self.v ** 2)

@property
def is_normal(self):
return nums.is_close_to_one(self.norm)

Listing 4-11: Norm of a vector

The value obtained from the norm property follows exactly the definition
from Equation 4.4. To know whether a vector has a norm of 1, we use our
numeric comparison is_close_to_one and pass in the vector’s norm.

We’ll implement two other important operations: a method that nor-
malizes a vector #, yielding a vector @ with the same direction but unitary
length, and a method that scales a vector to have a given length. A normal-
ized version of a vector, which we’ll call a unit vector or versor, can be ob-
tained using Equation 4.5.

Ux
U 1 Uy \uduy
s T w [ uy (4.5)
|ad| /u?c"'qu Yy 2l
Ty

A vector computed this way will have a length of 1. Multiplying that vec-
tor by a scalar k results in a vector i}, which has the same direction as the
original but with a new length that’s exactly the value of the scalar, as shown
in Equation 4.6.

u=

keuy
il k .
CMNE T T { " } = Yk (4.6)
u —_
wituy L p:
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In Listing 4-12, we’ll turn those equations into code.

class Vector:
--snip--

def normalized(self):
return self.scaled by(1.0 / self.norm)

def with_length(self, length):
return self.normalized().scaled_by(length)

Listing 4-12: Vectors with unit or chosen length

To normalize a vector, we scale it by the inverse of its norm (which is
equivalent to dividing the vector’s length by its norm). When we want a vec-
tor scaled to a given length, we simply normalize the vector and then scale it
by the desired length.

Immutable Design

You may have realized by now that we never mutate the attributes of any of
our objects but rather create and return a new Point or Vector instance. To
normalize a vector, for instance, we could have used the code in Listing 4-13.

def normalize(self):
norm = self.norm
self.x = self.x / norm
self.y = self.y / norm

Listing 4-13: Normalization of a vector in place

Calling that method would result in a normalization in place, that is, a
mutation of the current object’s attributes. Normalizing in place is faster
and requires less memory but is also much more error-prone. It’s easier
than it seems for your program to mistakenly mutate an object that is being
used by other parts of the program not expecting the change. Finding these
kinds of bugs is really tricky and requires extensive debugging. Furthermore,
programs using immutable data are much easier to understand and reason
about, as you don’t need to keep track of how objects change their state with
respect to time.

Take a look at the following code. It implements the normalize method in
a similar way to the previous one, but it contains a subtle error. In this case,
the normalization would yield a wrong result. Can you spot why?

def normalize(self):
self.x = self.x / self.norm
self.y = self.y / self.norm




This is a tricky one. By mutating the self.x attribute in the first line, the sec-
ond call to get the self.norm property will use the updated value for self.x.
The first and second calls to self.norm yield different results, which is why we
had to store the value of self.normin a variable.

When the amount of data the object has is small, you're better off avoid-
ing mutations altogether. Your program will behave correctly if executed
concurrently, and your code will be simpler to understand. Reducing muta-
bility to a minimum will make your code more robust; as you’ll see through-
out the book, we’ll adhere to this principle as much as we can.

Naming Convention

Notice the naming convention for methods. Methods mutating the state of
the object upon calling are named as follows:

normalize Normalizes the vector in place

scale_by Scales the vector in place
Methods creating a new object as their result are named as follows:

normalized Returns a new normalized vector

scaled_by Returns a new scaled vector

Next, we’ll implement the dot and cross products in our Vector class.
These simple products will open the door to some useful operations such as
computing the angle between two vectors or testing for perpendicularity.

Dot Product

The dot product between two vectors @ and ¥ yields a scalar value, a measure
of how different the directions of the two vectors are. In two dimensions,
with 6 being the angle between the vectors, this product is given by Equa-
tion 4.7.

i -7 = ||i]| - [|7]] - cos O = uy - v +uy - vy (4.7

To understand the different values the dot product can have depending

on the relative directions of the two operand vectors, let’s take a look at Fig-
ure 4-6. This figure depicts a reference vector ¥ and three other vectors: 4, b,
and ¢. A line perpendicular to 7 divides the space in two half-planes. Vector b
lies on that line, so the angle 6 between 7 and bis 90°, and since cos (90°) = 0,

thend - b = 0. Perpendicular vectors yield a dot product of zero. Vector @
happens to be on the same half-plane as 7; therefore, ¥ - @ > 0. Lastly, ¢'is on
the opposite half-plane of ¥; hence, 7 - ¢ < 0.
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Figure 4-6: Vector directions with respect
to ¥ yield different dot products.

Implementing the dot product is straightforward from Equation 4.7.
Inside the Vector class, enter the code in Listing 4-14.

class Vector:
--snip--

def dot(self, other):
return (self.u * other.u) + (self.v * other.v)

Listing 4-14: Dot product

Before we move on to the cross product, let’s stop for a minute and an-
alyze one of its applications: obtaining the projection of a vector in a given
direction.

Projecting Vectors

When one of the vectors involved in a dot product is a unit vector, this
operation’s result is the length of the projection of one vector over the
other vector. To see why, let’s use Equation 4.7. Given a vector % and a unit
vector 9, the dot product is:

—

w-v= |- )|9] -cos@=|u|-1-cosf =] -cosb

where ||i|| - cos 6 is exactly the projection of ¥ over the direction of 9. This
will be handy for computing projections over a direction, which we could
use to obtain the axial component of a force on a truss member, for exam-
ple, as illustrated in Figure 4-7. In this case, we’d simply have to do Fo=F-a
to compute the axial component Fy.
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Figure 4-7: Projection of a force F in the
axial direction 1 of a truss member

Let’s implement this operation as a new method. Enter the code from
Listing 4-15 into your class.

class Vector:
--snip--

def projection over(self, direction):
return self.dot(direction.normalized())

Listing 4-15: Projection of a vector over another vector

Note that the direction argument may not be a unit vector. To make sure
our formula works, we normalize it.

Cross Product

The cross product of two three-dimensional vectors yields a new vector that is
perpendicular to the plane containing the other two. The order of operands
matters and defines the direction of the resulting vector. You can figure out
the direction of the cross product using the right-hand rule. Notice that this
product is therefore noncommutative: & x ¥ = -7 x 4. Figure 4-8 illustrates
this phenomenon.

Ux Vv

VX U

Figure 4-8: Cross products
are noncommutative.

In 3D space, the cross product can be computed using Equation 4.8.
Uy - Uy ~ Uz - Uy

Uy Uy~ Uy - Uy (4.8)
Uy * Uy = Uy - Vx

<y

X

<
]
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When working in two dimensions, every vector is contained in the same
plane; thus, every cross product yields a vector perpendicular to that plane.
That is easy to observe from the previous expression by simply noting that
Uy =v, = 0:

uy-O—O-vy 0
UXT= 0-vx—ux-0 = 0
Uy * Uy = Uy * Vx Uy * Uy = Uy * Vx

In two-dimensional applications, the cross product is therefore consid-
ered to yield a scalar value, which is the z-coordinate of the previous expres-
sion’s resulting vector. You can think of this coordinate as being the length
of the resulting vector. Since the x- and y-coordinates are zero, this magni-
tude given by the z-coordinate is all we need to keep. Given § as the angle
between vectors @ and ¥, the cross product operation in two dimensions can
be obtained by applying Equation 4.9.

i x U= [Jdl| - [|F]] - sin € = uy - vy = uy - vy (4.9)

Let’s implement the cross product. Enter the code in Listing 4-16.

class Vector:
--snip--

def cross(self, other):
return (self.u * other.v) - (self.v * other.u)

Listing 4-16: Cross product

One important application of the cross product in two dimensions is
determining the rotational direction of angles. From Figure 4-8 you can see
that % x 7 > 0, since going from  to ¥ describes a positive (counterclockwise)
angle. Conversely, going from @ to « describes a negative angle resulting in a
negative cross product # x 7 < 0. Lastly, note that parallel vectors have a cross
product of zero, which is easy to see because sin0 = 0. Let’s take a closer
look at this fact and write methods in our class that determine whether two
vectors are parallel or perpendicular.

Parallel and Perpendicular Vectors

Using the dot and cross products, it’s easy to test whether two vectors are
parallel or perpendicular to each other. Listing 4-17 contains the code for
these operations.

class Vector:
--snip--

def is_parallel to(self, other):
return nums.is close_to zero(
self.cross(other)



def is_perpendicular_to(self, other):
return nums.is close to zero(
self.dot(other)
)

Listing 4-17: Checking whether vectors are parallel or perpendicular

Checking whether two vectors are parallel to each other is as simple as
checking that their cross product is zero. Likewise, checking whether two
vectors are perpendicular is as simple as checking whether the dot prod-
uct is zero. Notice that we use the function is_close_to_zero to account for
floating-point number comparison difficulties in the calculations.

Angles Between Vectors

Computing the angle between two vectors can be done with the help of the
dot product expression:

w-v=|d-||7] - cosb

Dividing the dot product term on one side by the norm product on the
other and taking the inverse of the cosine of that expression, we get Equa-
tion 4.10:

0 = acos <_,u : v_‘ ) (4.10)
[l - 1191
This expression computes only the magnitude of the angle; if we want to
know the direction, we’ll need to make use of the cross product. The sign of
the angle can be obtained using

sgn (4 X )

where sgn, the sign function, is defined as follows:

o {1 <o
SBUTY 0 x>0

To understand why we only get the magnitude of the angle using Equa-
tion 4.10, we need to remember an important property of the cosine func-
tion. Recall from basic geometry that a unit vector’s angle cosine is exactly
the value of its horizontal projection. As you can see by inspecting the unit
circle from Figure 4-9, two vectors with opposite angles (angles where the
sum equals zero) get assigned the same cosine value. In other words, cos o =
cos (-a), which means that once an angle goes through the cosine function,
its sign is forever lost. That makes it impossible to determine what the an-
gle’s sign is from a computed value of the dot product.
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Figure 4-9: Cosines of
opposite angles are equal.

For many of our applications, we’ll be needing both the magnitude and
sign of angles; with the help of the cross product, we can bring this informa-
tion back. Let’s create two new methods, one that yields the absolute value
of the angle (for those cases where the magnitude is enough) and another
one that includes the sign. Enter the code in Listing 4-18 in your Vector class.

class Vector:
--snip--

def angle_value_to(self, other):
dot_product = self.dot(other)
norm_product = self.norm * other.norm
return math.acos(dot_product / norm_product)

def angle_to(self, other):
value = self.angle_value to(other)
cross_product = self.cross(other)
return math.copysign(value, cross_product)

Listing 4-18: Calculating the angle between two vectors

The first method, angle_value_to, computes the angle between self and
other using Equation 4.10. We first obtain the dot product value and divide
it by the product of norms. The angle is then the arc cosine of the result.
The second method, angle_to, returns the value of the angle with the sign
from the cross product. The math.copysign(x, y) function in Python returns
the magnitude of x with the sign of y.

Let’s try these two methods in the console. Reload it and write the
following:

>>> from geom2d.vector import Vector
>>> u = Vector(1, 0)
>>> v = Vector(1, 1)

>>> v.angle_value_to(u)
0.7853981633974484 # result in radians

>>> v.angle_to(u)
-0.7853981633974484 # result in radians
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Just for reference, the angle value of 0.78539.. . is /4 rad (45°).
Now let’s suppose we have a vector and want to create a new one by ro-
tating the original by a certain angle.

Rotating Vectors

Imagine that in the case of the bar subject to an external force, as we saw in
Figure 4-7, we're also interested in knowing the projection of force Fin the
direction perpendicular to the bar. This is the force’s shear component. To
find the projection of the force, we first need to figure out a vector perpen-
dicular to the direction of the bar #%, which is obtained by rotating this vector
/2 radians, as illustrated in Figure 4-10.

/2

U
Figure 4-10: Rotating the bar’s direction

vector /2 radians

A rotation preserves the length of the original vector because a rotation
is a transformation that respects lengths. Assuming « is the angle that we
want the vector rotated by, we can use Equation 4.11:

R cosa —sina Uy Uy - COS v~ Uy - SIN
Ula=1_. . = . (4.11)
sina  cosa Uy Uy - SINQ + Uy - COS

which in Python becomes the code in Listing 4-19.

class Vector:
--snip--

def rotated radians(self, radians):
cos = math.cos(radians)
sin = math.sin(radians)
return Vector(
self.u * cos - self.v * sin,
self.u * sin + self.v * cos

)

Listing 4-19: Rotating a vector

The rotated_radians function returns a new vector, the result of rotating
the original one by the given number of radians. Following our immutability
guidelines, we never mutate the source vector; instead, we return a new one
with the rotation applied.

There’s one angle, /2 rad (90°), which is quite useful for rotating a vec-
tor. Using 7/2 rad, we get a new vector perpendicular to the original one.
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To avoid writing v.rotated_radians(math.pi / 2) over and over again, we can
define a new method in our Vector class. Knowing that cos (7/2) = 0 and
sin (m/2) = 1, the angle in Equation 4.11 simplifies to the following:

i _Joux 0wy 1|
(m/2) Uy - L+uy -0 Uy

Let’s call the method perpendicular. In Python, it looks like Listing 4-20.

class Vector:
--snip--

def perpendicular(self):
return Vector(-self.v, self.u)

Listing 4-20: Obtaining a perpendicular vector

There’s another angle we’ll often use for rotations: 7 rad (180°). Ro-
tating a vector 7 rad results in a vector that is colinear but in the opposite
direction. This time, cos (7) = -1 and sin (7) = 0. The angle in Equation 4.11
now looks like this:

. e FD)muy 0 L
ul(”) Uy - 0+ uy - (-1) ~uy

Let’s call the method opposite. In Python, it looks like Listing 4-21.

class Vector:
--snip--

def opposite(self):
return Vector(-self.u, -self.v)

Listing 4-21: Obtaining the opposite vector

These two methods, perpendicular and opposite, don’t really add any-
thing we didn’t have before; we could just use rotated_radians. Nevertheless,
they’re convenient, and we’ll be using them often.

Sine and Cosine

To project a vector quantity in the x- and y-axes, we use the sine or cosine
values of the vector’s angle, as depicted in Figure 4-11.

We'll use these to compute the stiffness matrices in global coordinates
of truss structure bars in Part V of the book. The stiffness matrix of a bar is
computed relative to a reference frame whose x-axis is in the direction of the
bar’s directrix, but we’ll need to project this matrix in the direction of the
global x- and y-axes to build the structure’s global system of equations.

If the Vector class didn’t provide these two properties, clients of this
class could get its angle value and then compute the sine or cosine of it.
Even though this is perfectly acceptable, it requires a few operations to first
compute the angle and then one extra sine or cosine operation. But as you
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Figure 4-11: Vector projections

know, we can compute the sine and cosine values much more efficiently by
their mathematical definition.

Say we have vector @ with norm ||@||, whose projections are labeled « and
v. The sine and cosine can be computed as follows:

. v u
sm@ = =0 COS 9 = =T
]l ]l
Let’s implement these as attributes of the Vector class. Enter the code in
Listing 4-22.

class Vector:
--snip--

@property
def sine(self):
return self.v / self.norm

@property
def cosine(self):
return self.u / self.norm

Listing 4-22: Vector’s direction sine and cosine

The implementation is straightforward given the previous expressions.
Let’s complete our Point and Vector classes by adding the last touches.

Completing Our Classes

Our Point and Vector classes are looking good, but they’re missing some
small details. If we compare two instances of any of them, Python may not
be able to determine whether they are equivalent; we’ll fix that shortly. Also,
if you remember, Python prints object instances to the console giving their
class name accompanied with a memory address, which is not that helpful
for us; we’ll also fix this here.

Checking Equality

Try entering the following in the shell (don’t forget to reload it).
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>>> from geom2d.point import Point
>>> p = Point(1, 0)
>»> p==p

O True

>>> q = Point(1, 0)
>>> p == q

O False

I bet @ didn’t surprise you: a Point is equal to itself. What about @? Did
you raise your eyebrows? We are comparing two points with the same co-
ordinates, but Python states they are different. Shouldn’t (1, 0) be equal to
(1, 0)? It should, but first we have to teach Python how to compare two given
instances of our class. By default Python considers two instances of a class
to be equal if they’re effectively the same instance, that is, if they live in the
same memory region. To be more explicit, write this to the console:

>>> p
<geom2d.point.Point object at 0x10baa3f60>

>>>q
<geom2d.point.Point object at 0x10c63b438>

Python sees instance p as the one on the memory address 0x10baa360
and instance q on 0x10c63b438. Don’t forget that the memory addresses of
your instances will differ from these. We must instruct Python to compare
our Point instances by checking whether the projections are close enough
to be considered the same. If you recall from Table 4-1, by implementing
amethod called __eq_ (self, other), you are effectively overloading the ==
operator. Let’s do this for both the Point and Vector classes.

Listing 4-23 contains the code for the Point class (don’t forget to import
nums).

import math
from geom2d import nums
class Point:
--snip--
def __eq_ (self, other):
if self is other:

return True

if not isinstance(other, Point):
return False



return nums.are_close_enough(self.x, other.x) and \
nums.are_close_enough(self.y, other.y)

Listing 4-23: Point equality implementation

Listing 4-24 contains the code for the Vector class.

import math

from geom2d import nums

class Vector:
--snip--

def _eq_ (self, other):
if self is other:
return True

if not isinstance(other, Vector):
return False

return nums.are_close_enough(self.u, other.u) and \
nums.are_close_enough(self.v, other.v)

Listing 4-24: Implementing vector equality

As you can see, in both cases the idea is the same: comparing coordi-
nates against another given instance. Prior to that, we do two important
checks, though. The first one is to check for the case where we are compar-
ing the same instance against itself, in which case we don’t require any fur-
ther comparison, so we directly return True. The second check is for the case
where other is not an instance of the class. Since Python allows us to com-
pare any two objects, we may be comparing an instance of Vector against a
string, for example. If we detect this case where we try to compare instances
from different classes, we return False, and we’re done. You'll see this com-
parison pattern throughout the book, as all of our classes implementing
__eq__ will use this same approach.

To make sure we got it right, let’s repeat the experiment. Don’t forget
to reload the console to import the last version of the code, and enter the
following code:

>>> from geom2d.point import Point
>>> p = Point(1, 0)

>»> p==p

True

>>> q = Point(1, 0)
>>> p ==
True
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There you go! Now our Point and Vector classes comparison actually
works as it is supposed to work.

String Representation

As you’ve seen in the console when evaluating an instance of a class, the out-
put is not super helpful:

>>> from geom2d.vector import Vector

>>> v = Vector(2, 3)

>V

<geom2d.vector.Vector object at 0x10c63b438>

If we try to convert the instance to its string representation using the str
function, we get the same result:

>>> str(p)
'<geom2d.vector.Vector object at 0x10c63b438>"

When printing the string representation of Vector instances to the con-
sole, we’d find something like the following much more useful:

>>> str(p)
'(2, 5) with norm 5.385164807134504"

That message has the information of the coordinate values and the
value of the norm. Function str() in Python converts an instance of a class
to its string representation. This function first checks whether the passed
argument implements method __str__. If it does, the function calls it and re-
turns the result. If it doesn’t, the function simply returns the default string
representation, which in our case is that unhelpful memory position mess.

Let’s implement _str__in our classes. Enter Listing 4-25 inside the
Point class.

class Point:
--snip--

def _str (self):
return f'({self.x}, {self.y})'

Listing 4-25: Overriding string representation for Point

Then enter Listing 4-26 inside the Vector class.

class Vector:
--snip--

def _str (self):
return f'({self.u}, {self.v}) with norm {self.norm}

Listing 4-26: Overriding string representation for Vector



We include instance attributes in the string using f-strings (f'"). The at-
tributes are inserted between curly brackets, and Python calls their _ str__
methods to get their string representation and concatenate the result. For
example, you can think of the f-string,

f'({self.x}, {self.y})'

as being translated by Python to something like this:

"(" + str(self.x) + ", " + str(self.y) + ")"

Now when using str() on instances of our classes, a much nicer descrip-
tion will be printed. Let’s reload the Python shell and give it a second try:

>>> from geom2d.vector import Vector
>>> v = Vector(2, 3)

>>> str(v)

"(2, 3) with norm 3.605551275463989"

Much better, isn’t it?

Vector Factories

A factory function is just a function that builds an object. Factory functions
are a good option for initializing objects that require some calculation. An
initializer should ideally only set its class attributes and avoid any computa-
tion; for that we will use factories.

A factory function is also helpful to improve the readability of the code.
For instance, if you wanted to create a Vector from a point P to another point
0, the code

make_vector_between(p, q)

reads much better than this code:

Vector(q.x - p.Xx, q.y - p.y)

Not only that, but the latter is likely to be written many times, which
should tell you there is an algorithm that needs to be abstracted into its own
concept. In this particular case, the algorithm is the formula to create a vec-
tor between two ordered points (see Equation 4.12).

A missing abstraction is a common problem. It happens when an algorithm repre-
senting a concrete concept is not properly encapsulated into its own function or class
with a descriptive name. Iis main hazards are that it takes longer for our brains to
understand code when abstractions are not well encapsulated and that the same algo-
rithm is copied and pasted in many places, making it difficull to maintain.

Create a new file inside geom2d, call it vectors, and enter the code from
Listing 4-27.
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from geom2d.point import Point
from geom2d.vector import Vector

def make_vector_between(p: Point, q: Point):
return q - p

def make_versor(u: float, v: float):
return Vector(u, v).normalized()

def make versor between(p: Point, q: Point):
return make vector between(p, q).normalized()

Listing 4-27: Vector factory functions

This file defines several functions, all of which have the purpose of cre-
ating vectors. The first function we define, make_vector_between, creates a
vector going from a point p to another point q. We’ve harnessed our Point
class’s __sub__implementation to create the vector between the points. That
is one handy way of creating vectors, expressed mathematically as shown in
Equation 4.12.

iag={ $0 (4.12)

Next, we have a function called make_versor, which creates versors, or vec-
tors of unit length. Versors are frequently used to express direction or orien-
tation, so we’ll want a convenient way of creating them. Note that versors
are written with a hat over them, as in 4, signifying their length is unitary.

Lastly, we have make_versor_between to create a versor between two points,
which reuses the make_vector between function to return the normalized result
of it. The resulting versor could also be computed with Equation 4.13.

iy rers sy R
p_yp = : ~ (4.13)
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Unit Testing

Chapter 4

So far we’ve implemented a couple of methods on classes Point and Vector,
and we’ve tested some of them in the console by hand, but now we face
some big questions: How can we convince someone else that our code al-
ways works as expected? How can we be sure what we’ve written works all
the time? How can we make sure we don’t break anything when we modify
existing code or add new code?

Often enough, you’ll need to go back to some piece of code you wrote
a long time ago to fix a bug. The problem comes when you want to change



that code but don’t know whether making that change will break what’s al-
ready working. In fact, you may not be aware of what all the code is sup-
posed to be doing, so you end up changing something you shouldn’t have
and break something else. This phenomenon happens so regularly it has its
Oown name: regression.

Testing code by hand in the console is tiresome and boring, ensuring
that you probably won’t test everything you need to test. Besides that, it’s
not a repeatable process: you’'ll forget about which tests you executed for
each method, or if someone else needs to run them, they’ll have to figure
out what to test and how. But still, we really need to make sure our changes
won’t break anything. Code is entirely useless if it doesn’t do what it’s sup-
posed to.

What would make our lives much easier is an automated test we could
execute, which takes a few milliseconds to run and spits out output that
clearly states whether anything went wrong, where, and why. This is the
basic idea behind unit testing, a crucial activity for any serious developer.
Your code cannot be considered finished until it’s accompanied with good
unit tests that prove its quality. I consider this part of development so vital
I want to cover it early in the book and make extensive use of it. Writing au-
tomated, unitary tests for our code is a simple process, and there’s really no
excuse for not doing it.

Creating unit tests for your code is simple: create a new file, and inside
it add a new class with methods that test small portions of the test subject.
Each test case has an assertion function that ensures a specific result is ob-
tained given a set of inputs. The test is considered to pass when the asser-
tion succeeds and to fail otherwise. When the test class is executed (as we’ll
see next), the methods are executed, and their assertions are checked.

Don’t worry if this still doesn’t make sense; we’re going to use unit test-
ing so much in this book you’ll get to fully understand it.

Testing Distances

The first method we wrote for Point was distance_to, so let’s start our unit
test adventure there. In the geom2d package, create a new file named point
_test.py. Your project’s structure should look like the following:

Mechanics
|- geom2d
|- _init_ .py

|

| - p01nt py

|- point_test.py
|

|

- vector.py
- vectors.py
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In point_test.py, enter the code from Listing 4-28.

import unittest

from geom2d.point import Point

@ class TestPoint(unittest.TestCase):

O def test_distance_to(self):
p = Point(1, 2)
q = Point(4, 6)
expected = 5
actual = p.distance_to(q)

® self.assertAlmostEqual(expected, actual)

Listing 4-28: Distance between points test

We start by importing the unittest module, shipped with Python. This
module provides us with most of the infrastructure we need to write and ex-
ecute unit tests. After importing our Point class, we define the class TestPoint,
which inherits unittest.TestCase @. The TestCase class defines a good collec-
tion of assertion methods that we gain access to inside our class when we
inherit it.

Next we have the test_distance_to method @. It’s important that the
method name starts with the word test_, because this is how the class dis-
covers which of its methods are tests to be executed. You can define other
methods in the class, but as long as their names don’t start with test, they
won’t be executed as tests. Inside the test we create two points that we know
are b units apart from each other and assert that their distance p.distance_to(q)
is close to that value.

NOTE The unittest module’s choice of words may be confusing. The name UnitTest is used
Jfor the class even though the tests themselves are actually the methods inside the class.
Our class extending UnitTest is just a way of grouping related lest cases.

The assertion method assertAlmostEqual ® (defined in the class we inher-
ited from: unittest.TestCase) checks for floating-point number equality with
a given tolerance, which is expressed as the number of decimal positions to
compare. The default number of decimal positions to check is 7, and in this
test, we’ll stick to the default (as we didn’t provide any other value). Remem-
ber that when dealing with floating-point number comparisons, a tolerance
must be used or, in this case, a given number of decimal positions (see the
“Comparing Numbers” on page 4).

There are several ways to run tests. Let’s explore how to do it from both
PyCharm and the console.
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Running the Test from PyCharm

If you take a look at your test file in PyCharm, you’ll see a little green play
button to the left of the class and method definitions. The class button ex-
ecutes all the tests inside of it (so far we have only one), whereas the button
next to the method will run only that one test. Click the class one; from the
menu, select Run ‘Unittest for point.” The Run pane appears in the lower
part of the IDE, and the result of executing your tests is displayed. If you did
everything right, you should see the following:

--snip--
Ran 1 test in 0.001s
0K

Process finished with exit code 0

Let’s now learn how to run the same test from the console.

Running the Test from the Console

IDEs other than PyCharm may have their own way to run tests. But regard-
less of the IDE you use, you can always run tests from the console. Open
the console or shell and make sure you're in the Mechanics project directory.
Then run the following command:

$ python3 -m unittest geom2d/point_test.py

You should see the following result:

Ran 1 tests in 0.000s

0K

We’ll run most of the tests throughout the book from the IDE, but feel
free to run them from the console if you prefer.

Assertion Errors

Let’s see what would’ve happened if the assertion detected a wrong result.
Inside point_test.py, change the expected value for the distance:

expected = 567

This assertion is expecting points (1,2) and (4, 6) to be 567 units apart,
which is totally wrong. Now execute the test again by clicking the green play
button beside the class. This is the result you should see:

Ran 1 test in 0.006s

FAILED (failures=1)
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Failure
Traceback (most recent call last):
--snip--
File ".../geom2d/tests/point_test.py", line 14, in test_distance_to
self.assertAlmostEqual(expected, actual)
--snip--

AssertionError: 567 != 5.0 within 7 places (562.0 difference)

The message with the most valuable information is the last one. It’s
telling us that there was an assertion error; that is, the assertion failed when
it found 5.0 where 567 was expected. It used 7 decimal places in the compar-
ison and still found a difference of 562.

Before this assertion error is the traceback, the execution path Python
took until it got the error. As the message states, calls closer to the failure
appear last in the list. As you can see, the test execution failed in file point
_test.py (no surprise) on line 14 (yours may be different), in a test named
test_distance_to. This information will prove invaluable when you modify
existing code and run the tests only to find out whether a test fails, as it can
tell you what exactly broke. These test failure messages will give you precise
information.

Don’t forget to put our unit test back to how we initially wrote it and
make sure it still runs successfully.

Testing Vector Plus and Minus Operations

To ensure + and - operations work properly for vectors (doing the same for
the Point class is left as an exercise for you), let’s use the following test cases:

()-8
[LH-()-(3)

Create a new file inside package geom2d for testing the Vector class. Name
it vector_test and enter the code from Listing 4-29.

and

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):
u = Vector(1, 2)

v = Vector(4, 6)

def test_plus(self):



expected = Vector(s, 8)
actual = self.u + self.v
self.assertEqual(expected, actual)

def test_minus(self):
expected = Vector(-3, -4)
actual = self.u - self.v
self.assertEqual(expected, actual)

Listing 4-29: Tests for plus and minus operations

Run all tests using the green play button to the left of the class defini-
tion. If you got everything right, your two new tests should succeed. Yay!
Our operations were properly implemented. The nice thing is, if there had
been a bug in the implementation, these tests would have pointed out where
and why.

It’s worth noting that this time we’re using assertion method assertEqual,
which under the hood compares both arguments using the == operator. If
we hadn’t overloaded this operator in the Vector class, the tests would fail
even if the results were right. Try this: comment out the __eq__(self, other)
method definition (by appending a # character at the beginning of the line)
in the Vector class and rerun the tests.

You'll find how the last two tests fail with a message like the following:

<geom2d.vector.Vector object at 0x10fd8d198> !=
<geom2d.vector.Vector object at 0x10fd8d240>

Expected :<geom2d.vector.Vector object at 0x10fd8d240>
Actual  :<geom2d.vector.Vector object at 0x10fd8d198>

Familiar? That’s Python assuming two objects from the class can be
equal only if they are the same actual object living in the same memory posi-
tion. Our __eq__ operator overload explains to Python the rules to determine
when two objects should be considered the same. Don’t forget to uncom-
ment the method.

Testing Vector Product Operations

Let’s add two new test cases for dot and cross products using the same two
vectors defined in the test class:

(L {8}

and
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In code, this looks like Listing 4-30.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):
--snip--

def test dot product(self):
expected = 16
actual = self.u.dot(self.v)
self.assertAlmostEqual(expected, actual)

def test_cross_product(self):
expected = -2
actual = self.u.cross(self.v)
self.assertAlmostEqual(expected, actual)

Listing 4-30: Tests vector dot and cross products

Run all test cases to make sure the new ones also succeed. Note that, as
we’re comparing numbers again, we use assertion method assertAlmostEqual.

Testing Vector Parallelism and Perpendicularity

Next we’ll test the is_parallel to and is_perpendicular_to methods. Since

we’re checking a Boolean expression, we want to have two tests, one check-
ing that the two vectors are parallel (a positive test) and one checking whether
they’re not (a negative test). For the positive case, we’ll rely on the fact that a
vector is always parallel to itself. Enter the Listing 4-31 code inside TestVector.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):
--snip--

def test_are parallel(self):
self.assertTrue(self.u.is parallel to(self.u))

def test_are not parallel(self):
self.assertFalse(self.u.is_parallel to(self.v))

Listing 4-31: Testing vector parallelism
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There are two new assertion methods in this listing that are interesting
ones: assertTrue, which checks whether a given expression evaluates to True;
and assertFalse, which checks whether a given expression evaluates to False.

We'll follow the same pattern for checking perpendicularity. After the
last two tests, enter the two in Listing 4-32.

import unittest

from geom2d.vector import Vector

class TestVector(unittest.TestCase):
--snip--
def test_are_perpendicular(self):
perp = Vector(-2, 1)

self.assertTrue(self.u.is perpendicular_ to(perp))

def test_are_not_perpendicular(self):
self.assertFalse(self.u.is_perpendicular_to(self.v))

Listing 4-32: Testing vector perpendicularity

Run all tests inside the TestVector class to make sure they succeed. Con-
gratulations! You’ve implemented your first unit tests. These tests will en-
sure the methods in our geometry classes work as expected. Additionally, if
you find a better implementation for one of the methods we covered with
tests, to make sure it still works as expected, just run its tests. Tests also serve
to document the expected behavior of your code. If at some point you need
a reminder about what the code you wrote is supposed to do in a particular
case, unit tests should help.

Writing good tests is not a simple endeavor. One gets good at it by writ-
ing many, but there are some guidelines we can follow that will help us.
Let’s take a look at three simple rules that will make our tests much more
resilient.

Three Golden Rules for Unit Testing

We’ve covered tests for a small fraction of the methods from the Point and
Vector classes. Now that you have the required knowledge, try testing all the
methods that we wrote in both the Point and Vector classes. I'll leave this for
you as an exercise, but you can take a look at the code provided with the
book if you need help: it includes a lot of unit tests. Look for all the meth-
ods we didn’t test and write the tests you think are needed to make sure they
work properly. I encourage you to try, but if you still feel like unit testing is
foreign to you, don’t worry, we’ll be writing unit tests in other chapters of
this book.
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As mentioned, I believe writing unit tests is an integral part of coding,
and handling software not covered by unit tests should be considered a poor
practice. Moreover, writing code for the open-source community requires
good unit tests. You've got to give the community a reason to believe what
you did actually works. Proving this with automated tests that anybody can
easily run and see for themselves is always a good approach, as it’s unlikely
anybody is going to take the time to think about how to test your code and
then open the console and manually try it all.

You’ll get better at writing reliable unit tests as you practice. For now, I'd
like to give you some basic rules to follow. Don’t expect to fully grasp their
meanings now, but come back to this section from time to time as you move
through the book.

Rule 1: One Reason to Fail

Unit tests should have one and only one reason to fail. This sounds simple,
but in many cases the test subject (what you are testing) is complex and made
up of several components working together.

If tests fail for only one reason, it’s straightforward to find the bug in the
code. Imagine the opposite: a test that could fail for, say, five different rea-
sons. When that test fails, you’ll find yourself spending too much time read-
ing error messages and debugging code, trying to understand what made it
fail this particular time.

Some developers and test professionals (testing is a profession on its
own, which I spent several years doing) state that each test should have one
and only one assertion. Being pragmatic, sometimes having more than one
assertion is not that harmful, but if it’s one, that’s much better.

Let’s analyze a particular case. Take the test we wrote for checking whether
two vectors are perpendicular. If instead of

def test are perpendicular(self):
perp = Vector(-2, 1)
self.assertTrue(self.u.is_perpendicular_to(perp))

we had written

def test_are perpendicular(self):
perp = u.perpendicular()
self.assertTrue(self.u.is_perpendicular_to(perp))

then the test could fail because of an error in the is_perpendicular to method
or because of an error in the implementation of perpendicular, which we use
to compute a perpendicular vector to . See the difference?

Rule 2: Controlled Environment

We use the word fixture to refer to the environment where a test runs. The
environment includes all pieces of data surrounding our test and the state of
the test subject itself, all of which may alter the results of the test. This rule
states that you should have total control of the fixture where your test runs.
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Inputs and expected outputs of the test should always be known beforehand.
Everything happening inside your tests should be deterministic; that is, there
should be no randomness or dependence on anything out of your control:
dates or times, operating systems, machine environment variables not set by
the test, and so on.

If your tests seem to fail at random, they are useless, and you should
get rid of them. People get used to random failing tests fast and start ignor-
ing them. The problem comes when they also ignore tests that are failing
because of a bug in the code.

Rule 3: Test Independence

Tests should never depend on other tests. Each test should run on its own
and never depend on a fixture set by other tests.

There are at least three reasons for this. First, you’ll want to run or de-
bug tests independently. Second, many test frameworks do not guarantee
the execution order of tests. Finally, it’s much simpler to read and under-
stand tests that don’t depend on other surrounding tests.

Let’s illustrate this with the TestSwitch class in Listing 4-33.

class TestSwitch(unittest.TestCase):
switch = Switch()

def test_switch_on(self):
self.switch.on()
self.assertTrue(self.switch.is on())

def test_switch_off(self):

# Last test should have switched on
self.switch.toggle()
self.assertTrue(self.switch.is off())

Listing 4-33: Test depending on another test

See how test_switch_off depends on test_switch_on? By using a method
called toggle, we could get the wrong result if the tests run in a different or-
der and the switch has a state of off when this test runs.

Never rely on test execution order; that results in trouble. Tests should
always run independently: they should work the same way no matter the
order of execution.

Summary

In this chapter, we created two important classes: Point and Vector. The rest
of our geom2d library will be built upon these simple but powerful abstrac-
tions. We taught Python how to determine whether two given instances

of Point or Vector are logically equal by implementing the special method
_eq__, and provided a better textual representation with __str__. We cov-
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ered some of the methods in these classes with unit tests, and I encouraged
you to extend the coverage on your own. The best way to learn to write good
unit tests is by practicing. In the next chapter, we’ll add two new geometrical
abstractions to geom2d: lines and segments. These provide a new dimension
that can be used to construct more complex shapes.



LINES AND SEGMENTS

A point and a direction describe an infi-

nite, straight line, with no start or end. Two
distinct points bound a segment, which has

a finite length but contains infinite points. In

this chapter, we’ll focus on these two primitives, line
segments and lines. We’ll implement both with the
help of the points and vectors we implemented in the
previous chapter.

We’ll also spend some time understanding and implementing two algo-
rithms: one that computes the closest point to a segment, and another that
computes segment intersections. These algorithms use some vital concepts
from geometry that will serve as the foundation for more complex problems.
We’ll take our time implementing these operations to make sure we under-
stand them, so get your Python IDE ready and grab a pen and paper—it’ll be
helpful to sketch some diagrams the old-school way.

Segment Class

Between any two points in the plane exists a unique segment, a straight line
with finite length containing infinite points. Figure 5-1 depicts a segment
between two points: S and E.
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Figure 5-1: Segment defined
between the points S and E

Let’s start by creating a class named Segment with two attributes: a start
point § and an end point E. This is how our project’s structure looks so far:

Mechanics
|- geom2d
|- _init_ .py

|
I
| |- point.py
| |- point_test.py
| |- vector.py
| |- vector test.py
| |- vectors.py

Right-click the geom2d package, select New » Python File, name it
segment, and click OK. PyCharm adds the .py extension for you, but if you're
using another IDE, you may need to add it yourself. In the file, enter the
class as it’s written in Listing 5-1.

from geom2d.point import Point

class Segment:
def _init_ (self, start: Point, end: Point):
self.start = start
self.end = end

Listing 5-1: Segment initialization

We start by importing the Point class from the geom2d.point module.
Then, we define the Segment class with an initializer that accepts two points:
start and end. These are stored in corresponding attributes.

Note that we are typing the parameters; more specifically, we’re say-
ing they must be of type Point. These are the type hints we saw in Chapter 2,
mostly for the IDE to give us some context help. If the IDE knows both start
and end are objects from Point, it’ll detect if we’re trying to use any attribute
the class doesn’t implement. But it’s important to realize this won’t prevent
us from passing the wrong argument type at runtime. In fact, if you try the
following in the console:

>>> from geom2d.segment import Segment
>>> s = Segment("foo", "bar")



>>> s.start
'foo'

you should see that Python allowed us to pass strings instead of Points
without complaining, as type hints are ignored by Python’s interpreter at
runtime.

The Segment’s Direction

An important property of a segment is its direction, defined as a vector go-
ing from its start point S to its end point E. If we call it d, we can compute it
using Equation 5.1.

J=E—S={ gx_gx } (5.1)
Y )

The normalization of the direction vector yields the direction versor,
also commonly used in many operations with segments. The direction vector
is a vector with the same length as the segment and parallel to it, with a di-
rection going from its start point toward the end point. The direction versor is
the normalized version of the direction vector, that is, a vector with the same
direction but with unitary length.

The direction versor gl, given the segment with a length of /, is then as
shown in Equation 5.2.

(_i Ex=Sy
i 5L, (5.2)
l

Most of the time when we say segment’s direction, we’ll mean direction versor d, but
we’ll also sometimes use that phrase to refer to the direction vector d. If that’s the
case, we’ll explicitly note it. So, if nothing is said, assume by direction we mean the
direction versor.

Let’s implement both as properties of the class. Enter the code in List-
ing 5-2 in your segment.py file.

from geom2d.point import Point
from geom2d.vectors import make vector_between, make_versor between

class Segment:
--snip--

@property
def direction vector(self):
return make_vector between(self.start, self.end)

@property
def direction_versor(self):
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return make_versor between(self.start, self.end)

Listing 5-2: Calculating a segment’s direction vector and versor

Since we’re using the make_vector_between and make_versor_between factory
functions we defined in vectors.py, these two attributes are straightforward
to implement. We simply make a vector or versor between our start and end
points.

Now, as important as the direction of the segment is, it’s just as impor-
tant that we know the direction perpendicular to it. We might use this per-
pendicular direction, for instance, to compute the velocity direction of a
particle colliding against a straight line, which may represent a wall or the
ground, such as the case in Figure 5-2.

Figure 5-2: Computing the
collision angle using the
normal direction

Rotating the direction versor d 7/4 radians (90°) yields the segment’s
normal versor. Computing this versor is quite simple using Vector’s perpendicular
attribute. Enter the new property in Listing 5-3 in the Segment class.

class Segment:
--snip--

@property
def normal versor(self):
return self.direction versor.perpendicular()

Listing 5-3: Computing a vector perpendicular to the segment’s direction

This new property we have added works by chaining two attributes:
direction_versor and perpendicular. We first call self’s direction_versor to ob-
tain the segment’s direction versor. The result is an instance of Vector, upon
which we call the perpendicular method, which returns a versor perpendicu-
lar to the segment’s direction.

We could have stored the direction versor in a new variable and then
called the perpendicular method on that variable:

def normal versor(self):
d = self.direction_versor
return d.perpendicular()
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In this case, the d variable doesn’t add readability to the code, and since
we use it only once, we can chain both methods and return the result. You’ll
see this pattern used often in our code.

You can see a visual representation of the concepts we just implemented
in Figure 5-3. The segment on the left shows the direction vector c_i, with its
origin at S (the start point) and tip at E (the end point). The segment on the
right shows the normalized version d of the direction vector and its perpen-
dicular counterpart 7, the direction and normal versors, respectively.

/

S
Figure 5-3: Segment direction vector (left) and
direction and normal versors (right)

E E
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We'll skip writing unit tests in this section, but that doesn’t mean you
shouldn’t do them. From here on out, I won’t write tests for every method
we do, just some chosen ones, so we can keep focus and get through the con-
tent. But it’s a great exercise for you to write unit tests for these untested
methods. You can refer to the tests in the Mechanics project accompanying
the book.

The Segment’s Length

Another important property of a segment is its length, or the distance be-
tween its end points.

Calculating Length
There are at least two ways we can compute the length of the segment: we
can either compute the distance between points S and E or compute the
length of the direction vector d.

We’ll use the first one, which is shown in Listing 5-4, but if you prefer,
you can implement the second one. The result should be the same.

class Segment:
--snip--

@property
def length(self):
return self.start.distance to(self.end)

Listing 5-4: Calculating the length of a segment

Note again that using our previously implemented methods makes this
calculation a breeze. Your segment.py file should look like Listing 5-5 at this
point.
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from geom2d.point import Point
from geom2d.vectors import make vector_between, make_versor between

class Segment:
def _init (self, start: Point, end: Point):
self.start = start
self.end = end

@property
def direction_vector(self):
return make_vector between(self.start, self.end)

@property
def direction_versor(self):
return make_versor between(self.start, self.end)

@property
def normal versor(self):
return self.direction_versor.perpendicular()

@property
def length(self):
return self.start.distance to(self.end)

Listing 5-5: Segment class

Let’s test the method we just wrote.

Unit Testing Length

To make sure we made no mistakes implementing the length property, let’s
write a unit test. Start by creating a new test file. Right-click the geom2d pack-
age, select New » Python File, name it segment_test.py, and click OK. Then
enter the code in Listing 5-6.

import math
import unittest

from geom2d.point import Point

from geom2d.segment import Segment

class TestSegment(unittest.TestCase):
start = Point(400, 0)

end = Point(0, 400)
segment = Segment(start, end)
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def test_length(self):
expected = 400 * math.sqrt(2)
actual = self.segment.length
self.assertAlmostEqual(expected, actual)

Listing 5-6: Testing a segment’s length property

We import the unittest and math modules and the Segment and Point classes.
Then, we define two points: start at (400, 0) and end at (0, 400). Using these
points, we create segment, which is our test subject. Following Rule 1 for good
unit tests, a test should fail for one and only one reason, our expected result
is expressed directly as 400y/2, which comes from /(400 - 0)2 + (0 — 400)2
= V2 -4002. The temptation here would be to write the following:

expected = self.start.distance to(self.end)

However, that would violate Rule 1, as the test could fail for more than one
reason. Moreover, in this case, both the expected and actual values would be
computed using the same method: distance_to. This breaks the test’s inde-
pendence from the code it’s supposed to test.

Run the test by clicking the green play button to the left of the TestSegment
class definition and selecting Run ‘Unittests for segment’. You can run it
from the console like so:

$ python3 -m unittest geom2d/segment_test.py

It may seem silly to test the distance property because the only thing it
does is call the distance_to method, which has already been tested. Even with
such simple implementations we could have made mistakes such as, for ex-
ample, trying to compute the distance using the same point twice:

self.start.distance_to(self.start)

As you probably know from your own experience, we developers make mis-
takes like this more often than not.

The t Parameter and Middle Points

We said earlier that there are an infinite number of points between the end-
points E and § of a segment. How do we go about obtaining them? It’s com-
mon to use a parameter with values going from 0 to 1 (inclusive) to obtain
every point along the segment. We’ll call this parameter ¢ and define it as
done in Equation 5.3.

{teR|0.0<t< 1.0} (5.3)

All points between the segment’s start and end points can be obtained
by varying the value of ¢. For ¢ = 0, we get exactly the segment’s start point S.
Similarly, for ¢ = 1, we get the end point E. To compute any middle point P
given a value of ¢, we can use Equation 5.4.
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By realizing that the vector in the previous expression is exactly the di-
rection vector as defined in Equation 5.1, we can simplify the expression as
in Equation 5.5.

P=S+t(-d (5.5)

We can easily implement Equation 5.5 using Point’s displaced method.
Enter the method point_at in Listing 5-7 into your Segment class file (segment.py).

class Segment:
--snip--

def point_at(self, t: float):
return self.start.displaced(self.direction vector, t)

Listing 5-7: Obtaining a point from a segment using parameter t

By displacing the start point by the direction vector ¢ times (with 0.0 <
¢t < 1.0), we obtain any point on the segment. Let’s implement a property
that directly yields the middle point of the segment, that is, the point for
¢t = 0.5 (see Figure 5-4).

t=0.5 E
o

S

Figure 5-4: A segment’s
middle point

This is a special point we’ll be computing often, so we want a convenient
way of obtaining it. Enter the code in Listing 5-8).

class Segment:
--snip--

@property
def middle(self):
return self.point_at(0.5)

Listing 5-8: Segment’s middle point

Validating t Values

You may have realized that in point_at, we don’t check that the passed-in ¢
value is inside the expected range given by Equation 5.3. We can passita
wrong value for ¢, and it works without complaining, yielding points that
are out of the segment. For instance, if we passed it a value of ¢t = 1.5, we’d
obtain the point depicted in Figure 5-5.
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Figure 5-5: Point out of the
segment fort = 1.5

Without validating the ¢ value, this method silently fails by returning a
point that the user may be tricked into thinking lies between the segment
end points. By silently fail, we mean that the result is conceptually wrong,
but the method happily computes it for us without any kind of warning or
complaint that there may be some kind of error.

Robust software fails fast, meaning that as soon as an erroneous condi-
tion is detected, the program panics and quits, if possible with a message
giving comprehensive information about the error.

This may sound scary, but it helps a lot. Imagine we allow users to pass
a wrong value of ¢ to our point_at(t) method. Now say that the user with-
out noticing passes in a ¢ like 739928393839. . . You can imagine the point
obtained from this value is quite far from the segment that is supposed to
contain it. Such a value wouldn’t crash our program, and it would continue
to execute. We may not notice that we’ve gotten such a value until some cal-
culation several minutes later, when everything fails. Debugging all of what
happened before we found the error could take hours (or maybe days, de-
pending on the complexity of the code and how far the error spread). It’d
be much simpler if we could detect the wrong value right away. Perhaps we
could tell the user something like this:

Oops! We were expecting the value of 't' to be in the range [0, 1],
but you gave us a value of '739928393839'.

This message is crystal clear. It’s telling the user the program had to quit
because of an error. This error could have gotten worse had the program
continued to execute. The nice thing is the user gets the chance to analyze
where the wrong value came from and take action to prevent it from hap-
pening again.

Here we’re using the word user to reference anyone using our code, not the end user
of the applications we write. This includes yourself, as you’ll be the user of your own
code quite often.

Since there’s going to be a bunch of functionality defined for the ¢
parameter, we’d better create a module for it. At this point, your project’s
structure should look like this:

Mechanics
|- geom2d
| |- __init_ .py
| |- nums.py
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| |- point.py

| |- point_test.py
| |- segment.py

| |- segment_test.py
| |- vector.py

| |- vector_test.py
| |- vectors.py

Create a new file inside the geom2d package named tparam.py. Inside it,
enter the code from Listing 5-9.

MIN = 0.0
MIDDLE = 0.5
MAX = 1.0

def make(value: float):
if value < MIN:
return MIN

if value > MAX:
return MAX

return value

def ensure valid(t):
if not is_valid(t):
raise TParamError(t)

def is valid(t):
return False if t < MIN or t > MAX else True

class TParamError(Exception):
def _init  (self, t):
self.t = t

def _ str_ (self):
return f'Expected t to be in [0, 1] but was {self.t}'

Listing 5-9: Validating parameter t values

We start by defining three useful constants. There’s MIN, the minimum
value ¢ can take. There’s MIDDLE, the value of (MIN + MAX) / 2. Finally, there’s
MAX, the maximum value ¢ can take.

These values are going to be used a lot, so instead of writing magic
numbers (numbers that appear hard-coded without explanation about their



nature) everywhere, we’ve given them a name to understand what they
refer to.

Once we’ve defined the values, we define the function make to create a
parameter with a valid value. Then comes the function ensure_valid, which
checks that ¢ is not less or greater than the range limits using another method:
is_valid. If ¢ has a value outside the valid range, an exception is raised. TParam
Error is an implementation of Python’s Exception. This is a user-defined ex-
ception we provide with a nice formatted message. In the initializer for TParam
Error, we pass the offending ¢ value, and in the special method _ str__, we re-
turn the actual message. Recall that a class may define the _ str__ method to
provide a textual (string) representation of the instance when it’s called.

To see how it prints the message, try the following in the console:

>>> from geom2d import tparam
>>> tparam.ensure_valid(10.5)
Traceback (most recent call last):
--snip--
geom2d.tparam.TParamError: Expected t to be in [0, 1] but was 10.5

The error message is nice and clear:

Expected t to be in [0, 1] but was 10.5

Let’s use this validation in the point_at method from the Segment class.
First, import the module in your segment.py file:

from geom2d import tparam

Go back to segment.py and refactor point_at(t) to include the validation,
as in Listing 5-10.

def point_at(self, t: float):
tparam.ensure_valid(t)
return self.start.displaced(self.direction_vector, t)

Listing 5-10: Validating values of t in segment’s point_at method

Then refactor the middle property to remove the 0.5 magic number as
shown in Listing 5-11.

@property
def middle(self):
return self.point_at(tparam.MIDDLE)

Listing 5-11: Removing the magic number from our middle point computation

If you followed along, your segment.py file should look like Listing 5-12.

from geom2d import tparam
from geom2d.point import Point
from geom2d.vectors import make vector_between, make_versor between
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class Segment:
def _init_ (self, start: Point, end: Point):
self.start = start
self.end = end

@property
def direction vector(self):
return make vector between(self.start, self.end)

@property
def direction_versor(self):
return make_versor between(self.start, self.end)

@property
def normal_versor(self):
return self.direction_versor.perpendicular()

@property
def length(self):
return self.start.distance_to(self.end)

def point_at(self, t: float):
tparam.ensure_valid(t)
return self.start.displaced(self.direction vector, t)

@property
def middle(self):
return self.point_at(tparam.MIDDLE)

Listing 5-12: The Segment class

With our Segment class complete, let’s write some tests.

Unit Testing Segment Points
Since we’ll use point_at as part of more complex computations, we really
want to make sure it works, so let’s start with a test to assert that if it passes
a wrong value of ¢, an exception is actually raised. This gives us the opportu-
nity to learn a new assertion method: assertRaises.

In the file segment_test.py, start by importing the tparam module:

from geom2d import tparam

Then write the test in Listing 5-13.

class TestSegment(unittest.TestCase):

start = Point(400, 0)
end = Point(0, 400)
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segment = Segment(start, end)
--snip--

def test_point_at wrong_t(self):
self.assertRaises(
@ tparam.TParamError,
O self.segment.point at,
® 56.7
)

Listing 5-13: Testing wrong values of ¢

This assertion is a bit more complex than the ones we’ve seen so far. We
are passing it three arguments. First is the expected exception to be raised
(TParamtxrror) @. Second, we pass the method that is expected to raise the
exception . Last, we pass the arguments to be passed into the previous
method (point_at in this case) as comma-separated arguments .

The assertion can be read as follows:

assert that method 'point_at' from instance 'self.segment’
raises an exception of type 'tparam.TParamError'
when called with arguments '56.7'

If point_at accepted more than one argument, you would include them
as arguments of assertRaises. Now, let’s include the two test cases from List-
ing 5-14.

class TestSegment(unittest.TestCase):

start = Point(400, 0)
end = Point(0, 400)
segment = Segment(start, end)

--snip--

def test_point_at(self):
t = tparam.make(0.25)
expected = Point(300, 100)
actual = self.segment.point at(t)
self.assertEqual(expected, actual)

def test_middle point(self):
expected = Point(200, 200)
actual = self.segment.middle
self.assertEqual(expected, actual)

Listing 5-14: Testing the point_at method
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In the first test case, we ensure that a middle point for a valid ¢ value,
0.25 in this case, yields the expected point. Using Equation 5.4, this point
can be computed as follows:

400 0-400 400 -100 300
pP= +0.25- = + =
0 <~ | 400-0 0 100 100
N—— t N———’
S E-S
The second test is for the middle attribute, which computes the point at
¢t = 0.5. Take a pen and some paper and make sure point (200, 200) is right

in our test. Then run all the tests in the segment_test. py file to make sure all of
them pass. You can do this from the console as follows:

$ python3 -m unittest geom2d/segment_test.py

Closest Point

Now suppose we want to know what the segment’s point is that is closest to
an outside point. If the outside point is not aligned with the segment, that
is, a line perpendicular to the segment going through the point doesn’t in-
tersect with the segment, then the closest point has to be one of the two end
points: S or E. If, on the other hand, the point is aligned with the segment,
the intersection between the perpendicular line and the segment itself yields
the closest point. Figure 5-6 illustrates this.

Co E%B’

o

Figure 5-6: A segment’s closest points

In the figure, point S = A’ is the closest point to A, point E = B’ is
the closest point to B, and ' is the closest point to C. Let’s see how we can
implement this procedure.

The Algorithm

With the help of the method projection_over from Chapter 4, we can find the
closest point easily. We’ll use P as the external point, [ as the length of the
segment, and the various points, segments, and vectors in Figure 5-7.

oP

d
/
Figure 5-7: Auxiliary vectors

for the algorithm that computes
a segment’s closest point

S



The algorithm is as follows:
1. Compute a vector ¥ going from segment’s S to external point P.
2. Compute the projection of ¥ over the segment’s direction versor, d.

3. Depending on the value of the projection, call it 5. The closest
point P can be calculated using Equation 5.6.

S ifvg<0
P={E ifu, > 1 (5.6)
S+og-d  if0<v <1
If the value of the projection v, is negative, the projection lies outside
the segment on §’s side; hence, the closest point is S. For numbers greater
than /, the projection over the segment’s direction is longer than the seg-
ment itself. Thus, the result is the end point E. For any value of v in the
closed range [0, /], we obtain the point by displacing S in the direction of d v
times. Figure 5-7 depicts this last case where the external point P is aligned
with the segment.
The code for this operation is in Listing 5-15.

class Segment:
--snip--

def closest point to(self, p: Point):
v = make_vector between(self.start, p)
d = self.direction_versor
vs = v.projection_over(d)

if vs < 0:
return self.start

if vs > self.length:
return self.end

return self.start.displaced(d, vs)

Listing 5-15: Closest point to a segment

We start by computing vector 7. We then get v: the projection of ¥ over
the segment’s direction versor d. If v is smaller than zero, we return the
start point. If greater than the length of the segment, we return the end
point; otherwise, we compute the displacement of the start point that yields
the resulting point on the segment.

Unit Testing Closest Points

Let’s test the three different cases defined earlier, namely, v; < 0, v5; > [, and
0 <wy <. Listing 5-16 shows the code for the tests.

Lines and Segments 115



class TestSegment(unittest.TestCase):

start = Point(400, 0)
end = Point(0, 400)
segment = Segment(start, end)

--snip--

def test closest point is start(self):
p = Point(500, 20)
expected = self.start
actual = self.segment.closest point_to(p)
self.assertEqual(expected, actual)

def test_closest point _is end(self):
p = Point(20, 500)
expected = self.end
actual = self.segment.closest point_to(p)
self.assertEqual(expected, actual)

def test_closest_point_is_middle(self):
p = Point(250, 250)
expected = Point(200, 200)
actual = self.segment.closest point_to(p)
self.assertEqual(expected, actual)

Listing 5-16: Testing a segment’s closest point

To better understand the tests, it may be a good exercise to draw the
segment and each of the external points by hand to see whether you can
figure out why the expected results have the values they have. Your draw-
ing should look similar to Figure 5-8. Furthermore, trying to solve the three
cases by hand will presumably give you some insight into the algorithm.

Y

(20, 500)

E (0, 400)

P (250,250
(200, 200)

0(500,20)

5400, 0)

Figure 5-8: The segment’s closest points
and their test cases
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Don’t forget to run all tests and make sure they all succeed. You can do
this from the console as follows:

$ python3 -m unittest geom2d/segment_test.py

Distance to a Point

Now that we know the closest point in the segment to an external point,
we can easily compute the distance between it and the segment. Enter the
method in Listing 5-17.

class Segment:
--snip--

def distance_to(self, p: Point):
return p.distance_to(
self.closest_point_to(p)

)

Listing 5-17: Computing the distance from a point to the segment

As you can see in the code, the distance between the segment and any
given external point is the distance between the point and that in the seg-
ment that is closest to it. Simple, isn’t it?

Segment Intersections

Now we get to the fun stuff. How do we test whether two segments intersect?
If they do intersect, how do we compute the intersection point? Consider
the cases from Figure 5-9.

E: E2 E:
E2
Si S S10S2
E: ) E2 E:
P
o
Si S2 Si S2

Figure 5-9: Possible segment intersection cases

The two cases from the left column have no intersection, but there is a
difference between them. In the first case, the direction vectors of the seg-

ments are parallel (31 X 072 =0). Thus, it’s easy to know there will be no inter-
section. In the other case, if instead of segments we had infinite lines, there
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would be an intersection point. It might be far from where the segments are,
but there’d be one nonetheless. As we’ll see in the following equations, we’ll
have to compute the intersection point as if we were working with lines and
then ensure the point lies inside both segments.

In the upperright case, the two segments overlap; hence, there is more
than one intersection point—an infinite number, to be precise. For our analy-
sis we’ll define two possible cases: segments either have an intersection point
or don’t intersect at all (we won’t be considering the upper-right case). We’ll
forget about the overlapping case since we won’t be needing it for our appli-
cations, and we want simplified code.

Overlapping Segments

If we were to include the case where the segments overlap, the return object
for the intersection function could be either a Point or a Segment. A function
that returns different object types is hard to work with. Once we have the
result, we’d need to check what type of object we got and act accordingly.
This could look as follows:

result = seg_a.intersection_with(seg_ b)

if type(result) is Point:

# intersection is a point
elif type(result) is Segment:

# intersection is a segment
else:

# no intersection

But this code is messy. There are better ways of handling this logic, but
we won'’t get into it, as for us there will be either an intersection point or no
intersection at all. That will make our code simpler and easier to work with.

Let’s take a look at the algorithm.

The Algorithm

Let’s find the intersection point of a case like the one in the lower right of
Figure 5-9. Say we have two segments:

*  Segment 1 with start point S; and end point £
*  Segment 2 with start point So and end point Eo

We can compute every point in segment 1, let’s call it Pq, using the following
expression,

Pi(t1) =81+t -dy

where ¢7 is the parameter that goes from 0 to 1 and dy is the direction vector
(not versor) for the segment. Similarly, here is segment 2:

Py(t) = Sg +1t9 - dg



To find the intersection point, we have to look for a pair of values ¢; and t9
such that P(¢1) = Pa(t9):
S1+h ~671 =S89 + 1o ~672

If both segments intersect, plugging those ¢ parameter values in their respec-
tive segment expressions should result in the same point, the intersection
point P. Let’s rewrite the expression in its vector form:

Six ) { dyy } ( Sox ) { dox }
+ tl . = =+ t2 .
( S1y dly S2y day

We can use this form to obtain a scalar system of two equations and two un-
knowns, ¢1 and to:

Stx + 11 - dyy = Sox * lg - doy
S1y + 11 - dyy = Sgy *+ 1o - dy

I'll spare you the details and give you the result, though it may be a good
exercise to solve the system yourself for ¢] and #9. The final expressions for
the ¢ parameters are as shown in Equations 5.7 and 5.8.

_ A - dyy ~ AS, - dy,

t - (5.7)
! dy X dg
ASy-dyy - ASy - d
tg = —x T T Tl (5.8)
d1 X dg

Here, ASy = Sgx = S1x, ASy = Sg = 81, and 31 X 32 = 0. Note that these

formulas would yield oo if the segments were parallel (31 X 072 =0). We can’t
attempt a division by zero; that would raise an exception in our Python code,
so we’ll need to detect this case before we try to compute the values of #;
and ¢o.

With these two values computed for the case where segments were not
parallel, we have two possible outcomes:

*  Values {1 and ¢ are both inside range [0, 1]. The intersection point
belongs to both segments.

*  One or both of ¢; and ¢9 are outside range [0, 1]. The intersection
point is outside of at least one of the segments.

Now we’re ready to implement the logic in an algorithm. In your
segment.py file, implement the intersection_with method as shown in List-
ing 5-18.

class Segment:
--snip--

def intersection with(self, other):
d1, d2 = self.direction vector, other.direction vector
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if di.is_parallel to(d2):
return None

cross_prod = di.cross(d2)

delta = other.start - self.start

t1 = (delta.u * d2.v - delta.v * d2.u) / cross_prod
t2 = (delta.u * di.v - delta.v * di.u) / cross_prod

if tparam.is valid(t1) and tparam.is valid(t2):
return self.point_at(t1)

else:
return None

Listing 5-18: Intersection between two segments

We start by storing both segments’ direction vectors in the variables d1
and d2 using Python’s multiple assignment. With the multiple assignment,
several values can be assigned to variables at once. Then we check whether
the directions are parallel, in which case we return None. If we find the seg-
ments aren’t parallel, we compute dy % do and AS and store them in the
variables cross_prod and delta. With the help of these values, we then com-
pute ¢1 and to. If these values are inside their valid range, we then return the
resulting intersection point by calling point_at on the current Segment object
(self). Make sure you understand that we could have computed P using ¢o
and called point_at on other. The result would’ve been the same.

Similarly to other languages such as Java or C# with null, one should use None ju-
diciously. Use it for cases where having an empty-like value is a perfectly valid out-
come. For instance, in our intersection with method, None represents the case where
there exists no intersection point.

Unit Testing Segment Intersections

As we advance with the book material and our code becomes more com-
plex, testing these code fragments will become more involved. The method
we just wrote for computing intersection between segments has a couple

of branches or paths the execution can take. With the objective of being as
exhaustive as possible with our unit tests, let’s compile every case we want
covered (see Table 5-1).

Table 5-1: Segment Intersection Algorithm Outcomes

Segment Directions 1} ty Intersection Result
dy || do — — None

dq Y do Out of range  Out of range  None

dy t do In range Out of range  None

dy Y do Out of range  In range None

dy Jt do In range In range P=Sy+t; -d




We’ll be writing unit tests for the first and last cases from Table 5-1; I'll
leave the other three as an exercise for you. In file segment_test.py, include
the tests in Listing 5-19 in the TestSegmentclass.

class TestSegment(unittest.TestCase):

start = Point(400, 0)
end = Point(0, 400)
segment = Segment(start, end)

--snip--

def test_parallel segments no_intersection(self):
other = Segment(Point(200, 0), Point(0, 200))
actual = self.segment.intersection_with(other)
self.assertIsNone(actual)

def test_segments_intersection(self):
other = Segment(Point(0, 0), Point(400, 400))
expected = Point(200, 200)
actual = self.segment.intersection_with(other)
self.assertEqual(expected, actual)

Listing 5-19: Testing segment intersections

So, in the first test, we construct a parallel segment and assert that the
intersection between the two is None with the assertion assertIsNone, which
checks that the passed-in value is None. In the second, we construct a seg-
ment perpendicular to the first one that intersects it at (200, 200) and assert
we get that point as the result. You can run all the tests in the file from the
IDE by clicking the green play button or from the console as follows:

$ python3 -m unittest geom2d/segment_test.py

Can you come up with the segments needed for the other three cases?

Equality and String Representation

Just as we did with the Point and Vector classes, we want to overload the

== operator so that Python understands two segments with equal start and
end points as logically equal, and we want to implementa _ str__ method
so we can get a nice string representation of the segment. Enter the code in
Listing 5-20 in the segment.py file.

class Segment:
--snip--

def _eq_ (self, other):
if self is other:

return True
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if not isinstance(other, Segment):
return False

return self.start == other.start \
and self.end == other.end

def _str  (self):
return f'segment from {self.start} to {self.end}’

Listing 5-20: Equality of segments and string representation

We’ll add one last property once we’ve developed the Line class. If you
followed along, your Segment class should look similar to Listing 5-21.

from geom2d import tparam
from geom2d.point import Point
from geom2d.vectors import make vector_ between, make_versor between

class Segment:
def _init (self, start: Point, end: Point):
self.start = start
self.end = end

@property
def direction vector(self):
return make_vector between(self.start, self.end)

@property
def direction_versor(self):
return make_versor between(self.start, self.end)

@property
def normal_versor(self):
return self.direction_versor.perpendicular()

@property
def length(self):
return self.start.distance_to(self.end)

def point_at(self, t: float):
tparam.ensure valid(t)
return self.start.displaced(self.direction vector, t)

@property

def middle(self):
return self.point_at(tparam.MIDDLE)
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def closest_point_to(self, p: Point):
v = make_vector between(self.start, p)
d = self.direction versor
vs = v.projection over(d)

if vs < 0:
return self.start

if vs > self.length:
return self.end

return self.start.displaced(d, vs)

def distance to(self, p: Point):
return p.distance_to(
self.closest_point_to(p)

)

def intersection with(self, other):
d1, d2 = self.direction vector, other.direction vector

if d1.is_parallel to(d2):
return None

cross_prod = di.cross(d2)

delta = other.start - self.start

t1 = (delta.u * d2.v - delta.v * d2.u) / cross_prod
t2 = (delta.u * di.v - delta.v * di.u) / cross_prod

if tparam.is valid(t1) and tparam.is valid(t2):
return self.point_at(t1)

else:
return None

def _eq_  (self, other):
if self is other:
return True

if not isinstance(other, Segment):
return False

return self.start == other.start \
and self.end == other.end

def _str_ (self):
return f'segment from {self.start} to {self.end}’

Listing 5-21: The Segment class
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Line Class

An infinite line can be described by a base point B and a direction vector d,
like that in Figure 5-10.

d
\B (X, Y)

Figure 5-10: A line with a
base point B and direction
vector d

Lines are useful helper primitives; with them we can build more com-
plex geometries and operations. One common usage of lines, for example,
is finding where two nonparallel directions intersect. You’ll see in the next
chapter how operations such as constructing a circle out of three points are
effortless using line intersections.

Let’s create a new Line class with these two properties: a base point and
a direction. In the geom2d package, add a new file named line.py and enter
the code in Listing 5-22.

from geom2d.point import Point
from geom2d.vector import Vector

class Line:
def _init (self, base: Point, direction: Vector):
self.base = base
self.direction = direction

Listing 5-22: Line initialization

The initializer sets our properties base and direction based on the values
passed into their corresponding arguments. Like before, we've typed the
base and direction arguments so our IDE can warn us of any potential errors.

Let’s now provide two methods that check whether a line is parallel or
perpendicular to another line (Listing 5-23).

class Line:
--snip--

def is_parallel to(self, other):
return self.direction.is_parallel to(other.direction)

def is_perpendicular_to(self, other):
return self.direction.is perpendicular to(other.direction)

Listing 5-23: Checking whether lines are parallel or perpendicular
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We didn’t implement these methods for Segment, because our concern
was with the segment’s infinite points and how they’re located in the plane;
here, on the other hand, we’re working with directions. Working with direc-
tions requires knowledge of their relative positioning; Are they parallel? Are
they perpendicular?

With lines, the question is usually about how they are positioned with
respect to other lines; with segments, the question is usually about how they
are positioned themselves.

To check whether two lines are parallel, we could simply access their
direction properties and use their methods like so:

d1 = line_one.direction
d2 = line_two.direction
d1.is_parallel to(d2)

This is definitely possible, but it’s not considered good practice. There
is a guideline commonly known as the principle of least knowledge or law of
Demeter, which states that “you should only talk to your immediate friends.”
In this case, as we are working with lines, lines are our immediate friends.
The Line properties base point and direction vector are not our immediate
friends; thus, we shouldn’t ask them for stuff. If we need something from
them, we have to ask our immediate friend, the Line holding such properties,
to do it for us.

So, here’s how we should check whether two lines are parallel or perpen-
dicular:

line one.is_parallel to(line two)

Let’s also include two more methods to create new lines that are perpen-
dicular or parallel to an existing line and that go through a point. In your
file, enter the code in Listing 5-24.

from geom2d.point import Point
from geom2d.vector import Vector

class Line:
--snip--

def perpendicular_through(self, point: Point):
return Line(point, self.direction.perpendicular())

def parallel through(self, point: Point):
return Line(point, self.direction)

Listing 5-24: Creating perpendicular and parallel lines

The method perpendicular_through receives point as an argument and re-
turns a new line, which uses that base point and direction vector perpendic-
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ular to the original line. Similarly, parallel_through constructs a new line with
the given base point but using the same direction vector as the original line.

Line Intersections

A general algorithm to compute the intersection between two segments was
explained in depth earlier in the chapter. The algorithm was based on the
start point and direction vector of segments but can be extended to work
with lines by using the base point of the line instead of the start point of the
segment. The nice thing is that in the case of lines, parameters ¢; and ¢9 are
not bounded to range [0, 1]; they can go from —oo to co.

If we rewrite Equations 5.7 and 5.8 for lines, we get Equations 5.9 and 5.10.

_ ABy-dyy = ABy - dy,

t = = 5.9
1 7 do (5.9)
ABy -dy,—ABy -d
to = —x T T Tl (5.10)
dl X dg

In this case, ABy = Bg, — By, and ABy = By, — By,. For these formu-

las to yield the correct values, recall that 31 X JQ = 0. Since the ¢ values are
not bounded anymore, there’s no need to compute both ¢; and ¢9 and check
whether they fall into the range [0, 1]. Computing one of them will suffice
in getting the resulting intersection point. Let’s choose Equation 5.9 to com-
pute ¢1. With ¢1, we can determine the actual intersection point as follows:

P=Bl+t1-;ll

Implement method intersection_with in your Line class as in Listing 5-25.

from geom2d.point import Point
from geom2d.vector import Vector
from geom2d.vectors import make_vector_between

class Line:
--snip--

def intersection with(self, other):
if self.is_parallel to(other):
return None

d1, d2 = self.direction, other.direction
cross_prod = di.cross(d2)

delta = make_vector_between(self.base, other.base)
t1 = (delta.u * d2.v - delta.v * d2.u) / cross_prod

return self.base.displaced(d1, t1)

Listing 5-25: Calculating the intersection between two lines
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The code looks similar to the algorithm in Segment, but it’s a bit simpler.
To check for parallelism, we use the self method instead of using the direc-
tions. As we implemented is_parallel_to on the Line class, it makes sense to
use it (and it helps the code read even better!).

Unit Testing Line Intersections

Let’s make sure our tweaked algorithm works. Create a new file line_test. py
and enter the test for the Line class in Listing 5-26.

import unittest

from geom2d.line import Line
from geom2d.point import Point
from geom2d.vector import Vector

class TestLine(unittest.TestCase):

def test parallel lines no_intersection(self):
11 = Line(Point(0, 0), Vector(1, 1))
12 = Line(Point(10, 10), Vector(1, 1))
self.assertIsNone(l1.intersection with(12))

def test_lines_intersection(self):
11 = Line(Point(50, 0), Vector(o, 1))
12 = Line(Point(0, 30), Vector(1, 0))
actual = l1.intersection with(12)
expected = Point(50, 30)
self.assertEqual(expected, actual)

Listing 5-26: Testing line intersections

In the first test, test_parallel_lines_no_intersection, we create two paral-
lel lines with different base points but the same direction vectors. We then
assert intersection_with returns None. The second test, test lines_intersection,
creates two lines, the first of which is vertical at x = 50 and the second hori-
zontal at y = 30; hence, the intersection point is (50, 30).

Run the tests by clicking the green play button beside the class defini-
tion. You should see this in the console:

Ran 2 tests in 0.001s

0K

Process finished with exit code 0

You can also run the tests from the console:

$ python3 -m unittest geom2d/line_test.py
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Listing 527 contains all the code we wrote for the Line class.

from geom2d.point import Point
from geom2d.vector import Vector
from geom2d.vectors import make_vector_between

class Line:
def __init_ (self, base: Point, direction: Vector):
self.base = base
self.direction = direction

def is parallel to(self, other):
return self.direction.is parallel to(other.direction)

def is_perpendicular_to(self, other):
return self.direction.is_perpendicular_to(other.direction)

def perpendicular through(self, point: Point):
return Line(point, self.direction.perpendicular())

def parallel through(self, point: Point):
return Line(point, self.direction)

def intersection with(self, other):
if self.is_parallel to(other):
return None

d1, d2 = self.direction, other.direction
cross_prod = di.cross(d2)

delta = make_vector_between(self.base, other.base)
t1 = (delta.u * d2.v - delta.v * d2.u) / cross_prod

return self.base.displaced(d1, t1)

Listing 5-27: The Line class

Segment’s Bisector

Now that we have both segments and lines, we can implement a new at-
tribute in Segment: its bisector. This attribute is the line going through the
segment’s middle point M that’s perpendicular to it. Figure 5-11 illustrates
this concept.
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Figure 5-11: A segment’s bisector

Computing a bisector line for a segment is simple since we already have
access to the segment’s middle point and normal versor (don’t forget to im-
port the Line class), as shown in Listing 5-28.

from geom2d import tparam

from geom2d.line import Line

from geom2d.point import Point

from geom2d.vectors import make vector_between, make_versor between

class Segment:
--snip--

@property
def bisector(self):
return Line(self.middle, self.normal versor)

Listing 5-28: Segment’s bisector

In the next chapter, we’ll be using the bisectors of segments to create a
circle passing through three points—a common way of obtaining circles in
CAD software. In Part III of the book, we’ll create a program that computes
a circle passing through three points and draws a beautiful image with cap-
tions indicating its center and radius.

Summary

In this chapter, we used the Point and Vector classes to create two new prim-
itives: Segment and Line. Both have a defined direction, and both represent a
set of infinite aligned points, but segments are bounded between two points,
whereas lines have no ends.

We also implemented a way of obtaining the infinite points in Segment
using a parameter ¢ that is defined in the range [0, 1]. There was no need
to do the same for Line, as we’re not usually interested in what points make
it up.

We then created two algorithms: we included a method in the Segment
class that looks for its closest point to an external point. Although we didn’t
implement it in Line, we could have done so. We used this method to com-
pute the distance from a point to a segment. We also implemented an algo-
rithm to compute intersections between two segments and two lines. These
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intersections result in a point or the value None returned. Lastly, we used the
Line class to represent the bisector of a segment.

These linear primitives are going to prove invaluable for building more
complex ones called polygons, the topic of our next chapter.
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POLYGONS

Our next primitive, polygons, builds on

points and segments. Polygons can be used
to describe colliding geometries, portions of

the screen that need redrawing, body bound-

aries, and much more. It turns out these primitives are
extremely useful when it comes to processing images,
as you can use them to figure out whether different
parts of the image overlap. In dynamics simulations,
they help determine when two bodies collide. In user
interfaces for graphic-intensive applications, you can
use simple polygons to easily figure out whether the
user’s mouse is over an entity that may be selected.

In this chapter, we’ll be implementing three primitives: generic poly-
gons, described by their vertices; circles, defined by a center point and a
radius; and rectangles, defined by an origin point, a width, and a height.
Because it may be more convenient in some applications to work only with
generic polygons, both the circle and the rectangle will implement a method
to convert themselves into a generic polygon. We’ll also write a few other al-
gorithms, including one that determines whether a polygon overlaps with
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another of its class and one that tests whether a polygon contains a given
point.

Polygon Class

Chapter 6

A polygon is a two-dimensional figure defined by a sequence of a minimum
of three ordered and noncoincident vertices connected to form a closed
polygonal chain. Each connection is a segment going from one vertex to the
next one, where the last vertex is connected back to the first. Given ver-
tices [V, Vo, ..., Vy], each of the segments defined as [(V] — Vo), (Vo —
V3),...,(Vy = Vq)]is called a side (see Figure 6-1).

5
Figure 6-1: A polygon defined by its vertices
At this point, your geom2d package should look like this:

Mechanics
|- geom2d
| [- _init_ .py
| |- line.py
| |- line_test.py
| |- nums.py
| |- point.py
| |- point_test.py
| |- segment.py
| |- segment_test.py
| |- vector.py
| |- vector_test.py
| |- vectors.py
Let’s create a class to represent polygons defined by their vertices as
a sequence of points (instances of class Point). Create a new file inside the
package geom2d, name it polygon.py, and enter the code from Listing 6-1.

from geom2d.point import Point

class Polygon:
def __init_ (self, vertices: [Point]):
if len(vertices) < 3:
raise ValueError('Need 3 or more vertices')



self.vertices = vertices

Listing 6-1: Polygon initialization

First we import Point from geom2d.point. Then we define class Polygon
with an initializer that accepts a sequence of points ordered according to
the polygonal chain; connected vertices should be adjacent in the sequence.
If the list contains fewer than three points, we raise an exception of type
ValueError. Remember the fail fast strategy? We want to fail as soon as we
detect something that doesn’t make sense and may cause trouble, such as a
polygon with fewer than three vertices.

According to Python’s documentation, a ValueError should be raised when “an oper-
ation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a move precise exception.”

Sides

A side is a segment going from one vertex to the next in a polygon’s sequence
of vertices. The sides of a polygon together make up its perimeter. To close
the polygonal chain, the last vertex needs to connect with the first. Gener-
ating the sides of a polygon thus requires pairing up a sequence of vertices.
This sounds like a generic operation we could use for any sequence of ob-
jects, not just vertices, so we want to implement it in its own module.

For the sections that follow, you’ll need a good understanding of Python’s
list comprehensions. You can refer to “List Comprehensions” on page 35 for
a refresher.

Pairing Vertices
Given a list of items (of whatever type),

(A, B, C]

the pairing algorithm should create a new list where each item is a tuple of
the original item at that position paired up with the next, including a pair
of the last element with the first, as follows:

[(A, B), (B, O), (C, A)]

Let’s write this code in a new package inside our Python project. Create
a new package at the same level as geom2d and name it utils. In this package
we’ll keep small pieces of generic logic that are potentially reusable by the
rest of our project modules. Your project’s folder structure should look like
the following:

Mechanics
|- geom2d
| [- __init_ .py
| |- line.py
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| | ...
|- utils
| [- _init .py

Many software projects end up having a utils package or module where
all kinds of unrelated algorithms are bundled together. Although conve-
nient, this practice is ultimately doomed and hinders the project’s maintain-
ability. A utils package is for pieces of code that aren’t big enough to be pro-
moted to their own package but are still reused by many other parts inside
the project. When related code inside utils starts to grow, you're better off
moving it to its own dedicated package. For example, if our pairing logic
started to specialize, covering lots of different cases and types of collections,
we would move it to a new package called pairs. That’s not the case here, so
we’ll keep it simple.

