
Hands-on 
Matplotlib

Learn Plotting and Visualizations  
with Python 3
—
Ashwin Pajankar



Hands-on Matplotlib
Learn Plotting and Visualizations 

with Python 3

Ashwin Pajankar



Hands-on Matplotlib

ISBN-13 (pbk): 978-1-4842-7409-5			   ISBN-13 (electronic): 978-1-4842-7410-1
https://doi.org/10.1007/978-1-4842-7410-1

Copyright © 2022 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza, 
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole 
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc 
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, 
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7409-5. For more 
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Ashwin Pajankar
Nashik, Maharashtra, India

https://doi.org/10.1007/978-1-4842-7410-1


This book is dedicated to the memory of my teacher,  
Prof. Govindarajulu Regeti  

(July 9, 1945, to March 18, 2021).

Popularly known to everyone as RGR, Prof. Govindarajulu obtained 
his B.Tech in electrical and electronic engineering from JNTU 

Kakinada. He also earned an M.Tech and a Ph.D. from IIT Kanpur.  
Prof. Govindarajulu was an early faculty member of IIIT Hyderabad 
and played a significant role in making IIIT Hyderabad the top-class 
institution that it is today. He was by far the most loved and respected 
faculty member of the institute. He was full of energy to teach and full 

of old-fashioned charm. There is no doubt he cared for every student as 
an individual, taking care to know about and to guide them.  
He taught, guided, and mentored many batches of students at  

IIIT Hyderabad (including the author of this book).



v

Table of Contents

Chapter 1: ��Introduction to Python 3�������������������������������������������������������������������������� 1

Introducing the Python 3 Programming Language������������������������������������������������������������������������ 2

History of the Python Programming Language������������������������������������������������������������������������� 2

Python Enhancement Proposals����������������������������������������������������������������������������������������������� 3

Philosophy of the Python Programming Language������������������������������������������������������������������� 3

Applications of Python�������������������������������������������������������������������������������������������������������������� 4

Installing Python on Various Platforms������������������������������������������������������������������������������������������ 4

Installing on a Windows Computer������������������������������������������������������������������������������������������� 5

Installing on Ubuntu/Debian Derivatives���������������������������������������������������������������������������������� 8

Using Python Modes���������������������������������������������������������������������������������������������������������������������� 9

Interactive Mode��������������������������������������������������������������������������������������������������������������������� 13

Script Mode���������������������������������������������������������������������������������������������������������������������������� 14

Using Python IDEs������������������������������������������������������������������������������������������������������������������������ 16

Exploring the Scientific Python Ecosystem���������������������������������������������������������������������������������� 16

Introducing Jupyter Notebook������������������������������������������������������������������������������������������������������ 17

Setting Up Jupyter Notebook������������������������������������������������������������������������������������������������������� 18

Running Code in Jupyter Notebook���������������������������������������������������������������������������������������������� 24

Anaconda������������������������������������������������������������������������������������������������������������������������������������� 28

Summary������������������������������������������������������������������������������������������������������������������������������������� 28

About the Author������������������������������������������������������������������������������������������������������ xi

About the Technical Reviewer�������������������������������������������������������������������������������� xiii

Acknowledgments����������������������������������������������������������������������������������������������������xv

Introduction������������������������������������������������������������������������������������������������������������xvii



vi

Chapter 2: ��Getting Started with NumPy������������������������������������������������������������������� 29

NumPy and Ndarrays������������������������������������������������������������������������������������������������������������������� 29

Indexing in Ndarrays�������������������������������������������������������������������������������������������������������������������� 32

Indexing in Ndarrays of More Than One Dimension��������������������������������������������������������������� 32

Ndarray Properties����������������������������������������������������������������������������������������������������������������������� 33

NumPy Constants������������������������������������������������������������������������������������������������������������������������� 34

Slicing Ndarrays��������������������������������������������������������������������������������������������������������������������������� 36

Summary������������������������������������������������������������������������������������������������������������������������������������� 37

Chapter 3: ��NumPy Routines and Getting Started with Matplotlib��������������������������� 39

Routines for Creating Ndarrays���������������������������������������������������������������������������������������������������� 40

Matplotlib������������������������������������������������������������������������������������������������������������������������������������� 45

Visualization with NumPy and Matplotlib������������������������������������������������������������������������������������� 46

Running the Matplotlib Program as a Script�������������������������������������������������������������������������������� 52

Summary������������������������������������������������������������������������������������������������������������������������������������� 53

Chapter 4: ��Revisiting Matplotlib Visualizations������������������������������������������������������� 55

Single-Line Plots�������������������������������������������������������������������������������������������������������������������������� 55

Multiline Plots������������������������������������������������������������������������������������������������������������������������������ 58

Grid, Axes, and Labels������������������������������������������������������������������������������������������������������������������ 60

Colors, Styles, and Markers��������������������������������������������������������������������������������������������������������� 66

Object-Oriented Plotting�������������������������������������������������������������������������������������������������������������� 71

Subplots��������������������������������������������������������������������������������������������������������������������������������������� 73

Summary������������������������������������������������������������������������������������������������������������������������������������� 74

Chapter 5: ��Styles and Layouts��������������������������������������������������������������������������������� 75

Styles������������������������������������������������������������������������������������������������������������������������������������������� 75

Layouts���������������������������������������������������������������������������������������������������������������������������������������� 81

Summary������������������������������������������������������������������������������������������������������������������������������������� 85

Chapter 6: ��Lines, Bars, and Scatter Plots���������������������������������������������������������������� 87

Lines and Logs����������������������������������������������������������������������������������������������������������������������������� 87

Error Bars������������������������������������������������������������������������������������������������������������������������������������� 90

Table of Contents



vii

Bar Graphs����������������������������������������������������������������������������������������������������������������������������������� 92

Scatter Plot���������������������������������������������������������������������������������������������������������������������������������� 95

Summary������������������������������������������������������������������������������������������������������������������������������������� 97

Chapter 7: ��Histograms, Contours, and Stream Plots����������������������������������������������� 99

Histograms����������������������������������������������������������������������������������������������������������������������������������� 99

Contours������������������������������������������������������������������������������������������������������������������������������������� 103

Visualizing Vectors with Stream Plots���������������������������������������������������������������������������������������� 106

Summary����������������������������������������������������������������������������������������������������������������������������������� 110

Chapter 8: ��Image and Audio Visualization������������������������������������������������������������ 111

Visualizing Images��������������������������������������������������������������������������������������������������������������������� 111

Image Masking��������������������������������������������������������������������������������������������������������������������� 116

Interpolation Methods���������������������������������������������������������������������������������������������������������������� 116

Audio Visualization��������������������������������������������������������������������������������������������������������������������� 118

Audio Processing����������������������������������������������������������������������������������������������������������������������� 122

Summary����������������������������������������������������������������������������������������������������������������������������������� 123

Chapter 9: ��Pie and Polar Charts���������������������������������������������������������������������������� 125

Pie Charts����������������������������������������������������������������������������������������������������������������������������������� 125

Polar Charts������������������������������������������������������������������������������������������������������������������������������� 129

Summary����������������������������������������������������������������������������������������������������������������������������������� 134

Chapter 10: ��Working with Colors��������������������������������������������������������������������������� 135

pcolor()��������������������������������������������������������������������������������������������������������������������������������������� 135

pcolormesh()������������������������������������������������������������������������������������������������������������������������������ 138

colorbar()������������������������������������������������������������������������������������������������������������������������������������ 140

Summary����������������������������������������������������������������������������������������������������������������������������������� 142

Chapter 11: ��3D Visualizations in Matplotlib���������������������������������������������������������� 143