In the package create a new file named pairs.py and include the function
in Listing 6-2.

def make_round_pairs(sequence):
length = len(sequence)
return [
@ (sequence[i], sequence[(i + 1) % length])
@ for i in range(length)
]

Listing 6-2: Pairing up list elements

The function uses a list comprehension to create a new list from a range
of values, starting from 0 and going all the way to length @. For each value it
creates a tuple with two items @: the element at index i from the original list
and the next one at i + 1. When we reach index i = length, i + 1 would be
out of bounds in sequence, so we want to wrap around and go back to index
0 so that the last and first elements are also paired up. We do this with the
modulo operator (%), which returns the remainder when you divide one num-
ber by another. The neat thing is that » % m returns » for every n < m, and it
returns 0 for n = m.

To better understand modulo, try this in the shell:

>>> [n % 4 for n in range(5)]
[0, 1, 2, 3, 0]

See how for n = 4 the result is 0, but for all other values the result is » itself?
Try to increase the range parameter:

>>> [n % 4 for n in range(7)]
[0, 1, 2, 3, 0, 1, 2]

Numbers in a modulo 4 operation never go beyond 3. Once that number is
reached, the next one wraps around to 0 again.



If you want to know more about this “wrapping around” phenomenon resulting from
the modulo operator, search for modular arithmetic. It’s widely used in modern
cryptography and has some really interesting properties.

We’re now ready to implement the method that will generate the sides
for our Polygon class.

Generating Sides

Once vertices are properly paired, writing the code to generate the sides
is simple: we just need to create a Segment instance per pair of vertices. To
compute them, first add the following imports in your file polygon.py:

from geom2d.segment import Segment
from utils.pairs import make_round_pairs

Then, enter the method in Listing 6-3.

from geom2d.point import Point
from geom2d.segment import Segment
from utils.pairs import make_round_pairs

class Polygon:
--snip--

def sides(self):
vertex_pairs = make_round_pairs(self.vertices)
return [
Segment(pair[0], pair[1])
for pair in vertex_pairs

]
Listing 6-3: Computing polygon sides

Using the make_round_pairs function, we pair vertices up such that each
tuple in vertex_pairs contains the start and end points of a segment. Then,
using a list comprehension, each of these tuples is mapped into a segment.

Testing Sides

Let’s create a unit test for the sides attribute. Create a new file named
polygon_test.py inside the package geom2d and enter the code for class
TestPolygon (Listing 6-4).

import unittest
from geom2d.point import Point

from geom2d.polygon import Polygon
from geom2d.segment import Segment
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class TestPolygon(unittest.TestCase):
vertices = [
Point(0, 0),
Point(30, 0),
Point(0, 30),
]
polygon = Polygon(vertices)

def test sides(self):

expected = [
Segment(self.vertices[0], self.vertices[1]),
Segment(self.vertices[1], self.vertices[2]),
Segment(self.vertices[2], self.vertices[o0])

]

actual = self.polygon.sides()

self.assertEqual(expected, actual)

Listing 6-4: Testing sides of a polygon

Inside the test class we create a list of vertices—(0, 0), (30, 0), and (0, 30)—
that make a triangle. We use these points as vertices for the creation of the
test subject: polygon. Figure 6-2 illustrates the polygon. To ensure the sides
are properly computed, we construct the list of expected sides using the
original vertices properly paired up.

(0, 30)

0,0) (36,@

Figure 6-2: The polygon
used in the fest

Since we overloaded the == operator in the Segment class (by implement-
ing the special method __eq_), the equality comparison will work as intended.
If we hadn’t done so, the equality assertion would consider segments differ-
ent even if bounded by the same end points, and thus the test would fail.

Run the test using the following command to make sure it succeeds.

$ python3 -m unittest geom2d/polygon_test.py

If everything went well, you should get this output:

Ran 1 tests in 0.000s

0K
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Centroid

A noteworthy point in a polygon is its centroid, the arithmetic mean of the
position of all vertices. Assuming 7 is the number of vertices, the centroid
can be expressed using Equation 6.1.

n
> o
i=1

n

> i
-1

Here, x; and y; are the coordinates of vertex .

(6.1)

()
1l
S|

Implementing the Centroid
Let’s implement the centroid property. To do so, we first need to import the
following at the top of our Polygon class:

import operator
from functools import reduce

Once imported, add the code in Listing 6-5 beneath the sides method.

import operator
from functools import reduce

from geom2d.point import Point
from geom2d.segment import Segment
from utils.pairs import make_round_pairs

class Polygon:
--snip--

@property
def centroid(self):
@ vtx _count = len(self.vertices)
® vtx_sum = reduce(operator.add, self.vertices)
® return Point(
vix_sum.x / vtx_count,
vix_sum.y / vtx_count

)

Listing 6-5: Calculating a centroid of a polygon

We first store the length of the list of vertices in the variable vtx
_count @. Then, we reduce the list of vertices by summing them into a
resulting point called vtx_sum @. You may want to read “Filter, Map, and
Reduce” on page 29 to review the reduce function and how we use operator.
Note that the operator operator.add works for the reduce function because
our Point class overloads the + operator.
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The last thing we do is construct the resulting point by dividing each of
the projections of vtx_sum by vtx_count @.

Testing the Centroid

Let’s write a unit test to make sure the centroid is properly computed. In
your file polygon_test.py enter the code in Listing 6-6.

class TestPolygon(unittest.TestCase):
--snip--

def test_centroid(self):
expected = Point(10, 10)
actual = self.polygon.centroid
self.assertEqual(expected, actual)

Listing 6-6: Testing the centroid center of a polygon

Using Equation 6.1, we can calculate the centroid by hand to see where
the projections in (10, 10) come from. Knowing that the vertices of our poly-
gon test subject are (0, 0), (30, 0), and (0, 30), we have this:

G = 1/70+30+0 \ _/ 10
3\ 0+0+30 10
You can inspect this visually in Figure 6-3.

(0, 30)

Centroid

o

0,0) (3, 0)

Figure 6-3: The test
polygon’s centroid

Run all tests in file polygon_test.py to make sure everything is working as
expected. To run them from the shell, you can use the following:

$ python3 -m unittest geom2d/polygon_test.py

If both tests pass, you should get the following output:

Ran 2 tests in 0.000s

0K




Let’s try one thing before moving on. Remember that to compute the
centroid we reduced the list of vertices like so,

vtx_sum = reduce(operator.add, self.vertices)

We said that this reduction using the operator.add works because our
Point class overloads the + operator? Let’s see what would have happened
if we hadn’t overloaded this operator. Open point.py and comment out the
__add__method:

class Point:
--snip--

# def _add__ (self, other):

# return Point(

# self.x + other.x,
# self.y + other.y
# )

Run the tests again. This time you’ll see an error in the shell:

Traceback (most recent call last):
--snip--
vtx_sum = reduce(operator.add, self.vertices)
TypeError: unsupported operand type(s) for +: 'Point' and 'Point’

Ran 2 tests in 0.020s

The TypeError with its message (unsupported operand type(s)...)is very
descriptive about what the error is. Two Point instances cannot be added if
they don’t implement the __add__ method. Uncomment the __add__ method
we commented for the experiment and rerun the tests just to make sure it’s
all back to how it was.

Contains Point

Now comes an interesting problem: How do we determine whether a given
point is inside a polygon? A widely used procedure is the ray casting algo-
rithm, which counts how many sides of the polygon are intersected by a ray
going through the point in any direction. An even number of intersections
(including zero) means the point is outside of the polygon, whereas an odd
number means the point is inside. Take a look at Figure 6-4.

The drawing on the left depicts a complex polygon and a point P out-
side of it. Every ray cast from that point in any direction intersects zero or
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an even number of sides. The case on the right depicts the point P inside
the polygon. This time, the ray always intersects an odd number of sides.

@

© ® o

Figure 6-4: The ray casting algorithm

Another commonly used algorithm, and the one we’ll be using, is the
winding number algorithm. This algorithm works by summing angles between
vectors that go from the point under test to the vertices of the polygon. This
is how it works. To know whether a point P is inside a polygon with vertices
V1, Vo, ..., Vy, our algorithm looks like this:

1. Create a vector going from P to each of the vertices:
71 = PV7: Vector from P to vertex V
7o = PVy: Vector from P to vertex Vo

7y = PV,,: Vector from P to vertex V,,

2. Compute the angle from each vector 7; to the next 7,1, wrapping
around and computing the angle between the last vector and the
first:

&y —ry: Angle from 7y to 7o
a|ry—sry: Angle from 7o to 73

a|y,—r : Angle from 7, to 7
3. Sum all angles computed in the previous step.

The point P is inside the polygon if the angle is 27, outside if 0.

Take a look at Figure 6-5 to better understand how this algorithm works. It’s
easy to see how the sum of angles is 27 in the case where the point is inside
the polygon.

Although we could just as well implement the ray casting algorithm, 1
chose the winding number algorithm because it makes good use of three key
functions we’ve created in this book: the make_vector_between factory func-
tion, make_round_pairs, and the angle_to method from the Vector class. Let’s
implement it.
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Figure 6-5: Testing whether a polygon contains a point

Implementing the Winding Number Algorithm

There are a few modules we need to import. Your imports at the top of file
polygon.py should look like this:

import math
import operator
from functools import reduce

from geom2d.nums import are_close_enough

from geom2d.point import Point

from geom2d.vectors import make vector_between
from geom2d.segment import Segment

from utils.pairs import make_round_pairs

Once you’ve imported everything, enter the code in Listing 6-7 as a new
method for the Polygon class.

import math
import operator
from functools import reduce

from geom2d.nums import are_close_enough

from geom2d.point import Point

from geom2d.vectors import make_vector_between
from geom2d.segment import Segment

from utils.pairs import make_round_pairs

class Polygon:
--snip--

def contains_point(self, point: Point):
@ vecs = [make_vector between(point, vertex)
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for vertex in self.vertices]
® paired vecs = make round pairs(vecs)
® angle sum = reduce(
operator.add,
® [vi.angle to(v2) for vi, v2 in paired vecs]

)

® return are close enough(angle sum, 2 * math.pi)

Listing 6-7: Polygon contains_point algorithm

We first compute the list of 7 vectors @ using a list comprehension, which
maps each of the vertices of the polygon into a vector going from point to
the vertex. Then, using make_round_pairs, we pair the vectors and store the
result in paired vecs .

We map paired vectors to the angle each pair forms using another list
comprehension @. We reduce the resulting list by adding together each of
the computed angles ®, and finally, we check whether the computed angle
sum (angle_sum) is close enough to 27 @, in which case the point is inside the
polygon. We'll consider any other value of the angle to mean the point is
outside the polygon.

Testing contains_point

Let’s make sure this algorithm works by adding two unit tests in file
polygon_test.py (see Listing 6-8).

class TestPolygon(unittest.TestCase):
--snip--

def test doesnt contain point(self):
point = Point(15, 20)
self.assertFalse(self.polygon.contains_point(point))

def test contains point(self):
point = Point(15, 10)
self.assertTrue(self.polygon.contains_point(point))

Listing 6-8: Testing whether the polygon contains point

You can run the tests using the green play button in the IDE or from the
shell:

$ python3 -m unittest geom2d/polygon_test.py

In the first test, we take a point we know is outside the triangular poly-
gon and assert that it’s actually outside. The second test asserts the point
(15, 10) is inside the triangle.



Testing an Edge Case

Let’s try one more test, just to see what happens. What about vertices of the
polygon? Are they considered to be inside or outside the polygon? This is
what we know as an edge case, a situation that requires special treatment in
our code.

Enter the innocent-looking test in Listing 6-9 and run all the tests in file
rect_test.py.

class TestPolygon(unittest.TestCase):
--snip--

def test_contains_vertex(self):
self.assertTrue(
self.polygon.contains_point(self.vertices[0])

)

Listing 6-9: Proposed test of whether a polygon contains one of its vertices

The output from running the test is as follows:

Error
Traceback (most recent call last):
--snip--
File ".../geom2d/polygon.py", line 36, in <listcomp>
[vi.angle to(v2) for vi, v2 in paired vecs]
File ".../geom2d/vector.py", line 69, in angle_to
value = self.angle value to(other)
File ".../geom2d/vector.py", line 66, in angle value_to
return math.acos(dot_product / norm_product)
ZeroDivisionError: float division by zero

Oops! We must have done something wrong. Can you guess what by
reading the traceback? Starting from the last line we find the originator:
ZeroDivisionError. Apparently we attempted to divide by zero in method
angle_value_to. To be specific, we did so in this line:

return math.acos(dot product / norm product)

This means norm_product was zero; hence, the norm of at least one of the vec-
tors used to compute the angle had a length of 0. Going a bit up in the trace-
back we find the line where the angle method was being used before the
error happened:

[vi.angle to(v2) for vi, v2 in paired vecs]

So, it appears that when we attempted to compute the angle between two of
the vectors, one of them had a length of 0. The vector going from point P,
this time a vertex of the polygon, to itself is obviously a zero vector.

To handle this particular edge case, we can consider vertices to be inside
the polygon as a convention. At the beginning of method contains_point,
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let’s check whether the point passed as an argument is a vertex of the poly-
gon, in which case we simply return True. Modify the method to accommo-
date this new condition (Listing 6-10).

class Polygon:
--snip--

def contains_point(self, point: Point):
if point in self.vertices:
return True

vecs = [make vector between(point, vertex)
for vertex in self.vertices]
paired vecs = make_round_pairs(vecs)
angle_sum = reduce(
operator.add,
[vi.angle_to(v2) for vi, v2 in paired vecs]

return are_close_enough(angle_sum, 2 * math.pi)

Listing 6-10: Corrected algorithm to check whether a point is inside a polygon

As you see, dealing with edge cases requires individualized pieces of
code. Run all the tests to make sure they all succeed now:

$ python3 -m unittest geom2d/polygon_test.py

The output this time should be as follows:

Ran 5 tests in 0.001s

0K

Polygon Factory

In practice, we commonly need to construct polygons from a list of numbers

representing the coordinates of its vertices. This is done, for example, when

reading a polygon from a text file, which we’ll see in Chapter 12. To do this,

we first need to pair up the numbers and map them into instances of Point.
For instance, the list

[0, 0, 50, 0, 0, 50]

could be used to define the three vertices of a triangle:

[(0, 0), (50, 0), (0, 50)]




Let’s implement a factory function to create polygons given a sequence
of floating-point numbers. Create a new file named polygons.py. Our project’s
structure currently looks like this:

Mechanics
|- geom2d

|- _init_ .py

- line.py

- line_test.py
- nums.py

- point.py

- point_test.py

- polygon_test.py
- polygons.py

- segment.py

- segment_test.py
- vector.py

- vector_test.py
|- vectors.py

|
|
|
|
|
|- polygon.py
|
|
|
|
|
|

|- _init_ .py

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |- pairs.py

Inside the new file, enter the code in Listing 6-11.

from geom2d import Point, Polygon

def make_polygon from_coords(coords: [float]):
if len(coords) % 2 != 0:
raise ValueError('Need an even number of coordinates')

indices = range(0, len(coords), 2)
return Polygon(
[Point(coords[i], coords[i + 1]) for i in indices]

)

Listing 6-11: Polygon factory function

The function make_polygon_from coords takes in a list of coordinates and
first checks that there are an even number of them (otherwise, they can’t
be paired up). If the length of the list of coordinates is divisible by 2 with a
remainder of 0, we have an even number of coordinates.

If the number of coordinates is found to be uneven, we raise a ValueError.
If not, we then construct a list of the indices at which we’ll find the x-coordinate
of the vertices in the coords list. We achieve this with a range going from 0 to
len(coords) (noninclusive) with a step of 2.
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To better understand how we’re doing this, try the following in Python’s
shell:

>>> list(range(0, 10, 2))
[0) 2} 4) 6) 8]

With these indices we can easily obtain a list of vertices using a list compre-
hension. Recall that Python’s range function returns a half-open interval that
doesn’t include the upper bound, which is why we didn’t get the number 10
in the resulting list. The list comprehension maps each index to an instance
of Point class. We create the polygon passing this list to its constructor. As
you can see from the code, the x-coordinate is the number from the input
list at each index i, whereas the y-coordinate is the number to the right of it,
thatis, i + 1.

With that out of the way, let’s take a look at how to compare polygons
for equality.

Polygon Equality

To make sure we can check whether polygons are equal, let’s implement the
_ eq__method inside the Polygon class (see Listing 6-12).

class Polygon:
--snip--

def __eq_ (self, other):
if self is other:

return True

if not isinstance(other, Polygon):
return False

return self.vertices == other.vertices

Listing 6-12: Polygon equality

We first check whether the passed-in other is the same instance as self,
in which case we return True. Second, if other is not an instance of Polygon,
there’s not much we can compare; we already know the equality is
impossible.

Since Point already implements the __eq_ method, we just need to com-
pare the list of vertices from both polygons if the two previous checks haven’t
returned anything yet. Python will check whether both lists contain the
same vertices in the same order. Lists are ordered collections; thus, order-
ing is important when checking for equality. Try the following experiment
in the shell:

>»> 11 = [1, 2, 3]
>»> 12 = [3, 2, 1]
>>> 13 = [3, 2, 1]



>»> 11 == 12
False

>»> 12 == 13
true

Even though 11 and 12 contain the same numbers, they are considered
different by Python as they appear in a different order (don’t forget that or-
der matters for lists and tuples). By contrast, 12 and 13 do contain the num-
bers in the same order and hence are considered equal. Polygons are made
of an ordered collection of vertices: different orderings of the same set of
vertices would result in unequal polygons. This is the reason why we used a
list, which is a collection where the order is a key factor.

If you followed along, your polygon.py file should look like Listing 6-13.

import math
import operator
from functools import reduce

from geom2d.nums import are close_enough

from geom2d.point import Point

from geom2d.vectors import make vector_ between
from geom2d.segment import Segment

from utils.pairs import make round pairs

class Polygon:
def _init (self, vertices: [Point]):
if len(vertices) < 3:
raise ValueError('Need 3 or more vertices')
self.vertices = vertices

def sides(self):
vertex pairs = make round pairs(self.vertices)
return [Segment(pair[0], pair[1]) for pair in vertex pairs]

@property
def centroid(self):
vtx_count = len(self.vertices)
vtx_sum = reduce(operator.add, self.vertices)
return Point(
vix_sum.x / vtx_count,
vix_sum.y / vtx_count

def contains_point(self, point: Point):
if point in self.vertices:
return True
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vecs = [make_vector between(point, vertex)
for vertex in self.vertices]
paired vecs = make_round pairs(vecs)
angle sum = reduce(
operator.add,
[vi.angle_to(v2) for vi, v2 in paired vecs]

return are close_enough(angle_sum, 2 * math.pi)
__eq__(self, other):
if self is other:

return True

if not isinstance(other, Polygon):
return False

return self.vertices == other.vertices

Listing 6-13: Polygon class

Now let’s take a look at circles.

As you may remember from high school, the area of a circle is calculated
as follows:

A circle is the set of all points in the plane a given distance (the radius) from a
single point called the center. A circle is therefore defined by the position of
its center C and the value of its radius r (see Figure 6-6).

Figure 6-6: A circle
defined by a center
point C and radius r

A=1-9?

And a circle’s circumference is calculated as follows:

. =2m-r



Create a new file named circle. py in the package geom2d. In the file, enter
the code in Listing 6-14.

import math

from geom2d.point import Point

class Circle:
def __init_ (self, center: Point, radius: float):
self.center = center
self.radius = radius

@property
def area(self):
return math.pi * self.radius ** 2

@property
def circumference(self):
return 2 * math.pi * self.radius

Listing 6-14: Circle class initialization

Great! We now have a class to represent circles with the properties center
and radius. We’ve also defined properties named area and circumference.

To keep the length of the chapter reasonable, we won’t include any more unit test-
ing sections. The accompanying code does include unit tests, and I encourage you to
come up with them yourself.

Contains Point

Testing whether a point P was inside a generic polygon required a few steps,
but in the case of a circle, the logic is extremely simple. We compute the
distance from the center C to point P: d(C, P). If this distance is smaller than
the radius, d(C, P) < r, the point is inside the circle. For values of d(C, P)
greater than r, the point is farther from the center than the radius and thus
outside the circle. Inside Circle, enter the code in Listing 6-15.

class Circle:
--snip--

def contains_point(self, point: Point):
return point.distance to(self.center) < self.radius

Listing 6-15: Checking whether a circle contains a point

Can you come up with test cases to ensure method contains_point is bug
free?
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Circle to Polygon

In Chapter 7 we’ll be transforming a polygon’s geometry by rotating, scal-
ing, and skewing it. After such transformations, circles may not be circles
anymore, and the mathematical representation for the result can become
complex.

Because accounting for all possible shapes using a specific geometry
class would be arduous, and because our generic polygons work the same
no matter their shape, why not try approximating the circle using a polygon
with enough sides?

To convert a circle to a polygon, a number of divisions have to be cho-
sen, say n. The entire 27 angle is divided into n subangles 6 = 27/n. Start-
ing at angle 0 and incrementing it by 6 each time, we can compute n points
in the circumference, which will then become the vertices of a polygon in-
scribed in the circle. We can compute a vertex V at a given angle « using

Equation 6.2,
[ Cy Ccos a
V(a)—(cy)+r-(sina ) (6.2)

where C is the center of the circle and 7 is the radius. Figure 6-7 shows the
result of choosing n = 8, which converts the circle into an octagon with ver-
tices V], VQ, e, Vg.

Figure 6-7: Converting a circle
to a polygon

Also note how for small numbers of n the resulting polygon poorly ap-
proximates the circle. In Figure 6-8, for example, n was chosen to be 3, 4,
and 5, respectively. As you can see, the inscribed polygons only look re-
motely like the circles they approximate. We’ll typically choose 7 values rang-
ing from 30 to 200 to yield an acceptable result.



3 divisions 4 divisions 5 divisions
Figure 6-8: Number of divisions when converting a circle to a polygon

Inside Circle, implement to_polygon as in Listing 6-16.

import math

from geom2d.point import Point
from geom2d.polygon import Polygon

class Circle:
--snip--

def to_polygon(self, divisions: int):
@ angle delta = 2 * math.pi / divisions
return Polygon(
O [self. point at angle(angle delta * i)
for i in range(divisions)]

)

def _ point_at_angle(self, angle: float):

® return Point(
self.center.x + self.radius * math.cos(angle),
self.center.y + self.radius * math.sin(angle)

)

Listing 6-16: Creating a polygon from a circle

This time we divided the algorithm in two: the main logic handled by
to_polygon and a private method _ point_at_angle, which, given an angle, re-
turns the point in the circumference at that angle ®. Such a point is com-
puted according to Equation 6.2.

The to_polygon method first computes the angle delta (or angle incre-
ment) for the given number of divisions @. Then, using a list comprehen-
sion, it maps each integer number in the range [0, n) to a point in the
circumference at incremental angles ®. This list of points is passed as the
vertices for the initialization of a polygon. Note how we convert the range
[0, n) into an angle by multiplying the current number in the range by the
angle increment.
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Equality and String Representation

Let’s implement equality comparison and string representation methods in
our Circle class. Enter the code in Listing 6-17.

import math

from geom2d.nums import are_close_enough
from geom2d.point import Point
from geom2d.polygon import Polygon

class Circle:
--snip--

def _eq_ (self, other):
if self is other:
return True

if not isinstance(other, Circle):
return False

return self.center == other.center \
and are_close_enough(self.radius, other.radius)

def _str_ (self):
return f'circle ¢ = {self.center}, r = {self.radius}'

Listing 6-17: Circle equality and string representation

If you followed along, your circle.py file should look like Listing 6-18.

import math

from geom2d.nums import are_ close_enough
from geom2d.point import Point
from geom2d.polygon import Polygon

class Circle:
def _init  (self, center: Point, radius: float):
self.center = center
self.radius = radius

@property
def area(self):
return math.pi * self.radius ** 2

@property
def circumference(self):
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def

def

def

def

return 2 * math.pi * self.radius

contains_point(self, point: Point):
return point.distance to(self.center) < self.radius

to_polygon(self, divisions: int):
angle_delta = 2 * math.pi / divisions
return Polygon(
[self. point_at_angle(angle delta * i)
for i in range(divisions)]

)

__point_at_angle(self, angle: float):

return Point(
self.center.x + self.radius * math.cos(angle),
self.center.y + self.radius * math.sin(angle)

)
__eq__(self, other):
if self is other:

return True

if not isinstance(other, Circle):
return False

return self.center == other.center \

and are_close_enough(self.radius, other.radius)

_str_ (self):
return f'circle c = {self.center}, r = {self.radius}'

Listing 6-18: The Circle class

Circle Factories

We'll typically construct circles from a center point and a radius, but there
are a few more ways we can construct them. In this section, we’ll look at
one such case: generating a circle out of three points. We’ll do this mostly
for fun, but it also gives a sense of how powerful the geometrical primitives

we’re building are.

So,

say we’re given three non-collinear points, namely, A, B, and C. As
you can see in Figure 6-9, you can find a circle such that it passes through all

three points.
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Figure 6-9: Defining a
circle with three points

To solve the problem, we need to find the center and radius, but the
latter is straightforward since if we know where the center is, the distance of
any of the three points to it yields the radius. So, the problem boils down to
finding the center of a circle passing through the given points. Here’s one
way we can find it:

1. Compute the segment going from A to B; let’s call it segy.

2. Compute the segment going from B to C; let’s call it sego.

3. Find the intersection between bisectors of seg and sego.

The intersection point O is the center of the circle (see Figure 6-10).

And, as previously stated, finding the radius of the circle is as simple as mea-
suring the distance between O and A, B, or C.

B

fo}u~]

Figure 6-10: The center and radius of a circle defined by
three points

We’re ready to implement the logic. Create a new file in the geom2d
package and name it circles.py. In the file, enter the code in Listing 6-19.

from geom2d import Point
from geom2d.circle import Circle
from geom2d.segment import Segment

def make_circle_from points(a: Point, b: Point, c: Point):
chord_one_bisec = Segment(a, b).bisector
chord_two_bisec = Segment(b, c).bisector
center = chord one_bisec.intersection_with(chord two bisec)
radius = center.distance_to(a)



return Circle(center, radius)

Listing 6-19: Circle from three points

Recall that the chord of a circle is a segment whose endpoints lie on the circumference
and cut across the circle.

If you were asked to simplify the function, could you? Each line tells you
exactly what it’s doing; you can read the lines one by one and match them
with the description of the algorithm. Self-explanatory code that clearly
states its intent is commonly referred to as clean code, which is such a cele-
brated concept in the software industry that there are several books devoted
to the topic. Two of my all-time favorites include [6] and [1], which I recom-
mend you also read if you want to write truly readable code.

Rect Class

The last geometric primitive we’ll implement in this chapter is a rectangle,
but it’s not any sort of rectangle—it’s the kind whose sides are always hori-
zontal and vertical. Rotated rectangles can be represented using the Polygon
primitive from earlier in the chapter. The reason behind this seemingly re-
strictive rule has to do with what this primitive is typically used for.

Rectangles like this are often used in two-dimensional graphic applica-
tions for things like the following:

*  Representing a portion of the screen that needs to be redrawn

*  Determining the position on the screen where something needs to
be drawn

*  Determining the size of the geometry that has to be drawn

*  Testing whether two objects are likely to collide

*  Testing whether the mouse cursor is over a region of the screen

A rectangle can be defined by a point (called the origin) and a size, which
in turn has two properties: width and height (see Figure 6-11). By conven-

tion, the origin point will be located at the bottom-left corner of the rectan-
gle, assuming a coordinate system with an y-axis that points upward.

Ok

Figure 6-11: A rectangle
defined by an origin
point O, width w, and
height h
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Let’s start with a class to represent sizes. Inside package geom2d, create a
new file named size.py including the definition in Listing 6-20.

from geom2d.nums import are_close_enough

class Size:
def __init_ (self, width: float, height: float):
self.width = width
self.height = height

def _eq_  (self, other):
if self is other:
return True

if not isinstance(other, Size):
return False

return are close_enough(self.width, other.width) \
and are_close_enough(self.height, other.height)

Listing 6-20: The Size class

Using this representation of a size, let’s create the initial definition of
Rect. Create a new file named rect.py and enter the code in Listing 6-21.

from geom2d.point import Point
from geom2d.size import Size

class Rect:
def _init_ (self, origin: Point, size: Size):
self.origin = origin
self.size = size

@property
def left(self):
return self.origin.x

@property
def right(self):
return self.origin.x + self.size.width

@property
def bottom(self):

return self.origin.y

@property
def top(self):
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return self.origin.y + self.size.height

@property
def area(self):
return self.size.width * self.size.height

@property
def perimeter(self):
return 2 * self.size.width + 2 * self.size.height

Listing 6-21: The Rect class

The class stores a Point instance for the origin point and a Size instance
encoding its width and length. We defined some interesting properties in
the class, namely:

left The x-coordinate of the left-most side of the rectangle

right The x-coordinate of the right-most side of the rectangle

bottom The y-coordinate of the bottom-most side of the rectangle

top The y-coordinate of the top-most side of the rectangle

area The area of the rectangle

perimeter The perimeter of the rectangle

Let’s create one of our rectangles in the shell:

>>> from geom2d.point import Point
>>> from geom2d.size import Size
>>> from geom2d.rect import Rect

>>> origin = Point(10, 20)
>>> size = Size(100, 150)
>>> rect = Rect(origin, size)

And let’s inspect some of its properties:

>>> rect.right
110

>>> rect.area
15000

>>> rect.perimeter
500
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Contains Point

The next logical step is implementing a method to test whether a point is
inside the rectangle. To test whether a point P lies inside a rectangle, we’ll
use the following two conditions:

left < Py < right
bottom < Py < top

Thanks to the attributes we added to the class, this is a piece of cake (see
Listing 6-22).

class Rect:
--snip--

def contains_point(self, point: Point):
return self.left < point.x < self.right \
and self.bottom < point.y < self.top

Listing 6-22: Testing whether a rectangle contains a point

Notice Python’s beautiful syntax for compound inequalities,

left < point.x < right

which in most other languages would have to be expressed as two different
conditions:

left < point.x & point.x < right

Intersections

Suppose we have two rectangles and we want to know if they overlap. Since
Rect represents rectangles with sides that are always horizontal and vertical,
the problem simplifies a lot. Testing whether two Rects overlap is the same
as testing whether their projections in both the x- and y-axes overlap. By pro-
jections, we mean the shadows they cast on the axis lines. Each shadow is an
interval starting in the position of the value of the rectangle’s origin, with a
length that’s either its width or its height (see Figure 6-12).
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Figure 6-12: Projections of a rectangle
For example, the shadow in the horizontal axis of Figure 6-12 can be
represented as the following interval,
(Ox, Ox +w)
where O is the origin point and w is the width of the rectangle. Similarly, the
vertical shadow or projection would be:
(Oy’ Oy + h)

where 4 is the height this time. Note that the result of Oy + w is exactly the
right property as we’ve defined it in our Rect class, and Oy + & is top.

Figure 6-13 depicts two rectangles whose vertical projections overlap but
whose horizontal projections don’t. Thus, the rectangles don’t overlap.

Overlap
@)

No overlap

Figure 6-13: Two nonintersecting rectangles

Figure 6-14, on the other hand, depicts two rectangles with vertical and
horizontal projections that overlap. As you can see, this layout does gener-
ate an overlapping region, shaded in gray. We can observe that overlapping
rectangles always result in rectangular overlapping regions.
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Overlap
O

Overlap

T e EE—

Figure 6-14: Two intersecting rectangles

Using the nomenclature from the previous figures, we can numerically
define the condition using open intervals, intervals where the end points are
excluded. Two rectangles overlap if

(O1x, O1x +wy) N (Ogy, Ogy +w3)
—~ ———— T

left right left right

( O1y , 01+ k)N ( Ogy ,Ogy +hg)
o N—— N~ N——
bottom top bottom top

where M is the intersection binary operator.

Open Intervals

Now that we’ve reduced the problem to computing the intersection between
intervals, let’s create a new class OpenInterval to implement this logic. Note
that writing the implementation of the algorithm to find the intersection
between two intervals inside the Rect class would be conceptually wrong.
Each class must only contain logic related to its domain of knowledge, and
it seems obvious that interval intersection is not specifically about rectan-
gles. A rectangle should know nothing about how the intersection of two
intervals is performed; it’s not part of its domain of knowledge. If it needs
to compute one, like in our case, it should delegate it to the subject’s expert:
OpenRange.

If you respect this simple guideline, your code will be much easier to
reason about and extend. Every piece of knowledge in your code should
live exactly where it’s supposed to, and only there. One of the worst ene-
mies of software is knowledge duplication, a phenomenon where one piece
of knowledge (call it an algorithm if you prefer) is written in more than one
place. When the core of such logic needs to change, you need to remember
to change it everywhere. Trust me when I say this problem is much worse
than it sounds.

Most authors use the phrase duplication of code, but I prefer to call it duplication of
knowledge. The choice of words is intentional as I've noticed some developers tend
to misinterpret the concept, probably because the word code is quite generic. It’s the
knowledge expressed by the code that should not be duplicated.



Create a new file named open_interval.py in geom2d, and inside, define

the OpenInterval class as in Listing 6-23.

class OpenInterval:
def __init_ (self, start: float, end: float):
if start > end:
raise ValueError('start should be smaller than end')
self.start = start
self.end = end

@property
def length(self):
@ return self.end - self.start

def contains(self, value):
® return self.start < value < self.end

Listing 6-23: The OpenInterval class

An OpenInterval is created with start and end properties. We make sure

that start is smaller than end; otherwise, we raise a ValueError exception. Re-
call our failing fast convention; we don’t want an ill-constructed interval ly-
ing around. Next, we define the length of the interval as a property @ and a

method to test whether a given value is inside the range @.

Let’s now include two more methods: one for checking whether inter-
vals overlap and another one for actually computing the resulting overlap

(see Listing 6-24).

from geom2d.nums import are_close_enough

class OpenInterval:
--snip--

def overlaps_interval(self, other):
@ if are_close_enough(self.start, other.start) and \
are_close_enough(self.end, other.end):
return True

O return self.contains(other.start) \
or self.contains(other.end) \
or other.contains(self.start) \
or other.contains(self.end)

def compute_overlap with(self, other):
® if not self.overlaps_interval(other):

return None

® return OpenInterval(
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max(self.start, other.start),
min(self.end, other.end)

)
Listing 6-24: Open interval overlapping

The first method, overlaps_interval, returns a boolean that will be True if
the interval overlaps with other passed as an argument. To do this, we first
check whether the two intervals have the same start and end values @, in
which case we return True. Then we check whether any of the four ends is
contained in the other interval @. If you’re confused by this piece of logic,
take a pen and some paper and draw every possible combination of two
overlapping intervals (I've done this for you in Figure 6-15, excluding the
case where the two intervals have the same start and end values).

S ! E ] Sl E ! Sl E ]
Oo—0 O——0 O——"°0
o——0 o———0 o————0
52 E2 SZ E2 52 E2
S ! E ] 57 E ] S ! E ]
Oo—0 o——O0 o———O0
o—————0 o—0 o————0
52 E2 52 E2 SZ E2

Figure 6-15: The possible cases for interval positions

The second method, compute_overlap_with, starts by making sure there’s
actually an overlap, returning None if there isn’t ®. The overlap is simply a
new interval where the start is the maximum between both start values, and
the end is the minimum between the two end values @.

I encourage you to write unit tests for this overlapping logic. It’s a won-
derful opportunity to develop your testing skills. There are a bunch of com-
binations of overlapping intervals; try to cover them all.

Computing Intersections

With the help of OpenInterval, rectangle intersections become simple to solve.
Go back to rect.py and import the OpenInterval class:

from geom2d.open_interval import OpenInterval

Now, underneath the contains_point method, enter the code from List-
ing 6-25.

from geom2d.open_interval import OpenInterval
from geom2d.point import Point
from geom2d.size import Size

class Rect:



--snip--

def intersection with(self, other):
@ h overlap = self. horizontal overlap with(other)
if h_overlap is None:
return None

® v overlap = self. vertical overlap with(other)
if v_overlap is None:
return None

® return Rect(
Point(h_overlap.start, v_overlap.start),
Size(h_overlap.length, v_overlap.length)

)

Listing 6-25: Intersection between two rectangles

There are two private helper methods that compute both the horizontal
and vertical overlaps; we’ll take a look at those in a moment. The method
first computes the horizontal overlap between self and other @. If it finds it
to be None, there’s no horizontal overlap; therefore, the rectangles don’t in-
tersect. None is returned. The same procedure goes for the vertical overlap .
Only if both are not None, which means we found both horizontal and verti-
cal projections overlapping, will we reach the last return where the resulting
rectangle is computed ®. How do we go about finding the origin and size of
such a rectangle? It’s easy: the origin coordinates are the start values from
both horizontal and vertical overlap intervals, the width is the length of the
horizontal overlap, and the height is the length of the vertical overlap.

So, the only missing part is the implementation of the private meth-
ods that finds the horizontal and vertical interval overlaps, if they exist. The
code for that is in Listing 6-26.

class Rect:
--snip--

def _ horizontal overlap with(self, other):
self interval = Openlnterval(self.left, self.right)
other_interval = OpenInterval(other.left, other.right)
return self interval.compute_overlap with(other_ interval)
def _vertical overlap with(self, other):
self interval = OpenInterval(self.bottom, self.top)

other_interval = OpenInterval(other.bottom, other.top)

return self interval.compute overlap with(other interval)

Listing 6-26: Intersection private methods

Polygons 163



164

Chapter 6

Let’s now take a look at how to build a generic polygon based on the
rectangle.

Convert to Polygon

As with circles, applying an affine transformation to a rectangle may result
in some nonrectangular shape. In fact, after a generic affine transformation,
a rectangle gets transformed into a parallelogram, as depicted in Figure 6-16,
and these shapes can’t be described by our Rect class.

Figure 6-16: A rectangle after an affine
transformation

Implementing a method to create a polygon from a rectangle is straight-
forward, as the vertices of such polygons are the four corners of the rectan-
gle. In Rect class, add the method in Listing 6-27. Don’t forget to import the
Polygon class.

from geom2d.open_interval import OpenInterval
from geom2d.point import Point

from geom2d.polygon import Polygon

from geom2d.size import Size

class Rect:
--snip--

def to_polygon(self):
return Polygon([
self.origin,
Point(self.right, self.bottom),
Point(self.right, self.top),
Point(self.left, self.top)
D

Listing 6-27: Creating a polygon from a rectangle

Needless to say, vertices should be given in order, clockwise or counter-
clockwise, but respecting the order nevertheless. It’s really easy to mess up



the order of vertices and end up with crossing sides. To make sure this never
happens, we should write a test, which is left for you as an exercise.

Equality

You're already an expert at implementing _ eq__ methods, aren’t you?
Listing 6-28 shows the code for it.

class Rect:
--snip--

def _eq_ (self, other):
if self is other:
return True

if not isinstance(other, Rect):
return False

return self.origin == other.origin \
and self.size == other.size

Listing 6-28: Rectangle equality

The only thing to note is that we were able to directly compare sizes us-
ing == because we also implemented __eq__ on class Size.

Note that implementing __eq__ in Rect like are_close_enough(self.size.width,
other.size.width) ... would not be ideal. Remember the law of Demeter?
That knowledge belongs to class Size and should be implemented there and
only there.

For reference, Listing 6-29 shows how your rect.py file should look.

from geom2d.open_interval import OpenInterval
from geom2d.point import Point

from geom2d.polygon import Polygon

from geom2d.size import Size

class Rect:
def _init_ (self, origin: Point, size: Size):
self.origin = origin
self.size = size
@property
def left(self):

return self.origin.x

@property
def right(self):
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return self.origin.x + self.size.width

@property

def

bottom(self):
return self.origin.y

@property

def

top(self):
return self.origin.y + self.size.height

@property

def

area(self):
return self.size.width * self.size.height

@property

def

def

def

def

def

perimeter(self):
return 2 * self.size.width + 2 * self.size.height

contains_point(self, point: Point):
return self.left < point.x < self.right \
and self.bottom < point.y < self.top

intersection_with(self, other):
h _overlap = self. horizontal overlap with(other)
if h_overlap is None:

return None

v_overlap = self. vertical overlap with(other)
if v_overlap is None:
return None

return Rect(
Point(h_overlap.start, v_overlap.start),
Size(h_overlap.length, v_overlap.length)

__horizontal overlap with(self, other):
self _interval = OpenInterval(self.left, self.right)
other_interval = OpenInterval(other.left, other.right)

return self interval.compute overlap with(other interval)

_ vertical overlap_with(self, other):

self_interval = OpenInterval(self.bottom, self.top)
other_interval = OpenInterval(other.bottom, other.top)

return self interval.compute overlap with(other interval)



def to_polygon(self):
return Polygon([
self.origin,
Point(self.right, self.bottom),
Point(self.right, self.top),
Point(self.left, self.top)

D

def _eq_ (self, other):
if self is other:
return True

if not isinstance(other, Rect):
return False

return self.origin == other.origin \
and self.size == other.size

Listing 6-29: The Rect implementation

Rectangle Factories

We'll often use rectangles to approximate the outside bounds of a set of
geometries. In future chapters of the book, for example, we’ll be generat-
ing diagrams as part of the solution for mechanics problems. To fit the di-
agrams inside an image of the right size, we’ll create a rectangle that can
contain everything. To do this, we’ll create a factory function that returns
a rectangle that contains a given list of points.

For example, if we’re given the list of points [A, B, C, D, E], the rectangle
will look like the left illustration from Figure 6-17. We’ll also need another
factory function that does something similar but also adds some margin to
the rectangle.

o [¢]
D D
OA oC 0A oC
Eo Eo

o8B oB
Margin j
Figure 6-17: A rectangle containing points

Inside package geom2d, create a new file and name it rects.py. Add the
first factory function (in Listing 6-30).

from geom2d.point import Point
from geom2d.rect import Rect
from geom2d.size import Size
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def make_rect_containing(points: [Point]):
@ if not points:
raise ValueError('Expected at least one point')

first_point = points[0]
® min_x, max_x = first point.x, first point.x
® nmin y, max y = first point.y, first point.y

for point in points[1:]:
® nin_x, max_x = min(min_x, point.x), max(max_x, point.x)
® nmin_y, max_y = min(min_y, point.y), max(max_y, point.y)

® return Rect(
Point(min_x, min_y),
Size(max_x - min_x, max_y - min_x)

)

Listing 6-30: Creating a rectangle containing a list of points

The first step is checking that the list points contains at least one
point @. You may be surprised about the syntax; the trick here is that
Python evaluates empty lists as False in boolean contexts. In fact, that’s
a Pythonic idiom used to check whether a list is empty.

Next, we need to look for the bounds of the rectangle: the minimum
and maximum x and y projections. Four variables store those values & @
initialized with the coordinates of the first point in the list. Then we iterate
through all points except for this first one, as it was already used to initialize
the aforementioned variables. To avoid passing through the first point, we
slice the points list starting at index 1 and going all the way to the end of the
list: points[1:]. (You can refer to “Lists” on page 15 for a refresher on slicing
lists.) For each point, the minimum and maximum x @ and y ® projections
are compared to the values currently stored.

Once we have these four values, we construct the resulting
rectangle ® using the minimum x and y projections for the origin and the
difference between each maximum and minimum for the size.

Let’s now implement a similar function with the addition of a margin
around the points. After make_rect_containing, enter the code in Listing 6-31.

--snip--

def make_rect_containing with_margin(points: [Point], margin: float):
O rect = make_rect containing(points)
return Rect(
A Point(
rect.origin.x - margin,
rect.origin.y - margin
))
® Size(



2 * margin + rect.size.width,
2 * margin + rect.size.height

)

Listing 6-31: Creating a rectangle containing a list of points and a given margin

This function starts with a rectangle computed by the previous func-
tion @. The new rectangle is then computed by displacing rect’s origin by
the width of the margin to the left and downward @ and increasing the size
by two times the width of the margin ®. Recall that the margin is added to
the left and to the right, which is why we add it twice to the width—the same
goes for the height.

There’s one last way we may want to build a rectangle: using its cen-
ter and size. The implementation is straightforward, as you can see in Lis-
ting 6-32.

--snip--

def make_rect_centered(center: Point, width: float, height: float):
origin = Point(
center.x - width / 2,
center.y - height / 2

)
return Rect(origin, Size(width, height))

Listing 6-32: Creating a rectangle given its center and size

With these three factory methods we have convenient ways of creating
rectangles. We’'ll be using these in further chapters, so we want to make sure
they yield the expected rectangle with some automated unit tests. I'll leave
this as an exercise for you. You'll find the tests I wrote in rects_test.py in the
source code accompanying the book.

Summary

We started the chapter implementing a generic polygon, described by a se-
quence of at least three vertices. We wrote an algorithm to pair sequences of
objects such that the last and first elements are also paired up and used this
logic to generate the sides of the polygon. We also implemented the winding
number algorithm to check whether the polygon contains a point.

The second geometric primitive we created in this chapter was the cir-
cle. As you saw, checking whether a point is inside a circle was much sim-
pler to implement than in the case of generic polygons. We came up with
a way of constructing a generic polygon that approximates the geometry of
the circle using a given number of divisions or sides. We’ll make use of this
method in the next chapter.

Lastly, we implemented a rectangle. To compute intersection between
rectangles, we needed a way of figuring out the overlap between two inter-
vals; thus, we created an abstraction of an open interval to handle this logic.
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Our geometry library is almost complete. We have all the primitives that
we need for the book; the only thing missing is a way of transforming them,
which is the topic of the next chapter.
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AFFINE TRANSFORMATIONS

If I had to choose my favorite topic from
this book, it would be affine transforma-
tions. There’s something oddly beautiful
about affine transformations, as you’ll see for
yourself in Chapter 12 when we animate them.

Affine transformations are crucial to 2D graphic applications; they de-
termine how to pan, zoom, and rotate what you see on the screen. If you’ve
used AutoCAD, you’re pretty much used to zooming in to a portion of the
drawing, which is done with an affine transformation. Whenever you scale
and rotate your pics in Instagram, an affine transformation does the trick.
Mastering this topic is essential for writing any piece of software involving
graphics, even more so for those where the user is allowed to interact with
them.

The math behind affine transformations is quite simple, yet the con-
cept is stunningly powerful. By the end of this chapter, you’ll have a class
representing these transformations with methods to apply them to geomet-
ric primitives. We’ll also learn how to combine transformations to compute
compound transformations and take a look at some useful transformations,
such as one that zooms a drawing around a concrete point.
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Since affine transformations apply to affine spaces, let’s first try to under-
stand what an affine space is. You can think of an affine space as being a vec-
tor space where the origin point can be moved around. The linear transfor-
mations used in vector spaces preserve the position of the space’s origin,
whereas in an affine space, as we stop caring about a fixed origin, transla-
tions are allowed.

An affine transformation, then, is a mapping between two affine spaces
that preserves points, straight lines, and planes. Points after an affine trans-
formation stay as points, straight lines continue to be straight, and planes re-
main plane. One interesting property of these transformations is that paral-
lelism between lines is preserved. We’ll see this in action in Chapter 12 when
we animate affine transformations. In that exercise, we’ll see how the sides
of polygons that were originally parallel remain parallel during the whole
simulation.

Affine transformations are similar to linear transformations. The only dif-
ference is that the latter preserves the origin; that is, the point (0, 0) doesn’t
move. Affine transformations can alter the position of the origin. Figure 7-1
depicts both a linear transformation and an affine transformation.

’

x’ y

o

Linear transformation Affine transformation
Figure 7-1: Linear versus affine transformation

Each pair of axes x,y in Figure 7-1 shows how the space was before
the transformation; each «, y' pair shows what the space looks like after the
transformation. In the case of the linear transformation, the origin of coor-
dinates O is preserved; the affine transformation, in addition to scaling and
rotating the axes, translated the origin O to 0.

Given a point P, we can define an affine transformation using the
expression

P =[MP+7

where M is a linear transformation, 7 is a translation vector, and P is the re-
sulting point after applying the transformation. An affine transformation is
thus a linear transformation M plus a translation 7. This expression can be
written with all its terms as shown in Equation 7.1.

v ) ) s

= 7.1
<y’ shy sy y by (7-1)
—_—— ———— —— ——

P [M] P 7



The linear transformation matrix M has the items

Sx Scale in the x direction
sy Scale in the y direction
shy Shear in the x direction

shy Shear in the y direction
and the translation 7 has the terms

ty Translation in the x direction

by Translation in the y direction

Equation 7.2 shows an equivalent form using what is known as the aug-
mented matrix.

x sy Shy ity
Yol =shy sy 4y y (7.2)
1 0 0 1 1

This version reduces the transformation to one matrix multiplication
by extending the size of the input and output vectors, appending a 1, which
serves as an auxiliary value and can be discarded once the transformation
has taken place. It’s usually preferred as it requires only one step compared
to the extra addition involved in the former. You can observe how in both
cases, Equations 7.1 and 7.2, the resulting coordinates are as shown in Equa-
tion 7.3.

x’=sx~x+shx~y+tx (7.3)
Y =shy - x+sy -+ '
Each of the values in the matrix from Equation 7.2 contributes differ-
ently in the transformation process. Figure 7-2 showcases the transformation
that each of the components produces. A generic affine transformation is
therefore a combination of those unitary transformations.

] _—
)

Scale X Scale Y Shear X Shear Y

Translate X Translate Y Rotate
Figure 7-2: Components of affine transformations
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There is a special affine transformation that maps each point to itself,
the identity transformation.

1 0 0
01 0
0 0 1

As you can observe, this is an identity matrix: whatever point you multi-
ply this matrix by will stay the same.

Examples of Affine Transformations

Let’s look at a few examples of affine transformations in action. For this sec-
tion, leave your computer aside and take out your pen and paper. If you can
work through the operations to transform spaces using affine transforma-
tions by hand, coding them will be straightforward.

Example 1: Scaling

Given a point (2, 3), what point results after applying a horizontal scale of 2
and a vertical scale of 5?

In this case, the terms in the affine transformation matrix are all zero
except for sy = 2 and sy = 5. Plugging these values into Equation 7.2, we get
the following:

¥ 2.0 0] /2 4
y |=10o 5 0ol 3]|=] 15
1 00 1| \1 1

The resulting point is therefore (4, 15). Figure 7-3 depicts this transfor-
mation’s effect on the point.

Scale (2, 5)

o(4, 15)

(2, 3)

Figure 7-3: Example of a scale
transformation



Example 2: Scaling and Translating
Given a point (2, 3), what point results after applying a horizontal scale of 2,
vertical scale of 5, and translation of (10, 15)?

This case has the same values for the scale as the previous one, plus a
displacement vector. Let’s plug those values into our affine transformation
equation:

¥ 2 0 10] /2 14
y =10 5 15/ 3 |={ 30
1 00 1]\1 1

This time, the resulting point is (14, 30). We’ll take a look at this later,
but it’s interesting to note how we could achieve the same effect with two
sequential affine transformations, the first one scaling the point and the
second one translating it:

%! 1 0 10 2 0 0 2 14
y’ =10 1 15 0 5 0 3 = 30
1 0 0 1 0 0 1 1 1

translation scale

Note that transformations are applied from right to left. In the previous
case, the scaling goes first and then the translation. If you were to switch
the order of transformations, the result would be different, which we can
check by multiplying both transformation matrices in both directions and
comparing the results. This yields our original matrix:

1 0 10112 0 O 2 0 10
0 1 15110 5 0]=1]0 5 15
0 0 1 0 0 1 0 0 1
translation scale
But switching the order yields:
2 0 0|1 0 10 2 0 20
0 5 0|0 1 15(=(0 5 75
0 0 1|0 0 1 0 0 1
scale translation

Figure 7-4 depicts the effect of applying the scale first and then the
translation.
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Scale (2,5) + Translate (10, 15)

o(14, 30)

(2,3)

Figure 7-4: A scale plus a translation

Example 3: Vertical Reflection

Reflections can be achieved by using affine transformations with negative
scale values. To reflect a point (2, 3) in the vertical direction, use sy = -1:

¥ 1 0 0] /2 2
y =10 -1 ol 3 ]|=]-3
1 0 0 1| \1 1

This yields the vertical reflection of the original point: (2, -3). Figure 7-5
represents this vertical reflection.

Scale (1, -1)

(2,3)

(2, -3)

Figure 7-5: An example
of a vertical reflection

Example 4: Horizontal Shear
What is the result of applying a horizontal shear of sk, = 2 to a rectangle with
its lower-left point located at the origin, a width of 10 units, and a height of 5
units?

This time we’ll have to apply the same transformation to all four vertices
of the rectangle: (0, 0), (10, 0), (10, 5), and (0, 5). The affine transformation
matrix is then as follows:

S O -
S = N
—_— o O



Using Equation 7.2 with this matrix to transform the vertices yields the
following: (0, 0), (10, 0), (20, 5), and (10, 5). Draw the resulting rectangle. It
should look something like Figure 7-6.

Shear (2,0)

(10, 5) (20, 5)

Figure 7-6: An example of a shear

The Affine Transformation Class

Without further ado, let’s create a new class to represent affine transforma-
tions. We want to use a class so that the transformation scale, translation,
and shear values are part of its inner state and don’t need to be passed to
every transformation method we use. If we used functions to transform ge-
ometric primitives instead, we’d need to pass all these values to every func-
tion, but that would be a lot of parameters.

In the geom2d package, create a new file named affine_transf.py and enter
the code in Listing 7-1.

class AffineTransform:
def _init_ (self, sx=1, sy=1, tx=0, ty=0, shx=0, shy=0):
self.sx = sx

self.sy = sy
self.tx = tx
self.ty = ty

self.shx = shx
self.shy = shy

Listing 7-1: The AffineTransform class

The affine transformation stores values for the scales s, and Sys the trans-
lations ¢, and ¢y, and the shears shy and shy. All values are given a default
value of zero, except for the scales, which are initialized to one, in case they
are omitted in the initializer. This is for convenience, as we’ll create many
transformations where the shear or translation values are zero.

With these values at hand we can already implement a method to apply
the transformation to a point with the help of Equation 7.3. Enter the code
in Listing 7-2.

from geom2d.point import Point

class AffineTransform:
--snip--
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def apply_to_point(self, point: Point):
return Point(
(self.sx * point.x) + (self.shx * point.y) + self.tx,
(self.shy * point.x) + (self.sy * point.y) + self.ty

)

Listing 7-2: Applying an affine transformation to a point

To apply the affine transformation to a point, we create a new Point
where the projections are calculated using Equation 7.3. Let’s test this method
using several different transformations.

Testing the Transformation of Points

Create a new file in the geom2d package named affine_transf_test.py and enter
the code in Listing 7-3.

import unittest

from geom2d.point import Point
from geom2d.affine_transf import AffineTransform

class TestAffineTransform(unittest.TestCase):
point = Point(2, 3)
scale = AffineTransform(2, 5)
trans = AffineTransform(1, 1, 10, 15)
shear = AffineTransform(1, 1, 0, 0, 3, 4)

O def test_scale_point(self):
expected = Point(4, 15)
actual = self.scale.apply to_point(self.point)
self.assertEqual(expected, actual)

O def test_translate_point(self):
expected = Point(12, 18)
actual = self.trans.apply to point(self.point)
self.assertEqual(expected, actual)

® def test_shear_point(self):
expected = Point(11, 11)
actual = self.shear.apply to_point(self.point)
self.assertEqual(expected, actual)

Listing 7-3: Testing the affine transformation application
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The test file contains the TestAffineTransform class, inheriting from
unittest.TestCase as usual. Inside the class we define a point that is used in
all tests as well as all three affine transformations, namely:

scale A scaling transformation

trans A translation transformation

shear A shear transformation

Then we have our first test ensure the scale is correctly applied to the
point @. The second test applies the translation to the point and asserts that

the result is as expected @. The third does the same with the shear transfor-
mation ©. Run the tests. You can do so from the shell:

$ python3 -m unittest geom2d/affine_transf_test.py

This should produce the following:

Ran 3 tests in 0.001s

0K

Great! Now that we’re confident we’re correctly applying affine transfor-
mations to points, let’s extend the logic to other more complex primitives.

Transform Segments and Polygons

We can harness the implementation for transforming Points to transform
any shape as long as it’s defined using points or vectors. The next logical
step is implementing the transformation of segments, so after the apply_to
_point method, enter the method in Listing 7-4.

from geom2d.segment import Segment
from geom2d.point import Point

class AffineTransform:
--snip--

def apply_to_segment(self, segment: Segment):
return Segment(
self.apply to_point(segment.start),
self.apply to point(segment.end)

)

Listing 7-4: Applying affine transformations to segments
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That was easy, wasn’t it? To transform a segment, we simply create a new
segment with both end points transformed using the previous method. We
can apply a similar logic to polygons (in Listing 7-5).

from geom2d.polygon import Polygon
from geom2d.segment import Segment
from geom2d.point import Point

class AffineTransform:
--snip--

def apply_to_polygon(self, polygon: Polygon):
return Polygon(
[self.apply to_point(v) for v in polygon.vertices]

)

Listing 7-5: Applying affine transformations to polygons

In this case, we return a new polygon where all vertices have been trans-
formed. What about rectangles and circles? The idea is similar, with a caveat:
after scaling, shearing, and rotating these primitives, the results may no
longer be rectangles or circles. This is why, in the previous chapter, we pro-
vided Rect and Circle with a method to_polygon that creates a generic polygon
representation for the primitive. The code is therefore quite simple. Enter
the code from Listing 7-6:

from geom2d.rect import Rect

from geom2d.circle import Circle
from geom2d.polygon import Polygon
from geom2d.segment import Segment
from geom2d.point import Point

class AffineTransform:
--snip--

def apply to rect(self, rect: Rect):
return self.apply to_polygon(
rect.to_polygon()

)

def apply_to _circle(self, circle: Circle, divisions=30):
return self.apply to_polygon(
circle.to_polygon(divisions)

)

Listing 7-6: Applying affine transformations fo rectangles and circles
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The procedure consists of obtaining the polygon representation of the
rectangle or circle and delegating the rest of the process to apply to_polygon.
In the case of circles, the number of divisions must be chosen, which is given
a value of 30 by default. Both methods return a Polygon instance, even if the
affine transformation being applied is the identity, which wouldn’t trans-
form the geometries at all. Once a rectangle or a circle goes through an
affine transformation, it turns into a generic polygon, no matter what
transformation.

We won’t do so here for space reasons, but feel free to add unit tests for
these three new methods.

Concatenating Transformations

One interesting property of affine transformations is that any complex trans-
formation can be expressed as a sequence of simpler transformations. In
fact, when you work with a 2D graphics application such as Sketch or Photo-
shop, every zoom or pan on the canvas is a combination, or concatenation,
of a new affine transformation with the current one, which defines the pro-
jection of what you see on your screen at that particular moment.

Given two affine transformations [7] and [T9] and input point P, the
result of applying [7] to the point is as follows:

P =[Ty]P

Then, applying the second transformation [79] to the previous result, we get
this:

P'=[Ts]P

If we substitute P’ from the first expression into the second, we obtain the
result of applying both transformations to input point P (Equation 7.4),

P! = [To)(T11P) = [To][T1] P (7.4)
(7]

where [75] is the affine transformation equivalent to applying [77] first and
[T9] second. Notice how the order of the original transformations appears
in reverse if you read from left to right?

[T7] = [T2][T1]

In the previous equation, reading from left to right [T9] appears first,
but the effect of applying [7;] is equivalent to applying [T7] first and [T9]
second. We need to be careful with the order, as matrix multiplication is
noncommutative. If we swap the order of the operands, we obtain a differ-
ent transformation, which was already proved in a previous exercise. The
resulting transformation is then expressed mathematically as the product of
matrices (see Equation 7.5).
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Sx2 Shag o Sx1 Shyl U
[T7] = [Tol[T1] = |shy2  sy2 Lo - [shyt  sy10 1ty
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(7.5)

Let’s provide the AffineTransform class with a method to concatenate
affine transformations using Equation 7.5. We’ll call the method then(),
receiving parameters self and other. The first argument, self, is transfor-
mation [77], and other is [T9]. Inside affine_transf.py, toward the end of the
class, enter the code in Listing 7-7.

class AffineTransform:
--snip--

def then(self, other):

return AffineTransform(
sx=other.sx * self.sx + other.shx * self.shy,
sy=other.shy * self.shx + other.sy * self.sy,
tx=other.sx * self.tx + other.shx * self.ty + other.tx,
ty=other.shy * self.tx + other.sy * self.ty + other.ty,
shx=other.sx * self.shx + other.shx * self.sy,
shy=other.shy * self.sx + other.sy * self.shy

)

Listing 7-7: Method to concatenate transformations

The name then is chosen so that it’s absolutely clear that self is applied
before other (the method’s argument).

Since this is such an important method, we’ll want it covered by
unit tests; that means we need a way of knowing whether two given affine
transformations are equal. Let’s implement the special __eq_ method in
AffineTransform (Listing 7-8).

from geom2d.nums import are_close_enough
from geom2d.rect import Rect

from geom2d.circle import Circle

from geom2d.polygon import Polygon

from geom2d.segment import Segment

from geom2d.point import Point

class AffineTransform:
--snip--

def __eq_ (self, other):



if self is other:
return True

if not isinstance(other, AffineTransform):
return False

return are_close_enough(self.sx, other.sx) \
and are_close_enough(self.sy, other.sy) \
and are_close_enough(self.tx, other.tx) \
and are_close_enough(self.ty, other.ty) \
and are_close_enough(self.shx, other.shx) \
and are_close_enough(self.shy, other.shy)

Listing 7-8: Checking affine transformation equality

Testing the Concatenation of Transformations

Let’s now enter two new tests in affine_transf test.py; both are listed in List-
ing 7-9.

class TestAffineTransform(unittest.TestCase):
--snip--

def test concatenate_scale then translate(self):
expected = AffineTransform(2, 5, 10, 15)
actual = self.scale.then(self.trans)
self.assertEqual(expected, actual)

def test concatenate_translate then scale(self):
expected = AffineTransform(2, 5, 20, 75)
actual = self.trans.then(self.scale)
self.assertEqual(expected, actual)

Listing 7-9: Testing affine transformation concatenation

As you’ve probably realized, these two tests are repeating the operations
we did by hand in one of the exercises at the beginning of the chapter. Run
them to make sure you have the implementation of then right.

$ python3 -m unittest geom2d/affine_transf_test.py

There is a lot of adding and multiplying between self and other, so it’s
easy to get the code wrong. If the tests aren’t passing, well, that means they’re
doing their work by pointing out that something in the code is not right. Go
back to your implementation and make sure you have everything right line
by line.
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Inverting Affine Transformations

To undo a transformation or apply the inverse of a known transformation
[T], we want to be able to compute a transformation [77] such that

[(T)[T7] = [T7][T] = [1]

where [I] is the identity matrix of size 3:

100
m=10 1 0
0 0 1

An interesting property of these pairs of transformations [77] and [77] is
that they cancel each other out. For example, here is the result of applying
the transformations one after the other (in whichever order) to a point P

[T7)([T1P) = ([T7][T)HP = [11P = P

Another reason the inverse affine transformation is interesting is that
it maps a point on the screen back to our “model space,” that is, the affine
space where our model is defined. The direct transformation is used to
compute how the geometry is projected onto the screen, that is, where each
point of the model needs to be drawn—but what about the other way around?
Knowing where a given point on the screen lies in the model requires the in-
verse transformation, the one that transforms the “screen space” into the
model space. This is useful, for example, when trying to figure out whether
the user’s mouse pointer on the screen maps to something in the model that
could potentially be selected.

Take a look at Figure 7-7. There’s our model space with just a trian-
gle defined in it. To draw the model to the user’s screen, we have to ap-
ply an affine transformation that projects every point from model space to
screen space. Now imagine the user has the mouse at point P on the screen,
and we want to know whether that point lies inside our triangle. Since the
triangle is a geometry defined in the model space, we want to apply that
point in the screen the inverse transformation: that which transforms screen
space into model space. Recall that, to project our model geometry into the
screen, we applied the direct affine transformation, so to map that geometry
back into its original model space, the inverse of that transformation needs
to be applied. With the point mapped to our model space (P), we can do the
calculations to determine whether P is inside the triangle.



Screen space

Model space

Figure 7-7: Model and screen spaces

You can try to compute the inverse affine transformation matrix by
yourself, which is a great exercise, but inverting matrices by hand is a tedious
task, so Equation 7.6 shows the result.

1 Sy —shy tyshx = Sylx
[T7] = — 7 —shy  sx Lxshy = sxly (7.6)
SxSy = shxshy 0 0 sxsy — shashy

Using the transformation from Equation 7.6, computing the inverse re-
quires only a few lines of code. In AffineTransform and after then, enter the
code in Listing 7-10.

class AffineTransform:
--snip--

def inverse(self):

denom = self.sx * self.sy - self.shx * self.shy

return AffineTransform(
sx=self.sy / denom,
sy=self.sx / denom,
tx=(self.ty * self.shx - self.sy * self.tx) / denom,
ty=(self.tx * self.shy - self.sx * self.ty) / denom,
shx=-self.shx / denom,
shy=-self.shy / denom

)

Listing 7-10: Inverse affine transformation
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Let’s also add a test to make sure the inverse is properly computed. In
affine_transf_test.py, add a new method to class TestAffineTransform with the
test in Listing 7-11.

class TestAffineTransform(unittest.TestCase):
--snip--

def test_inverse(self):
transf = AffineTransform(1, 2, 3, 4, 5, 6)
expected = AffineTransform()
actual = transf.then(transf.inverse())
self.assertEqual(expected, actual)

Listing 7-11: Testing the inverse affine transformation

In this test, we create a new affine transformation, transf, with all val-
ues set to nonzero values. Then we store the transformation result of con-
catenating transf and its inverse in actual, which, if you recall, should be the
identity matrix if the inverse is properly constructed. Lastly, we compare
the obtained result with the actual identity matrix. Run all tests in the file to
make sure they succeed.

$ python3 -m unittest geom2d/affine_transf_test.py

Let’s try an example. We’ll apply a translation to a point and then apply
the inverse translation to the resulting point, which should yield the original
point. In the Python shell, write the following:

>>> from geom2d.affine_transf import AffineTransform
>>> from geom2d.point import Point

>>> trans = AffineTransform(tx=10, ty=20)

>>> original = Point(5, 7)

We know if we apply the (10, 20) translation to point (5, 7), the resulting
point should be (15,27). Let’s test it.

>>> translated = trans.apply_to_point(original)
>>> str(translated)
'(15, 27)°

Using the str function, we get the string representation of translated,
the point after applying the translation. Let’s now apply the inverse transla-
tion transformation to that point.

>>> inverse = trans.inverse().apply_to_point(translated)
>>> str(inverse)
'(5.0, 7.0)"




Applying the inverse transformation to the translated point yields the
original point, as expected.

Scaling

Whenever you zoom in or out using a graphics application such as Auto-
CAD or Illustrator, a scaling affine transformation is applied to the geomet-
ric model so that it’s drawn on your screen with a different size than the real
one. Architects draw blueprints for buildings hundreds of meters tall that
need to fit inside a laptop screen a few inches wide. Inside the computer’s
memory lives the geometric model with the real dimensions, but to draw it
to the screen, a scale is applied: a scaling affine transformation.

To get a visual intuition of what happens in this kind of affine transfor-
mation, let’s look at Figure 7-8. Given a point P, let’s imagine a vector ¥ start-
ing at the origin and with its tip on P. Applying scales S, and Sy to point P

transforms it into a point P whose vector ¢’ horizontal projection is Sy - vy
and vertical projection is Sy - vy. As you see, a scale is a measure of how far or
close points get to the origin with respect to their original distance to it. The
origin, in fact, doesn’t move with pure scaling transformations. Scales with
absolute value smaller than the unit pull points closer to the origin, whereas
scales greater than one push points away from it.

Y

Figure 7-8: A scale affine transformation

This is useful, but often we want to apply a scale with respect to a point
other than the origin. Imagine, for example, working with AutoCAD and
wanting to zoom in to the drawing. If instead of zooming in around the cen-
ter of your screen or mouse position it zoomed with respect to the origin (as-
suming it’s located in the lower-left corner of the app’s window), you’d feel
like the drawing moved away, as depicted in the left diagram of Figure 7-9.
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Figure 7-9: Zooming in around the origin (left] and around the center of the screen (right)

You’re probably much more used to a zoom in function that scales the
drawing around a point somewhere in the middle of your screen, or even
the position of your mouse as it actually happens most of the time. Many
graphic design programs work like this, and it makes things more conve-
nient for the user, but the way we defined a pure scaling transformation, it
can only happen with respect to the origin. So, how is this scaling around an
arbitrary point achieved? Well, now that we know about constructing com-
pound transformations, obtaining this transformation is actually a piece of
cake.

NOTE 1t took me quite some time to fully understand how to use affine transformations

effectively and how to create compound transformations out of simpler ones. I had

a really hard time trying to implement a proper “zoom in” option in my software
InkStructure, and that’s why the original versions felt a bit buggy when trying to
zoom in to the drawing and not have it randomly move around the screen. So when I
say “a piece of cake,” I should probably qualify: it becomes easy only once you under-
stand affine transformations.

Let’s quickly state the problem we want to solve: we want to find an
affine transformation that applies scales Sy and Sy with respect to a center
point C. Defining O as the origin of the coordinate system, we can build
such a transformation by combining the following simpler transformations:

1. [T7]: Translate so that C coincides with the origin O (¢ (= Co =
(=Cx,=Gy)).

2. [Tq]: Scale with factors Sy and S,.

3. [T3]: Translate C back to where it was (t’ 0C = (Cy, Gy)).

Since scales can be applied only with respect to the origin, we move the
whole space so that our point C lies exactly on the origin, and then we apply
the scale and translate things back to where they were initially. Beautiful,
isn’t it? Thus, [7}] can be computed as shown in Equation 7.7.
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1 0 GJ[S 0 0][1 0 -G [Sx 0 Ce(1-S)
[T,1=10 1 ¢ |0 S o[ 0 1 -¢|=|0 8 C1-5)| (7.7)
00 1[lo o0 1[0 0 1 0 0 1

[T5] [T2] [T1]

Let’s create a factory function to generate these kinds of transforma-
tions. Start by creating a new file named affine_transforms.py; in it, enter the
function in Listing 7-12.

from geom2d.affine_transf import AffineTransform
from geom2d.point import Point

def make_scale(sx: float, sy: float , center=Point(0, 0)):
return AffineTransform(
SX=SX,
Sy=sy,
tx=center.x * (1.0 - sx),
ty=center.y * (1.0 - sy)
)

Listing 7-12: Creating a scale transformation

Itis a good idea to add a few test cases checking the behavior of this
function. For brevity, I'll leave that as an exercise for you.

Rotating

Similar to scales, rotations always take place around the origin. Just like be-
fore, by using a clever sequence of transformations, we can produce a rota-
tion around any point we want. You may have rotated a drawing in Sketch,
Illustrator, or a similar application, in which case you’re used to choosing the
rotation pivot, a point around which you then rotate using the square han-
dles, something similar to Figure 7-10.

A~
ﬁ

Figure 7-10: Rotation around the center
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The pivot point can be moved so the rotation happens around a differ-
ent point. For example, moving it near the bottom-left corner of the bound-
ing box, the rotation may look like Figure 7-11.

A

Figure 7-11: Rotation around a corner
Let’s start by learning how to construct a rotation affine transformation
around the origin; this will serve as the basis for constructing a more com-

plex rotation around any point. Equation 7.8 shows how to rotate points
radians around the origin.

cosf -sinf 0
[Tp]= |sinf cos® O (7.8)
0 0 1

With this in mind, let’s find an affine transformation that rotates points
6 radians around a center point C. With O as the origin of the coordinate
system, the transformation is the combination of the following:

1. [T1]: Translate C to the origin O so the rotation center is C (f = CO =
(=Cx, =Gy)).

2. [T9]: Rotate 0 radians.

3. [T3]: Translate C back to where it was (t’ 0C = (Cy, Gy)).

It’s the same algorithm as before, but this time we’ll use a rotation in-
stead of a scale. [7}] is now computed as follows:

1 0 Cy| |cos@ -sinf 0| [1 0 -C,
[T]= |0 1 Cy| [sinf cosf® O |0 1 -Gy
0 0 1 0 0 1110 0 1
[T5] [T2] [T1]

This yields the affine transformation in Equation 7.9.

cosf -sinf Cyx(1-cosb)+Cy-sind
[Ty]= |sinf cosf Cy(1-cost)~-Cy-sinb (7.9)
0 0 1
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Let’s create a new factory function to generate rotations around a center
point. In affine_transforms.py, with the help of Equation 7.9, implement the
new function in Listing 7-13.

import math

from geom2d.affine_transf import AffineTransform
from geom2d.point import Point

--snip--

def make_rotation(radians: float, center=Point(0, 0)):
cos = math.cos(radians)
sin = math.sin(radians)
one_minus_cos = 1.0 - cos

return AffineTransform(
SX=C0s,
sy=cos,
tx=center.x * one_minus_cos + center.y * sin,
ty=center.y * one_minus_cos - center.x * sin,
shx=-sin,
shy=sin

)

Listing 7-13: Creating a rotation transformation

Once again, you want to come up with at least one unit test to make sure
our implementation is bug free.

Let’s give it a try in the shell: let’s create two rotations of 7/4 radians,
one around the origin and another one around the point (10, 10). Then,
we’ll apply both rotations to the point (15, 15) to see where it lands in both
cases. Reload the Python shell and write the following:

>>> from geom2d.affine_transforms import make_rotation
>>> from geom2d.point import Point

>>> import math

>>> point = Point(15, 15)

Let’s now try with the rotation around the origin:

>>> rot_origin = make_rotation(math.pi / 4)
>>> str(rot_origin.apply_to_point(point))
'(1.7763568394002505e-15, 21.213203435596427)"
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The resulting point has an x-coordinate that is effectively zero (note the
exponent e-15) and a y-coordinate of 21.2132. .., which is the length of the
vector going from the origin to the original point (V' 15% + 152 = 21.2132...).

Let’s try the second rotation:

>>> rot_other = make_rotation(math.pi / 4, Point(10, 10))
>>> str(rot_other.apply_to_point(point))
' (10.000000000000002, 17.071067811865476)"

The resulting point is (10, 17.071...) this time. To help us make sense of
the exercise we’ve just done, Figure 7-12 illustrates the two rotation transfor-
mations.

(0, 21.21)
o
(0, 17.07)

o (15, 15) o (15, 15)

(10, 10)

(0, 0)

Figure 7-12: Example of a rotation around the origin (left) and around the point (10, 10)
(right)

Interpolating Transformations

Chapter 7

When you zoom in or out, most graphics programs don’t apply the scale

all at once, but they typically produce a quick and smooth animation of the
zooming process. This helps you, the user, better understand how the draw-
ing is being transformed. To achieve this, graphics programs typically use a
transformation interpolation. Later in the book we’ll animate affine trans-
formations, that is, we’ll create a kind of movie where we can appreciate how
a given geometry is transformed one step at a time. Each frame in the ani-
mation will depict the geometry after applying a fraction of the affine trans-
formation, and this is where we’ll first use interpolations.

Motivating Interpolation

Before we dive into the concept of interpolating transformations, take a look
at Figure 7-13.



End

Start

Figure 7-13: Animating an affine transformation

In the figure, there’s a triangle originally in the bottom left of the win-
dow that ends up in the top middle after passing through some middle posi-
tions drawn in a lighter gray. Each of the triangles represents the result we’d
see at a given point in time, a concrete frame in the animation.

If we want our animation to have n frames, where n > 1, there needs to
be n affine transformations [T],[T7], ..., [T,-1] such that each frame is the
result of applying the corresponding transformation to the input geometry.
It’s clear that the last transformation, [7T),-1], needs to be the target affine
transformation, as the final frame should depict the geometry after apply-
ing such a transformation. What should [7(] be then? Let’s give it some
thought. What transformation applied to the input geometry results in the
geometry itself? Well, there’s only one such transformation that we know
doesn’t move things around, the identity transformation. So, our start and
end transformations are as follows:

1 0 0 Sy Shy ity
[To]=1(0 1 O and [T,q]= [shy sy ¢
0 0 1 0 0 1

How do we go about computing [T1], ...,[T,,-2]? It’s easy: we can inter-
polate each of the start and end values to obtain as many intermediate values
as we need. For example, a linear interpolation from 0 to 5 using five steps
would yield [0, 1,2, 3,4, 5]. Note that five steps produce six values, so to ob-
tain » frames, we’ll use n — 1 steps.

To interpolate from a start value v; to an end value v,, we can use any
function that passes through them. A straight line (linear function) is the
simplest one, and the resulting values are uniformly spaced. This is a lin-
ear interpolation. If we used such interpolation to produce the frames of
an animation, the result would move at constant speed from the beginning
to the end (the slope of the interpolating function is constant), which looks
unnatural to the eye. Why is that? Well, it’s because we’re not used to see-
ing things in real life abruptly accelerating, moving at the same speed, and
stopping all of a sudden. This may look fine for projectiles or bullets, but
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it’s strange for most real-life objects in motion. We can try a more natural-
looking interpolating function such as an ease-in-out, plotted in the right-side
graph of Figure 7-14.

Value Value

\4 \2

Linear interpolation Ease-in-out interpolation

Time Time

Figure 7-14: Two interpolation functions

In an ease-in-out function, values at the beginning and end vary slowly,
which gives the sensation of things accelerating as they start to move and
softly decelerating when reaching the end of their motion. This function
defines motion in a much more natural way, and animations following this
variation of the position with respect to time look nice to the human eye.

To obtain a value between v; and v,, we use a parameter ¢ such that 0 <
¢t < 1 (see Equation 7.10).

v = v + (v, — V) (7.10)

You can easily observe that Equation 7.10 yields a result of v; for ¢ = 0
and v, for ¢t = 1. For any intermediate value of ¢, the value varies between
those two values. If we want to obtain a sequence of values starting with v
all the way to v, that follow a linear distribution, we just need to use equally
spaced values for ¢, like, for example, [0, 0.25,0.5,0.75, 1].

To produce an ease-in-out distribution of interpolated values, we need a
sequence of ¢ values from 0 to 1 with uneven spacing, with small steps near
the extreme values and greater steps around the middle. If we represent the
values of ¢ by circles in a horizontal line starting at¢ = 0 and ending at¢ =
1, we can get a sense of how uniform and ease-in-out values are distributed
from Figure 7-15.

00 06 © O O o ® O O o 000
t=0 t=1

Figure 7-15: Interpolating t values

To build the sequence of ¢ values distributed according to the right-side
plot in Figure 7-14, we can plug a sequence of evenly spaced ¢ values into
Equation 7.11.

2

St



This alters their spacing so that more of them lie near the extremes 0 and 1
and fewer are located in the middle.
We have all the ingredients that we need; let’s get our hands dirty!

Implementing Interpolation

Create a new file named interpolation. py inside geom2d and enter the code in
Listing 7-14.

def uniform_t_sequence(steps: int):
return [t / steps for t in range(steps + 1)]

def ease_in_out_t_sequence(steps: int):
return [ease_in out_t(t) for t in uniform t_sequence(steps)]

def ease_in out_t(t: float):
return t ** 2 / (t ¥ 2 + (1 - t) ** 2)

Listing 7-14: Interpolated t values

Starting from the bottom, we have the function ease_in_out_t, which is
simply the implementation of Equation 7.11. The first function builds a se-
quence of uniformly distributed ¢ values using the given number of steps,
thus producing as many values as steps plus one. We can test that in the
shell. Reload it and try the following:

>>> from geom2d.interpolation import uniform_t_sequence
>>> uniform_t_sequence(10)
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Function ease_in_out_t_sequence, on the other hand, creates sequences
following an ease-in-out distribution. To do so, it applies Equation 7.11 to
values of a uniform sequence. Let’s try it as well in the shell:

>>> ease_in_out_t_sequence(10)

[0.0, 0.012195121951219514, 0.058823529411764705,
0.15517241379310345, 0.30769230769230776, 0.5,
0.6923076923076923, 0.8448275862068965,
0.9411764705882353, 0.9878048780487805, 1.0]

See how values near 0 and 1 are closer together while values in the mid-
dle (near 0.5) are farther apart? Great, so we’re just missing a function to
interpolate between two values for a given ¢, just as Equation 7.10 defines.
Add Listing 7-15 in interpolation.py.
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import geom2d.tparam as tparam

--snip--

def interpolate(vs: float, ve: float, t: float):
tparam.ensure_valid(t)
return vs + t * (ve - vs)

Listing 7-15: Interpolating between two values given t

If you recall from Chapter 5, when we operate using a passed-in ¢ param-
eter value, we want to check that it’s inside its expected range, for which the
ensure_valid function is used. We’re now ready for the last step, and I hope
you followed along, because here’s the actual interpolation of affine trans-
formations we’ve been pursuing. Open your file affine_transforms.py, where
we defined factory functions to create several special types of affine transfor-
mations, and enter the code in Listing 7-16.

import math

from geom2d.affine_transf import AffineTransform
from geom2d.interpolation import ease_in_out_t_sequence, interpolate
from geom2d.point import Point

--snip--
def ease_in_out_interpolation(start, end, steps):

O t_seq = ease_in_out_t_sequence(steps)
® return [ interpolated(start, end, t) for t in t_seq]

def _ interpolated(s: AffineTransform, e: AffineTransform, t):
® return AffineTransform(

sx=interpolate(s.sx, e.sx, t),
sy=interpolate(s.sy, e.sy, t),
tx=interpolate(s.tx, e.tx, t),
ty=interpolate(s.ty, e.ty, t),

shx=interpolate(s.shx, e.shx, t),
shy=interpolate(s.shy, e.shy, t)
)

Listing 7-16: Sequence of interpolated affine transformations

To help generate a sequence of interpolated affine transformations, we
define a private function __interpolated, which, given two transformations
and a value for ¢, returns the interpolation for that ¢ ®. Each value for the
new transformation is the result of interpolating the values of both start



and end transformations. Then we build a sequence of ¢ values following
the ease-in-out distribution @, each of which is mapped to the interpolated
transformation using a list comprehension @.

We’ll leave this for now until Chapter 12, where we’ll be using the se-
quences of interpolated affine transformations to produce animations. Don’t
worry if the concepts explored in this last part of the chapter seem a little ab-
stract. We’ll build the foundations of animating motion in the next part of
the book, and until then it may be hard to make sense out of this interpola-
tion thing.

Geom2D Final Touches

Our geom2d package is tested and ready to be used throughout the rest of
the book. We made it robust, but we can add a few small improvements be-
fore concluding this part of the book.

Test Files

The first thing we want to do is separate implementation and test files, which
are all in the same folder at the moment. This is so that the geom2d pack-

age folder appears less cluttered and you can find implementation files eas-
ier. In the package, create a new folder named tests, and then select all test
files, which we conveniently named ending in _test.py, and drag them to the
folder. Your folder structure and files should look like the following:

Mechanics
|- geom2d
|- tests
| |- affine transf test.py
| |- affine_transforms test.py
| |- circle_test.py
| [- ...
| |- vector_test.py
|- __init_ .py
|- affine_transf.py
|- affine_transforms.py
|- circle.py
|-
|

- vectors.py

Running All Tests

Now that all our test files live in the same folder, what about running all test
cases at once? It may happen that you changed part of the code and want to
make sure you didn’t break anything, for which you decide to run every test
in the package. The way we’ve been doing it would take you some time, as
you’d have to open the test files one by one and click the green play button
beside each of the class names. There’s a better way!
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Open the Terminal view inside PyCharm. If you can’t see it, from the
menu select View » Tool Windows » Terminal. By default, the shell opens
right in the root directory of the project, which is exactly what we want. In
the shell, run the following command:

$ python3 -m unittest discover -s geom2d/tests/ -p '* test.py'

This command tells Python to discover and run all unit tests in geom2d,/tests/
inside files matching the pattern *_fest.py, that is, all files ending in _test. py.
Running the command should result in something similar to the following:

Ran 58 tests in 0.004s

0K

You can save this command in a bash file at the project’s root level so
you can execute it whenever you want without needing to memorize it.

Package Imports

The last thing we want to do is include all modules in the package’s exports
so that they can be loaded like so:

from geom2d import Point, Polygon

Compare this to the following:

from geom2d.point import Point
from geom2d.polygon import Polygon

The latter requires the user to type the path where each module lives
in geom2d, but the former doesn’t: everything inside the package can be im-
ported directly from the package itself. This style of exporting modules of
a package is convenient for two reasons: (1) because it allows us to change
the directory structure within the module without breaking the user’s im-
ports and (2) because users don’t need to know where each module is lo-
cated within the package and import everything from the package itself. As
you can guess, this greatly reduces the cognitive load for using the package.

When PyCharm created the package geom2d, it included an empty file
inside it named __init__.py. Can you spot it? Files with this name inside
packages are loaded when the package itself is imported. We can use them
to import what is defined inside the package.

If for whatever reason the file __init__.py doesn’t exist in your geom2d package,
simply create it. Maybe you created the package as a normal directory inside Py-
Charm so the IDE didn’t add it for you.

So, open the file, which should be empty, and import all of the primi-
tives we defined (see Listing 7-17).
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from .point import Point

from .vector import Vector

from .vectors import *

from .circle import Circle

from .circles import *

from .interpolation import *
from .line import Line

from .nums import *

from .open_interval import OpenInterval
from .polygon import Polygon
from .rect import Rect

from .rects import *

from .segment import Segment
from .size import Size

from .tparam import *

from .affine_transf import *
from .affine_transforms import *

Listing 7-17: The geom2d package init file

That’s all! To understand what we achieve with this change, you can try
the following in the shell (Python’s shell, not the shell we just used to run
commands):

>>> from geom2d import Point, Size, Rect
>>> origin = Point(2, 3)

>>> size = Size(10, 15)

>>> rect = Rect(origin, size)

This will prove convenient in future chapters, as we can import any mod-
ule from geom2d directly from the package.

Summary

In this chapter, we explored a core concept in computer graphics: affine
transformations. They allow us to transform geometry by scaling, rotating,
translating, and shearing it.

We started by taking a look at their mathematical definition and how
they differ from linear transformations. The takeaway is that affine trans-
formations can move the origin point, while linear transformations can-
not. Affine transformations can be expressed as the combination of a lin-
ear transformation with a translation, but we saw a more convenient rep-
resentation: the augmented matrix. Next, we implemented methods in the
AffineTransform class to transform our geometric primitives: points, segments,
and polygons.

We then learned how transformations can be concatenated to achieve
complex transformations out of simpler ones. Thanks to that powerful idea,
we were able to construct two essential affine transformations that happen
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in almost every graphics application we know: scaling and rotating around a
point other than the origin.

Lastly, we implemented a function to interpolate between two affine
transformations, yielding a couple intermediate transformations that we’ll
soon be using to produce animations.
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PART Il

GRAPHICS AND SIMULATIONS






DRAWING VECTOR IMAGES

We’re about to start drawing images de-

scribed by mathematical equations, a topic
as fascinating as it is entertaining. We call

images consisting of geometric primitives vector

images, as opposed to bitmap images, which are some-
times also called raster images. Vector images are per-
fect for plotting the results of engineering problems
that often come in the form of diagrams and simpli-
fied problem geometries.

In this chapter, we’ll create our own Python package capable of creat-
ing SVG images out of the geometric primitives we created in Part II of the
book: points, segments, circles, polygons, and so on. In later chapters, when
we use code to solve actual mechanics problems, this package will help us
produce graphical results.

There are good SVG packages out there (such as sugwrite, for instance),
and we could just import them, but this book is about learning by doing, so
we won'’t be using anything besides the Python Standard Library and our
own code.

For the sake of brevity, we won’t be writing unit tests in this chapter, but
if you download the code, you’ll see I wrote them to make sure everything
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works as it should. I encourage you to try to write your own unit tests for
functions in this chapter and then compare them to the code I provided.

This chapter will introduce a powerful concept: templating. When tem-
plating, we have a piece of text, the template, that can be customized by filling
in different placeholders. This technique is widely used in web development
to produce the HTML document that gets rendered in your browser. Here
again, there are many good templating libraries (such as jinja2 or mako), but
we want to learn how they work behind the scenes, so instead of using any of
them, we’ll write our own templating logic.

Bitmaps and Vector Images

There are two types of images: bitmaps and vectors. You've likely seen bitmap
images before: .jpeg, .gif, and .png are all examples of bitmap image formats.
A bitmap is an image defined over a grid of pixels where each individual
pixel is assigned a particular color. These images look nice in their origi-
nal size, but if you zoom in, you may start to distinguish those squares, the
pixels.

Vector images, on the other hand, define their content by means of
mathematical equations. This has the advantage of scaling smoothly with-
out losing any quality. Let’s explore .sug, the most widely used vector image
format and the one we’ll be using in this book.

The SVG Format

Chapter 8

SVG stands for Scalable Vector Graphics. Its specification was developed
by the World Wide Web Consortium (W3C) and is an open standard. I recom-
mend that you open https.//developer.mozilla.org/en-US/docs/Web/SVG and
have it with you as a reference to look at; it’ll provide more complete de-
scriptions and examples that can complement the ones in this book. If you
ever need to add something new to your SVG package, this page will be your
ally.

Let’s look at the following definition from the Mozilla website men-
tioned above for a quick reference on how these kinds of images are de-
fined, as it beautifully describes the process:

SVG images and their related behaviors are defined in XML text
files, which means they can be searched, indexed, scripted, and
compressed. Additionally, this means they can be created and
edited with any text editor and with drawing software.

Note that SVG images are defined as plaintext, whereas most other image
formats are binary encoded. This means we can readily automate the cre-
ation of SVG images and even inspect the contents of an existing image.


https://developer.mozilla.org/en-US/docs/Web/SVG

This chapter assumes you have a basic understanding of XML format, but if you
don’t, don’t worry; it’s quite simple to learn. Check the following resources to get
started with it: https://www.w3schools.com/xml and https://www.xmlfiles
.com/xml

Let’s try to create our first SVG image. Open your favorite plaintext edi-
tor such as Sublime Text, Visual Studio Code, Atom, or even PyCharm if you
want, and write Listing 8-1.

<svg xmlns="http://www.w3.0rg/2000/svg" width="500" height="500">
<circle cx="200" cy="200" r="100" fill="#ffoo0077" />
<circle cx="300" cy="200" r="100" fill="#ooffo077" />
<circle cx="250" cy="300" r="100" fill="#0000ff77" />

</svg>

Listing 8-1: SVG description of several circles

Note that you shouldn’t create SVG files using a rich-text editor such as
Word. These rich-text editors add their own markings into the raw file and
break the SVG format.

Once you’ve copied what’s in Listing 8-1, save the file as circles.svg, and
open it using either Chrome or Firefox. Believe it or not, browsers are some
of the best SVG image viewers. Using their developer tools, we can inspect
the different parts that make up an image, something that will prove useful
later when we build more complex images. You should see something like
Figure 8-1 (there’ll be colors on your screen, but the print version of the
book is in grayscale). Zoom in on the image, and you’ll see how it retains
its crispness.

Figure 8-1: Examples of SVG circles

Let’s break down the code in Listing 8-1. The first and most cryptic line
contains the XML namespace (xmln) attribute.
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xmlns="http://www.w3.0rg/2000/svg" width="500" height="500"

We have to include this namespace definition in every svg opening tag.
The width and height attributes determine the size of the image in pixels.
SVG attributes are modifiers that affect how a particular element is rendered.
The width and height attributes, for example, determine the size of the
drawing.

Then, between the svg open and close tags is the actual definition of
what is drawn, in this case three circles:

<circle cx="200" cy="200" r="100" fill="#ff000077" />
<circle cx="300" cy="200" r="100" fill="#0off0077" />
<circle cx="250" cy="300" r="100" fill="#000Off77" />

As you may have guessed, cx and cy correspond to the coordinates of the
center point; r is the radius of the circle. The attribute fill determines the
fill color for the circles in hexadecimal format: #rrggbbaa, where rr is the red
value, gg is the green value, bb is the blue value, and aa is the alpha or opacity
value (see Figure 8-2).

Green Alpha

#rr gg | bb | aa

Red Blue
Figure 8-2: Hexadecimal color components

For example, the color #ff000077 has the following components:

red ff, the maximum value (255 in base 10)
green 00, the minimum value (0 in base 10)
blue 00, the minimum value (0 in base 10)

alpha 77, avalue of 119 out of 255, which equals an alpha percentage
of around 47%

This color is a perfect red with some transparency added to it.

You may not have realized, but the origin of coordinates for SVG images
is located in the upper-left corner, with its y-axis pointing down. You may
not be used to this orientation of the vertical axis, but don’t worry: by using
one of our affine transformations, we can easily transform space so that the
y-axis points upward, as you’ll see later in the chapter. Figure 8-3 shows the
geometry and arrangement of coordinates for the image we created.



00,0 X

(200, 200)¢ 9(300, 200)

500 pixels

o
(250, 300)

500 pixels

Figure 8-3: The geometry of our first
SVG image

The viewBox

A useful attribute that we can define for the svg tag is the viewBox. The viewBox
is the rectangular portion of the image the user sees. It’s defined using four
numbers,

viewBox="x y w h"

where x and y are the coordinates of the rectangle’s origin, and w and h are
the width and height of the rectangle.
Let’s add a viewBox to our circles image to see its effect (see Listing 8-2).

<svg xmlns="http://www.w3.0rg/2000/svg"
width="500"
height="500"
viewBox="100 100 300 300">
<circle cx="200" cy="200" r="100" fill="#ffo00077" />
<circle cx="300" cy="200" r="100" fill="#ooffo077" />
<circle cx="250" cy="300" r="100" fill="#0000ff77" />
</svg>

Listing 8-2: SVG viewBox

Save the changes we made in Listing 8-2 and reload the image in the
browser to see the change. To understand what’s happened, take a look at
Figure 8-4.

We’ve defined a rectangle whose origin is at (100, 100), with a width of
300 and a height of 300: a rectangle that contains all three circles without
any margin. Notice the image retains its size of 500 by 500 pixels, as defined
by the width and height attributes. If the size of the viewBox is not the same as
the size of the SVG itself, the content is scaled.
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00,0 X 00,0 X

(100, 100) viewBox
Y Y
i)
; %
(200, 200} $(300, 300) 2
o
o
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[0}
o X
250, 300) a
o
o
Ive)
500 pixels 500 pixels

Figure 8-4: The viewBox of an SVG image

The viewBox is therefore the rectangular portion from the infinite canvas
that’s displayed to the user. It’s optional, and it defaults to the rectangle with
the size defined by width and height, with its origin at (0, 0).

Space Transformation

Remember the concept of affine transformations from Chapter 7? SVG im-
ages use them to transform their content. The attribute transform can be
used to define the affine transformation matrix as follows:

transform="matrix(sx shy shx sy tx ty)"

The confusing order of the matrix terms may seem surprising at first,
but it actually makes sense, at least for the people behind the SVG stan-
dard. The SVG documentation defines the affine transformation matrix

as follows:

a ¢ e
(1= |6 d f
0 0 1

So these are the terms of the transform attribute:

transform="matrix(a b c d e f)"

Translated to our less cryptic language, the terms are a = sy, b = shy, ¢ = shy,
d=sy,e=tx,andf= ly:

Sy Shy ity
[T]=|shy sy
0o 0 1



Let’s see it in action. We’ll apply a shear in the x direction by setting sh,
to be 1. Remember that both sy and sy have to be 1; otherwise, if set as zero,
the image would collapse in a line or point, and we wouldn’t see anything.
Listing 8-3 has the added transform attribute.

<svg xmlns="http://www.w3.0rg/2000/svg"
width="500"
height="500"
transform="matrix(1 0 1 1 0 0)"
<circle cx="200" cy="200" r="100" fill="#ffo00077" />
<circle cx="300" cy="200" r="100" fill="#ooffo077" />
<circle cx="250" cy="300" r="100" fill="#0000ff77" />
</svg>

Listing 8-3: Shear transformation in circles image

Remember to remove the viewBox attribute so the resulting geometry
doesn’t get cropped. You should see something like Figure 8-5.

Figure 8-5: Our circles once transformed

What about inverting the y-axis so that it points upward, like we’re used
to? Easy! Edit the transform matrix to the following:

transform="matrix(1 0 0 -1 0 0)"

The resulting geometry you should see is outlined in Figure 8-6. Com-
pare it with Figure 8-1. See what happened? The picture flipped vertically.
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(200, 300) $(300, 200)

0,0 _ X 500 pixels

Figure 8-6: Transformed circles, with the
y-axis inverted

Now that you have a basic understanding of how to create SVG images,
let’s do some Python coding. We’ll create a package in our project to draw
SVG images.

The svg Package

Let’s create a new package for graphics in our project, which will contain
a subpackage to produce SVG images. Later in the book we’ll add other
subpackages for other kinds of graphical operations. Right-click the project
name in the Project Tool window and choose New » Python Package. Name
it graphic. You can also create a new folder yourself, but don’t forget to add
the __init__.py file to instruct Python this is a package.

You should have the package at the same level as geom2d, and it should
contain only an __init__.py file. Your project’s directory structure should
look like this:

Mechanics
|- geom2d
| |- tests
|- graphic
|- utils

Now let’s add the sug subpackage: right-click the package you just cre-
ated and choose New » Python Package again, but this time name it svg.
Now we’re ready to start adding our code.

Templates

A template is a document with some placeholders in it. By assigning values
to these placeholders we can produce a complete version of the document.
Think, for instance, about those email campaigns that greet you by your
name. The company sending them probably has a template like
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Hello, {{name}}!
Here are some book recommendations we think you may like.

and an automatic process that substitutes the {{name}} placeholder with each
of their clients’ names and then sends the final composed email.

The placeholders in a template may also be called variables. Variables are
given values in the process of rendering the template, which produces the
final document with everything defined in it. Figure 8-7 illustrates the pro-
cess of rendering the same template with two different sets of values. The
template has the variables place-from, place-to, distance, and units, which we
assign different values to produce different versions of the same template.

place-from = Pamplona From Pamplona
p}acefto = Barcelona vs Beredlens
distance = 450
units = km there are 450 km
From
to
distance | units q
there are KNI WIHED place-from = San Francisco From San Francisco

—
distance 380 to Los Angeles

place-to = Los Angeles
units = mi there are 380 mi

Figure 8-7: Template rendering process

Using templates is a powerful technique that solves a variety of problems
where text of any shape and format needs to be generated. Most web frame-
works, for instance, use some kind of templating to produce the rendered
HTML document. We’ll employ a template to generate our SVG images.

An Example Using Python’s String Replacement

Let’s work on a template example in code. Open Python’s shell and enter
the following template string:

>>> template = 'Hello, my name is {{name}}’

Now, let’s create a greeting by substituting the {{name}} variable with a real
name:

>>> template.replace('{{name}}"', 'Angel')
'Hello, my name is Angel’

As you can see, we can use Python’s replace string method to create a
new string where {{name}} has been replaced by 'Angel’. Since replace returns
a new instance, we can chain the calls like so:

>>> template.replace(’'{{name}}', 'Angel').replace('Hello', 'Hi there')
'Hi there, my name is Angel’

In this example, we first replaced the {{name}} variable with the string
'Angel'. Then, we called the replace method on the resulting string to substi-
tute the word 'Hello' with 'Hi there'.
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Note that we can substitute whatever sequence of characters we want
using the replace method; there’s no need for our replacement targets to ap-
pear between braces, like for instance we did with {{name}}. Using the double
braces is a convention for us to quickly identify a variable inside a template.
This convention also serves the purpose of preventing unwanted replace-
ments: it’s unlikely that our templates include anything inside two levels of
braces, except for our variables.

Now that we know how to work with template strings in Python, let’s see
how we can define templates in separate files and load them into strings in
our code.

Loading Templates

To avoid mixing XML and Python code, we want to separate the definitions
of SVG tags into their own files. The files containing the XML need to have
placeholders where the actual data will be inserted. For example, our circle
definition file could look something like this:

<circle ex="{{cx}}" cy="{{cy}}" r="{{r}}" />

Here we’ve put placeholders using double braces. We’ll use code to load
this definition into a string and replace the placeholders with the actual co-
ordinates of the center and the radius of the circle.

We'll be creating a few templates, so let’s create a folder named templates
inside the sug package by right-clicking the package name and choosing New
» Directory. We need a function that reads the templates inside this folder
by their name and returns their content as a string. In the svg package, but
not in the templates folder, create a new file named read.py and add the code
in Listing 8-4.

from os import path

import pkg_resources as res

def read_template(file_name: str):
file path = path.join('templates', file name)
bytes str = res.resource_string(_name_, file path)
return bytes_str.decode('UTF-8")

Listing 8-4: Reading the content of a template file

Let’s break Listing 8-4 down. The first thing we do in the function is
obtain the path inside templates where the file lives. We do this using the
os.path module’s join function. This function computes the path by join-
ing the parts passed as arguments and using the correct separator for your
operating system. For instance, Unix-based operating systems use the
/ character.



Then, using resource_string from the pkg resources module, we read the
file as a byte string. A file is stored to disk as a sequence of bytes, so when we
read it using the resource_string function, we get this byte string. To convert
it to a Unicode character string, we need to decode it. For this, byte strings
have the method decode, which accepts the encoding as an argument.

We return the result of decoding the string of bytes using UTF-8 encod-
ing. This will give us a string version of the template we can easily work with.

Image Templates

The most important template we want to define is the template for the SVG
image. Create a new text file named ¢mg (without an extension; we don’t
need one) in the templates folder and include the definition in Listing 8-5.

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="{{width}}"
height="{{height}}"
viewBox="{{viewBox}}"
transform="matrix({{transf}})">
{{content}}

</svg>

Listing 8-5: SVG image template

This template includes five placeholders that need to be replaced with
the actual values from the resulting image. We can try to load the template
in Python’s shell using the read_template function we defined earlier:

>>> from graphic.svg.read import read_template
>>> read_template('img')
"<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"\n width="{{width}}"..."

Let’s create a new file image.py in the svg directory (but outside the tem-
plates folder!) and define a function that reads in the file and does the re-
placement. In your image.py file, enter the code in Listing 8-6.

from geom2d import AffineTransform, Rect, Point, Size
from graphic.svg.read import read_template

def svg_content(
size: Size,
primitives: [str],
viewbox_rect=None,
transform=None

):

@ viewbox_rect = viewbox_rect or _ default viewbox rect(size)

® transform = transform or AffineTransform()

® template = read_template('img')
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return template \
.replace('{{width}}', str(size.width)) \
.replace('{{height}}"', str(size.height)) \
O .replace('{{content}}', '"\n\t'.join(primitives)) \
® .replace('{{viewBox}}', _ viewbox from rect(viewbox rect)) \
® .replace('{{transf}}', _ transf matrix_vals(transform))

Listing 8-6: SVG image

The svg_content function takes four parameters; the last two, viewbox_rect
and transform, are given a default value of None. We can use or so that viewbox
_rect keeps its value if it’s not None and otherwise gets a default instance cre-
ated by __default_viewbox_rect @ (we’ll write this function next). We do the
same with transform @, using an affine transformation constructed with the
default values.

Then, using the function we prepared in the previous section, we load
the template stored in templates/img ©.

The last and most important step is to replace all placeholders in the
loaded template string with the values we’ve been passed.

One nice property of strings in Python, as in most programming languages, is that
they’re immutable; you can’t take a string and change a character in it. What you
do instead is create a new string with the desired change. This is how the replace
string method works: it replaces a given sequence of characters with another and
returns a new string with the result. Thanks to this nice property, we can beautifully
chain several replace calls to the result of the call to read_template.

The replacements for the {{width}} and {{height}} placeholders are straight-
forward; just keep in mind that the passed-in size.width and size.height prop-
erties are numbers, so we need to convert them to their string representa-
tion using str.

The primitives parameter contains a sequence of strings representing
the content of the image. We need to collect these strings in a single string.
The join string method joins all the elements in a list together into a single
string using the string it was called on as a separator. To obtain a string in-
cluding all the primitives, we’ll use join @ on the list, with a new line and a
tab character (\n\t) as the separator.

For viewBox we need to convert the Rect instance into the four numbers
that define it @; this is done with _ viewbox_from_rect, which we’ll define in a
minute. The same goes for transf ®.

Let’s write the missing helping functions after svg_content. The code is
in Listing 8-7.

--snip--

def _ default viewbox rect(size: Size):
return Rect(Point(0, 0), size)



def _ viewbox from_rect(rect: Rect):
X

rect.origin.x

y = rect.origin.y

width = rect.size.width
height = rect.size.height

return f'{x} {y} {width} {height}’

def _ transf matrix vals(t: AffineTransform):
return f'{t.sx} {t.shy} {t.shx} {t.sy} {t.tx} {t.ty}'

Listing 8-7: SVG image helper functions

The first function (__default_viewbox_rect) creates a rectangle for the
viewBox using the point (0, 0) as the origin and the provided size. This func-
tion, as its name indicates, is used to provide a default value for the viewbox
_rect parameter in case it wasn’t given by the user.

The _ viewbox_from_rect function returns a string formatted to be used
as viewBox inside the SVG definition. The last function, _ transf matrix_vals,
does something similar: it converts an affine transformation into a string
with the format expected by SVG.

Great! We now have a function that renders the SVG template into a
string. Let’s take a look at some attributes we’ll add to almost all primitives.

Attributes

The appearance of SVG elements can be modified using attributes. SVG at-
tributes are defined following the XML attribute syntax (don’t forget that
SVG images are defined following the XML format):

name="value"

For example, we can use the stroke attribute to set a primitive’s stroke color:

<circle cx="10" cy="15" r="40" stroke="green" />

Note that, in the previous example, the circle’s center coordinates (cx
and cy) and radius (r) are also defined as attributes in the circle SVG
element.

As we’re about to see, many SVG geometry primitives have shared at-
tributes to define things such as the color of their stroke, the stroke’s width,
the fill color, etc. To reuse this logic, we’ll place it in a file that all primitive
generation functions will use. As these attribute definitions are short, we
won’t include them in templates that need to be loaded; instead, we’ll define
them inside the function that replaces the placeholders.
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Create a new file named attributes.py inside the sug directory. Your
graphic/svg folder should look like the following:

svg
|- templates
| |- img
|- _init_ .py
|- attributes.py
|- image.py
|- read.py

Enter the functions in Listing 8-8.

from geom2d.affine_transf import AffineTransform

def stroke color(color: str):
return f'stroke="{color}"'

def stroke width(width: float):
return f'stroke-width="{str(width)}""

def fill color(color: str):
return f'fill="{color}"'

def fill opacity(opacity: float):
return f'fill-opacity="{str(opacity)}

def affine_transform(t: AffineTransform):
values = f'{t.sx} {t.shy} {t.shx} {t.sy} {t.tx} {t.ty}’
return f'transform="matrix({values})"'

def font_size(size: float):
return f'font-size="{size}px"’

def font_family(font: str):
return f'font-family="{font}""

def attrs to str(attrs list: [str]):
return ' '.join(attrs_list)

Listing 8-8: SVG attributes
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All the functions are quite straightforward; they receive a value and re-
turn a string with the definition of an SVG attribute. We use single quotes
around the returned strings, and this allows us to use double quotes inside
without the need of escaping them. The SVG attributes are defined using
double quotes, like, for example, stroke="blue".

The last function takes some attributes and joins them into a string sep-
arating them with spaces. We achieve this using a single space (' ') as a sep-
arator for the join function. To fully understand how this works, give this a
try in the shell:

>>> words = ['svg', 'is', 'a', 'nice', 'format']
L} "

>>> .join(words)
'svg is a nice format'

The SVG Primitives

We’ve written the foundations of our sug package; we can now produce empty
images, a process that involves reading the img template and replacing its
variables. If we called our svg_content function from Python’s shell,

>>> from graphic.svg.image import svg_content
>>> from geom2d import Size
>>> svg_content(Size(200, 150), [])

we’d get the following SVG content:

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="200"
height="150"
viewBox="0 0 200 150"
transform="matrix(1 0 0 1 0 0)">
</svg>

It’s a great beginning, but who wants blank images?

In the next sections, we’ll create a couple basic SVG primitives to add
between the <svg></svg> tags: lines, rectangles, circles, polygons, and text
labels, to name a few. As we’ll see throughout the book, we don’t need a lot
of primitives to draw our engineering drawings; we can get pretty far with
only straight lines, circles, and rectangles.

The strategy we’ll follow to produce these SVG primitives is the same we
used for the SVG content: we’ll use a template to define the SVG code with
variables that we’ll replace inside a function.

Lines

The first primitive we’ll implement in our svg package is the line segment, or
line in SVG parlance. This may be a little unfortunate, as segments and lines
are different concepts. (Recall that lines are infinite, but segments are not;
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they have a finite length.) At any rate, we’ll use the SVG terminology here,
so let’s create a new template file named /line inside the templates folder and
add the code in Listing 8-9:

<line xa="{{x1}}" y1="{{y1}}" x2="{{x2}}" y2="{{y2}}" {{attrs}}/>

Listing 8-9: Line template
The template for a line is simple. The placeholders define the following:
* xiand y1, the coordinates of the start point

* x2 and y2, the coordinates of the end point

e attrs, where the attributes will be inserted

Figure 8-8 depicts the line with its attributes using the default coordinate
system for SVG images.

X

b %)

y (%, Vo)

Figure 8-8: An example
of an SVG line

Let’s now create a function that reads the template and inserts the val-
ues of a segment. We need a new file; let’s create it inside sug with the name
primitives.py. Enter the function in Listing 8-10.

from geom2d import Segment
from graphic.svg.attributes import attrs_to_str
from graphic.svg.read import read_template

__segment_template = read_template('line')

def segment(seg: Segment, attributes=()):
return _ segment_template \
.replace('{{x1}}"', str(seg.start.x)) \
.replace('{{y1}}', str(seg.start.y)) \
.replace('{{x2}}"', str(seg.end.x)) \
.replace('{{y2}}', str(seg.end.y)) \
.replace('{{attrs}}', attrs_to_str(attributes))

Listing 8-10: SVG line

One thing to note is that the parameter attributes has a default value
of (), that is, an empty tuple. We could have also used an empty list [] as
the default for the parameter, but there’s an important difference between
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those two options: tuples are immutable, and lists are mutable. Function de-
fault arguments are evaluated only once when the file is loaded into the in-
terpreter, so if a mutable default parameter is mutated, all subsequent calls
to the same function would get the mutated value as the default, and that’s
something we want to avoid.

In the shell, try the code below to create an SVG line in order to see the
result and make sure that all placeholders are properly replaced.

>>> from geom2d import Segment, make_point

>>> from graphic import svg

>>> seg = Segment(make_point(1, 4), make_point(2, 5))
>>> attrs = [svg.attributes.stroke_color('#cacaca')]
>>> svg.primitives.segment(seg, attrs)

‘<line x1="1" y1="4" x2="2" y2="5" stroke="#cacaca"/>'

This line inside an SVG file would be drawn as in Figure 8-9.

(2, 5)

(1, 4)

Figure 8-9: SVG line

Bear in mind the arrows and position captions are added in this figure
for clarity but won’t appear in the image itself.

Rectangles

Our next primitive is the rectangle, so inside templates create a new file named
rect (remember, we’re not using any extension in our template files) with the
definition shown in Listing 8-11:

<rect x="{{x}}" y="{{y}}"
width="{{width}}" height="{{height}}"
{{attrs}}/>

Listing 8-11: The rectangle template

You can write the template in a single line; here we used several lines
because in the print version, the code didn’t fit in just one. The attributes
that define a rectangle are, as expected, the coordinates of the origin x and
y and its size given by width and height. In primitives.py, add the function in
Listing 8-12.

from geom2d import Rect, Segment
from graphic.svg.attributes import attrs_to str
from graphic.svg.read import read_template
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__segment_template = read template('line')
__rect_template = read_template('rect')

--snip--

def rectangle(rect: Rect, attributes=()):
return _ rect_template \
.replace('{{x}}', str(rect.origin.x)) \
.replace('{{y}}', str(rect.origin.y)) \
.replace('{{width}}", str(rect.size.width)) \
.replace('{{height}}', str(rect.size.height)) \
.replace('{{attrs}}', attrs_to_str(attributes))

Listing 8-12: SVG rectangle

To gain a better understanding of the attributes that define a rectangle
in the SVG format, take a look at Figure 8-10. The figure uses the default
coordinate system from SVG: the y-axis pointing downward. This is why the
origin of the rectangle is the upper-left corner. If we were using a coordi-
nate system whose y-axis pointed upward, the origin would be the lower-left
corner.
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Figure 8-10: An example of
an SVG rectangle

Give it a try in the shell, as we did with the segment, to check that all
placeholders are properly replaced:

>>> from geom2d import Rect, Point, Size

>>> from graphic.svg.primitives import rectangle
>>> r = Rect(Point(3, 4), Size(10, 20))

>>> rectangle(r)

‘<rect x="3" y="4" width="10" height="20" />'

It’s a good idea to check that everything works as expected, since later in
the book we’ll be creating lots of diagrams using these simple primitives.
Unit testing is the best option, much better than testing manually in the
shell. If you downloaded the code for the book, you’ll see all these primi-
tive rendering functions are covered by tests. Try to write them yourself so
you get used to writing unit tests and then compare them to the ones that
I've provided you.



Circles

We'll take a similar approach to rectangles to create circles. Create the tem-
plate in a file named circle (see Listing 8-13).

<circle ex="{{cx}}" cy="{{cy}}" r="{{r}}" {{attrs}}/>

Listing 8-13: The circle template

Then add the function to render the circle inside primitives.py (see List-
ing 8-14).

from geom2d import Circle, Rect, Segment
from graphic.svg.attributes import attrs_to_str
from graphic.svg.read import read_template

_ segment_template = read_template('line')
__rect_template = read template('rect')
_ circle_template = read_template('circle')

--snip--

def circle(circ: Circle, attributes=()):
return _ circle_template \
.replace('{{cx}}"', str(circ.center.x)) \
.replace('{{cy}}', str(circ.center.y)) \
.replace('{{r}}', str(circ.radius)) \
.replace('{{attrs}}', attrs_to_str(attributes))

Listing 8-14: SVG circle

Nothing unexpected here! You can take a look at Figure 8-11 to see the
attributes we used to define the circle in the SVG format.
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(e, c)
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Figure 8-11: An example
of an SVG circle

Let’s give it a try in the shell:

>>> from geom2d import Circle, Point

>>> from graphic.svg.primitives import circle
>>> ¢ = Circle(Point(3, 4), 10)

>>> circle(c)

‘<circle cx="3" cy="4" r="10" />'
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Polygons

Polygons are simple to define; we simply need to provide the list of vertex
coordinates formatted in a specific way. Create the template file polygon in
templates (see Listing 8-15).

<polygon points="{{points}}" {{attrs}}/>

Listing 8-15: The polygon template

Then inside primitives.py include the function in Listing 8-16.

from geom2d import Circle, Rect, Segment, Polygon
from graphic.svg.attributes import attrs_to_str
from graphic.svg.read import read_template

__segment_template = read_template('line')
__rect_template = read template('rect')
__circle template = read_template('circle')
__polygon_template = read_template('polygon')

--snip--

def polygon(pol: Polygon, attributes=()):
return _ polygon template \
.replace('{{points}}', _ format points(pol.vertices)) \
.replace('{{attrs}}', attrs_to_str(attributes))

Listing 8-16: SVG polygon

The placeholder {{points}} is replaced with the result of applying
_ format_points to the list of vertices. Let’s write that function here, inside
the primitives.py file (see Listing 8-16):

--snip--

def _ format_points(points: [Point]):
return ' ".join([f'{p.x},{p.y}"' for p in points])

Listing 8-17: Format points

As you can see, the list of vertices is converted into a string where each
vertex is separated by a space,

".join(...)
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and the two coordinates, x and y, are separated with a comma:

[f'\{p.x\},\ {p.y\}' for p in points]

For example, a polygon with vertices (1, 2), (5, 6), and (8, 9) would result
in the following:

<polygon points="1,2 5,6 8,9" />

Polylines

Polylines are defined the same way as polygons—the only difference is that
the last vertex isn’t connected with the first one. Create the template in a file
named polyline in templates (see Listing 8-18).

<polyline points="{{points}}" {{attrs}}/>

Listing 8-18: The polyline template

Include the rendering function inside file primitives. py (see Listing 8-19).

from geom2d import Circle, Rect, Segment, Polygon
from graphic.svg.attributes import attrs to str
from graphic.svg.read import read_template

__segment_template = read template('line')
__rect_template = read template('rect')
__circle_template = read_template('circle")
__polygon_template = read_template('polygon')
__polyline_template = read_template('polyline')

--snip--

def polyline(points: [Point], attributes=()):
return _ polyline_template \
.replace('{{points}}', _ format points(points)) \
.replace('{{attrs}}', attrs to str(attributes))

Listing 8-19: SVG polyline

Again, no surprises here. Figure 8-12 shows the difference between a
polygon and a polyline. The definition for both is the same; the only differ-
ence is that last segment connecting vertex (x4, y4) back to (x1,y1) appears
only in the case of a polygon.
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Figure 8-12: An SVG polygon and polyline

Let’s try a polygon and a polyline in the shell to see the results:

>>> from geom2d import Polygon, Point
>>> from graphic.svg.primitives import polygon, polyline
>>> points = [Point(1, 2), Point(3, 4), Point(5, 6)]

>>> polygon(Polygon(points))
‘<polygon points="1,2 3,4 5,6" />'

>>> polyline(points)
‘<polyline points="1,2 3,4 5,6" />'

Both the polygon and the polyline have the same sequence of points,
but in an SVG image, the polygon will have a segment connecting the first
and last vertices, whereas the polyline will remain open.

Text

Our diagrams will contain captions (like the structural analysis result dia-
grams in Chapter 18), so we need to be able to include text in our images.
Create a new template file named text in folder templates with the code in
Listing 8-20.

<text x="{{x}}" y="{{y}}" dx="{{dx}}" dy="{{dy}}" {{attrs}}>
{{text}}
</text>

Listing 8-20: The text template

The placeholder {{text}} has to be between the open and close tags
<text> and </text>; this is where the actual text will be inserted. The attributes
x and y define the position where the text will be located; then dx and dy dis-
place that original position. We’ll find this displacement handy when, for
instance, we want to add the coordinates of a point next to it. We can choose
the position of the point itself as the base, which we then displace a given
amount so that the text and the drawing of the point don’t overlap.



In primitives.py add the function shown in Listing 8-21 to render text:

from geom2d import Circle, Rect, Segment, Polygon, Vector
from graphic.svg.attributes import attrs_to_str
from graphic.svg.read import read_template

__segment_template = read_template('line')
__rect_template = read template('rect')
__circle_template = read_template('circle')
__polygon_template = read_template('polygon')
__polyline_template = read_template('polyline')
__text_template = read_template('text')

--snip--

def text(txt: str, pos: Point, disp: Vector, attrs list=()):
return _ text template \
.replace('{{x}}", str(pos.x)) \
.replace('{{y}}"', str(pos.y)) \
.replace('{{dx}}', str(disp.u)) \
.replace('{{dy}}', str(disp.v)) \
.replace('{{text}}', txt) \
.replace('{{attrs}}', attrs to str(attrs list))

Listing 8-21: SVG text

Let’s give it a try in the shell:

>>> from geom2d import Point, Vector

>>> from graphic.svg.primitives import text

>>> text('Hello, SVG', Point(10, 15), Vector(5, 6))

‘<text x="10" y="15" dx="5" dy="6" >\n Hello, SVG\n</text>'

If we format the result string, the result is as follows:

ctext x="10" y="15" dx="5" dy="6" >
Hello, SVG
</text>

Groups

Oftentimes we want to group a bunch of elements so we can add a common
attribute to all of them, such as an affine transformation or fill color. This is
what groups are for. They’re nothing to be rendered by themselves, but they
group a bunch of primitives in a neat way. Create the file group inside the
templates folder (see Listing 8-22).
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<g {{attrs}}>
{{content}}

</g>

Listing 8-22: The group template

To render the group, we’ll add the function shown in Listing 8-23 to file
primitives.py.

from geom2d import Circle, Rect, Segment, Polygon, Vector
from graphic.svg.attributes import attrs_to_str
from graphic.svg.read import read_template

__segment_template = read_template('line')
__rect_template = read template('rect')
__circle template = read_template('circle')
__polygon_template = read_template('polygon')
__polyline_template = read_template('polyline')
__text_template = read_template('text')
__group_template = read_template('group")

--snip--

def group(primitives: [str], attributes=()):
return _ group_template \
.replace('{{content}}"', "\n'.join(primitives)) \
.replace('{{attrs}}', attrs_to_str(attributes))

Listing 8-23: SVG group

This time, all primitives passed as a sequence are joined into a string
separated by line breaks (\n). This is so that each primitive is inserted in a
new line, which will make the file easier to read.

Arrows

In this section, we’re going to add a different primitive, one that’s built not
by loading and rendering a template but by using other primitives: an arrow.
In Chapter 18, when we draw structure diagrams, we’ll use arrows to repre-
sent forces, so this is a good moment to implement them.

The arrow consists of a line segment with a small triangle at one of its
ends, the arrow’s head (see Figure 8-13).



X

E
Heod—\®
et

8
o™
/ A/S

Figure 8-13: An SVG arrow

Drawing the arrow’s segment is simple: we just need a line segment.
Drawing the head is a bit more involved, because it needs to always be aligned
with the segment. Using a bit of elementary geometry we can figure out the
points that define the arrow’s head. Take a look at Figure 8-14.
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Figure 8-14: Key points in an arrow

Our arrow’s head is a triangle defined between points Cy, E (the seg-
ment’s end point), and Co. The size of the arrow is given by a length and a
height, sizes that we’ll use to locate the C and Ce points.

The figure uses three vectors to position these two points.

7 This is a vector in the direction opposite to the segment’s direction
vector and is the same length as the arrow.

vp1  This is a vector perpendicular to the segment, and the length is
half the arrow’s head height.

Upo  This is similar to 7,1, but in the opposite direction.
Using these vectors, we can now compute the points as follows:
C1=E+ (0 +7p1)
and
Co = E+ (3 * Up2)

Without further ado, let’s write the code to draw arrows. Inside
primitives.py, enter the code in Listing 8-24.
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--snip--

def arrow(
_segment: Segment,
length: float,
height: float,
attributes=()

director = _segment.direction_vector
@ v 1 = director.opposite().with_length(length)
® v_h1 = director.perpendicular().with_length(height / 2.0)
® v _h2 = v_hi.opposite()

return group(

[

® segment(_segment),
® polyline([
_segment.end.displaced(v_1 + v_h1),
_segment.end,
_segment.end.displaced(v_1 + v_h2)
D
])

attributes

)

Listing 8-24: SVG arrow

We’ve defined the arrow function that accepts as parameters a segment,
the length and height of the arrow, and the SVG attributes. Note that the
_segment parameter starts with an underscore. This is to avoid a clash with
the file’s segment function.

In this function we first store the segment’s director vector in the vari-
able director. We then compute the 7; vector taking director’s opposite vec-
tor scaled to the passed-in length @. The %, vector is obtained by taking
director’s perpendicular vector scaled to the arrow’s half-height ®. Then,
Upo is simply the opposite of it @.

The function returns an SVG group including the arrow’s segment @
and a polyline ®. This polyline defines the arrow’s head using the three
points we discussed earlier.

The first point, Cy, is computed by displacing the segment’s end point
by the result of adding vectors ¥; and 7j1. Then comes the segment’s end
point. Lastly comes Co, resulting from the displacement of the segment’s
end point by a vector that’s the result of adding ¥; and 9.

228 Chapter 8



Primitives Result

We’ve added a few functions to our primitives.py file. If you followed along,
your file should look similar to Listing 8-25.

from geom2d import Circle, Rect, Segment, Point, Polygon, Vector
from graphic.svg.attributes import attrs_to_str
from graphic.svg.read import read_template

_ segment_template = read_template('line")
__rect_template = read_template('rect')
__circle_template = read_template('circle')
__polygon_template = read_template('polygon')
__polyline template = read template('polyline')
__text_template = read template('text')
__group_template = read_template('group")

def segment(seg: Segment, attributes=()):
return _ segment_template \
.replace('{{x1}}', str(seg.start.x)) \
.replace('{{y1}}', str(seg.start.y)) \
.replace('{{x2}}"', str(seg.end.x)) \

.replace('{{y2}}"', str(seg.end.y)) \
.replace('{{attrs}}', attrs_to_str(attributes))

def rectangle(rect: Rect, attributes=()):
return _ rect_template \
.replace('{{x}}"', str(rect.origin.x)) \
.replace('{{y}}', str(rect.origin.y)) \
.replace('{{width}}', str(rect.size.width)) \
.replace('{{height}}"', str(rect.size.height)) \
.replace('{{attrs}}', attrs to str(attributes))

def circle(circ: Circle, attributes=()):
return _ circle_template \
.replace('{{cx}}', str(circ.center.x)) \
.replace('{{cy}}', str(circ.center.y)) \
.replace('{{r}}', str(circ.radius)) \
.replace('{{attrs}}', attrs_to_str(attributes))

def polygon(pol: Polygon, attributes=()):
return _ polygon template \
.replace('{{points}}', _ format points(pol.vertices)) \
.replace('{{attrs}}', attrs_to_str(attributes))

Drawing Vector Images 229



def polyline(points: [Point], attributes=()):
return _ polyline template \
.replace('{{points}}', _ format points(points)) \
.replace('{{attrs}}', attrs_to_str(attributes))

def text(txt: str, pos: Point, disp: Vector, attrs list=()):
return _ text template \
.replace('{{x}}", str(pos.x)) \
.replace('{{y}}', str(pos.y)) \
.replace('{{dx}}"', str(disp.u)) \
.replace('{{dy}}', str(disp.v)) \
.replace('{{text}}", txt) \
.replace('{{attrs}}', attrs_to_str(attrs list))

def group(primitives: [str], attributes=()):
return _ group_template \
.replace('{{content}}"', "\n\t'.join(primitives)) \
.replace('{{attrs}}', attrs_to_str(attributes))

def arrow(
_segment: Segment,
length: float,
height: float,
attributes=()

director = _segment.direction_vector

v_1 = director.opposite().with_length(length)

v_h1 = director.perpendicular().with_length(height / 2.0)
v_h2 = v_h1.opposite()

return group(
[
segment(_segment),
polyline([
_segment.end.displaced(v_1 + v_h1),
_segment.end,
_segment.end.displaced(v_1 + v_h2)
D
1,

attributes
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def _ format_points(points: [Point]):

return ' '.join([f'{p.x},{p.y}"' for p in points])

Listing 8-25: SVG primitives result

We have everything we need to start drawing images. In the next chap-
ter, we’ll use our sug package to plot the result of a geometrical problem.
But first, let’s provide a convenient way of importing the contents of this
package.

Package Imports

Similar to what we did with the geom2d package, we want to give the option
of importing everything from sug with a single import line:

from graphic import svg

The only thing we have to do is import all relevant modules inside the
svg package’s __init__.py file file:

from .attributes import *
from .image import svg content
from .primitives import *

Summary

Graphics are key to engineering applications. Many involve creating dia-
grams made of simple geometric primitives such as segments and rectangles.
We created a geometry package in Part II of this book; in this chapter, we
learned how to turn those primitives into vector images.

We started with a quick introduction to the SVG format and saw how
easy it is to create SVG images using just a few lines of XML data. We then
learned about templates, extensionless plaintext files that define the SVG
structure using placeholders. The placeholders, which have the form of
{{name}}, are replaced by concrete data using code. Templates are widely
used, and there are some complex packages for rendering templates. Our
use case was pretty simple, so we did the replacement using the replace
method from Python strings.

Lastly, we created functions to obtain the SVG representation for our
geometric primitives: line segments, circles, rectangles, and polygons. From
now on, creating vector diagrams should be straightforward, something that
we’ll prove in the next chapter.
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BUILDING A CIRCLE FROM THREE
POINTS

In this chapter, we’ll build an entire com-

mand line program to solve a well-known
problem: finding a circle passing through

three given points. You may have solved this

problem graphically in high school using a ruler and
compass; you may have even solved it numerically. This
time, we’ll be using the computer to solve it for us and
produce an SVG image with the result. We already im-
plemented the algorithm in Chapter 6; in this chapter,
we’ll use the algorithm inside an application.

It’s a simple problem, but it is good for understanding how to code a
complete application. We’ll read the three input points from a file using reg-
ular expressions, which we’ll learn about later in the chapter. We’ll also read
in a configuration file with the values for the colors and sizes for the pro-
gram’s output.

Then we’ll build the model: a group of objects that implement what we
call the domain logic of our application, that is, the knowledge needed to
solve the problem. In this case, the model consists of three points and the
factory function that creates a circle passing through the three of them.
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Thanks to our previous work in Chapter 6, this shouldn’t be complicated.
We’ll present the results graphically, with a vector image showing the input
points and resulting circle.

This is our first complete command line program, and it has all the in-
gredients of an engineering application: reading from an input file, solving
a problem, and outputting a result diagram. After building this program,
you should feel empowered to build your own. The possibilities are endless!

Application Architecture

Chapter 9

Most of the command line applications we’ll build together in this book, and
probably many others you may build on your own, will use a similar archi-
tecture. The concept of software architecture refers to the organization and
design of the components that make up a software application. Architecture
deals with both the design of each individual piece of the program and the
system of communication and interaction between each piece.

To decide what components should make up the architecture of our ap-
plication, let’s think about what our program has to do. Our application will
generally consist of three big phases, each performed by a different set of
components or architectural building blocks:

Input parsing We read the problem definition data from a file passed
to our program. This phase may also include reading an external config-
uration file to tweak the program’s behavior or outputs.

Problem resolution Using the model we parse from the input defini-
tion data, we find a solution to the problem.

Output generation We present the solution to the user. Depending on
what kind of report we need, we may choose to produce diagrams, text
files with data, simulations, or a combination of them. As important as
solving the problem is, producing an output that is easy to understand
and contains all the relevant pieces of information is crucial for our pro-
gram to be of any use.

Since our problem for this chapter is fairly simple, we’ll divide the three
phases into three files: input.py, main.py, and output.py. Figure 9-1 shows the
main architectural blocks of our application graphically.

Input file\
Input Problem Output
— — — — —
/ reader solver producer

Parsed Problem Result file
model solution

Configuration

Figure 9-1: The application architecture diagram



Setup

The input file will contain the three points and should have the follow-
ing format,

Xy
Xy
Xy

where x and y are the coordinates of a point, separated by a space and each
on a different line. An example input file could look like this:

300 300
700 400
300 500

This file defines three points: A(300, 300), B(700,400), and C(300, 500).
We’ll put a specification for the values of the coordinates and say they need
to be positive integers. This simplifies the parsing logic a bit as there won’t
be decimal separators or minus signs in the numbers, which is good to get
us started with regular expressions, but don’t worry: we’ll learn to identify
floating-point numbers and minus signs in Chapter 12.

Using plaintext files as the input to our programs has a big advantage:
we can write them by hand. Also, we can easily inspect and edit them. The
downside is that plaintext files usually take up more space than their binary
counterparts, but that won’t be an issue for us. We’ll go with ease of creation
and manipulation over file size. Just remember, whenever you’re working
with plaintext files, always use a plaintext editor and never a rich-text editor.
Rich-text editors (such as Word) have their own storage format that includes
much more than you actually write to them, such as information about what
goes in bold, what font face is used, or what size the font is. We need our
input files to have in them only what we’ve written.

Since we’ll be creating other applications throughout the book, let’s create
a new package at the top level of our Python project (the same level as the
geom?2d, graphic, and utils packages). Right-click the Mechanics folder, and
from the menu choose New » Python Package, name it apps, and click OK.
In apps, create a new package, this time named circle_from_points.
Your project’s directory structure should look similar to the following:

Mechanics
|- apps
| |- circle from_points
|- geom2d
| |- tests
|- graphic

| |- svg
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Let’s create our main file. This is the file we’ll execute from the com-
mand line to run the application. Create a file named main.py in circle_from
_points. Enter the code in Listing 9-1.

if _name__ == "'_main__":
print('This is working')

Listing 9-1: Main file

If you recall from Chapter 1 (in the “Running Files” section), we’re using
the “if name is main” pattern to execute our main application script. We
want to run this code only if we detect the file is being run by itself, and not
when it’s imported by some other file. For now we’ll only print a message to
the shell to make sure our setup works.

$ python3 apps/circle_from_points/main.py

This should print to the shell:

This is working

This time, our main file doesn’t define any function that could be imported and used
by other files. But thanks to the “if name is main” pattern, if this file was imported
(presumably by mistake), nothing would be exported, and no code would be run
either. All of our “runnable” scripts will use this pattern.

We’ll need a file containing the definition of three points to test our
progress. Create a new file inside circle_from_points named test.txt. In it, enter
the following coordinates:

300 300
700 400
300 500

Next, we’ll need to configure our IDE so we can test our application lo-
cally inside it.

Creating a Run Configuration

To test our application’s code using the data in the fest.txt file we just wrote,
we need to create what’s known as a run configuration inside PyCharm (re-
fer to section “Creating Run Configurations” on page xxxvi for a refresher).
Run configurations are a convenience that will save us time when we are de-
veloping.

You may want to refer to the documentation online to better understand run configu-
rations: https://www.jetbrains.com/help/pycharm/run-debug-configuration.html.
If you happen to be using an IDE other than PyCharm, refer to its documentation.
Most IDEs include a similar concept to run configurations to configure test runs for
your programs.
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To create a run configuration, first make sure the navigation bar is visi-
ble by choosing View » Navigation Bar. From the top menu, choose Run »
Edit Configurations. The dialog shown in Figure 9-2 will open.

+ P

@ Python Click the + button to create a new configuration based on templates.
# Templates

» Configurations available in Run Dashboard

Confirm rerun with process termination
Confirm deletion from Run/Debug popup

Temporary configurations limit: &

2

Figure 9-2: The run configuration dialog
Click the +icon on the top left, which opens the Add New Configura-
tion drop-down, and choose Python (see Figure 9-3).

+ - B F L
Add New Configuration

&4 Bash
» Compound

®

=1 Python docs >
& Python tests >
& Tox

Figure 9-3: The new Python run configuration

The Run Configuration form should appear on the right side of the win-
dow. Enter the name circle-three-points in the Name field at the top. This will
be the name you’ll use to refer to the configuration. On the Configuration
tab, you should see the Script path field. This is the path to our main.py file:
our program’s entry point. Click the folder icon inside the field and select
main.py. Near the end of the Configuration tab, find the Execution section.
Select the Redirect input from checkbox, and in the field click the folder
icon and select our test file containing the definition of the points: test.(xt.
This way, the run configuration will always pass fest.txt to the program’s stan-
dard input. Your configuration dialog should look like Figure 9-4.
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Name:  circle-three-points Share Allow parallel run
Configuration Logs
Script path: ¥  .../Mechanics/apps/circle_from_points/main.py
Parameters:

~ Environment

Environment variables: PYTHONUNBUFFERED=1

Python interpreter: @ Project Default (Python 3.7)
Interpreter options:

Woerking directory: .../Mechanics/apps/circle_from_points

Add content roots to PYTHONPATH
Add source roots to PYTHONPATH

~ Execution
Emulate terminal in output console
Run with Python console

Redirect input from:  .../Mechanics/apps/circle_from_points/test.txt

v Before launch: Activate tool window

Figure 9-4: The run configuration data

We need to do one last thing. If we executed the run configuration as
it is now, the output of the program would be printed to the shell (standard
output). That is fine, but since we’ll be outputting SVG code, we want to
redirect the standard output to a file with the .svg extension.

Go to the Logs tab to the right of Configuration. Check Save console
output to file; then click the folder icon, and select any file in circle_from
_points. Once the file is selected, just change its name to result.sug. Alterna-
tively, you can copy and paste the path to the package circle_from_points and
then append the name of the result.svg file. You could also create an empty
result.svug file and then select it here. Whatever way you choose, the result
should look something like Figure 9-5.

Name: circle-three-points Share Allow parallel run

Configuration Logs

Log files to be shown in console

Is Active Log File Entry Skip Content
+
Save console output to file: ...FMechanicsjapps/c\n:\e_from_pointsfresult.svg

Show conscle when a message is printed to standard output stream

Show console when a message is printed to standard error stream

Figure 9-5: Redirecting output fo a file
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We’re all set, so click OK. In your navigation bar you should see the
newly created run configuration selected (see Figure 9-6). Click the green
play button to its right. This executes the run configuration, which should
result in the message “This is working” written in a file named result.svg.

& circle-three-points v P ¥

Figure 9-6: The run configuration in the navigation bar

Let’s do a quick recap of what we’ve just done. We’ve created a config-
uration in PyCharm that instructs it on how to run our project. We told the
configuration that main.py is the entry point to start executing our project.
Then, we said we wanted the file test.txt containing our test data to be passed
to the standard input of the program and the output of the program redi-
rected to a file named result.sug.

Why Use a Run Configuration?

You may be asking yourself, why do we want to create a run configuration
instead of just executing our script from the command line?

That’s a good question. There are two good reasons why we use run
configurations. The first is that we’ll be much more productive during de-
velopment. We won’t need to enter commands into the shell to run the pro-
gram, redirecting its standard input and output as necessary. Besides, this
configuration allows us to debug the program, something that would be con-
siderably harder from the shell. If you set a breakpoint somewhere in the
code, you can click the bug-like button next to the green play button and the
program should stop once the breakpoint is reached.

The second reason is that, as we’ll see later in the chapter, if you try to
run main.py from the shell, once we start importing our packages (such as
geom?2d) it simply won’t work. Yes, that’s kind of surprising, but we’ll learn
why this happens and, more importantly, how to fix it.

Reading the Input and Configuration Files

So far we have a main.py file and a run configuration that passes it test.txt
using the standard input. Right now we’re doing nothing with that file’s con-
tents, so a good next step would be reading the contents of the file and pars-
ing each line as an instance of the Point class. How do we go about doing
this? We need to use regular expressions, a powerful technology for reading
and extracting information from a text.

Before we explore regular expressions, let’s create a new file in our project
to read both the input and configuration files. Let’s also take some time to
learn to read files passed to the standard input of our program.
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In circle_from_points, create a new file named input.py. Your circle_from
_points directory should look like the following:

circle_from points
[- _init_ .py
|- input.py
|- main.py
|- test.txt

Let’s start small and go one step at a time. Enter the code in Listing 9-2
in the newly created file.

def parse_points():

return (
input(),
inPUt()x
input(),
)

Listing 9-2: Reading lines from the input file

The parse_points function is not actually parsing points ... yet. So far, it
returns a tuple consisting of three strings, each of which corresponds to a
line obtained from the standard input. Each line is read using Python’s input
function, which reads in one line of input at a time. Let’s call parse_points
from our main program to see how it reads the test file’s contents. Go back
to main.py and modify the code to make it match Listing 9-3.

from apps.circle_from_points.input import parse_points
if _name__ == "'_main__":
(a, b, ¢) = parse points()
print(f'{a}\n{b}\n{c}")

Listing 9-3: Printing the points to the shell

You may be tempted to use Python’s relative imports here like from
.input import parse_points but that won’t work properly when the file do-
ing the imports is run from the command line. To get an idea of why that
is, take a look at this excerpt from PEP 238:

Relative imports use a module’s __name__ attribute to determine
that module’s position in the package hierarchy. If the module’s
name does not contain any package information (e.g. it is set to
'__main__") then relative imports are resolved as if the module were
a top level module, regardless of where the module is actually lo-
cated on the file system.

The first thing we do in Listing 9-3 is import parse_points from the
input.py module. In the “if name is main” condition we call the parse_points
function and assign its output to a tuple (a, b, c), which destructures its ele-
ments into the variables a, b, and c.



The following is the less elegant way of accomplishing the same result:

points = parse_points()
a = points[0]
b = points[1]
¢ = points[2]

But we’ll go with the former, which is a little cleaner. The last line prints the
contents of a, b, and c to the shell, each in its own line. Run the application
by clicking the green play button beside the run configuration we created
earlier. You should get the following printed to the shell in the IDE:

Input is being redirected from --snip--/test.txt
Console output is saving to: --snip--/result.svg
300 300
700 400
300 500

Process finished with exit code 0

The two first lines are pretty interesting. They tell us that the configu-
ration used to run the file is receiving input from file fest.txt and writing the
output to file result.svg. If you open result.svg, you should see the three points
the same way they’re defined inside test.ixt, and also the same way they were
printed to the shell. We’re making good progress here! The next step is to
convert those space-separated coordinates into instances of our Point class.
For that, we need regular expressions.

Regular Expressions

Regular expressions (regex for short) are powerful constructs when it comes
to interpreting text. Because the input to most, if not all, applications we’ll
be creating in this book will be read from a plaintext file, we want to get ac-
quainted with regular expressions.

If you want to learn more about regular expressions, take a look at this awesome in-
teractive tutorial: hitps.//regexone.com.

Let’s quickly review the problem we’re trying to solve here: given a string
of text containing two integer numbers separated by a space, extract them
from the string, convert them to numbers, and use them as the coordinates
of an instance of Point. How do regular expressions help us here?

A regular expression is a pattern defined as a string. It’s used to search
for matches inside other strings and, optionally, extract parts of them.
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Let’s try an example. Note that regular expressions are denoted by writ-
ing them between two slash characters. Imagine we’re looking for this
pattern,

/repeat 5 times/

and we’re interested in knowing whether that pattern appears in any of the
following sentences:

Repeat 5 times.

For each exercise, repeat 5 times.

For that particular exercise, repeat 7 times.

Let’s repeat 3301 times.

The /repeat 5 times/ regular expression compares itself against these
strings searching for exactly the text repeat 5 times and thus yielding only the
single bold match:

Repeat 5 times.
For each exercise, repeat 5 times.
For that particular exercise, repeat 7 times.
Let’s repeat 3301 times.
That’s great, but not very flexible. The first sentence was not a match

because the first letter, the R, is uppercase; our pattern is lowercased. We
can tweak our pattern to accept both:

/[Rr]epeat 5 times/
This time the matches are as follows:

Repeat 5 times.
For each exercise, repeat 5 times.
For that particular exercise, repeat 7 times.

Let’s repeat 3301 times.

To account for both kinds of r, we introduced a character set: a series of
accepted characters in a given position of the text, any of which is consid-
ered valid. Character sets are defined between square brackets.

There’s much more we can do with regular expressions. What about
the number of repetitions specified in the sentence? Can we make it so any
number of repetitions is considered a match? We sure can. If we modify our
pattern to be

/[Rr]epeat \d times/



we’ll get the following matches:

Repeat 5 times.
For each exercise, repeat 5 times.
For that particular exercise, repeat 7 times.
Let’s repeat 3301 times.
The pattern \d matches a single digit, any number between 0 and 9. But
what about that last sentence? If we wanted to match more than one digit,
we’d need to add a quantifier to the \d pattern. In this case, the quantifier

that makes the most sense is +, which is used to match one or more of the
tokens it quantifies. The pattern

/[Rr]epeat \d+ times/

would then work with any number of repetitions and thus get us the full
range of matches we’ve been after:

Repeat 5 times.

For each exercise, repeat 5 times.

For that particular exercise, repeat 7 times.

Let’s repeat 3301 times.

Now that you’re starting to see what regular expressions are about, let’s
explore some of their basic concepts.

Character Sets

As we’ve seen, we can include several different characters between square
brackets to have our regular expression match any of them. For instance, we
could use

/[mbgJore/

to match more, bore, and gore. We can also include ranges like all lowercase
letters from a to z like so:

/[a-z]ore/

This would produce a wide range of matches, for instance more, core, and
explore. We can also include the range of uppercase letters,

/[a-zA-Z]ore/

to include matches like More or Core. One thing to keep an eye on is that
consecutive ranges are not separated by a space. If you separated them using
a space, the set would include the space as a valid character.
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Character Classes

There are some special characters we can use to match common things such
as digits, whitespace, or single letters. The first one is a dot (.). We use it to
match anything except line breaks. It matches letters (both uppercase and
lowercase), numbers, punctuation marks, and whitespace. As you can see,
this is quite a powerful matcher. For example, the pattern

/the end./

would match the end., the end?, the end!, and many more. To match a sin-
gle dot, we need to escape the dot character using a backward slash,

/the end\./

which would produce only one match: the end.

We already learned about the class \d, which matches a digit. If we want
to match everything but digits, we can use \D (uppercase). Similarly, to match
letters, we can use the class \w, and we can use \W for nonletters. Lastly, for
whitespace there’s \s, and there’s \S to match whatever isn’t whitespace.

Now let’s combine our knowledge on character classes into a regular
expression:

/code\s\w-\d\d/

This regular expression matches strings like code f-44, code M-81, and code
p-29.

Quantifiers

Quantifiers modify the number of matches expected for the token they
quantify. There are five quantifiers:

?  Matches zero or one of the preceding tokens
* Matches zero or more of the preceding tokens
+ Matches one or more of the preceding tokens
(n) Matches exactly n of the preceding tokens
(n,m) Matches from n to m of the preceding tokens
For example,
/o{2}m/
would match boom, zoom, or kaboom. But, if instead we use

/o+m/

our matches could be any of the following: nomad, boooom, or room. We’ll
be using most of these quantifiers throughout the text, so there will be plenty
more examples of them.



Capturing Groups

So far we’ve seen how to match text using regular expressions. But some-
times we also want to extract the text we’ve matched. Here’s where groups
come in. Groups are defined between parentheses. Let’s try the following
regular expression,

/it takes (\d+) hours to go from (\w+) to (\w+)/

which applied to the sentence “it takes 4 hours to go from Barcelona to Pam-
plona” would match it entirely and capture the following groups:

('4", 'Barcelona’, 'Pamplona’)

Let’s try it in Python’s shell. Python’s standard library includes a power-
ful regular expression package: re. Open your IDE’s shell and try entering
the code in Listing 9-4.

>>> import re

>>> pattern = r'it takes (\d+) hours to go from (\w+) to (\w+)'
>>> target = 'it takes 4 hours to go from Barcelona to Pamplona'
>>> matches = re.match(pattern, target)

>>> matches.groups()

('4", 'Barcelona', 'Pamplona')

Listing 9-4: Capturing groups with regular expressions

We define the pattern using a raw string literal, which has the format r'".
These strings treat the backslash (\) as a valid character instead of interpret-
ing it as an escape sequence. Regular expressions need the backslash to de-
fine their structure.

In Listing 94, the result is stored in a variable named matches, which we
can call the groups method on to yield the three captured groups: 4, Barcelona,
and Pamplona.

A neat thing about groups is that they can be assigned a name that we
can later use to retrieve the matched value. For instance, consider the follow-
ing pattern:

/(?P<name>\w+), but they call me (?P<nick>\w+)/

Applied to a sentence like “my name is Nelson, but they call me Big Head,”
this would capture two groups, which we can retrieve by name:

name
nick

matches.group('name")
matches.group('nick")

As you can guess, the syntax used to assign a name to a group is as follows,

(?P<name><regex>)

where name is the name assigned to the group and regex is the actual pattern
to match the group.
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Regular Expressions Cheat Sheet

Table 9-1, Table 9-2, Table 9-3, and Table 9-4 summarize the concepts we’ve
explored and can be used as references throughout the rest of the book.

Table 9-1: Regular Expressions Character Sets

[abc]  Matches ‘a’ or ‘b’ or ‘¢’
[*ab]  Matches every character except ‘a’ and ‘b’
[a-z]  Matches every character between ‘a’ and 'z’

Table 9-2: Regular Expressions Character Classes

\s  Matches whitespace

\S  Matches every character but whitespace
\d  Matches digits

\D  Matches every character but digits

\w  Matches letters

\W  Matches every character but letters

Table 9-3: Regular Expressions Quantifiers

? Zero or one
* Zero or more
+ One or more

{n} Exactly n
{n,m}  Between n and m (both included)

Table 9-4: Regular Expressions Capture Groups

(..2) A capture group goes between parentheses
(?P<name>...) A named capture group

Matching Points

We already know everything we need to match the points defined as their
space-separated coordinates and capture them by name. Because coordi-
nates will be defined by integer numbers only, we can use the following regu-
lar expression:

/(2P<x>\d+)\s(?P<y>\d+)/

Let’s break that down. There are three parts to it:

(?P<x>\d+) Captures a group named x of one or more digits

\s Matches a single space



(?P<y>\d+) Captures a group named y of one or more digits

Let’s implement this matching pattern in our application’s input.py file.
Edit the code we wrote so that it looks like Listing 9-5.

@ import re

from geom2d import Point

def parse_points():
return (
__point_from string(input()),
__point_from_string(input()),
_ point_from_ string(input()),

def _ point_from string(string: str):
O matches = re.match(r' (?P<x>\d+)\s(?P<y>\d+)', string)
return Point(
® int(matches.group('x')),
® int(matches.group('y'))
)

Listing 9-5: Parsing points

We start by importing re @. Then, we modify the parse_points function
to map the line we read using input() on an instance of Point. This conver-
sion is handled by the private _ point_from_string function, which, using
re.match, looks for matches of the pattern in the passed-in string @.

From matches we know there should be two groups named x and y, re-
spectively. The function thus creates and returns an instance of Point whose
x-coordinate is the result of parsing the string captured by the group with
name x as an integer ®. The y-coordinate is, in a similar fashion, the result of
parsing the group named y ®.

Run the application (using the circle-three-points configuration) by click-
ing the green play button. You should see something like this printed to the
shell:

Input is being redirected from --snip--/test.txt
Console output is saving to: --snip--/result.svg
(300, 300)
(700, 400)
(300, 500)

Process finished with exit code 0

Congratulations! You just parsed three points from a file containing
three lines of plaintext. From here on out, all the command line applications
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we’ll create can expect the input data from a file, which you already know
how to parse and interpret using the almighty regular expressions.

The Configuration File

Our application will produce a beautiful vector image of both the input
points and the resulting circle. To do this, we’ll use different colors and line
thicknesses to help visually distinguish its parts. We could directly hard-code
those colors and size values in our code, but that’s not a great idea; our app
will be easier to maintain if we separate the configuration values from the
actual logic. Instead, we’ll keep the configuration values in a separate JSON
file. We’ll use the JSON format because it’s extremely easy to convert to a
Python dictionary.

We say something is hard-coded into the code when there’s no way of changing

it without altering the program’s source code. Configuration values, for instance,
are often hard-coded into the main application’s logic, making them impossible to
change without the need of reading through the code and potentially recompiling the
application. Don’t do that. The fewer times you need to edit and recompile existing
code, the better. Always move configuration values out of the program’s logic into a

file of its own.

Inside circle_from_points, create a new file by right-clicking the package
name and choosing New » File. Enter the name config.json, and in it, write
the contents in Listing 9-6.

{
"input": {
"stroke-color": "#4A90E2",
"stroke-width": 2,
"fill-color": "#ffffffbb",
"label-size": 16,
"font-family": "Helvetica"
})
"output": {
"stroke-color": "#50E3C2",
"stroke-width": 4,
"fill-color": "#ffffff",
"label-size": 14,
"font-family": "Helvetica"
}
}

Listing 9-6: Application configuration inside a JSON file

This file is in JSON, a widely used format. If you happen to be new to
it, you can read more about it at www.json.org/. It looks similar to Python
dictionaries as it stores data in a key-value fashion. Luckily for us, Python has


www.json.org/

an easy way of reading in JSON files: the standard library includes the json
package to handle JSON data.
In input.py, enter the function in Listing 9-7 (don’t forget the imports).

import json
import re

import pkg_resources as res
def read_config():
config = res.resource_string(__name__, 'config.json')

return json.loads(config)

--snip--

Listing 9-7: Reading the configuration

Using the pkg_resources module, this process becomes a breeze. The con-
tents of file config.json are read into a binary string using res.resource_string(),
which, when passed to json.loads, gets us the resulting Python dictionary
with everything parsed and ready to be used. We’ll be using these values
soon.

Problem Model and Resolution

We’ve already parsed the problem’s model: the three instances of our Point

class. Using these, our application should now compute the circle that passes

through all of them. Our earlier work is about to pay off: we already have

the code to do this (check out “Circle Factories” on page 153 for a refresher).
Open main.py and enter the code in Listing 9-8.

from apps.circle from points.input import parse points
from geom2d import make_circle_from_points
if _name__ == "'_main__":
(a, b, ¢) = parse_points()
circle = make_circle from points(a, b, c)
print(circle)

Listing 9-8: Computing the circle passing through the three points

That was easy! We import make_circle_from_points from geom2d and sim-
ply pass it the three points: a, b, and c. To make sure the circle was correctly
computed, we print the resulting circle. Run the application; you should ex-
pect the following string representation for the resulting circle:

circle c = (487.5, 400.0), r = 212.5
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If you open result.svg, that should be its content. This file is where we’re
redirecting our program’s output. There’s only one thing missing from our
program: plotting the output using the SVG format!

Generating Output

Chapter 9

Now that the problem is solved, we need to draw an SVG with the result-
ing circle and input points. Start by creating a new file in circle_from_points
named output.py. Your circle_from_points directory should look like the
following:

circle_from points
|- __init_ .py
- 1nput py

- output py

|
|
|
|- test.txt

In it, enter the code in Listing 9-9.

from geom2d import Circle, Point

def draw_to_svg(points: [Point], circle: Circle, config):
print("Almost there...")

Listing 9-9: First step to generating the output image

We defined a new function, draw_to_svg, which receives a sequence of
points (the input points to the problem), the resulting circle, and a config-
uration dictionary. Note the type hint for a sequence of points: [Point]; it’s
declared by the Point class between square brackets. A sequence type hint
defined like this accepts both lists and tuples.

For now, the function simply prints a message to the standard output,
but we’ll be updating it one step at a time until it finally draws everything.
With this, you can go ahead and give main.py its final look. Modify your
code so that it looks like Listing 9-10.

from apps.circle from_points.input import parse points, read_config
from apps.circle from_points.output import draw_to_svg
from geom2d import make_circle from_points
if _name__ == "'_main__":
(a, b, c) = parse_points()
circle = make_circle from_points(a, b, c)
draw_to_svg((a, b, c), circle, read _config())

Listing 9-10: Main file



This code is concise. There are fundamentally three lines, which, re-

spectively, read the input, solve the problem, and draw the output. With our

main file all set up, let’s fill out draw_to_svg.

Drawing the Output Circle

We'll start by drawing the circle. Open output.py and enter the code in List-

ing 9-11.

from geom2d import make_rect centered, Circle, Point, Vector
from graphic import svg

def draw_to_svg(points: [Point], circle: Circle, config):
® svg output = output_to_svg(circle, config['output'])

® viewbox = make viewbox(circle)
® svg img = svg.svg content(
viewbox.size, svg output, viewbox

)

print(svg_img)

def output_to_svg(circle: Circle, config):
O style = style from config(config)
® label style = label style from config(config)

return [
® svg.circle(circle, style),
@ svg.text(
£'0 {circle.center}',
circle.center,
Vector(0, 0),
label_style

O svg.text(
f'r = {circle.radius}’',
circle.center,
Vector(o, 20),
label_style

]

Listing 9-11: Drawing the resulting circle
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That seems like a lot of code, but don’t worry, we’ll break it down. First,
we update the draw_to_svg function. Using the output_to_svg function we de-
fine later in the code, we create the SVG representation for the circle @.
Note that we’re passing this function config[ 'output'], the output part of the
configuration dictionary.

Then, using make_viewbox, a function we’ve yet to define, we compute the
viewBox for the image @. Using this viewBox, its size, and svg_output, we gener-
ate the image @ and print it to the standard output.

Now let’s look at output_to_svg. This function stores the SVG attributes
for the circle using another function we’ll define shortly (style_from config)
in a variable named style @. The same happens for the styling attributes
we’ll use with the text, generated by label_style_from_config @. The function
returns an array of three SVG primitives: the circle and two labels.

The circle is straightforward; we use our prewritten circle function ®.
Then comes the label indicating where the center of the circle is @, located
with its origin at the center point. Lastly, there’s the label with the informa-
tion about the circle’s radius. This label is located in the center of the circle
but displaced (0, 20) so that it appears below the former ©.

You may remember we said that when displacing the label by a vector (0, 20), it ap-
pears below the other. A positive number in the y-coordinate of the vector should pro-
duce an upward displacement and hence move the label on top of the other. But re-
member that in SVG the y-axis points downward. We could fix that by applying an
affine transformation, but we won’t right now.

To compute the viewBox, enter the code in Listing 9-12 under output_to_svg.

--snip--

def make_viewbox(circle: Circle):
height = 2.5 * circle.radius
width = 4 * circle.radius
return make_rect_centered(circle.center, width, height)

Listing 9-12: Computing the viewBox for the image

This function computes the rectangle that defines the visible portion
of the image. If you need a refresher, go back to section “The viewBox” on
page 207. To construct the rectangle, we use the make_rect_centered factory
function, which is pretty convenient now that we need a rectangle contain-
ing a circle. The height of the rectangle is 2.5 times the radius of the circle,
that is, the diameter plus some margin. For the width, we use 4 times the
radius (or 2 times the diameter), as we need some room for the labels we’ll
draw. I came up with these values by pure trial and error, but feel free to
adjust them based on your experiments. They’ll basically add more or less
margin to your drawing; that’s all.

Figure 9-7 describes the layout of the SVG image we’re drawing for
reference.
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Figure 9-7: The SVG output layout

Let’s implement the functions that generate the SVG styling attributes.
Toward the end of your file output.py, enter the code in Listing 9-13.

--snip--

def style from_config(config):
return [
svg.stroke_color(config['stroke-color']),
svg.stroke width(config['stroke-width']),
svg.fill color(config['fill-color'])

]

Listing 9-13: Creating styles from configuration

The style_from_config function creates a list of SVG attributes using the
values from the configuration dictionary. Let’s do the same for the label’s
style (see Listing 9-14).

--snip--

def label style from config(config):
return [
svg.font_size(config['label-size']),
svg.font_family(config['font-family']),
svg.fill color(config['stroke-color'])

]

Listing 9-14: Creating label styles from configuration

That’s it! We have all the code needed to draw the resulting circle in a
cyanish color. If you run the application now, you should see how the shell
spits out some SVG code, the same that is written in the file result.svg. Open
this file using your favorite browser. The result should be something similar
to Figure 9-8.
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Figure 9-8: The SVG output circle

There you go! We solved our first geometry problem and plotted the
result into a vector image. Isn’t that super exciting? Go ahead and play with
the configuration. Try changing the color for the output and rerunning the
application.

Drawing the Input Points

It’s nice that we drew the resulting circle with captions that indicate the posi-
tion of the center and the radius, but the resulting image doesn’t include in-
formation about the input points that generated the circle. Let’s draw those
so that one can get all the information from a single glance at the resulting
image.

Let’s create a new function that is similar to output_to_svg but produces
the SVG primitives that represent the input points. We’ll represent these
points as circles as well. In output.py enter the code in Listing 9-15.

--snip--

def input_to_svg(points: [Point], point_radius: float, config):
style = style from_config(config)
label style = label style from config(config)

@ [a, b, c] = points

® disp = Vector(1.25 * point_radius, 0)

® return [
svg.circle(Circle(a, point_radius), style),
svg.circle(Circle(b, point_radius), style),
svg.circle(Circle(c, point_radius), style),
svg.text(f'A {a}', a, disp, label style),
svg.text(f'B {b}', b, disp, label style),



svg.text(f'C {c}', c, disp, label style)
]

Listing 9-15: Drawing the input points

The input_to_svg function gets passed a list with the three input points,
the radius to use for representing the points, and the input configuration
dictionary.

As you’ll see, we’ll use a fraction of the size of the resulting circle as the
radius for the input points. This is so that they look good no matter the size
of the resulting image. Using a fixed number for their radius could result in
tiny, almost invisible circles for certain inputs and monstrous circles bigger
than the resulting one for others.

The styles for both the points and their labels are computed using the
same functions we used before: style from config and label style from config.
The points in the sequence are destructured into variables a, b, and c so that
we can conveniently use them @.

Because we’ll need to move the labels a bit to the right so they don’t
overlap with their circle, we construct a displacement vector, disp @. The
function returns the array of circles with their labels .