Getting Ready����������������������������������������������������������������������������������������������������������������������������� 143

Plotting 3D Lines������������������������������������������������������������������������������������������������������������������������ 145

3�D Scatter Plots������������������������������������������������������������������������������������������������������������������������� 146

3�D Contours������������������������������������������������������������������������������������������������������������������������������� 147

Table of Contents



viii

Wireframes, Surfaces, and Sample Data����������������������������������������������������������������������������������� 149

Bar Graphs��������������������������������������������������������������������������������������������������������������������������������� 152

Quiver and Stem Plots��������������������������������������������������������������������������������������������������������������� 155

3�D Volumes�������������������������������������������������������������������������������������������������������������������������������� 158

Summary����������������������������������������������������������������������������������������������������������������������������������� 159

Chapter 12: ��Animations with Matplotlib���������������������������������������������������������������� 161

Animation Basics����������������������������������������������������������������������������������������������������������������������� 161

Celluloid Library������������������������������������������������������������������������������������������������������������������������� 165

Summary����������������������������������������������������������������������������������������������������������������������������������� 168

Chapter 13: ��More Visualizations with Matplotlib�������������������������������������������������� 169

Visualizing a Function as an Image and a Contour�������������������������������������������������������������������� 169

3�D Vignettes������������������������������������������������������������������������������������������������������������������������������� 171

Decorated Scatter Plots������������������������������������������������������������������������������������������������������������� 172

Time Plots and Signals��������������������������������������������������������������������������������������������������������������� 173

Filled Plots��������������������������������������������������������������������������������������������������������������������������������� 175

Step Plots����������������������������������������������������������������������������������������������������������������������������������� 176

Hexbins�������������������������������������������������������������������������������������������������������������������������������������� 178

XKCD Style��������������������������������������������������������������������������������������������������������������������������������� 178

Summary����������������������������������������������������������������������������������������������������������������������������������� 180

Chapter 14: ��Introduction to Pandas����������������������������������������������������������������������� 181

Introduction to Pandas��������������������������������������������������������������������������������������������������������������� 181

Series in Pandas������������������������������������������������������������������������������������������������������������������� 182

Basic Operations on Series�������������������������������������������������������������������������������������������������� 184

Dataframe in Pandas������������������������������������������������������������������������������������������������������������������ 185

Summary����������������������������������������������������������������������������������������������������������������������������������� 190

Chapter 15: ��Data Acquisition��������������������������������������������������������������������������������� 191

Plain-Text File Handling������������������������������������������������������������������������������������������������������������� 192

Handling CSV Files with Python������������������������������������������������������������������������������������������������� 194

Python and Excel������������������������������������������������������������������������������������������������������������������������ 196

Table of Contents



ix

Writing and Reading Files with NumPy�������������������������������������������������������������������������������������� 198

Reading the Data from a CSV File with NumPy�������������������������������������������������������������������������� 199

Matplotlib CBook������������������������������������������������������������������������������������������������������������������������ 200

Reading Data from a CSV����������������������������������������������������������������������������������������������������������� 201

Reading Data from an Excel File������������������������������������������������������������������������������������������������ 202

Reading Data from JSON����������������������������������������������������������������������������������������������������������� 203

Reading Data from a Pickle File������������������������������������������������������������������������������������������������� 204

Reading Data from the Web������������������������������������������������������������������������������������������������������� 204

Interacting with the Web API������������������������������������������������������������������������������������������������ 205

Reading Data from a Relational Database Table������������������������������������������������������������������������ 207

Reading Data from the Clipboard����������������������������������������������������������������������������������������������� 208

Summary����������������������������������������������������������������������������������������������������������������������������������� 209

Chapter 16: ��Visualizing Data with Pandas and Matplotlib������������������������������������ 211

Simple Plots������������������������������������������������������������������������������������������������������������������������������� 212

Bar Graphs��������������������������������������������������������������������������������������������������������������������������������� 213

Histograms��������������������������������������������������������������������������������������������������������������������������������� 218

Box Plots������������������������������������������������������������������������������������������������������������������������������������ 222

Area Plots����������������������������������������������������������������������������������������������������������������������������������� 230

Scatter Plots������������������������������������������������������������������������������������������������������������������������������� 232

Hexagonal Bin Plots������������������������������������������������������������������������������������������������������������������� 236

Pie Charts����������������������������������������������������������������������������������������������������������������������������������� 237

Summary����������������������������������������������������������������������������������������������������������������������������������� 241

Chapter 17: ��Introduction to Data Visualization with Seaborn������������������������������� 243

What Is Seaborn?����������������������������������������������������������������������������������������������������������������������� 243

Plotting Statistical Relationships����������������������������������������������������������������������������������������������� 245

Plotting Lines����������������������������������������������������������������������������������������������������������������������������� 251

Visualizing the Distribution of Data�������������������������������������������������������������������������������������������� 252

Summary����������������������������������������������������������������������������������������������������������������������������������� 267

Table of Contents



x

Chapter 18: ��Visualizing Real-Life Data with Matplotlib and Seaborn�������������������� 269

COVID-19 Pandemic Data����������������������������������������������������������������������������������������������������������� 269

Fetching the Pandemic Data Programmatically������������������������������������������������������������������������� 271

Preparing the Data for Visualization������������������������������������������������������������������������������������������� 275

Creating Visualizations with Matplotlib and Seaborn����������������������������������������������������������������� 276

Creating Visualizations of Animal Disease Data������������������������������������������������������������������������� 287

Summary����������������������������������������������������������������������������������������������������������������������������������� 292

Index���������������������������������������������������������������������������������������������������������������������� 293

Table of Contents



xi

About the Author

Ashwin Pajankar earned a Master of Technology in computer science engineering from 

IIIT Hyderabad and has more than 25 years of experience in the area of programming. 

He started his journey in programming and electronics at the tender age of 7 with the 

BASIC programming language and is now proficient in Assembly programming, C, C++, 

Java, shell scripting, and Python. His other technical expertise includes single-board 

computers such as the Raspberry Pi and Banana Pro, microcontroller boards such as the 

Arduino, and embedded boards such as the BBC Micro Bit. 

He is currently a freelance online instructor teaching programming to more 

than 70,000 professionals. He also regularly conducts live programming bootcamps 

for software professionals. His growing YouTube channel has an audience of more 

than 10,000 subscribers. He has published more than 15 books on programming and 

electronics.

In addition to his technology work, he volunteers for many social causes. He has 

won several awards at his university and past workplaces for his community service. 

He has also participated in many industry–institute linkage programs, connecting his 

past employers with his alma maters. During the COVID-19 pandemic (which was 

unfolding at the time of writing of this book), he participated in and led many initiatives 

to distribute essential supplies and medicine to needy people in his local community.



xiii

About the Technical Reviewer

Joos Korstanje is a data scientist with more five years of industry experience in 

developing machine learning tools, especially forecasting models. He currently works 

at Disneyland Paris where he develops machine learning for a variety of tools. He is the 

author of the book Advanced Forecasting with Python.



xv

Acknowledgments

I would like to thank Celestin and Aditee for giving me an opportunity to share my 

knowledge and experience with readers. I thank James Markham for helping me to 

shape this book according to Apress standards. I am in debt to the technical reviewer for 

helping me to improve this book. I also thank Prof. Govindrajulu Sir’s family, Srinivas 

(son) and Amy (daughter in law), for allowing me to dedicate this book to his memory 

and for sharing his biographical information and photograph for publication. I would 

also like to thank all the people at Apress who were instrumental in bringing this project 

to reality.



xvii

Introduction

I have been working in the domain of data science for more than a decade now, and I 

was introduced to Python more than 15 years ago. When I first worked with libraries 

such as NumPy, Matplotlib, and Pandas, I found it a bit tedious to comb through all 

the available literature in the form of printed books, video tutorials, and online articles, 

as most of them lacked comprehensive steps for beginners. It was then that I resolved 

to write a book, and I am glad that I could bring my resolution to life with the help of 

Apress.