Now update function draw_to_svg so that it also includes the three points
in the resulting image (see Listing 9-16).

def draw_to_svg(points: [Point], circle: Circle, config):
@ pt radius = circle.radius / 20
svg_output = output_to svg(circle, config['output'])
® svg_input = input_to_svg(points, pt_radius, config['input'])

viewbox = make_viewbox(circle)

svg_img = svg.svg content(

® viewbox.size, svg output + svg input, viewbox
)

print(svg_img)

--snip--

Listing 9-16: Drawing to SVG

As mentioned, the radius for the input points needs to be a fraction of
that from the resulting circle, so we chose one-twentieth of its radius @. If
you think the resulting circles are too big or too small, you can change that
value and experiment until you’re happy with the result. This value could be
perfectly fine as part of the application’s configuration, but we’ll keep it as
an implementation detail for the sake of simplicity.

After we compute pt_radius, we compute the SVG primitives for the out-
put as before. Then we compute the SVG primitives for the input using the
input_to_svg function and store the result in svg_input @.

After creating a viewBox, we update the contents of the SVG image by
appending svg_input to svg_output ®. It’s important that svg_input goes after
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svg_output, as the image primitives are drawn in order. If you switched the
order to this,

svg_input + svg_output

you’d see the input point circles behind the big circle.
You’re now ready to run the application and then reload the result.svg
file in the browser. The result should look like Figure 9-9.

Figure 9-9: An SVG with the complete result

Result

For your reference, Listing 9-17 contains the finished version of output.py.

from geom2d import make_rect centered, Circle, Point, Vector
from graphic import svg

def draw_to_svg(points: [Point], circle: Circle, config):
pt_radius = circle.radius / 20
svg_output = output_to_svg(circle, config['output'])
svg_input = input_to_svg(points, pt_radius, config['input'])

viewbox = make_viewbox(circle)
svg_img = svg.svg_content(
viewbox.size, svg output + svg input, viewbox

)

print(svg_img)
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def

def

def

def

output_to_svg(circle: Circle, config):
style = style from_config(config)
label style = label style from config(config)

return [
svg.circle(circle, style),
svg. text(
f'0 {circle.center}’',
circle.center,
Vector(o, 0),
label_style

))

svg.text(
f'r = {circle.radius}',
circle.center,
Vector(o, 20),
label _style

)

input_to_svg(points: [Point], point_radius: float, config):
style = style from_config(config)

label style = label style from config(config)

[a, b, c] = points

disp = Vector(1.25 * point_radius, 0)

return [
svg.circle(Circle(a, point_radius), style),
svg.circle(Circle(b, point_radius), style),
svg.circle(Circle(c, point radius), style),
svg.text(f'A {a}', a, disp, label style),
svg.text(f'B {b}', b, disp, label style),
svg.text(f'C {c}', c, disp, label style)

style_from_config(config):

return [
svg.stroke_color(config['stroke-color']),
svg.stroke width(config['stroke-width']),
svg.fill color(config['fill-color'])

label style from config(config):
return [
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svg.font_size(config['label-size']),
svg.font_family(config['font-family']),
svg.fill color(config['stroke-color'])

def make_viewbox(circle: Circle):
height = 2.5 * circle.radius
width = 4 * circle.radius
return make rect centered(circle.center, width, height)

Listing 9-17: Drawing to SVG result

Flip the Y-Axis

As you know by now, the SVG y-axis points downward. Point C at y = 500, for
instance, is below A with y = 300. This isn’t necessarily bad, but it may be the
opposite of what you’re used to.

Here’s a challenge for you: modify output.py so that the SVG produced
uses an affine transformation such that the y-axis is flipped and therefore
points upward. If you need a clue, go back to the section “Space Transfor-
mation” from Chapter 8.

Note that if you choose to add an affine transformation that flips the
y-axis of the entire SVG image, as follows,

<svg --snip-- transform="matrix(1 0 0 -1 0 0)">
--snip--
</svg>

all of the text labels will also flip vertically, which makes them impossible to
read. Try to address this problem by also adding an affine transformation to
all captions so that you basically flip them twice.

This is challenging, but a great exercise for you to try. Don’t worry, we’ll
explore this in depth in Part V.

Distributing Our Application

Chapter 9

The word has spread among your friends, and they’ve all heard about your
achievement: you developed an application that computes the circle passing
through three points and plots a beautiful vector image with the result. They
know you’ve accomplished this all by yourself, without using any third-party
library. They are amazed; “That is so hardcore,” you’ve even heard them say.
They want to try it, and they’ve prepared a few input files to test your pro-
gram. You share the code with them, and as they know Python, they open
the shell and try to execute your main.py script, only to discover there’s a
strange error that won’t let the program run.

It’s unfortunate that to load all the modules that your application uses,
there’s a trick that PyCharm does and we need to account for. But don’t



worry, we’ll explore why the error happens and give a solution to it. You can
use what you’ll learn here to distribute any application that we build in this
book, or even those that you write yourself.

Understanding the Problem

Let’s try to run our recently created program from the shell, without any
change, to see whether we get the same result as from the IDE. In the bash
shell (the one in your IDE or your system’s), navigate to the app’s directory,

$ cd apps/circle_from_points

and run this:

$ python3 main.py < test.txt

Surprisingly, it doesn’t work:

Traceback (most recent call last):
File "main.py", line 6, in <module>
from apps.circle from points.input import --snip--
ModuleNotFoundError: No module named ‘apps’

This is the error we get:

ModuleNotFoundError: No module named 'apps'

This is telling us that Python couldn’t find the apps module when it tried
to import it. But if that’s the case, why was it running correctly from the IDE
using the run configuration? Well, PyCharm’s run configurations do a trick
under the hood, a trick we now need to do ourselves.

When a script imports modules, Python looks for them in specific di-
rectories. To know what those directories are exactly, you can query them
at runtime: Python stores them at sys.path, which is a list that contains all
the paths where Python looks for libraries in your machine. Python also ap-
pends the path to the script itself; this path is known as the working directory.

The problem that we encountered is that sys.path doesn’t get the par-
ent path of our project appended. That is unfortunate because this is where
it should go to find our geom2d, graphic, and apps packages. PyCharm’s run
configuration worked fine because it appends this path to sys.path. Let’s
check this fact by printing the contents of sys.path to the shell inside the
main script and then run it again using the run configuration. Open the
main.py file and at the top of the file add the following:

import sys
print(sys.path)

--snip--

Notice that the print statement goes right after importing sys and before
the rest of the imports. You may get a PyCharm warning that doing this is
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conceptually wrong according to PEP-8 standards—ignore that warning. We
want that print right before Python attempts to load anything else; other-
wise, we’d get the same error as before when the script is run from the shell
and never get to print sys.path. If you now rerun the project using the run
configuration, the output you’ll get should be similar to the following:

/usr/local/bin/python3.7 --snip--/main.py
Input is being redirected from --snip--/test.txt
Console output is saving to: --snip--/result.svg

['--snip--/Mechanics/apps/circle_from points',
'--snip--/Mechanics ',
'--snip--/Python.framework/Versions/3.7/1ib/python37.zip",
'--snip--/Python.framework/Versions/3.7/1ib/python3.7",
'--snip--/Python.framework/Versions/3.7/1ib/python3.7/1ib-dynload",
'--snip--/Python/3.7/1ib/python/site-packages"',
"/usr/local/1lib/python3.7/site-packages']

Can you spot the second line (in bold) from the sys.path list? That line
is the key to solving the problem of not finding the included modules inside
our program. Let’s run the script now from the shell to see what that list of
paths contains. In the IDE’s shell, navigate to the app’s directory and run
this:

$ python3 main.py < test.txt

This time the output is as follows:

['--snip--/Mechanics/apps/circle_from_points',
'--snip--/Python.framework/Versions/3.7/1ib/python37.zip",
'--snip--/Python.framework/Versions/3.7/1ib/python3.7',
'--snip--/Python.framework/Versions/3.7/1ib/python3.7/1ib-dynload’,
'---snip--/Python/3.7/1ib/python/site-packages',
"/usr/local/lib/python3.7/site-packages']

Can you see how the Mechanics directory isn’t listed here as a search path? If
that directory isn’t included, Python won’t be able to find any module from
that route when running our application.

Delete the two lines you added to main.py so that the file looks like it did
before, and let’s explore some possible solutions.

Finding a Solution

The problem is clear: Python can’t load our libraries since it doesn’t have
their parent directory listed as a search path. Let’s see how we can solve this.
We’ll present two options, so we’ll try to understand their pros and cons be-
fore we decide which one works best for us.



®Q

Appending to sys.path
One possible solution is to do what PyCharm’s run configuration does: ap-
pend the parent directory of our project to sys.path before Python attempts

to import anything from it. We could modify main.py so that it looks like
Listing 9-18.

import os
import sys

parent_path = os.path.normpath(os.path.join(os.getcwd(), '..", '.."))
sys.path.append(parent_path)

from apps.circle from_points.input import parse points, read config
from apps.circle from_points.output import draw_to_svg
from geom2d import make_circle from_points

if _name__ == "'_main__':
(a, b, ¢) = parse_points()
circle = make_circle from points(a, b, c)
draw_to_svg((a, b, c), circle, read config())

Listing 9-18: Appending to sys.path

We first import both the os and sys modules. We then compute the
project’s parent path by obtaining the current working directory (os.getcwd())
and navigating two steps back ('..", '..") @.

We’re using the os.path.normpath function to normalize the path so that it
doesn’t contain the dots representing a backward movement in the directory
tree. This function transforms a path like

/Documents/MechBook/code/Mechanics/../..
into the following:
/Documents/MechBook

That path is appended to sys.path before any other import attempts
to load anything from our project @. If you run the app from the shell, it
should run error free.

$ python3 main.py < test.txt

This solution works, but it still seems a bit awkward that we have to make
users navigate into the apps/circle_from_points directory to run our script: it’d
be more convenient if we could run the program from the parent directory
of our project. Furthermore, the lines we added to main.py look a bit ugly
and have nothing to do with solving the problem of finding the circle pass-
ing through three points. We don’t want to add those lines to every applica-
tion that we implement; that’s unnecessary complexity we want to avoid.
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Let’s try a different approach that doesn’t involve changing the code
in our main script: let’s create a bash script that appends the right working
directory path to the Python script’s execution. Start by undoing what we
did in Listing 9-18 so your main.py file looks the same as in Listing 9-10.

Wrapping the App with a Script

For what we just saw in the previous section, every package that our main.py
script needs to run should be accessible either from the working directory
or from any other path listed in sys.path.

Remember that the working directory is where the executing file (in this case main.py)
is located.

Apart from appending paths to sys.path inside our Python code, we
can also include paths in an environment variable: PYTHONPATH. When a Python
script is run, it includes all paths defined in PYTHONPATH inside its sys.path.

We can therefore create a bash script at the project’s top level, which
sets the right paths in PYTHONPATH and then executes our app’s main.py. Re-
member that we use bash scripts to group a set of command line statements
and run them together by executing a single file (revisit Chapter 3 for a re-
fresher).

At the top level of the project (at the same level as geom2d or apps), cre-
ate a new file named cifpts.sh (an abbreviation of “circle from points”). In it,
write the line in Listing 9-19.

PYTHONPATH=$PWD python3 apps/circle_from_points/main.py

Listing 9-19: Wrapper script

The first thing we do in this line is define an environment variable
PYTHONPATH with a value set to the current directory; the current directory is
stored inside another Unix environment variable: PWD.

Then, in the same line, we run main.py in apps/circle_from_points. Having
the definition of PYTHONPATH in the same line where the script is run scopes
the environment variable to the execution of the script only. This means
that once the script is done, the variable doesn’t exist anymore.

Let’s try running the script from the shell passing the file fest. txt:

$ bash cifpts.sh < apps/circle_from_points/test.txt

That should’ve printed the SVG output to the shell. We can even make the
bash script appear as an executable by changing its user rights:

$ chmod +x cifpts.sh

This allows us to further simplify the execution:

$ ./cifpts.sh < apps/circle_from_points/test.txt




Remember that the output needs to be redirected to a file if we want the
result written to it instead of being printed to the shell:

$ ./cifpts.sh < apps/circle_from_points/test.txt > result.svg

This looks more like something we want to share with our friends, all
of whom have longed to have a script that computes the circle that passes
through any three points.

Running the App Without an Input File

It’s interesting to note that although we’ve been passing the script a file con-
taining the definition of three points by their coordinates, our code just ex-
pects three lines from the standard input. This means we don’t have to cre-
ate a file to pass our script. We can simply execute the script and write the
expected input. If you try this in the shell,

$ ./cifpts.sh > result.svg
$ 300 300
$ 700 400
$ 300 500

you’ll get an image named result.svg with the result inside the current direc-
tory. As you see, you can directly give your program its input data from the
shell.

Summary

In this chapter, we’ve developed our first application: a command line tool
that reads a file, parses it using regular expressions, and produces a beau-
tiful SVG vector image. This application has integrated a lot of knowledge
that we’ve been acquiring throughout the past chapters and has taught us
about regular expressions.

We also analyzed the problem that caused our modules to not be found
by Python when the application was run from the shell. We learned that this
happened because our project’s root folder, Mechanics, wasn’t part of the list
of directories Python uses to resolve imports. You can now easily distribute
your Mechanics project to your friends so that they can play with the applica-
tions that we’ll be creating throughout the book, which will conveniently be
wrapped into top-level bash scripts.
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GRAPHICAL USER INTERFACES
AND THE CANVAS

Before we dive into simulations, we need
to understand the basics of graphical user
interfaces (GUIs). This is a massive topic,
and we’ll barely scratch the surface, but we’ll
see enough for us to present our simulations to the
user.

GUIs typically consist of a parent window (or windows) containing
widgets the user can interact with, such as buttons or text fields. For our
goal of drawing simulations, the widget we’re most interested in is the can-
vas. In a canvas we can draw geometric primitives, and we can redraw them
many times per second, something that we’ll use to create the perception of
motion.

In this chapter, we’ll cover how to lay out a GUI using Tkinter, a package
shipped with Python’s Standard Library. Once we’ve got that down, we’ll
implement a class that will make drawing our geometric primitives to the
canvas convenient. This class will also include an affine transformation as
part of its state. We’ll use this to affect how all primitives are drawn to the
canvas, which will allow us to do things such as flip the drawing vertically so
that the y-axis points up.
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Tkinter is a package that ships with Python’s Standard Library. It’s used for
building graphical user interfaces. It provides the visual components, in
other words, the widgets, such as buttons, text fields, and windows. It also
provides the canvas, which we’ll use to draw the frames of our simulations.

Tkinter is a feature-rich library; there are entire books written on it (see,
for example, [7]). We'll only cover what we need for our purposes, but if you
enjoy creating GUISs, I recommend you spend some time looking through
Tkinter’s documentation online; there’s a lot you can learn that will help you
build fancy GUIs for your programs.

Our First GUI Program

Let’s create a new package in the graphic folder where we’ll place our sim-
ulation code. Right-click graphic, choose New » Python Package, name it
simulation, and click OK. The folder structure in your project should look
like this:

Mechanics
|- apps

| |- circle_from_points

|- geom2d

| |- tests

|- graphic

| |- simulation

| |- svg

|

Let’s now create our first GUI program to get acquainted with Tkin-
ter. In the newly created simulation folder, add a new Python file named
hello_tkinter.py. Enter the code in Listing 10-1.

from tkinter import Tk

tk = Tk()
tk.title("Hello Tkinter")

tk.mainloop()

Listing 10-1: Hello Tkinter

To execute the code in the file, right-click it in the Project tree panel and
choose Run ‘hello_tkinter’ from the menu that appears. When you execute
the code, an empty window with the title “Hello Tkinter” opens, as shown in
Figure 10-1.



® ® @ Hello Tkinter

Figure 10-1: The empty Tkinter window

Let’s review the code we’ve just written. We start by importing the Tk
class from tkinter. The tk variable holds an instance of Tk, which represents
the main window in a Tkinter program. This window is also referred to as
root in the documentation and examples online.

We then set the title of the window to Hello Tkinter and run the main
loop. Notice that the main window won’t appear on the screen until the main
loop starts. In a GUI program, the main loop is an infinite loop: it runs the
entire time the program is being executed; as it runs, it collects user events
in its windows and reacts to them.

Graphical user interfaces are different than the other programs we’ve
been writing so far in that they’re event driven. This means that graphic com-
ponents can be configured to run some code whenever they receive an event
of the desired type. For example, we can tell a button to write a message
when it receives a click event, that is, when it gets clicked. The code that re-
acts to an event is commonly known as an event handler.

Let’s add a text field where the user can write their name, and let’s add a
button to greet them by name. Modify your kello_tkinter. py file to include the
code in Listing 10-2. Pay attention to the new imports on top of the file.

from tkinter import Tk, Label, Entry, Button, StringVar

tk = Tk()
tk.title("Hello Tkinter")

@ label(tk, text='Enter your name:').grid(row=0, column=0)

® name = StringVar()

® Entry(tk, width=20, textvariable=name).grid(row=1, column=0)
O Button(tk, text='Greet me').grid(row=1, column=1)

tk.mainloop()

Listing 10-2: Hello Tkinter widgets
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To add the label “Enter your name:” we’ve instantiated the Label class
from tkinter @. We pass the constructor the reference to the program’s
main window (tk) and a named argument with the text to display:
text="Enter your name:'. Before the label can appear in the window, we need
to tell it where to place itself in the window.

On the created instance of Label, we call grid with the named arguments
row and column. This method places the widget in an invisible grid in the
window, in the given row and column indices. Cells in the grid adapt their
size to fit their contents. As you can see in the code, we call this method on
every widget to assign them a position in the window. Figure 10-2 shows our
UI’s grid. There are other ways of placing components in windows, but we’ll
use this one for now because it’s flexible enough for us to easily arrange
components.

row = 0

col=0 -

row = | row = 1
i —

col =0 g col =1

Figure 10-2: Tkinter grid

The input field in Tkinter is known as Entry ®. To have access to the
contents of the field (the text written to it), we must first create a StringVar,
which we’ll call name ®. This variable is passed to the Entry component us-
ing the textvariable argument. We can get the string written in the field by
invoking get on the instance, as we’ll do shortly. Lastly, we create a button
with the text “Greet me” @; this button does nothing if clicked (we’ll add
that functionality shortly).

Run the file. You should now see a label, a text field, and a button, as in
Figure 10-3.

CCN ) Hello Tkinter
Enter your name:

Greet me

Figure 10-3: Some Tkinter widgets

Let’s finish our program by adding an event handler to the button’s
click, which opens a new dialog with a greeting message. Modify your code
so that it looks like Listing 10-3.

from tkinter import Tk, Label, Entry, Button, StringVar, messagebox

tk = Tk()
tk.title("Hello Tkinter")



O def greet_user():
messagebox. showinfo(
'Greetings’,
f'Hello, {name.get()}'

Label(tk, text='Enter your name:').grid(row=0, column=0)
name = StringVar()
Entry(tk, width=20, textvariable=name).grid(row=1, column=0)
Button(

tk,

text="'Greet me',
® command=greet_user
).grid(row=1, column=1)

tk.mainloop()

Listing 10-3: Hello Tkinter that greets users

We’ve added a function named greet_user @. This function opens an
information dialog with the title “Greetings” and a message saying hello to
the name the user entered in the text field. Note that we import messagebox
from tkinter to call the showinfo function. This function does the actual work
of opening the dialog. To connect the button click event to our greet_user
function, we need to pass it to Button’s constructor in a parameter named
command @.

Run the file now. Don’t forget to close our application’s window and
rerun the program every time you want your new code to be executed. Enter
your name in the text field and click the button. The program should open
a new dialog with a personalized greeting, something similar to Figure 10-4.

Greetings

Q Hello, Angel

Hello Tkinter B

Enter your name:

Angel Greet me
Figure 10-4: Our Tkinter greeter program

There’s much more Tkinter can do, but we won’t need that much for
this book. We’re mostly interested in using its canvas component, which
we’ll explore in the next section. If you want to learn more about Tkinter,
you have lots of great resources online. You can also refer to [7], as men-
tioned earlier.
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The Canvas

A canvas is a surface to paint on. In Tkinter’s digital world, it’s the same.
The canvas component is represented by the Canvas class in tkinter.

Let’s create a new Tkinter application where we can experiment with
drawing to the canvas. In the simulation folder, create a new file named
hello_canvas.py and enter the code in Listing 10-4.

from tkinter import Tk, Canvas

tk = Tk()
tk.title("Hello Canvas")

canvas = Canvas(tk, width=600, height=600)
canvas.grid(row=0, column=0)

tk.mainloop()

Listing 10-4: Hello Canvas

The code creates a Tkinter application with its main window and a 600
by 600—pixel canvas. If you run the file, you should see an empty window
with the title “Hello Canvas.” The canvas is there; it’s just that there’s noth-
ing drawn yet.

Drawing Lines

Let’s start easy and draw a line on the canvas. Just between creating the can-
vas and starting the main loop, add the following line:

--snip--
canvas.create line(0, 0, 300, 300)

tk.mainloop()

The arguments passed to create_line are, respectively, the x- and y-coordinates
of the start point and the x- and y-coordinates of the end point.

Run the file again. There should be a line segment going from the upper-
left corner, (0, 0), to the center of the screen, (300, 300). As you can guess,
the origin of coordinates is in the upper-left corner of the screen with the
y-axis pointing downward. Later when we’re animating simulations, we’ll use
affine transformations to fix this.

By default, lines are drawn with a width of 1 pixel and painted in black,
but we can change this. Try the following:

canvas.create line(
0, 0, 300, 300,
width=3,
fil1="#aa3355"
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The line is now thicker and has a reddish color. Your result should look
like Figure 10-5.

(XX ) Hello Canvas

Figure 10-5: A line on a Tkinter canvas

Drawing Ovals

Let’s draw a circle in the middle of our application’s window using the same
color as the previous line:

--snip--

canvas.create_oval(
200, 200, 400, 400,
width=3,
outline="'#aa3355"

tk.mainloop()

The arguments passed to create_oval are the x- and y-coordinates of the
upper-left vertex of the rectangle that contains the oval, and the x- and y-
coordinates of the lowerright vertex. These are followed by the named argu-
ments used to determine the line’s width and color: width and outline.

If you run the file, you’ll see a circle in the center of the window. Let’s
turn it into a proper oval by making it 100 pixels wider, maintaining its height
of 400 pixels:

canvas.create_oval(
200, 200, 500, 400,
width=3,
outline="#aa3355"
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By changing the x-coordinate of the lower-right corner from 400 to 500,
the circle turns into an oval. The application now has a canvas with both a
line and an oval, as in Figure 10-6.

LXK ) Hello Canvas

Figure 10-6: An oval added to our Tkinter
canvas

If we wanted to add a fill color to the oval, we could do so using the
named argument fill="...'. Here’s an example:

canvas.create_oval(
200, 200, 500, 400,
width=3,
outline="#aa3355",
fill="#cc3355",

There’s one limitation, though: Tkinter doesn’t support transparency,
which means all of our fills and strokes will be completely opaque. The color
format #rrggbbaa where aa is the value for the alpha (transparency) is not sup-
ported in Tkinter.

Drawing Rectangles
Drawing rectangles is also pretty straightforward. Enter this code in the file:

--snip--

canvas.create_rectangle(
40, 400, 500, 500,
width=3,
outline="#aa3355"

)

tk.mainloop()




The mandatory arguments to create_rectangle are the x- and y-coordinates
of the upper-left corner of the rectangle and the x- and y-coordinates of the
lower-right corner.

Run the file; the result should look like Figure 10-7.

LXK ) Hello Canvas

Figure 10-7: A rectangle added to our Tkinter
canvas

Nice! The resulting image is getting weirder, but isn’t it easy and fun to
draw on the canvas?

Drawing Polygons

The last geometric primitive we need to know how to draw is a generic poly-
gon. After the code you added to draw the rectangle, write the following:

--snip--

canvas.create_polygon(
[40, 200, 300, 450, 600, 0],
width=3,
outline="#aa3355",
fill=""

tk.mainloop()

The first parameter to create_polygon is a list of vertex coordinates. The rest
are the named parameters that affect its style. Notice that we pass an empty
string to the fill parameter; by default polygons get filled, but we want ours
to be only an outline. Run the file to see the result. It should resemble
Figure 10-8.
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LXX ) Hello Canvas

N

Figure 10-8: A polygon added to our Tkinter
canvas

We created a triangle with vertices (40, 200), (300, 450), and (600, 0). Try
adding a fill color and seeing what results.

Drawing Text

It isn’t a geometric primitive, but we may also need to draw some text to the
canvas. Doing so is easy using the create_text method. Add the following to
hello_canvas.py:

--snip--

canvas.create_text(
300, 520,
text="'This is a weird drawing',
fill="#aa3355",
font="Helvetica 20 bold'

tk.mainloop()

The first two parameters are the x and y position for the center of the text.
The named parameter text is where we set the actual text we want to draw;
we can change its font using font. Run the file one last time to see the com-
plete drawing, as shown in Figure 10-9.

If we can draw lines, circles, rectangles, generic polygons, and text, we
can draw pretty much anything. We could also use arcs and splines, but we’ll
manage to do our simulations using only these simple primitives.



LXK ) Hello Canvas.

Y

This is a weird drawing

Figure 10-9: Text added to our Tkinter canvas

Your final code should look like Listing 10-5.

from tkinter import Tk, Canvas

tk = Tk()
tk.title("Hello Canvas")

canvas = Canvas(tk, width=600, height=600)

canvas.grid(row=0, column=0)

canvas.create_line(
0, 0, 300, 300,
width=3,
fill="#aa3355"

)

canvas.create_oval(
200, 200, 500, 400,
width=3,
outline="#aa3355"

)

canvas.create_rectangle(
40, 400, 500, 500,
width=3,
outline="#aa3355"

)

canvas.create_polygon(

[40, 200, 300, 450, 600, 0],

width=3,
outline="'#aa3355",
fill=""

)

canvas.create_text(
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300, 520,
text="This is a weird drawing',
fill="#aa3355",
font="Helvetica 20 bold’

tk.mainloop()

Listing 10-5: Final drawing code

Now that we know how to draw simple primitives to the canvas, let’s
come up with a way of drawing our geom2d library’s geometric primitives
directly to the canvas.

Drawing Our Geometric Primitives

Chapter 10

Drawing a circle to the canvas was easy using its create_oval method. This
method is, nevertheless, not convenient; to define the circle, you need to
pass the coordinates of two vertices that define a rectangle where the cir-
cle or oval is inscribed. On the other hand, our class Circle is defined by its
center point and radius, and it has some useful methods and can be trans-
formed using instances of AffineTransform. It would be nice if we could di-
rectly draw our circles like so:

circle = Circle(Point(2, 5), 10)
canvas.draw_circle(circle)

We definitely want to work with our geometry primitives. Similar to how
we created SVG representations of them in Chapter 8, we’ll need a way to
draw them to the canvas.

Here’s the plan: we’ll create a wrapper for Tkinter’s Canvas widget. We’ll
create a class that contains an instance of the canvas where we want to draw
but whose methods allow us to pass our own geometric primitives. To lever-
age our powerful affine transformation implementation, we’ll associate
a transformation to our drawing so that all primitives we pass will first be
transformed.

The Canvas Wrapper Class

A wrapper class is simply a class that contains an instance of another class
(what it’s wrapping) and is used to provide a similar functionality as the
wrapped class, but with a different interface and some added functionality.
It’s a simple yet powerful concept.

In this case, we’re wrapping a Tkinter canvas. Our canvas wrapper goal
is to allow us to draw our geometric primitives with a simple and clean inter-
face: we want methods that directly accept instances of our primitives. This
wrapper will save us from the repetitive task of adapting the representation
of the geometric classes to the inputs expected by the Tkinter canvas’s draw-



ing methods. Not only that, but we’ll also apply an affine transformation to
everything that we draw. Figure 10-10 depicts this process.

In the simulation package, create a new file named draw.py. Enter the
code in Listing 10-6.

from tkinter import Canvas

from geom2d import AffineTransform

class CanvasDrawing:

def _init (self, canvas: Canvas, transform: AffineTransform):
self. canvas = canvas
self.outline_color = '#aa3355"
self.outline_width = 3
self.fill color = '
self.transform = transform

def clear_drawing(self):
self. canvas.delete('all")

Listing 10-6: Canvas wrapper class

The class CanvasDrawing is defined as a wrapper to the Tkinter canvas.

An instance of the canvas is passed to the initializer and stored in a private
variable, _ canvas. Making _ canvas private means we don’t want anyone us-
ing CanvasDrawing to access it directly. It now belongs to the wrapper class
instance, and it should only be used with its methods.

An instance of AffineTransform is also passed to the initializer. We’ll apply
this affine transformation to all geometric primitives before we draw them to
Tkinter’s canvas. The transformation is stored in a public variable: transform.
This means we’re allowing users of CanvasDrawing instances to directly manip-
ulate and edit this property, which is part of the state of the instance. We do
this so that it’s simple to alter the affine transformation applied to the draw-
ing, by reassigning the transform property to a different transformation.

The state of an instance defines its behavior: if the state changes, the in-
stance’s behavior changes as well. In this case, it’s clear that if the property
transform is reassigned a different affine transformation, all subsequent draw-
ing commands will produce results in accordance with it.

Figure 10-10 is a diagram representing the behavior of our canvas wrap-
per class. It'll receive draw requests for different geometric primitives, apply
the affine transformation to them, and then call the Tkinter’s canvas meth-
ods to draw into it.
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Figure 10-10: The canvas wrapper class

There are other state variables defined in the initializer: outline_color,
which defines the color used for the outline of geometries, outline_width for
the width of the outlines, and fill_color for the color used to fill the geome-
tries. These are given default values in the initializer (those used in our ex-
ample in the previous section) but are also public and accessible for users
of the instance to change them. Like before, it should be clear that these
properties are part of the state of the instance: if we edit outline_color, for
example, all subsequent drawings will use that color for the outlines.

We’ve defined only one method in the class: clear_drawing. This method
will clean the canvas for us before drawing each of the frames. Let’s now
focus on the drawing commands.

Drawing Segments

Let’s start with the simplest primitive to draw: the segment. In the Canvas
Drawing class, enter the method in Listing 10-7. For this code you first need
to update the imports from geom2d to include the Segment class.

from tkinter import Canvas

from geom2d import Segment, AffineTransform

class CanvasDrawing:
--snip--

def draw_segment(self, segment: Segment):
segment_t = self.transform.apply to_segment(segment)
self. canvas.create_line(
segment_t.start.x,
segment_t.start.y,
segment_t.end.x,
segment_t.end.y,
fill=self.outline_color,
width=self.outline_width



)

Listing 10-7: Drawing a segment

Note how we’re passing the self.outline_color value to the fill parameter. That
looks like an error, but unfortunately, Tkinter picked a bad name. The fill at-
tribute is used for the stroke’s color in a create_line command. A better name would
have been outline or, even better, stroke-color.

The draw_segment method does two things: first it transforms the given
segment using the current affine transformation and stores the result in
segment_t. Then it calls the create_line method from the canvas instance. For
the outline color and width, we use the state variables of the instance.

Let’s move on to polygons, circles, and rectangles.

Drawing Polygons

If you recall from “Transform Segments and Polygons” on page 179, once
an affine transformation is applied to a circle or rectangle, the result is a
generic polygon. This means that all three polygons will be drawn using the
create_polygon method from the canvas.

Let’s create a private method that draws a polygon to the canvas, forget-
ting about the affine transformation; that part will be handled by each of the
public drawing methods.

In your CanvasDrawing class, enter the private method in Listing 10-8.

from functools import reduce
from tkinter import Canvas

from geom2d import Polygon, Segment, AffineTransform

class CanvasDrawing:
--snip--

def _ draw_polygon(self, polygon: Polygon):
vertices = reduce(
list. add_,
[[v.x, v.y] for v in polygon.vertices]

)

self._canvas.create_polygon(
vertices,
fill=self.fill _color,
outline=self.outline_color,
width=self.outline width

)

Listing 10-8: Drawing a polygon to the canvas
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For this code you need to add the following import,

from functools import reduce

and update the imports from geom2d:

from geom2d import Polygon, Segment, AffineTransform

The _ draw_polygon method first prepares the vertex coordinates of the
polygon to meet the expectations of the canvas widget’s create_polygon met-
hod. This is done by reducing a list of lists of vertex coordinates with Python’s
list __add__ method, which, if you recall, is the method that overloads the +
operator.

Let’s break this down. First, the polygon’s vertices are mapped using a
list comprehension:

[[v.x, v.y] for v in polygon.vertices]

This creates a list with the x- and y-coordinates from each vertex. If the ver-
tices of the polygon were (0, 10), (10, 0), and (10, 10), the list comprehension
shown earlier would result in the following list:

([0, 10], [10, 0], [10, 10]]

This list then needs to be flattened: all values in the inner lists (the numeric
coordinates) have to be concatenated into a single list. The result of flatten-
ing the previous list would be as follows:

[0, 10, 10, 0, 10, 10]

This is the list of vertex coordinates the method create_polygon expects. This
final flattening step is achieved by the reduce function; we pass it the list

_ add__ operator, and it produces a new list that results from concatenat-
ing both list operands. To see that in action, you can test the following in
Python’s shell:

>»>> [1, 2] + [3, 4]
[1, 2, 3, 4]

Once the list of vertex coordinates is ready, drawing it to the canvas is
straightforward: we simply pass the list to the canvas’s create_polygon method.
Now that the hardest part is done, drawing our polygons should be easier.
Enter the code in Listing 10-9 to your class.

from functools import reduce
from tkinter import Canvas

from geom2d import Circle, Polygon, Segment, Rect, AffineTransform

class CanvasDrawing:



--snip--

def draw_circle(self, circle: Circle, divisions=30):
self._ draw_polygon(
self.transform.apply to circle(circle, divisions)

)

def draw_rectangle(self, rect: Rect):
self._ draw_polygon(
self.transform.apply to rect(rect)

)

def draw_polygon(self, polygon: Polygon):
self._draw_polygon(
self.transform.apply to_polygon(polygon)

)

Listing 10-9: Drawing circles, rectangles, and generic polygons

Don’t forget to add the missing imports from geom2d:

from geom2d import Circle, Polygon, Segment, Rect, AffineTransform

In all three methods, the process is the same: call the private method
_ draw_polygon and pass it the result of applying the current affine transfor-
mation to the geometry. Don’t forget that in the case of a circle, we need
to pass the number of divisions we’ll use to approximate it to the transform
method.

Drawing Arrows

Let’s now draw arrows following the same approach we used in Chapter 8
for SVG images.

The arrow’s head will be drawn on the end point E of a segment and will
be made of two segments at an angle meeting at such an end point. To allow
some flexibility, we’ll use two dimensions to define the arrow’s geometry: a
length and a height (see Figure 10-11).

As you can see in Figure 10-11 (repeated from Chapter 8), to draw the
arrow’s head, we need to figure out points C; and Cy. With those two points,
we can easily draw the segments between C; and E and between Co and E.
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Figure 10-11: Key points in an arrow

To find out where those points lie in the plane, we’ll be computing three
vectors: 7, which has the same length as the arrow’s head and is going in the
opposite direction of the segment’s direction vector, and v}, and ¥j,9, which
are perpendicular to the segment and both have a length equal to half the
arrow’s head height. Figure 10-11 shows these vectors. The point C; can be
computed by creating a displaced version of E (the segment’s end point),

Cy =E+ (0 + 1)
and similarly, Co:
Co = E+ (1, + Up2)

Let’s write the method. In the CanvasDrawing class, enter the code in List-
ing 10-10.

class CanvasDrawing:
--snip--

def draw_arrow(
self,
segment: Segment,
length: float,
height: float

director = segment.direction_vector

v_1 = director.opposite().with_length(length)

v_h1 = director.perpendicular().with_length(height / 2.0)
v_h2 = v_hi.opposite()

self.draw_segment(segment)
self.draw_segment(

Segment (
segment.end,
@ segment.end.displaced(v_1 + v_h1)
)
)
self.draw_segment(
Segment (



segment.end,
0 segment.end.displaced(v_1 + v_h2)

)
)

Listing 10-10: Drawing an arrow

We start by computing the three vectors we need to figure out points C;
and Co using the previous equations. As you can see, this is pretty straight-
forward thanks to the methods we implemented in our Vector class. For ex-
ample, to obtain 7;, we use the opposite vector of the segment’s direction
vector and scale it to have the desired length. We use similar operations to
calculate the remaining elements of our equations.

Then we three segments: the base line, which is the segment passed as
the argument; the segment going from E to C; @ ; and the one going from E
to Cy ©.

For reference, your drawing.py file should look like Listing 10-11.

from functools import reduce
from tkinter import Canvas

from geom2d import Circle, Polygon, Segment, Rect, AffineTransform

class CanvasDrawing:

def _init (self, canvas: Canvas, transform: AffineTransform):
self. canvas = canvas
self.outline color = '#aa3355"
self.outline_width = 3
self.fill color = "'
self.transform = transform

def clear_drawing(self):
self. canvas.delete('all')

def draw_segment(self, segment: Segment):
segment_t = self.transform.apply to_segment(segment)
self. canvas.create line(
segment_t.start.x,
segment_t.start.y,
segment_t.end.x,
segment_t.end.y,
outline=self.outline color,
width=self.outline width

def draw_circle(self, circle: Circle, divisions=30):
self._draw_polygon(
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self.transform.apply to_circle(circle, divisions)

)

def draw_rectangle(self, rect: Rect):
self. draw_polygon(
self.transform.apply to_rect(rect)

)

def draw_polygon(self, polygon: Polygon):
self. draw_polygon(
self.transform.apply to_polygon(polygon)

)

def _ draw_polygon(self, polygon: Polygon):
vertices = reduce(
list. add_,
[[v.x, v.y] for v in polygon.vertices]

)

self._ canvas.create_polygon(
vertices,
fill=self.fill _color,
outline=self.outline_color,
width=self.outline width

)

def draw_arrow(
self,
segment: Segment,
length: float,
height: float

director = segment.direction_vector

v_1 = director.opposite().with_length(length)

v_h1 = director.perpendicular().with_length(height / 2.0)
v_h2 = v_hi.opposite()

self.draw_segment(segment)
self.draw_segment(

Segment (
segment.end,
segment.end.displaced(v_1 + v_h1)
)
)
self.draw_segment(
Segment (

segment.end,

284 Chapter 10



segment.end.displaced(v_1 + v_h2)

)

Listing 10-11: CanvasDrawing class result

We now have a convenient way of drawing our geometric primitives,
but they’re not moving at all, and we need motion to produce simulations.
What'’s the missing ingredient to bring those geometries to life? That’s the
topic of the next chapter. Matters are getting more and more exciting!

Summary

In this chapter, we covered the basics of creating graphical user interfaces
using Python’s Tkinter package. We saw how to lay widgets on the main win-
dow using the grid system. We also learned how to make a button respond to
being clicked and how to read the contents of a text field. Most importantly,
we learned about the Canvas class and its methods that we can use to draw
simple primitives to it.

We finished the chapter by creating a class of our own that wraps Tk-
inter’s canvas and allows us to draw our geometric primitives directly. The
class also includes an affine transformation that applies to the primitives be-
fore being drawn. The class has properties that define the stroke width and
color as well as the fill color. These are the width and colors applied to the
primitives we draw with it. Now it’s time to put those static geometries into
motion.
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ANIMATIONS, SIMULATIONS, AND
THE TIME LOOP

The same way vector images visualize static
problems, animations help us build visual
intuition for dynamic problems. A single im-

age can show us only how things are at a spe-
cific point in time. When the properties of a system
change over time, we’ll need an animation to get the
complete story.

Much like a static analysis presents a system in a moment, a simulation
presents the evolution of a system over time. Animations are a good way
of presenting the results of this evolution. There are two good reasons for
engineers to simulate dynamic systems: it’s a great exercise to solidify your
understanding of these systems, and it’s quite fun.

In this chapter, we’ll start exploring the engaging world of animations,
starting with a few definitions. We’ll then learn how to make drawings move
across the canvas. We’ll use Tkinter’s canvas and, more importantly, our
CanvasDrawing wrapper class.
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Let’s define a few of the terms we’ll be using in this section.

What Is an Animation?

An animation is the sensation of motion generated by a rapid succession of
images. Because the computer draws these images to the screen extremely
quickly, our eyes perceive motion.

We’ll make animations by drawing something to the canvas, clearing
it, and then drawing something else. Each drawing, which remains on the
screen for a fraction of a second, is called a frame.

Take, for example, Figure 11-1, which depicts each frame of an anima-
tion: a triangle moving right.

1 2 3 4

Figure 11-1: The animation
frames of a triangle

Each of the four frames in the animation has the triangle in a slightly dif-
ferent position. If we draw them on the canvas, one after the other, clearing
the previous drawing, the triangle will appear to move.

Simple, isn’t it? We'll build our first animation in this chapter soon, but
first let’s define the terms system and simulation, as they’ll appear frequently
in our discussion.

What Is a System?

The word system, in our context, refers to whatever we’re drawing to the can-
vas in an animation. It consists of a group of objects subject to some physical
laws and interacting with one another. We’ll use these laws to derive a math-
ematical model, often in the form of a system of differential equations. We’ll
resolve these equations using numerical methods, which yield the values
that describe the system at discrete points in time. These values might be
the system’s position or velocity.

Now let’s take a look at an example of a system and derive its equation.
Let’s suppose we have a body with mass m subject to an external force that
is a function of time, F(t). Figure 11-2 depicts a free body diagram. There, you
can see the external force and its weight force applied, where g is gravity’s
acceleration vector.



mg

Figure 11-2: A mass
subject to external force

Using Newton’s second law and denoting the position vector of the body
by p, we get the following:

Zf= m[; — F(t)+mg'=m;

Solving for the acceleration p,

- __,+F(t)_ 01,1/ R@
fo-z 01 5 b 50 )

The previous vector equation can be broken down into its two scalar
components:

{M -5
. F,
y()=-g+ %

These two equations express the acceleration of the body function of
time. To simulate this simple system, we’d need to obtain a new value for

the acceleration, velocity, and position of the body for each frame of the
animation. We’ll see what this means in a minute.

What Is a Simulation?

A simulation is the study of the evolution of a system whose behavior is math-
ematically described. Simulations harness the computation power of mod-
ern central processing units (CPUs) to understand how a given system would
behave under real conditions.

Computer simulations are in general cheaper and simpler to set up than
real-world experiments, so they’re used to study and predict the behavior of
many engineering designs.

Take the system whose equations we derived in the previous section.
Given an expression of the external force with respect to time like

> 10z

o= { 5¢2 }
and the mass for the body is said to be m = bkg, the acceleration equations
become the following.
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These scalar equations give us the acceleration components for the body
at every moment in time. Since the equations are simple, we can integrate
them to obtain the expression of the velocity components,

x(t)= [2t-dt=1%+X,
()= [(-g+2)-di=—gt+ 5 + ¥,

where X, and ¥} are the components of the initial velocity: the velocity at
time ¢ = 0. We know the velocity of the mass for every moment in time. If we
want to animate the movement of the mass, we need an expression for the
position, which we can obtain by integrating the velocity equations,

x(t) = [(2+Xo) - di = + Kot + Xy
30 = [(gt+ 5+ o) - de =gy + {5 + Yot + Yo

where X and Y; are the initial position components for the mass. We can
now create an animation to understand how the body moves under the ef-
fect of the external force by simply creating a sequence of time values, ob-
taining the position for each of them, and then drawing a rectangle to the
screen at that position.

The differential equations relating how the acceleration of the system
varies with respect to time for this example were straightforward, which al-
lowed us to obtain an analytic solution using integration. We usually don’t
get an analytic solution for the system under simulation, so we tend to resort
to numerical methods.

The analytic solution is the exact solution, whereas a numerical solution is
obtained using computer algorithms that look for an approximation of the
solution. A common numerical method, although not the most precise, is
Euler’s method.

Drawing the simulation in real time means we need to solve the equa-
tions as often as we draw frames. For example, if we want to simulate at a
rate of 50 frames per second (fps), then we need to both draw the frames
and solve the equations 50 times per second.

At 50 fps, the time between frames is 20 milliseconds. Taking into ac-
count the fact that your computer requires some of those milliseconds to
redraw the screen with the current frame, we’re left with little time for the
math.

Simulations can also be computed ahead of time and later played back.
This way solving the equations can take as long as required; the animation
takes place only when all frames are ready.

Video game engines use real-time simulations as they need to simulate
the world around the player as they interact with it, something that can’t be
determined ahead of time. These engines tend to trade accuracy for speed;
their results are not physically accurate but look realistic to the naked eye.



Complex engineering systems require an ahead-of-time simulation since
the governing equations for these problems are complex and require a much
more exact solution.

What Is the Time Loop?

Real-time simulations happen inside a loop, which we’ll refer to as the time
loop or main loop. This loop executes as many times per second as frames
are drawn to the screen. Here’s some pseudocode showing what a time loop
might look like:

while current_time < end_time:
solve_system_equations()
draw_system()
sleep(time_delta - time_taken)
current_time += time_delta

To make the animations look smooth, we want a steady frame rate. This
means the drawing phase of the simulation should take place at evenly spaced
points in time. (While not strictly necessary, there are techniques to adapt
the frame rate to the processor and GPU’s throughput, but we won’t be get-
ting that advanced in this book.)

The time elapsed between consecutive frames is referred to as the time
delta, or dt; it’s inversely proportional to the frame rate (fps) and typically
measured in seconds or milliseconds: FPS = 5% As a consequence, every-
thing happening in our time loop should take less than a single time delta to
complete.

The first step in the loop is solving the equations to figure out how the
system has evolved during the elapsed time delta. Then, we draw the sys-
tem’s new configuration to the screen. We need to measure the time taken
so far in the loop and store the result in the time_taken variable.

At this point, the program is paused or put to sleep until an entire time
delta has elapsed. The time we sleep can be figured out by subtracting time

_taken from time_delta. The last step before ending the loop is to advance
the current time by a time delta; the loop then starts over again. Figure 11-3
shows the time line with the events in the time loop drawn.

Time delta
Solve Draw Sleep
equations system

Figure 11-3: The time loop events

Now that we have those definitions out of the way, let’s implement a
time loop and start animating.
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At the beginning of the chapter, we explained how we can achieve the sensa-
tion of motion by drawing something many times per second. The time loop
is in charge of keeping these drawings at a steady rate. Let’s implement our
first time loop.

Setup

We'll start by creating a new file where we can experiment. In the simulation
package, create a new file and name it hello_motion.py. Enter the code in List-
ing 11-1.

import time
from tkinter import Tk, Canvas

tk = Tk()
tk.title("Hello Motion")

canvas = Canvas(tk, width=600, height=600)
canvas.grid(row=0, column=0)

frame_rate s = 1.0 / 30.0
frame_count = 1
max_frames = 100

def update_system():
pass

def redraw():
pass

® while frame_count <= max_frames:

update_start = time.time()
® update_system()
® redraw()
O tk.update()

update_end = time.time()

® elapsed s = update end - update start
remaining_time_s = frame_rate_ s - elapsed_s

if remaining_time_s > 0:
® time.sleep(remaining time_s)



frame_count += 1

tk.mainloop()

Listing 11-1: The hello_motion.py file

In the code in Listing 11-1, we start by creating a 600 x 600-pixel canvas
and adding it to the grid of the main window. Then we initialize some vari-
ables: frame_rate_s holds the time between two consecutive frames, in sec-
onds; frame_count is the count of how many frames have already been drawn;
and max_frames is the number of total frames we’ll draw.

Note that the variables storing time-related quantities include information in their
name about the unit they use. The s in frame_rate_s or elapsed_s indicates sec-
onds. It’s good practice to do this, as it helps the developer understand what units
the code is working with without needing to read comments or pick through all the
code. When you spend many hours a day coding, these small details end up saving
you a lot of time and frustration.

Then comes the time loop @, which executes max_frames times at a rate
of frame_rate_s, at least in principle (as you’'ll see in a minute). Note that
we chose to limit the simulation using a maximum number of frames, but
we could also limit it by time, that is, keep running the loop until a given
amount of time has elapsed, just like we did in the pseudocode shown ear-
lier. Both approaches work fine.

In the loop we start by storing the current time in update_start. After
the updates to the system and the drawing have taken place, we store the
time again, this time in update_end. The time elapsed is then computed by
subtracting update_start from update_end and stored in elapsed_s ®. We use
this quantity to calculate how long the loop needs to sleep to keep the frame
rate steady, subtracting elapsed_s from frame_rate_s. That amount is stored in
remaining_time_s, and if it’s greater than zero, we sleep the loop ®.

If remaining_time_s is less than zero, the loop took longer than the frame
rate, meaning it can’t keep up with the rhythm we imposed on it. If this hap-
pens often, the time loop will become unsteady, and animations may look
chunky, in which case it’s better to simply reduce the frame rate.

The magic happens (or will happen, to be more precise) in update
_system @ and redraw ®, which we call in the loop to update and redraw the
system. Here’s where we’ll soon be writing our drawing code. The pass state-
ment is used in Python as a placeholder: it doesn’t do anything, but it allows
us to have, for example, a valid function body.

There’s also a call to update from main window tk @, which tells Tkinter
to run the main loop until all pending events have been processed. This is
necessary to force Tkinter to look for the events that may trigger changes in
the user interface widgets, including our canvas.

You can run the file now; you’ll see an empty window apparently doing
nothing, but it’s actually running the loop max_frames times.
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Adding a Frame Count Label

Let’s add a label under the canvas to let us know the current frame being
drawn to the canvas and the total number of frames. We can update its value
in update. First, add Label to the tkinter imports:

from tkinter import Tk, Canvas, StringVar, Label

Then, under the definition of the canvas, add the label (Listing 11-2).

label = StringVar()
label.set('Frame ? of ?')
Label(tk, textvariable=label).grid(row=1, column=0)

Listing 11-2: Adding a label to the window

Finally, update the label’s text in update by setting the value of its text vari-
able, label (Listing 11-3).

def update():
label.set(f'Frame {frame_count} of {max_frames}"')

Listing 11-3: Updating the label’s text

Try to run the file now. The canvas is still blank, but the label below it
now displays the current frame. Your program should look like Figure 11-4:
a blank window with a frame count going from 1 to 100.

[ XX ) Hello Motion

Frame 100 of 100

Figure 11-4: The frame count label
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Just for reference, your code at this stage should look like Listing 11-4.

import time
from tkinter import Tk, Canvas, StringVar, Label

tk = Tk()
tk.title("Hello Motion")

canvas = Canvas(tk, width=600, height=600)
canvas.grid(row=0, column=0)

label = StringVar()
label.set('Frame ? of ?')
Label(tk, textvariable=label).grid(row=1, column=0)

frame_rate_s = 1.0 / 30.0
frame_count = 1
max_frames = 100

def update_system():
pass

def redraw():
label.set(f'Frame {frame_count} of {max_frames}"')

while frame count <= max_frames:
update_start = time.time()
update_system()
redraw()
tk.update()
update_end = time.time()

elapsed_s = update_end - update start
remaining_time_s = frame_rate_s - elapsed_s

if remaining_time_s > 0:
time.sleep(remaining_time_s)

frame_count += 1

tk.mainloop()

Listing 11-4: Hello canvas with label

To have anything drawn on the canvas, we need to have a system. Let’s
first take a look at how to add and update a system to our simulation.
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Updating the System

For this example, we’ll keep it simple and draw a circle whose center is al-
ways at the center of the canvas, point (300, 300). Its radius will grow, start-
ing with a value of zero. When the radius grows larger than the canvas and
is no longer visible, we’ll set it back to zero. This will generate a psychedelic
tunnel-like effect.

We can represent our “system” with an instance of our Circle class. Since
we’ll be drawing the circle to the canvas, let’s also create an instance of Canvas
Drawing, using an identity affine transformation. Under the definition of vari-
ables frame_rate_s, frame_count, and max_frames, add the following:

transform = AffineTransform(sx=1, sy=1, tx=0, ty=0, shx=0, shy=0)
drawing = CanvasDrawing(canvas, transform)
circle = Circle(Point(300, 300), 0)

Don’t forget to include the needed imports:

from geom2d import Point, Circle, AffineTransform
from graphic.simulation.draw import CanvasDrawing

We need to update the value of the radius every frame in update_system
so that when redraw does its thing, the circle gets drawn with the updated
value for the radius. In update_system, enter the code in Listing 11-5.

def update system():
circle.radius = (circle.radius + 15) % 450
tk.update()

Listing 11-5: Updating the circle’s radius

The value for the radius is updated by adding 15 to the current value.
Using the modulo operator (%), whenever the radius becomes greater than
450, the value wraps around and goes back to zero.

Quick reminder: the modulo operator % returns the remainder of dividing its two
operands. For instance, 5 % 3 yields 2.

You've probably realized that we mutated the circle’s radius property
instead of creating a new circle with the value for the new radius; it’s the first
time in the book we mutate the properties of our geometric primitives. The
reason is that, for simulations, maintaining the throughput of the loop is
crucial, and creating a new instance of the system for each frame would have
a high performance impact.

We now have the system defined in each of the frames: a circle whose
center point is kept centered in the window while the radius gradually in-
creases in size. Let’s draw it to the screen!



Creating Motion

To create the effect of motion, the canvas has to be cleared and the system
redrawn in each and every frame. Before redraw is invoked in the main loop,
update_system has already updated the circle. In redraw, we simply need to
clear whatever is drawn on the canvas and draw the circle again. Update
redraw using the code in Listing 11-6.

def redraw():
label.set(f'Frame {frame_count} of {max_frames}')
drawing.clear_drawing()
drawing.draw_circle(circle, 50)

Listing 11-6: Redrawing the circle every frame

You’ve probably been waiting for this grand moment for the whole chap-
ter, so go ahead and execute the file. You should see a circle growing in size
until it disappears from the screen and then starting over again.

Just for your reference, at this point, your hello_motion.py code should
look like Listing 11-7.

import time
from tkinter import Tk, Canvas, StringVar, Label

from geom2d import Point, AffineTransform, Circle
from graphic.simulation import CanvasDrawing

tk = Tk()
tk.title("Hello Motion")

canvas = Canvas(tk, width=600, height=600)
canvas.grid(row=0, column=0)

label = StringVar()
label.set('Frame ? of ?')
Label(tk, textvariable=label).grid(row=1, column=0)

frame_rate_s = 1.0 / 30.0
frame_count = 1
max_frames = 100

transform = AffineTransform(sx=1, sy=1, tx=0, ty=0, shx=0, shy=0)
drawing = CanvasDrawing(canvas, transform)
circle = Circle(Point(300, 300), 0)

def update system():
circle.radius = (circle.radius + 15) % 450
tk.update()
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def redraw():
label.set(f'Frame {frame_count} of {max_frames}')
drawing.clear_drawing()
drawing.draw_circle(circle, 50)

while frame_count <= max_frames:
update start = time.time()
update_system()
redraw()
tk.update()
update_end = time.time()

elapsed_s = update _end - update_start
remaining_time_ s = frame_rate_ s - elapsed_s

if remaining_time_s > 0:
time.sleep(remaining_time_s)

frame_count += 1

tk.mainloop()

Listing 11-7: Resulting simulation

Note that before drawing anything, the redraw function clears the canvas.
Can you guess what would happen if we forgot to do so? Comment that line
out and run the simulation.

def redraw():
label.set(f'Frame {frame_count} of {max_frames}')
# drawing.clear_drawing()
drawing.draw_circle(circle, 50)

All circles drawn should remain on the canvas, as you see in Figure 11-5.

We’ve drawn our first animation on the canvas, and it looks fantastic. If
we were to write another, though, we’d have to copy and paste the code for
the main loop. To avoid this needless duplication, let’s move the main loop
code into a function that can be easily reused.



Figure 11-5: What it'd look like if we forgot to clean the canvas

Abstracting the Main Loop Function

The main loop we just wrote had a fair amount of logic that will be the same
for all simulations. Copying and pasting this code over and over again would
not only be bad practice, but if we found an improvement or wanted to make
a change to our implementation, we’d need to edit the code of all our simu-
lations. We don’t want to duplicate knowledge: we should define the logic
for a main simulation loop in just one place.

To implement a generic version of the main loop, we need to do an ab-
straction exercise. Let’s ask ourselves the following questions regarding the
implementation of the main loop: Is there something that’s never going to
change in it, and is there anything simulation-specific? The while loop, the
order of the operations inside of it, and the time calculations are the same
for every simulation. Conversely, there are three pieces of logic that vary
from simulation to simulation, namely, the decision that keeps the loop run-
ning, the updating, and the drawing.

If we encapsulate those in functions that the simulations implement,
they can be passed to our main loop abstraction. The main loop we imple-
ment only needs to care about the timing, that is, trying to keep the frame
rate stable.

Create a new file named loop.py in the simulation package. Enter the
code in Listing 11-8.
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import time

def main_loop(
update_fn,
redraw_fn,
should_continue_fn,
frame_rate s=0.03

frame = 1
time_s = 0
last_elapsed_s = frame_rate s

@ while should continue fn(frame, time s):
update_start = time.time()
® update_fn(last_elapsed s, time_s, frame)
® redraw_fn()
update_end = time.time()

elapsed_s = update _end - update_start
remaining_time_s = frame_rate_s - elapsed_s

if remaining_time_s > 0:
time.sleep(remaining_time_s)
last_elapsed_s = frame_rate s

else:
last_elapsed_s = elapsed_s

frame += 1
time_s += last elapsed s

Listing 11-8: Simulation’s main loop function

The first thing you should notice is that three of the arguments to the
main_loop function are also functions: update_fn, redraw_fn, and should continue
_fn. These functions contain the logic that’s simulation-specific, so our main
loop simply needs to call them as needed.

Passing functions as arguments to other functions was covered in Chapter 1, on
page 27. You may want to refer to this section for a quick refresher.

The main_loop function starts by declaring three variables: frame, which
holds the current frame index; time_s, which holds the total time elapsed;
and last_elapsed_s, which holds the number of seconds it took the last frame
to complete. The condition to keep the loop running is now delegated to
the should_continue_fn function @. The loop will continue as long as this
function returns true. It accepts two arguments: the frame count and the
total time elapsed in seconds. If you recall, most of our simulations will be



limited by one of these values, so we pass them to the function so that it has
the information required to decide whether the loop should keep running.

Next, the update_fn function @ updates the system under simulation and
the user interface. This function receives three parameters: the time elapsed
since the last frame, last_elapsed_s; the total elapsed time for the simulation,
time_s; and the current frame number, frame. As we’ll see later in the book,
when we introduce physics to our simulations, the amount of time elapsed
since the last frame is an important piece of data. Lastly comes redraw_fn ©,
which draws the system to the screen.

Thanks to our abstraction of the simulation’s main loop, we won’t need
to write this logic anymore. Let’s try to refactor our simulation from the pre-
vious section using this definition of the main loop.

Refactoring Our Simulation

Now that we’ve created an abstraction of the main loop, let’s take a look at

how our simulation could be refactored to include the main loop function.
Create a new file named hello_motion_refactor.py and enter the code from

Listing 11-9. You may want to copy and paste the first lines from hello_motion.py,

those that define the UI. Note that to make the code a bit shorter, I've re-

moved the frame count label from the Ul

from tkinter import Tk, Canvas

from geom2d import Point, Circle, AffineTransform
from graphic.simulation.draw import CanvasDrawing
from graphic.simulation.loop import main_loop

tk = Tk()
tk.title("Hello Motion")

canvas = Canvas(tk, width=600, height=600)
canvas.grid(row=0, column=0)

max_frames = 100
transform = AffineTransform(sx=1, sy=1, tx=0, ty=0, shx=0, shy=0)

drawing = CanvasDrawing(canvas, transform)
circle = Circle(Point(300, 300), 0)

def update _system(time_delta s, time s, frame):
circle.radius = (circle.radius + 15) % 450
tk.update()

def redraw():
drawing.clear_drawing()
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drawing.draw_circle(circle, 50)

def should continue(frame, time s):
return frame <= max_frames

main_loop(update_system, redraw, should continue)
tk.mainloop()

Listing 11-9: Refactored version of hello_motion.py

If we go toward the end of the code, we find the call to main_loop. We're
passing in the functions that we previously defined, with the sole differ-
ence being that now those functions must declare the proper parameters
to match the functions main_loop expects.

This code is much simpler to follow. All the logic to keep a steady frame
rate has been moved away to its own function, so we can focus our attention
on the simulation itself without needing to deal with those details. Let’s now
take some time to play with some of the parameters of the simulation and
understand how they affect the final result.

Playing with the Circle Divisions

Remember that the CanvasDrawing class includes an affine transformation as
part of its state, and every geometric primitive gets transformed by it before
being drawn. Remember also that this is the reason a circle is converted to
a generic polygon using a number of divisions high enough to approximate
the circumference. The transformation happens in the drawing command,;
hence, the number of divisions has to be passed in, or else the default of 30
is used.
Going back to function redraw from Listing 11-9,

def redraw():
drawing.clear_drawing()
drawing.draw_circle(circle, 50)

you can see we used 50 divisions, but we could have used any other number.
Let’s try with 10, for example:

def redraw():
drawing.clear_drawing()
drawing.draw_circle(circle, 10)

Rerun the file. Can you see the difference? What about if you try with 6
divisions? Figure 11-6 shows the simulation using 50, 10, and 6 divisions for
the circle.



Figure 11-6: Circles drawn using 50, 10, and 6 divisions

After this interesting experiment we can clearly see the influence of the
divisions used to approximate a circle. Let’s now experiment with the affine
transformation used to transform the geometric primitives before they’re
drawn to the canvas.

Playing with the Affine Transformation

The affine transformation applied to the drawing in our simulation is an
identity transformation: it keeps points exactly where they are. But we could
use this transformation to do something different, such as invert the y-axis
so that it points upward, for example. Go back to hello_motion_refactor.py and
locate the line where the transformation is defined:

transform = AffineTransform(sx=1, sy=1, tx=0, ty=0, shx=0, shy=0)

Then, edit it so that it inverts the y-axis:

transform = AffineTransform(
sx=1, sy=-1, tx=0, ty=0, shx=0, shy=0

)

Run the simulation again. What do you see? Just a little rim coming from
the top of the canvas, right? What’s happening is that we inverted the y-axis,
but the origin of coordinates is still in the upper-left corner; thus, the circle
we’re trying to draw is outside the window, as depicted by Figure 11-7.

Je

Figure 11-7: Simulation with
the y-axis inverted
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We can easily fix this problem by translating the origin of the coordi-
nates all the way down to the lower-left corner of the canvas. Since the can-
vas height is 600 pixels, we can set the transformation to be as follows:

transform = AffineTransform(
sx=1, sy=-1, tx=0, ty=600, shx=0, shy=0

)

It may surprise you that the value for the vertical translation is 600 and not
-600, but remember that in the original system of coordinates, the y direc-
tion points downward, and this affine transformation refers to that
system.

If you prefer, it may be easier to understand the process of obtaining
that transformation by concatenating two simpler ones, the first moving the
origin downward 600 pixels and the second flipping the y-axis,

>>> t1 = AffineTransform(sx=1, sy=1, tx=0, ty=-600, shx=0, shy=0)
>>> t2 = AffineTransform(sx=1, sy=-1, tx=0, ty=0, shx=0, shy=0)
>>> ti.then(t2).__dict__

{'sx': 1, 'sy': -1, '"tx': 0, "ty': 600, 'shx': 0, 'shy': o}

which yields the same transformation, as you can see.
Now, let’s add some shear in the horizontal direction to see how the cir-
cle gets deformed. Try the following values for the transformation,

transform = AffineTransform(
sx=1, sy=-1, tx=150, ty=600, shx=-0.5, shy=0

)

and run the simulation again. You should see a shape similar to that in
Figure 11-8.

[ XX ] Hello Motion

Figure 11-8: A circle drawn using a horizontal shear



Now it’s your turn to play with the values and see whether you can build
a better intuition for how the animations, drawings, and transformations
are working. You’ve created something beautiful from scratch, so take your
time to experiment with it. Try to change the circle primitive using a trian-
gle or a rectangle. You can update the geometric primitive by moving it in-
stead of changing its size. Play around with the affine transformation values
and try to reason about how the drawing should look before you actually
run the simulation. Use this exercise to reinforce your affine transformation
intuition.

Cleaning Up the Module

Let’s do two small refactors to the module to clean it up a bit. First, create

a new folder in the simulation package and name it examples. We’ll use it to
house all the files that are not part of the simulation and drawing logic, but
rather examples we wrote in this chapter. So, basically, move all the files ex-
cept for draw.py and loop.py there. Your folder structure in simulation should
look like this:

simulation

|- examples
|- hello canvas.py
|- hello motion.py

The second thing we want to do is add both the CanvasDrawing class and
the main_loop function to the default exports of the simulation package. Open
file __init__.py in simulation and add the following imports:

from .draw import CanvasDrawing
from .loop import main_loop

That’s it! From now on we’ll be able to import both using a shorter
syntax.

Summary

In this chapter, we learned about the time loop. The time loop keeps exe-
cuting while a condition is met, and its main job is to keep the frame rate
steady. In this loop two things take place: the updating of the system under
simulation and the redrawing of the screen. Those operations are timed so
that when they’re done, we know how much more time remains to complete
a cycle.

Because the time loop will appear in all of our simulations, we decided
to implement it as a function. This function gets passed other functions:
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one that updates the system, another that draws it to the screen, and a
last one that decides whether the simulation is over or not.

In the next chapter, we’ll use this time loop function to animate affine
transformations.
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ANIMATING AFFINE
TRANSFORMATIONS

You just learned the basics of animation
and GUI design. In this chapter, we’ll com-
bine the two and build an application that
animates affine transformations. This will help
build your visual intuition for this potentially confus-
ing topic and strengthen your programming skills.

The application will first read a text file defining the affine transforma-
tion and the geometries to transform. Then, it’ll compute a sequence of
affine transformations, interpolating from the identity to the given trans-
formation. Each of the transformations in this sequence will be used to draw
a frame of the animation.

As with the circle building application we built in Chapter 9, we’ll use
regular expressions to read the primitives from the text file. We’ll be using
some more advanced ones here, which we’ll analyze in detail. There will be
a lot of code in this chapter. We're building a larger application, and it’s a
great opportunity to learn about how to distribute responsibilities in your
code.

As always, we’ll try to keep the architecture and design as clean as possi-
ble, explaining the reasoning behind each decision we encounter. Let’s get
started!




308

Application Architecture and Visibility Diagrams

Chapter 12

To discuss this application’s architecture, we’ll introduce a new kind of dia-
gram: a visibility diagram. Visibility diagrams display the components of an
application using arrows to indicate what each part of the program knows—
in other words, who can see whom. Take a look at the diagram from Fig-
ure 12-1.

Main

Config Input Simulation

Geometry Transformation

config.json
Figure 12-1: Our application architecture

At the top of the diagram is Main, the executing script. The circle around
it signifies that it’s the entry point to the application. There are three arrows
starting from Main, which means Main knows about three other modules:
Config, Input, and Simulation. Modules are represented with rectangles.

Note the arrows go one way. Main knows these modules exist, and de-
pends on them, but these modules know nothing about the existence of
Main. This is critical: we want to minimize what the components of our ap-
plication know about each other. This ensures the modules are as decoupled
as possible, meaning that they can live on their own.

The benefits of a decoupled design are mainly simplicity, which allows
us to easily grow and maintain our software, and reusability. The fewer de-
pendencies a module has, the easier it is to use it somewhere else.

Going back to the diagram in Figure 12-1, we said that Main uses three
modules: Config, Input, and Simulation. The Config module will be in charge
of loading the configuration for the application stored in config.json—indicated
by the arrow.

The Input module will read the input file given by the user and define
both an affine transformation and geometric primitives. Thus, this module
will use two more modules: Geometry, to parse the primitives, and Transfor-
mation, to parse the affine transformation. Again, the fact that the arrows go
from Input toward the other two modules means these other two modules
have no clue about Input: they could be used perfectly by another module.

Lastly, we have the Simulation module, which will be in charge of per-
forming the actual simulation.



I can’t stress the importance of decoupled architectures enough. Applications should
be made of small submodules that expose a straightforward, concise interface and
hide their inner working from the rest of the world. These modules are simpler to
maintain when they have as few dependencies of their own as possible. Applications
that don’t respect this simple principle end up doomed more often than not, and trust
me when I say that you’ll feel hopeless when you fix a small bug in a module and it
breaks some apparently unrelated piece of another module.

Let’s move on and set up the project.

Setting Up

In the apps folder, create a new Python package named aff_transf_motion. In
it, add all the files shown in the following tree. If you created the new pack-
age by right-clicking apps and choosing New » Python Package, __init__.py
will already be in the directory; the IDE created it for us. If you created the
package in another way, don’t forget to add this file.

apps

|- aff_transf_motion
|- _init_ .py

|- config.json

|- config.py

|- input.py

|- main.py

|- parse_geom.py

|- parse_transform.py

|- simulation.py

|- test.txt

All your files are empty for now, but we’ll be filling them with code
soon.

Before we do that, though, we want to have a run configuration or bash
script to run the project as we develop, just like we did in Chapter 9. We
first need to define the script it will execute in main.py. For now, we’ll sim-
ply print a message to the shell to make sure things are working properly.
Open the file and enter the code in Listing 12-1.

if name_ ==" main_':
print('Ready!")

Listing 12-1: Main file

Let’s now explore our two options for executing the project: a run con-
figuration and a bash script. You don’t need to set up both; you can choose
the one that works best for you and skip the other.
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Creating a Run Configuration

In the menu choose Run » Edit Configurations. Click the + icon at the top
left and choose Python to create the run configuration. Name it aff-transf-
motion. Similar to what we did in Chapter 9, choose main.py as the script
path and aff_transform_motion as the working directory. Lastly, check the
Redirect input from option, and choose test.txt. Your configuration should
look similar to Figure 12-2.

Name:  aff-transf-motion Allow parallel run Store as project file

Configuration  Logs

I Script path: /Mechanics/apps/aff_transf_motion/main.py —] I
Parameters: +
Environment
Environment variables: ~ PYTHONUNBUFFERED=1 $
Python interpreter: Project Default (Python 3.8) /usr/local/opt/python@3.8/bin/python3.8 v
Interpreter options: 7
I Working directory: /Mechanics/apps/aff_transf_motion ] I

Add content roots to PYTHONPATH

Add source roots to PYTHONPATH

Execution
Emulate terminal in output console

Run with Python Console

I Redirect input from: /Mechanics/apps/aff_transf_motion/test.txt —] I

Before launch

There are no tasks to run before launch

Show this page Activate tool window

CANCEL APPLY OK

Figure 12-2: The run configuration

To make sure the run configuration is properly set up, choose it from
the run configuration navigation bar and click the green play button. The
shell should display the message Ready!. If you had any trouble setting this
up, refer to Chapter 9 where we covered this process in detail.

Creating a Bash Script

To run the app from the command line, we’ll use the technique we explored
in Chapter 9: creating a bash script wrapper that uses our project root as
the workspace for Python to resolve our dependencies. Create a new file in
the root of the project (under Mechanics): aff_motion.sh. In the file, enter the
code in Listing 12-2.



#!/usr/bin/env bash
PYTHONPATH=$PWD python3 apps/aff_transf motion/main.py

Listing 12-2: Bash script to execute the project

Using this bash script, we can now execute the application from the
command line like so:

$ bash ./aff_motion.sh < apps/aff_transf_motion/test.txt

We can make this bash script executable:

$ chmod +x aff_motion.sh

then run it like so:

$ ./aff_motion.sh < apps/aff_transf_motion/test.txt

Reading the Configuration File

Because we want to separate configuration values from the code, we’ll keep
them in a JSON file. This allows us to change the behavior of our applica-
tion without needing to touch the code. Open config.json and enter the con-
tent in Listing 12-3.

{

"frames": 200,

"axes": {

"length": 100,
"arrow-length": 20,
"arrow-height": 15,
"stroke-width": 2,
"x-color": "#D53636",
"y-color": "#33FF86"

})

"geometry": {
"stroke-color": "#3F4783",
"stroke-width": 3

}

}

Listing 12-3: Configuration JSON file

This configuration first defines the number of frames to use for the sim-
ulation. Then comes the dimensions and the color of the coordinate axes,
which we’ll draw to help us visualize how the space is transformed. Lastly, we
have configuration values for the geometry that will be transformed. Here
we’re defining stroke color and width.
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We now need a way to read this configuration JSON file and transform
its contents into a Python dictionary. Let’s use the same approach we used
in Chapter 9. In config.py, enter the code in Listing 12-4.

import json
import pkg _resources as res
def read_config():

config = res.resource_string(__name__, 'config.json')
return json.loads(config)

Listing 12-4: Reading the configuration file

That’s it for the configuration; let’s turn our attention to reading and
parsing input.

Reading Input

Chapter 12

We’re expecting the user to pass our program a file containing the defini-
tion of an affine transformation and a list of the geometric primitives to
transform. Let’s define how these files should be formatted. We can start
by reading the affine transformation values since we know beforehand how
many values we’re expecting. Because there can be any number of geomet-
ric primitives, we’ll put those at the end.

Formatting the Input

Here’s a nice way of formatting the affine transformation values:

sx <value>
sy <value>
shx <value>
shy <value>
tx <value>
ty <value>

Here each value is defined in its own line and has a tag indicating which
term it is. We could use a more condensed format and simply have all those
values in a single line, like so:

transformation: <value> <value> <value> <value> <value> <value>

But this has the downside of being less clear for the user. What'’s the or-
der of the values? Was the third number the shear in the x direction or the
translation in the y direction? To answer this question, you’d need to open
the source code and find out how those values are parsed. I tend to favor
clarity over compactness in cases where the size of the input isn’t too big,
so we’ll stick to the first approach.



So what about the geometric primitives? For each kind of geometric
primitive, we’ll use a different four-letter code: circ for circle, for example.
This code will be followed by a bunch of numbers that define the primitive’s
properties.

For a circle, the definition will look like

circ <cx> <cy> <>

where <cx> and <cy»> are the coordinates of the center point and <r> is the
value for the radius.
A rectangle will look like

rect <ox> <oy> <w> <h>

with <ox> and <oy> defining the coordinates of its origin, <w> its width, and <h>
its height.
A polygon will look like

poly [<Xx1> <y1> <Xx2> <y2> <X3> <y3> ...]

where [<x> <y>] means a sequence of x and y values representing the coor-
dinates of a vertex. Bear in mind that the minimum number of vertices to
build a polygon is three; therefore, we need at least six values here.

Lastly, a segment is defined like

segm <sx> <sy> <ex> <Key>

where <sx> and <sy»> are the coordinates of the start point, and <ex> and <ey>
are the coordinates of the end point.

Adding Example Input

Let’s fill our fest.txt file with an example input. Remember that we redirected
the standard input in our program to read from test.txt, so we’ll be using it to
test our code. Open the file and enter the definition in Listing 12-5.

sx 1.2
sy 1.4
shx 2.0
shy 3.0
tx 50.0
ty 25.0

circ 150 40 20

rect 70 60 40 100
rect 100 90 40 100
poly 30 10 80 10 30 90
segm 10 20 200 240

Listing 12-5: Input test file
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This file first defines an affine transformation as follows:

12 2.0 50.0
[T]= (3.0 14 25.0
0 0 1

It also defines a circle, two rectangles, a polygon, and a segment. Fig-
ure 12-3 depicts the approximate layout of these geometric primitives before
we apply the affine transformation.

A\
A

Figure 12-3: The geometric primitives in
our test file
Now that test.txt has these definitions, let’s write the outline of the code

we need to read and parse the input. Open input.py and enter the code in
Listing 12-6.

def read input():
transform = _ read transform()
primitives = _ read_primitives()
return transform, primitives

def _ read transform():
return None

def _ read primitives():
return None

Listing 12-6: Parsing the input file starting point

We first define a function, read_input, which will read both the affine
transformation and the geometric primitives and return a tuple containing
both. To do its work, it delegates each of the two tasks to private functions:
_ read_transform and __read_primitives. These functions return None for now.
We’ll implement them in the next two sections.



Parsing the Affine Transformation

The affine transformation in the input file will always span six lines, one line
per term. We can simplify the parsing by requiring that the terms always
appear in the same, predefined order. We’ll double-check that each of the
terms has the appropriate name tag, just to make sure the user wrote the
terms in the right order, but we won’t include that bit in our regular expres-
sion, which should make things a bit simpler.

The first thing we need is a regular expression that can match the floating-
point numbers in the components of the transformation. It’s important to
design this regular expression so that it also matches integer numbers; the
decimal part should be optional. We also want to accept negative numbers.
A regular expression combining all these characteristics could look like this:

/-N\d+(\.\d+)?/

The regular expression has three parts. The first, -?, matches zero or one
instances of the minus symbol. The second, \d+, matches one or more digits
before the decimal separator: the integer part. Lastly comes (\.\d+)?, which
matches zero or one sequence made of a dot and one or more digits. Note
that we’ve used ? to handle our optional components.

Using the regular expression shown earlier, we can prepare another reg-
ular expression that matches all of the term values:

/(?P<valy>-2\d+(\.\d+)?)/

This defines a group named val that will capture the term’s value using the
previous expression.

Let’s open parse_transform.py (empty at the moment) and implement
the logic for reading and parsing the affine transformation terms. Enter the
code in Listing 12-7.

import re

__TRANSF_VAL RE = r'(?P<val>-2\d+(\.\d+)?)"

def parse_transform_term(term, line):
__ensure_term_name(term, line)
return _ parse_transform term(line)

def __ensure_term_name(name, line):
if name not in line:
raise ValueError(f'Expected {name} term')

def _ parse_transform term(line):
matches = re.search(__ TRANSF_VAL RE, line)
if not matches:
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raise ValueError('Couldn\'t read transform term')

return float(matches.group('val'))

Listing 12-7: Parsing the affine transformation terms

We first define the regular expression to parse the affine transformation
term values: _ TRANSF_VAL RE. Then comes the main function: parse_transform
_term, which takes two parameters: the name of the term to validate and the
line to parse. Each of these operations is handled by two private functions.

The function __ensure_term_name checks whether the given name is present
in line. If it’s not, the function raises a ValueError with a helpful message
to let the user know which term couldn’t be properly interpreted. Then,

_ parse_transform_term applies the regular expression _ TRANSF_VAL_RE to match
the term’s value. If it succeeds, the matched group val is converted to a float
value and returned. An error is raised in the case that the string doesn’t
match the regular expression.

Let’s now use this parse function in the Input module (as depicted by
Figure 12-1). Open your input.py file and add the following imports at the

top:

from apps.aff transf motion.parse transform import parse transform term
from geom2d import AffineTransform

Then, refactor the _ read_transform function as in Listing 12-8.

--snip--

def _ read_transform():

return AffineTransform(
sx=parse_transform term('sx', input()),
sy=parse_transform term('sy', input()),
shx=parse_transform term('shx', input()),
shy=parse_transform term('shy', input()),
tx=parse_transform term('tx', input()),
ty=parse_transform_term('ty"', input())

)

Listing 12-8: Parsing the affine transformation

We can easily test that our code works by editing the contents of our
main.py file to match Listing 12-9.

from apps.aff_transf motion.input import read_input

if _name_ == "'_main_ ':
(transform, primitives) = read_input()
print(transform)

Listing 12-9: Main file: reading transformation test



If you run the application using the run configuration or the bash script
we created before, the output in your shell should be the following:

Input is being redirected from .../test.txt
(sx: 1.2, sy: 1.4, shx: 2.0, shy: 3.0, tx: 50.0, ty: 25.0)

Process finished with exit code 0

You want to make sure all of the values in the affine transformation we de-
fined in test.txt are properly parsed. If you recall, those were as follows:

Sx 1.2
sy 1.4
shx 2.0
shy 3.0
tx 50.0
ty 25.0

Double-check that the output you got from the program matches these val-
ues. If you got it all right, congratulations! If you got any unexpected value,
debug your program until you find the culprit and fix the bug.

Parsing the Geometric Primitives

The geometric primitives can come in any order, and there can be any num-
ber of them, so we’ll need a different parsing strategy. We need to tackle two
separate problems: we need to read an unknown number of lines from the
input and then figure out the the type of geometric primitive for each line.
Let’s solve these problems separately, starting with the first one.

Reading an Unknown Number of Lines

To read an unknown number of lines, we can keep reading from the stan-
dard input until an EOFError (end of file error) is raised, signaling that we’ve
exhausted all the available lines. Open input.py and refactor __read_primitives
by entering the code in Listing 12-10.

--snip--

def _ read primitives():
has_more_lines = True

while has more lines:
try:
line = input()
print('got line -->', line)

except EOFError:
has_more_lines = False

Listing 12-10: Reading lines from standard input
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We declare a variable has_more_lines and assign it a value of True. Then,
in a while loop that keeps looping provided the variable remains True, we try
to read another line from the standard input. If the operation succeeds, we
print the line to the output; otherwise, we catch the EOFError and set has_more
_lines to False.

Run the program again to make sure all the lines from the input file are
processed by _ read_primitives and appear in the shell output. The output of
your program should include the following lines:

got line -->

got line --> circ 150 40 20

got line --> rect 70 60 40 100

got line --> rect 100 90 40 100

got line --> poly 30 10 80 10 30 90
got line --> segm 10 20 200 240

The first problem is solved: our input. py module knows how to read all
the lines from the input file. Notice that empty lines are also processed by
the read primitives function; we’ll handle that in the next section. Now
that we know how to read in the lines, let’s turn our focus to our second
problem: identifying the primitive type for each of the read-in lines.

Parsing the Right Primitive

Let’s start with one thing we know for sure: we need to have regular expres-
sions for each of the geometric primitives our program understands. Ear-
lier in the chapter, we defined the input format we expect for each of the
primitives. We just need to turn that into a regular expression. We’ll accept
either an integer or floating-point number for the properties of each of the
primitives. We saw how to do this before. Let’s call the regex that captures a
property value NUM_RE and use the following definition:

Nd+(\.\d+)?/

Using this regex, we could have the regular expression for a circle as
follows:

/circ (?P<cx>NUM_RE) (?P<cy>NUM RE) (?P<r>NUM _RE)/

Here we’ve included three capture groups: cx, cy, and r. These groups coin-
cide with the properties we defined for the input representation of the pre-
vious circle. In a similar fashion, a rectangle can be matched by the regular

expression:

/rect (?P<ox>NUM RE) (?P<oy>NUM RE) (?P<w>NUM RE) (?P<h>NUM RE)/
A regular expression to match segments can be as follows:

/segm (?P<sx>NUM_RE) (?P<sy>NUM RE) (?P<ex>NUM_RE) (?P<ey>NUM_RE)/



Lastly, for the polygon, we use a slightly different approach that simplifies its
parsing process a bit, as we’ll see now. The following is the regular expres-
sion we’ll use:

/poly (?P<coords>[\d\s\.]+)/

This regex matches strings starting with the word poly followed by a space
and a sequence of digits, spaces, or dots (used as decimal separator). With it,
we’ll match polygon definitions, as follows,

poly 30 10 80.5 10 30 90.5

which we’ll parse as a polygon defined by the vertices (30, 10), (80.5, 10), and
(30, 90.5).

Let’s include these definitions in our parse_geom.py file, along with some
imports that we’ll need to create the geometric primitives. Enter the code in
Listing 12-11.

import re

from geom2d import Circle, Point, Rect, Size, Segment
from geom2d import make_polygon_from_coords

_ NUM_RE = r'\d+(\.\d+)?'

_ CIRC_RE = rf'circ (?P<cx>{__NUM_RE}) (?P<cy>{_NUM RE}) ' \
rf' (2P<r>{__NUM RE})

__RECT_RE = rf'rect (?P<ox>{__NUM_RE}) (?P<oy>{_NUM RE}) " \
rf' (2P<w>{__NUM_RE}) (?P<h>{_NUM RE})’

__POLY_RE = rf'poly (?P<coords>[\d\s\.]+)"

__ SEGM_RE = rf'segm (?P<sx>{__NUM RE}) (?P<sy>{_NUM RE}) " \
rf' (2P<ex>{__NUM_RE}) (?P<ey>{_NUM _RE})

Listing 12-11: Geometric primitives, regex definitions

We have all the regular expressions we need, so our next goal is for the
appropriate primitive for each line we read. To solve this problem, we’ll fol-
low the “if can <verb> then <verb>” pattern, in our case “if can parse then
parse.” Let’s see how this works. We have a sequence of parser functions,
each of which expects a string formatted in a specific way. These functions
would fail if they tried to parse a geometric primitive out of a string with a
wrong format. So before putting them to work, we want to make sure they’ll
understand the string we pass them in. We’ll accompany each of the parse
functions with a can_parse function. This second function should determine
whether all of the parts the parse function expects are in the string: the pat-

tern’s “can parse” part.
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For each of our geometric primitives we need a pair of functions: one to
determine whether the given line of text can be parsed to this primitive (the
“can parse” part) and another to actually parse it (the “then parse” part).
The code for this algorithm is as follows:

if can_parse circle(line):
parse_circle(line)

elif can_parse_rect(line):
parse_rect(line)

elif can_parse_polygon(line):
parse_polygon(line)

elif can_parse_segment(line):
parse_segment(line)

else:
handle_unknown_line(line)

We first check whether the given line can be parsed to a circle. If the
test passes, we proceed to parse the circle; otherwise, we continue with the
next comparison, repeating this pattern. It may happen that none of these
comparisons passes, and we reach the last else statement; we handle this
situation in the handle_unknown_line function. Think, for example, about
those empty lines we read from the input file; those won’t match against any
known primitive. There are a couple of ways we could handle these problem
lines. We could, for example, print them to the shell with a warning mes-
sage, thus letting the user know there were lines the program didn’t under-
stand. To keep things simple, we’ll just ignore unknown lines.

Let’s now implement the “can parse” and “parse” functions for each
of our primitives. In parse_geom.py, after the regular expressions we just de-
fined, enter the code in Listing 12-12. This code handles the circle case.

--snip--

def can_parse_circle(line):
return re.match(__ CIRC RE, line)

def parse_circle(line):
match = re.match(__CIRC_RE, line)
return Circle(
center=Point(
float(match.group('cx")),
float(match.group('cy'))

)>
radius=float(match.group('r"))
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)

Listing 12-12: Parsing a circle

As you can see, the can_parse_circle function simply checks for a match
between the passed-in line and the regular expression for a circle: _ CIRC_RE.
The parse_circle function goes one step further and, assuming the line match-
es the regular expression, extracts the cx and cy group values, the center of
the circle. It does the same with the r group, the radius.

Don’t forget that the values we extract from the regular expression cap-
ture groups are always strings. Since we’re expecting floating-point num-
bers, we need to do the conversion using the float function.

Let’s now implement the same functions for the case of a rectangle. Af-
ter the code you just wrote, enter the code in Listing 12-13.

--snip--

def can_parse_rect(line):
return re.match(__RECT_RE, line)

def parse_rect(line):
match = re.match(__RECT RE, line)
return Rect(
origin=Point(
float(match.group('ox")),
float(match.group('oy'))
))
size=Size(
float(match.group('w")),
float(match.group('h"))

)

Listing 12-13: Parsing a rectangle

No surprises here. We applied the same procedure, this time extracting
groups named ox, oy, w, and h, which define the origin point and the size of
the rectangle. Let’s do the same for the case of a polygon. Enter the code in
Listing 12-14.

--snip--
def can_parse_polygon(line):

return re.match(__POLY_RE, line)

def parse_polygon(line):
match = re.match(__POLY_RE, line)
coords = [float(n) for n in match.group('coords').split(' ")]
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return make_polygon_from coords(coords)

Listing 12-14: Parsing a polygon

In this case, the mechanics are a bit different. Remember we had a slightly
different regular expression for the case of a polygon. Since polygons are de-
fined by an unknown number of vertices, the regex to match these numbers
by pairs had to be more complicated. We also had to use a list comprehen-
sion to properly parse the coordinates.

First, the string captured by the group named coords is split using a space
as the separator. Thus, the string of numbers

'10 20 30 40 50 60'

would be converted to an array of strings like so:
['10', '20', '30', '40', '50', '60']

Then each of the strings is converted into a floating-point number:
[10.0, 20.0, 30.0, 40.0, 50.0, 60.0]

With this array of numbers we can easily create an instance of our Polygon
class using the factory function make_polygon_from_coords. Don’t forget to add
the import at the top of the file:

from geom2d import make_polygon_from_coords

The last pair of “can parse” and “parse” functions we need are for seg-
ments. Enter the code in Listing 12-15.

--snip--

def can_parse_segment(line):
return re.match(__SEGM_RE, line)

def parse_segment(line):
match = re.match(__SEGM RE, line)
return Segment(
start=Point(
float(match.group('sx")),
float(match.group('sy'))
)s
end=Point(
float(match.group('ex")),
float(match.group('ey'))

)

Listing 12-15: Parsing a segment
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Great! We now have the functions we need to apply our “if can parse
then parse” strategy. Open input.py and import these functions:

from apps.aff_transf_motion.parse_geom import *

We use the asterisk import to bring all the defined functions in the parse
_geom module without writing all of their names. Now let’s refactor the _ read
_primitives function (Listing 12-16).

--snip--

def _ read primitives():
prims = {'circs': [], 'rects': [], 'polys': [], 'segs': []}
has_more_lines = True

while has more lines:
try:
line = input()

if can_parse_circle(line):
prims['circs'].append(parse_circle(line))

elif can_parse_rect(line):
prims['rects'].append(parse_rect(line))

elif can_parse polygon(line):
prims['polys'].append(parse_polygon(line))

elif can_parse_segment(line):
prims['segs'].append(parse_segment(line))

except EOFError:
has_more lines = False

return prims

Listing 12-16: Reading the primitives from the input

We start defining a dictionary named prims with an array for each type
of geometric primitive. Each of the arrays in the dictionary is identified by
a name: circs, rects, polys, and segs. Then comes the while loop, which iter-
ates through all the read-in lines. Instead of printing them to the shell, we
added our parsing functions, similar to what we did in pseudocode before.
This time, whenever a primitive is parsed, the result is appended to the cor-
responding array of the prims dictionary. The function ends by returning
prims.
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Listing 12-17 contains the final result for input.py. Make sure yours looks
similar.

from apps.aff_transf_motion.parse_geom import *
from apps.aff_transf _motion.parse_transform import parse_transform_ term
from geom2d import AffineTransform

def read_input():
transform = _ read_transform()
primitives = _ read_primitives()
return transform, primitives

def _ read_transform():
return AffineTransform(
sx=parse_transform_term('sx', input()),
sy=parse_transform term('sy', input()),
shx=parse_transform term('shx', input()),
shy=parse_transform term('shy', input()),
tx=parse_transform_term('tx', input()),
ty=parse_transform term('ty', input())

def _ read primitives():
prims = {'circs': [], 'rects': [], 'polys': [], 'segs': []}
has_more lines = True

while has_more lines:
try:
line = input()

if can_parse circle(line):
prims['circs'].append(parse_circle(line))

elif can_parse_rect(line):
prims['rects'].append(parse_rect(line))

elif can_parse_polygon(line):
prims['polys'].append(parse_polygon(line))

elif can_parse_segment(line):
prims['segs'].append(parse_segment(line))

except EOFError:
has_more_lines = False
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return prims

Listing 12-17: Complete inputreading code

Now that we can fully parse the input, let’s move on and implement the
simulation.

Running the Simulation

Once the configuration and input are completely read and parsed, they’re
both passed to a simulation function that we’ll write shortly. This function
will also define the user interface: a canvas to draw the shapes and a button
to start the animation. Figure 12-4 shows how these components will be laid
out.

The simulation won’t start until the user clicks the play button. This way
we prevent the simulation from starting too soon; otherwise, the user may
miss the first part of it. Furthermore, thanks to the button, we’ll be able to
rerun the simulation without needing to relaunch the application.

Canvas

Play Button \

Play

Figure 12-4: The simulation’s user interface

Building the User Interface
Open the empty simulation.py and enter the code in Listing 12-18.

from tkinter import Tk, Canvas, Button

def simulate(transform, primitives, config):
R UI DEFINITION ---------- #
tk = Tk()
tk.title("Affine Transformations")

canvas = Canvas(tk, width=800, height=800)
canvas.grid(row=0, column=0)

def start_simulation():
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tk.update()
print('Starting Simulation...")

Button(tk, text='Play', command=start simulation) \
.grid(row=1, column=0)

oo UPDATE, DRAW & CONTINUE ---------- #
def update_system(time_delta s, time_s, frame):
pass

def redraw():
pass

def should continue(frame, time s):

pass

redraw()
tk.mainloop()

Listing 12-18: Simulation function

We’ve defined a function simulate, which takes in the target transform,
the geometric primitives, and the configuration for the application. Re-
call that the configuration JSON file contains the number of frames to use
for the simulation and the sizes and colors of everything we’ll draw to the
screen. Since the function will get a bit long, we’ve added three header com-
ments to easily locate each of the sections: the user interface definition; the
update, draw, and should_continue functions; and the main loop.

The first section of the function builds the user interface. We instan-
tiate the Tk class and add a Canvas and a Button to it. Using the grid system,
we place the canvas in the first row (row=0) and the button in the second one
(row=1). We’ve also created a function, start_simulation, which is executed
when the button is pressed. This function doesn’t do much for now; all it
does is tell Tkinter to process all pending events (tk.update()) and print a
message to the shell. We’ll add the simulation’s updating logic here shortly.

Then we define the templates for the key simulation functions: update
_system, redraw, and should_continue. Don’t forget to declare the appropriate
input parameters for each of them; otherwise, Python will complain once
we hand them to our main_loop function. We’ll fill in these functions shortly.

Lastly, we call redraw to render the initial state of the geometric primi-
tives to the screen and start Tkinter’s main loop. To test our progress, let’s
edit main.py so that it shows the user interface. Open that file and modify it
so that it looks like Listing 12-19.

from apps.aff_transf_motion.config import read_config
from apps.aff_transf motion.input import read_input
from apps.aff_transf motion.simulation import simulate



if _name__ == "'_main__":
(transform, primitives) = read_input()
config = read_config()
simulate(transform, primitives, config)

Listing 12-19: Execution entry point

Our main.py file is now ready. Let’s work on the simulation code.

Implementing the Simulation Logic

Let’s move on to the simulation logic. If you recall from Chapter 7, to draw
the different frames of the animation, we need to generate a sequence of in-
terpolated affine transformations going from the identity transformation to
the target transformation that we parsed from the input. If you need a re-
fresher on the topic, refer to “Interpolating Transformations” on page 192.
Thanks to the affine-transformation interpolation function we implemented
in Chapter 7, ease_in_out_interpolation, this piece of logic is a breeze. In sim-
ulation.py make the changes shown in Listing 12-20.

from tkinter import Tk, Canvas, Button

from geom2d import affine_transforms as tf

def simulate(transform, primitives, config):

R UL DEFINITION ---------- #
--snip--

R UPDATE, DRAW & CONTINUE ---------- #

frames = config['frames']

transform seq = _ make_transform sequence(transform, frames)
--snip--

def _ make transform sequence(end transform, frames):
start_transform = tf.AffineTransform(sx=1, sy=1, tx=20, ty=20)
return tf.ease_in_out_interpolation(
start_transform, end_transform, frames

)

Listing 12-20: Computing the transformation sequence

The first thing that we need is the number of steps for the interpolation.
This is just the number of frames, a value that we read from the configura-
tion and stored in variable frames. To compute the interpolated sequence,
we’ve defined a private function in the file: _ make_transform_sequence. This
function takes the target affine transformation and the number of frames
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and computes the sequence using the following transformation as the start-

ing point:
1 0 20
[T]=(0 1 20
0 0 1

Notice the translation of 20 pixels in both the horizontal and vertical axes.
This small offset separates the axes from the canvas’s upper and left sides.
The resulting sequence of transformations is stored in transform_seq.

Let’s now dive into the key functions for the simulation: update_system,
redraw, and should_continue. Edit simulation.py to look like the code in List-
ing 12-21.

from tkinter import Tk, Canvas, Button

from geom2d import affine_transforms as tf
from graphic.simulation import CanvasDrawing

def simulate(transform, primitives, config):

R UL DEFINITION ---------- #
--snip--

#oommmo- UPDATE, DRAW & CONTINUE ---------- #

frames = config['frames']

transform_seq = _ make_transform_sequence(transform, frames)

@ drawing = CanvasDrawing(canvas, transform seq[0])

def update_system(time delta s, time_ s, frame):
@ drawing.transform = transform_seq[frame - 1]
tk.update()

® def redraw():
drawing.clear_drawing()

drawing.outline_width = config['geometry']['stroke-width"']
drawing.outline_color = config['geometry']['stroke-color']

for circle in primitives['circs']:
drawing.draw_circle(circle)

for rect in primitives['rects']:
drawing.draw_rectangle(rect)

for polygon in primitives['polys']:
drawing.draw_polygon(polygon)

for segment in primitives['segs']:
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drawing.draw_segment(segment)

def should continue(frame, time s):
® return frame <= frames

redraw()
tk.mainloop()

--snip--

Listing 12-21: Implementing drawing and updating

After the sequence of transformations we recently computed, we instan-
tiate our CanvasDrawing class, passing in the Tkinter canvas and the first affine
transformations @. Note that we imported the class at the top of the file and
that the first transformation on the sequence is the initial transformation for
the geometric primitives.

Then, we implement the update_system function. This function updates
the drawing’s transformation according to the current frame number @ and
invokes tk’s update method. To compute the index used to obtain the cor-
responding transformation, we subtract 1 from the frame number. Recall
that the frames are counted from 1, while a Python list’s first index is 0. It’s
important to realize that, in this particular simulation, it’s not the system
(made up of the geometric primitives) that gets updated every frame but
rather the affine transformation, a property of the CanvasDrawing class, that
gets a new value.

Next is the redraw function @. It first clears the canvas and sets the size
and color for the outlines of the shapes we’re drawing. These two values
come from the configuration file. Then, it iterates through all the primi-
tives in the dictionary, calling the corresponding draw command from the
CanvasDrawing class. Thanks to our previous work on that class, drawing to the
canvas is that simple.

Last is the implementation of should_continue that simply compares the
current frame number to the total number of frames for the animation ®.

Drawing the Axes

We’re almost there! Let’s add some code to draw the x- and y-axes as well

as a call to the simulation’s main loop (not to be confused with Tkinter’s
mainloop function). The axes will provide a good visual reference for how the
space is transformed. Include the changes in Listing 12-22.

from tkinter import Tk, Canvas, Button

from geom2d import affine_transforms as tf, Segment, Point
from graphic.simulation import CanvasDrawing, main_loop
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def simulate(transform, primitives, config):
B oo UL DEFINITION ---------- #

def start_simulation():
tk.update()
@ main_loop(update system, redraw, should continue)

Button(tk, text='Play', command=start simulation) \
.grid(row=1, column=0)

R UPDATE, DRAW & CONTINUE ---------- #
frames = config['frames']
transform_seq = _ make_transform sequence(transform, frames)

axis_length = config['axes']['length']
® x_axis = Segment(Point(0, 0), Point(axis_length, 0))
® y axis = Segment(Point(0, 0), Point(0, axis_length))
drawing = CanvasDrawing(canvas, transform seq[0])

def update_system(time_delta s, time_s, frame):
drawing.transform = transform_seq[frame - 1]
tk.update()

def redraw():
drawing.clear_drawing()

drawing.outline_width = config['axes']['stroke-width']
drawing.outline_color = config['axes']['x-color']
® drawing.draw arrow(
x_axis,
config['axes']['arrow-length'],
config[ 'axes']['arrow-height']

drawing.outline_color = config['axes']['y-color']
® drawing.draw_arrow(
y_axis,
config['axes']['arrow-length'],
config['axes']['arrow-height']

--snip--

def should_continue(frame, time_s):
return frame <= frames
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redraw()
tk.mainloop()

--snip--

Listing 12-22: Drawing the axes and main loop

First comes the most important addition: the inclusion of a call to the
main_loop function @. We pass in the functions defined next to take care of
the updating, redrawing, and continuation of the simulation. Make sure you
import the main_loop function at the top of the file.

Next come the definitions of x_axis @ and y_axis ®, both defined as
segments. Each length is a parameter we read from the configuration file
and store in axis_length. To draw the axes, we need to take into account that
they have a different stroke width and color than the other geometry. We've
added the code for these properties in the redraw function, just below the call
to clear_drawing.

After setting the corresponding outline width and color, we use our
CanvasDrawing class’s draw_arrow method, passing it the segment that defines
the x_axis geometry and the size of the arrow @. The size of the arrow, once
again, comes from the configuration. We have to add the same code to draw
y_axis @, but this time only the stroke color needs to be updated: the axes
are drawn using the same stroke width.

Well, we’ve been incrementally writing a lot of code. Just for reference,
Listing 12-23 shows the final simulation.py file. Take a look and make sure
you got it all.

from tkinter import Tk, Canvas, Button

from geom2d import affine_transforms as tf, Segment, Point
from graphic.simulation import CanvasDrawing, main_loop

def simulate(transform, primitives, config):
#o-mmmmmmme- UL DEFINITION ---------- #
tk = Tk()
tk.title("Affine Transformations")

canvas = Canvas(tk, width=800, height=800)
canvas.grid(row=0, column=0)

def start_simulation():
tk.update()
main_loop(update_system, redraw, should_continue)

Button(tk, text='Play', command=start_simulation) \
.grid(row=1, column=0)
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#o-mmmmmmme- UPDATE, DRAW & CONTINUE ---------- #

frames = config['frames']

transform seq = _ make_transform sequence(transform, frames)
axis_length = config['axes']['length']

x_axis = Segment(Point(0, 0), Point(axis_length, 0))

y_axis = Segment(Point(0, 0), Point(0, axis_length))

drawing = CanvasDrawing(canvas, transform seq[0])

def update_system(time_delta s, time_s, frame):
drawing.transform = transform_seq[frame - 1]
tk.update()

def redraw():
drawing.clear_drawing()

drawing.outline_width = config['axes']['stroke-width']
drawing.outline_color = config['axes']['x-color']
drawing.draw_arrow(

X_axis,

config['axes']['arrow-length'],

config['axes']['arrow-height']

drawing.outline_color = config['axes']['y-color']
drawing.draw_arrow(
y_axis,
config['axes']['arrow-length'],
config['axes']['arrow-height']

drawing.outline width = config['geometry']['stroke-width']
drawing.outline_color = config['geometry']['stroke-color']

for circle in primitives['circs']:
drawing.draw_circle(circle)

for rect in primitives['rects']:
drawing.draw_rectangle(rect)

for polygon in primitives['polys']:
drawing.draw_polygon(polygon)

for segment in primitives['segs']:
drawing.draw_segment(segment)

def should continue(frame, time_s):
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return frame <= frames

redraw()
tk.mainloop()

def _ make transform sequence(end transform, frames):
start_transform = tf.AffineTransform(sx=1, sy=1, tx=20, ty=20)
return tf.ease_in_out_interpolation(
start_transform, end_transform, frames

)

Listing 12-23: Complete simulation code

At last! We’re now ready to see the result, so execute the application
using the run configuration or the bash script. A window with the geomet-
ric primitives as they were defined in the input file should appear (see the
left image in Figure 12-5). Notice also the x- and y-axes, which we drew as
arrows; can you spot the 20 pixels of separation we gave the origin?

Now click Play and watch the result. The simulation should start slow,
then build some speed, and finally decelerate toward its end. We achieved
this effect using ease-in-out interpolation, which makes the animation look
smooth and realistic.

pray

Figure 12-5: Simulating an affine transformation

Now is a good time to go back to “Interpolating Transformations” on
page 192 and give it a second read. After seeing the ease-in-out effect in
action, you can build a solid visual intuition for Equation 7.11 (page 194),
which defines the pace for the animation you just witnessed.

Take some time to play with your application. Change some parameters
to see the effect on the resulting simulation. For example, try to change the
offset of the initial affine transformation (the translation components tx
and ty). Play with the stroke widths and colors in the configuration file, and
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edit the number of frames. Another interesting exercise is editing the affine
transformation and the geometric primitives defined in the input file test.txt.

Summary

In this chapter, we developed our second application, one that animates the
effect of affine transformations. Like before, we used regular expressions
to parse the input and used our geometry library for the heavy lifting. This
time the output was an animation, which, thanks to the work we did in the
previous chapters, was straightforward to implement.

This chapter concludes Part III of the book. In this part, we learned to
create SVG vector graphics and animated simulations from our geometric
primitives, key skills for building good engineering software. We used that
knowledge to build two simple applications: one that determines a circle
passing through three given points and one that animates geometric prim-
itives under an affine transformation. Those were simple applications, but
they illustrate how powerful geometric and visual primitives really are.

In the next part of the book, we’ll look at how to solve systems of equa-
tions, another key piece for any engineering application. That is the last
tool our Mechanics package needs. After exploring that topic, the rest of the
book will be focused on solving mechanics problems using only the powerful
primitives we coded ourselves.

334 Chapter 12



PART IV

SYSTEMS OF EQUATIONS







MATRICES AND VECTORS

This part of the book will deal with solving
systems of equations. We can conveniently
represent a set of equations using its matrix
form, where we store the unknown coefficients
in a matrix and the free terms in a vector.

We’ve been working with matrices and vectors with our affine transfor-
mations, but for the sake of completeness, let’s define them here. A matrix is
a two-dimensional array of numbers arranged in rows and columns. Matrices
are subject to some mathematical operations, including addition, subtrac-
tion, multiplication, and a few more. A vector, in this context, is a matrix with
only one row or column (typically one column).

Consider the following system of equations:

7x - 3y + 4z = 1
2¢ + by - z = -3

We can conveniently write this in matrix form as follows:

7 -3 4] (% _[1
2 5 -1 7|7 |-3
z
Note how the coefficients of the equation are represented in the 2 (rows)
by 3 (columns) matrix. According to the matrix multiplication rules, these
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coefficients multiplied by the unknowns x, y, and z yield our two equations,
each of which needs to equal its corresponding right-side term stored in the
(1,-3) vector.

It may not be obvious now, but matrices, and by extension vectors, will
greatly simplify working with systems of equations. To use them, however,
we’ll need to implement new classes for both matrices and vectors.

The new Vector class will represent a uni-dimensional array of numbers
(a sequence) of any length. This type of vector should not be confused with
the geometric vector we implemented in Chapter 4, which was made up of
two coordinates (u and v). An instance of our new Vector class with a size of
2 could look similar to the geometric vector, but they are distinct: the num-
bers don’t necessarily represent coordinates that define a direction. We’ll
have to deal with having two classes named the same: Vector. As you'll see,
since they’re defined in different modules, it shouldn’t be any problem to
disambiguate them.

There are quite a few operations we could implement for these two new
classes, but we’ll be pragmatic and implement only those we need in the
next chapter for solving systems of equations. For instance, we won’t need
to implement the addition, subtraction, or multiplication operations, even
though these are common.

Let’s begin by implementing two simple functions to help us fill newly
instantiated vectors and matrices with zeros. We’ll use these functions when
we instantiate a vector or matrix.

Internally, an instance of this new Vector class will use a list of numbers to
store its data. When an instance of the class is instantiated, we want to fill
its internal list with zeros. This way, values that haven’t been explicitly set to
some other value will be zero by default. Similarly, the Matrix class will store
its data in a list of lists. We also want every position in the matrix initialized
to zero.

Create a new Python file inside the utils package, name it lists.py, and
enter the code in Listing 13-1.

def 1list_of zeros(length: int):
return [0] * length

def 1list_of list of_zeros(rows: int, cols: int):
return [list_of zeros(cols) for _ in range(rows)]

Listing 13-1: Lists of zeros

We’ve defined two functions. The first one, list_of zeros, takes in a
length argument and creates a list of that size filled with zeros. The second,
list_of_list_of zeros, creates as many lists of zeros of size cols as the parame-
ter rows instructs.



Setup

The funny syntax for [0] * length can be read as follows: “Create a list
made up of zeros with the given length.” Give it a try in the Python console:

>>> [0] * 5
[0, 0, 0, 0, 0]

This is a neat way of initializing a list that contains the same repeating
value.

The list_of_list_of zeros function uses a list comprehension to create a
list of size rows where each item is another list of size cols. The index in each
iteration isn’t used, so an underscore is used:

from _ in range(rows)

Let’s try this function in the shell:

>>> from utils.lists import list_of_list_of_zeros
>>> list_of_list_of_zeros(2, 3)
([0, 0, 0], [0, 0, 0]]

Let’s now set up the new package where we’ll add the new Matrix and
Vector classes.

Let’s now create a new package in our project where we’ll add the Vector and
Matrix implementations. This package will also contain the equation-solving
functions that we’ll implement in the next chapters and generally in any
math or equation resolution algorithm we write. Create the new package

at the project’s top level and name it egs. Add another package inside it, and
name it fests. Your project’s structure should now look something like this:

Mechanics

|- apps
|- circle_from_points

|- simulation
|- svg

You should just have added the egs directory and its tests subdirectory:

Mechanics

| ...

|- eqs

| |- tests
|
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As we saw in the introduction of the chapter, a vector inside the egs package
will represent a sequence of numbers stored together in a list. We won’t con-
fuse it with the Vector implementation from the geom2d package; it’s unfortu-
nate they share a name, but remember that they are two different (although
arguably related) concepts. Vectors here are a special kind of matrix; specif-
ically, they are matrices with only one row or column. For instance, we may
refer to a vector like

2
-1
3

as a column vector, highlighting the fact that it’s a matrix with only one col-
umn. Similarly, we call a vector like

2 -1 3]

a row vector, as it’s nothing more than a matrix with only one row.

We’ll implement matrices and vectors as separate classes (instead of us-
ing the Matrix class to represent both) just for the sake of readability. For
example, to get a value from a matrix we indicate both the row and column
indices. For a vector, we require just one index, so using the Matrix class to
store a vector could make sense but would force us to pass two indices to get
or set values when, conceptually, just one should be enough. Thus, when
reading code like

m.value_at(2, 4)
v.value_at(3)

we can quickly identify that mis a matrix and v is a vector.

Implementing the Vector Class

We’ll use a list to store the vector’s data. We won’t be giving users access to
this private list of numbers but instead will provide methods in the class to
work with the vector. Create a new file, vector.py, inside egs and enter the
code in Listing 13-2.

from utils.lists import list of zeros

class Vector:
def __init_ (self, length: int):
self._length = length
self. data = list_of zeros(length)

@property



def length(self):
return self._ length

Listing 13-2: Vector class

When an instance of the Vector class is initialized, we pass in a length.
This length is kept in a private attribute called _ length of the class and is ex-
posed as a property using the @property decorator. This ensures the length
property won’t be modified once the Vector class has been instantiated. Re-
call that properties are read-only attributes.

The vector’s data is stored in the _ data attribute, which is initialized us-
ing our list_of_zeros function from before.

Let’s implement methods to set values in the vector. In the class, enter
the new code in Listing 13-3.

class Vector:
--snip--

def set_value(self, value: float, index: int):
self. data[index] = value
return self

def add_to_value(self, amount: float, index: int):
self. data[index] += amount
return self

def set data(self, data: [float]):
if len(data) != self._ length:

raise ValueError('Cannot set data: length mismatch')

for i in range(self._length):
self. data[i] = data[i]

return self

Listing 13-3: Setting vector values

We’ve added three new methods. The first one, set_value, is the sim-
plest of all: it sets a value at the specified index inside the vector. Note that
if the given index is either greater than or equal to the vector’s length, or
smaller than zero, we raise what we commonly refer to as an out of bounds
error, namely, an IndexError. We don’t need to check for this condition our-
selves as long as we’re happy with how Python handles it. Note as well that
the method returns self, that is, the instance of the class itself. We’ll keep
using this pattern where we return the instance when setting values in our
class. This is so that we can chain “set” operations or do things like

vec = Vector(5).set_value(3, 2)
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instead of having to do this less pretty equivalent:

vec = Vector(5)
vec.set_value(3, 2)

The second method we’ve defined is add_to_value, which adds the given
amount to a value inside the vector. This method will be convenient when
working with structures in Part V of the book, as you’ll see.

Lastly, we have set_data, which sets all the values in the vector from a
source data list. To do so, it first checks that the provided list has the same
length as the vector; then it copies each of the values to the private list _ data.

Let’s now implement a method to retrieve values from the vector at
given indices. In the vector.py file, enter the code in Listing 13-4.

class Vector:
--snip--

def value_at(self, index: int):
return self. data[index]

Listing 13-4: Getting vector values

We’re almost done with the Vector class. We could implement many
more methods to do things such as add or subtract vectors, but we won’t
need them for the purposes of this book. The only method we’ll need and
we haven’t implemented (or overridden) yet is __eq__, which we can use to
check whether two Vector instances are equal. Let’s do so now. Start by adding
the following import in vector. py:

from geom2d import are_close_enough

Then enter the new code in Listing 13-5.

from geom2d import are_close_enough
from utils.lists import list of zeros

class Vector:
--snip--

def _eq_ (self, other):

if self is other:
return True

if not isinstance(other, Vector):
return False

if self._length != other._ length:
return False
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for i in range(self.length):
if not are_close_enough(
self.value at(i),
other.value at(i)

return False

return True

Listing 13-5: Vector class equality

We first check whether we’re comparing the same instance against itself,
in which case the result is True and we don’t need to compare anything else.
Then, if the passed-in other is not an instance of the Vector class, we know the
comparison can’t succeed, so we return False. If we find out we’re compar-
ing two instances of the Vector class, we start the actual check. First we make
sure the lengths of the vectors are the same (vectors with different sizes can-
not be equal). If the length check succeeds, we finally check the values one
by one using our are_close_enough function.

When we implement potentially computationally expensive __eq__ meth-
ods, it’s important to check the less computationally intensive conditions
first. Here, for example, we do a fast check on the lengths of the vectors be-
fore checking every pair of values for equality. Whereas the pairwise value
comparison needs to perform n comparisons (where 7 is the length of the
vectors), the length comparison requires only one comparison.

Our finished Vector class should look like the one in Listing 13-6.

from geom2d import are_close_enough
from utils.lists import list of zeros

class Vector:

def _init (self, length: int):
self._length = length
self. data = list_of_zeros(length)

@property
def length(self):
return self._ length

def set_value(self, value: float, index: int):
self. data[index] = value
return self

def add_to_value(self, amount: float, index: int):

self. data[index] += amount
return self
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def set_data(self, data: [float]):
if len(data) != self. length:
raise ValueError('Cannot set data: length mismatch')

for i in range(self._length):
self. data[i] = data[i]

return self

def value_at(self, index: int):
return self. data[index]

def __eq_ (self, other):
if self is other:
return True

if not isinstance(other, Vector):
return False

if self._ length != other._ length:
return False

for i in range(self.length):
if not are_close_enough(
self.value at(i),
other.value at(i)

return False

return True

Listing 13-6: Vector class result

Because this class will serve as the base for the resolution of systems of
linear equations, we can’t afford to have any bugs in its implementation: that
would render the resolution of such systems useless. Let’s add a few tests to
make sure the class is bug-free.

Testing the Vector Class

At the beginning of the chapter we created a fest directory inside the egs
package. Inside that directory, create a new file named vector_test.py and en-
ter the code in Listing 13-7.

import unittest

from eqs.vector import Vector
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class VectorTest(unittest.TestCase):

def test_length(self):
self.assertEqual(5, Vector(5).length)

def test_unset_value is_zero(self):
vector = Vector(2)
self.assertkqual(0.0, vector.value at(0))
self.assertEqual(0.0, vector.value at(1))

def test_set_get value(self):
value = 10.0
vector = Vector(2).set_value(value, 1)
self.assertEqual(0.0, vector.value at(0))
self.assertEqual(value, vector.value at(1))

def test_add_to_value(self):
vector = Vector(2).set_data([1, 2]).add_to_value(10, 0)
self.assertEqual(11, vector.value at(0))
self.assertkqual(2, vector.value at(1))

Listing 13-7: Vector class unit tests

This code defines a new test class, VectorTest, with four unit tests. Run
all the tests to make sure they pass and our implementation is right. You can
do so from the bash shell:

$ python3 -m unittest eqs/tests/vector_test.py

The first test, test_length, checks that the vector’s length property re-
turns the right number. Then comes test_unset_value_is_zero, which ensures
that we properly initialize the vector, filling it with zeros. The test_set_get
_value sets the value 10.0 at index 1 and checks that the vector returns that
same value when asked for the item at index 1. We also assert that the vec-
tor returns a zero for the item at index 0, just to make sure that set_value
doesn’t modify any value other than the one it’s supposed to. Last, we have
test_add_to_value to test the add_to_value method. The test initializes the vec-
tor with values [1, 2], adds 10 units to the item at index 0, and asserts that
the value at that index is updated correctly.

You may have noticed that the test_set_get_value test may actually fail
for two different reasons: an error in the implementation of the vector’s
(1) set_value method or (2) value_at method. That’s mostly true, and you'd
be right to point out that we broke our first rule for good testing here (see
“Three Golden Rules for Unit Testing” on page 97). But it’s hard to test
set_value without using the value_at method in the assertion. We could get
the value by somehow accessing the vector’s private _ data instead of using
value_at, but it’s preferable to test a class through its public API and not
access its implementation details. We want to be able to change the inter-
nal implementation of our classes without altering their behavior, and that
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shouldn’t break any test. If we rely on the internals of a class to test it, we
couple the test to the class’s implementation.

As arule of thumb, the private implementation of a class should always
be kept secret to the outside world; only the class itself should know about it.
This is called encapsulation in object-oriented parlance.

Our Vector class is now ready and tested. Let’s implement a class to rep-
resent matrices.

Matrices add an extra dimension to vectors. Matrices are an array of num-
bers distributed in rows and columns.

Let’s create a new file matrix.py inside the egs directory. Enter the initial
definition for the Matrix class, as in Listing 13-8.

from utils.lists import list of list of_zeros

class Matrix:

def _init_ (self, rows_count: int, cols_count: int):
self._rows_count = rows_count
self._cols_count = cols_count
self. is_square = rows_count == cols_count
self. data = list of 1list of zeros(rows_count, cols count)

@property
def rows_count(self):
return self._ rows_count

@property
def cols_count(self):
return self._cols_count

@property
def is_square(self):
return self. is square

Listing 13-8: Matrix class

The Matrix class is initialized with the number of rows and columns.
These values are saved as private attributes of the class: __rows_count and
_ cols_count. They are exposed as public properties: rows_count and cols
_count. A matrix is square if it has the same number of rows and columns.
We exposed this as a property as well: is_square. Last, we initialize the pri-
vate attribute _ data with a list of lists of zeros using the function that we cre-
ated at the beginning of the chapter.



Setting Valves

Let’s add the methods to set the matrix’s values. In the Matrix class, enter
the two methods in Listing 13-9.

class Matrix:
--snip--

def set_value(self, value: float, row: int, col: int):
self. data[row][col] = value
return self

def add_to_value(self, amount: float, row: int, col: int):
self. data[row][col] += amount
return self

Listing 13-9: Setting matrix values

Like we did with our Vector class, we’ve implemented one method to
set a value in the matrix given its position (given by row and col) and one
method to add a given amount to an existing value in the matrix. Following
our convention of returning the instance when a value is set, both set_value
and add_to_value return self.

It’ll also be handy to have a way to fill the matrix given a list of values, so
after what we’ve just written, enter the method in Listing 13-10.

class Matrix:
--snip--

def set_data(self, data: [float]):
® if len(data) != self. cols count * self. rows_count:
raise ValueError('Cannot set data: size mismatch')

for row in range(self._ rows_count):
@ offset = self. cols count * row
for col in range(self._ cols_count):
® self. data[row][col] = data[offset + col]

return self

Listing 13-10: Setting data to the matrix

As you can already tell, using the values in a list to set the matrix data is
not as straightforward as it was for vectors. There’s a check we need to per-
form to make sure the data fits inside the matrix: the given data should have
the same length as the number of rows times the number of columns @, the
total number of values the matrix holds. If it doesn’t, we raise a ValueError.

Then, we iterate through the matrix’s row indices. In the offset variable
we store the offset to the beginning of the current’s row data inside the in-
put list . For the row at index 0, the offset is 0 as well. For the row at in-
dex 1, the offset will be the length of a row: the number of columns in the
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matrix, and so forth. Figure 13-1 shows this offset. We iterate through the
column’s indices and set each of the values in __data from the input data @.

Matrix
1 2 Data list
3| 4 1 2 3 4 |5 6

F
TE Offset  Offset  Offset

row O row 1 row 2
3 rows

2 columns

Figure 13-1: Setting matrix data from a list

As we’ll see in Part V of the book, when we’re working with truss struc-
tures, one of the steps for computing the structure’s system of equations is
accounting for the external constraints on nodes. We’ll get into all the de-
tails later, but for now it’s enough to know that this modification requires
that we set a row and a column of the matrix as identity vectors. For exam-
ple, if we had the following matrix,

1 2 3
4 5 6
7 8 9

setting the row and column with indices 0 and 1, respectively, as identity vec-
tors would result in the following:
10 0
4 1 6
709

Let’s write two methods to do this in our Matrix class. Enter the code in
Listing 13-11.

class Matrix:
--snip--

def set_identity row(self, row: int):
for col in range(self._ cols count):
self. data[row][col] = 1 if row == col else 0
return self
def set_identity col(self, col: int):
for row in range(self. rows_count):

self. data[row][col] = 1 if row == col else 0

return self

Listing 13-11: Setting identity rows and columns



We implemented two new methods: set_identity row and set_identity col.
Both are similar in implementation: they set all values in the row or column
as 0 except for the position in the main diagonal, which is set to 1.

In this code, we’ve used a compact condition expression: a ternary oper-
ator. This operator’s syntax is as follows:

<expression> if <condition> else <expression>

It returns one of the two expressions depending on the condition value. In
this particular case, our condition is row == col, which is True if the row and
column indices are equal.

Note that if the matrix is not square, it can happen that we set a row or
column as the identity vector and it ends up filled with all zeros. For exam-
ple, see Figure 13-2. We have a matrix with three rows and two columns, and
we set the third row (the row at index 2) as the identity. Since the matrix has
only two columns, the value 1 would be outside the matrix, in the nonexis-
tent third column.

— | 0| O

Figure 13-2: Setting an
identity row in a
nonsquare matrix

Let’s now add two methods to get values from the matrix.

Getting Valves

We need to implement value_at to get a value at the given row and column
indices. We also want another method, value_transposed_at, which pulls a
value from the matrix as if the matrix had been transposed. Quick reminder:
the transpose of a matrix [M] is another matrix [M]" where [M]’s rows are
swapped with its columns:

12
135
[M]= |3 4 —>[M]’={ }
5 6 2 4 6

We'll use this second method in Chapter 14 in our implementation of
Cholesky’s factorization algorithm to solve linear systems of equations. We
could also implement a method in our Matrix class that returned a new ma-
trix resulting from transposing the current one and then withdraw the val-
ues from this matrix. That would be a good option indeed, but as matrices
representing systems of equations are often enough very big, copying all the
values into a new matrix is a computationally expensive operation. Being
able to get values from the matrix as if it were transposed is a performance
optimization we’ll use in our Cholesky implementation.
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In matrix.py, enter the code in Listing 13-12.

class Matrix:
--snip--

def value_at(self, row: int, col: int):
return self. data[row][col]

def value_transposed at(self, row: int, col: int):
return self. data[col][row]

Listing 13-12: Getting matrix values

First we implement value_at. This method returns a value in the given
row and column indices from the private data storage. Then we have value
_transposed_at. As you can see, this method is similar to value_at. The only
difference is that instead of being

self. data[row][col]
this time the value pulled from the matrix is
self. data[col][row]

This retrieves the value of that matrix as if it were transposed simply by swap-
ping the row and col indices. This method will bring us a big performance
improvement later.

One thing to keep in mind when using this method is that the row in-
dex we pass in should be no greater than the number of columns, and the
column index should be no greater than the number of rows. Since we’re ac-
cessing the matrix’s data as if it were transposed, the actual number or rows
is the number of columns from the original matrix. The same goes for the
number of columns.

Scaling Valves

Let’s implement one last useful method: scaling the matrix. The same way
we can scale a vector, we can scale a matrix by multiplying all of its values by
a scalar. Enter the method in Listing 13-13.

class Matrix:
--snip--

def scale(self, factor: float):
for i in range(self.__rows_count):
for j in range(self._ cols count):
self. data[i][j] *= factor

return self

Listing 13-13: Scaling a matrix



This method iterates through all the row and column indices and mul-
tiplies the value stored in every position by the passed-in factor. We return
self, as this is a method that sets data.

Matrix Equality

To finish the implementation for our Matrix class, let’s include the __eq__
method to compare matrices for equality. Start by adding the following im-
port at the top of matrix.py:

from geom2d import are_close_enough

Then enter the implementation for the __eq_ method in Listing 13-14.

from geom2d import are_close_enough
from utils.lists import list of list of zeros

class Matrix:
--snip--

def _eq_ (self, other):
if self is other:
return True

if not isinstance(other, Matrix):
return False

if self._ rows_count != other.rows_count:
return False

if self. cols count != other.cols count:
return False

for i in range(self.__rows_count):
for j in range(self._ cols count):
if not are_close_enough(
self. data[i][j],
other. data[i][j]

return False

return True

Listing 13-14: Matrix class equality

As usual, we start by checking the references for self and other, because
if we’re comparing an instance against itself, there’s no need to compare
anything else, and the comparison can safely return True. Then, we make
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sure the passed-in object is an instance of the Matrix class; otherwise, there’s
not much we can compare.

Before we start comparing values from the matrices one by one, we want
to make sure we have matrices of the same size. If we detect that either the
row or column lengths don’t match, we return False.

Finally, if all the previous checks haven’t returned a value, we compare
the values of both matrices. As soon as we find a pair of values that aren’t
equal (according to our are_close_enough function), we return False. If all val-
ues are equal, we exit the for loops and finally return True.

For reference, your matrix.py file should look like Listing 13-15.

from geom2d import are_close_enough
from utils.lists import list of list of zeros

class Matrix:

def _init (self, rows count: int, cols count: int):
self. rows_count = rows_count
self. cols _count = cols_count
self. is_square = rows_count == cols_count
self. data = list of list of_zeros(rows_count, cols count)

@property
def rows_count(self):
return self. rows_count

@property
def cols_count(self):
return self. cols count

@property
def is_square(self):
return self. is square

def set_value(self, value: float, row: int, col: int):
self. data[row][col] = value
return self

def add_to_value(self, amount: float, row: int, col: int):
self. data[row][col] += amount
return self

def set data(self, data: [float]):
if len(data) != self. cols count * self. rows count:

raise ValueError('Cannot set data: size mismatch')

for row in range(self. rows_count):



def

def

def

def

def

def

offset = self.__cols_count * row
for col in range(self. cols_count):
self. data[row][col] = data[offset + col]

return self

set_identity row(self, row: int):
for col in range(self._cols count):
self. data[row][col] = 1 if row == col else 0

return self

set_identity col(self, col: int):
for row in range(self._ rows_count):
self. data[row][col] = 1 if row == col else 0

return self

value_at(self, row: int, col: int):
return self. data[row][col]

value_transposed at(self, row: int, col: int):
return self. data[col][row]

scale(self, factor: float):
for i in range(self._ rows_count):
for j in range(self._ cols_count):
self. data[i][]j] *= factor

return self
__eq__(self, other):
if self is other:

return True

if not isinstance(other, Matrix):
return False

if self.__rows_count != other.rows_count:
return False

if self. cols count != other.cols count:
return False

for i in range(self.__rows_count):

for j in range(self._ cols count):
if not are_close_enough(
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self. data[i][j],
other. data[i][j]

return False

return True

Listing 13-15: Matrix class result

Our Matrix class is almost ready! We need to check for bugs. We may
have made some small mistakes when writing the code. This could be prob-
lematic once we start using this class to solve systems of equations. These
kinds of calculations are usually mission-critical in engineering applications.
Thus, we can’t afford a single bug in our implementation. But that’s no
problem for us. We know how to tackle this: let’s add some automated unit
tests.

Testing the Matrix Class

In the tests folder, create a new file named matrix_test.py. Enter the initial
code for the test in Listing 13-16.

import unittest

from eqs.matrix import Matrix

class MatrixTest(unittest.TestCase):

def test_is_square(self):
self.assertTrue(
Matrix(2, 2).is_square

def test_is_not_square(self):
self.assertFalse(
Matrix(2, 3).is_square

)

Listing 13-16: Matrix unit tests

In this file we define a new test class called MatrixTest, which inherits
from TestCase. We created two tests for the is_square property, one to check
if a matrix is actually square, and another to check if a matrix is not square.
Run the tests; ideally they both pass, but if not, go back to the implementa-
tion of the property and ensure you have the implementation right. You can
run the tests from the shell using the following command:

$ python3 -m unittest eqs/tests/matrix_test.py




You should get output similar to the following:

Ran 2 tests in 0.001s

0K

Let’s now check the methods that set or get values. After the two tests
we just wrote, enter the tests in Listing 13-17.

class MatrixTest(unittest.TestCase):
--snip--

def test_unset value_is_zero(self):
matrix = Matrix(2, 2)
self.assertEqual(0.0, matrix.value_at(o, 1))

def test_set_get value(self):
value = 10.0
matrix = Matrix(2, 2).set_value(value, 0, 1)
self.assertEqual(value, matrix.value at(0, 1))

def test add_to_value(self):
expected = [1, 12, 3, 4]
matrix = Matrix(2, 2) \
.set_data([1, 2, 3, 4]) \
.add_to_value(10, 0, 1)
self.assert matrix_has data(matrix, expected)

Listing 13-17: Testing setting and getting values

The first test ensures that values in the matrix that haven’t been set are
zero upon instantiation. Then we test that both the set_value and value_at
methods actually set and get matrix values. Lastly, we test the add_to_value
method, making sure that it adds a given amount to an already set value.

In this last test, we’ve used an assertion method that doesn’t exist: assert
_matrix_has_data. We need to implement this method ourselves inside the
MatrixTest class, and we’ll use it when we need to ensure all values inside a
matrix are as expected. By doing this, we can use only one assertion to check
that the values in a matrix are the same as the values in a list passed in as the
second parameter. Inside the test class, toward the end, enter the method
definition shown in Listing 13-18.

class MatrixTest(unittest.TestCase):
--snip--

def assert matrix_has_data(self, matrix, data):
for row in range(matrix.rows_count):
offset = matrix.cols_count * row
for col in range(matrix.cols_count):

Matrices and Vectors 355



self.assertEqual(
data[offset + col],
matrix.value_at(row, col)

)

Listing 13-18: Custom assertion for matrix values

This assertion method has the same structure as set_data inside the
Matrix class. This time, instead of setting values, we use assertEqual to test
for equality.

We have to note that, by including an assertion method that has some
logic of its own (the offset computation in this case), we introduce one more
possible reason for the tests to fail: the assertion method itself being wrongly
implemented. As always, if we want to be practical, we need to make trade-
offs. We can use our engineering common sense to analyze the pros, cons,
and alternatives. In this case, having a custom assertion to check matrix val-
ues is worth it: it facilitates the simple assertion of matrix values and makes
writing new tests and checking matrix values painless. We just have to be ex-
tra sure that our logic in the assertion method is correct.

Let’s now test the set_data method. The test is in Listing 13-19.

class MatrixTest(unittest.TestCase):
--snip--

def test_set data(self):
data = [1, 2, 3, 4, 5, 6]
matrix = Matrix(2, 3).set data(data)
self.assert matrix_has data(matrix, data)

Listing 13-19: Testing setting data from a list

In this test we’re using our custom assertion method, which makes the
test quite short and concise. We create a matrix with two rows and three
columns, set its data using a list with the numbers between 1 and 6, and then
assert they’ve been correctly placed in their respective slots.

Moving on, our next tests should be for the methods that set identity
rows and columns. Enter the tests in Listing 13-20.

class MatrixTest(unittest.TestCase):
--snip--

def test set identity row(self):
expected = [1, 0, 4, 5]
matrix = Matrix(2, 2) \
.set_data([2, 3, 4, 5]) \
.set_identity_row(0)
self.assert matrix_has data(matrix, expected)

def test_set_identity col(self):
expected = [2, 0, 4, 1]
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matrix = Matrix(2, 2) \
.set_data([2, 3, 4, 5]) \
.set_identity col(1)
self.assert matrix_has data(matrix, expected)

Listing 13-20: Testing setting identity rows and columns

In these two tests we start by specifying the expected values for the re-
sulting matrix. Then, we create a new 2x2 matrix and set its values to the list
of numbers between 2 and 5. We set the identity row or column and assert
that the values are as expected.

We avoided using 1 for any of the initial values in the matrix: the meth-
ods we’re testing will set one of the values inside the matrix with a 1. Imag-
ine that our implementation of the set_identity_row method wrongly set a
value in the matrix as a 1 and that it chose to set the same value that we al-
ready initialized as 1. Our tests wouldn’t be able to detect such an error be-
cause there’s no way to tell whether that 1 is the one we set ourselves in the
beginning of the test or a value that the set_identity_row method set. By not
using 1 as an input value, we avoid exposing our test to such a problem.

There’s one last method we implemented in our Matrix class that needs
to be tested: scale. Enter the test in Listing 13-21.

class MatrixTest(unittest.TestCase):
--snip--

def test_scale(self):
expected = [2, 4, 6, 8, 10, 12]
matrix = Matrix(2, 3) \
.set_data([1, 2, 3, 4, 5, 6]) \
.scale(2)
self.assert_matrix_has_data(matrix, expected)

Listing 13-21: Testing scaling matrices

This test creates a 2 x3 matrix, sets its data using the numbers from 1 to
6, and then scales everything by 2. Using the custom assert_matrix_has_data
assertion we check that all values have been scaled correctly. Make sure to
run the tests in the test class. From the shell, this would be as follows:

$ python3 -m unittest eqs/tests/matrix_test.py

You should get an output similar to the following:

Ran 9 tests in 0.001s

0K
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Summary

In this chapter, we implemented two classes that we’ll need to work with sys-
tems of equations: Vector and Matrix. In the next chapter, we’ll use these two

classes to represent systems of equations that we’ll solve using numerical
methods.
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LINEAR EQUATIONS

Many engineering problems require re-
solving a system of linear equations. These
equations arise in structural analysis, electric

circuits, statistics, and optimization problems,
just to name a few. Implementing algorithms to solve
these ubiquitous systems of equations is key for our

Mechanics project to deal with real-world engineering
problems.

In this chapter, we’ll explore the concept of numerical methods: existing
algorithms that use computers to solve systems of equations. We’ll imple-
ment a powerful method to solve systems of linear equations: the Cholesky
decomposition. We’ll use this method when we need to solve the big systems
of equations from the structural analysis problems in Part V of the book.

Systems of Linear Equations

A linear equation with n unknowns x1, X9, . .., x, can be expressed as shown
in Equation 14.1.

myxy +moxg + -+ mpXy = b (14.1)
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Here, m1,mo, ..., my are the equation’s coefficients, known numbers that
multiply each of the unknowns, and b is a known number that doesn’t multi-
ply any unknown. We call this last number b the free term.

If the unknowns are only multiplied by a scalar, added, or subtracted,
then we say the equation is linear. The coefficients are always known quanti-
ties. An alternative way of expressing a linear equation is shown here,

n
E mix; = b
[

where m; is the coefficients, x; is the unknowns, and & is the free term.

By contrast, a nonlinear equation includes things like unknowns with
an exponent (%), trigonometric functions (sin(x)), or the product of several
unknowns (x] - x9). These equations are considerably harder to solve than
linear ones, so we’ll stay focused on linear equations.

A system of linear equations has the form shown in Equation 14.2.

my1xy t omyoxe + ... F mypXp = bl
mo1x] * mo9xe * ... + mouxy = b (14.9)
Mp1X1 + MuoXe * ...t MpypXn = by

Here, a coefficient m;  is the term that multiplies the j* unknown in the i
equation. These systems can be conveniently expressed in their matrix form
as shown in Equation 14.3.

[M][x] = [5] (14.3)
Here, [M] is the matrix of coefficients,
mir omye ... Mg
_ |M21 M9, ce. MY,
[M] = 2, 2,2 2.n
mn’l mn,g e mn,n

and [x] and [#] are the unknown and the free-term column vectors:

x1 by
X9 bo
[x] = [6]=] .
Xn by
A solution for Equation 14.3 is a set of numbers x1, x9, . . ., x;,, that satis-

fies all n equations. Finding solutions for big systems of equations by hand
can take a long time, but don’t worry: there are plenty of algorithms for solv-
ing systems like this using a computer.

A quick note on nomenclature. We’ll use uppercase letters inside square
brackets to denote matrices: [M]. The items in a matrix will be named using
the same letter used for the matrix but lowercase. Items will include as a sub-
script two comma-separated numbers, which are the row and column indices



of their position inside the matrix. For example, the number in row 3 and
column 5 of the matrix [M] will be referred to as mg 5. Column and row vec-
tors are denoted as lowercase letters inside square brackets: [x]. Remember
that column and row vectors are also matrices.

Numerical Methods

Numerical methods are algorithms that find an approximate solution for a
system of equations using the computational power of a computer.

There are numerical methods designed to solve systems of linear, non-
linear, and differential systems of equations. Most numerical methods,
nevertheless, are limited to solving specific types of systems. For instance,
the Cholesky decomposition works only with linear systems whose coeffi-
cient matrix is symmetric and positive definite (we’ll see what this means in a
bit). If we need to solve a nonlinear system of equations, or even one that is
linear but with a nonsymmetric coefficient matrix, Cholesky decomposition
simply won’t work.

There are two big families of numerical methods: direct and iterative.
Direct methods use algebraic modifications on the original system to solve
it. Iterative methods, on the other hand, start with an approximate solution
for the system and improve it step-by-step until the solution has the desired
accuracy. The Cholesky decomposition is a direct numerical method.

Numerical methods are a big topic: entire books have been written about
it. There are many technical details about numerical methods that we won’t
be covering here. But this isn’t a theory book; we’re much more interested
in the practice, so we’ll implement an algorithm that solves the kinds of sys-
tems of equations that’ll arise in the structural analysis application we’ll cre-
ate in the next part of the book. In this case, that means we’ll be working
with linear systems with symmetric, positive-definite coefficient matrices.

Cholesky Decomposition

The Cholesky decomposition is a direct (noniterative) method that solves linear
systems of equations provided their [M] (the coefficient matrix) is symmetric
and positive definite.

A symmetric matrix [M] is one that is equal to its transpose: [M] = [M]'.
That is the same as saying that the values in the matrix are symmetric with
respect to the main diagonal. In a symmetric matrix, every row contains the
same values as the column with the same index, and vice versa. Note that to
be symmetric, a matrix needs to be square. The following is an example of a
symmetric matrix:

4 -2 4
-2 10 -2
4 -2 8
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A square matrix [M] with n rows and columns is positive definite if for any
column vector [x] made of n real numbers (with the exception of a vector
filled with zeros), the expression in Equation 14.4 is satisfied.

[x]'[M][x] > O (14.4)

If you find a nonzero vector [x] that doesn’t satisfy the previous equa-
tion, then the matrix [M] is not positive definite.

We can also say that a matrix is positive definite if it’s symmetric and all
its eigenvalues are positive. If you remember the process of obtaining the
eigenvalues of a matrix, you might agree that it’s painful and a bit boring.
In either case, proving that [x]'[M][x] > 0 for every possible [x] or obtaining
all eigenvalues of the matrix and making sure all are positive is an involved
process.

We are going to skip all that technical complexity and won’t be demon-
strating that the matrices we’ll work with are positive definite. We’ll apply
the Cholesky factorization to a problem that is well-known for yielding sys-
tems of equations with a symmetric and positive-definite matrix: truss struc-
ture analysis using the direct stiffness method. If you ever need to apply this
algorithm to any another problem, you’ll first need to figure out whether
the system of equations derived for it has a matrix that Cholesky can work
with. If it’s not the case, don’t worry: there are plenty of other numerical
methods that you can use.

After we implement Cholesky’s algorithm together, I hope you feel em-
powered to implement any other numerical method on your own. As you’ll
see, the most powerful resource we have at our disposal to make sure we get
these tricky algorithms right is unit testing.

LU Factorization Methods

Cholesky is a computation method from the family of so-called LU factor-
ization or decomposition methods. An LU factorization of a given square
matrix [M] has the form shown in Equation 14.5.

[M] = [L][U] (14.5)

Here, [L] is a lower-triangular matrix, and [U] is an upper-triangular matrix. A
lower-triangular matrix is one where all nonzero values are on and below
the main diagonal. Conversely, an upper-triangular matrix has the nonzero
values on and above the main diagonal. Here’s an example of a lower- and
an upper-triangular matrix:

0
0

2 0 2 1 5
[L]1=[1 3 [U]= |0 3 4
41 2 0 7

0



Every nonsingular matrix (a matrix that has an inverse) always has an LU
factorization. For example, the matrices from the previous example are the
LU factorization for the matrix

4 2 10
2 10 17
8 7 38

which you can verify by multiplying the following:

4 2 10 2 0 0](2 1 5
2 10 17| =1{1 3 0| |0 3 4
8 7 38 4 1 2{[0 0 7

The Cholesky algorithm will provide us with a lower- and an upper-
triangular matrix. Besides Cholesky, there are two well-known methods
for obtaining the factorization of any nonsingular matrix: the Doolittle and
Crout algorithms. These algorithms define the formulas necessary to com-
pute the /; j and u; ; values for the lower- and upper-triangular matrices. The
benefit of these methods is that they work for any kind of matrix, not just
symmetric, positive-definite matrices. We won’t be covering them here, but
I encourage you to take a look and try to implement one of them yourself
in our Mechanics project. You may want to try that as an exercise after we’ve
implemented Cholesky’s algorithm.

It’s fair to ask, why not use the Doolittle or Crout algorithms that work
with every nonsingular matrix instead of the more restrictive Cholesky? For
symmetric and positive-definite matrices, Cholesky’s decomposition is about
twice as fast as these other algorithms. Since we’ll use the method with the
type of matrices required, we’ll want to benefit from the execution speed
offered by Cholesky’s method.

Once we obtain the LU factorization for the matrix, we can solve our
system of equations in two steps. Suppose our original system was as follows:

[M][x] = 6]
After factorizing [M], we have Equation 14.6.

[LI[U][x] = [6] (14.6)

We can extract two systems from Equation 14.6 if we take the product [U][x]
and substitute it with a new unknown vector [y]:

[L][U][x] = [#]

——
]

We now have a lower-triangular matrix system, as shown in Equation 14.7,

[L][y] = [0] (14.7)

and an upper-triangular matrix system, as shown in Equation 14.8.
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[Ul[x] = [y] (14.8)

By first solving Equation 14.7, we find [y], which plugged into Equation
14.8 allows us to compute the unknown vector [x]: the system’s solution.
Both Equation 14.7 and Equation 14.8 are systems with a triangular matrix,
and they can be easily solved by forward and backward substitution.

Take this system of equations whose coefficient matrix is lower triangu-
lar:

hop 00 iy b1
lba log 0| |ye| = (b2
l31 32 l33] )3 bs
The first unknown y; can be computed from the first equation as
follows:

_ b0
=L
) i1

From the second equation we have the following,

_ba—l iy
la,2

which can be solved, as we already computed the value for y; in the previous
step. We do the same for the third equation:

>2

_ b3~ l3,1y1 ~l3,.992
I3.3

)3

We have the values for y; and y9, so the value for y3 can be computed. This
process is known as forward substitution. A formula to obtain the y* solution
term using forward substitution is shown in Equation 14.9 (using zero-based
indices).

j<i
bi= >l
j=0

it T (14.9)
1,1

In a system whose coefficient matrix is upper triangular, we can use a
similar substitution process, but starting from the bottom this time. The
process is called backward substitution. This time we have the following:

Uyl U2 U1 X1 bal
0 ugo wugs| |x2| = [y2
0 0 ug’g X3 3

Starting from the last equation, we can compute x3:

)3

xg = =
usg,3



With this value we can move to the second equation to obtain xo:

_ )2 T U23X3
Xg = ————
ug.92

Lastly, from the first equation in the system, we have this:

Y1 T U 9X2 T UL 3X3
u,1

X1 =

For the backward substitution, the formula to compute the X term is
described by Equation 14.10, with n being the size of the system.

jsn
Vi D g
1
x=—l (14.10)
Ui
We'll need to implement these formulas in our code soon. You’ll see
that it’s actually simpler than it looks.

Understanding Cholesky

As we discussed, the Cholesky decomposition is an LU method that works
with symmetric, positive-definite matrices. Thanks to those properties, a ma-
trix [M] can be decomposed into an [L][U] form where the upper-triangular
matrix is the transpose of the lower-triangular one: [U] = [L]'. This means
we only need to compute the lower-triangular matrix [L]: [U] is just its trans-
pose. Using the Cholesky method, the [M] matrix factorization has the form
shown in Equation 14.11.

[M] = [L][LY (14.11)
So, the system of equations now looks like Equation 14.12.

[LI[L] [x] = [#] (14.12)
In this case, we obtain the two systems we need to solve by substituting [L]'[x]

with [y]:

[L1[L)[x] =[]
——
[y]

As we already know, this transformation yields a lower system, which we’ll
solve first using forward substitution (see Equation 14.13),

[(L][y] = [b] (14.13)

and then using an upper system that we’ll solve by backward substitution to
obtain the solution vector [x] (see Equation 14.14).

[L]'[x] = [y] (14.14)
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Given a symmetric, positive-definite matrix [M], we can compute the
lower-triangular matrix terms of its Cholesky decomposition, the /;; terms,
using the formulas in Equation 14.15.

(14.15)
ifi>]

Equation 14.15 may look intimidating, but it’s actually not that compli-
cated. The best way to see this is by doing an exercise by hand. Grab a pen
and some paper and let’s factor a matrix together.

A Factorization by Hand

Given the symmetric and positive-definite matrix

4 -2 4
M]=|-2 10 -2
4 -2 8

let’s find its Cholesky factorization, a lower-triangular matrix [L],

log 0 0
[L]=|ho hyi O
loo lo1 log

such that [M] = [L][L]". To compute the l;j terms, we use Equation 14.15.
Don’t forget that index i represents the rows of the matrix, and j represents
its columns. Let’s do it step-by-step.

Step 1: i = 0,5 = 0. Since 7 = j, we use the first formula:

Note that the summation is struck through because it doesn’t yield any term.
This is because the summation’s end value k¢ = —1 is smaller than the start
one k = 0. As you probably know, for the summation to yield any term, the
end value for £ (the iterating variable) needs to be equal to or greater than
the start value.

Step 2: i = 1,5 = 0. In this case, ¢ 7j, so we use the second formula:




Step3::=1,5=1.

0
1 1 1
lo1 = 7— (leo -y l?,kh,k) = (mo =loplip) = 3 (-2+2)=0
11 P L1 :

)

Step 6: 1 =2,5=2.

log =

1
mg 9o~ Zlg,k = \/7722’2 - (lg,o +[§’1) = \/m: 9
k=0

If we combine all the computed /; j values, the resulting matrix is as
follows:

2 0 0
[L]1=[-1 8 0
2 0 2

This means that the original system’s matrix [M] can be factorized as
follows:

4 2 4 2 0 0|12 -1 2
-2 10 2(=|-1 3 0] (0 3 O
4 -2 8 2 0 210 0 2

You can do the matrix multiplication to verify that the product [L][L]’ is
actually equal to [M]. To complete the exercise, let’s suppose this matrix is
the coefficient matrix of a system of equations and solve it using the forward
and backward substitutions.

A Resolution by Hand

Let’s suppose the matrix we decomposed earlier into its [L][L]’ form is part
of the following system of equations:

4 -2 47 [x 0
-2 10 -2| |xo|=]|-3
4 -2 8| x| |-15
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We need to find the values of x1, x9, and x3 that satisfy all three equa-
tions. Using the Cholesky factorization we just obtained, we can rewrite the
system as follows:

2 0 02 -1 2] [x 0
-1 3 0[]0 38 0 |x|=]-3
2 0 2[]o 0 2| |x]| [-15

The first of the two subsystems we have to solve, [L][y] = [6], results from
substituting [L]'[x] with a new unknown vector [y]:

9 0 012 -1 2] [xq 0

-1 3 0/ [0 38 0| |x|=]-3

2 0 2/lo 0o 2| |x| |[-15
1 32 3]

This results in the first system (the lower system):

2 0 0] [yn 0
-1 3 0] [yo|=|-3
2 0 2| |y| |-15

We have to solve this system using the forward-substitution formula from
Equation 14.9.

Lower System: Forward Substitution
Let’s apply Equation 14.9 step-by-step:

Step 1: i = 0.
yo =
Step 2: ¢ = 1.
Jj<1
b1=Y  ljj
_ j=0 _bl—ll,oyo_—3+l~0_ 1
T T T T3 T
1,1 1,1
Step 3: i = 2.
Jj<2

bg - Z lo ;i
i=0

y2 = =

bo = (la,0p0 +lo1y1) _-15-(2:0-0-1) -15
12,2 12,2 2 2

=-7.5



Thus, the solution for the first system is as follows:

0
bl=| -1
-7.5

With this solution, we can use backward substitution to compute [x]: the
solution to our system of equations.

Upper System: Backward Substitution

Let’s use Equation 14.10 to compute the solution vector step-by-step. This
time we have to solve the following system using the backward-substitution
process:

2 -1 2 X1 0
0 3 0| |x|=1]-1
0 0 2| |x3 -7.5

Since the substitution is backward, we have to start from the last row
(¢ = 2) and go up to the first one (i = 0).

Step 1: i = 2.
e _-75_ 15
2 2 4
Step 2: i = 1.
j<2
IR
_ =2 _yituigwe _C1+0- g
i uy1 uy1 3 3
Step 3: ¢ = 0.
j<2

30D w0
j=1

Xy =

_(1_15
_ Y0~ (ug1x1 +ugexg) 0-(3-5) 43
0,0 0,0 2

Then, the solution to the initial system is as follows:

/19
[x]= |-/
~15/4
You can test if the solution is correct by checking if the equality holds:
4 -2 4 3/19 0
-2 10 2| |-I/3|=]|-3
4 -2 8] [-Y4 -15
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Now that we know how the Cholesky algorithm works and we’ve worked out
an example by hand, let’s implement the algorithm in our code.

Implementing Cholesky

Start by creating a new file in the egs package named cholesky.py. In it, in-
clude the cholesky_solve function in Listing 14-1.

import math

from eqs.matrix import Matrix
from eqs.vector import Vector

def cholesky solve(sys mat: Matrix, sys vec: Vector):
validate_system(sys_mat, sys vec)

low matrix = lower matrix_decomposition(sys mat)
low_solution = solve lower sys(low matrix, sys vec)
return solve_upper sys(low matrix, low_solution)

Listing 14-1: Cholesky decomposition algorithm

This function takes a Matrix and a Vector as inputs. These are the coeffi-
cient matrix and free vector of a system: the [M] and the [6] from the system
of equations [M][x] = [b]. The returned Vector is [x], the solution to the sys-
tem found applying Cholesky’s method.

This cholesky_solve function defines the highest-level algorithm, which
has three main steps plus a validation of the input system. We haven’t imple-
mented any of these functions yet; we’ll get to this shortly. The following are
the three main steps to the algorithm:

lower_matrix_decomposition Obtain [L], the lower-triangular matrix, by
applying Equation 14.15.

solve_lower_sys Solve the first subsystem, the lower-triangular system,
by applying the forward-substitution technique (see Equation 14.9).

solve_upper_sys Solve the second subsystem, the upper-triangular sys-

tem, by applying the backward-substitution technique (see Equation 14.10).

From the function names, it’s easy enough to see what the code in cholesky
_solve is doing. Note that we broke the function into several smaller func-

tions. If we had thrown all the code for the Cholesky resolution into the
cholesky_solve function, the result would be a long pile of source code with
no readily identifiable structure. This code would be extremely hard to un-
derstand.

As a general rule, you want to divide your big algorithms into smaller
subalgorithms, each contained in a small function with a descriptive name.

Notice the visibility of the subfunctions used by cholesky_solve. All the
subfunctions are public. This is so that they can be unit tested individually.



The resolution algorithm is a bit complex; we’re safer if we know that each
of its subparts does its job without errors.

Validating the System

Let’s implement a function that validates that the system is square and has
a number of columns equal to the size of the vector. Enter the code for the
validate_system function, found in Listing 14-2.

--snip--

def validate_system(sys_matrix: Matrix, sys_vector: Vector):
if sys_matrix.cols_count != sys vector.length:
raise ValueError('Size mismatch between matrix and vector')

if not sys_matrix.is_square:
raise ValueError('System matrix must be square')

Listing 14-2: System validation

We first check that the matrix has the same number columns as the vec-
tor’s length. If this condition isn’t satisfied, the system can’t be solved, so we
raise an error. The same applies if the system’s matrix is not square.

We’re not doing any check to ensure the matrix is symmetric or positive
definite; if the matrix passed to our function isn’t, the function will simply
fail at some point with a by-zero division error or something similar. It'd be
a nice idea to add those guards, at least the check for symmetry, but check-
ing that the system’s matrix is positive definite may be more challenging.
The symmetry check is easy to implement, but it has the downside of being
computationally expensive. I encourage you to think about ways of doing
these checks and maybe add them in your code.

Now we’re going to do something a little backward. We’re going to start
with a unit test instead of the code itself. This is so that we know when our
code is ready: once the tests pass. We can keep running the test to check
whether the logic we’re writing is ready or not; we can refactor it until it
looks readable, with the safety net of the test that will warn us if we did some-
thing wrong. This technique where the test is written before the code is
known as test-driven development, or TDD for short.

We'll start by looking at the system of equations we’ll use in the unit
tests.

System of Equations for Testing

To make sure we implement all the logic without bugs, we’re going to use
tests for each of the subfunctions in the Cholesky algorithm. We’ll also im-
plement a test to check that all the subfunctions work together to compute
the final solution. For these tests we want to use a system of equations whose
solution we know in advance.
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Let’s use the following size 4 system:

4 -2 4 2] [x 20
2 10 -2 -7| |xo| _ |-16

4 -2 8 4| |x3 40
2 -7 4 7 X4 28

For this system’s matrix [M], the Cholesky [L][L]’ factorization is as

follows:
4 2 4 2 2 0 0 0][2 -1 2 1
2 10 2 -7/ _(-1 3 0 0f |0 3 0 -2
4 -2 8 4 2 0 2 010 0 2 1
2 -7 4 7 1 -2 1 1[0 0 0 1
The solution of the lower system,
2 0 0 0] [y, [20
-1 3 0 0| [yof _ [-16
2 0 2 0f |ys 40
I -2 1 1] [y | 28
is the following vector:
10
_ |2
[y]_ 10
| 4

The final solution, resulting from the resolution of the upper system,

2 -1 2 1 X1 10
0 3 0 2| [xof _ |2
0o 0 2 1 X3 10
0O 0 0 1 X4 4
is the following vector:
1
- |2
4

It’s a good idea to take some time to check all those numbers and make
sure you understand the resolution process. Once you’re solid on the funda-
mentals of the process, let’s code it up, starting with a unit test.

Lower Matrix Factorization

As we’re about to implement the most complex algorithm in the book so far,
let’s first write a unit test. We’ll know our factorization logic is well imple-
mented once the test passes. Chances are we’ll need to debug our code, and
having a test will help.
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Create a new file for our test, cholesky_test.py, and place it inside the
eqs/tests directory. Then enter the test code in Listing 14-3.

import unittest
from eqs.cholesky import lower matrix_decomposition

from eqs.matrix import Matrix

class CholeskyTest(unittest.TestCase):
sys_matrix = Matrix(4, 4).set_data(]

4, -2, 4, 2,
-2, 10, -2, -7,
4) '21 8: 4)
2, -7, 4, 7

D

low _matrix = Matrix(4, 4).set_data(]
2, 0, 0, 0,
-1, 3, 0, 0,
2, 0, 2, 0,
1, -2, 1, 1

D

def test lower matrix decomposition(self):
actual = lower_matrix_decomposition(self.sys matrix)
self.assertEqual(self.low_matrix, actual)

Listing 14-3: Testing the lower matrix factorization

This test defines both the original matrix, sys_matrix, and the expected
decomposition, low_matrix. Using a function we haven’t defined yet, lower
_matrix_decomposition, we compute the decomposition matrix and compare it
against the known solution. Your IDE should complain that you’re trying to
import a function it can’t find in the egs.cholesky module:

Cannot find reference 'lower matrix_decomposition’ in 'cholesky.py'

Let’s implement the function. Go back to the cholesky.py file, and after
validate_system, enter the code in Listing 14-4.

--snip--
def lower matrix_decomposition(sys mat: Matrix):
size = sys_mat.rows_count

low mat = Matrix(size, size)

for i in range(size):
sq_sum = 0

for j in range(i + 1):
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O n_ij = sys_mat.value_at(i, j)

if i == j:

# main diagonal value
® diag val = math.sqrt(m_ij - sq_sum)
® low mat.set_value(diag val, i, j)

else:
# value under main diagonal
non_diag sum = 0
® for k in range(j):
1 ik = low_mat.value_at(i, k)
1 jk = low_mat.value_at(j, k)
non_diag_sum += 1_ik * 1 _jk

1 jj = low_mat.value at(j, j)
® non_diag val = (m_ij - non_diag_sum) / 1_jj
® sq_sum += non_diag val * non_diag val

© low mat.set value(non diag val, i, j)

return low_mat

Listing 14-4: Lower matrix decomposition

We start by storing the size of the system in a variable named size. The
size is the number of rows or columns—it doesn’t matter which since the ma-
trix is square. Then we create a new square matrix, low_mat, of that same size.
Recall that our matrices are filled with zeros when they’re instantiated.

The algorithm has two main nested loops. These loops iterate through
all the positions in the matrix that are in the main diagonal and below it,
that is, all m; where ¢ > ;.

Don’t forget that Python’s range(n) function generates a sequence starting from 0 up
ton - 1, not n.

Inside the j loop, we store the value of the system’s matrix at position
(4,7) in m_ij @. Then, we distinguish between the case where we’re on the
main diagonal (i == j) or below it using an if else statement. Recall that
the formula to compute a term in the main diagonal of the decomposition
matrix is as follows:

We used that expression to compute the value, which we store in diag
_val ® and set in the matrix ®. In the calculation we used the m_ij value and
sq_sum. The latter is initialized as 0 for every new iteration of ¢ (for each row)
and updated for every new value below the main diagonal ®.



For the case where we’re under the main diagonal (i > j, the else branch),
the formula to compute the /;; term is as follows:

1 I
lij = 7= | mij = > il
7 k=0

Note that to compute this /; J value, we need to have l] 7> which is a value
from a previous row since ¢ > j. The first term that we compute is the sum of
li klj r with k going from 0 to j - 1. The loop in @ does exactly this. Before en-
tering the loop, we initialize a variable non_diag_sum to zero. Inside the loop
this variable gets added to the product of 1_ik and 1_jk for every value of .

With non_diag_sum computed, we have everything we need. The value of
lj j 1s extracted from low_mat and stored in variable 1_jj. Then the value for
the decomposition is computed and stored in variable non_diag_val @. This
value is first used to update the sq_sum ® and then stored in the decomposi-
tion matrix @.

That’s it. Run the test we wrote earlier and make sure your code passes
it. Don’t worry if it doesn’t; in fact, it’s a bit hard to get this algorithm right
the first time you write it, but that’s exactly why we implemented the test
first. Use the test to debug the code and carefully compare what you wrote
with the printed version of the code in this book. You can also refer to the
code distributed with the book.

To run the test in the shell, use this:

$ python3 -m unittest eqs/tests/cholesky_test.py

We’ve obtained the [L] decomposition matrix using Cholesky’s algo-
rithm. Let’s now implement the resolution of the lower and upper systems.

Lower System Resolution

To solve the lower-triangular system using forward substitution, we need to
implement the algorithm in Equation 14.9. We’ll repeat the formula here
for convenience:

j<i
bi= > by
j=0

i~ lzi

We’re going to follow the same approach as before and write the test
before we write the main code. In the cholesky_test.py file, enter the new test
in Listing 14-5.

import unittest

from egs.cholesky import lower matrix_decomposition, \
solve_lower_sys

from eqs.matrix import Matrix

from egs.vector import Vector

Linear Equations 375



class CholeskyTest(unittest.TestCase):

--snip--
@ sys vec = Vector(4).set data([20, -16, 40, 28])
® low _solution = Vector(4).set data([10, -2, 10, 4])

def test lower matrix decomposition(self):
actual = lower matrix_decomposition(self.sys matrix)
self.assertEqual(self.low matrix, actual)

® def test_lower system_resolution(self):
actual = solve_ lower sys(self.low matrix, self.sys vec)
self.assertEqual(self.low_solution, actual)

Listing 14-5: Testing the lower system resolution

We’ve first imported the Vector class from eqgs.vector. Then we’ve added
two new vectors that we need for the new test: sys_vec @, which is the free
vector of the system of equations, and low_solution ®, the expected solution
for the lower-triangular system.

With the test in place , let’s now implement the missing solve_lower_sys
function. After the factorization function in the cholesky.py file, enter the
code in Listing 14-6.