This book is the result of thousands of hours (in addition to the ones spent writing 

the actual book) going through technical documentation, watching training videos, 

writing code with the help of different tools, debugging faulty code snippets, posting 

questions and participating in discussions on various technical forums, and referring 

to various code repositories for pointers. I have written the book in such a way that 

beginners will find it easy to understand the topics. The book has hundreds of code 

examples and images of code output so that you can fully understand each concept 

introduced. All the code examples are explained in detail.

The book begins with a general discussion of Python and a small guide explaining 

how to install it on various computing platforms such as the Windows OS and Linux 

computers (like the Raspberry Pi). We then move on to discussing the scientific 

ecosystem. Then we focus on NumPy, which is the fundamental library for numerical 

computing. We specifically focus on the multidimensional, array-like data structure 

of NumPy, called the Ndarray. We then explore data visualization libraries, such as 

Matplotlib and Plotly, to learn how to plot Ndarrays.

Most of the chapters explore the data visualization library Matplotlib. You will learn a 

lot of data visualization tips and techniques in these chapters.

Then we dive into Pandas so you can learn about its important data structures, called 

the series and dataframe. Midway through the book, you will also learn how to read data 

from various data sources using Python, NumPy, Matplotlib, and Pandas. You will also 

learn how to visualize Pandas data with popular visualization libraries such as Matplotlib 

and Seaborn, as well as how to work with time-indexed data.



xviii

On an ending note, we started and finished working on this project at a very 

turbulent time (the beginning of 2021) marked by hardships such as hospitalization and 

deaths of friends, social unrest, lockdowns, curfews, economic slowdown, and a host of 

other sociopolitical problems brought about in part by the COVID-19 pandemic. I myself 

was hospitalized due to severe complications from pneumonia and breathing troubles 

caused by a COVID-19 infection. It delayed the launch of this long-planned project. To 

be frank, working on this book with the help of my longtime mentors at Apress (Celestin, 

James, and Aditee) offered me a sense of purpose in these troubled times. I end this 

introduction with a note of hope and positive words that we, as a society and a global 

civilization, will overcome these turbulent times with the help of each other, and I look at 

the future with a lot of hope and bright eyes.

Introduction



1
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_1

CHAPTER 1

Introduction to Python 3
I welcome you all to the exciting journey of data visualization with Matplotlib and related 

libraries such as NumPy, Pandas, and Seaborn.

This chapter covers the basics of the Python programming language including its 

history, installation, and applications. You will be writing a few simple and introductory 

Python 3 programs and be learning how to execute them on various OS platforms.

Then, we will start exploring the scientific Python ecosystem. We will briefly discuss 

the member libraries of the scientific Python ecosystem, and toward the end, we will 

explore Jupyter Notebook so we can use it throughout the rest of the book.

Specifically, the following are the topics covered in this chapter:

•	 Python programming language

•	 Python installation on various platforms

•	 Python modes

•	 Python IDEs

•	 Scientific Python ecosystem

•	 Overview and setup of Jupyter Notebook

•	 Running code in Jupyter Notebook

•	 Anaconda

After reading this chapter, you will be comfortable with the installation and the basic 

usage of the Python 3 programming language in various modes on various platforms.

https://doi.org/10.1007/978-1-4842-7410-1_1#DOI


2

�Introducing the Python 3 Programming Language
Python 3 is a general-purpose, high-level, and interpreted programming language. In 

this section, we will discuss the Python programming language and its philosophy.

�History of the Python Programming Language
Python is a successor to the ABC programming language, which itself was inspired by the 

ALGOL 68 and SETL programming languages. Python was created by Guido van Rossum 

as a side project during vacations in the late 1980s while he was working at Centrum 

Wiskunde & Informatica (English: “National Research Institute for Mathematics and 

Computer Science”) in the Netherlands. Van Rossum was born and raised in the 

Netherlands. He obtained a master’s degree in math and computer science from the 

University of Amsterdam. He worked for Google and Dropbox and retired after that. 

However, in November 2020, he joined Microsoft.

Since the initial release of the Python programming language till July 2018, Guido 

has been the lead developer and benevolent dictator for life (BDFL) for this project. He 

worked on the steering committee for Python through 2019, but in 2020, he withdrew his 

nomination from reelection to the steering committee.

The following are the important milestones in Python’s release timeline:

•	 February 1991: Van Rossum published the code (labeled version 

0.9.0) to alt.sources.

•	 January 1994: Version 1.0 was released.

•	 October 2000: Python 2.0 was released.

•	 December 2006: Python 3.0 was released.

•	 December 2019: Python 2.x was officially retired and is no longer 

supported by Python Software Foundation.

As you can see, Python 2.x versions are no longer supported, as Python 2 is retired. 

Python 3 is not backward compatible with Python 2. Python 3 is the latest and supported 

version of the Python programming language. So, we will use Python 3 programming 

throughout the book to demonstrate the concepts covered. Unless explicitly mentioned, 

Python means Python 3 throughout this book.

Chapter 1  Introduction to Python 3



3

�Python Enhancement Proposals
To steer the development, maintenance, and support of Python, the Python leadership 

came up with the concept of Python enhancement proposals (PEPs). They are the 

primary mechanism for suggesting new features and fixing issues in the Python project. 

You can read more about the PEPs at the following URLs:

https://www.python.org/dev/peps/

https://www.python.org/dev/peps/pep-0001/

�Philosophy of the Python Programming Language
The philosophy of Python is detailed in PEP20. It is known as the Zen of Python and is at 

https://www.python.org/dev/peps/pep-0020/. The following are the points from that 

PEP. A few are funny.

•	 Beautiful is better than ugly.

•	 Explicit is better than implicit.

•	 Simple is better than complex.

•	 Complex is better than complicated.

•	 Flat is better than nested.

•	 Sparse is better than dense.

•	 Readability counts.

•	 Special cases aren’t special enough to break the rules.

•	 Although practicality beats purity.

•	 Errors should never pass silently.

•	 Unless explicitly silenced.

•	 In the face of ambiguity, refuse the temptation to guess.

•	 There should be one—and preferably only one—obvious way to do it.

•	 Although that way may not be obvious at first unless you’re Dutch.

Chapter 1  Introduction to Python 3

https://www.python.org/dev/peps/pep-0020/


4

•	 Now is better than never.

•	 Although never is often better than right now.

•	 If the implementation is hard to explain, it’s a bad idea.

•	 If the implementation is easy to explain, it may be a good idea.

•	 Namespaces are one honking great idea—let’s do more of those!

These are the general philosophical guidelines that continue to influence the 

development of the Python programming language.

�Applications of Python
As you have learned, Python is a general-purpose programming language; it has 

numerous applications in the following areas:

•	 Web development

•	 GUI development

•	 Scientific and numerical computing

•	 Software development

•	 System administration

You can read case studies of Python at https://www.python.org/success-stories/.

�Installing Python on Various Platforms
A Python implementation is a program (the actual binary executable of the interpreter 

of Python) that supports the execution of programs written in the Python programming 

language. The original implementation created by Guido van Russom is known as 

CPython and serves as the reference implementation. Throughout the book, we will be 

using CPython. It is available on the Python website, and you will learn how to install 

it on the Windows OS in this section. I prefer to write Python programs on a Windows 

computer or a Raspberry Pi computer with the Raspberry Pi OS. You can find the 

list of alternative Python implementations at https://www.python.org/download/

alternatives/.

Chapter 1  Introduction to Python 3

https://www.python.org/success-stories/
https://www.python.org/download/alternatives/
https://www.python.org/download/alternatives/


5

I think now is a good time to discuss various Python distributions. You saw that 

the actual interpreter program for Python is known as an implementation. When it 

is bundled with a few useful things such as an integrated development environment 

(IDE), tools, and libraries, it is known as a distribution. You can find the list of Python 

distributions at https://wiki.python.org/moin/PythonDistributions.

Now, let’s look at how to install Python on both platforms.

�Installing on a Windows Computer
Visit the Python 3 download page located at https://www.python.org/downloads/ 

and download the setup file of Python 3 for your computer. The page will automatically 

detect the operating system on your computer and show the appropriate downloadable 

file, as shown in Figure 1-1.

Run the setup file to install Python 3. During installation, select the check box related 

to adding Python 3 to the PATH variable (Figure 1-2).

Figure 1-1.  Python project home page with download options

Chapter 1  Introduction to Python 3

https://wiki.python.org/moin/PythonDistributions
https://www.python.org/downloads/


6

Also, choose the “Customize installation” option. That will take you to more options, 

as shown in Figure 1-3.

Figure 1-2.  Python installation wizard

Chapter 1  Introduction to Python 3



7

Select all the boxes and click the Next button to continue the setup. Complete the 

setup. The name of the binary executable program for Python is python on Windows. 

Once the installation completes, run the following command at the Windows command 

prompt, cmd:

python -V

This will return the version of Python 3 as follows:

Python 3.8.1

You can also check the version of pip as follows:

pip3 -V

A recursive acronym, pip stands for “Pip installs Python” or “Pip installs packages.” 

It is a package manager for the Python programming language. You can install the other 

needed Python libraries for our demonstrations using the pip utility.

Figure 1-3.  Python installation options

Chapter 1  Introduction to Python 3



8

To find out the exact location of Python, you can run the where command as follows:

where python

This returns the following result:

C:\Users\Ashwin\AppData\Local\Programs\Python\Python38-32\python.exe

Similarly, you can find out the location of the pip3 utility by running the following 

command:

where pip3

We will be using this utility heavily throughout the book to install and manage 

Python 3 libraries on the computer we are working with. The following command lists all 

the installed packages:

pip3 list

�Installing on Ubuntu/Debian Derivatives
Debian is a popular distribution. Ubuntu Linux and the Raspberry Pi OS are the other 

popular distributions based on Debian. Python 3 and pip3 come pre-installed on all the 

Debian distributions and derivatives such as Ubuntu or the Raspberry Pi OS. So, we do 

not have to install them separately. I use the Raspberry Pi OS on a Raspberry Pi 4B with 

8 GB RAM as my Linux computer. Both the major Python versions, Python 2 and Python 

3, come preinstalled on all the Debian derivatives. Their executable files for interpreters 

are named as python and python3 for Python 2 and Python 3, respectively. We will use 

python3 for our demonstrations. To find out the versions and locations of the needed 

binary executable files, run the following commands one by one:

python3 -V

pip3 -V

which python3

which pip3

Almost all the other popular Linux distributions come with Python pre-installed too.

Chapter 1  Introduction to Python 3



9

�Using Python Modes
The Python programming language has various modes for executing programs (and 

statements, as you will see soon). Let’s discuss them one by one. But before we get 

started with that discussion, let’s look at what IDLE is. IDLE is an integrated development 

and learning environment developed by the Python Software Foundation for Python 

programming. When you install the CPython implementation of Python 3 on Windows, 

IDLE is also installed. You can launch it on Windows OS in various ways. The first way is 

to search for it in the Windows search bar by typing in IDLE, as shown in Figure 1-4.

Figure 1-4.  Python IDLE on Windows

Chapter 1  Introduction to Python 3



10

The other way is to launch it from the command prompt (cmd) by running the 

following command:

idle

This will launch the window shown in Figure 1-5.

Before proceeding, you need to customize IDLE so that it works for you. You can 

change the font by selecting Options ➤ Configure IDLE, as shown in Figure 1-6.

The window shown in Figure 1-7 opens so you can change the font and size of the 

characters in IDLE.

Figure 1-6.  Configuring IDLE

Figure 1-5.  Python IDLE

Chapter 1  Introduction to Python 3



11

Figure 1-7.  IDLE configuration window

Chapter 1  Introduction to Python 3



12

Adjust the options according to your own preferences.

All the Linux distributions may not come with IDLE pre-installed. You can install it 

on the Debian and derivatives (Ubuntu and Raspberry Pi OS) by running the following 

commands in sequence:

sudo apt-get update

sudo apt-get install idle3

Once the installation is complete, you can find IDLE in the menu (in this case the 

Raspberry Pi OS menu), as shown in Figure 1-8.

You can also launch IDLE on Linux by running the following command:

idle

Now let’s discuss the various modes of Python.

Figure 1-8.  IDLE in Raspberry Pi OS menu

Chapter 1  Introduction to Python 3



13

�Interactive Mode
Python’s interactive mode is like a command-line shell that executes the current 

statement and gives immediate feedback on the console. It runs the statements given 

to it immediately. As new statements are fed into and executed by the interpreter, the 

code is evaluated. When you open IDLE, you will see a command-line prompt. This is 

Python’s interactive mode. To see a simple example, let’s type in the customary Hello 
World program in the interactive prompt as follows:

print('Hello World!')

Press the Enter key to feed the line to the interpreter and execute it. Figure 1-9 shows 

the output.

Figure 1-9.  Python interactive mode on IDLE

You can launch Python’s interactive mode from the command prompt too. At 

the Linux command prompt (e.g., lxterminal), run the command python3, and at the 

Windows command prompt (cmd), run the command python. Figure 1-10 shows the 

interactive mode at the Windows command prompt.

Chapter 1  Introduction to Python 3



14

�Script Mode
You can write a Python program and save it to disk. Then you can launch it in multiple 

ways. This is known as script mode. Let’s demonstrate it in IDLE. You can use any text 

editor to write the Python program. But as IDLE is an IDE, it is convenient to write and 

run the Python programs using IDLE. Let’s see that first. In IDLE, select File ➤ New File. 

This will create a new blank file. Add the following code to it:

print('Hello World!')

Then save it with the name prog01.py on the disk (Figure 1-11).

In the menu, select Run ➤ Run Module. This will execute the program at IDLE’s 

prompt, as shown in Figure 1-12.

Figure 1-10.  Python interactive mode, Windows command prompt

Figure 1-11.  A Python program in the IDLE code editor

Chapter 1  Introduction to Python 3



15

You can even launch the program with Python’s interpreter at the command prompt 

of the OS. Open the command prompt of the OS and navigate to the directory where the 

program is stored. At the Windows command prompt, run the following command:

python prog01.py

In the Linux terminal, you must run the following command prompt:

python3 prog01.py

Then the interpreter will run the program at the command prompt, and the output 

(if any) will appear there.

In Linux, there is another way you can run the program without explicitly using the 

interpreter. You can add a shebang line to the beginning of the code file. For example, say 

our code file looks like this:

#!/usr/bin/python3

print('Hello World!')

The first line is known as a shebang line. It tells the shell what interpreter to use and 

its location. Then run the following command to change the file permission to make it 

executable for the owner as follows:

chmod 755 prog01.py

Then you can directly launch your Python program file like any other executable 

with ./, as follows:

./prog01.py

Figure 1-12.  A Python program under execution at the IDLE prompt

Chapter 1  Introduction to Python 3



16

The shell will execute the program and print the output in the terminal. Note 

that this is applicable only for Unix-like systems (Linux and macOS) as they support 

executing programs like this. You will learn more about Python programming 

throughout the book.