--snip--

def solve_lower sys(low mat: Matrix, vector: Vector):
size = vector.length
solution = Vector(size)

@ for i in range(size):
_sum = 0.0

@ for j in range(i):
1 ij = low _mat.value at(i, j)
y_j = solution.value_at(3j)
_sum += 1 1ij *y j

b i = vector.value at(i)
1 ii = low mat.value_at(i, i)

® solution val = (b_i - _sum) / 1 ii
solution.set_value(solution_val, i)

return solution

Listing 14-6: Solving the lower system

The first thing we do is save the size of the system in a variable size and
create the solution vector of that size. The main loop that iterates through
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all values in the sys_vector is the i loop @. In it, we start by initializing a sum
to zero. The j loop @ iterates through all values from 0 to ¢ - 1, updating the
sum for each iteration.

Having obtained the sum part of the equation, we can compute the so-
lution value, which is stored in solution val ®. Then we set in the solution
vector in the next line.

Run the two tests in cholesky_test.py to make sure both pass. It seems rea-
sonable that the first one will pass: we haven’t modified the factorization
function in any way, but it’s good practice to run all tests in the file, just in
case we modified something that we shouldn’t have. I hope the second test
also passes for you, in which case you got the new function right! You’ll need
to debug your code otherwise. Take your time to do so; it’s a great exercise.

To run the tests from the shell, use this:

$ python3 -m unittest eqs/tests/cholesky test.py

Let’s now work out the upper system resolution.

Upper System Resolution

The resolution of the upper-triangular system using backward substitution
can be carried out using Equation 14.10. As a reminder, the formula is as
follows:

j<n

03
j=i+1
X; =
Uiy
One important thing to recall is that the upper-triangular matrix [U],
with values u; j, is the transpose of Cholesky’s lower-triangular decomposi-
tion: [L]'.
Once again we’ll start with the test. Open your cholesky_test.py file and
enter the new test in Listing 14-7.

import unittest

from egs.cholesky import lower matrix_decomposition, \
solve_lower sys, solve_upper_sys

from eqs.matrix import Matrix

from eqs.vector import Vector

class CholeskyTest(unittest.TestCase):
--snip--
@ solution = Vector(4).set data([1, 2, 3, 4])

def test_lower matrix decomposition(self):
actual = lower_matrix_decomposition(self.sys matrix)
self.assertEqual(self.low_matrix, actual)
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def test_lower system resolution(self):
actual = solve lower sys(self.low matrix, self.sys vec)
self.assertEqual(self.low_solution, actual)

O def test_upper_system_resolution(self):
actual = solve_upper_sys(
self.low matrix,
self.low_solution

)

self.assertEqual(self.solution, actual)

Listing 14-7: Testing the upper system resolution

In this new test @, we call solve_upper_sys (still to be written), passing
it in both the factorized matrix low_matrix and the lower system solution
low_solution. Then, we assert that the vector we get returned is the one we
expect, which we’ve defined as part of the test’s data in the solution
variable @.

We’re now ready to implement the last part to complete Cholesky’s
method: the resolution of the upper system. Open the cholesky.py file again
and enter the solve_upper_sys function in Listing 14-8.

--snip--

def solve_upper_sys(up_matrix: Matrix, vector: Vector):
size = vector.length
last_index = size - 1
solution = Vector(size)

O for i in range(last_index, -1, -1):
_sum = 0.0

® for j in range(i + 1, size):
® u_ij = up matrix.value transposed at(i, j)
X_j = solution.value_at(j)
_sum += u_ij * x_j

y_ i = vector.value at(i)
® y ii = up matrix.value transposed at(i, i)
® solution val = (y_i - _sum) / u_ii
solution.set_value(solution_val, i)

return solution

Listing 14-8: Solving the upper system

This function is similar to the previous solve lower_sys function. We start
by initializing the solution vector, solution, with the same size as the passed-
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in low_vector. This time, as we’ll iterate starting from the last row, we save its
index in the last_index variable.

The loop that iterates through all row indices goes from last_index all
the way down to -1 (noninclusive) @. The inner loop going from i + 1 to
size (again, noninclusive) computes the sum of the u; jx; products @. To ob-
tain u_ij, we ask the lower-triangular matrix for the value as if it were trans-
posed ®. Thanks to this neat trick, we avoid transposing [L], a process that
is computationally expensive. This is the optimization we talked about in the
previous chapter.

To get the divisor in Equation 14.10, we use the value_transposed_at func-
tion again @. With this value we can already compute the solution at each
row ® and store it in the result vector.

Run all the tests in the file to check whether the implementation is bug-
free. Just for your reference, Listing 14-9 is the complete cholesky.py.

import math

from eqs.matrix import Matrix
from eqgs.vector import Vector

def cholesky solve(sys mat: Matrix, sys vec: Vector) -> Vector:
validate_system(sys_mat, sys vec)

low_matrix = lower matrix_decomposition(sys mat)
low_solution = solve lower_ sys(low_matrix, sys vec)
return solve_upper_sys(low matrix, low_solution)

def validate system(sys matrix: Matrix, sys vector: Vector):
if sys_matrix.cols_count != sys_vector.length:
raise ValueError('Size mismatch between matrix and vector')

if not sys matrix.is square:

raise ValueError('System matrix must be square')

def lower_matrix_decomposition(sys_mat: Matrix) -> Matrix:
size = sys_mat.rows_count
low mat = Matrix(size, size)

for i in range(size):
sq_sum = 0

for j in range(i + 1):
m ij = sys_mat.value at(i, j)

if i == j:
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# main diagonal value
diag val = math.sqrt(m_ij - sq_sum)
low_mat.set_value(diag val, i, j)

else:
# value under main diagonal
non_diag sum = 0
for k in range(j):
1 ik = low _mat.value at(i, k)
1 jk = low _mat.value at(j, k)
non_diag_sum += 1_ik * 1_jk

1 jj = low_mat.value_at(j, j)
non_diag val = (m_ij - non_diag sum) / 1 jj
sq_sum += non_diag_val * non_diag val

low_mat.set_value(non_diag val, i, j)

return low mat

def solve_lower sys(low mat: Matrix, vector: Vector):
size = vector.length
solution = Vector(size)

for i in range(size):
_sum = 0.0

for j in range(i):
1 ij = low_mat.value at(i, j)
y_j = solution.value_at(j)
_sum += 1 1ij *y j

b_i = vector.value_at(i)

1 ii = low mat.value at(i, i)
solution val = (b i - sum) / 1 ii
solution.set value(solution val, i)

return solution

def solve_upper sys(up matrix: Matrix, vector: Vector):
size = vector.length
last_index = size - 1

solution = Vector(size)

for i in range(last_index, -1, -1):
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_sum = 0.0

for j in range(i + 1, size):
u_ij = up_matrix.value transposed at(i, j)
X_j = solution.value_at(j)
_sum += u_ij * x_j

y i = vector.value at(i)

u_ii = up matrix.value transposed at(i, i)
solution_val = (y_i - _sum) / u_ii
solution.set_value(solution_val, i)

return solution

Listing 14-9: Cholesky method result

Each of the three subfunctions that take part in the resolution of a sys-
tem of equations using Cholesky’s method has been tested separately: we
can be sure those work properly. Does this mean that the cholesky_solve
function is free of bugs itself? Not necessarily. We may still make mistakes
when putting all those well-tested functions together.

Checking that the cholesky_solve function works as a whole requires one
more test. This a test that ensures that each of the subfunctions behaves well
when combined; it’s called an integration test.

Testing Cholesky: An Integration Test

Open your cholesky_test.py file one last time. Let’s add a final test (shown in
Listing 14-10).

import unittest

from eqgs.cholesky import lower matrix_decomposition, \
solve_lower sys, solve upper_sys, cholesky solve

from eqs.matrix import Matrix

from eqs.vector import Vector

class CholeskyTest(unittest.TestCase):
sys_matrix = Matrix(4, 4).set_data([

4, -2, 4, 2,
-2, 10, -2, -7,
4, -2, 8, 4,
2, -7, 4, 7
D
low _matrix = Matrix(4, 4).set_data(]
2, 0, 0, O,
-1, 3, 0, O,
2, 0, 2, O,
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1, -2, 1, 1
D
sys_vec = Vector(4).set_data([20, -16, 40, 28])
low_solution = Vector(4).set data([10, -2, 10, 4])
solution = Vector(4).set data([1, 2, 3, 4])

def test_lower matrix_decomposition(self):
actual = lower matrix_decomposition(self.sys matrix)
self.assertEqual(self.low matrix, actual)

def test_lower_system resolution(self):
actual = solve lower sys(self.low matrix, self.sys vec)
self.assertEqual(self.low_solution, actual)

def test upper system resolution(self):
actual = solve_upper sys(
self.low_matrix,
self.low_solution

)

self.assertEqual(self.solution, actual)

def test_solve system(self):
actual = cholesky solve(self.sys matrix, self.sys vec)
self.assertEqual(self.solution, actual)

Listing 14-10: Testing the Cholesky decomposition method

Listing 14-10 is the resulting test file. We included the last test: test_solve
_system. This test exercises the Cholesky algorithm as a whole by calling
cholesky_solve.

Run all the tests in the file. If all four tests pass, you got all the code
right. You should be proud of yourself for following along with the code in
this long chapter. Congratulations!

If you want to run the tests from the command line, use this:

$ python3 -m unittest eqs/tests/cholesky_test.py

Summary

Chapter 14

In this chapter, we discussed numerical methods and then centered the dis-
cussion around those that solve linear systems of equations. In particular, we
analyzed the Cholesky decomposition method. This [L][U] decomposition
algorithm works with symmetric, positive-definite matrices and can be twice
as fast as other [L][U] alternatives.

We paid special attention to the code’s readability. To make the algo-
rithm easy to follow, we broke it down into smaller functions, each of which
was tested separately. We started writing the test before the main algorithm’s



logic, a technique referred to as test-driven development. We included one
last test integrating the complete resolution of a system of equations.

We’ve implemented a powerful resolution algorithm, and we’ll put it to
work in Part V of the book.
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TRUSS STRUCTURES






STRUCTURAL MODELS

In this part of the book, we’ll focus on solv-
ing truss structures. Truss structures are
used to support the roof of industrial ware-
houses (see Figure 15-1) and long-span bridges.
This is a real engineering problem that is a good exam-
ple of building an application that reads data from a
file, builds a model out of that data, solves a system of
linear equations, and presents the results graphically
in a diagram.
Since solving truss structures is a big topic, we’ll break it down into sev-
eral chapters. This first one will give you a rough introduction to the ba-
sics of mechanics of materials; it’s not meant to explain the concepts from
scratch but should serve as a refresher. Once we’ve gone through the basics,
we’ll implement two classes to model truss structures: nodes and bars. As

we’ve seen in earlier chapters, the first step of solving a problem in code is to
have a set of primitives that represent the entities involved in the solution.




Figure 15-1: A warehouse roof is a good example
of a truss structure.

Solving Structural Problems

Let’s begin with a few definitions. A structure is a set of resistant elements
built to withstand the external application of loads, as well as their own weight.
A truss structure is a structure in which the resistant elements are bars joined
by pins in both ends, and the external forces are applied only where those
bars join: at the nodes.

When working out a structural problem, we’re most interested in two
things. First, can the bars of the structure handle the forces acting on them
and avoid collapse? Second, how big are the displacements of the structure
once it’s deformed under the action of the external loads? The first is an
obvious concern: if any of the bars in the structure break, the structure
may collapse, which could have catastrophic consequences (think: collaps-
ing warehouse roofs or bridges). Our analysis should make sure this never
happens.

The second concern is less obvious, but important nevertheless. If a
structure is deformed enough for the naked eye to notice, even if the struc-
ture is safe and won’t collapse, people around or below it may get anxious.
Think about how you would feel if you saw your living room’s ceiling notice-
ably curved. Keeping the deformation of the structure between some limits
impacts the comfort of its users.

The solution we’re after should include the amount of stress on each
bar, as well as the global displacements of the structure. We’ll code up the
actual solution in the next chapter; here, we’ll define the solution model.
We can expect our solution model to include these two quantities: the
amount of mechanical stress on each bar and the node displacements.

Before we can do that, though, we’ll need to dive into the world of struc-
tural analysis. Be prepared to write lots of code. We’re about to solve a seri-
ous engineering problem, so the payoff for our hard work will be high.

Structural Member Internal Forces

Let’s begin by quickly recapping how elastic bodies respond to the applica-
tion of external forces. This is a topic typically taught in mechanics of ma-
terials, a classic subject in mechanical engineering courses. If you've exten-
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sively studied this subject, feel free to skip this section or browse through
it as a refresher. If not, this section is for you. Your mechanics knowledge
should be enough to follow the text, but we can’t possibly cover everything
in detail. You can refer to [3], one of my all-time favorites on the subject.
Books on statics also cover this topic with some detail. I recommend you
take a look at [9] or [11].

Elastic Bodies Subject to External Forces

Let’s use an I beam as an example of an elastic body and apply an external
system of balanced forces to it. These are forces whose sum equals zero:

S F; = 0. Figure 15-2 shows the beam.

£oF

\ /

Figure 15-2: A beam subject to external forces

When external forces are applied to this elastic body, its atoms will fight
back in an attempt to preserve the relative distances between themselves.
If the external loads want to separate the atoms, they’ll try to hold each
other tighter. If they’re pushed together, they’ll try not to get too close. This
“fighting back” makes up the internal forces: forces inside the body itself that
exist in response to the application of external forces.

To study the effects of these forces on the body, let’s take our beam
from Figure 15-2 and virtually cut it with a plane, like in Figure 15-3.

F

o |/

F

Figure 15-3: A section of a beam subject
to external forces

Let’s remove the right chunk of the beam and analyze what happens
in the left part’s cross section. Since the entire beam was in static equilib-
rium before we cut it, the left chunk should be in static equilibrium as well.
To preserve this equilibrium, we must account for the distribution of inter-
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nal forces that the now removed right chunk exerted on the left one. These
forces appear because the atoms in the left chunk have been separated from
their neighbors in the right chunk. The force that pulled them together
needs to be added to the cut section so that the atoms stay in the same equi-
librium state as before.

These forces are distributed over the whole cut surface and represented
in Figure 154.

Figure 15-4: Analyzing equilibrium in a section

The distribution of forces over an area is referred to as stress. The net
effect of the stress can be substituted with an equivalent system of a result-
ing force R and moment M. Each of the components of this equivalent force
and moment produces a different effect on the beam. Let’s break the com-
ponents down.

Axial and Shear Forces

The equivalent internal force R can be broken down into an equivalent sys-
tem of two forces, one that is normal to the section, Ry, and one tangent to
it, Rt (see Figure 15-5).

3¢ Ry

Rt

Figure 15-5: Equivalent internal forces in the section of a beam

If the elastic body has a prismatic shape (one of its sides is considerably
longer than the other two) and we cut a section normal to its directrix, the
resulting normal force Ry we obtain is referred to as the axial force. The
name reflects the fact that this force is aligned with the prism’s main axis
or directrix. Prismatic bodies are common in structural analysis; beams and
columns are good examples.

The axial force can either elongate or compress the body. An axial force
that pulls the body apart is called a tension force, whereas one that compresses
it is known as a compression force. Figure 15-6 shows two prismatic bodies sub-
ject to these forces.



Tension

Compression

—_— —~—
Figure 15-6: Tension and compression forces

The shear force is the force tangent to the cross section (see Figure 15-
7) and thus can be further decomposed into two components: Ry and RTy
(see the diagram on the right of Figure 15-5). These two components have
the same effect: they try to shear the body apart. Figure 15-7 shows the ef-
fect of shearing forces applied to a prismatic body.

Shear

| !

Figure 15-7: Shear force

In summary, the equivalent internal force in a cross section of the body
may have a normal component that either elongates or compresses it; it may
also have a tangent component that shears it. These are the two ways inter-
nal forces can produce deformations on a body.

Bending and Torsional Moments

We studied the possible effects of the resulting internal force on a given
cross section. What effects does the resulting moment produce? As you can
see in Figure 15-8, the resulting moment M can be decomposed into a mo-
ment normal to the cross section, ]\7IN, and a moment tangent to it, ]\7IT.

M M’Ty

MV Mrx

Mr /\71;\/

Figure 15-8: Equivalent internal moments in the section of a beam

These moments bend the body in arbitrary ways, but if we choose a pris-
matic body and cut it normal to its directrix (the same thing that we did with
the forces), the moments we obtain have a predictable and well-defined ef-
fect. The moment normal to the surface, My, generates a torsional (twisting)
effect on the prism and thus receives the name of forsional moment.

Once again, the moment tangent to the section can be further broken
down into two subcomponents: ]\7['[,6 and M’l‘y (see the right illustration in
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Figure 15-8). These two moments have a similar effect: they bend the prism
and hence are called bending moments. Figure 15-9 illustrates this effect.

(( Bending \

Figure 15-9: Bending moment

To summarize, the equivalent internal moment on a cross section of the
body may have a normal component that tends to twist it around its directrix
(the torsional moment) and may also have two tangent moments that tend to
bend the prism (the bending moments).

Let’s now analyze in detail how prismatic bars behave when subject to
axial forces. Then, we’ll see how, by using a group of these resistant prisms,
we can build structures that can withstand the application of heavy loads.

Tension and Compression

Chapter 15

Let’s focus our analysis on axial forces: those aligned with the axis of a pris-
matic resistant body. As we’ll see in the next section, the structures we’ll
solve are made of only prismatic elements (bars) subject to axial forces.

Hooke’s Law

It’s been experimentally proven that within some limits, the elongation of

a prismatic bar is proportional to the axial force applied to it. This linear
relation is known as Hooke’s law. Let’s suppose a bar with length / and cross
section A is subject to a pair of external forces Fand —F, like in Figure 15-10.

_F A F
G O------- —_

Figure 15-10: A bar subject fo axial forces
Equation 15.1 gives Hooke’s law.

Fl
0= 1 (15.1)

In this equation,

0 is the total elongation of the bar.
F s the F force’s magnitude.

E s the proportionality constant or Young’s modulus, which is specific
to the material.

Hooke’s law states that the total elongation ¢ of a bar subject to a pair
of external forces is (1) directly proportional to the magnitude of the forces



and the bar’s length and is (2) inversely proportional to its cross section and
Young’s modulus. The longer a bar or the stronger the force applied is, the
greater the elongation produced will be. Conversely, the bigger the cross
section values are or Young’s modulus is, the smaller the elongation will be.

Recall that when a force is distributed over an area, the intensity of such
force per unit area is known as stress. Stress is usually denoted by the Greek
letter o (see Equation 15.2).

o= (15.2)

By convention, the stress is positive for tensile forces and negative for
compression forces. The stress is a useful quantity in mechanical design; it’s
used to determine whether a given component (in a structure or machine,
for example) will break down during operation. The stress values a given
material can undergo before failure are well studied.

We define strain as the elongation per unit length, a dimensionless quan-
tity denoted by the Greek letter € (see Equation 15.3).

= % (15.3)

Using the equations for the stress and strain, Hooke’s law from Equa-
tion 15.1 can be rewritten as shown in Equation 15.4.

o=FEe (15.4)

Interestingly, by introducing stress and strain, the relation between the
external actions applied to a resistant body (forces) and their effects (elon-
gations) no longer depends on the area or length of the body. We’ve effec-
tively removed all dimensional parameters from the equation. The propor-
tionality constant in Equation 15.4 (E) is Young’s modulus, which is a charac-
teristic of materials. For structural steels, for example, E is around 200 GPa,
that is, 200 - 10° Pa. We can therefore predict the mechanical behavior of
bodies by applying experimental results obtained for the material in use. To
do this, we use stress-strain diagrams, which plot the stress versus the strain for
a given material.

Stress-Strain Diagrams

Stress-strain diagrams plot the stress versus the strain for a given material
and are obtained by performing tension or compression tests (see [3] for
more details). We use these diagrams to predict the behavior of resistant
bodies made of the same material. Recall that since we introduced the quan-
tities stress and strain, every dimensional term has disappeared from Hooke’s
equation, meaning that once we’ve experimentally determined the strain
and stress a material undergoes under a given load, we can use those results
for any bodies made of the same material, regardless of their shape or size.
Figure 15-11 is a plot of the approximate stress-strain diagram for struc-
tural steels. Note this graph is not to scale.
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— Linear region

Figure 15-11: The stress-strain diagram for structural steel

This diagram has an initial linear region that holds up to a given stress
value known as the proportional limit, depicted by point A. For stress values
greater than the proportionality limit, the stress-strain relation is no longer
linear. The proportional limit is typically between 210 MPa and 350 MPa for
structural steels—three orders of magnitude smaller than Young’s modulus.
This region is modeled by Hooke’s law and the linear relation o = Ee. We'll
center our analysis here.

With a small stress increment after A, the proportional limit, we reach
point B, the yield stress or yield strength. After the yield stress, big elongations
happen without an increase in the stress. This phenomenon is called the
yielding of the material.

After a noticeable amount of strain, we reach point C, and the material
appears to harden. The stress must continue to increase to reach point D,
which is the maximum amount of stress structural steel can withstand. We
call this stress value the ultimate stress or ultimate strength. From this point,
the material will acquire bigger strains with a reduction in the stress value.

The point E is where the material fractures. The amount of strain the
material can take before it fractures can be called the fracture strain. This is
the point of complete mechanical failure, but if you think about it, after the
ultimate stress is reached (point D), it’s likely that the material will fracture
anyway. The ultimate stress is typically used as the maximum value of stress a
given material can absorb before failure.

Now that we have a good understanding of how resistant bodies respond
to tensile stresses, let’s look at truss structures.

Plane Trusses

Chapter 15

There are many structural typologies, but we’ll focus our analysis on the sim-
plest of them: plane trusses.

A plane truss structure is a structure contained in a plane whose resis-
tant bodies are bars subject only to axial forces and whose own weight can be
ignored. There are two conditions that allow this.



*  Bars must be joined by pins at their ends.

*  External loads must always be applied to nodes.

A node is the point where several bar ends meet. Nodes join bar ends
together in frictionless unions, meaning the rotation of the bars around the
node is not constrained.

Plane trusses are made of triangles: three bars pinned at their ends. The
triangle is the simplest rigid frame; bars joined to form a polygon of four
or more sides form nonrigid frames. Figure 15-12 shows how a plane truss
made of four bars can be moved from its original position and thus isn’t con-
sidered rigid. Simply by adding a new bar and creating two subtriangles, the
structure becomes rigid.

Figure 15-12: Example of a polygonal plane truss

Figure 15-13 is an example of a plane truss. The structure is made of
eight nodes (N1, N2, . . ., N8) and thirteen bars. Nodes 1 and 5 have exter-
nal supports or constraints applied. Nodes 6, 7, and 8 have external loads
applied to them.

N2 N3 N4

Figure 15-13: A plane truss structure

Figure 15-14 is the diagram resulting from the structural analysis of the
plane truss described in Figure 15-13. It was produced by the very applica-
tion we’ll build in this part of the book.
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Figure 15-14: A plane truss structure solution diagram

In this diagram, we can appreciate the structure’s deformed geometry
because it has been scaled to be noticeable. Node displacements tend to be
very small (around two orders of magnitude smaller than the dimension of
the structural bars), so a diagram depicting the nonscaled node displace-
ments may be hard to tell apart from the original geometry.

You’ll notice there’s a lot of information in Figure 15-14. Every bar is la-
beled with the stress it’s subject to, though the font size of the labels in this
figure is small, so the labels may not be easy to read. Positive numbers are
tension stresses, and negative are compression. The bars are also colored in
green or red depending on the load they’re subject to: green for tension and
red for compression. Since the book is printed in black and white, you won’t
be able to tell the colors apart, but once you’ve developed the complete ap-
plication, you’ll produce the figure with your own code and will be able to
explore all the details in it.

Let’s now study the mechanical response of the bars that make up plane
trusses. They have an interesting particularity we’ve already mentioned: they
develop axial stresses only.

Two-Force Members

Chapter 15

As we’ve already discussed, plane truss bars are pinned at their ends, and
loads are always applied at the nodes; because of this, the bars are subject
only to axial forces. We can apply an external force only to the ends of the
bar, using the contact of the pinned joint with the node. Because these
unions are frictionless, they can only transmit forces to bars and just in the
direction of the bar’s directrix.

Figure 15-15 shows how an external force applied to a node is trans-
ferred to the bars. These forces are aligned with the bars’ directrices and
thus produce axial stresses only.
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Figure 15-15: The transmission of forces in a node

Since bars have two pinned ends where external forces are applied, they
are subject to two forces. To be in equilibrium, such a body requires the two
forces to be collinear, equal in magnitude and with opposite directions. In
the case of a bar (a long prismatic body), these two forces have to be in the
direction of the bar’s directrix (Figure 15-16) and, hence, produce axial
stresses only. We call these bars with two collinear forces applied two-force
members (see Figure 15-16).

>

F

Figure 15-16: A two-force member

The forces applied to the bar in Figure 15-16 are labeled Fand -F to sig-
nify that the two forces must be equal in magnitude and point in opposite
directions. In this case, the forces would produce tension stresses on the bar.

Thanks to Hooke’s law, we know how materials respond to the exter-
nal application of loads. We’ve also explored two-force members, and we’ve
seen that the bars in plane trusses are two-force members. Let’s now derive
a set of equations to relate these two forces with the displacements they pro-
duce on such two-force members.

Stiffness Matrices in Global Coordinates

Going back to the original formulation of Hooke’s law in Equation 15.1, we
can isolate the force term to get the following:

r=45

l

Here, the term % is the bar’s proportionality constant relating the force
applied, F, with the elongation it produces, ¢. This term also receives the
name stiffness. As you can see, the stiffness depends on the bar’s Young’s
modulus (£), which is material dependent, and geometry (A and /).

Now look at the bar in Figure 15-17. If we consider a local system of ref-
erence whose x-axis is aligned with the bar directrix, this bar has two degrees
of freedom (DOF), in other words, two different ways it can independently
move. These are the displacements in the local x-axis of both nodes, de-
noted by u} and ub. Each node has a force applied: F; and Fo.

Structural Models 397



398

Chapter 15

A note on the nomenclature: we’ll use primes to label DOFs referred to by the bar’s
local system of coordinates. For example, u’l refers to the x displacement of the node
1 referred to the bar’s local system of reference: (X',y'). By contrast, nonprime values,
such as uy, are referred to the global system of reference: (X,y).

| 2
Figure 15-17: A bar with two degrees
of freedom

Using the previous equation, we can relate the force in each node to the
displacements ) and u§ like so:

The two equations above can be written in matrix notation (Equation 15.5),

Fi| _EAT1 -1] [
it a5
—_———
[¥]

where [k'] is referred to as the local stiffness matrix for the bar. This stiffness
matrix relates the displacements in the two nodes of the bar with the ex-
ternal forces applied to them, all in the bar’s local system of reference. Us-
ing this local system of reference, the bar has only two degrees of freedom,
which are the displacements of each of the two nodes in the local x-axis di-
rection () and us).

Let’s now consider a bar rotated with respect to the global system of co-
ordinates. Take Figure 15-18 as an example. This bar has its own local sys-
tem of reference (v, y’), which forms an angle of 6 with respect to the global
system of reference (x, y).

Figure 15-18: A bar’s local reference frame

From the global system of reference’s perspective, each node of the bar
has two degrees of freedom: each node can move in both the x and y direc-



tions. Projected in this system of reference, the four DOFs are u1, vy, uo,
and vo.

To transform the bar’s local stiffness matrix [£'] into a global [k] stiffness
matrix, we have to apply a transformation matrix. We can find such a matrix
by breaking down the local displacements u} and uy into their global compo-
nents. Figure 15-19 shows this operation.

v,

U 1

Figure 15-19: The local
displacement projections

Let’s find a mathematical expression to compute the global displace-
ments based on their local counterparts:

!/ —
u2—

w) =cos-uy +sinf - v;
cos B - ug +sinf - vy

Written in its matrix form, it looks like

uy
u}] _[cos® sinf 0 0 v]
o 0 0 cosf sinf| |uo
U9

[L]

where [L] is the transformation matrix. To compute the global stiffness ma-
trix from the local [k'], we can use the following equation (refer to [2] or [10]
for the details on how to derive this expression),

[k] = [LYTK'][L]

which, shortening the notation to ¢ = cos f and s = sin ¢, yields Equation 15.6.

A s % -cs
EA | ¢s  §2 —-cs —s2
== 15.
L] I (-2 - cs (15.6)
s -2 cs s

We now have a system of equations that relates the external forces ap-

plied to a bar’s nodes to their displacements in global coordinates (see Equa-
tion 15.7).

Fyy e s - - uj

Fiy| _EA | ¢ 2 -5 =52 | (15.7)
Fo, I |- - & o | |uo '
Fy, s -2 ¢ 2 U9
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Let’s now use this knowledge to start building our structural model in
code.

Original Structure Model

In our Mechanics project, create a new Python package named structures.

In structures, create another package: model. Here’s where we’ll define the
classes that make up the structural model. Create another package in struc-
tures named solution. This is where we’ll have the classes that model the re-
solved structure. Also create a tests folder in structures to contain the unit
tests we’ll develop. Your project’s structure should look something like this:

Mechanics

- geom2d
- graphic
- structures
|- model
| |- _init__.py
|- solution
| |- _init__.py
|
|

The next step is to create a class that represents structural nodes.

The Node Class

Create a new file in model named node.py and enter the code in Listing 15-1.
This is the basic definition for a structural node.

import operator
from functools import reduce

from geom2d import Point, Vector

class StrNode:

def __init_ (
self,
O id: int,

position: Point,
loads=None,
dx_constrained=False,
dy_constrained=False

400 Chapter 15



self.id = _id
self.position = position

® self.loads = loads or []
self.dx_constrained = dx_constrained
self.dy_constrained = dy _constrained

@property
def loads count(self):
return len(self.loads)

@property

def net_load(self):

® return reduce(
operator.add,
self.loads,
Vector (0, 0)

)

Listing 15-1: Structure node class

In this listing, we define the new class StrNode. This class defines an id,
which will serve to identify each of its instances.

Note that the parameter passed to the constructor uses an underscore:
_id @. Python already has an id global function defined, so if we named
our parameter the same (instead of using the underscore), we’d be shad-
owing the global id function definition inside the constructor. This means id
wouldn’t refer to Python’s function inside the constructor but to our passed-
in value instead. Although we’re not using Python’s id function inside this
class’s constructor, we’ll try to avoid shadowing global functions.

The StrNode also includes an instance of the Point class that determines
the node’s position and a list of loads applied to the node with a default
value of None. The structure may have quite a few nodes without external
loads applied to them; thus, we make the loads argument optional (and pro-
vide a default value of None). When the loads argument is None, we assign the
self.loads attribute an empty list ([]) @.

You might be wondering how the or operator works in ®:

self.loads = loads or []

The or operator returns the first “truthy” value from its operands or None.
Take a look at the following examples:

>>> 'Hello' or 'Good bye'
'Hello'

>>> None or 'Good bye'
'Good bye'
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>>> False or True
True

>>> False or 'Hello'
'Hello'

>>> False or None
# nothing returned here

>>> False or None or 'Hi'
"Hi'

As you might have guessed, in a boolean context, None is evaluated as “falsy.”

There are two more attributes that we have to pass the constructor;
these are given a default value in the constructor: dx_constrained and dy
_constrained. These attributes determine whether the displacements in the
x and y directions are externally constrained. We initialize them as False,
which means the node isn’t externally constrained unless we say otherwise.

We’ve defined two properties in the class: loads_count and net_load. The
first, loads_count, simply returns the length of the loads list.

If you remember the law of Demeter from Chapter 5, anyone from outside the StrNode
class who wants to know the number of loads applied to the node should be able to
ask StrNode directly. But asking StrNode to return the list of loads and then use the
len function to get its length would violate this important principle.

The net_load property uses reduce to compute the sum of all the loads @.
Note that we’re passing in a third argument to the reduce function: Vector(o, 0).
This third argument is the initial value for the reduction. In the perfectly
valid case that the list of loads is empty, we’ll return this initial value. Oth-
erwise, the first step in the reduction process will combine this initial value
with the list’s first item. If we didn’t provide an initial value, reducing the
loads list would raise the following error:

TypeError: reduce() of empty sequence with no initial value

Next, we’ll add a method to add loads to the node’s list of loads; enter
the method in Listing 15-2.

class StrNode:
--snip--

def add_load(self, load: Vector):
self.loads.append(load)

Listing 15-2: Adding loads to the node

Lastly, let’s implement the equality comparison for the StrNode class.
There are a few attributes in the class, but we’ll consider two nodes equal



only if they are located at equal positions in the plane. This comparison
deems overlapping nodes to be equal, regardless of their other attributes.

If we want nodes in a structure to be truly unique, we could rely on an
equality comparison that compares all of the attributes of a node, includ-
ing the list of loads and external constraints. In our case, we're interested
only in making sure that we have no overlapping nodes, though. If we in-
cluded more fields in the equality check, it could happen that two overlap-
ping nodes (nodes with the same position) were evaluated as different be-
cause they have a different list of loads. We’d be allowing two overlapping
nodes to exist in the structure.

Enter the __eq_ method implementation in Listing 15-3.

class StrNode:
--snip--

def __eq_ (self, other):
if self is other:

return True

if not isinstance(other, StrNode):
return False

return self.position == other.position

Listing 15-3: Nodes equality

Our StrNode class is now ready! Listing 15-4 contains the resulting StrNode

class.

import operator
from functools import reduce

from geom2d import Point, Vector

class StrNode:

def _init_ (
self,
_id: int,
position: Point,
loads=None,
dx_constrained=False,
dy_constrained=False

self.id = _id

self.position = position

self.loads = loads or []
self.dx_constrained = dx_constrained
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self.dy_constrained = dy_constrained

@property
def loads count(self):
return len(self.loads)

@property
def net_load(self):
return reduce(
operator.add,
self.loads,
Vector (0, 0)

def add_load(self, load: Vector):
self.loads.append(load)

def __eq_ (self, other):
if self is other:

return True

if not isinstance(other, StrNode):
return False

return self.position == other.position

Listing 15-4: Node class result

Let’s now implement a class to represent structural bars.

The Bar Class

Structural bars are defined between two nodes modeled by the StrNode class.
Bars need to store values for the two resistant properties required for the
stiffness matrix calculation (Equation 15.6): the Young’s modulus and cross
section.

Implementing the Bar Class

In model create a new file named bar.py and enter the initial definition for
the StrBar class (Listing 15-5).

from geom2d import Segment
from .node import StrNode
class StrBar:

def __init_ (
self,



_id: int,
start_node: StrNode,
end node: StrNode,
cross_section: float,
young_mod: float

):
self.id = _id
self.start node = start node
self.end node = end node
self.cross_section = cross_section
self.young_mod = young_mod
@property

def geometry(self):
return Segment (
self.start node.position,
self.end_node.position

@property
def length(self):
return self.geometry.length

Listing 15-5: Structure bar class

In this listing we define the StrBar class with five attributes: the ID that
serves as identifier, the start and end nodes, the cross section value, and the
Young’s modulus value. These are passed in to the constructor and stored
inside the class.

We also define two properties using the @property decorator: geometry
and length. The geometry of the bar is a segment going from the start node
position to the end node position, and the length of the bar is this segment’s
length.

The last thing we need to implement is a method to compute the bar’s
stiffness matrix in global coordinates as defined in Equation 15.6. Enter the
method in Listing 15-6.

from eqs import Matrix
from geom2d import Segment
from .node import StrNode

class StrBar:
--snip--

def global stiffness_matrix(self) -> Matrix:
direction = self.geometry.direction_vector
eal = self.young mod * self.cross_section / self.length
¢ = direction.cosine
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s = direction.sine

c2 eal = (c ** 2) * eal
s2 eal = (s ** 2) * eal
sc_eal = (s * ¢) * eal

return Matrix(4, 4).set_data([
c2 eal, sc_eal, -c2 eal, -sc eal,
sc_eal, s2 eal, -sc_eal, -s2 eal,
-c2_eal, -sc_eal, c2_eal, sc_eal,
-sc_eal, -s2_eal, sc_eal, s2_eal

D

Listing 15-6: Bar stiffness matrix in global coordinates

Don’t forget to import Matrix, shown here:

from eqs import Matrix

We’ve added the global stiffness matrix method. This method creates a
4 x 4 matrix and sets its values to the appropriate stiffness terms as given in
Equation 15.6 and repeated here for convenience:

A s =% s

K] = % s 2 —cs 52
I |=% - & o

s =52 cs s

To compute each of the values, we first get the bar geometry’s direction
vector and get its sine and cosine. Because every term in [£] is multiplied by
%, we compute it and store the result in the eal variable. From the sixteen
terms in the matrix, there are really only three different values we need to
compute. These are stored in c2_eal, s2_eal, and sc_eal, and they are later

referenced in the set_data method.

Testing the Bar Class

The stiffness matrix computation is core to our structural analysis problem;
a bug in this code would result in completely incorrect results, like, for in-
stance, huge deformations in the bars. Let’s add a unit test to make sure all
the terms in the stiffness matrix are computed correctly. We first need to
create a new test file in the structures/tests directory named bar_test.py. In the
file, enter the code in Listing 15-7.

import unittest
from math import sqrt

from eqs import Matrix

from geom2d import Point

from structures.model.node import StrNode
from structures.model.bar import StrBar



class BarTest(unittest.TestCase):
section = sqrt(5)
young = 5

node_a = StrNode(1, Point(0, 0))
node b = StrNode(2, Point(2, 1))
bar = StrBar(1, node_a, node_b, section, young)

def test_global stiffness_matrix(self):
expected = Matrix(4, 4).set_data([
4, 2, -4, -2,
2, 1, -2, -1,
-4, -2, 4, 2,
-2, -1, 2, 1
D
actual = self.bar.global stiffness _matrix()
self.assertEqual(expected, actual)

Listing 15-7: Testing the bar’s stiffness matrix

In this test we create a bar with nodes located at (0, 0) and (2, 1), a sec-
tion of /5, and a Young’s modulus of 5. We chose these numbers so all the
values in the expected stiffness matrix would be integers, which makes it

convenient for us to write the assertion, particularly in this case: sinf = %,
=2 EA _ 5V5 _
cosf = == and =+ = 22 =5,
V5 l

You can run the test from the IDE by clicking the green play button or
from the shell.

$ python3 -m unittest structures/tests/bar_test.py

This should produce the following output:

Ran 1 test in 0.000s

OK

Your StrBar class should look similar to Listing 15-8.

from eqs import Matrix
from geom2d import Segment
from .node import StrNode

class StrBar:

def _init (
self,
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_id: int,

start_node: StrNode,
end node: StrNode,
cross_section: float,
young_mod: float

):
self.id = _id
self.start node = start node
self.end node = end node
self.cross_section = cross_section
self.young_mod = young_mod
@property

def geometry(self):
return Segment (
self.start node.position,
self.end_node.position

@property
def length(self):
return self.geometry.length

def global stiffness_matrix(self) -> Matrix:
direction = self.geometry.direction_vector
eal = self.young mod * self.cross section / self.length
¢ = direction.cosine
s = direction.sine

c2_eal = (c ** 2) * eal
s2_eal = (s ** 2) * eal
sc_eal = (s * ¢) * eal

return Matrix(4, 4).set_data([
c2 _eal, sc_eal, -c2 eal, -sc eal,
sc_eal, s2 eal, -sc_eal, -s2 eal,
-c2_eal, -sc_eal, c2_eal, sc_eal,
-sc_eal, -s2_eal, sc_eal, s2_eal

D

Listing 15-8: Bar class result

We need one last class to bundle nodes and bars together: the structure
itself.

The Structure Class

Create a new Python file named structure.py in structures/model and enter the
Structure class’s code (Listing 15-9).



from functools import reduce

from .node import StrNode
from .bar import StrBar

class Structure:
def _init  (self, nodes: [StrNode], bars: [StrBar]):
self. bars = bars
self. nodes = nodes

@property
def nodes_count(self):
return len(self. nodes)

@property
def bars_count(self):
return len(self. bars)

@property
def loads_count(self):
return reduce(
lambda count, node: count + node.loads_count,
self. nodes,
0

)

Listing 15-9: Structure class

This class is quite simple at the moment, but in a later chapter, we’ll
write the code responsible for assembling the structure’s global stiffness ma-
trix, generating the system of equations, solving it, and creating the solution.
For now, all the class does is store a list of nodes and a list of bars passed in
to the constructor, along with a few computations that deal with the number
of items it holds.

The loads_count property sums the load count from every node. To ac-
complish this, we pass a lambda function as the first argument to the reduce
function. This lambda takes two arguments: the current count of loads and
the next node in the self._ nodes list. This reduction requires an initial value
(which is the third argument, the 0), which we add the first node’s count
to. Without this initial value, the reduction couldn’t take place, because the
reduce function wouldn’t know what value the lambda’s first parameter, count,
had for the first iteration.

We now have the complete model that defines the structure!
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Creating a Structure from the Python Shell

Let’s try to construct the truss structure in Figure 15-20 using our model
classes.

N3

N1 N2

Figure 15-20: Example truss
structure

To define the structure, first import the following classes in the Python
shell:

>>> from geom2d import Point, Vector

>>> from structures.model.node import StrNode

>>> from structures.model.bar import StrBar

>>> from structures.model.structure import Structure

Then enter the following code:

>>> node_one = StrNode(1, Point(0, 0), None, True, True)
>>> node_two = StrNode(2, Point(100, 0), None, False, True)
>>> node_three = StrNode(3, Point(100, 100), (Vector(50, -100)))

>>> bar_one = (1, node_one, node_two, 20, 20000000)
>>> bar_two = (2, node_two, node_three, 20, 20000000)
>>> bar_three = (3, node_three, node_one, 20, 20000000)

>>> structure = Structure(
(node_one, node_two, node_three),
(bar_one, bar_two, bar_three)

As you can see, creating the model for a truss structure in code is a piece
of cake. In any case, we’ll most often load the model from an external defi-
nition file, as we’ll learn in Chapter 17. Working an example by hand, never-
theless, is a great exercise to understand how our model classes work.

To finish this chapter, let’s create the model for the structure’s solution:
the classes that will store the node displacements and bar stresses.



The Structure Solution Model

We’ll tackle resolving the structure in the next chapter, but we’ll prepare
the classes to store the solution values here. For now, let’s imagine we have
the resolution algorithm ready and require the solution classes to store the
solution’s data.

When we resolve a structure, we first obtain the node displacements
in global coordinates. From the new positions of the structure’s nodes, we
can compute all the rest (strains, stresses, and reaction values). We need a
new class to represent displaced nodes, which are similar to the nodes we’ve
just defined using the StrNode class, but with the addition of a displacement
vector.

These node displacements will elongate or compress the structure’s
bars. Remember that bars develop strains and stresses, which are their me-
chanical response to being extended or compressed. The strain and stress
values are important pieces of data in the structural solution: they’ll deter-
mine whether the structure can withstand the loads applied to it.

We'll create a new class to represent the solution bars as well. This class
will reference the displaced nodes and compute the strain and stress values.

The Solution Nodes

Let’s create the class that represents nodes in the structure’s solution. In
the structures/solution package, create a new file named node.py and enter the
code in Listing 15-10.

from geom2d import Vector
from structures.model.node import StrNode

class StrNodeSolution:
def __init_ (
self,
original_node: StrNode,
global disp: Vector

):
self. original node = original node
self.global disp = global disp
@property

O def id(self):
return self._original node.id

@property
O def original pos(self):

return self._original node.position

@property
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® def is_constrained(self):
return self._ original_node.dx_constrained \
or self. original_node.dy constrained

@property
O def loads(self):
return self._original_node.loads

@property
® def is_loaded(self):
return self._ original node.loads_count > 0

@property
® def net_load(self):
return self. original node.net load

Listing 15-10: Solution node class

This listing declares the StrNodeSolution class. As you can see, this class’s
constructor gets passed the original node and its displacement vector in
global coordinates—that’s all we need. The original node is kept private to
the class (__original_node), but some of its properties are exposed. For exam-
ple, the id property @ simply returns the original node’s ID, and the same
goes for loads.

The original_pos property @ returns the original node’s position: the po-
sition before applying the displacement obtained as part of the structure’s
resolution. The naming here is important, as we’ll shortly add another prop-
erty to expose the new position of the node after being displaced.

The is_constrained property ® checks whether the original node had
any of its degrees of freedom (the displacement in x or y) externally con-
strained. We’ll use this information to know whether a reaction force needs
to be computed for the node or not. Reaction forces are those external forces
exerted by the supports or constraints in a node. We want to know the mag-
nitude of the force a support absorbs to properly design and dimension this
support.

Lastly, we have three properties related to the external loads: loads @,
is_loaded ®, and net_load ®. The first simply returns the original node’s list
of forces. We’ll use this information when drawing the solution to a vector
image like in Figure 15-14. Property is_loaded lets us know whether the node
has any load applied. This property will be handy when we need to check
which solution nodes have a load applied to them to draw those loads to the
result diagram. Property net_load returns the original node’s net load, which
we’ll use to compute the reaction force in the node.

Displaced Position

Let’s include the displaced position as a property. Since displacements tend
to be orders of magnitude smaller than the structure’s dimensions, we’ll
want to include a method that scales the displacement vector to plot the



resulting deformed geometry. This ensures that we’ll be able to tell the de-
formed geometry apart from the original geometry in the resulting diagram.
Enter the code shown in Listing 15-11 in the StrNodeSolution class.

class StrNodeSolution:
--snip--

@property
def displaced pos(self):
return self.original pos.displaced(self.global disp)

def displaced pos_scaled(self, scale=1):
return self.original pos.displaced(self.global disp, scale)

Listing 15-11: Solution node displacement

The displaced_pos method returns the position of the original node after
applying the global_disp vector to it. The displaced_pos_scaled method does
something similar, but with a scale value that will allow us to increase the
displacement’s size.

The End Result
If you’ve followed along, your StrNodeSolution class should look like List-
ing 15-12.

from geom2d import Vector
from structures.model.node import StrNode

class StrNodeSolution:
def __init_ (
self,
original_node: StrNode,
global disp: Vector

):
self. original _node = original_node
self.global disp = global disp
@property

def id(self):
return self._ original_node.id

@property
def original pos(self):
return self._ original node.position

@property
def is_constrained(self):
return self._original node.dx_constrained \
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or self. original_node.dy_ constrained

@property
def loads(self):
return self. original node.loads

@property
def is_loaded(self):
return self._ original_node.loads_count > 0

@property
def displaced pos(self):
return self.original pos.displaced(self.global disp)

def displaced position_scaled(self, scale=1):
return self.original pos.displaced(self.global disp, scale)

Listing 15-12: Solution node class result

Let’s now implement the bar’s solution class.

The Solution Bars

Knowing the displacements of a bar’s nodes is all we need to compute its
strain and axial stress. We’ll explain why this is as we develop the StrBarSolution
class.

Create a new file in structures/solution named bar.py and enter the code
in Listing 15-13.

from structures.model.bar import StrBar
from .node import StrNodeSolution

class StrBarSolution:
def __init_ (
self,
original _bar: StrBar,
start node: StrNodeSolution,
end_node: StrNodeSolution

if original bar.start node.id != start_node.id:
raise ValueError('Wrong start node')

if original_bar.end_node.id != end_node.id:
raise ValueError('Wrong end node')

self. original bar = original bar
self.start node = start node
self.end node = end_node



@property
def id(self):
return self._ original bar.id

@property
def cross_section(self):
return self._original bar.cross_section

@property
def young_mod(self):
return self. original bar.young_mod

Listing 15-13: Solution bar class

The StrBarSolution class is initialized with the original bar and the two
solution nodes. In the constructor, we check that we got the correct solu-
tion nodes passed in by comparing their IDs with the original bar nodes’
IDs. If we detect a wrong node is being passed, we raise a ValueError that will
halt execution. If we continued executing the program, the results would
be incorrect because the solution bar would be linked with nodes it wasn’t
connected to in the original definition of the structure. This will prevent us
from making mistakes when constructing the structure’s solution classes.

The class also defines the id, cross_section, and young_mod properties.
These simply return the original bar’s values.

Elongation, Stress, and Strain

Let’s now work out the strain and stress values one step at a time. The stress
can be derived from the strain (using Equation 15.4), so we’ll start with the
strain. The strain is the bar’s elongation per unit of length (see Equation 15.3),
so we need to find out this elongation value. For this, we first want to know
both the bar’s original and resulting geometries. Enter the properties shown
in Listing 15-14.

from geom2d import Segment
from structures.model.bar import StrBar
from .node import StrNodeSolution

class StrBarSolution:
--snip--

@property
def original geometry(self):
return self._original_bar.geometry

@property
def final_geometry(self):
return Segment(
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self.start_node.displaced_pos,
self.end_node.displaced_pos

)

Listing 15-14: Solution bar geometry

The original geometry was already a property in StrBar. The final geom-
etry is also a segment, this time between the displaced start and end nodes.
It’s important to understand that since the bars of a truss structure are two-
force members, they’re only subject to axial forces. Thus, the directrix of the
bars will always remain a straight segment. Figure 15-21 depicts the original
bar and the deformed bar that results when displacing the position of the
original nodes 1 and .

o

l

f

Figure 15-21: A bar’s length increment

Assuming the original bar had a length of /, and that [/ is the final length,
the elongation of the bar is simply Al = s = [,. The elongation value will
be positive if the bar stretches and negative if it compresses. Note that this
agrees with our stress sign convention: positive for tension and negative for
compression. Enter the properties in Listing 15-15.

class StrBarSolution:
--snip--

@property
def original length(self):
return self.original_geometry.length

@property
def final_length(self):
return self.final_geometry.length

@property
def elongation(self):
return self.final_length - self.original length

Listing 15-15: Solution bar length



Now that we know the bar’s elongation, we can easily compute the strain
and also the stress. Enter the strain and stress properties in the StrBarSolution
class as in Listing 15-16.

class StrBarSolution:
--snip--

@property
def strain(self):
return self.elongation / self.original_length

@property
def stress(self):
return self.young mod * self.strain

Listing 15-16: Bar strain and stress

Finally! As you can see, the strain, given by Equation 15.3, is the quo-
tient between the bar’s elongation and the original length. With the strain
value we can obtain the stress by simple multiplication with the material’s
Young’s modulus. This is Hooke’s law as formulated in Equation 15.4.

Internal Forces

To compute the reaction forces, we’ll use the static equilibrium condition

in each of the nodes: the net force in a node is always zero. In this sum of
forces, every bar that is connected to the node exerts a force equal in value
and opposite in direction to its internal force (this is illustrated in Figure 15-
23). This internal force is computed as the bar’s stress times its cross section
(see Equation 15.2).

We need both the magnitude and the direction of the internal force in
each of the bar’s nodes, because, if you recall, for this two-force member to
be in equilibrium, the forces in both ends need to have equal magnitude and
opposite directions. Let’s see how we’d go about doing this.

Enter the code in Listing 15-17.

from geom2d import Segment, make_vector_between
from structures.model.bar import StrBar
from .node import StrNodeSolution

class StrBarSolution:
--snip--
@property
def internal force value(self):

return self.stress * self.cross_section

def force_in_node(self, node: StrNodeSolution):
@ if node is self.start node:
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return make_vector_between(
self.end_node.displaced pos,
self.start node.displaced pos

) .with_length(
self.internal_force_value

)

O elif node is self.end_node:

return make vector between(
self.start node.displaced pos,
self.end_node.displaced pos

) .with_length(
self.internal_force_value

raise ValueErrox(
f'Bar {self.id} does not know about node {node.id}'

)

Listing 15-17: Bar internal force

In this code, we first define the internal_force_value property, which
yields the magnitude, positive or negative, of the internal force computed
according to Equation 15.2.

Then comes the force_in_node method, which, given either the start or
end node of the bar, returns the force vector in that node. The magnitude
of the force vector is internal force value in both cases. It’s the direction that
changes depending on the passed-in node.

Our sign convention is that tension forces are considered positive and
compression forces negative. If we choose the direction of the internal force
to be positive in each of the nodes, the force vector will always have the cor-
rect direction. This is because later we’ll give it a length of internal_force_value,
which is negative for a compressing force, and, as you know, assigning a neg-
ative length to one of our Vector instances reverses its direction.

Look back at the code. If the passed-in node is the start node @, the
force vector is created to go from the end node’s final position to the start’s.
Then, the resulting vector is scaled according to internal_force_value.

Conversely, if the passed-in node is the end node 8, the force vector is
the opposite, but the scaling part remains the same.

Lastly, if the passed-in node is neither of the two bar nodes, we raise an
error.

Bar Has Node?

We’re almost done with the bar solution class; we just need two more meth-
ods, and our class will be ready. The first one checks whether any node in
the structure is one of the end nodes in the bar. We’ll use this method to
draw the results. Enter the method in Listing 15-18.

class StrBarSolution:
--snip--



def has_node(self, node: StrNodeSolution):
return node is self.start node or node is self.end node

Listing 15-18: Bar has node?

Lastly, we need a method to generate the bar’s final geometry but with a
scale applied to the displacements.

Scaled Final Geometry

If you remember, we already implemented a method in the StrNodeSolution
class that yields its position with a scale applied to the displacement. Let’s
harness this implementation to build the segment representing the deformed
bar’s geometry with a scale applied. Enter the code in Listing 15-19.

class StrBarSolution:
--snip--

def final_geometry scaling displacement(self, scale: float):
return Segment(
self.start_node.displaced pos_scaled(scale),
self.end node.displaced pos_scaled(scale)

)
Listing 15-19: Bar scaled geometry

The final_geometry_scaling_displacement method returns a segment whose
end points are the bar nodes’ final positions with a scale applied to the dis-
placement vector. This is the segment we’ll draw to the result plot to visual-
ize how the original bar got displaced from its original position.

Again, because the displacements are fairly small compared to the size
of the structure itself, we’ll want to scale the node displacements so we can
clearly see how the structure gets deformed in the solution diagram.

The End Result
If you followed along, your StrBarSolution should look like Listing 15-20.

from geom2d import Segment, make_vector_between
from structures.model.bar import StrBar
from .node import StrNodeSolution

class StrBarSolution:
def __init_ (
self,
original _bar: StrBar,
start node: StrNodeSolution,
end_node: StrNodeSolution

if original bar.start node.id != start_node.id:
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raise ValueError('Wrong start node')

if original bar.end_node.id != end_node.id:
raise ValueError('Wrong end node')

self. original bar = original bar
self.start_node = start_node
self.end node = end node

@property
def id(self):
return self._original bar.id

@property
def cross_section(self):
return self. original bar.cross_section

@property
def young_mod(self):
return self. original bar.young mod

@property
def original_geometry(self):
return self._original_bar.geometry

@property
def final_geometry(self):
return Segment(
self.start_node.displaced_pos,
self.end node.displaced pos

@property
def original length(self):
return self.original_geometry.length

@property
def final_length(self):
return self.final_geometry.length

@property
def elongation(self):
return self.final_length - self.original_length

@property

def strain(self):
return self.elongation / self.original length
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@property
def stress(self):
return self.young mod * self.strain

@property
def internal_force value(self):
return self.stress * self.cross_section

def force_in_node(self, node: StrNodeSolution):
if node is self.start_node:
return make_vector_between(
self.end_node.displaced_pos,
self.start_node.displaced_pos
).with_length(
self.internal_force_value
)
elif node is self.end_node:
return make vector between(
self.start node.displaced pos,
self.end_node.displaced_pos
).with_length(
self.internal_force_value

)

raise ValueError(
f'Bar {self.id} does not know about node {node.id}'

)

def has_node(self, node: StrNodeSolution):
return node is self.start node or node is self.end node

def final geometry scaling displacement(self, scale: float):
return Segment(
self.start node.displaced position scaled(scale),
self.end node.displaced position scaled(scale)

)

Listing 15-20: Solution bar class result

There’s one last class we want to define: the structure solution.

The Structure Solution

Just as we had a class for the original structure model, we want a class repre-
senting the structure’s solution. The goal of this class is to put the solution
nodes and bars together.

Create a new file in the structures/solution folder named structure.py. In
the file, enter the basic definition for the class (Listing 15-21).
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from .bar import StrBarSolution
from .node import StrNodeSolution

class StructureSolution:
def __init_ (
self,
nodes: [StrNodeSolution],
bars: [StrBarSolution]

self.nodes = nodes
self.bars = bars

Listing 15-21: Structure solution class

The StructureSolution class is initialized with the list of nodes and bars
that make up the solution. This is similar to the original structure’s defi-
nition. But because we’re using this class to generate results—reports and
diagrams—we’ll need some additional attributes.

Structure Rectangular Bounds

When plotting the structural analysis results, we’ll want to know how much
space we need to draw the complete structure. Knowing the rectangular
bounds of the entire structure will allow us to compute the viewBox for the
SVG plot later. Let’s compute these bounds and add in some margin as well
(see Figure 15-22) so that there’s some extra room for drawing things like
the arrows that represent loads.

O o C
N Bounds N6 N7 N8
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C O o C o]
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Figure 15-22: Bounding a structure
In the class, enter the bounds_rect method (Listing 15-22).

from geom2d import make_rect_containing_with_margin
from .bar import StrBarSolution
from .node import StrNodeSolution

class StructureSolution:
--snip--

def bounds_rect(self, margin: float, scale=1):
d_pos = [



node.displaced_pos_scaled(scale)
for node in self.nodes

]

return make_rect_containing with_margin(d_pos, margin)

Listing 15-22: Structure graphical bounds

We first import the make_rect_containing_with_margin function. We imple-
mented this function in Part II of the book; it creates a Rect primitive con-
taining all the passed-in points, along with some margin.

The bounds_rect method we’ve written initializes the d_pos variable as a
list with all the structure nodes’ displaced positions and passes it to the func-
tion, which generates the rectangle. Note that we’re using the scaled version
of the displacements to make sure the rectangular bounds contain all the
nodes in the positions where they’ll be drawn.

Node Reaction Forces
Lastly, because the StructureSolution class has access to all the nodes and bars
of the structure, it will be in charge of calculating the reaction forces for
each of the nodes. The StrNodeSolution class couldn’t do this computation
itself, as it doesn’t have access to the list of bars that meet in that node.

Now how do we go about computing the reaction force in a node? Let’s
suppose we have a node like that in Figure 15-23. Two bars, bar 1 and bar 2,

meet in this node and are subject to internal forces Fy and Fy, respectively.
An external load ¢ is applied to the node as well. This node is externally con-

strained, and R is the reaction force we’re after.
N
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Figure 15-23: The reaction forces in a node

From these quantities, only R is unknown. The bar internal forces, F
and Fg, are computed using the force_in_node method we implemented in
Listing 15-17, and the external load ¢ is given as part of the problem’s
statement.

Provided the node is under static equilibrium, the following condition
must be held.
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Reg-Fi-Fo=0
You may have noticed that in this condition the bar forces appear with a
negative sign. Those are the reaction forces the node receives from the bars’
forces, in accordance with Newton’s third law. If a bar is subject to a pair of

forces that compress it, the bar pulls the node toward itself. On the other
hand, if a bar tends to expand, it'll push the nodes away from itself.

We can easily isolate R from the previous equation,
R=F +Fy-g

or in a more generic fashion (Equation 15.8),

R=>"F->G (15.8)
where > F; is the sum of all bar forces, and > gj is the sum of all external

loads applied to the node (the node’s net load).
Let’s implement this in our class. Enter the code in Listing 15-23.

import operator
from functools import reduce

from geom2d import make_rect_containing with_margin, Vector
from .bar import StrBarSolution
from .node import StrNodeSolution

class StructureSolution:
--snip--

def reaction_for node(self, node: StrNodeSolution):
® if not node.is_constrained:
return Vector(0, 0)

@ forces = [
bar.force_in_node(node)
for bar in self.bars
if bar.has_node(node)

if node.is_loaded:
® forces.append(node.net_load.opposite())

® return reduce(operator.add, forces)

Listing 15-23: Node reaction force
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We’ve defined the reaction_for_node method, which, given a node, com-
putes its reaction force. Don’t forget that reaction forces exist only for those
nodes that have external supports or constraints. That’s in fact the first
thing we check @: if the node is not constrained, we return a zero vector
(meaning no reaction force).

The second step is to search for all bars in the structure that are linked
to the passed-in node and get their internal forces in that given node ®. We
do this using a list comprehension that iterates through all the bars in the
structure, filtering those that pass the bar.has_node(node) test and finally map-
ping each of them to its internal force in the given node. This is the ) F;in
Equation 15.8.

Next, we append the net external load to the forces list if the node is
externally loaded ®. Note that the net load received from the node appears
with a negative sign in Equation 15.8, which is why we call the opposite method
on it. Also note that we don’t need to sum these loads (as the ) _ g; in Equa-
tion 15.8 suggests) because the StrNodeSolution class already does that for us
and provides us with the net load.

Lastly, all the forces in the list are summed using the reduce function
with the operator.add operator @.

The End Result

For your reference, Listing 15-24 shows the complete StructureSolution class
implementation.

import operator
from functools import reduce

from geom2d import make_rect_ containing with_margin, Vector
from .bar import StrBarSolution
from .node import StrNodeSolution

class StructureSolution:
def _init (
self,
nodes: [StrNodeSolution],
bars: [StrBarSolution]

self.nodes = nodes
self.bars = bars

def bounds_rect(self, margin: float, scale=1):
d_pos = [
node.displaced pos scaled(scale)
for node in self.nodes

]

return make_rect_containing with_margin(d_pos, margin)
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def reaction_for_node(self, node: StrNodeSolution):
if not node.is_constrained:
return Vector(o, 0)

forces = [
bar.force_in_node(node)
for bar in self.bars
if bar.has_node(node)

if node.is_loaded:
forces.append(node.net_load.opposite())

return reduce(operator.add, forces)

Listing 15-24: Structure solution class result

It’s important to unit test this class to make sure we haven’t made any
mistakes. Nevertheless, to test it, we need to learn about an advanced testing
technique: mocking. We’ll be exploring this topic in the next chapter, so
we’ll come back to this implementation.

Summary

Chapter 15

We started this chapter reviewing some mechanics of materials topics such
as the internal forces developed by elastic bodies as a response to being ex-
ternally loaded. We introduced the concepts of stress and strain, both cen-
tral to structural analysis. We were particularly interested in the axial stresses
developed in prismatic bodies, as those are crucial in plane truss structures,
the focus of this part of the book.

We then took a look at plane trusses and their particularities and for-
mulated the relation between forces and displacements on a bar using the
concept of a stiffness matrix. As we’ll see in the next chapter, these matrices
play a crucial role in the resolution of the structure.

Lastly, we implemented the structure’s modeling classes: StrNode, StrBar,
and Structure. We implemented the structure’s solution classes as well:
StrNodeSolution, StrBarSolution, and StructureSolution. These two sets of classes
represent the structure as originally designed and the structure solution, in-
cluding the stress value for each bar and the displacements of every node.
We’ll cover how we go from the original definition to the solution in the
next chapter.



STRUCTURE RESOLUTION

In the previous chapter, we defined the

classes for the structure model: StrNode,
StrBar, and Structure. We also wrote the

classes for the structure’s solution: StrNodeSolution,

StrBarSolution, and StructureSolution. We use the first
three to define a structure and the other three to model
the solution, including the nodes’ displacements and
bars’ stresses and strains. The question is, how do we
go from the definition model to the solution model?

In this chapter, we’ll answer that question by developing the resolu-
tion algorithm, the link between the original and solution structure mod-
els. We'll revise the structure’s resolution process, where we assemble the
structure’s stiffness matrix [k] based on the individual bar’s matrices and as-
semble the load vector {F } based on the individual node’s loads. Resolving
the {F} = [k]{X} system of equations yields the displacements of the nodes
in the structure in global coordinates: {¥}. To solve the system of equations,
we’ll use our Cholesky’s implementation.

This chapter will also introduce an advanced unit testing technique: test
doubles. Test doubles help us isolate a piece of the code by replacing the
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functions or classes it relies on with “fake” implementations so that when we
run the test, we’re testing only one piece of the code.

Structure Resolution

Chapter 16

In the previous chapter we studied the system of equations that relates the
forces applied in each of the degrees of freedom of a bar with its displace-
ments. A bar has two nodes, each with two degrees of freedom:

u The displacement in the x direction

v The displacement in the y direction

This makes a total of four degrees of freedom per bar: «; and v; for node 1
and ue and ve for node 2. The forces applied to the nodes—let’s call them F
and Fo—can each be decomposed into their two projections. Thus, Fj can be
decomposed into Fj, and Fjy, and the same goes for Fg (see Figure 16-1).

$o

Figure 16-1: A bar’s degrees of freedom

The system of equations relating these forces and the node displace-
ments is repeated here from section “Stiffness Matrices in Global Coordi-
nates” on page 397:

-CS ul

Fiy| _EA | ¢s 2 —¢s s U]

Fo, I |- - 2 o | |ue

Foy —es -~ s 52 |ve
(k]

It’s important to note that these forces and displacements, as well as
the stiffness matrix [k], are all based on the global system of coordinates,
which is the one represented on the bottom left of Figure 16-1. Each bar has
its own local coordinate system, as you may recall from Figure 15-18, but to
build the structure’s global system of equations, we want the forces and dis-
placements referred to this global coordinate system.

Before we move on, let’s briefly touch on what each term in the stiffness
matrix means.



Interpreting the Stiffness Matrix Terms

The stiffness matrix terms relate the force in a given degree of freedom with
the displacement produced in another degree of freedom. They are ordered
in a well-defined way:

F;%(;% F;%(;yl F;%(;,% F;H(;J?
Fy =6y Fy =6 Fy =06 F =06
=6 FE—6 FF—06 F-0
=6 Ff =6 Ff—0& F =4

Here, for example, F! — 5y2 can be read as “the relation between the force

in the first node’s x direction (FL) and the displacement it produces in the
second node’s y direction (5;).” With this is mind, we can discern a pattern.

Each row contains the stiffness terms relating the force in one degree of
freedom with the displacements in every degree of freedom. For example,
the first row includes the terms that relate the force in the x-axis of the start
node F} with all possible displacements: 6., 6y1, 62, and 62.

Each of the columns contains the stiffness terms relating the forces in
every degree of freedom with the displacement in a given degree of free-
dom. For example, the first column includes the terms that relate the forces
in every degree of freedom—F}C, Fyl, F,%, and FyQ—with the start node’s dis-
placement in the x-axis.

Remember this interpretation of the stiffness terms; we’ll use this knowl-
edge later when we assemble the structure’s global stiffness matrix. Let’s
continue revising the resolution process and write the code for it one step at
a time.

Structure Initialization

As part of the structure’s resolution process there will be some intermedi-
ate results we want to save in the Structure class as private attributes. Let’s
initialize these attributes before we dive into the main algorithm.

Open your model/structure.py file and edit the class so that it includes the
new attributes we’re adding in the __init__ method, as shown in Listing 16-1.

from functools import reduce
from eqs import Matrix, Vector as EqVector

from .node import StrNode
from .bar import StrBar

class Structure:
® _ DOF_PER_NODE = 2

def __init_ (self, nodes: [StrNode], bars: [StrBar]):
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self. bars = bars
self._nodes = nodes

® self. dofs_dict = None
self.__system matrix: Matrix = None
self._ system_vector: EqVector = None
self._global displacements: EqVector = None

--snip--

Listing 16-1: Initializing the structure

We need to add two new imports, Matrix and Vector, from the eqs pack-
age @. Because we’ll later need to import the other Vector class, the one de-
fined in the geom2d package, we alias Vector from the eqs package to be named
EqVector instead. Notice the aliasing syntax in Python:

from <module> import <identifier> as <alias>

Next, we define a constant called _ DOF_PER_NODE @, which is set to 2.
We’ll use this constant in our code instead of directly using the number. Its
clear name should give a good hint as to what the number actually means.
We’ll avoid using magic numbers in our code, that is, numbers that appear in
the code where it isn’t clear what they represent. Well-named constants tell
the readers of our code what the number actually stands for.

Lastly, we define four new private attributes and initialize all of them to
None ©.

__dofs_dict A dictionary where the keys are IDs of the nodes, and the
values are the lists of degrees of freedom numbers assigned to the node.
We’ll see what this means in a minute.

__system_matrix The stiffness matrix for the structure’s global system of
equations.

__system_vector The load vector for the structure’s global system of
equations.

_ global_displacements The list of a node’s global displacements, where
the indices of each displacement are the same as their degrees of free-
dom numbers.

Don’t worry if you don’t fully understand what each of these new at-
tributes mean; we’ll explain each in detail in the following sections.

The Main Structure Resolution Algorithm

The structure resolution algorithm can be broken down into three big steps:

1. Assign each degree of freedom a number.

2. Assemble and resolve the structure’s system of equations.
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3. Use the system’s resulting vector to build the solution model.

Let’s try to quickly understand what each of these steps is about; we’ll
fill in the remaining details later. The first step, numbering the degrees of
freedom, is a process that assigns every DOF in the structure a unique num-
ber. Let’s take the structure in Figure 16-2 as an example.

N3

N1 N2

Figure 16-2: Our example structure

The structure in Figure 16-2 has three nodes (N1, N2, and N3), and each
node has two degrees of freedom. Assigning numbers to the degrees of
freedom is as simple as it sounds: we take each DOF and associate a unique
number with it. Table 16-1 shows a possible DOF number assignment that
uses the natural ordering of the nodes.

Table 16-1: Assigning
Degrees of Freedom

Numbers

Node DOF numbers
N1 0,1

N2 2,3

N3 4,5

As you can see, we assign DOF numbers starting from zero. We could
have chosen any other set of numbers, including a numbering scheme start-
ing at any number we like, but as we’ll use these numbers to refer to posi-
tions in the system’s matrix and vector, it’ll be more convenient to have num-
bers that directly refer to indices. Otherwise, we’d need a mapping between
the DOF numbers and indices in the system.

With the DOF numbers assigned, the next step is to assemble the global
system of equations. This system has the same structure as the bar’s system
of equations: (F} = [k]{@}. When we solve this system of equations, we
obtain the global displacements for all DOFs. Using these displacements,
we can create the structure solution model using the classes we defined in
Chapter 15.

Let’s implement this three-step algorithm in a new method in the Structure
class (from the model package). Enter the new method in Listing 16-2.
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class Structure:
--snip--

def solve_ structure(self):
self. assign degrees_of_freedom()
self. solve_system of _equations()
return self. make_structure_solution()

Listing 16-2: Structure resolution

The solve_structure method will compute the solution and return an
instance of StructureSolution. This method outlines the three steps we just
described. None of the three private methods exist yet, but we’ll implement
them in the following sections one by one.

Numbering Degrees of Freedom

The first step of the resolution process is to assign a number to each of the
structure’s degrees of freedom. Remember that each node has two degrees
of freedom, so the __assign_degrees_of_freedom method will assign two num-
bers to each of the structure’s nodes and save them in the __dofs_dict dic-
tionary we initialized in Listing 16-1. With the DOF numbers assigned, the
structure we saw in Figure 16-2 could now look like Figure 16-3.

N3

Figure 16-3: Our structure nodes’
degrees of freedom, with number labels

Let’s implement the method. Enter the code in Listing 16-3.

class Structure:
--snip--

def __assign degrees of_freedom(self):
self. dofs dict = {}
for i, node in enumerate(self._ nodes):
self. dofs dict[node.id] = (2 * i, 2 * i + 1)

Listing 16-3: Degrees of freedom assignment

The method first initializes the _ dofs_dict attribute, setting it to an
empty dictionary to make sure that we use a fresh new dictionary each time



we run the method. Then, we iterate over the enumeration of all the nodes
in the structure (self._ nodes), adding each node’s id as the key in the dictio-
nary associated with a tuple of two numbers: the node’s DOFs.

The enumerate function in Python returns an iterable sequence of the el-
ements that we pass the function, together with their indices. This function
is convenient for when the logic of what we’re doing requires the index of
the items in a list. Here, we use the index of the node to compute its DOF
numbers, which for a given index ¢ are 2i and 2i + 1.

The first node, at index 0, will therefore get the degrees of freedom 0
and 1. The node at index 1 will get 2 and 3, and so on and so forth.

For a structure with three nodes whose IDs are 1, 2, and 3, the degrees
of freedom dictionary could look like the following:

dofs_dict = {
1: (o, 1),
2: (2, 3),
3: (4, 5)
}

Let’s move on to the next step, where the heavy lifting happens.

Assembling and Resolving the System of Equations

To find the displacements of the structure’s nodes, we need to assemble and
solve the structure’s global (F} = [k]{#) system of equations. This system
consists of the bar’s individual systems of equations assembled together.
The same way a bar’s {13 } = [k]{u} system relates the external forces and
displacements on both its nodes, the structure’s global system of equations
relates the forces and displacements of every node in the structure.

Let’s break this down a bit more so we understand all the details. As
always, doing a small example by hand will help us understand the process
better.

An Example by Hand

Before we begin, a quick note on nomenclature: we’ll label each bar using
the numbers of the nodes it lies on, separated with an arrow. So, 1 — 2is
the bar going from node 1 to node 2. The nomenclature

EA

l 1-2

refers to the % quantity for the bar 1 — 2: E refers to the bar’s material
Young’s modulus, A is the bar’s cross section, and [ is the bar’s length.

Now let’s look at the structure in Figure 16-3. This structure has three
nodes, three bars, and an external load applied to node 3. Let’s derive the
system of equations for each of the three bars using the degrees of freedom
numbering we’ve defined (see Figure 16-4).
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oN3

7=3
90°
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NI =2 N2
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Figure 16-4: Our structure’s nodes and bars, labeled

Bar 1 — 2 This horizontal bar goes from node 1 to node 2. Its local
x- and y-axes are aligned with the global coordinate system; thus, in this
case, § = 0°, and therefore cos 0° = 1 and sin 0° = 0. The bar’s system of
equations is as follows:

0 1 0 -1 0] [u
0| _ EA 0 0 0 0f o
O " 7| o]l 0 1 0] u
0 0 0 0 0| |v

If you need a refresher on how this system of equations is derived, refer
to section “Stiffness Matrices in Global Coordinates” on page 397.

Bar 1 — 3 This bar going from node 1 to node 3 forms an angle of 30°

with the global x-axis; therefore, sin 30° = % and cos 30° = ? The bar’s
system of equations is as follows:

0 oo VBt 3/ =B/ |wg
0| _EA V3/4 Ve  =8/s -1/ U1
Fs, [ 1-3 =3/4  —V3/4 3/4 V3/4 us

Fs

y -V8/4 U4 B/ /4 U3

Bar 2 — 3 This vertical bar going from node 2 to node 3 makes an an-
gle 6 equal to 90°, so cos 90° = 0 and sin90° = 1. The bar’s system of
equations is as follows:

0 0 0 0 07 [us
0| _EA 0 1 0 -1| |ve
Fse| ™ T g |0 0 0 0f |us
Fs, 0 -1 0 1| v

Now that we have each bar’s system of equations, we need to assemble
the structure’s global system. The structure has a total of three nodes, and
each node has two degrees of freedom, so the size of the systemis 3 x 2 =6.
In this system, the forces and displacements need to appear in the position
given by their DOF number. To make this clear, let’s make a table with the
DOF numbers and the forces and displacements associated with them (Ta-
ble 16-2).



Table 16-2: DOF Numbers for Each Force and
Displacement

DOF Associated force  Associated displacement

O le =0 uy
1 Fly =0 U1
2 ng =0 u9
3 Fgy =0 v9
4 Fs, us
5 F3y ug

If the DOF numbering gives us the position in the system of equations
that each force or displacement term needs to occupy, we can start con-
structing the system like so:

0 koo ko1 ko2 kos koa kos| |w1
0 ko ki1t ke ks kg kis| |v1
0 | _ koo ko1 koo kos kos kos| |ug
0 ko ks1 kso kss ksa ks | |vo
Fsy kyo ka1 kao  kas kag  kes| |us
Fs, kso ks1 kse  ksg ksy kss] |vs

Note that if we decided to number the degrees of freedom differently,
the order of the force and displacement terms would be different but per-
fectly valid nevertheless.

In this system of equations, we have yet to compute the stiffness terms.
The general stiffness term k;; relates the force applied in the i degree of

freedom with the displacement in the j degree of freedom (the same as we
saw earlier in the “Interpreting the Stiffness Matrix Terms” on page 429).

As you can imagine, if the i and j" degrees of freedom don’t belong
to the same node or to nodes not joined by a bar, the kij stiffness term will
be zero: there can’t be any relation between a force applied in ¢ with a dis-
placement in j. In our example structure, all the nodes are connected, so
there won’t be zero values in the global matrix (except for those already in
the bar’s individual matrices). In big structures where a node is connected
with only a few others, the resulting stiffness matrices tend to have many
zeros.

To compute each of the kl-]- terms, we need to add all the stiffness values
in the bar’s stiffness matrices that relate the i and jth degrees of freedom.
For example, to compute kg, we have to account for the stiffness of bars
1 — 2and 1 — 3, because those bars add a stiffness relation between the
force applied in the DOF 0 and the displacement in the same DOF. To sim-
plify the notation of the 1% terms a bit, let’s use the following aliases:

S127 =7 S157 S0
1—-2 1—3 2—3
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With this, let’s assemble the system’s matrix and vector by adding each of
the stiffness terms and loads:

[0 ] [S19+ 2513 @Sm ~S1o 0 -3Si3 ‘@Sw ] (uq ]
0 @Sm 1513 0 0 ‘?Sm -3813 v]
0 S 0 S 0 0 0 us
0 0 0 0 Sos 0 -Sog U9

Fax 381y -Y2Si5 0 0 2813 VAR U3

_ng_ ‘@Sm -2S13 0 ~Sog @Sm 3815 + Sog _US_

There’s one last step required to make this system of equations solv-
able: applying the external constraint conditions, that is, setting the con-
strained displacements as zero. This system of equations so far represents
the structure without external constraints, but there are some imposed dis-
placements of zero, and we have to force these conditions into its solution.
In this case, node N1 has both its x and y displacements constrained, which
can be expressed mathematically as follows:

up=0 and v =0

The N2 node has its y displacement constrained. Thus,

'U2=O

To introduce these conditions in our system of equations so that they
appear in the solution, we have to set both the row and columns of the given
DOF number as the identity in the system’s matrix and a zero in the system’s
force vector. In this case, the displacements u1, v, and v9 have the 0, 1, and
3 DOFs assigned to them; let’s make those rows and columns the identity

vector:
01 Mo 0 0 o 0 7
0 01 0 0 0 0 "
0 00 S 0 0 0 s
ol=100 0o 1 0 0 s
Fal 100 0 0 353 55 | |ug
Fayl {0 0 0 0 ¥3S;3 3813+Se3| |3

The force vector values at the constrained indices were already zero
(there’s no force applied in those degrees of freedom), but if they weren’t,
we’d have to zero them out as well. With this little algebraic trick, we force
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u1, v1, and vg to be equal to zero in the system’s solution. The resulting sys-
tem matrix is positive definite; thus, the Cholesky numerical method we im-
plemented in Chapter 14 is a good candidate to solve this system.

The structure’s system of equations is now assembled and ready to be
solved. If we use a linear system resolution procedure, such as Cholesky’s
factorization, we’ll obtain the values for the displacements.

Now that we understand this procedure, let’s put it in code.

The Algorithm

In the Structure class, enter the method in Listing 16-4. This method defines
our resolution algorithm step-by-step.

from functools import reduce

from eqs import Matrix, Vector as EqVector, cholesky_solve
from .node import StrNode
from .bar import StrBar

class Structure:
--snip--

def __solve_system of equations(self):

size = self.nodes_count * self._ DOF_PER_NODE

self. assemble system matrix(size)

self. assemble system vector(size)

self. apply external constraints()

self. global displacements = cholesky solve(
self. system matrix,
self._system vector

)

Listing 16-4: Solving the system of equations

We called __solve_system of equations in Listing 16-2, but we hadn’t yet
defined it. This now complete method outlines the main steps to assemble
and resolve the structure’s system of equations. Note that we’re using many
methods we have yet to define; we’ll do so in later sections.

We first compute the size of the system by multiplying the number of
nodes in the structure by the degrees of freedom for each node, a value we
stored in the constant __DOF_PER_NODE in the class.

Then we assemble both the system’s matrix and vector using two private
methods we’ll write later: __assemble_system_matrix and __assemble_system_vector.

The next method we call, __apply_external_constraints, applies the con-
ditions that force the constrained displacements to be zero, similar to the
example we did by hand shown earlier.