�Using Python IDEs
You have learned how to work with the Python interpreter and IDLE to run Python 3 

statements and programs. You can use other freely available IDEs and plugins for IDEs to 

work with Python. The following is a list of a few famous IDEs and plugins for Python 3 

along with the URLs to their home pages:

•	 PyCharm Community Edition (https://www.jetbrains.com/

pycharm/)

•	 Spyder IDE (https://www.spyder-ide.org/)

•	 Thonny Python Editor (https://thonny.org/)

•	 Mu Editor (https://codewith.mu/)

•	 PyDev plugin for Eclipse (https://www.pydev.org/)

All these IDEs and plugins are free to download and use. As an exercise for this 

chapter, you may want to explore them to find the IDE you are most comfortable with.

�Exploring the Scientific Python Ecosystem
The scientific Python ecosystem is a collection of open source Python libraries for 

scientific computing. It has the following core components:

•	 Python: This is a programming language.

•	 NumPy: This is the fundamental library for numerical computation. 

Almost all the libraries in the scientific Python ecosystem are based 

on NumPy. It provides a versatile data structure known as an Ndarray 

(for “N-dimensional array”).

Chapter 1  Introduction to Python 3

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://thonny.org/
https://codewith.mu/
https://www.pydev.org/


17

•	 SciPy: This library has many routines for scientific computations.

•	 Matplotlib: This is a library for visualization. Its pyplot module has 

routines for Matlab-style visualizations.

Together, all these components provide functionality like Matlab:

Pandas: This is a library for data science and provides high-

performance, easy-to-use data structures like the series and 

dataframes for storing data.

SymPy: This is for symbolic mathematics and algebra.

NetworkX: This is a library for representing and visualizing graphs 

and networks.

Scikit-image: This is a library for image processing.

Scikit-learn: This is a library for machine learning and artificial 

intelligence.

In addition to these libraries, IPython provides a better interactive environment for 

the Python interpreter. IPython’s interactive environment can be accessed through web-

based notebooks using Jupyter Notebook.

The rest of the chapter focuses on Jupyter Notebook.

�Introducing Jupyter Notebook
Earlier in this chapter, you learned various ways to run Python statements. You ran 

Python statements in a script and in the interpreter’s interactive mode. The main 

advantage of using interactive mode is the immediate feedback. The main disadvantage 

of this mode is that if you make any mistakes in the statements you’re typing in, you 

must write the entire statement again to re-execute it. Also, it is difficult to save it as a 

program. The option for saving the statements to run on the interpreter can be found in 

the File option of the menu. However, all the statements and their outputs will be saved 

in plain-text format with the .py extension. If there is any graphical output, it is displayed 

separately and cannot be stored with the statements.

Because of the limitations of interactive mode in the interpreter, we will use a better 

tool for running the Python statements interactively in the web browser. The tool is 

Chapter 1  Introduction to Python 3



18

known as Jupyter Notebook. It is a server program that can create interactive notebooks 

in a web browser.

Jupyter Notebook is a web-based notebook that is used for interactive programming 

of various programming languages like Python, Octave, Julia, and R. It is popular 

with people who are working in research domains. Jupyter Notebook can save code, 

visualizations, output, and rich text in a single file. The advantage of Jupyter Notebook 

over Python’s own interactive prompt is that you can edit the code and see the new 

output instantly, which is not possible in Python’s interactive mode. Another advantage 

is that you have the code, rich-text elements, and output of the code (which can be in 

graphical or rich-text format) in the same file on disk. This makes it easy to distribute. 

You can save and share these notebooks over the Internet or using the portable storage 

equipment. There are many services online that help to store and execute your notebook 

scripts on cloud servers.

�Setting Up Jupyter Notebook
You can easily install the Jupyter Notebook server program on any computer by running 

the following command at the command prompt:

pip3 install jupyter

Let’s see how you can use Jupyter Notebook for writing and executing Python 

statements now. Run the following command in the command prompt of the OS to 

launch the Jupyter Notebook server process there:

jupyter notebook

The Jupyter Notebook server process will be launched, and the command prompt 

window shows a server log, as in Figure 1-13.

Chapter 1  Introduction to Python 3



19

Also, it launches a web page in the default browser of the OS. If the browser window 

is already open, then it launches the page in a new tab of the same browser window. 

Another way to open the page (in case you close this browser window running Jupyter 

Notebook) is to visit http://localhost:8888/ in your browser. It displays the page 

shown in Figure 1-14.

Figure 1-13.  Launching a new Jupyter Notebook process

Chapter 1  Introduction to Python 3



20

The following lines of text are the server logs.

To access the notebook, open this file in a browser:

file:///C:/Users/Ashwin/AppData/Roaming/jupyter/runtime/nbserver-8420-open.html

Or copy and paste one of these URLs:

http://localhost:8888/?token=e4a4fab0d8c22cd01b6530d5daced19d32d7e0c3a56f925c

http://127.0.0.1:8888/?token=e4a4fab0d8c22cd01b6530d5daced19d32d7e0c3a56f925c

In the previous log, you can see a couple of URLs. They refer to the same 

page (localhost and 127.0.0.1 are the same hosts). Either you can directly copy 

and paste any of these URLs directly in the address bar of the browser tab and 

open the Jupyter Notebook home page or you can visit http://localhost:8888/ 

as discussed earlier and then paste the token in the server log (in our case it is 

e4a4fab0d8c22cd01b6530d5daced19d32d7e0c3a56f925c) and log in. This will take you 

to the same home page.

Figure 1-14.  Logging in with a token

Chapter 1  Introduction to Python 3



21

Figure 1-15.  A new home page tab of Jupyter Notebook

Note that every instance of the Jupyter Notebook server will have its own token, so 

the token shown in the book will not work with your notebook. The token is valid only 

for that server process.

So, if you follow any one of the routes explained earlier, you will see a home page tab 

in the browser window, as shown in Figure 1-15.

As you can see, there are three tabs on the web page: Files, Running, and Clusters. 

The Files tab shows the directories and files in the directory from where you launched 

the notebook server from the command prompt. In the previous example, I executed 

the command jupyter notebook from lxterminal of my Raspberry Pi. And the current 

working directory is the home directory of the pi user /home/pi. That is why you can 

see all the files and directories in the home directory of my Raspberry Pi computer in 

Figure 1-15.

In the top-right corner, you can see the Quit and Logout buttons. If you click the 

Logout button, then it logs out from the current session, and to log in, you again need 

the token or URL with the embedded token from the notebook server log, as discussed 

earlier. If you click the Quit button, then it stops the notebook server process running at 

the command prompt and displays the modal message box shown in Figure 1-16.

Chapter 1  Introduction to Python 3



22

To work with the Jupyter Notebook, you need to execute the command jupyter 

notebook again at the command prompt.

On the top-right side, just below the Quit and Logout buttons, you can see a small 

button with a refresh symbol. This button refreshes the home page. You also have the 

New button. Once clicked, it shows a drop-down, as shown in Figure 1-17.

As you can see, the drop-down is divided into two sections, Notebook and Other. You 

can create the Octave and Python 3 notebooks. If your computer has more programming 

languages installed that are supported by Jupyter Notebook, then all those languages 

will show up here. You can also create text files and folders. You can open a command 

prompt in the web browser by clicking Terminal. Figure 1-18 shows lxterminal running 

in a separate web browser tab.

Figure 1-17.  Options for a new notebook

Figure 1-16.  The message shown after clicking the Quit button

Chapter 1  Introduction to Python 3



23

Figure 1-18.  A new lxterminal window within the browser

Clicking Python 3 in the drop-down creates a new Python 3 notebook, as shown in 

Figure 1-19.

Figure 1-19.  A new Python 3 notebook

Chapter 1  Introduction to Python 3



24

If you go to the home page again by clicking the home page tab in the browser and 

then open the Running tab in the home page, you can see the entries corresponding to 

the terminal and the Python 3 notebook, as shown in Figure 1-20.

�Running Code in Jupyter Notebook
Go to Python 3’s Untitled1 tab again and type in the following statement in the text area 

(also known as a cell):

printf("Hello, World!\n");

Then click the Run button. Jupyter will execute the statement as a Python 3 

statement and show the result immediately below the cell, as shown in Figure 1-21.

Figure 1-20.  Summary of current Jupyter Notebook subprocesses

Figure 1-21.  Code output in Jupyter Notebook

Chapter 1  Introduction to Python 3



25

As you can see, after execution, it automatically creates a new cell below the 

result and sets the cursor there. Let’s discuss the menu bar and the icons above the 

programming cells. You can save the file by clicking the floppy disk icon. You can add a 

new empty cell after the current cell by clicking the + icon. The next three icons are Cut, 

Copy, and Paste. Using the up and down arrows can shift the position of the current cell 

up and down, respectively. The next option is to run the cell, which you already saw. The 

next three icons are for interrupting the kernel, restarting the kernel, and rerunning all 

the cells in the notebook. Next to that, you have a drop-down that tells you what type of 

cell it should be. Figure 1-22 shows the drop-down when clicked.

The cell is treated as a Python 3 code cell when you choose the Code option. It is 

treated as a Markdown cell when you choose the Markdown option. Markdown is a 

markup language that can create rich-text output. For example, anything followed by # 

creates a heading, anything followed by ## creates a subheading, and so on. Just type the 

following lines in a Markdown cell and execute them:

# Heading 1

## Heading 2

During our Python 3 demonstrations, we will mostly use Markdown for headings. 

However, you can further explore Markdown on your own by visiting https://jupyter-

notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20

Markdown%20Cells.html. Figure 1-23 shows the output of the previous demonstration.

Figure 1-22.  Types of cells in Jupyter Notebook

Chapter 1  Introduction to Python 3

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Working With Markdown Cells.html


26

You can even change the name of the notebook file by clicking its name in the top 

part of the notebook. Once you click, you’ll see a modal box for renaming, as shown in 

Figure 1-24.

Rename the notebook if you want. If you browse the location on disk from where you 

launched the Jupyter Notebook from at the command prompt, you will find the file with 

the .ipynb extension (meaning “IPython notebook”).

In the same way, you can use Jupyter Notebook for doing interactive programming 

with the other programming languages that support Jupyter. We will mostly use this 

notebook format to store our code snippets for interactive sessions. This is because 

everything is saved in a single file that can be shared easily, as discussed earlier.

Figure 1-23.  Headings in Markdown

Figure 1-24.  Renaming a notebook in Jupyter

Chapter 1  Introduction to Python 3



27

You can clear the output of a cell or the entire notebook. In the menu bar, click the 

Cell menu. In the drop-down, Current Outputs and All Output have a Clear option that 

clears the output of cells. Figure 1-25 shows the options.

One of the most significant advantages of Jupyter Notebook is that you can edit an 

already executed cell if there is any syntax error or you simply want to change the code. 

Jupyter Notebook is like an IDE that runs within a web browser and produces the output 

in the same window. This interactivity and facility to keep code, rich text, and output in 

the same file has made Jupyter Notebook project hugely popular worldwide. The kernel 

for running Python programs comes from the IPython project. As I mentioned earlier, 

you can use it for other programming languages too. I have used it for running GNU 

Octave programs.

You can find more information about Jupyter Notebook and IPython at the  

following URLs:

https://jupyter.org/

https://ipython.org/

Figure 1-25.  Clearing the output in Jupyter

Chapter 1  Introduction to Python 3



28

�Anaconda
Before we can conclude the chapter, we need to discuss the Python distributions. A 

Python distribution is nothing more than the Python interpreter bundled with Python 

libraries. One such popular distribution is Anaconda. You can download and install 

Anaconda on Linux, Windows, and macOS. Anaconda has many versions. One of them 

is free and meant for individual usage. You can find it at https://www.anaconda.com/

products/individual.

Anaconda comes with an open source package manager that can install packages for 

Python and other programs. It is known as Conda. You can find more information about 

the Conda package manager at https://docs.conda.io/en/latest/.

If you have already installed Python from Python’s website, I recommend using 

another computer to install Anaconda. Having multiple interpreters and distributions of 

Python can be confusing.

�Summary
In this chapter, you learned the basics of Python programming language. You learned 

how to write basic Python programs and how to execute them in various ways. You 

learned to work with Python on various operating systems such as Windows and Linux. 

You also learned various modes of the Python programming language and how to launch 

Python from the command prompts of various operating systems. You learned the basics 

of the built-in package manager of Python, called pip. We also briefly discussed other 

IDEs for Python.

Then, you got a brief introduction to the scientific Python ecosystem. We will explore 

many components of this ecosystem in the coming chapters. You also learned how to 

install Jupyter Notebook on various platforms and explored how you can run simple 

Python statements in Jupyter Notebook. You learned that you can store the code and the 

output of the same code in a single file that can be shared easily over the Internet and 

other media such as portable storage devices.

In the next chapter, we will get started with NumPy.

Chapter 1  Introduction to Python 3

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://docs.conda.io/en/latest/


29
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_2

CHAPTER 2

Getting Started with NumPy
In the previous chapter, you learned the basics of the Python programming language and 

the scientific Python ecosystem. You also learned how to run simple Python programs in 

interactive web-based notebooks with Jupyter. We will continue using Jupyter Notebook 

for the majority of demonstrations in the rest of the chapters in the book.

In this chapter, we will give a brief overview of the NumPy library with a few coding 

demonstrations. The following is the list of topics that we will explore in this chapter:

•	 Introduction to the NumPy Ndarrays

•	 Ndarray properties

•	 NumPy constants

Throughout the remaining chapters of this book, we will explore many components 

of the scientific Python ecosystem one by one. Throughout this book, we will be 

using different libraries that are part of this scientific Python ecosystem. The valuable 

knowledge you will gain in this chapter serves as a foundation for the rest of the chapters. 

As this is an introductory chapter for a broad ecosystem, I have kept it short yet practical.

�NumPy and Ndarrays
NumPy is the fundamental package for numerical computation in Python. We can 

use it for numerical computations. The most useful feature of the NumPy library is the 

multidimensional container data structure known as an Ndarray.

An Ndarray is a multidimensional array (also known as a container) of items that 

have the same datatype and size. We can define the size and datatype of the items at the 

time of creating the Ndarray. Just like other data structures such as lists, we can access 

the contents of an Ndarray with an index. The index in an Ndarray starts at 0 (just like 

arrays in C or lists in Python). We can use Ndarrays for a variety of computations. All the 

https://doi.org/10.1007/978-1-4842-7410-1_2#DOI


30

other libraries in the scientific Python ecosystem recognize and utilize NumPy Ndarrays 

and associated routines to represent their own data structures and operations on them.

Let’s get started with the hands-on material. Create a new notebook for this chapter. 

Run the following command to install the NumPy library on your computer:

!pip3 install numpy

Let’s import it to the current notebook by running the following command:

import numpy as np

You can create a list and use it to create a simple Ndarray as follows:

l1 = [1, 2, 3]

x = np.array(l1, dtype=np.int16)

Here you are creating an Ndarray from a list. The datatype of the members is a 16-bit 

integer. You can find the detailed list of datatypes supported at https://numpy.org/

devdocs/user/basics.types.html.