The last step uses the recently computed system matrix and force vec-
tor to find the solution using our Cholesky’s solver function: cholesky_solve.
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This function needs to be imported from the eqs package. The result we get
is the displacement vector in global coordinates.

Assembling the System’s Matrix

Let’s write the __assemble_system matrix method. This is probably the most
complex piece of code involved in the structural analysis algorithm, but
don’t worry, I'll walk you through it. First, enter the code in Listing 16-5.

class Structure:
--snip--

def __assemble system matrix(self, size: int):
matrix = Matrix(size, size)

for bar in self._ bars:
@ bar matrix = bar.global stiffness matrix()
® dofs = self._ bar_dofs(bar)

for row, row dof in enumerate(dofs):
for col, col dof in enumerate(dofs):
matrix.add_to_value(
® bar matrix.value at(row, col),
row_dof,
col_dof

)

O self. system matrix = matrix

def _ bar_dofs(self, bar: StrBar):
start_dofs = self. dofs_dict[bar.start node.id]
end_dofs = self. dofs dict[bar.end node.id]
return start_dofs + end_dofs

Listing 16-5: Assembling the system of equations matrix

We start by creating a new Matrix instance with as many rows and columns
as the passed-in size parameter. Then, we have a for loop that iterates over
the bars in the structure. In the loop, we call the global_stiffness_matrix
method on each bar and store the resulting stiffness matrix in the bar_matrix
variable @.

Next, we create a list of all the degrees of freedom numbers included in
the nodes of the bar: dofs @. To do this without adding too much noise in
the __assemble_system_matrix method, we’ve implemented another private
method: _ bar_dofs.

This _ bar_dofs method uses the ids of the passed-in bar nodes to extract
its DOF numbers from the _ dofs_dict. After extracting the start and end
nodes’ DOF numbers, we create a new tuple by concatenating the two DOF
tuples. Note that we can concatenate tuples using the + operator.
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Now we have a tuple containing the DOF numbers for a given bar’s
nodes. Recall that this gives us the bar’s stiffness term’s position in the struc-
ture’s system of equations matrix: the DOF number is also the index in the
system’s matrix. Back in __assemble_system_matrix, we use two for loops to
cover all the terms in the bar’s stiffness matrix. These loops iterate over the
matrix’s rows and columns and add every visited stiffness value to the struc-
ture’s global matrix ®. We use the indices from the enumerations to access
the bar’s stiffness matrix and the DOF numbers to know the position in the
structure’s matrix. To make sure you understand this process, take a look at
Figure 16-5.

N3
koo | ko1 ko2 | ko
kio | kit ki2 | kis
N1 koo | kot | koz | ko
kio| ki | kiz | kis »
koo | ka1 | ko2 | kas kao | k1 ka2 | ka3
kso | ks1 | ka2 | kss kso | k31 ka2 | ka3
Bar's stiffness matrix Structure's stiffness matrix

Figure 16-5: Assembling the stiffness matrix

In the figure, we’ve taken bar 1 — 3, whose first node, N1, has the DOFs
0 and 1, and whose second node, N2, has the DOFs 4 and 5. We’ve anno-
tated the side and top of the bar’s stiffness matrix with the degrees of free-
dom numbers. The stiffness terms in the matrix relate these degrees of free-
dom. For example, the term ko7 is in the row that corresponds to DOF 4 and
the column that corresponds to DOF 1; this term relates the force applied
in DOF 4 with the displacement in DOF 1. These DOF numbers are the in-
dices in the structure’s stiffness matrix. The k9 term, for instance, is located
in the 4" row and 1 column in this matrix.

The last step in Listing 16-5 is to assign the computed matrix to the in-
stance’s __system matrix attribute @.

Assembling the System’s Vector

We assemble the system’s external-force vector using a similar procedure to
what we just did with the stiffness matrix. This time, instead of iterating over
the bars of the structure, we’ll iterate over the nodes: we want to collect the
external forces on each of them.

In your file, enter the new private method in Listing 16-6.

class Structure:
--snip--

def _assemble system vector(self, size: int):
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vector = EqVector(size)
for node in self. nodes:
net load = node.net load

(dof_x, dof_y) = self. dofs_dict[node.id]

vector.add to_value(net_load.u, dof x)
vector.add to_value(net_load.v, dof y)

self. system vector = vector

Listing 16-6: Assembling the system of equations vector

We first create a new Vector sized according to the size parameter (don’t
forget we've aliased this class to be named EqVector now).

Next, we have a for loop that iterates over the nodes. For each node we
save its net load in the net_load variable. Then we extract the node’s DOF
numbers from _ dofs_dict into the dof x and dof y variables. Note that we’re
destructuring the tuple into these variables; take a look at “Destructuring”
on page 20 if you need a refresher on destructuring.

We then add each of the net load components into the vector variable:
the x component (net_load.u) in the position given by dof_x and the y compo-
nent (net_load.v) in the position given by dof_y.

Lastly, we assign the vector we’ve computed to the instance’s __system_vector
attribute.

Applying the External Constraints

Lastly, we need to include the external constraints in the structure’s stiffness
matrix and force vector. This means that we want those displacements that
are externally constrained to be zero in the final solution vector; if they’re
constrained, they can’t move. To accomplish this, we can use the algebraic
trick we explored earlier, which consisted of setting the rows and columns
of the associated degrees of freedom as identity rows and columns in the
stiffness matrix and as zero in the force vector.

This is easier done than said, so, without further ado, let’s see what the
code looks like. Enter the code in Listing 16-7.

class Structure:
--snip--

def _ apply external constraints(self):
for node in self. nodes:
O (dof x, dof_y) = self._dofs_dict[node.id]

® if node.dx_constrained:
self. system matrix.set identity row(dof x)
self. system matrix.set_identity col(dof x)
self. system vector.set_value(0, dof x)
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® if node.dy constrained:
self. system matrix.set identity row(dof y)
self. system matrix.set_identity col(dof y)
self. system vector.set value(0, dof y)

Listing 16-7: Applying the external constraints

To check the existing external constraints, we iterate over the nodes of
the structure. For each node, we extract its DOF numbers into the dof x and
dof_y variables @. Then we check whether the node has its displacement in
the x direction constrained @, in which case we do three things:

1. Set the stiffness matrix dof_x row to the identity.
2. Set the stiffness matrix dof_x column to the identity.
3. Set the force vector dof x value to zero.
We do the same for the displacement in the y direction constraint ©.
The system is now ready to be solved. Once we have the system’s solu-

tion in the form of the displacement vector, we can create the structure’s
solution model.

Creating the Solution

Let’s do a quick recap to remind ourselves where we are. We’ve written a lot
of code split among a couple private methods. Figure 16-6 shows a hierarchy
of the methods involved in solving the structure.

solve_structure

__assign_degrees_of freedom I | __make_structure_solution

\

| _ solve_system

of_equations |

__assemble_system matrix I I __apply_external _constraints |

\

| __assemble_system_vector I cholesky_solve

\
_ bar_dofs

Figure 16-6: Structure resolution code split into a hierarchy

The nodes in this diagram are the methods ordered from left to right
according to their execution order. The solve_structure method is the public
method defining the main algorithm. If you recall, that method consists of
three steps, which are written as private methods:

__assign_degrees_of_ freedom

Structure Resolution 441



__solve_system_of_equations

__make_structure solution

The second private method, _ solve_system of_equations, is the one with
the most submethods, as you can observe in the diagram.

So far we’ve written all but the _ make_structure_solution method, the
third and last step in solve_structure. Let’s write this method now. It uses
the solution to the system of equations (the node’s global displacements) to
build the structure solution model.

In the model/structure.py file, enter the code in Listing 16-8.

from functools import reduce

from eqs import Matrix, Vector as EqVector, cholesky solve
from geom2d import Vector

from structures.solution.bar import StrBarSolution

from structures.solution.node import StrNodeSolution

from structures.solution.structure import StructureSolution
from .bar import StrBar

from .node import StrNode

class Structure:
--snip--

def _make_structure_solution(self) -> StructureSolution:
nodes = [
@ sclf. node_to_solution(node)
for node in self. nodes

® nodes_dict = {}
for node in nodes:
nodes_dict[node.id] = node

bars = [
® StrBarSolution(
bar,
nodes_dict[bar.start_node.id],
nodes_dict[bar.end node.id]

)

for bar in self._ bars

O return StructureSolution(nodes, bars)

def _node_to solution(self, node: StrNode) -> StrNodeSolution:
® (dof x, dof_y) = self. dofs_dict[node.id]
® disp = Vector(



self. global displacements.value_at(dof x),
self. global displacements.value at(dof y)

)
@ return StrNodeSolution(node, disp)

Listing 16-8: Creating the solution model

The first thing we need to do is add a few imports from the structures
.solution package. We also import the Vector class from the geom2d package.

Note how we add a type hint for the method’s returned object. These
type hints are preceded by an arrow (->) and go between the method or
function name and the colon.

Then, using a list comprehension, we map each of the original __nodes
to the node solution model @. We use a private method we have to write:

_ node_to_solution. Given a node, this method looks for its degrees of free-
dom numbers @, creates a vector with the two displacements associated with
those DOF numbers ®, and returns an instance of StrNodeSolution using the
original node and the vector of global displacements @.

Back in __make_structure_solution, the next step is an intermediate com-
putation that will simplify the construction of the solution bars. We’ll create
a dictionary of solution nodes where the key is the id of the node and the
value is the node itself ®.

With the help of nodes_dict, computing the solution bar model becomes
simpler. Using a list comprehension, we map each of the original bars to
a StrBarSolution instance @. To instantiate this class, we need to pass it the
original bar and the two solution nodes; thanks to the dictionary we just cre-
ated, this is a piece of cake. If we hadn’t created the dictionary of nodes by
ID, we’d need to search the list of solution nodes for a node with a given ID.
Performance-wise, this isn’t ideal. For each bar, we may need to iterate over
the whole list of nodes twice. Creating the dictionary to find nodes by ID is
a much wiser option; it allows for a constant-time search of the nodes. This
means that, no matter the size of the dictionary, looking up the value asso-
ciated with a key takes the same amount of time. If the structure has a large
number of nodes, this improvement can noticeably decrease the execution
time.

Lastly, we instantiate StructureSolution, passing it the solution nodes and
bars @.

The Result

Resolving the structure required quite a lot of code, so we better bring it all
together in a single listing for clarity. Listing 16-9 is the complete Structure
class’s code, including the solve_structure implementation and every private
method we wrote.

from functools import reduce

from eqs import Matrix, Vector as EqVector, cholesky solve
from geom2d import Vector
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from structures.solution.bar import StrBarSolution

from structures.solution.node import StrNodeSolution

from structures.solution.structure import StructureSolution
from .bar import StrBar

from .node import StrNode

class Structure:
__DOF_PER_NODE = 2

def __init_ (self, nodes: [StrNode], bars: [StrBar]):
self. bars = bars
self._nodes = nodes

self. dofs_dict = None

self. system matrix: Matrix = None
self._system_vector: EqVector = None

self. global displacements: EqVector = None

@property
def nodes_count(self):
return len(self._ nodes)

@property
def bars_count(self):
return len(self. bars)

@property
def loads_count(self):
return reduce(
lambda count, node: count + node.loads count,
self. nodes,
0

def solve structure(self) -> StructureSolution:
self. assign degrees of freedom()
self._solve_system of equations()
return self. make_structure_solution()

def _ assign degrees of_freedom(self):
self. dofs dict = {}
for i, node in enumerate(self._ nodes):
self. dofs dict[node.id] = (2 * i, 2 * i + 1)

def _ solve system of equations(self):
size = self.nodes_count * self._DOF_PER_NODE
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def

def

def

def

self. assemble_system matrix(size)
self. assemble_system vector(size)
self. apply external constraints()
self._global displacements = cholesky solve(
self. system matrix,
self. system vector

)

__assemble_system matrix(self, size: int):
matrix = Matrix(size, size)

for bar in self. bars:
bar_matrix = bar.global stiffness_matrix()
dofs = self. bar dofs(bar)

for row, row_dof in enumerate(dofs):
for col, col dof in enumerate(dofs):
matrix.add_to_value(
bar_matrix.value at(row, col),
row_dof,
col_dof

self._system matrix = matrix

__bar dofs(self, bar: StrBar):

start_dofs = self. dofs_dict[bar.start_node.id]
end_dofs = self. dofs_dict[bar.end_node.id]

return start_dofs + end_dofs

__assemble_system vector(self, size: int):
vector = EqVector(size)

for node in self. nodes:
net load = node.net load

(dof _x, dof_y) = self. dofs_dict[node.id]

vector.add to_value(net_load.u, dof x)
vector.add to_value(net_load.v, dof_y)

self. system vector = vector
__apply_external_constraints(self):
for node in self._ nodes:

(dof_x, dof_y) = self._ dofs_dict[node.id]

if node.dx_constrained:
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self. system matrix.set_identity row(dof x)
self. system matrix.set identity col(dof x)
self. system vector.set_value(0, dof x)

if node.dy constrained:
self. system matrix.set_identity row(dof_y)
self. system matrix.set_identity col(dof y)
self. system vector.set value(0, dof y)

def _make_structure_solution(self) -> StructureSolution:
nodes = [
self. node_to_solution(node)
for node in self._nodes

nodes_dict = {}
for node in nodes:
nodes_dict[node.id] = node

bars = [
StrBarSolution(
bar,
nodes_dict[bar.start_node.id],
nodes_dict[bar.end node.id]

)

for bar in self._ bars

return StructureSolution(nodes, bars)

def _node_to_solution(self, node: StrNode) -> StrNodeSolution:
(dof_x, dof_y) = self. dofs_dict[node.id]
disp = Vector(
self. global displacements.value_at(dof x),
self. global displacements.value_ at(dof y)
)

return StrNodeSolution(node, disp)

Listing 16-9: The final Structure class

With this code ready, the only missing thing is some unit tests. We need
to make sure all the logic we’ve just written is bug-free. But the code we’ve
written in the previous two chapters has become more complex and requires
the interaction of several different classes to work. How do we isolate the
parts of the code we want to test?



Advanced Unit Testing: Test Doubles

As our classes get more complex, they’ll often rely on other classes and ex-
ternal functions. Here’s where unit testing becomes trickier. Unit testing is
about isolating a small portion of the logic in the class or function we want
to test so that there’s one single reason for a test to fail. Testing that things
run correctly when they’re put to work together is known as integration test-
ing. Integration tests are meant to test bigger chunks of the system; with in-
tegration tests, we’re interested in knowing whether the smaller pieces of a
system still work when they interact with each other. We won’t be integra-
tion testing here, but I encourage you to try it on your own.

Going back to unit tests, let’s take our StructureSolution class from the
previous chapter. Let’s say we want to test its bounds_rect method.

def bounds_rect(self, margin, scale=1):
d_pos = [
node.displaced pos_scaled(scale)
for node in self.nodes

]

return make_rect_containing with_margin(d_pos, margin)

This method delegates most of its logic to make_rect_containing_with
_margin and also depends on StrNodeSolution instances to correctly compute
their displaced position. If we tested this method as is, we’d be testing make_
rect_containing with_margin and the Node class’s displaced pos_scaled method.
Those should both already be unit tested somewhere else. The test could fail
for several reasons that are unrelated to the logic in bounds_rect. In this case,
we’d be doing an integration test, but we first want to make sure our method
works well in isolation using unit tests.

We can test this method without relying on other classes’ implementa-
tion using test doubles.

Test Doubles

A test double replaces a real implementation used in a test. This test double
may replace a function, an entire class, or just parts of it. To do the unit test,
we replace all the parts of the code that are not being directly tested by the
unit test with test doubles. What exactly the test double does depends on
what type of test double it is. There are a few flavors.

Dummy This is the simplest test double. The dummy replaces an object
whose presence is required but that is never actually used in the test.
This could be a parameter to the function, for example.

Fake A fake test double replaces some part of the code; it has a work-
ing implementation but takes some shortcuts or is greatly simplified.
Say, for example, we have a function that reads a text file and parses a
structure model from it. If this function was used in another part of the
code we wanted to test, we could create a fake version of it that pretends
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to read a file, although it really doesn’t and creates a structure to return
it.

Stub A stub replaces some part of the code and always returns the
same value or behaves in a specific way. For example, we could stub our
are_close_enough function (that compares floating-point numbers) to al-
ways return False in a given test.

Mock This is a test double that records the way it’s being used so that
it can be used to make assertions. Mocks are probably the most sophis-
ticated and versatile type of test doubles. We can mock entire objects,
pass them to our code in place of the real implementation, and then
explore how our code interacted with the mock to make sure the right
interactions took place. We’ll look at a real example of a mock briefly.

Let’s now explore how Python allows us to create test doubles. We’ll fo-
cus on mocking, as mocks are so versatile that we can use them in almost
every case where a test double is required.

The unittest.mock Package

The unittest package in the Python standard library includes its own mock-
ing mechanism, found in the unittest.mock package. You can read the pack-
age’s documentation at docs.python.org/3/library/unittest. mock.html, and I rec-
ommend you do, as it contains detailed explanations that will help you un-
derstand how best to use it. Let’s take a quick look at how to use the unittest
.mock package’s main functionalities.

The Mock Object

Mock is the main class in the unittest.mock package. This class’s instances
record every interaction they have and provide us with assertions to check
those interactions. You can call any method you want in a mock object;

if the method doesn’t exist, it will be created so we can inspect how many
times this method was called or what parameters were passed in. As stated
in the documentation,

Mocks are callable and create attributes as new mocks when you
access them. Accessing the same attribute will always return the
same mock. Mocks record how you use them, allowing you to
make assertions about what your code has done to them.

Let’s break that documentation down. An instance of the Mock class be-
ing “callable” means that you can “call” it the same way you call a function.
Those calls you make on the instance are recorded by the mock. This sug-
gests we can use Mock instances to replace functions.

The documentation also says that mocks “create attributes as new mocks
when you access them.” This means that when you call a method on a Mock
instance, Python will create a new Mock for that method, if it doesn’t exist yet,
and append it as a new attribute of the instance. Don’t forget that mocks
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are callable: you can call these attributes as if they were methods, and their
interactions will be recorded.

Let’s take a look at a quick example in Python’s shell to start making
these concepts a bit more concrete:

>>> from unittest.mock import Mock
>>> mock = Mock()

>>> mock()

<Mock name="mock()"' id='4548720456"'>

>>> mock.some_method('foo', 23)
<Mock name="'mock.some_method()' id='4436512848">

In this code we create a new instance of the Mock class and call it like a
function. We also call a method named some_method on our mock and pass it
two arguments: the string 'foo' and the number 23. Calling some_method has
no side effects: it does nothing except for record the call to it; this is because
mock methods have no implementation by default. We’ll learn later how to
make mock methods return something or perform some kind of side effect,
but for now just keep in mind that, by default, mocks do nothing but record
their usage.

If we call a method from a Mock object that we haven’t configured to re-
turn anything or perform any kind of side effect, by default it’ll return an-
other Mock instance. This is the instance that’s stored in the original mock as
an attribute.

We can ask this mock whether some_method has been called or not, and
with what arguments:

>>> mock.some_method.assert_called()
>>> mock.some_method.assert_called_once()
>>> mock.some_method.assert_called with('foo', 23)

All three calls succeed (don’t raise an assertion error), but if we asked
for arguments that were not passed to some_method,

>>> mock.some_method.assert_called with('bar', 577)

we’d get an AssertionError with a helpful message, which would make a test
fail and give us the reason why:

Traceback (most recent call last):

--snip--

AssertionError: Expected call: some_method('bar', 577)
Actual call: some_method('foo', 123)

Likewise, if we asked for the calls of a method that was never called,

>>> mock.foo.assert_called()
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we’d also get an error:

Traceback (most recent call last):
--snip--
AssertionError: Expected 'foo' to have been called.

Let’s not forget that the mock itself is a callable object that records the
interactions made with it. Therefore, the following also succeeds:

>>> mock.assert_called()

Mocking Classes

A common use case for mocks is creating a mock instance of a given class.
These mocks let us inspect how the class they’re mocking was used and what
methods were called on it; we can also use the mock to provide return values
for the mocked methods to use in the tests.

To mock a class, we pass it to the spec parameter of the Mock constructor.
Let’s create a mock for our Vector class:

>>> from unittest.mock import Mock
>>> from geom2d import Vector

>>> vector_mock = Mock(spec=Vector)
>>> isinstance(vector_mock, Vector)
True

This mock object has its __class__ attribute set to Vector so that it looks
like a real Vector instance. It even passes the isinstance test! This mock can
be effectively used to replace a real Vector. All of the methods in the Vector
class are also defined in this test double. We can call any of them as we nor-
mally would:

>>> vector_mock.rotated_radians(0.25)
<Mock name='mock.rotated radians()' id='4498122344'>

This time, rotated_radians didn’t return a new instance of Vector, as we’d
expect. Instead, it returned a Mock instance. Since a mocked class’s methods
have no implementation, there is no code to perform the rotating operation
and return the resulting vector. We can program mock methods to return a
predefined value using the mock’s side_effect and return_value attributes.

But before we get to that, there’s one more thing that’s important about
class mocks: if we try to call a method that doesn’t exist in the class, we’ll get
an AttributeError. New attributes can be added to a generic mock, but not to
a mock of a class. The code

>>> vector_mock.defrangulate()




yields this:

Traceback (most recent call last):
--snip--
AttributeError: Mock object has no attribute 'defrangulate’

This is good: we can be sure that if some part of our code tries to call
methods that don’t exist in the original class, we’ll get an error.

Let’s now take a look at how we can go about adding a stub implementa-
tion or simply a predefined return value for mocks.

Setting Return Values and Side Effects

By setting a mock’s return_value, we can make it return something when
called:

>>> vector_mock.rotated_radians.return_value = Vector(o, 0)
>>> vector_mock.rotated_radians(0.25)
<geom2d.vector.Vector object at 0x10bbaasa8>

Calling rotated_radians now returns an instance of the Vector class: ex-
actly the instance we programmed it to return. From now on, every time this
method is called on the mock, it will return the same Vector instance.

Mocks can also execute side effects when called. According to the docu-
mentation, a side_effect

can either be a function to be called when the mock is called, an
iterable or an exception (class or instance) to be raised.

Let’s first take a look at how a mock can raise an exception. For exam-
ple, if we needed the cosine method to raise a ValueError, we could do the
following:

>>> vector_mock.cosine.side_effect = ValueError
>>> vector_mock.cosine()

Traceback (most recent call last):

--snip--

ValueError

Note that we’re setting the ValueError class itself as the side_effect, but as
the documentation states, we can also use a concrete instance, like this:

>>> vector_mock.cosine.side_effect = ValueError('Oops')
>>> vector_mock.cosine()

Traceback (most recent call last):

--snip--

ValueError: Oops

In this case, every time we call cosine, we get the same ValueError instance. In
the previous example, every call produces a new instance of the error.

We can also assign a function to a mock’s side_effect attribute. This
function receives the parameters passed to the mock function and might
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return a value. For example, in our Vector mock, we could decide to have the
scaled by method return the passed-in factor parameter:

>>> vector_mock.scaled_by.side_effect = lambda factor: factor
>>> vector_mock.scaled_by(45)
45

In this case, the scaled_by method was passed a 45 as the scaling factor,
and this parameter was forwarded to the function defined as the mock’s
side_effect attribute.

This function can perform its own side effect, like saving the parameters
it received or printing something to the shell. We can use this function to-
gether with return_value. If we use the function to perform a side effect but
still want to return whatever is set in the return_value attribute, the function
should return DEFAULT (defined in unittest.mock):

>>> from unittest.mock import DEFAULT

>>> def side_effect(factor):
print(f'mock called with factor: {factor}')
return DEFAULT

>>> vector_mock.scaled_by.side_effect = side_effect
>>> vector_mock.scaled_by.return_value = Vector(1, 2)

>>> vector_mock.scaled_by(2)
mock called with factor: 2
<geom2d.vector.Vector object at 0x10c4a7f28>

As you can see, the side_effect function was called, but as it returned the
DEFAULT value, the call to scaled_by returned the vector we set as return_value.

The patch Decorator

The mock package includes a unittest.mock.patch decorator we can use to
mock objects in a test function. The @patch decorator has the ability to mock
objects instantiated in the test function they decorate. The mocks created by
the decorator are cleared for us automatically once the function returns,

so the mocking is only effective in the context of the function. We have

to pass the @patch decorator the target we want to mock using the format
'package.module.name’ (this is a string, so don’t forget the quotation marks),
where name can be the name of a class or a function. The decorated function
will be passed the mocked target as a new argument:

from unittest.mock import patch

@patch('geom2d.circles.make_circle from_points')
def test_something(make_circle_mock):
make_circle mock(1, 2, 3)
make_circle mock.assert_called with(1, 2, 3)




In this test we’re replacing the make_circle_from_points function defined
in the geom2d package’s circles module. We have to include the mocked func-
tion, make_circle mock, as an argument to the function. Then, in the context
of the test_something function, we can refer to the mocked function and as-
sert it was called like we do with any other mock.

The @patch decorator’s main use case is replacing functions or classes
that are imported by our test subjects. By using a patch, we force them to
import a mock instead of the real dependency.

There is no other easy way of mocking the dependencies of the modules
we want to unit test: if the module imports their dependencies, we need a
way of replacing that dependency in Python’s importing mechanism. The
@patch decorator does this for us in an elegant manner.

Now let’s apply all this knowledge to test our code in isolation: there’s
no better way of learning how to use test doubles than using them in real
use cases. If you're new to using test doubles, you may be a bit confused at
this point; that’s perfectly normal. As we see mocks in action a couple times,
you’ll start to grasp the concepts.

Testing the Structure Solution Class

Following the example we introduced earlier of the bounds_rect method in
the StructureSolution class, let’s see how we can go about testing it. Remem-
ber, the method we want to test is defined as follows:

def bounds_rect(self, margin, scale=1):
d_pos = [
node.displaced _pos_scaled(scale)
for node in self.nodes

]

return make_rect_containing with_margin(d_pos, margin)

The method requires that the StrNodeSolution class correctly computes its
displaced position using a scale and that the make_rect_containing_with_margin
function returns the correct rectangle using the given margin. We don’t
need to test those behaviors; that should have been done somewhere else.
What we want to do is replace their real implementations with test doubles
so that they don’t interfere in our tests.

Without further ado, let’s create a new file in structures/tests named
structure_solution_test.py. In the file, enter the test setup code, as in Lis-
ting 16-10.

import unittest
from unittest.mock import patch, Mock

from geom2d import Point

from structures.solution.node import StrNodeSolution
from structures.solution.structure import StructureSolution
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class StructureSolutionTest(unittest.TestCase):

Point(2, 3)
Point(5, 1)

p_one
p_two

def setUp(self):
self.n_one = Mock(spec=StrNodeSolution)
self.n_one.displaced pos scaled.return value = self.p one
self.n_two = Mock(spec=StrNodeSolution)
self.n_two.displaced_pos_scaled.return_value = self.p_two

Listing 16-10: Structure solution class test: the setup

In this test setup, we’re defining two points: p_one and p_two; these are
the positions for the mock nodes we create in the setUp method. This setUp
method is executed by the unittest framework before each test, which en-
sures that each test gets fresh mocks; otherwise, mocks would continue to
record throughout the tests, breaking the independence between tests.

We define two nodes: n_one and n_two. Then we instantiate node mocks
using the StrNodeSolution class as the value for the spec parameter. Each of
the node mocks defines one of the defined points as the return value for its
displaced pos_scaled method.

Next, let’s write the first test, which will ensure that the two nodes get
the displaced_pos_scaled called with the correct value for the scale parameter.
After the setUp method, enter the test in Listing 16-11.

class StructureSolutionTest(unittest.TestCase):
--snip--

def test_node_displaced scaled positions called(self):
solution = StructureSolution([self.n_one, self.n_two], [])
solution.bounds_rect(margin=10, scale=4)

self.n_one.displaced pos_scaled.assert_called once with(4)
self.n_two.displaced_pos_scaled.assert_called once with(4)

Listing 16-11: Structure solution class test: first test

We create a StructureSolution instance with a list containing the two
nodes defined in the setUp and no bars: we don’t need them to test the
bounds_rect method, and the StructureSolution doesn’t complain if we instan-
tiate it with an empty bars list. If the StructureSolution class initializer com-
plained about getting an empty list of bars, this would have been the per-
fect case for using the dummy test double: we’d pass the constructor a list of
dummy bars. Dummies are used to fill in required parameters, but dummies
don’t actually do anything or interfere with the test in any way.

Once we’ve instantiated our StructureSolution, we call the bounds_rect
method, our test subject, with values for the margin and scale. Lastly, we



assert that displaced pos_scaled was called once with the correct value for the
scale in both nodes.

This test ensures that we use the node’s displaced positions with the cor-
responding scale applied to compute the structure solution bounds. Imag-
ine that, by mistake, we confused the margin and scale parameters when im-
plementing the method:

def bounds_rect(self, margin, scale=1):

d_pos = [
# wrong! used 'margin' instead of 'scale’
node.displaced pos_scaled(margin)
for node in self.nodes

]

# wrong! used 'scale' instead of 'margin’

return make_rect_containing with_margin(d_pos, scale)

Our unit test would have warned us:

Expected call: make_rect_containing_with_margin(][
<geom2d.point.Point object at 0x10575a630>,
<geom2d.point.Point object at 0x10575a6a0>], 10)

Actual call: make_rect containing with_margin([
<geom2d.point.Point object at 0x10575a630>,
<geom2d.point.Point object at 0x10575a6a0>], 4)

Congratulations! You’ve written your first unit test using test doubles.
Let’s now write a second test that ensures the right usage of the function
that computes the rectangle. Enter the code in Listing 16-12.

class StructureSolutionTest(unittest.TestCase):
--snip--

@patch('structures.solution.structure.make_rect_containing with_margin')
def test _make_rect called(self, make_rect mock):
solution = StructureSolution([self.n_one, self.n_two], [])
solution.bounds_rect(margin=10, scale=4)

make_rect _mock.assert called once with(
[self.p one, self.p_two],
10

)

Listing 16-12: Structure solution class test: second test

This test is a bit trickier because the make_rect_containing with margin
function is imported by the StructureSolution class. To make this class im-
port our mock instead of the real implementation, we have to patch the
function’s path: 'package.module.name', which is, in this case, as follows:

'structures.solution.structure.make_rect_containing_with_margin'
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But, wait: isn’t make_rect_containing_with_margin defined in the geom2d
package? So why are we patching it as if it were in the structures.solution pack-
age and the structure module?

The @patch decorator has some rules that define how the path should be
given to mock a given object. In the “Where to patch” section, the documen-
tation states

patch() works by (temporarily) changing the object that a name
points to with another one. There can be many names pointing to
any individual object, so for patching to work you must ensure that
you patch the name used by the system under test.

The basic principle is that you patch where an object is looked
up, which is not necessarily the same place as where it is defined.

That second paragraph gives us the key: objects have to be patched
where they’re looked up. In the case of our test, the function we want to re-
place is looked up in the structures.solution package, in the structure module.
This may sound a bit complicated in the beginning, but it’'ll start to make
sense after you’ve done it a few times.

Moving on with our test, the first two lines are identical to the previ-
ous one: they create the structure solution and call the function under test.
Then comes the assertion, which is done on the parameter passed to the test
function: make_rect_mock. Remember, the @patch decorator passes the patched
entity to the decorated function. We assert that the mock was called only
once with the list of positions the mocked nodes return and the value for the
margin.

You can run these tests using PyCharm, by clicking the green play but-
ton to the left of the test class name. Alternatively, you can run them from
the shell:

$ python3 -m unittest structures/tests/structure_solution_test.py

Listing 16-13 shows the resulting code for your reference.

import unittest
from unittest.mock import patch, Mock

from geom2d import Point
from structures.solution.node import StrNodeSolution
from structures.solution.structure import StructureSolution

class StructureSolutionTest(unittest.TestCase):

Point(2, 3)
Point(5, 1)

p_one
p_two

def setUp(self):
self.n_one = Mock(spec=StrNodeSolution)
self.n_one.displaced_pos_scaled.return_value = self.p one



self.n_two = Mock(spec=StrNodeSolution)
self.n_two.displaced pos_scaled.return_value = self.p two

def test node displaced scaled positions called(self):
solution = StructureSolution([self.n_one, self.n two], [])
solution.bounds_rect(margin=10, scale=4)

self.n one.displaced pos scaled.assert called once with(4)
self.n two.displaced pos scaled.assert called once with(4)

@patch('structures.solution.structure.make_rect_containing with_margin')
def test_make_rect called(self, make_rect mock):
solution = StructureSolution([self.n_one, self.n_two], [])
solution.bounds_rect(margin=10, scale=4)

make_rect_mock.assert called once with(
[self.p_one, self.p_two],
10

)

Listing 16-13: Structure solution class test: the result

Before we move on, there’s one important gotcha we need to take into
account. If you take a look at both tests, you may be tempted to remove the
duplicated lines,

solution = StructureSolution([self.n_one, self.n two], [])
solution.bounds_rect(margin=10, scale=4)

by moving them to the setUp. That seems a reasonable thing to do so that the
tests don’t need to repeat those lines, but if you want to go ahead and do the
refactor, you'll find that the second test now fails. Why?

The answer has to do with how the @patch decorator works. It has to dec-
orate the function where the dependency it’s patching gets resolved, and in
our case, the make_rect_containing_with_margin function is imported when the
StructureSolution class is instantiated. Therefore, at least for the second test,
the instantiation of this class needs to happen in the test method, which is
annotated with the @patch decorator.

Testing the Structure Resolution Process

Let’s now add a few tests to ensure the structure resolution process yields
the correct results. For these tests, we’ll define the structure in Figure 16-7
in code.
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N2 (0, 200) N3 (400, 200

N1 (0, )
Figure 16-7: Structure for the unit tests

Create a new file in the structures/tests directory named structure_test.py.
In the file, enter the code in Listing 16-14.

import unittest
from unittest.mock import patch

from eqs import Matrix

from geom2d import Point, Vector

from eqs.vector import Vector as EqVector

from structures.model.node import StrNode

from structures.model.bar import StrBar

from structures.model.structure import Structure

class StructureTest(unittest.TestCase):

def setUp(self):
section = 5
young = 10
load = Vector(500, -1000)

self.n_1 = StrNode(1, Point(0, 0))

self.n_2 = StrNode(2, Point(0, 200))

self.n 3 = StrNode(3, Point(400, 200), [load])

self.b_12 = StrBar(1, self.n_1, self.n_2, section, young)
self.b 23 = StrBar(2, self.n 2, self.n_3, section, young)
self.b_13 = StrBar(3, self.n_1, self.n_3, section, young)

@O self.structure = Structure(
[self.n 1, self.n 2, self.n 3],
[self.b 12, self.b 23, self.b 13]

def test_nodes_count(self):
@ self.assertEqual(3, self.structure.nodes count)

def test_bars_count(self):
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® self.assertEqual(3, self.structure.bars_count)

def test loads count(self):
O self.assertEqual(1, self.structure.loads count)

Listing 16-14: Structure resolution test

This listing defines the StructureTest test class. In the setUp method,
which is called before every test, we define the structure in Figure 16-7. The
structure has three nodes: n_1, n_2, and n_3. The last one, n_3, has a load ap-
plied to it. We’re not adding the external constraints to nodes 1 and 2 yet;
we’ll see why this is in a minute. Then, we create the bars b_12, b_23, and b_13
between the nodes we just defined; we use the values 5 and 10 for the cross
section and Young’s modulus. With all these nodes and bars, the structure is
finally instantiated @.

Next come three simple tests. The first ensures that the structure counts
how many nodes it has . The second does the same thing but with bars .
The third also does the same, this time with the number of loads applied to
the structure @.

One of the most complex operations in solving the structure is assem-
bling the stiffness matrix, so let’s add a test to check this matrix is properly
assembled before we apply the external constraint conditions. Since we
haven’t yet added external constraints to the structure, the matrix that is
passed to the cholesky_solve function is the system’s matrix we’re looking for.
If we mock the cholesky_solve function, the arguments passed to it are the
system’s stiffness matrix and load vector, which we can capture to make as-
sertions. By mocking this function, our code won’t execute the Cholesky’s
method original code, which is fine because that logic shouldn’t interfere
with our test. Enter the new test in Listing 16-15.

class StructureTest(unittest.TestCase):
--snip--

@ @patch('structures.model.structure.cholesky solve')
def test_assemble_system matrix(self, cholesky mock):

eal3 = 0.1118033989

c2_eal3 = .8 * eal3

s2 eal3 = .2 * eal3

cs_eal3 = .4 * eal3

@ expected mat = Matrix(6, 6).set data(][

c2_eal3, cs_eal3, 0, 0, -c2_eal3, -cs_eal3,
cs_eal3, .25 + s2_eal3, 0, -.25, -cs_eal3, -s2_eal3,
0, 0, .125, 0, -.125, O,
0, -.25, 0, .25, 0, O,
-c2_eal3, -cs_eal3, -.125, 0, .125 + c2_eal3, cs_eal3,
-cs_eal3, -s2_eal3, 0, 0, cs_eal3, s2_eal3

D
self.structure.solve structure()
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® [actual_mat, _] = cholesky mock.call args[o]

® cholesky mock.assert called once()
® self.assertEqual(expected mat, actual mat)

Listing 16-15: System'’s stiffness matrix assembly test

We first want the cholesky solve function mocked, so we’ve added an
@patch decorator with the path to where this function is looked up: the
structures/model/structure package’s cholesky_solve module @. Notice how we
pass cholesky_mock as an argument to the test method.

Next, we define the expected structure’s stiffness matrix: expected_mat.
This is a 6 x 6 matrix (three nodes with two degrees of freedom each). I've
done the math and assembled the matrix by hand; I suggest you do this as
well to make sure you understand the process. There are some auxiliary vari-
ables defined for bar 1 — 3:

e eal3isthe % amount
e 2 eal3iscos?f x %

e 52 eal3issin? 6 x %

* s eal3iscosf x sinf x %

The numbers in the stiffness matrices for bars 1 — 2 and 2 — 3 are
straightforward because their angles are § and 0 radians, respectively. After
assembling the global matrix using the three bars’ matrices, the result is @.

To run the resolution code, we have to call the solve_structure method.
After executing the solve method, we’re interested in knowing which argu-
ments were passed to the cholesky_mock function. Mocks have an attribute,
call_args, a list containing the arguments passed to each of the calls to the
mock. Our mock function was called only once, so we want the arguments
to this first call.

We destructured cholesky mock’s call args for the first call (call_args[o0])
and only kept the first one in a variable named actual_mat ®. As you can see,
the second element in the left-side list ([actual_mat, _])is an underscore,
meaning there is a value for that position in the right-side list (cholesky_mock
.call_args[0]), but we’re not interested in saving it.

Then come two assertions. The first one checks that cholesky mock was
called only once @, and the second compares the expected stiffness matrix
with the actual stiffness matrix passed to the cholesky_mock resolution func-
tion @.

In this test, we’re ensuring that the Cholesky resolution function gets
passed the right structure’s stiffness matrix assembled without external con-
straint conditions applied. Let’s now write a new test with these constraints
to check that the stiffness matrix is correctly modified to include them. En-
ter the test in Listing 16-16.

class StructureTest(unittest.TestCase):
--snip--



@ @patch('structures.model.structure.cholesky solve')
def test_system_matrix_constraints(self, cholesky mock):
@ self. set external constraints()

eal3 = 0.1118033989
c2_eal3 = .8 * eal3
s2 eal3 = .2 * eal3
cs_eal3 = .4 * eal3
® expected mat = Matrix(6, 6).set data(][
1, 0, 0, 0, 0, O,
,1,0,0,0,0,
,0,1, 0,0, 0,
,0,0,1, 0, 0,
, 0, 0, 0, .125 + c2_eal3, cs_eal3,
0, 0, 0, 0, cs_eal3, s2_eal3

0
0
0
0

D

self.structure.solve structure()
[actual mat, _] = cholesky mock.call args[o0]

cholesky mock.assert called once()
O sclf.assertEqual(expected mat, actual mat)

Listing 16-16: System’s stiffness matrix constraints test

This test is similar to the previous one. The cholesky_solve function is
patched the same way @, and the new mock argument, cholesky_mock, is passed
to the test method. Then, we call a private method to add the external con-
straints to nodes 1 and 2, like they appear in Figure 16-7 @. We’ll have to
write this method after the test.

Then comes the definition of the expected matrix, this time with the
external constraints applied @. The only terms that are not zero, apart from
the ones in the main diagonal, are those that belong to node 3: degrees of
freedom 4 and 5. For this reason, only the terms in those row and column
indices are nonzero.

The rest of the test is exactly the same as before: we call the solve
_structure method on the structure instance. Then we save the matrix argu-
ment extracted from the call to cholesky mock into a variable named actual_mat.
Note that we’re using a list unpacking for this, where the second item, which
is the system’s load vector, is ignored by using an underscore. There’s the as-
sertion that checks if the Cholesky mock function has been called only once,
and the check comparing the actual and expected system matrices @.

Lastly, we need to write the _set_external_constraints function that ap-
plies the external constraints to nodes 1 and 2. After the method we’ve just
written, enter the code in Listing 16-17.

class StructureTest(unittest.TestCase):
--snip--
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def _set_external constraints(self):
self.n_1.dx_constrained = True
self.n_1.dy constrained = True
self.n_2.dx_constrained = True
self.n_2.dy constrained = True

Listing 16-17: Setting external constraints to nodes

Let’s try one last test to check the load vector assembly process. The
idea is to follow the structure of the last two tests, but this time checking the
load vector. Enter the test in Listing 16-18.

class StructureTest(unittest.TestCase):
--snip--

@ @patch('structures.model.structure.cholesky solve')
def test_assemble system vector(self, cholesky mock):
@ expected vec = EqVector(6).set data([
0, 0, 0, 0, 500, -1000

D

self.structure.solve_structure()
® [ , actual vec] = cholesky mock.call args[0]

® self.assertEqual(expected vec, actual vec)

Listing 16-18: System’s load vector assembly fest

We patch the cholesky_solve function the same way as before @. Then we
declare the expected load vector @, which this time is easy, as there’s only
one load applied to node 3.

The rest of the test is similar. The major difference is that this time
we’re destructuring the second argument of the first call to the cholesky
_mock ®, which is the passed-in vector, the load vector that our code pro-
duced. This time we’re not asserting that the mock was called once, as we’ve
done in the last two tests; we could, but that condition is already tested.
There’s no need to repeat the same assertion. What we do want to check
is that the actual_vec equals the expected_vec @.

We may now run our tests. To do so from the shell, run the following
command:

$ python3 -m unittest structures/tests/structure_test.py

This should produce the following output, if all of your tests passed:

Ran 6 tests in 0.004s

0K




We could write a few more unit tests, but we won’t be doing so for brevity
reasons. Nevertheless, I suggest you come up with more tests and exercise
your test doubles skills.

Summary

In this chapter, we developed the structure’s resolution algorithm, a com-
plex piece of logic that we split among a few private methods. This resolu-
tion process does all the heavy lifting in assembling the structure’s global
stiffness matrix and vector, applying the external constraints, and solving
the resulting system of equations using the Cholesky’s procedure we imple-
mented earlier. Once the node global displacements are obtained, they are
used to construct the structure solution model. We’'ll see in Chapter 18 how
to produce a graphic result for this solution model.

We also introduced the concept of test doubles, a key technique to write
good unit tests by isolating a small part of the code from its collaborators.
There are a few different test doubles; Python’s unittest implementation ba-
sically provides us with one: the mock. Nevertheless, this mock implementa-
tion is so flexible that it can also be used as a stub or spy. We learned how to
use this class and the @patch decorator by using them to test our latest code.

It’s now time to focus on reading and parsing structures from text files
so we can feed our resolution algorithm with some fine structure defini-
tions. Let’s go for it!
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READING INPUT FROM A FILE

Any engineering application we develop

will require some data input. For exam-
ple, to solve a truss structure using the algo-

rithm we developed in the previous chapter, we

first need to construct the structure model. It’d be te-
dious to manually instantiate the classes to construct
the model every time we want to solve a structure; it’d
be more convenient to simply pass our app a plain-
text file that follows a given and well-defined scheme
defining the structure we want to solve. In this chap-
ter, we’ll equip our app with a file parser function that
reads text files, interprets them, and constructs the
model that the app uses internally.

Defining the Input Format

For our application to work, the files we feed it need to have a well-defined
structure. The text file has to include the definition of the nodes, the loads
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applied to them, and the bars of the structure. Let’s decide on a format for
each of these parts.

The Nodes Format

Each node will be defined in its own line, following this format,

<node_id>: (<x_coords, <y coord>) (<external constraintsy)

where
*  node_id is the ID given to the node.
*  x_coord is the x position of the node.
* y coord is the y position of the node.

*  external_constraints is a set of the constrained movements.

Here’s an example:

1: (250, 400) (xy)

This defines a node with an ID of 1, at position (250, 400), with its x and y
displacements externally constrained.

The Loads Format

Loads will be defined separately from the nodes they’re applied to, so we’ll
have to indicate the ID of the node where the load is applied. Having the
nodes and loads defined in different lines allows us to simplify the input
parsing process by using two simple regular expressions (one for the nodes
and another for the loads) instead of one long and complicated regular ex-
pression. Each load will be defined on a separate line.

Let’s use the following format for loads,

<node_id> -> (<Fx>, <Fy>)

where

*  node_id is the node where the load is applied.
*  Fxis the x component of the load.

*  Fyis the y component of the load.

Here’s an example:

3 -> (500, -1000)

This defines a load (500,-1000) applied to the node with an ID of 3. We're
using the -> character sequence to separate the node ID from the load com-
ponents instead of a colon so that it’s clear we’re not assigning an ID to the
load itself. Rather, we’re applying the load to the node with that ID.



The Bars Format

Bars are defined between two nodes and have a section and Young’s mod-
ulus. As with nodes and loads, each bar will be defined on its own line. We
can give bars the following format,

<bar_id>: (<start_node _id> -> <end node_id>) <A> <E>

where
*  bar_idis the ID given to the bar.
*  start node_id is the ID of the start node.
* end node_id is the ID of the end node.
*  Ais the cross-section area.

* Eis the Young’s modulus.

Here’s an example:

1: (1 -> 2) 30 20000000

This defines a bar between nodes 1 and 2, with a cross section of 30 and a
Young’s modulus of 20000000. This bar is given an ID of 1.

The File Format

Now that we’ve come up with a format for the nodes, loads, and bars, let’s
see how we can put them all together in one file. We're looking for a file
structure that’s simple to write by hand but that’s also easy to parse.

One interesting idea is to divide the file into sections, each opened by a
header:

<section_name>

Each section should contain only the lines defining entities of the same type.

Given that our structure definition files will have three different kinds
of entities—nodes, loads, and bars—they’ll need three different sections. For
example, the structure we used for the unit tests in the previous chapter,
included here as Figure 17-1, would be defined as follows:

N2 (0, 200) N3 (400, 200)

N1 (0, 0)

Figure 17-1: Structure from previous chapter’s unit tests
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nodes

1: (0, 0)  (xy)
2: (0, 200) (xy)
3: (400, 200) ()

loads
3 -> (500, -1000)

bars

1: (1 ->2) 5 10
2: (2 ->3) 510
3: (1 ->3) 510

Now that we’ve defined a format for our structure definition files, we
need to work on a parser. A parser is a component (a function or class) that
reads text, interprets it, and translates it into a data structure or model. In
this case, the model is our truss structure class: Structure. We’ll use regular
expressions, as we did in Chapter 9.

Finding the Regular Expressions

Chapter 17

If we know the structure ahead of time, regular expressions are a reliable
way of extracting all the information we need from plaintext. We’ll need
three different regular expressions: one for the nodes, one for the loads,
and one for the bars. If you need a refresher on regular expressions, take
a moment to review “Regular Expressions” on page 9. Let’s design these
regular expressions.

The Nodes Regex

To match nodes defined in our format, we can use the following regular ex-
pression:

/(2P<id>\d+)\s*:\s*
\((?P<pos>[\d\s\.,\-]+)\)\s*
\((?P<ec>[xy]{0,2})\)/

This is one scary regular expression. It’s split between several lines be-
cause it was too long to fit in a single line, but you can imagine it as being
just one line. Let’s break down this regular expression into its parts.

(?P<id>\d+) This matches the node’s ID, a number with one or more
digits (\d+), and captures it in a group named id.

\s*:\s* This matches the colon after the ID with arbitrary and optional
spaces around it (\s*).

\((?P<pos>[\d\s\.,\-]+)\) This matches the node’s position coordinates
inside the parentheses and captures them in a group named pos. Note



that we match the whole expression between the parentheses; that in-
cludes the two coordinates and the comma that separates them. We’ll
split the two numbers in code. We do it this way so that our already
monstrous regular expression doesn’t become even scarier. Combin-
ing regular expressions with Python’s string manipulation methods is a
powerful technique.

\s* This matches zero or more spaces separating the coordinates group
from the external constraints group.

\((?P<ec>[xy]{0,2})\) This last part matches the external constraints
defined between parentheses and captures them in a group named ec.
The contents inside the parentheses are limited to the character group
[xy], that is, the characters “x” and “y.” There’s also a constraint in the
number of characters allowed, which is any number between 0 and 2

({0,2}).

We'll see this regular expression in action soon. Figure 17-2 may help
you understand each of the subparts in the regular expression.

1 : (250, 400) (xy)

Figure 17-2: Node regular expression visualized

Let’s take a look at how to parse the loads.

The Loads Regex

To match loads written with the format we defined, we’ll use the following
regular expression:

/(?P<node_id>\d+)\s*->\s*\((?P<vec>[\d\s\.,\-]+)\)/

This regular expression isn’t quite as scary as the previous one; let’s
break it down into its subparts.

(?P<node_id>\d+) This matches the node ID and captures it in a group
named node_id.

\s*->\s* This matches the -> character sequence and the optional blank
spaces around it.

\((?P<vec>[\d\s\.,\-]+)\) This matches the entire expression between
the parentheses, where the force vector components are defined. The
character set [\d\s\.,\-] inside the parentheses is allowed; this includes
digits, spaces, dots, commas, and minus signs. Whatever is captured is
stored in a capture group named vec.
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Figure 17-3 is a breakdown of the regular expression’s different parts.
Make sure you understand each of them.

3 > (500, -1000)

Figure 17-3: load regular expression visualized

Lastly, let’s take a look at the regular expression for the bars.

The Bars Regex

To match bars written using the format we defined earlier, we’ll use the fol-
lowing regular expression:

/(2P<id>\d+)\s*:\s*
\((?P<start_id>\d+)\s*->\s*(?P<end_id>\d+)\)\s*
(?P<sec>[\d\. ]+)\s+
(?P<young>[\d\.]+)/

This regular expression was also broken down into several lines because
of its length, but you can imagine it as being written in one line. Let’s break

it down piece by piece:

(?p<id>\d+) This matches the ID assigned to the bar and captures it in
the group named id.

\s*:\s* This matches the colon character and the optional blank space
around it.

\((?P<start_id>\d+)\s*->\s*(2P<end_id>\d+)\) This matches the two node
IDs separated by the -> character sequence and the optional space around
it. The IDs are captured in the groups named start_id and end_id. This
whole expression is required to appear between parentheses.

\s* This matches the optional blank space between the last parenthesis
and the next value, the section.

(?P<sec>[\d\.]+) This captures a decimal number and assigns it to the
group named sec.

\s+ This matches the required blank space between the last parenthesis
and the next value, the Young modulus. Recall that, in this case we need
at least one space. Otherwise, there would be no way to know where the
value for the section ends and the value for the Young modulus begins.

(?P<young>[\d\.]+) This captures a decimal number and assigns it to the
group named young.



Setup

This is the largest and most complex regular expression we’ve seen in
the book. Figure 17-4 should help you identify each of its parts.

2 . (2>3) 5 10

Figure 17-4: Bar regular expression visualized

Now that we have our regular expressions, let’s start writing the code to
parse our structure files.

Right now, our structures package has the following subdirectories:

structures
|- model
|- solution
|- tests

Let’s create a new package folder named parse by right-clicking structures
and choosing New » Python Package. If you're doing this from outside the
IDE, don’t forget to create an empty __init__.py file in the folder. Our struc-
tures package directory should look like the following:

structures
|- model
|- parse
|- solution
|- tests

We’re ready to start implementing the code. We’ll first implement the
logic for parsing nodes, loads, and bars. Each will be defined in its own func-
tion along with unit tests. Then, we’ll put it all together in a function that
reads the entire file’s contents, splits it into lines, and parses each line into
the right model class.

Parsing Nodes

We’ll start with the nodes. In structures/parse, create a new file named
node_parse.py. In this file, enter the code in Listing 17-1.
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import re

from geom2d import Point
from structures.model.node import StrNode

_ NODE_REGEX = r'(?P<id>\d+)\s*:\s*' \
' \((?P<pos>[\d\s\.,\-T+)\)\s*' \
r'\((?P<ec>[xy]{0,2})\)’

def parse_node(node_str: str):
@ match = re.match(__ NODE_REGEX, node str)
if not match:
raise ValueError(
f'Cannot parse node from string: {node_str}’

)

® id = int(match.group('id"'))
® [x, y] = [
float(num)
for num in match.group('pos').split(",’
]
® ext_const = match.group('ec')

® return StrNode(
_id,
Point(x, y),
None,
'x' in ext_const,
'y' in ext_const

)

Listing 17-1: Parsing a node from a string

We start by defining the regular expression we saw earlier. It needs to
be broken down into multiple lines because it’s too long for a single line, but
since we’re using the continuation backslash character (\), Python will read
all the contents into a single line.

Then comes the parse_node function, which accepts a string parameter
as input. This string should be formatted following the node’s format we de-
fined earlier. We look for a match in the node_str string against the node’s
regular expression @. If there’s no match, we raise a ValueError with a mes-
sage that includes the offending string so that it’s easier to debug errors.

Then we extract the ID from the capture group named id and store it in
the id variable @.

Next, we parse the x and y position coordinates: we read the contents of
the pos capture group and split the string using the comma character.



match.group('pos').split(’,"

This yields the two strings representing the numbers defining the node’s
position.

Using a list comprehension, we map each of the strings to a float
number:

[x; y] =1

float(num)

for num in match.group('pos').split("',")
]

Then we destructure the result into variables x and y ©.

The last named capture group is ec. It contains the definition of the
external constraints. We read its contents and store them in the variable
ext_const @. Lastly, we create the node instance passing it all the parame-
ters it expects @. We pass the ID, the position point, a None for the loads (this
will be added later), and the external constraints. The external constraints
are added by checking whether the character “x” or “y” is in the constraints
string. For this, we use Python’s in operator, which checks whether a given

value exists in a sequence. Here’s an example:

>>> 'hardcore' in 'hardcore programming for mechanical engineers’
True

>>> 3 in [1, 2]
False

Let’s use some unit tests to make sure our code parses nodes correctly.

Testing the Node Parser

Let’s create a new test file in the structures/tests directory named node_parse
_lest.py. In the file, enter the code in Listing 17-2.

import unittest

from geom2d import Point
from structures.parse.node_parse import parse_node

class NodeParseTest(unittest.TestCase):
® node str = '1 : (25.0, 45.0) (xy)'
® node = parse_node(node_str)

def test parse_id(self):
self.assertEqual(1, self.node.id)

def test_parse position(self):
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expected = Point(25.0, 45.0)
self.assertEqual(expected, self.node.position)

def test parse dx_external constraint(self):
self.assertTrue(self.node.dx_constrained)

def test_parse dy external constraint(self):
self.assertTrue(self.node.dy_constrained)

Listing 17-2: Testing the parsing of a node

This file defines a new test class: NodeParseTest. We've defined a string
with the correct format so we can test whether we can parse all of its parts.
That string is node_str @. We’ve written all of our tests to work with the node
that results when we parse the string ®; we did this to avoid repeating the
same parsing operation in every test.

Then we have a test to ensure the ID is correctly set in the resulting
node, another one that checks the node’s position, and two more to test
whether the external constraints have been added or not.

Let’s run our tests to make sure they all pass. You can do so from the
IDE or from the shell with the following command:

$ python3 -m unittest structures/tests/node_parse_test.py

Let’s now work on parsing the bars.

Parsing Bars

In structures/parse, create a new file named bar_parse.py. In this file, enter the
code in Listing 17-3.

import re
from structures.model.bar import StrBar

_ BAR_REGEX = r'(?P<id>\d+)\s*:\s*' \
' \((?P<start_id>\d+)\s*->\s*(?P<end_id>\d+)\)\s*' \
' (?P<sec>[\d\. J+)\s+" \
r' (?P<young>[\d\.]+)"

def parse_bar(bar_str: str, nodes_dict):
© match = re.match(__BAR_REGEX, bar_str)
if not match:
raise ValueError(
f'Cannot parse bar from string: {bar_str}'

)

® id = int(match.group('id"))
® start id = int(match.group('start id'))
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® end_id = int(match.group('end_id'))
® section = float(match.group('sec'))
® young mod = float(match.group('young'))

@ start node = nodes_dict[start id]
if start_node is None:
raise ValueError(f'Node with id: ${start_id} undefined')

end_node = nodes_dict[end id]
if end_node is None:

raise ValueError(f'Node with id: ${start_id} undefined")

® return StrBar(_id, start node, end node, section, young mod)

Listing 17-3: Parsing a bar from a string

The regular expression to match the bar definition (__BAR_REGEX) is a bit
long and complex. Make sure you enter it carefully. We’ll write some unit
tests later, so any error here will come to light there.

We’ve written the parse_bar function, which takes two parameters: the
string defining the bar and a dictionary of nodes. In this dictionary, the keys
are the IDs of the nodes, and the values are the nodes themselves. The bar
needs to have a reference to its end nodes, so these have to be parsed first
and then passed to the parse_bar function. This adds a constraint in the way
we parse structure files: nodes should appear first.

As with the nodes, we start by matching the passed-in string against our
regular expression @. If there is no match, we raise a ValueError with a help-
ful message including the string that couldn’t be parsed.

Next, we retrieve and parse the capture groups: id parsed as an inte-
ger O, start_id ® and end_id @ parsed as integers, and sec @ and young ®
parsed as floats.

Then we look for the start node in the nodes dictionary @ and raise an
error if it’s not found: we can’t build a bar whose nodes don’t exist. We do
the same thing for the end node, and then we create and return the bar in-
stance in the last line ©, passing it all the parsed values.

Let’s test this code.

Testing the Bar Parser

To test the bar parsing process, create a new file in structures/tests named
bar_parse_test.py. Enter the new tests in Listing 17-4.

import unittest

from structures.parse.bar_parse import parse_bar
class BarParseTest(unittest.TestCase):

@ bar str = '1: (3 -> 5) 25.0 20000000.0'
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® nodes_dict = {

3: 'Node 3',
5: 'Node 5'
}
® bar = parse bar(bar_str, nodes dict)

def test_parse_id(self):
self.assertkqual(1, self.bar.id)

def test_parse_start node(self):
self.assertEqual('Node 3', self.bar.start_node)

def test_parse_end_node_id(self):
self.assertEqual('Node 5', self.bar.end node)

def test_parse_section(self):
self.assertEqual(25.0, self.bar.cross_section)

def test_parse_young modulus(self):
self.assertEqual(20000000.0, self.bar.young mod)

Listing 17-4: Testing the parsing of a bar

In this test, we define a bar using its string representation @. The parse
_bar function requires a dictionary containing the nodes by ID as its second
argument; we create a dummy (recall the types from the 16 page 447) called
nodes_dict @. This dictionary contains the two node IDs mapped to a string.
Our parsing code doesn’t really do anything with the nodes or even check
their types; it simply adds them to the bar instance. So for the tests, a string
mocking the node is enough.

Again, we parse ® first and store the result in the bar variable. We then
create five tests that check that we’'ve correctly parsed the ID, both start and
end nodes, the cross section, and Young’s modulus.

Run the tests to make sure they all pass. You can do so from the shell:

$ python3 -m unittest structures/tests/bar_parse_test.py

Lastly, we need to parse the loads.

Parsing Loads

Chapter 17

We’ll now write a function to parse the load strings, but we won’t apply the
loads to the nodes here. That’ll happen later when we put all the pieces to-
gether.

Create a new file in structures/parse named load_parse.py. Enter the code
in Listing 17-5.



import re
from geom2d import Vector

__LOAD_REGEX = 1'(?P<node_id>\d+)\s*->\s*" \
'\ ((?P<vec>[\d\s\.,\-]+)\)'

def parse_load(load str: str):
© match = re.match(__LOAD REGEX, load_str)
if not match:
raise ValueError(
f'Cannot parse load from string: "{load str}"'

)
® node_id = int(match.group('node_id"))
® [fx, fy] = [

float(num)

for num in match.group('vec').split(",’

]

® return node_id, Vector(fx, fy)

Listing 17-5: Parsing a load from a string

In this listing we define the regular expression that matches the loads
as __LOAD_REGEX. Then comes the parse_load function, which first looks for
a match in the passed-in string (load_str) @. We raise an error if the string
doesn’t match _ LOAD REGEX.

The regular expression defines two capturing groups: node_id and vec.
The first group is the ID of the node where the load needs to be applied.
We convert the value for this first group into an integer and store it in the
node_id variable .

To extract the force components, we split the value matched by the vec
capture group and then parse each part, convert it to a float value, and use
destructuring to extract the components into the fx and fy variables ©.

Lastly, we return a tuple of the node ID and a vector with the force com-
ponents @.

Let’s test this logic to make sure it parses loads correctly.

Testing the Load Parser

In the structures/tests folder, create a new file named load_parse_test.py. Enter
the test code in Listing 17-6.

import unittest

from geom2d import Vector
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from structures.parse.load_parse import parse_load

class LoadParseTest(unittest.TestCase):

load_str = '1 -> (250.0, -3500.0)"
(node_id, load) = parse_load(load_str)

def test parse node_id(self):
self.assertEqual(1, self.node_id)

def test_parse load vector(self):
expected = Vector(250.0, -3500.0)
self.assertEqual(expected, self.load)

Listing 17-6: Testing the parsing of a load

This test defines a string representing a load applied to a node with an
ID of 1 and whose components are (250.0,-3500.0). The string is stored in
the load_str variable and passed to the parse_load function.

In the first test, we check that we’ve correctly parsed the node ID, which
is returned by the function as the tuple’s first value. Then, we check that
we’ve correctly parsed the tuple’s second value, the vector. These two simple
tests are enough to make sure our function does its job.

Run the tests from the IDE or from the shell:

$ python3 -m unittest structures/tests/load_parse_test.py

Now that we have functions that can parse the structure’s individual
parts from their string representations, it’s time to put them together. In the
next section, we’ll work on a function that reads all the lines of a structure
definition file and generates the corresponding model.

Parsing the Structure

Chapter 17

Our structure files define each entity on its own line, and entities appear
grouped by sections. If you recall, we defined three sections for the three
different entities we need to parse: nodes, bars, and loads. Here’s the previ-
ous example of a structure file:

nodes

1: (0, 0)  (xy)
2: (0, 200)  (xy)
3: (400, 200) ()

loads
3 -> (500, -1000)

bars



1: (1 -> 2) 510
2: (2 ->3) 510
3: (1 ->3) 510

Because these files will mostly be written by hand, it would be nice if
we allowed the inclusion of comments: lines that are ignored by the pars-
ing mechanism but explain something to someone reading the file, just like
comments in code.

Here’s an example:

# only node with a load applied
3: (400, 200) ()

We'll borrow Python’s syntax and use the # symbol to mark the start of a
comment. Comments will have to appear on their own lines.

Overview

Because we’ll need to write a few functions, it may be helpful to have a dia-
gram of the structure parsing process with the function names annotated
after the steps. Take a look at Figure 17-5.

Step 1 Step 2 Step 3 Step 4
{ ' result {
' nodes { .. },
loads [ .. ],
| bars [ .. ]
e B }
Structure Structure Structure Parsed Parsed
ile definition definition structural structure
string lines entities

__parse_lines
parse_structure from lines

parse_structure

Figure 17-5: Structure parsing process

In this diagram, we show each step of the parsing process. We start with
a structure file defining the structure in plaintext following our standard
format.

The first step is to read the file contents into a string. We’ll implement
this part in our application in Chapter 19.

The second step consists of splitting the big string into multiple lines.

The third step is parsing those lines into a dictionary of the structural
primitives. This step is handled by the private _ parse_lines function.

The fourth and final step is aggregating those parsed structural items
into a structure instance.

The parse_structure_from lines function is a combination of steps 3 and
4: it transforms a list of definition lines into a complete structure. The parse
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_structure function goes one step further and splits a single string into multi-
ple lines.

Setup

In the structures/parse directory, create a new file named str_parse.py. The
structures package should now look like this:

structures

|

|

| |- __init_.py

| |- bar_parse.py
| |- load_parse.py
| |- node_parse.py
| |- str_parse.py
|- solution

|
|
|

Let’s start the implementation with a function that determines whether
a line in the file is blank or a comment. This function will let us know whether
a given line can be ignored or whether it has to be parsed.

Ignoring Blank Lines and Comments
In str_parse.py, enter the code in Listing 17-7.

__COMMENT_INDICATOR = '#'

def _ should_ignore_line(line: str):
stripped = line.strip()
return len(stripped) == 0 or \
stripped.startswith(__COMMENT_INDICATOR)

Listing 17-7: Function to determine the lines that need to be ignored

We define a constant, __ COMMENT _INDICATOR, with the # character for its
value. If we ever want to change the way comments are identified, we’ll sim-
ply need to edit this line.

Next is the _should_ignore_line function. This function receives a string
and removes any surrounding blank spaces (in other words, it strips the
string). Then, if the line has a length of zero or starts with the comment in-
dicator, the function returns a True value, and a False otherwise.
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Parsing the Lines

Now that we have a way to filter out the lines that don’t need to be parsed,
let’s look at the ones that do. We’re going to define a function that receives
a list of strings representing the lines and identifies whether the line is a sec-
tion header (“nodes,” “bars,” or “loads”) or an entity. In the case of a section
header, the function will set a flag to keep track of the current section being

read. The rest of the function will take care of parsing each line using the
corresponding parser.
In the file str_parse. py, enter the code in Listing 17-8.

import re

from .bar_parse import parse bar
from .load_parse import parse_ load
from .node parse import parse_node

__COMMENT_INDICATOR = '#'
__NODES_HEADER = 'nodes’
__LOADS_HEADER = 'loads’
__BARS_HEADER = 'bars’

def _ parse lines(lines: [str]):
O reading = '
A result = {'nodes': {}, 'loads': [], 'bars': []}

for i, line in enumerate(lines):
® if should ignore line(line):
continue

# <--- header ---> #
® if re.match(__NODES HEADER, line):
reading = 'nodes’
elif re.match(__BARS_HEADER, line):
reading = 'bars’
elif re.match(__LOADS_HEADER, line):
reading = 'loads’

# <--- definition ---> #
® elif reading == 'nodes':

node = parse_node(line)
result[ 'nodes'][node.id] = node

elif reading == 'bars':
bar = parse_bar(line, result['nodes'])
result[ 'bars'].append(bar)

elif reading == 'loads':
load = parse_load(line)

Reading Input from a File
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result['loads'].append(load)
else:
raise RuntimeError(
f'Unknown error in line ${i}: ${line}’

return result

def _ should ignore line(line: str):
--snip--

Listing 17-8: Parsing the lines

We first add three variables with the names of the file headers: _ NODES
_HEADER, __LOADS_HEADER, and __ BARS_HEADER. These constants define the names
of the sections.

Then comes the _ parse_lines function definition, which takes one pa-
rameter: the list of lines in the structure file. The function declares a vari-
able named reading @. This variable indicates what structure section the later
loop is currently in. For example, when its value is 'bars’, the subsequent
lines should be parsed using the parse_bar function until the end of the file
or a new section is encountered.

Next comes the definition of the result dictionary @. It’s initialized with
three keys: 'nodes’, 'loads', and 'bars'. We’ll add the parsed elements to
this dictionary, in their corresponding key’s collection. Loads and bars are
stored in a list and nodes in a dictionary, with the keys being their IDs. We
store nodes mapped to their keys in a dictionary because both loads and
bars refer to them by ID in the structure file; thus, when we link them, it’ll
be more convenient to look them up by ID.

Next is the loop that iterates over the lines’ enumeration. Recall that
Python’s enumerate function returns an iterable sequence that includes the
original objects along with their index. We’ll use the index only if we en-
counter an error, using the line number in the error message to make look-
ing for the error in the input file easier. The first thing we do with each line
is check whether it’s blank or a comment @, in which case we skip it using
the continue statement.

Next, we have a couple of if-else statements. The first block of them is
for matching header lines @. When a line is found to match one of the three
possible headers, we set the reading variable to the header’s value. The later
if-else statements evaluate reading to determine which structural element
to parse @. If reading has the value 'nodes’, we use the parse_node function to
parse the line and store the result in the result dictionary, under the 'nodes’
key:

result['nodes'][node.id] = node




The same goes for bars and loads, but remember that in their case, they’re
stored in a list:

result['bars'].append(bar)

The function then returns the result dictionary.

We’ve implemented a function that reads a sequence of text lines and
converts each of them into a structure class instance (what we know as pars-
ing). These instances represent the nodes, bars, and loads of the structure.
The function returns a dictionary that bundles these instances by type. The
next step is using these parsed objects to construct a Structure instance.

Splitting the Lines and Instantiating the Structure

Given the contents of a structure file as a string, we want to split this string
into its lines. We’ll pass those lines to the __parse_lines function we wrote
earlier, and using the parsed objects we can construct an instance of our
Structure class.

In the str_parse.py file, before the _ parse_lines function, enter the code
in Listing 17-9.

import re

from structures.model.structure import Structure
from .bar_parse import parse bar

from .load parse import parse load

from .node_parse import parse node

__COMMENT_INDICATOR = '#'
__NODES_HEADER = 'nodes’
__LOADS_HEADER = 'loads'
__BARS_HEADER = 'bars’

def parse_structure(structure_string: str):
® lines = structure_string.split('\n")
return parse_structure from lines(lines)

def parse_structure_from_lines(lines: [str]):
® parsed = _ parse lines(lines)

nodes_dict = parsed['nodes’]

loads = parsed['loads']

bars = parsed['bars']

®  apply loads_to_nodes(loads, nodes_dict)

return Structure(
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® list(nodes_dict.values()),
bars

def _apply loads_to_nodes(loads, nodes):
® for node_id, load in loads:
nodes[node_id].add load(load)

--snip--

Listing 17-9: Splitting the lines

We’ve written three new functions. The first of them, parse_structure,
splits the passed-in string into its lines @ and forwards those lines to the
parse_structure_from lines function defined afterward.

This second function, parse_structure_from_lines, passes the lines to
__parse_lines and saves the result in a variable called parsed ®. It then ex-
tracts the contents of this result dictionary to the variables: nodes_dict, loads,
and bars.

The loads are defined separately from the nodes they’re applied to;
thus, we need to add each load to its respective node @. To do this, we’ve
written another small function: __apply_loads_to_nodes. Recall that the loads
were defined using the format

1 -> (500, -1000)

and are parsed by our parse_load function as a tuple consisting of the node
ID and the load components as a vector:

(1, Vector(500, -1000))

It’s important to keep this in mind to understand the loop in __apply
_loads_to_nodes ®. The loop iterates over the load tuples, and on each itera-
tion, it stores the node ID and load vector into the node_id and load variables,
respectively. Because our nodes are stored in a dictionary whose keys are the
node IDs, applying the loads is a piece of cake.

Once the loads have been applied to the nodes (back in parse_structure
_from_lines), the last step is to return an instance of the Structure class. The
class’s constructor expects a list of nodes and a list of bars. The bars are al-
ready parsed as a list, but the nodes were in a dictionary. To turn the values
of a dictionary into a list, we simply need to use Python’s 1ist function on
the dictionary values, which we extract using the values() method @.

With this, our parsing logic is ready!

The Result

For your reference, Listing 17-10 shows the complete code for str_parse. py.
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structures.model.structure import Structure
.bar_parse import parse bar

.load_parse import parse_load

.node_parse import parse_node

MMENT_INDICATOR = '#'
DES_HEADER = 'nodes’
ADS HEADER = 'loads’
RS_HEADER = 'bars'’

parse_structure(structure_string: str):
lines = structure_string.split('\n")
return parse_structure_from lines(lines)

parse_structure from lines(lines: [str]):
parsed = _ parse_lines(lines)

nodes_dict = parsed['nodes']

loads = parsed['loads']

bars = parsed['bars’]

__apply loads_to_nodes(loads, nodes dict)

return Structure(
list(nodes_dict.values()),
bars

__apply_loads_to_nodes(loads, nodes):
for node_id, load in loads:
nodes[node_id].add load(load)

__parse_lines(lines: [str]):
reading = "'
result = {'nodes': {}, 'loads': [], 'bars': []}

for i, line in enumerate(lines):
if _ should_ignore_line(line):

continue

# <--- header ---> #
if re.match(__NODES_HEADER, line):
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reading = 'nodes’

elif re.match(__BARS_HEADER, line):
reading = 'bars’

elif re.match(__LOADS HEADER, line):
reading = 'loads’

# <--- definition ---> #
elif reading == 'nodes':
node = parse_node(line)
result['nodes'][node.id] = node
elif reading == 'bars':
bar = parse_bar(line, result['nodes'])
result['bars'].append(bar)
elif reading == 'loads':
load = parse_load(line)
result['loads'].append(load)
else:
raise RuntimeError(
f'Unknown error in line ${i}: ${line}'

return result

def _ should_ignore_line(line: str):
stripped = line.strip()
return len(stripped) == 0 or \
stripped.startswith(__ COMMENT_INDICATOR)

Listing 17-10: Parsing the structure

Before we move to the next section, open the __init__.py file in parse,
and enter the following import:

from .str_parse import parse structure

This allows us to import the parse_structure function like this,

from structures.parse import parse_structure

instead of this slightly longer version:

from structures.parse.str_parse import parse_ structure

Let’s make sure our parsing function is working correctly by implement-
ing some automated tests.



Testing the Structure Parser

To make sure the parse_structure function works as expected, we’ll now add
a few unit tests. First, we want to create a structure definition file to use in
the test. In the structures/tests directory, create a new file, test_str.txt, with the
following contents:

# Nodes

nodes

1: (0.0, 0.0) (xy)
2: (200.0, 150.0) ()
3: (400.0, 0.0) (y)

# Loads
loads
2 -> (2500.0, -3500.0)

# Bars

bars

1: (1 -> 2) 25 20000000
2: (2 -> 3) 25 20000000
3: (1 -> 3) 25 20000000

We’ve added comment lines and some extra blank lines; our function
should ignore those. Create a new test file: str_parse_test.py (Listing 17-11).

import unittest
import pkg_resources as res

from structures.parse import parse_structure

class StructureParseTest(unittest.TestCase):

def setUp(self):
str_bytes = res.resource_string(__name__, 'test str.txt')
str_string = str_bytes.decode("utf-8")
self.structure = parse_structure(str_string)

Listing 17-11: Setting up the structure parsing test

The file defines a new test class: StructureParseTest. In the setUp method,
we load the test_str.txt file as bytes using the resource_string function. Then,
we decode those bytes into a UTF-8 encoded Python string. Lastly, using
parse_structure, we parse the structure string and store the result in a class
attribute: self.structure.
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Testing the Node Parser

Let’s add some test cases to ensure the structure that we parsed from the
test_str.txt file contains the expected nodes. After the setUp method, enter the
first tests (Listing 17-12).

import unittest

import pkg resources as res

from geom2d import Point
from structures.parse import parse_structure

class StructureParseTest(unittest.TestCase):

--snip--

def

def
(1]

def

test_parse_nodes_count(self):
self.assertEqual(3, self.structure.nodes_count)

test_parse nodes(self):
nodes = self.structure. Structure__ nodes
self.assertEqual(

Point(o0, 0),

nodes[0].position

)

self.assertEqual(
Point(200, 150),
nodes[1].position

)

self.assertEqual(
Point(400, 0),
nodes[2].position

)

test_parse node_constraints(self):
nodes = self.structure. Structure_ nodes

self.assertTrue(nodes[0].dx_constrained)
self.assertTrue(nodes[0].dy constrained)

self.assertFalse(nodes[1].dx_constrained)
self.assertFalse(nodes[1].dy constrained)

self.assertFalse(nodes[2].dx_constrained)
self.assertTrue(nodes[2].dy constrained)

Listing 17-12: Testing the structure parsing: the nodes



We’ve written three tests. The first one checks that there are three nodes
in the structure. The next test ensures that those three nodes have the cor-
rect position.

There’s one interesting thing to note here. Since the _ nodes list is pri-
vate to the Structure class, Python uses a trick to try to hide it from us. Python
prepends an underscore and the name of the class to the name of its private
attributes. The __nodes attribute will therefore be called _Structure__nodes,
and not __nodes as we’d expect. This is why, to access it from our tests, we use
this name @.

The third and last test checks if the external constraints in the nodes
have the right values as defined in the structure definition file. Let’s run the
tests. You can click the green play button in the IDE or use the shell:

$ python3 -m unittest structures/tests/str_parse_test.py

A success message should be displayed in the shell.

Testing the Bar Parser

Let’s now test if the bars are also parsed correctly. After the test cases we just
wrote, enter the ones in Listing 17-13.

class StructureParseTest(unittest.TestCase):
--snip--

def test_parse_bars count(self):
self.assertEqual(3, self.structure.bars_count)

def test_parse bars(self):
bars = self.structure. Structure bars

self.assertEqual(1, bars[0].start_node.id)
self.assertEqual(2, bars[0].end_node.id)

self.assertEqual(2, bars[1].start node.id)
self.assertEqual(3, bars[1].end node.id)

self.assertEqual(1, bars[2].start_node.id)
self.assertEqual(3, bars[2].end_node.id)

Listing 17-13: Testing the structure parsing: the bars

The first test asserts that there are three bars in the structure. The sec-
ond test checks that every bar in the structure is linked to the correct node
IDs. Same as before, to access the private list of bars, we need to prepend
_Structure to the attribute name: Structure_ bars.

Iinvite you to add two more tests that check that the values for the cross
section and Young’s modulus are correctly parsed into the bars. We won’t
include them here for brevity reasons.
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Run the test class again to make sure our new tests also pass. From the
shell, run this:

$ python3 -m unittest structures/tests/str_parse_test.py

Testing the Load Parser

Let’s add the two last tests to ensure the loads are properly parsed. Enter the
code in Listing 17-14.

import unittest
import pkg_resources as res

from geom2d import Point, Vector
from structures.parse import parse_structure

class StructureParseTest(unittest.TestCase):
--snip--

def test_parse loads_count(self):
self.assertkqual(1, self.structure.loads count)

def test_apply load to node(self):
node = self.structure._Structure_ nodes[1]
self.assertEqual(
Vector(2500, -3500),
node.net_load

)

Listing 17-14: Testing the structure parsing: the loads

In these two last tests, we check that the number of loads in the struc-
ture is 1 and that it’s being correctly applied to the second node.
Let’s run all the tests to make sure all pass:

$ python3 -m unittest structures/tests/str_parse_test.py

If your code is well implemented, all the tests should pass, and you should
see the following in the shell:

Ran 7 tests in 0.033s

0K

Test Class Result

We’ve done a few tests, so Listing 17-15 shows the resulting test class for your
reference.



import unittest
import pkg_resources as res

from geom2d import Point, Vector
from structures.parse import parse_structure

class StructureParseTest(unittest.TestCase):

def setUp(self):
str_bytes = res.resource_string(__name_ , 'test str.txt')
str_string = str_bytes.decode("utf-8")
self.structure = parse_structure(str_string)

def test_parse_nodes_count(self):
self.assertEqual(3, self.structure.nodes_count)

def test parse nodes(self):
nodes = self.structure. Structure_ nodes
self.assertEqual(
Point(o0, 0),
nodes[0].position

)

self.assertEqual(
Point(200, 150),
nodes[1].position

)

self.assertEqual(
Point(400, 0),
nodes[2].position

)

def test parse node constraints(self):
nodes = self.structure. Structure nodes

self.assertTrue(nodes[0].dx_constrained)
self.assertTrue(nodes[0].dy constrained)

self.assertFalse(nodes[1].dx_constrained)
self.assertFalse(nodes[1].dy constrained)

self.assertFalse(nodes[2].dx_constrained)
self.assertTrue(nodes[2].dy constrained)

def test parse bars count(self):
self.assertEqual(3, self.structure.bars_count)
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def test_parse bars(self):
bars = self.structure. Structure bars

self.assertEqual(1, bars[0].start_node.id)
self.assertEqual(2, bars[0].end_node.id)

self.assertkqual(2, bars[1].start node.id)
self.assertEqual(3, bars[1].end node.id)

self.assertEqual(1, bars[2].start_node.id)
self.assertEqual(3, bars[2].end_node.id)

def test parse loads count(self):
self.assertEqual(1, self.structure.loads count)

def test_apply load_to_node(self):
node = self.structure. Structure_ nodes[1]
self.assertEqual(
Vector(2500, -3500),
node.net_load

)

Listing 17-15: Testing the structure parsing

Our structure parsing logic is ready and tested!