You can write the previous code in a single line as follows:

x = np.array([1, 2, 3], dtype=np.int16)

Let’s print the value of the Ndarray and its type (which, we know, is an Ndarray).

print(x)

print(type(x))

The output is as follows:

[1 2 3]

<class 'numpy.ndarray'>

As you can observe in the previous output, it is of the class numpy.ndarray.

You can also use Python’s interactive mode for running all the statements, as shown 

in Figure 2-1.

Chapter 2  Getting Started with NumPy

https://numpy.org/devdocs/user/basics.types.html
https://numpy.org/devdocs/user/basics.types.html


31

You can run most of the code examples you will practice in this book in the Python 

shell too. Similarly, you can launch the IPython shell by typing the command ipython at 

the command prompt and then run the code examples, as shown in Figure 2-2.

Figure 2-1.  Running the example code in interactive mode in the Python shell

Figure 2-2.  Running the example code in interactive mode in the IPython shell

While you can use the Python interactive shell and IPython for running the code 

examples, it is not possible to save the code, output, and other assets (like rich-text 

titles) in a single file with these tools, so we will mostly be using Jupyter Notebook 

files (*.ipynb files) in this book. We will also be using Python script mode programs 

(*.py files) in a few cases.

Chapter 2  Getting Started with NumPy



32

�Indexing in Ndarrays
Let’s take a brief look at the indexing of Ndarrays. As you learned earlier briefly, the 

indexing starts at 0. Let’s demonstrate that by accessing the members of the Ndarray as 

follows:

print(x[0]); print(x[1]); print(x[2])

The output is as follows:

1

2

3

You can even use a negative index: -1 returns the last element, -2 returns the second 

last, and so on. The following is an example:

print(x[-1])

If you provide any invalid index, then it throws an error.

print(x[3])

In the previous statement, you are trying to access the fourth element in the Ndarray, 

which is nonexistent. This returns the following error:

IndexError                    Traceback (most recent call last)

<ipython-input-4-d3c02b9c2b5d> in <module>

----> 1 print(x[3])

IndexError: index 3 is out of bounds for axis 0 with size 3

�Indexing in Ndarrays of More Than One Dimension
You can have more than one dimensions for an array as follows:

x1 = np.array([[1, 2, 3], [4, 5, 6]], np.int16)

The previous is a two-dimensional matrix. It has two rows and three columns. You 

can access individual elements as follows:

print(x1[0, 0]); print(x1[0, 1]); print(x1[0, 2]);

Chapter 2  Getting Started with NumPy



33

You can even access entire rows as follows:

print(x1[0, :])

print(x1[1, :])

The output is as follows:

[1 2 3]

[4 5 6]

You can access an entire column as follows:

print(x[:, 0])

The output is as follows:

[1 4]

You can even have an Ndarray with more than two dimensions. The following is a 

3D array:

x2 = np.array([[[1, 2, 3], [4, 5, 6]],[[0, -1, -2], [-3, -4, -5]]], 

np.int16)

In scientific and business applications, you’ll often have multidimensional data. 

Ndarrays are useful for storing numerical data. Try to run the following items and 

retrieve the elements of the previous 3D matrix:

print(x2[0, 0, 0])

print(x2[1, 1, 2])

print(x2[:, 1, 1])

�Ndarray Properties
You can learn more about the Ndarrays by referring to their properties. Let’s see all the 

properties in action by looking at a demonstration. Specifically, let’s use the same 3D 

matrix we used earlier.

x2 = np.array([[[1, 2, 3], [4, 5, 6]],[[0, -1, -2], [-3, -4, -5]]], np.int16)

Chapter 2  Getting Started with NumPy



34

You can find out the number of dimensions with the following statement:

print(x2.ndim)

The output returns the number of dimensions.

3

You can find out the shape of the Ndarray as follows:

print(x2.shape)

The shape means the size of the dimensions as follows:

(2, 2, 3)

You can find out the datatype of the members as follows:

print(x2.dtype)

The output is as follows:

int16

You can find out the size (number of elements) and the number of bytes required in 

the memory for the storage as follows:

print(x2.size)

print(x2.nbytes)

The output is as follows:

12

24

You can compute the transpose with the following code:

print(x2.T)

�NumPy Constants
The NumPy library has many useful mathematical and scientific constants you can use 

in your programs. The following code snippet prints all such important constants.

Chapter 2  Getting Started with NumPy



35

The following code snippet refers to infinity:

print(np.inf)

The following code snippet refers to Not a Number:

print(np.NAN)

The following code snippet refers to negative infinity:

print(np.NINF)

The following code snippet refers to negative and positive zeros:

print(np.NZERO)

print(np.PZERO)

The following code snippet refers to Euler’s number:

print(np.e)

The following code snippet refers to Euler’s gamma and pi:

print(np.euler_gamma)

print(np.pi)

The output is as follows:

inf

nan

-inf

-0.0

0.0

2.718281828459045

0.5772156649015329

3.141592653589793

Chapter 2  Getting Started with NumPy



36

�Slicing Ndarrays
Let’s see examples of slicing operations on Ndarrays. You can extract a part of an Ndarray 

with slicing using indices as follows:

a1 = np.array([1, 2, 3, 4, 5, 6, 7])

a1[1:5]

This code will display the elements from the second position to the sixth position 

(you know that the 0 is the starting index) as follows:

array([2, 3, 4, 5])

You can show the elements from the fourth position as follows:

a1[3:]

The output is as follows:

array([4, 5, 6, 7])

You can also show all the elements up to a particular index (excluding the element at 

that index) as follows:

a1[:3]

The output is as follows:

array([1, 2, 3])

You saw the use of negative indices. We can use them for slicing as follows:

a1[-4:-1]

The output is as follows:

array([4, 5, 6])

You have been slicing the data with a step size of 1. This means you are retrieving the 

continuous elements in the resultset. You can also change the step size as follows:

a1[1:6:2]

Chapter 2  Getting Started with NumPy



37

In this example, the size of the step is 2. So, the output will list every second (every 

other) element. The output is as follows:

array([2, 4, 6])

�Summary
In this chapter, you started learning the basics of NumPy and Ndarrays. This is a big 

library with lots of routines. There are entire books dedicated to NumPy. However, our 

publishing constraints won’t warrant that sort of exploration of this useful library. We 

will explore more routines from the NumPy library in the coming chapters as and when 

we need them for our visualization demonstrations.

In the next chapter, you will learn about a few Ndarray creation routines and the 

basics of data visualization with Matplotlib.

Chapter 2  Getting Started with NumPy



39
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_3

CHAPTER 3

NumPy Routines 
and Getting Started 
with Matplotlib
In the previous chapter, you learned the basics of NumPy. Specifically, you learned how 

to install it and how to create Ndarrays. All the topics you learned in the previous chapter 

will serve as a foundation for the remaining chapters, as the Ndarray is the fundamental 

data structure that we will be using throughout the book.