Summary

Chapter 17

In this chapter, we first defined a format for our structure files. It’s a simple
plaintext format that can be written by hand.

We then implemented functions to parse each of the lines in our struc-
ture files into its appropriate structural element: nodes, loads, and bars.
Regular expressions were the stars of the show; with them, parsing well-
structured text was a breeze.

Lastly, we put everything together into a function that splits a big string
into its lines and decides which parser to use for each line. We’ll use this
function to read structure files and create the structural model that our
truss resolution application will work with.

It’s now time to work on producing the output diagrams for the struc-
ture solution. That’s exactly what we’ll do in the next chapter.



PRODUCING AN SVG IMAGE AND
TEXT FILE

When we solve one of our truss structures,

we construct a new model with the solu-
tion values. If we want to explore the stress

on each bar or the displacement of each node,

we need to produce some kind of output with this in-
formation. Diagrams are one good way of displaying
the information that results from engineering calcula-
tions, but we may also want a text file with the detailed
values.

In this chapter, we’ll write a module for our structural analysis applica-
tion that produces both a vector image with all the relevant pieces of data in
the solution, and a simpler textual representation of the structure solution.




Setup

Let’s add a new package in structures named out; this package will contain all
the solution output code. Your structures package directory should now look
like this:

structures
|- generation

We’ll start by implementing the function that produces an SVG image
from the structure solution. Let’s create a new Python file named svg.py and
another one named config.json that’ll contain the configuration for the draw-
ing. Your out directory should now contain the following files:

structures
|- out
|- _init_ .py
|- config.json
|- svg.py

As usual, don’t forget to include an __init__.py file if you didn’t use the IDE.

From Structure Solution to SVG
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When our output code is finished, it should produce diagrams like the one
in Figure 18-1. Although you can’t see it in the print version of the book,
the compression bars are red, and the tension bars are green. The external
forces are yellow, and we’re using purple for the reactions.
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Figure 18-1: Truss result diagram



This image was generated using the code we’re going to write together
in the rest of this chapter.

The Configuration File

Once your code is ready and working, you may want to play with the dia-
gram’s colors and sizes to get a result you find satisfying. We want to have
the liberty of changing these colors without needing to read through our
code, so we’ll move them to a separate configuration file, like we’ve already
done in Chapter 9 and Chapter 12. In fact, any parameter we want to tweak
can be placed in the configuration file. We’ll include things such as the ra-
dius of the nodes, their stroke width, and the margin of the image in the
configuration, among others.

Figure 18-2 illustrates some of the properties we want to be configurable
and the values we’ll assign them. Colors are represented using hexadecimal
values prefixed with a #.

©

\_#BB2727

\_#FFC046
Stroke
=\ ﬂ
Radius / /
#354505 /  #099005
Figure 18-2: Output configuration values
Open the config.json file we just created and enter the configuration val-

ues in Listing 18-1.

{

"sizes": {
"margin": 170,
"node_radius": 5,
"stroke": 4,
"arrow": 14

}}

"colors": {
"node_stroke": "#354595",
"back": "#FFFFFF",
"traction": "#005005",
"compression": "#BB2727",
"original": "#D5DBF8",
"load": "#FFC046",
"reaction": "#4A0072"

b

"font": {
"family": "sans-serif",
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"size": 14

}

Listing 18-1: The default configuration for our output image

These configuration values are the defaults we’ll use when no others are
given. Feel free to personalize your app’s diagrams using different colors,
sizes, or text font.

To do this, we need a way of reading the configuration JSON file into
our main sug.py script. Let’s write a function to do this. In sug.py, enter the
code in Listing 18-2.

import json
import pkg resources as res
def _ read_config():

config = res.resource_string(__name__, 'config.json')
return json.loads(config)

Listing 18-2: Reading the configuration JSON file

The _read config function uses resource_string from the pkg_resources
package (from Python’s standard library) to load our config.json file into a
string. Then, we use json.loads to parse the string into a dictionary. We’ll use
this function later.

Let’s now see how we can allow the user to pass some parameters to the
application; these will modify how the resulting diagram is drawn.

The Settings

We have the configuration, which contains values that determine how the di-
agram will look. These values are defined by the application, and users don’t
need to worry about them. We allow users to pass a configuration dictionary
to the application with values that override the default configuration.

Apart from the configuration, there are some other values our applica-
tion needs to draw the solution diagram for a given structure. These values
include the scales used to draw the geometry and loads, for example. We
can’t guess these beforehand, so we need the user to provide them to the
application.

Let’s call these one-time values settings. We’ll pass our function a settings
dictionary, but these settings won’t have default values because there are
no sensible defaults we can use here; they completely depend on the struc-
ture being computed and what the user wants the result to look like. Does
the user want to exaggerate the deformations? Or do they want to see the
deformations without a scale to get an idea of what the deformed structure
actually looks like? We can’t guess this ourselves, and thus, we’ll let the user
of the app decide on these values.



We’ve included all the settings we want to make available to the user in
Table 18-1.

Table 18-1: Output Settings

Name Type Purpose

scale Number  Changes the scale of the resulting drawing
disp_scale Number  Changes the scale of the node displacements
load_scale Number  Changes the scale of load representation

no_draw_original Boolean  Specifies whether to draw the original geometry

Let’s write a function to validate that the dictionary contains values for
all these settings. In your sug.py file, enter the function in Listing 18-3.

--snip--

__expected_settings = (
# scale applied to the diagram
'scale’,
# scale applied to the node displacements
'disp_scale’,
# scale applied to the load vectors
'load_scale’,
# boolean to decide whether to draw the original geometry
'no_draw_original’

def _validate_settings(settings):
for setting in _ expected_settings:
if setting not in settings:
raise ValueError(f'"{setting}" missing in settings')

Listing 18-3: Validating the settings dictionary

This _ validate_settings function ensures all the expected settings are in
the settings dictionary. If any of the functions are not, we raise an error with
a message for the user. Let’s now write the function to produce the SVG
image.

The Solution Drawing Function

In the sug.py file, before the _ read_config function, enter the code in List-
ing 18-4.

import json

import pkg resources as res
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from geom2d import AffineTransform
from graphic import svg
from structures.solution.structure import StructureSolution

def structure_solution to_svg(
result: StructureSolution,
settings,
_config=None,

_ validate_settings(settings)
default_config = _ read config()

O config = {**default config, **(_config or {})}

® viewbox = result.bounds rect(
config[ 'sizes'][ 'margin'],
settings.scale

)

transform = AffineTransform(sx=1, sy=-1, tx=0, ty=0)

® return svg.svg_content(
size=viewbox.size,
primitives=[],
viewbox_rect=viewbox,
transform=transform

--snip--

Listing 18-4: Structure solution to SVG function

We define the structure solution_to_svg function, but it doesn’t draw
anything yet; it just produces an empty SVG image. The function receives
three parameters: the structure solution (a StructureSolution class instance),
the settings dictionary, and the configuration dictionary. The configuration
dictionary is optional, so we give it a default value of None.

In the function, we first validate the passed-in settings using the func-
tion we wrote in the previous section. If the validation fails, we raise an error
and halt execution of the function.

Next, we load the default configuration using the _ read_config function.

The next step is merging the passed-in configuration dictionary with the
default one @. The dictionaries are merged using Python’s dictionary un-
packing operator: **, If a and b are dictionaries, using {**a, **b} will create a
new dictionary containing all the entries from a and b. If there’s a key that’s
in both dictionaries, the version in b, the second dictionary, is kept. There-
fore, in our usage, if a configuration value is given by the user, this overrides
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the default one. We store the merged configuration dictionary in the config
variable.

The dictionary unpacking operator was added in Python version 3.5. You can read
more about it in PEP-448: https://www.python.org/dev/peps/pep-0448. PEP
stands for “Python Enhancement Proposal.” These are the documents the Python
commumnity writes to propose new features for the language, among others.

Next, we compute the viewbox for the SVG image using the structure so-
lution’s bounding rectangle @. If you recall, the StructureSolution bounds_rect
method’s first parameter is the margin for the bounds, and the second is the
scale. We take the value for the margin from the configuration and the scale
from the settings.

We then create an affine transformation that we’ll use to flip the image’s
y-axis so that it points up.

Lastly, we create and return the SVG image using svg_content from our
svg package @. The size of the image is given by the viewbox size; the list of
primitives is empty at the moment. In the next sections, we’ll fill this list
with the SVG primitives that represent the nodes, bars, and loads. First,
though, let’s look at captions.

Captions

We’re going to use captions in a few places: to note the bars’ stresses, to
number the nodes, and to give forces coordinates. Positioning these cap-
tions is going to be a bit tricky since we’ll want to rotate them so they align
with the element they caption, as you can see in Figure 18-3.

o =230.50

Figure 18-3: Captions in our diagram

Furthermore, since we applied an affine transformation to the SVG im-
age that flips the y-axis, the captions we add will also be flipped, and if we
don’t undo that flip, they’ll be impossible to read. We’ll correct this by scal-
ing the caption so that its y-axis is flipped back.

Create a new Python file in structures/out named captions_svg.py. Your out
directory should look like the following:

out
[- _init_ .py
|- captions_svg.py
|- svg.py
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In this new file, enter the code in Listing 18-5.

from geom2d import Point, Vector, make_rotation, make_scale
from graphic import svg
from graphic.svg import attributes

def caption_to_svg(
caption: str,
position: Point,
angle: float,
color: str,
config

):

@ font = config['font']['family']

size = config['font']['size']

rotation = make_rotation(angle, position)
scale = make_scale(1, -1, position)
® transform = rotation.then(scale)

® return svg.text(

caption,

position,

Vector(o, 0),

[
attributes.fill_color(color),
attributes.affine_transform(transform),
attributes.font_family(font),
attributes.font_size(size)

)

Listing 18-5: From captions to SVG

We implement a function named caption_to_svg. This function has five
parameters: the caption’s text, a point at which the caption is located, the
angle it’s rotated, the color, and the configuration dictionary.

We'll extract the font family and size from the configuration dictionary.
The first two lines save these values into the font and size variables, respec-
tively @.

The next thing we do is compute an affine transformation that scales
and rotates the caption. We first generate the rotation with the make_rotation
function and then the scaling with the make_scale function; lastly, these are
combined into a single transformation ®. Note how both transformations
are done with respect to the caption’s position point (see Figure 18-4). This
is key. If we scaled and rotated the caption around the global origin (the
(0, 0) point), it would appear somewhere unexpected in the drawing.
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Figure 18-4: Caption rotation

Lastly, we create the SVG text element using the svg.text function, pass-
ing it the caption, the center point, a zero displacement vector, and a list of
attributes @. In the attributes we include the fill color, the transformation,
the font family, and the font size.

The Bars

Let’s now work on producing the SVG code to draw the original and de-
formed bar geometries. Bars are straight lines, so representing them won’t
be too complicated. In the out directory, create a new file named bar._svg.py.
Your out directory should look like the following:

out
__init_ .py

|-

|- bar_svg.py
|- captions_svg.py
|

As we know, both the original and deformed bar geometries are straight
lines. We’ll start by writing a helper function to generate the SVG segments
that represent bars, both in their original and deformed states. In the file,
enter the code in Listing 18-6.

from math import sqrt

from graphic import svg
from graphic.svg import attributes

def _ bar_svg(geometry, color, cross_section):
@ section height = sqrt(cross_section)
O return svg.segment(
geometry,
[
attributes.stroke color(color),
attributes.stroke width(section_height)

)
Listing 18-6: Single bar to SVG

We’ve written the _ bar_svg function to generate an SVG segment using
the passed-in geometry, which should be an instance of our Segment class; we’ve
also passed in the color to use and the cross section of the bar.
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Why do we need the cross-section value? We’ll use a line thickness that
roughly represents the cross section of the bar so that bars with a larger
cross section are drawn with a thicker line. Figure 18-5 shows our approxi-
mation: we’re computing the line thickness as if it was the side of a square
cross section.
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Figure 18-5: Calculating line thickness
from the cross section

In the section_height variable, we store the height of the bar as if its sec-
tion was square @. This value is computed from the square root of the bar’s
cross section.

Lastly, we return an SVG segment using the passed-in geometry and
adding two attributes: the stroke color and the line thickness we’ve com-
puted @.

Let’s continue and write the first version of the bars_to_svg function. In
your file and before the _ bar_svg function we just wrote, enter the code in
Listing 18-7.

from math import sqrt

from graphic import svg
from graphic.svg import attributes
from structures.solution.bar import StrBarSolution

def bars_to_svg(bars: [StrBarSolution], settings, config):
should_draw_original = not settings.no_draw_original
® original, final, stresses = [], [], []

for bar in bars:

® if should draw original:
original.append(original_bar to_svg(bar))

® final.append(bar_to_svg(bar))

® stresses.append(bar_stress to svg(bar))

# Ordering is important to preserve z-depth

® return original + final + stresses

def _ bar_svg(geometry, color, cross_section):
--snip--

Listing 18-7: Bar to SVG
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In this listing, we merely outline the main algorithm to generate SVG
primitives representing the bars. There are three functions that do most of
the work, but we haven’t written them yet: original_bar_to_svg, bar_to_svg,
and bar_stress_to_svg. We’ll write these shortly.

Our bars_to_svg function first saves the negated value of the no_draw
_original setting in the should_draw_original variable. If should_draw_original
is true, our function will also include the segments representing the original
bars.

Next, we declare three empty lists: original, final, and stresses @. The
first one, original, stores the segments that represent the original bars; the
second one, final, contains the final or solution bars; and the last list, stresses,
stores the stress captions. We’ll put all the SVG primitives we generate in
these lists.

We then iterate through the bars. For each one, if should_draw_original
is true, we append the result of original_bar_to_svg to the original list @;
original_bar_to_svg is a function we haven’t written yet that generates the
SVG segment for the original bar. We append the SVG representing the so-
lution bar to the final list ® and the stress caption to stresses @.

After the loop, the three lists are filled with the SVG primitives that rep-
resent the bars of the original and solution structures. We concatenate and
return those lists ®. As noted by the comment in the code, the order here
is important: the elements that appear last in the list will be drawn on top
of the rest. We want the original bars to be behind the solution bars; thus,
they need to appear first in the list. You can imagine these bars as being dis-
tributed by layers, as depicted in Figure 18-6.
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Figure 18-6: Drawing the bar SVGs in layers

Let’s write the three functions we used to generate the SVG primitives.

Drawing the Original Bars

For these functions, we’re going to use a technique we explored in the “Func-
tions Inside Other Functions” section on page 28. We’ll define them as in-
ternal functions inside the bars_to_svg function so they gain access to the pa-
rameters passed to bars_to_svg. This spares us from having to pass around
the settings and config dictionaries. The resulting internal functions will
have a shorter parameter list, which makes them simpler. As the functions
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are effectively kept private in bars_to_svg, only the host function has access to
them.

Let’s write the original_bar_to_svg function first. In your file, enter the
missing code in Listing 18-8.

from math import sqrt

from graphic import svg
from graphic.svg import attributes
from structures.solution.bar import StrBarSolution

def bars_to svg(bars: [StrBarSolution], settings, config):
def original_bar_to_svg(_bar: StrBarSolution):
@ color = config['colors']['original']
O return __bar_svg(
_bar.original_geometry,
color,
_bar.cross_section

--snip--
# Ordering is important to preserve z-depth

return original + final + stresses

def _ bar_svg(geometry, color, cross_section):
--snip--

Listing 18-8: Original (nonsolution] bar to SVYG

We’ve written the original bar to svg function inside the bars_to_svg
function, at the beginning of it. This function requires only one argument:
a bar from the solution structure (of type StrBarSolution), which contains the
original bar inside its original_geometry attribute.

First, we extract the color for the original bar from the configuration
dictionary @. Then, we return the result of calling the _ bar_svg function
with the original bar’s geometry, the color, and the bar’s cross section @.

Drawing the Solution Bars

Now let’s write the code to draw the solution bars. These will have a dif-
ferent color depending on if their stress is compressive or tensile. In the
bars_to_svg function, after the original_bar_to_svg function we just wrote, en-
ter the missing code in Listing 18-9.

from math import sqrt

from graphic import svg



from graphic.svg import attributes
from structures.solution.bar import StrBarSolution

def bars_to_svg(bars: [StrBarSolution], settings, config):
def original bar to_svg(_bar: StrBarSolution):
--snip--

def bar_to_svg(_bar: StrBarSolution):
return __bar_svg(
@® bar.final _geometry scaling_displacement(
settings.disp_scale
)5
® bar_color(_bar),
® _bar.cross_section

)

def bar_color(_bar: StrBarSolution):
if _bar.stress >= 0:
return config['colors']['traction']
else:
return config['colors']['compression’]

--snip--
# Ordering is important to preserve z-depth

return original + final + stresses

def _ bar_svg(geometry, color, cross_section):
--snip--

Listing 18-9: Solution bar to SVG

The bar_to_svg function returns the result of calling _ bar_svg with the
displaced bar as first argument, computed using the final_geometry_scaling
_displacement method we implemented in the StrBarSolution class @. The sec-
ond argument is the color, which we compute using another function that
we implemented later in the code: bar_color ®. The third and last argument
is the bar’s cross section @.

The bar_color function returns the correct color from the configuration
dictionary depending on the sign of the bar’s stress. Note, once again, how
we don’t need the config dictionary to be passed to this function. We already
have access to it because we are inside the bars_to_svg function.

Producing an SVG Image and Text File 505



Drawing the Stress Captions

Lastly, we need to draw the stress captions. These are a bit tricky to position
inside the drawing, but we solved the hardest part earlier in the caption_to_svg
function.

Enter the missing code in Listing 18-10.

from math import sqrt

from geom2d import Vector

from graphic import svg

from graphic.svg import attributes

from structures.solution.bar import StrBarSolution
from .captions_svg import caption_to_svg

__I_VERSOR = Vector(1, 0)
__STRESS_DISP = 10
__DECIMAL_POS = 4

def bars_to svg(bars: [StrBarSolution], settings, config):
def original bar to svg(_bar: StrBarSolution):
--snip--

def bar_to_svg(_bar: StrBarSolution):
--snip--

def bar_stress_to_svg(_bar: StrBarSolution):
© geometry = _bar.final_geometry_scaling_displacement(
settings.disp_scale
)
normal = geometry.normal_versor
® position = geometry.middle.displaced(normal, _ STRESS_DISP)
©® angle = geometry.direction_versor.angle_to(__I_VERSOR)

® return caption_to_svg(
f'o = {round(_bar.stress, _ DECIMAL_POS)}',

position,
angle,
bar_color(_bar),
config
)
def bar_color(_bar: StrBarSolution):
--snip--
--snip--

# Ordering is important to preserve z-depth



return original + final + stresses

def _ bar_svg(geometry, color, cross_section):
--snip--

Listing 18-10: Bar stress to SVG

We import Vector from geom2d and the caption_to_svg function we imple-
mented earlier in this chapter. Then, we declare three constants:

e I VERSORis the ¢ versor to represent the horizontal direction.

e _ STRESS_DISPis the distance we use to separate the caption from the
bar’s geometry.

e _ DECIMAL_POS is the number of decimals we use to format the stress
values.

Then comes the implementation of the bar_stress_to_svg function. The
first thing we want to do in this function is compute the geometry of the
bar we’re adding a caption to, with exactly the same scale as the drawing it-
self @. We want our caption to be aligned with the drawing of the bar; thus,
we need its geometry as a reference.

Next, we compute the bar’s geometry normal versor; we need this di-
rection to compute the caption’s position. Then, we compute the caption’s
origin point, called position, by displacing the bar’s middle point in the di-
rection of the normal versor an amount equal to _ STRESS_DISP @. Figure 18-7
illustrates this.

Copfion—\\
Position % Qo
~a. ‘d\\o

5@90 \

Normal A
—I>

Figure 18-7: Positioning the bar caption

We also need the bar’s angle with the 7 versor @; this is the angle we’ll
rotate the caption to align it with the bar.

Now that we have the center point and the rotation angle, we simply
need to return the result of calling the caption_to_svg function with these
values as arguments @. For the caption’s text, we use the Greek letter o
(sigma), which is typically used to refer to mechanical stresses, followed by
the bar’s stress value rounded to four decimals.

Lastly, note that the label color is the same as the bar, and thus we get it
from the bar_color function.
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The Result

After all the code we’ve written, your bar_svg.py file should look like List-
ing 18-11.

from math import sqrt

from geom2d import Vector

from graphic import svg

from graphic.svg import attributes

from structures.solution.bar import StrBarSolution
from .captions_svg import caption_to_svg

__ T VERSOR = Vector(1, 0)
__STRESS DISP = 10
__DECIMAL_POS = 4

def bars_to_svg(bars: [StrBarSolution], settings, config):
def original bar_to_svg(_bar: StrBarSolution):
color = config['colors']['original']
return _ bar_svg(
_bar.original_geometry,
color,
_bar.cross_section

def bar_to_svg(_bar: StrBarSolution):
return _ bar_svg(
_bar.final_geometry scaling displacement(
settings.disp_scale
)J
bar_color(_bar),
_bar.cross_section

)

def bar_stress_to_svg(_bar: StrBarSolution):
geometry = bar.final geometry scaling displacement(
settings.disp_scale
)
normal = geometry.normal_versor
position = geometry.middle.displaced(normal, _ STRESS DISP)
angle = geometry.direction versor.angle to(__I VERSOR)

return caption_to_svg(
f ' = {round(_bar.stress, _ DECIMAL_POS)}',
position,
angle,
bar_color(_bar),



config

)

def bar_color(_bar: StrBarSolution):
if _bar.stress >= 0:
return config['colors']["traction']
else:
return config['colors']['compression']

should_draw_original = not settings.no_draw_original
original, final, stresses = [], [], []

for bar in bars:
if should draw_original:
original.append(original bar to_svg(bar))
final.append(bar_to_svg(bar))
stresses.append(bar_stress_to_svg(bar))

# Ordering is important to preserve z-depth
return original + final + stresses

def _ bar_svg(geometry, color, cross_section):
section_height = sqrt(cross_section)
return svg.segment(
geometry,
[
attributes.stroke color(color),
attributes.stroke width(section_height)

)
Listing 18-11: Bar to SVG result

Make sure your code looks the same as Listing 18-11, because we won’t
be writing unit tests in this chapter. Covering our SVG generation functions
with tests would be a great idea; there is quite a bit of logic here. But to keep
the chapter a reasonable length, we won’t be doing it.

Now it’s time for the nodes.

The Nodes

In the out directory, create a new file named node_svg. py:

out
|- __init__.py
|- bar_svg.py
|- captions_svg.py
|- node_svg.py
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|- svg.py

In this file, enter the code in Listing 18-12.

from geom2d import Circle, Vector

from graphic import svg

from graphic.svg import attributes

from structures.solution.node import StrNodeSolution
from .captions_svg import caption_to_svg

def nodes_to_svg(nodes: [StrNodeSolution], settings, config):
@ def node_to svg(node: StrNodeSolution):
radius = config['sizes'][ "node_radius']
stroke _size = config['sizes']['stroke']
stroke_color = config['colors'][ 'node_stroke']
fill color = config['colors'][ 'back"]

® position = node.displaced_pos_scaled(settings.disp_scale)
® caption_pos = position.displaced(Vector(radius, radius))

return svg.group([
O svg.circle(
Circle(position, radius),
[
attributes.stroke width(stroke size),
attributes.stroke color(stroke color),
attributes.fill color(fill color)
]
))
® caption_to_svg(
f'{node.id}"', caption_pos, 0, stroke_color, config
)
D

® return [
node_to_svg(node)
for node in nodes

]

Listing 18-12: Node to SVG

We first import a few things—make sure you get them all. Then, we de-
fine the nodes_to_svg function with the list of StrNodeSolution instances and
the settings and config dictionaries as input parameters. This function maps
each node in the nodes list to its SVG representation, which is obtained by
calling an internal function: node_to_svg ®. The mapping is done using a list
comprehension.
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The node_to_svg internal function operates on a single node, and it has
access to the host function parameters @. The first thing it does is save some
configuration parameters in variables.

Next, we compute the displaced position of the node ® and the position
for the caption, which will be the node’s ID ®. The caption’s position is ob-
tained by displacing the node’s position an amount equal to its radius both
horizontally and vertically. Figure 18-8 illustrates this.

Caption Y

Position\ * _»:

Caption position

Figure 18-8: Node caption positioning

The node_to_svg function returns an SVG group consisting of a circle
representing the node itself @ and the caption @.
Our nodes are ready! Let’s add their external reaction forces.

The Node Reactions

We’ll also include the reaction forces of the externally constrained nodes in
our SVG diagram. We’ll represent these as arrows with a caption, similar to
Figure 18-9.

&,
&

Figure 18-9: Node reaction

Since we’ll draw external loads and reactions the same way, let’s write a
function that draws a Vector geometric primitive as an arrow with a caption;
that way we can use it for both cases.

Drawing Vectors

In the out directory, create a new file named vector_svg.py. Your out directory
should look like the following:

out
[- _init_ .py
|- bar_svg.py
|- captions_svg.py
|- node_svg.py
|- svg.py
|- vector_svg.py

In this file, enter the code in Listing 18-13.
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from geom2d import Point, Vector, Segment
from graphic import svg

from graphic.svg import attributes

from .captions_svg import caption_to_svg

__ T VERSOR = Vector(1, 0)
__CAPTION DISP = 10
__DECIMAL_POS = 2

def vector_to_svg(
position: Point,
vector: Vector,
scale: float,
color: str,
config
):
O segment = Segment(
position.displaced(vector, -scale),
position
)
® caption_origin = segment.start.displaced(
segment.normal_versor,
__CAPTION_DISP

def svg_arrow():
pass

def svg caption():
pass

® return svg.group([
svg_arrow(),
svg_caption()

D
Listing 18-13: Vector to SVG

We define three constants:

e _ I VERSORis used to compute an angle with the horizontal direction.
e _ CAPTION_DISP is the separation between the vector’s baseline and
the caption.
e _ DECIMAL_POS formats the vector coordinates using a fixed number of
decimals.

512 Chapter 18



Then comes the vector_to_svg function, which has the following
arguments:

*  position is the vector’s base point.

*  vector is the vector itself.

* scaleis applied to the vector to shorten or lengthen it.

*  color is the stroke and font colors.

* configis the configuration dictionary.

In the function, we create a segment to represent the vector’s baseline @.
The start point for the segment is the passed-in position displaced by the
vector (also passed as an argument to the function) and using a scale of
-scale. We want the vector’s arrow located at the origin point; thus, the end

point for the segment is in the opposite direction of the vector. You can see
this configuration of the vector segment points illustrated in Figure 18-10.

— position.displaced(vector, -scale)

position

Figure 18-10: Vector segment end points

We also compute the caption’s origin point using the segment’s start
point displaced in the normal direction of the segment’s direction @ (see
Figure 18-11).

Caption
Position
N
Normal
Start
&
\%o,g,.
P

End

Figure 18-11: Node reaction
caption’s position

Then there are two functions we haven’t implemented yet: svg_arrow and
svg_caption. These are the functions that will draw the arrow and the cap-
tion. We’ll get to them shortly.

Lastly, we return an SVG group consisting of the results of the svg_arrow
and svg_caption functions ©.
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Let’s implement the two missing functions. Enter the missing code in
Listing 18-14.

--snip--

def vector_to_svg(
position: Point,
vector: Vector,
scale: float,
color: str,
config

segment = Segment(
position.displaced(vector, -scale),
position

)

caption_origin = segment.start.displaced(
segment.normal_versor,
__CAPTION DISP

def svg arrow():
width = config['sizes']['stroke']
arrow_size = config['sizes']['arrow']

@ return svg.arrow(

segment,

arrow_size,

arrow_size,

[
attributes.stroke_color(color),
attributes.stroke_width(width),
attributes.fill_color('none')

def svg _caption():

O return caption_to_svg(
vector.to_formatted_str(__ DECIMAL_POS),
caption_origin,
vector.angle_to(__I_VERSOR),
color,
config

return svg.group([
svg_arrow(),
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svg_caption()

D
Listing 18-14: Vector to SVG

The svg_arrow function first saves the width and arrow_size configuration
values inside variables. Then it returns our SVG arrow primitive, passing it
the segment, the arrow_size for both the arrow width and length, and the
list of attributes including the stroke color and width @. Recall that our
svg.arrow function draws the arrow located at the segment’s end point.

The svg_caption function returns the result of calling the svg_caption
function with the caption string, origin point, rotation angle, color, and
configuration dictionary @. The caption with the right format is computed
using our Vector class’s to_formatted_str method. This method isn’t imple-
mented yet, so let’s write it to create a string with the vector components and
norm.

Open the geom2d/vector.py file and enter the code in Listing 18-15.

class Vector:
--snip--

def to formatted str(self, decimals: int):
u = round(self.u, decimals)
v = round(self.v, decimals)
norm = round(self.norm, decimals)

return f'({u}, {v}) with norm {norm}'

Listing 18-15: Vector to formatted string

We’ll also need a similar method in the Point class to format the position
of the nodes in the text representation of the solution. Open geom2d/point.py
and enter the code in Listing 18-16.

class Point:
--snip--

def to_formatted str(self, decimals: int):
x = round(self.x, decimals)
y = round(self.y, decimals)

return ' ({x}, {y}H'

Listing 18-16: Point to formatted string

Now that we’ve implemented a way of drawing vectors with a caption
for their coordinates, let’s use our implementation to display the node
reactions.
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Drawing the Reaction Forces

In the out directory, create a new file named reaction_svg.py. Your out direc-
tory should look like the following:

out
|- __init_ .py
|- bar_svg.py
|- captions_svg.py
|- node_svg.py
|- reaction_svg.py
|- svg.py

|- vector_svg.py

In this newly created file, enter the code in Listing 18-17.

from structures.solution.node import StrNodeSolution
from structures.solution.structure import StructureSolution
from .vector_svg import vector to_svg

def node_reactions_to_svg(
solution: StructureSolution,

settings,
config
):
def reaction_svg(node: StrNodeSolution):
@ position = node.displaced pos scaled(settings.disp scale)
® reaction = solution.reaction for node(node)
® return vector to_svg(
position=position,
vector=reaction,
scale=settings.load_scale,
color=config[ 'colors']['reaction'],
config=config
)
® return [

reaction_svg(node)
for node in solution.nodes
if node.is_constrained

]

Listing 18-17: Node reactions to SVG

In this file, we define node_reactions_to_svg. Each externally constrained
node in the structure solution is mapped to its SVG reaction using a list
comprehension @.

We’re using an inner function to produce the SVG representation of
each solution node: reaction_svg. This function first obtains the displaced



position of the resulting node (with disp_scale applied) @®. Then it asks the
solution structure for the reaction in the node @. With these pieces of infor-
mation, we can create the SVG representation of the reaction vector using
the vector to_svg function ©.

The Loads

The last things we want to draw in the result image are the loads applied to
the structure.

In the out directory, create a new file named load_svg.py. Your out direc-
tory should look like the following:

out

|- _init_ .py

|- bar_svg.py

|- captions_svg.py
|- load_svg.py

|- node_svg.py

|- reaction_svg.py
|- svg.py

|- vector_svg.py

In load_sug.py, enter the code in Listing 18-18.

from geom2d import Vector, Point

from graphic import svg

from structures.solution.node import StrNodeSolution
from .vector_svg import vector to_svg

def loads_to_svg(nodes: [StrNodeSolution], settings, config):
def svg node_loads(node: StrNodeSolution):
@ position = node.displaced pos_scaled(settings.disp_scale)
® return svg.group(
[
svg_load(position, load)
for load in node.loads

def svg load(position: Point, load: Vector):
® return vector to_svg(
position=position,
vector=load,
scale=settings.load_scale,
color=config[ 'colors']['load'],
config=config
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O return [
svg_node_loads(node)
for node in nodes
if node.is loaded

]

Listing 18-18: loads to SVG

In this file, we define a function, loads_to_svg, receiving three arguments:
the StrNodeSolution list and the settings and config dictionaries. The function
relies on two inner functions: svg_node_loads and svg_load. We use a list com-
prehension to map each node that has external loads in the passed-in nodes
list to its SVG representation @. We use the is_loaded property of each node
to filter the nodes that are externally loaded.

The svg_node_loads internal function first gets the displaced position of
the solution node @ and then returns an SVG group of all the loads in the
node @. Each load is mapped to an SVG vector using the second internal
function: svg_load.

The svg_load function is straightforward: it simply calls the vector_to_svg
function passing the appropriate parameters ©.

With this, we have all of our SVG generation code ready! We just need
to put it all together, and we can finally start drawing structure solutions.

Putting It All Together

Let’s now open the svg.py file and add the functions we’ve written into the
structure_solution_to_svg function. Enter the missing code, following List-
ing 18-19.

import json
import pkg _resources as res

from geom2d import AffineTransform

from graphic import svg

from structures.solution.structure import StructureSolution
from .bar_svg import bars_to_svg

from .load_svg import loads_to_svg

from .node_svg import nodes_to_svg

from .reaction_svg import node_reactions_to_svg

def structure_ solution to svg(
result: StructureSolution,
settings,
_config=None,

__validate_settings(settings)
default_config = _ read_config()



config = {**default_config, **(_config or {})}

viewbox = result.bounds rect(
config['sizes']['margin'],
settings.scale

)

transform = AffineTransform(sx=1, sy=-1, tx=0, ty=0)

® svg bars = bars_to_svg(result.bars, settings, config)
svg_nodes = nodes_to_svg(result.nodes, settings, config)
svg_react = node_reactions_to_svg(result, settings, config)
svg_loads = loads_to_svg(result.nodes, settings, config)

return svg.svg_content(
size=viewbox.size,

® primitives=svg_bars + svg_nodes + svg_react + svg_loads,
viewbox_rect=viewbox,
transform=transform

--snip--

Listing 18-19: Structure solution to SVG

First, we import the bars_to_svg, loads_to_svg, nodes_to_svg, and node
_reactions_to_svg functions @.

Then, inside structure_solution_to_svg, we call each of the functions to
generate the corresponding SVG code . The results are stored in svg_bars,
svg_nodes, svg_react, and svg_loads. These are concatenated in one list that we
pass to the svg_content function ®. The order is important: the SVG primi-
tives toward the end of the list will appear in front of those at the beginning
of it.

The Final Result
If you’ve followed along, your sug.py file should be similar to Listing 18-20.

import json
import pkg resources as res

from geom2d import AffineTransform

from graphic import svg

from structures.solution.structure import StructureSolution
from .bar_svg import bars_to_svg

from .load_svg import loads_to_svg

from .node_svg import nodes_to_svg
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from .reaction_svg import node_reactions_to_svg

def structure_solution_to_svg(

def

result: StructureSolution,
settings,
_config=None,

_ validate_settings(settings)
default_config = read config()

config = {**default_config, **(_config or {})}

viewbox = result.bounds rect(
config['sizes']['margin'],
settings.scale

)

transform = AffineTransform(sx=1, sy=-1, tx=0, ty=0)

svg bars = bars_to_svg(result.bars, settings, config)
svg_nodes = nodes_to_svg(result.nodes, settings, config)
svg _react = node_reactions_to_svg(result, settings, config)
svg_loads = loads_to_svg(result.nodes, settings, config)

return svg.svg content(
size=viewbox.size,
primitives=svg bars + svg nodes + svg react + svg_loads,
viewbox_rect=viewbox,
transform=transform

__read_config():
config = res.resource_string(__name__, 'config.json')
return json.loads(config)

__expected_settings = (

# scale applied to the diagram

'scale’,

# scale applied to the node displacements

'disp_scale’,

# scale applied to the load vectors

'load_scale’,

# boolean to decide whether to draw the original geometry
'no_draw_original’



def _ validate_settings(settings):
for setting in _ expected_settings:
if setting not in settings:
raise ValueError(f'"{setting}" missing in settings')

Listing 18-20: Structure solution to SVG

We have everything that we need, but before we put it to work in the
next chapter, let’s also prepare a textual representation of the solution.

From Structure Solution to Text

A visual diagram helps us understand the structural deformations; because
we color the bars depending on the stress they’re subject to, it’s also a good
way to see which bars are compressed and which are stretched. At the same
time, it may be simpler to study the numeric results in a text format, and we
may want to have them do some other calculations. The formats are comple-
mentary, and our structural analysis program will output both.

We will write the displacement of each node in a text file using the fol-
lowing format:

NODE 25
original position: (1400.0, 150.0)
displacement: (0.1133, -0.933) with norm 0.9398
displaced position: (1400.1133, 149.067)

If the node has external constraints, we want to check its reactions as well. In
this case, we can include one last line:

NODE 1
original position: (0.0, 0.0)
displacement: (0.0, 0.0) with norm 0.0
displaced position: (0.0, 0.0)
reaction: (-283.6981, 9906.9764) with norm 9911.0376

The bars will follow this format:

BAR 8 (25 — 9) : @ TENSION
Al (elongation) = 0.0026
€ (strain) = 1.045e-05
o (stress) = 209.0219

Let’s write a function that generates this plaintext representation of a
structure solution.
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Structure Solution’s String

Before we write the function that generates the plaintext representation,
let’s write a useful helper function that takes a list of strings and returns a
single string with all those strings concatenated by a “newline” character.

We want to define each of the result values as a string of its own, but
the function we’ll implement returns one and only one string, which is then
written into a file.

Let’s create a new file for this helper function. In your utils package,
create a new Python file named strings.py. This package should now have the
following contents:

utils

[- _init_ .py
lists.py
pairs.py
- strings.py

In this strings.py file, enter the function in Listing 18-21.

def list_to_string(strings: [str]) -> str:
return '\n'.join(strings)

Listing 18-21: List to string

This list_to_string function maps a list of strings into a single string
where each entry is separated from the next using the "\n' (newline)
character.

Let’s now outline the text output function’s logic. First, create a new
text.py file inside the structures/out package, which now should have the fol-
lowing files:

out
|- _init_ .py
|- bar_svg.py
|- captions_svg.py
|- load_svg.py
|- node_svg.py
|- reaction_svg.py
|- svg.py
|- text.py

|- vector_svg.py

In this text. py file, enter the code in Listing 18-22.

from structures.solution.bar import StrBarSolution

from structures.solution.node import StrNodeSolution

from structures.solution.structure import StructureSolution
from utils.strings import list to_string

© _ DECIMAL POS = 4



_ SEPARATION = ['-----mmmmmmmmmmmmoco oo Y, "\n']

def structure solution_to_string(result: StructureSolution):

® nodes_text = _nodes_to_string(result)

® bars_text = _ bars_to_string(result.bars)

O return list to_string(nodes text + _ SEPARATION + bars_text)

def _ nodes_to_string(result: StructureSolution):
pass

def _node_to_string(
result: StructureSolution,
node: StrNodeSolution

pass

def _bars_to_string(bars: [StrBarSolution]):
pass

def _ bar_to_string(bar: StrBarSolution):
pass

Listing 18-22: Structure solution fo text

In this listing, we import the StrBarSolution, StrNodeSolution, and Structure
Solution classes, as well as the list_to_string function. We define two con-
stants, one to specify the number of decimal positions we want to use to
format the resulting values, _ DECIMAL_POS @, and a separation string list,

_ SEPARATION, which we use to separate the different sections in the result
string.

Then comes the main function, structure_solution_to_string. This func-
tion receives only one parameter: the structure solution. It uses two pri-
vate functions: one to convert the string representation of the nodes ® and
another to convert the bars ®. The results are stored as list strings in the
nodes_text and bars_text variables. These lists are concatenated with the
_ SEPARATION strings in the middle and passed to list_to_string @.

After this main function, we define the rest of the private functions, but
they’ve yet to be implemented. Let’s do that now.

The Nodes

Let’s start with the nodes. Fill the _nodes_to_string and _ node_to_string
functions with the code in Listing 18-23.
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--snip--

def _ nodes_to_string(result: StructureSolution):
return [
®  node_to_string(result, node)
for node in result.nodes

def _node_to_string(
result: StructureSolution,
node: StrNodeSolution
):
® orig pos = node.original pos.to formatted str(_DECIMAL POS)
displacement = node.global disp.to_formatted str(__DECIMAL_POS)
disp_pos = node.displaced pos.to_formatted str(__DECIMAL_POS)

® strings = [
f'NODE {node.id}',
f'\toriginal position: {orig pos}',
f'\tdisplacement: {displacement}’,
f'\tdisplaced position: {disp_pos}'

® if node.is_constrained:
react = result.reaction_for_node(node)
react_str = react.to_formatted str(_ DECIMAL_POS)
strings.append(f'\treaction: {react_str}')

@® return list to string(strings) + '\n'

--snip--

Listing 18-23: Nodes to text

The first function, _ nodes_to_string, uses a list comprehension to map
each node in the result to its textual representation, for which it uses the
_ node_to_string function @. This function requires not only the node but
also the entire structure object as parameters. Recall that the reaction force
of a node is computed by the structure solution instances, not by the nodes
themselves.

The _ node_to_string function first obtains the formatted strings for
the node’s original position @, the global displacement vector, and the dis-
placed position. We use the to_formatted_str method from the Point and
Vector classes to handle the point coordinates formatting.



Next, we declare a list, strings ®, where we place the strings we just ob-
tained. Note that, except for the first one, which serves as header, the strings
all start with the tab (\t) character. With this, we achieve the nice formatting
we defined earlier:

NODE 2
original position: (200.0, 0.0)
displacement: (0.0063, -0.1828) with norm 0.1829
displaced position: (200.0063, -0.1828)

Next, we generate the reaction force string if the node is externally con-
strained @. For this, we first use the structure solution class to compute
the reaction for the given node, then format it using the to_formatted_str
method, and lastly append it to the strings list.

The last step is to convert the obtained string list into a single string us-
ing the helper list_to_string function with a newline character appended to
the end ®.

The Bars

Let’s now fill in the functions for the bars. We’ll use some UTF-8 characters
to make the text a bit more visual. These characters are optional; you can
decide not to add them in your code and just go with the labels. If you de-
cide to use them, we’ll explain how to do this in the section “The Unicode
Characters” on page 18.

Enter the code in Listing 18-24.

--snip--

def _bars_to string(bars: [StrBarSolution]):
O return [_ bar_to_string(bar) for bar in bars]

def _ bar_to_string(bar: StrBarSolution):
® nodes_str = f'{bar.start node.id} — {bar.end node.id}'
type str = '@ TENSION' if bar.stress >= 0 else '© COMPRESSION'
elongation = round(bar.elongation, _ DECIMAL_POS)
strain = '{:.3e}'.format(bar.strain)
stress = round(bar.stress, _ DECIMAL POS)

® return list to string([
f'BAR {bar.id} ({nodes str}) : {type_ str}',
f'\tAl (elongation) = {elongation}',
f'\te (strain) = {strain}',
f'\to (stress) = {stress}\n'
D

Listing 18-24: Bars to text
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The _ bars_to_string function uses a list comprehension to map each bar
in the list to its textual representation @. This text is produced by the second
function, _bar_to_string.

In _ bar_to_string, we first prepare some strings @ that we later return
concatenated using the list_to_string function ® and nodes_str indicates the
bar’s node IDs, with a — character separating them.

The type_str indicates whether the bar is in traction or compression,
depending on the sign of the bar’s stress. We’re using the @ symbol to dec-
orate the TENSION text and © for the COMPRESSION text. This detail makes the
result stand out more to the eye.

Then comes the elongation, strain, and stress strings. These are the bar’s
result values formatted to have _ DECIMAL_POS decimal positions. Here strain
is the exception; instead of rounding it, we want to use scientific notation
with three decimal positions ('{:.3e}"). The strain is usually a small value,
orders of magnitude smaller than the stress, so if we try to round it to, say,
four decimal positions, the result will still be zero: 0.0000$. Using the '{:.3e}'
format, we’ll get things like 1.259e-05 instead.

When formatting values in our engineering applications, we have to be
aware of the orders of magnitude. A wrongly formatted value, where the
precision required is lost, renders the app useless.

The Unicode Characters

The icons we’re using in the code, —, A, €, @, and &, are all Unicode char-
acters. Every operating system has a way of inserting these characters. If you
do a quick Google search, you should be able to find how to access them in
your OS. For instance, macOS uses the CMD-CTRL-spacebar key combina-
tion to open the symbols dialog, which is how I inserted those in the code.

You may also insert these characters using their code in a Python string
like so:

>>> "\u2295 is a Unicode symbol’
'@ is a Unicode symbol'

If you opt for this alternative, you’ll need to replace the characters in the
listings with their code. Table 18-2 shows the characters we’ve used and their
Unicode code.

Table 18-2: Unicode Characters

Character Unicode Usage

D \u2295 Tension stress

o \u2296 Compression stress

- \u279c Separates the node IDs of a bar (1 — 2)
A \u0394 Length increment (Al)

€ \u03f5 Strain

o \u03c3 Stress




Putting It All Together
If you’ve followed along, your result should look like Listing 18-25.

from structures.solution.bar import StrBarSolution

from structures.solution.node import StrNodeSolution

from structures.solution.structure import StructureSolution
from utils.strings import list to_string

__DECIMAL_POS = 4
_ SEPARATION = ['---mmmmmmm oo Y, '\n']

def structure solution to_string(result: StructureSolution):
nodes_text = _ nodes_to_string(result)
bars_text = _ bars to string(result.bars)
return list to_string(nodes_text + _ SEPARATION + bars_text)

def _nodes_to_string(result: StructureSolution):
return [
__node_to_string(result, node)
for node in result.nodes

def _node_to_string(
result: StructureSolution,
node: StrNodeSolution

orig pos = node.original pos.to_formatted str(__ DECIMAL_POS)
displacement = node.global disp.to_formatted str(__ DECIMAL_POS)
disp_pos = node.displaced pos.to formatted str(_DECIMAL_POS)

strings = [
f'NODE {node.id}',
f'\toriginal position: {orig_pos}',
f'\tdisplacement: {displacement}',
f'\tdisplaced position: {disp_pos}'

if node.is_constrained:
react = result.reaction_for node(node)
react str = react.to_formatted str(_DECIMAL_POS)
strings.append(f'\treaction: {react str}')

return list to_string(strings) + '\n'

Producing an SVG Image and Text File
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def _bars_to_string(bars: [StrBarSolution]):
return [_ bar_to_string(bar) for bar in bars]

def _bar_to_string(bar: StrBarSolution):
nodes_str = f'{bar.start_node.id} — {bar.end_node.id}'
type str = '@ TENSION' if bar.stress >= 0 else '©& COMPRESSION'
elongation = round(bar.elongation, _ DECIMAL_POS)
strain = '{:.3e}'.format(bar.strain)
stress = round(bar.stress, _ DECIMAL_POS)

return list to_string([
f'BAR {bar.id} ({nodes str}) : {type str}',
f'\tAl (elongation) = {elongation}',
f'\te (strain) = {strain}',
f'\to (stress) = {stress}\n'
D

Listing 18-25: Structure solution to text

In less than 70 lines of code we’ve written a function capable of generat-
ing a text representation of the structure solution model.

Summary

In this chapter, we implemented the code that creates vector diagrams repre-
senting the structure solution model. We split the resulting drawing process
into chunks to make the code more manageable, and then we put it all to-
gether in the svg.py file, specifically, in the structure_solution_to_svg function.

We then implemented a function, structure_solution_to_string, that pro-
duces a plaintext representation of the structure solution.

Now we have everything we need to put our application together. In the
final chapter, we’ll do just that.
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ASSEMBLING OUR APPLICATION

We’ve implemented all the pieces of our

truss structure application, so now it’s time
to assemble them into something we can

run from the command line. The application

we’ll write this chapter will parse an input file into the
structure model, use the solve structure method from
the Structure class to assemble the solved structure,
and then use the functions we implemented in the pre-
vious chapter to create an SVG diagram and text file
describing the solution.

A General Overview

To get an overview of how we’ll assemble the different modules into a final
application, let’s take a look at Figure 19-1. This figure illustrates the stages
that take place when our application is executed.
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Figure 19-1: Structure resolution steps

First, our application is given a text file defining the structure. This file
is formatted according to the rules we defined in Chapter 17. In the first
step, we’ll read the contents of the file into a string that’s then parsed into a
model built from our structure classes.

Once the structure model is constructed, the Structure class’s solve
_structure method does the analysis and creates a structure solution model.
If you recall, the StructureSolution class is the top-level entity representing
the solution.

The last step is to save the result in the form of a diagram (into an SVG
file) and in the form of a text report (into a plaintext file). Thus, our pro-
gram’s output will be two files.

Before we can do anything, though, we first need to set up a new direc-
tory for our application.

First, let’s create a new package in the apps directory. Name it truss_structures.
Your directory should look like the following:

apps
|- aff_transf motion

[ |- ...

|- circle_from points

[ |- ...

|- truss_structures

| |- _init_ .py

If you created the package folder as a regular folder, don’t forget to in-
clude an empty __init__.py file to make it a Python package. In the package,
let’s now add the main file. Create a new Python file named main.py, and in
it, simply add the following lines:

if _name__ == '_main_':
print('Main')




Your truss_structures package should now contain two files:

truss_structures
|- __init_ .py
|- main.py

In this chapter, we won’t be using a run configuration inside our IDE;
we’ll instead rely on a bash script that wraps the program. Let’s prepare the
script now so we can use it throughout the chapter. At the top of the project
directory, in the Mechanics folder, create a new bash file and name it truss.sh.
Enter the code in Listing 19-1.

#!/usr/bin/env bash
PYTHONPATH=$PWD python3 apps/truss_structures/main.py $@

Listing 19-1: Bash wrapper script

We have to change the permissions on the file to make it executable. From
the shell, run the following:

$ chmod +x truss.sh

If you run this script from the shell,

$ ./truss.sh

you should see 'Main' printed out. We're all set up; let’s start coding!

Input Arguments

Our command line application is going to accept a few arguments: the over-
all scale of the drawing, the scale of the node displacements, the scale of the
loads, and whether the original geometry should be drawn (see Table 18-1
on page 497 for a refresher).

We pass these arguments to our program like so:

$ ./truss.sh --scale=1.25 --disp-scale=100 --load-scale=0.1 --no-draw-original

We want to read these arguments, parse their values, and use a default
value if the user doesn’t provide a value. We can do this using a handy tool
from Python’s standard library: argparse. Argparse will also generate help
messages about the different arguments for the user and validate the passed-
in values.

Create a new file in the apps/truss_structures package named arguments.py.
Your truss_structures package should now look like this:

truss_structures

|- _init_ .py
|- arguments.py
|- main.py

Enter the code in Listing 19-2.
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import argparse

def parse_arguments():
O parser = argparse.ArgumentParser(
description="'Solves a truss structure'

)
® parser.add argument(
'--scale',
help="scale applied to the geometry (for plotting)',
default=2,
type=float

)

® parser.add_argument(
'--disp-scale’,
help="'scale applied to the displacements (for plotting)',
default=500,
type=float
)

® parser.add_argument(
'--load-scale’,
help="scale applied to the loads (for plotting)',
default=0.02,
type=float
)

® parser.add_argument(
'--no-draw-original’,
help="Should draw the original geometry?',
action="store_true’

)

® return parser.parse_args()

Listing 19-2: Parsing the command line arguments

In this file, we define a function named parse_arguments. This function
configures an instance of the ArgumentParser @ class to identify our argu-
ments and parse them. We pass the constructor a description of what our
program does. This will be used as a help message if the user passes in the
--help flag, like so:

$ ./truss.sh --help
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This provides the user with the following description:

usage: main.py [--help] [--scale SCALE] [--disp-scale DISP_SCALE]
[--load-scale LOAD_SCALE] [--no-draw-original]

Solves a truss structure

optional arguments:

-h, --help show this help message and exit
--scale SCALE scale applied to the geometry (for plotting)
--disp-scale DISP_SCALE

scale applied to the displacements (for plotting)
--load-scale LOAD_ SCALE

scale applied to the loads (for plotting)
--no-draw-original Should draw the original geometry?

The first argument we add is --scale @; we give it a help message and a
default value of 2, and we set its type to be a floating-point number.

Then comes the --disp-scale argument & with a default value of 500.
Don’t forget that the displacements are usually small compared to the size
of the bars, so we’ll need a big scale to appreciate them. Each structure solu-
tion has a different order of magnitude for the displacements, so this scale is
better adjusted by trial and error.

Next comes the --load-scale argument @ with a default value of 0.02.
This scale will shrink the loads so that they fit inside the drawing.

Last comes the --no-draw-original flag ®, which controls whether we
draw the original structure’s geometry. If the flag isn’t present in the argu-
ments, we’ll draw the original geometry but use a lighter color to keep the
focus on the solution drawing. This will look something like Figure 19-2.

Figure 19-2: Drawing the original geometry (in a lighter color)

The --no-draw-original flag is different than the other parameters: it’s
not expecting an associated value; we only care whether the flag appears
in the parameters list. We add this flag to the parser using the add_argument
method with an action parameter. When this argument is found in the argu-
ments list, an action is executed. In this case, we use the 'store_true' action,
which simply saves a True value in the argument if the flag is present and a
False otherwise. There are a few actions defined in the argsparse package,
which you can browse in the documentation. We’ll need only 'store_true'.
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The last line returns the result of calling the parse_args method ®. This
method reads the arguments from sys.argv, which is where Python stores the
arguments passed to a program, and parses the values following the rules we
defined earlier.

The result is a dictionary-like structure with the values for the parame-
ters. As we’ll see later, the names for the keys of the dictionary are the same
as the arguments, but without the initial dashes (--) and with underscores in-
stead of the middle dashes. For example, --load-scale becomes load_scale, a
much more Pythonic name for a variable. In addition, the dash isn’t allowed
for variable names in Python.

Let’s now write the code that generates the application’s output files.

Generating the Output

Chapter 19

We prepared two functions in the previous chapter that generate both the
SVG and text solution representations. We’ll use these functions in the app
and write their results to an external file.

First, create a new file named output.py. Your truss_structures package
should now look like the following:

truss_structures
|- __init_ .py
|- arguments.py
|- main.py
|- output.py

In output.py, enter the code in Listing 19-3.

import os

from structures.out.svg import structure_solution_to_svg
from structures.out.text import structure_solution_to_string
from structures.solution.structure import StructureSolution

def save_solution_to_svg(solution: StructureSolution, arguments):
© solution_svg = structure solution to svg(solution, arguments)
_ write_to_file('result.svg', solution_svg)

def save_solution_to_text(solution: StructureSolution):
® solution_text = structure solution to string(solution)
__write to file('result.txt', solution text)

def _write_to_file(filename, content):
® file path = os.path.join(os.getcwd(), filename)
® with open(file path, 'w') as file:



file.write(content)

Listing 19-3: Handling the structure output

We define three functions: one for saving the solution into an SVG im-
age file (save_solution_to_svg), another one that saves the solution in a text
file (save_solution_to_text), and a third function that creates a new file and
saves it in the current working directory (__write_to_file).

The save_solution to svg function calls the structure solution to svg func-
tion from the previous chapter @ and passes the generated SVG string to
the _ write_to_file function. Note that we pass the command line argu-
ment’s dictionary to this function; these are the settings we use to gener-
ate the SVG vector image. For this to work, we have to make sure the com-
mand line arguments are parsed using the same name as the settings ex-
pected by structure_solution_to_svg. After the SVG diagram is created, we
use _write_to_file to create a file named result.svg in the program’s working
directory.

The save_solution_to_text function is similar to save_solution_to_svg: it
produces the text result using the structure_solution_to_string function &
and then writes the results to a result.txt file.

In _write_to_file, the first thing we do is figure out the file path by
joining the current working directory with the filename (which should al-
ready include the extension). We then store the file path in the file_path
variable . Lastly, we use the with block to open the file in write mode ('w'),
which creates the file if it doesn’t exist, and then we write the passed-in
content string to the file @.

We’re almost done! We just need to stitch the input, resolution, and out-
put together.

The Main Script

Let’s head back to the main.py file. Open it and enter the code in Listing 19-
4 (you can delete the print('Main') line we wrote earlier).

import sys
import time

import apps.truss_structures.output as out

from apps.truss_structures.arguments import parse_arguments

from structures.parse.str parse import parse structure from lines
if _name__ == "'_main_':

O arguments = parse_arguments()
® lines = sys.stdin.readlines()

start_time = time.time()

® structure = parse_structure_from lines(lines)
® solution = structure.solve structure()
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out.save_solution_to_svg(solution, arguments)
out.save_solution to_text(solution)

end_time = time.time()
elapsed_secs = end_time - start_time
@® print(f'Took {round(elapsed secs, 3)} seconds to solve')

Listing 19-4: Main script

In the “if name is main” block, we parse the arguments passed to the
script from the command line. To do this, we use our parse_arguments func-
tion @, which we import from the arguments.py module. If this parsing fails,
because a required flag was left out or something similar, the execution
halts, and a helpful message is sent to the user.

Once the arguments are parsed, we read all of the lines passed to the
program via the standard input and save them in the lines variable @.

Next, we parse those passed-in lines to create the structure model using
the parse_structure_from_lines function ® we developed in Chapter 17. Once
we have the structure model, we call its solve_structure method to compute
the solution @.

Then, we call the two functions we wrote in the previous section to pro-
duce the output files: save_solution_to_svg and save_solution_to_text.

Lastly, we calculate the time the program took to run to have it as a ref-
erence and compare how long it takes to solve structures of different sizes.
We stored the time in the start_time variable before we started to parse and
compute the structure. We also stored the time in end_time just after generat-
ing the output files. Subtracting start_time from end_time yields the elapsed
seconds, the amount of time our app took to produce the results. We print
this resulting time in seconds before the application execution finishes .

I’'m sure you're as excited as I am to try our new app. Let’s write a struc-
ture file by hand and solve it.

Trying the App

Chapter 19

Let’s create a structure file to try the app. Figure 19-3 illustrates four com-
mon truss configurations found in bridges. From these standard designs,
we’ll pick the Warren typology for our first test. We’ll write a file by hand
defining a structure following this configuration of the bars in the truss.
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Figure 19-3: Truss typologies

Create a new file named warren.ixt inside apps/truss_structures. Enter the
following structure definition:

# Warren truss with 4 spans

nodes

lower nodes

: (0.0, 0.0) (xy)

: (400.0, 0.0) ()

: (800.0, 0.0) ()

: (1200.0, 0.0) ()
: (1600.0, 0.0) (y)
upper nodes

: (400.0, 300.0) ()
: (800.0, 300.0) ()
: (1200.0, 300.0) ()

0O ~N O H ULV A WN R H

loads

6 -> (2500.0, -5000.0)
7 -> (2500.0, -5000.0)
8 -> (2500.0, -5000.0)
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bars
# horizontal bars

1: (1 -> 2) 20.0 20000000.0
2: (2 -> 3) 20.0 20000000.0
3: (3 -> 4) 20.0 20000000.0
4: (4 -> 5) 20.0 20000000.0
5: (6 -> 7) 20.0 20000000.0
6: (7 -> 8) 20.0 20000000.0

# vertical bars

7: (2 -> 6) 15.0 20000000.0
8: (3 -> 7) 15.0 20000000.0
9: (4 -> 8) 15.0 20000000.0
# diagonal bars

10: (1 -> 6) 30.0 20000000.0
11: (6 -> 3) 30.0 20000000.0
12: (3 -> 8) 30.0 20000000.0
13: (8 -> 5) 30.0 20000000.0

Alternatively, to avoid writing all this yourself, you may copy and paste the
contents of the file provided in the code that accompanies the book. Fig-
ure 19-4 might help you visually understand how the nodes and bars are ar-
ranged in our Warren structure example file.

6 (400, 300) 7 (800, 300) 8 (1200, 300
[67-8) ]

10,0 5 (1600, 0)

HEZ) 22-3) 334

2 (400, 0) 3(800,0) 4(1200, 0)

414-3)

Figure 19-4: Warren truss structure to test our app

Now it’s time to solve this structure and see the beautiful results our app
produces. From the shell, run the following:

$ ./truss.sh --scale=1.25 --disp-scale=250 < apps/truss_structures/warren.txt

This should print to the shell:

Took 0.058 seconds to solve

In the previous command, we execute the bash script that wraps our
code and passes it two arguments: a global drawing scale of 1.25 and a dis-
placement scale of 250. The other arguments will use their default values,
which if you recall are a load scale of 0.02 and False for the --no-draw-original
flag.



Two new files should have appeared in your project, at the same level
as the truss.sh bash file: result.sug and result.txt. If you open the second, the
textual representation of the solution, you’ll see something like Listing 19-5.

NODE 1
original position: (0.0, 0.0)
displacement: (0.0, 0.0) with norm 0.0
displaced position: (0.0, 0.0)
reaction: (-7513.0363, 6089.8571) with norm 9671.1981

--snip--
NODE 8
original position: (1200.0, 300.0)

displacement: (0.0185, -0.0693) with norm 0.0717
displaced position: (1200.0185, 299.9307)

BAR 1 (1 — 2) : @ TENSION
Al (elongation) = 0.0156

€ (strain) = 3.908e-05
o (stress) = 781.5951
--snip--

BAR 13 (8 — 5) : © COMPRESSION
Al (elongation) = -0.0124
€ (strain) = -2.473e-05
o (stress) = -494.5523

Listing 19-5: Warren truss plaintext solution

The plaintext solution report is useful for checking all the solution val-
ues. For instance, you can check the reactions in nodes 1 and 5 (the exter-
nally constrained nodes). The node with an ID of 1 (NODE 1), which is ex-
ternally constrained in both the horizontal and vertical directions, has an
approximate reaction force of B = (-7513,6090). The displacement of
this node is necessarily zero. The node with an ID of 5 (NODE 5), which is
constrained only in the vertical direction, has a displacement vector of % =
(0.055,0.0).

Take a look at the section of each bar section now. You can readily iden-
tify the compressed and elongated bars and check their elongation, strain,
and stress values. This report gives us all the data we need if we want to ana-
lyze the structure under the given loads.

The best part is inside the result.sug file. Open the resulting image in
your favorite browser. Your result should look like Figure 19-5.
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Figure 19-5: Warren solution diagram

As you can see on your screen, the bars are colored in red if subject to
compression and green if subject to tension. The captions aligned to the
bars indicate their stress. The original geometry is drawn in the background
using a light-blue color, which gives us a better visualization of how the loads
deform the structure.

You can view SVG images in PyCharm, but if we try to open and visualize our dia-
grams inside the IDE, you’ll be surprised to see them wpside down. Don’t panic: you
haven’t gotten it wrong. It’s just that (as of the 2021. 1 version) PyCharm doesn’t
support the transform attribute we added to the SVG, which, if you recall from ear-
lier, we require to flip the y-axis. I recommend using a browser instead.

Can you see the difference in the bars’ line thickness? Using line thick-
ness to represent the cross section of the bars helps us identify the bars of
the structure that can withstand a greater load. The stress labels we added
to the bars allow us to readily inspect the stress on each bar, giving us one of
the most important pieces of information upfront. We can gather quite a bit
of information from just a single glance at our diagram,; this is precisely the
value of these sorts of graphical representations.

To understand what the arguments to our program do, let’s play around
with them and see what kind of results we can get.

Playing with the Arguments
Let’s first check what happens if we pass the --no-draw-original flag:

$ ./truss.sh --scale=1.25 --disp-scale=250 --no-draw-original
< apps/truss_structures/warren.txt

If you open the result.svg image in your favorite browser, you should see
the image in Figure 19-6.
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Figure 19-6: Warren solution diagram without original geometry

Without the original geometry we can see the deformed structure with
less clutter; at the same time, we cannot see how the nodes and bars are
moving relative to their original position.

What about using a larger displacement scale? Let’s try the following:

$ ./truss.sh --scale=1.25 --disp-scale=500
< apps/truss_structures/warren.txt

Using a displacement scale of 500 exaggerates the deformations so we
can see them clearly. The diagram should now look like Figure 19-7.
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Figure 19-7: Warren solution diagram with a larger displacement scale
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We haven’t used the loads diagram yet; we’ve been using the default
value of 0.02. Let’s try to edit this value to see its effect:

$ /truss.sh --scale=1.25 --disp-scale=400 --load-scale=0.01
< apps/truss_structures/warren.txt

If we use a load scale of 0.01, half of what we’ve used so far, you can see
that the load vectors’ lengths have shrunk, as in Figure 19-8.
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Figure 19-8: Warren solution diagram with a smaller load scale

As you can see, the load scale is important for the correct visualization
of the load vectors. A small value shrinks the vectors so much that there’s no
space for their labels to be nicely placed. You can try a larger load scale, say
0.5. The labels should disappear from the diagram. In this case, the vectors
we draw are so long that their centers lie outside the drawing bounds, and
therefore, the load caption that we place toward the start point is simply not
visible.

Solving a Large Structure

In the apps/truss_structures directory of the code distributed with the book
is a file, baltimore.txt, that defines a Baltimore truss structure with 10 spans.
Copy this file into your project, in the same folder. Alternatively, you can
create and write the file by hand (Listing 19-6):

# Baltimore truss with 10 spans

nodes

# lower nodes

: (0.0, 0.0) (xy)
: (200.0, 0.0) ()
: (400.0, 0.0) ()
: (600.0, 0.0) ()

H w N R



(800.0, 0.0) ()

(1000.0,
(1200.0,
(1400.0,
(1600.0,

: (1800.0,
: (2000.0,
: (2200.0,
: (2400.0,
: (2600.0,
: (2800.0,
: (3000.0,
: (3200.0,
: (3400.0,
: (3600.0,
: (3800.0,
21:

(4000.0,

0.0)
0.0)
0.0)
0.0)

0
0
0
0

-0) ()
-0) ()
0) ()
0) ()
0) ()
0) ()

.0) ()
.0) ()
.0) ()
.0) ()
.0) (y)

# middle nodes
(200.0, 150.0) ()
(600.0, 150.0) ()

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

(1000.0,
(1400.0,
(1800.0,
(2200.0,
(2600.0,
(3000.0,
(3400.0,
(3800.0,

150.
150.
150.
150.
150.
150.
150.
150.

# upper nodes
(400.0, 300.0) ()
(800.0, 300.0) ()

32:
33:
34:
35:
36:
37:
38:
39:
40:

(1200.0,
(1600.0,
(2000.0,
(2400.0,
(2800.0,
(3200.0,
(3600.0,

loads
1 -> (0.0, -500.0)
2 -> (0.0, -500.0)
--snip--
40 -> (0.0, -500.0)

bars

300.
300.
300.
300.
0) O

300.

0) O

300

300

# zig-zag bars

0
0
0
0
0
0
0.0) ()
0
0
0
0
0

0) O
0) O
0) O
0) O
0) O
0) O
0) O
0) O

0) O
0) O
0) O
0) O

0) O
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20:
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24
25

(1 -> 22)
(22 -> 3)
(3 -> 23)
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(5 -> 24)
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(9 -> 26)
11)

: (26
(11
: (27
: (13
: (28
¢ (15
: (29
: (27
: (30
: (19
(31

: (32
: (32
1 (33
1 (34
1 (35

# right

26
27
28
29
30

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

: (37
: (38
1 (39
: (40
: (40

(2
(€]
(4
(5
(6
(7
(8
(9

(11
(12
(13
(14
(15

->
->
->
->

->
->

->
->
->
->
->
->
->
->

->
->
->
->
->

27
13

20.
20.
20.
20.
20.
20.
20.
20.
20.

)
)

28)
15)
29)
17)
30)
19)
31)
21)
# left diagonal bars
22)
23)
24)
25)
26)
diagonal bars
-> 27)

-> 28)

-> 29)

-> 30)

-> 31)

# vertical bars

22)
32)
23)
33)
24)
34)
25)
35)

(10 -> 26)

36)
27)
37)
28)
38)

©O O O O O O o o o

N
o
O O O O O o o o o o
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45: (16 -> 29) 20.0 20000000.
46: (17 -> 39) 20.0 20000000.
47: (18 -> 30) 20.0 20000000.
48: (19 -> 40) 20.0 20000000.
49: (20 -> 31) 20.0 20000000.
# lower horizontal bars

o O O O o

50: (1 -> 2) 20.0 20000000.0
51: (2 -> 3) 20.0 20000000.0
52: (3 -> 4) 20.0 20000000.0
53: (4 -> 5) 20.0 20000000.0
54: (5 -> 6) 20.0 20000000.0
55: (6 -> 7) 20.0 20000000.0
56: (7 -> 8) 20.0 20000000.0
57: (8 -> 9) 20.0 20000000.0

58: (9 -> 10) 20.0 20000000.0

59: (10 -> 11) 20.0 20000000.0
60: (11 -> 12) 20.0 20000000.0
61: (12 -> 13) 20.0 20000000.0
62: (13 -> 14) 20.0 20000000.0
63: (14 -> 15) 20.0 20000000.0
64: (15 -> 16) 20.0 20000000.0
65: (16 -> 17) 20.0 20000000.0
66: (17 -> 18) 20.0 20000000.0
67: (18 -> 19) 20.0 20000000.0
68: (19 -> 20) 20.0 20000000.0
69: (20 -> 21) 20.0 20000000.0

# upper horizontal bars

70: (32 -> 33) 20.0 20000000.0
71: (33 -> 34) 20.0 20000000.0
72: (34 -> 35) 20.0 20000000.0
73: (35 -> 36) 20.0 20000000.0
74: (36 -> 37) 20.0 20000000.0
75: (37 -> 38) 20.0 20000000.0
76: (38 -> 39) 20.0 20000000.0
77: (39 -> 40) 20.0 20000000.0

Listing 19-6: Baltimore truss structure definition

Note that, in this code, we apply the same load to every node, but we’ve left
out some of the load lines. If you write this by hand, you should include
those load definition lines.

Let’s pass the file defining this large structure to our program:

$ ./truss.sh --scale=0.75 --disp-scale=100 --load-scale=0.2
< apps/truss_structures/baltimore.txt
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The output produced by the program should look something like the
following:

Took 0.106 seconds to solve

Even for the Baltimore typology with 40 nodes and 77 bars, the compu-
tation time is a fraction of a second. If you open the solution.svg file, you’ll
see something like Figure 19-9.

Figure 19-9: Baltimore solution diagram

Now that you've gotten this far, spend some time playing with your ap-
plication. Try with different structures and parameters to check the results.

Summary

Chapter 19

In this chapter, we took all of the structural analysis modules we’ve been
building in the previous chapters and assembled them into a command line
application that solves truss structures. Our app reads structure files from
the standard input and produces two result files: one is a vector diagram
representing the solution, and the other is a plaintext report including all
the relevant values.

This is the last chapter in Part V of the book. It’s been an intense couple
of chapters, but I hope the result has paid off. We’ve made up a format for
files that defines a structure, written a function to parse it into our model,
implemented the resolution algorithm that generates the solution model,
coded a way to export this solution into a diagram and text report, and, fi-
nally, assembled all of it into a final application.

We chose an application that solves truss structures to exemplify the
process of writing engineering applications, but we could have chosen any
other topic—heat transfer, fluid dynamics, beam analysis, and so on. The
process and techniques are the same. The knowledge you’ve acquired should
empower you to write code that works with any engineering domain you
might encounter.

This is also the last chapter in the book. I hope you’ve enjoyed learn-
ing about how to build engineering applications, split them into modules,
and, of course, test them. All that’s left is for you to start creating your own
apps. As mentioned in the introduction of the book, the only way to become
an expert is by doing: build many apps, learn from your mistakes, and then
build some more. Good luck!
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#* (dictionary unpacking), 498
% (modulo), 134, 296

** (power), 69

> (summation), 366

A

abstraction, 299

affine space, 172

affine transformation, 172-174
augmented matrix, 173
concatenation, 181

identity transformation, 174, 193

inverse, 185

rotation, 190

scaling, 187
analytic solution, 290
animation, 288

frame, 288
architecture, software, 234
attribute, class, 37
attribute chaining, 104

backward substitution, 364, 377
balanced system of forces, 389
binary operator
intersection, 160
bisector, 128
bitmap image, 204
browser
developer tools, 205
byte string, 213

C

Cholesky decomposition, numerical

method, 365
circle
center, 148
chord, 155

INDEX

radius, 148
class, 37

_dict_, 69

__init_, 38

instantiation, 37

self, 38

clean code, 155
coefficient matrix, 360
collections, 11-20

dictionary, 18

list, 15

set, 11

tuple, 12
collinear forces, 397
color

#irrggbbaa, 206
column vector, 340
command

cat, b4

cd, 52

chmod, 262

echo, b3

1s, 52

mkdir, b3

pwd, 51

m, b4

sudo, b6

touch, b3

whoami, 51
command line, 49

absolute path, 52

argument, See option

option, 54

processor, 49

program, 233

relative path, 52

standard input, 58

standard output, 58
compound inequality, 158
cross product, 79
Crout, numerical method, 363
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Index

D

debugger, xxxix-xliii
breakpoint, x1
console, xliii
run configuration, xli
stack frame, xlii
Step into, xli
Step over, xli
decoding, 213
decorator
property, 39
decoupled, 308
degrees of freedom, 397
Demeter, law of, See principle of least
knowledge
destructuring, 20-21
deterministic, 99
differential equation, 290
direction vector, 103
direction versor, 103
docstring, 9
documentation
Sphinx, 10
domain logic, 233
domain of knowledge, 160
Doolittle, numerical method, 363
dot product, 77
dunder methods, See magic methods
duplication of code, See knowledge
duplication
dynamic dispatching, 42

edge case, 143
eigenvalues, 362
environment variable, 262
PWD, 262
PYTHONPATH, 262
€rrors
AttributeError, 41
EOFError, 317
IndexError, 15, 341
ValueError, 133
ZeroDivisionError, 143
Fuler’s numerical method, 290
event driven, 267
event handler, 267
exception
user-defined, 111

F

f-strings, 89
factory function, 89
fail fast, 109
force
axial, 390
axial component, 78
compression, 390, 393
normal, See axial
shear, 391
shear component, 83
tangent, See shear
tensile, 393
tension, 390
forward substitution, 364, 375
fracture strain, 394
frames per second (FPS), 290
free body diagram, 288
frictionless union, 396
function
access modifiers, 29
higher-order, 27-29
inside function, 28
lambda, 26-27
predicate, 30
pure, 24-25
reducer, 32
shared state, 25
side effect, 25
functional programming, 23-36
functools
reduce, 32-35

G

geometry
¢ parameter, 107
circle, 148-149
line, 124
parallelogram, 164
point, 67-71
polygon, 132-133
rectangle, 155-157
segment, 101
vector, 71-85
versor, 75, 90

Git, xxix

GitHub, xxix

global
dict, 18



enumerate, 14, 16
filter, 30-31
help, 10

len, 11,13, 15
list, 15

map, 31-32
range, 146

set, 11

str, 88

tuple, 13

hard-coding, 248
Hooke’s law, 392

IDE, See integrated development
environment
immutability, 23, 25-26
immutable, 12, 219
import
alias, 8, 430
relative, 9, 240
__init__.py, 4
InkStructure, application, 188
integrated development environment,
XXXI
integration test, 381, 447
internal forces, 389
interpolation, 192
ease-in-out, 194
iterator, 30

J
JSON format, 248

K

keyword
class, 37
def, 24
lambda, 26
None, 120
knowledge duplication, 160

L

lambda calculus, 26

linear equation, 359
coefficients, 360
free term, 360
unknown, 360
linear interpolation, 193
linear transformation, 172
Linux
distro, 50
superuser, 56
list
append, 16
flatten, 280
slice, 16-17
list comprehension, 35-36
LU factorization, 362

M

magic methods, 43
_add_, 44,70
__eq_,4b, 86
__str , 88
__sub_, 44,70

magic numbers, 110, 430
__main_, 4
main loop, See time loop
markdown, xxx
matrix, 337
identity, 184
lower-triangular, 362
main diagonal, 361
nonsingular, 363
positive definite, 362
square, 346, 361
symmetric, 361
transposed, 349
upper-triangular, 362
mechanical stress, 390
model space, 184
modular arithmetic, 135
module, 4
argparse, 531
add_argument, 533
ArgumentParser, 532
import, 5-9
Json, 249
loads, 249, 496
math, 66
copysign, 82
fabs, 66
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operator, 34
0s
getcwd, 261
os.path
normpath, 261
sys
path, 259
Tkinter, 266
unittest, 92
assertAlmostEqual, 92
assertEqual, 95
assertFalse, 97
assertIsNone, 121
assertRaises, 112
assertTrue, 97
TestCase, 92
moment
bending, 392
normal to section, 391
tangent to section, 391
torsional, 391
multiple assignment, 120
mutable, 219

__name__, 4
Newton’s third law, 423
nonlinear equation, 360
normal (perpendicular) versor, 104
number
floating point, See real
real, 65
numerical method, 359, 361
direct, 361
iterative, 361

0

object, 36

encapsulation, 346

method, 40-43

signature, 43

property, 39-40

state, 277
object-oriented programming, 36-45
open interval, 160
open source, 98
operator

** (dictionary unpacking), 498

% (modulo), 134, 296
** (power), 69
in, 11, 14, 19
overloading, 43, 70
ternary, 349
out of bounds, See errors: IndexError

P

package, 4
parser, 468
parsing, 483
pascal case, 37
pass, 293
PEP 238, 240
plaintext file, 235
plane truss, 394
point
projections, 67
polygon
centroid, 137
perimeter, 133
side, 132, 133
vertex, 132
polygonal chain, 132
principle of least knowledge, 125
proportional limit, 394
Python Enhancement Proposal, See
PEP
Python Standard Library, xxvi

raise exception, 111
raster image, See bitmap image
raw string literal, 245
ray casting algorithm, 139
reaction force, 412
readme, xxix
rectangle
origin, 155
overlap, 158
size, 155
refactoring code, 301
regex, See regular expression
regression, 91
regular expression, 241-246
capture group, 245
character set, 242
quantifier, 243



resistant element, 388
reusability, 308
rich-text editor, 205, 235
rotation

pivot, 189
row vector, 340
run configuration, xxxvi, 236

S

Scalable Vector Graphics, See SVG
scientific notation, number, 526
screen space, 184
script, 4
segment
direction, 103
set
add, 12
difference, 12
remove, 12
union, 12
side effect, 24
silent fail, 109
simulation, 289
ahead of time, 290
motion, 297
real time, 290
system, 288
time delta, 291
static equilibrium, 389, 417
stiffness, 397
stiffness matrix, 398
strain €, 393
stress o, 393
stress-strain diagrams, 393
string, 211
join, 214
structure, 388
external constraint, 395
external support, See external
constraint
node, 395
two-force member, 397
SVG, 204
attributes, 206, 215
circle, 221
group, 225
line, 217
polygon, 222
polyline, 223

rect, 219
text, 224
transform, 208
viewBox, 207
system of equations
matrix form, 337, 360

T

TDD, See Test-Driven Development
template, 210
placeholder, 210
test
assertion, 91
fixture, 98
subject, 91, 98
test double, 447
dummy, 447
fake, 447
mock, 448
stub, 448
test-driven development, 371
time loop, 291
Tkinter
Button, 269
Canvas, 270
Entry, 268
Label, 268
main loop, 267
widget, 266
traceback, 94
truss structure, 388
tuple
count, 13
index, 14
type hints, 45-46
float, 46
int, 46
str, 46

ultimate strength, See ultimate stress
ultimate stress, 394
Unicode characters, 525-526
unit testing, 90-91
three golden rules, 97-99
Controlled Environment, 98
One Reason to Fail, 98
Test Independence, 99
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Unix
prompt, See terminal
shell, See terminal
terminal, 50

unpacking, See destructuring

UTF-8 encoding, 213

utils package, 134

|

vector
angle, 81
norm, 74
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normalize, 75
parallelism, 81
perpendicularity, 81
unit, 75
vector image, 204
version control system, XxXix
visibility diagram, 308

w

winding number algorithm, 140

Windows Subsystem for Linux, 50

working directory, 259

World Wide Web Consortium (W3C),
204

wrapper class, 276

X

XML, 205
namespace, 205

Y

yield strength, See yield stress
yield stress, 394

yielding, material, 394
Young’s modulus, 392
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