In this chapter, we will continue where we left off in the previous chapter and 

look at a few Ndarray creation routines. We will also get started with the main data 

visualization library in the scientific computing ecosystem, Matplotlib. We will use the 

Ndarray creation routines of NumPy to demonstrate visualizations with Matplotlib. This 

is a detailed chapter with a lot of emphasis on programming and visualizations. The 

following are the topics you will learn about in this chapter:

•	 Routines for creating Ndarrays

•	 Matplotlib

•	 Visualization with NumPy and Matplotlib

Throughout the remaining chapters of this book, we will frequently use Matplotlib 

and NumPy to demonstrate data visualization.

https://doi.org/10.1007/978-1-4842-7410-1_3#DOI


40

�Routines for Creating Ndarrays
Let’s learn to create Ndarrays of 1s and 0s. We will explore many array creation routines 

in this section. Use Jupyter Notebook to create a new notebook to save the code for this 

chapter. np.empty() returns a new array of a given shape and type, without initializing 

entries. As the entries corresponding to the members are not initialized, they are 

arbitrary (random). Let’s see a small demonstration. Type the following code in a cell in 

the notebook and run it:

import numpy as np

x = np.empty([3, 3], np.uint8)

print(x)

The output will be as follows:

[[ 64 244  49]

 [  4   1   0]

 [  0   0 124]]

Note that the values will be different for every instance of execution as it does not 

initialize the values upon the creation of the matrix. You can create a matrix of any size as 

follows:

x = np.empty([3, 3, 3], np.uint8)

print(x)

The function np.eye() returns a 2D matrix with 1s on the diagonal and 0s for other 

elements. The following is an example:

y = np.eye(5, dtype=np.uint8)

print(y)

The output is as follows:

[[1 0 0 0 0]

 [0 1 0 0 0]

 [0 0 1 0 0]

 [0 0 0 1 0]

 [0 0 0 0 1]]

Chapter 3  NumPy Routines and Getting Started with Matplotlib



41

You can change the position of the index of the diagonal. The default is 0, which 

refers to the main diagonal. A positive value means an upper diagonal. A negative value 

means a lower diagonal. The following are examples. Let’s demonstrate the upper 

diagonal first:

y = np.eye(5, dtype=np.uint8, k=1)

print(y)

The output is as follows:

[[0 1 0 0 0]

 [0 0 1 0 0]

 [0 0 0 1 0]

 [0 0 0 0 1]

 [0 0 0 0 0]]

The following is the code to demonstrate the lower diagonal:

y = np.eye(5, dtype=np.uint8, k=-1)

print(y)

The output is as follows:

[[0 0 0 0 0]

 [1 0 0 0 0]

 [0 1 0 0 0]

 [0 0 1 0 0]

 [0 0 0 1 0]]

An identity matrix is a matrix where all the elements at the diagonal are 1 and the 

rest of the elements are 0. The function np.identity() returns an identity matrix of the 

specified size, as shown here:

x = np.identity(5, dtype= np.uint8)

print(x)

The previous code produces the same output as the following code:

y = np.eye(5, dtype=np.uint8)

print(y)

Chapter 3  NumPy Routines and Getting Started with Matplotlib



42

The output of both the methods will be as follows:

[[1 0 0 0 0]

 [0 1 0 0 0]

 [0 0 1 0 0]

 [0 0 0 1 0]

 [0 0 0 0 1]]

The function np.ones() returns the matrix of the given size that has all the  

elements as 1s.

x = np.ones((2, 5, 5), dtype=np.int16)

print(x)

Run the code and you will see the following output:

[[[1 1 1 1 1]

  [1 1 1 1 1]

  [1 1 1 1 1]

  [1 1 1 1 1]

  [1 1 1 1 1]]

 [[1 1 1 1 1]

  [1 1 1 1 1]

  [1 1 1 1 1]

  [1 1 1 1 1]

  [1 1 1 1 1]]]

The function np.zeroes() returns a matrix of a given size with all the element as 0s.

x = np.zeros((2, 5, 5, 2), dtype=np.int16)

print(x)

Run the code and check the output.

The function np.full() returns a new array of a given shape and type, filled with the 

passed argument. Here’s an example:

x = np.full((3, 3, 3), dtype=np.int16, fill_value = 5)

print(x)

Chapter 3  NumPy Routines and Getting Started with Matplotlib



43

The output is as follows:

[[[5 5 5]

  [5 5 5]

  [5 5 5]]

 [[5 5 5]

  [5 5 5]

  [5 5 5]]

 [[5 5 5]

  [5 5 5]

  [5 5 5]]]

A lower triangular matrix is where the diagonal and all the elements below the 

diagonal are 1 and the rest of the elements are 0. The function np.tri() returns a lower 

triangular matrix of a given size, as shown here:

x = np.tri(3, 3, k=0, dtype=np.uint16)

print(x)

The output is as follows:

[[1 0 0]

 [1 1 0]

 [1 1 1]]

You can even change the position of the subdiagonal. All the elements below the 

subdiagonal will be 0.

x = np.tri(5, 5, k=1, dtype=np.uint16)

print(x)

The output is as follows:

[[1 1 0 0 0]

 [1 1 1 0 0]

 [1 1 1 1 0]

 [1 1 1 1 1]

 [1 1 1 1 1]]

Chapter 3  NumPy Routines and Getting Started with Matplotlib



44

Another example with a negative value for the subdiagonal is as follows:

x = np.tri(5, 5, k=-1, dtype=np.uint16)

print(x)

The output is as follows:

[[0 0 0 0 0]

 [1 0 0 0 0]

 [1 1 0 0 0]

 [1 1 1 0 0]

 [1 1 1 1 0]]

Similarly, you can work with the function np.tril() to obtain a lower triangular 

matrix. It accepts another matrix as an argument. Here’s a demonstration:

x = np.ones((5, 5), dtype=np.uint8)

y = np.tril(x, k=-1)

print(y)

The output is as follows:

[[0 0 0 0 0]

 [1 0 0 0 0]

 [1 1 0 0 0]

 [1 1 1 0 0]

 [1 1 1 1 0]]

An upper triangular matrix is where the diagonal and all the elements above are 1 

and the rest of the elements are 0.

x = np.ones((5, 5), dtype=np.uint8)

y = np.triu(x, k=0)

print(y)

The output is as follows:

[[1 1 1 1 1]

 [0 1 1 1 1]

 [0 0 1 1 1]

 [0 0 0 1 1]

 [0 0 0 0 1]]

Chapter 3  NumPy Routines and Getting Started with Matplotlib



45

You can have a negative subdiagonal as follows:

x = np.ones((5, 5), dtype=np.uint8)

y = np.triu(x, k=-1)

print(y)

The output is as follows:

[[1 1 1 1 1]

 [1 1 1 1 1]

 [0 1 1 1 1]

 [0 0 1 1 1]

 [0 0 0 1 1]]

You can have a negative subdiagonal as follows:

x = np.ones((5, 5), dtype=np.uint8)

y = np.triu(x, k=1)

print(y)

The output is as follows:

[[0 1 1 1 1]

 [0 0 1 1 1]

 [0 0 0 1 1]

 [0 0 0 0 1]

 [0 0 0 0 0]]

�Matplotlib
Matplotlib is an integral part of the scientific Python ecosystem, and it is used for 

visualization. It is an extension of NumPy. It provides a Matlab-like interface for plotting 

and visualization. It was originally developed by John D. Hunter as an open source 

alternative usable with Python.

You can install it using Jupyter Notebook as follows:

!pip3 install matplotlib

Chapter 3  NumPy Routines and Getting Started with Matplotlib



46

Notice the ! symbol before the pip3 command. This is because when you want to 

run an OS command in a notebook, you must prefix it with !.

Before installing the Matplotlib library, you may want to upgrade pip with the 

following command:

!python -m pip install --upgrade pip

To use the Matplotlib library in a notebook for basic plotting, you must import its 

pyplot module as follows:

import matplotlib.pyplot as plt

The pyplot module provides a Matlab-like interface for creating visualizations. Also, 

to show the Matplotlib visualizations in the notebook, you must run the following magic 

command:

%matplotlib inline

This forces Matlab to show the output inline, directly below the code cell that 

produces the visualization. We will always use this when we need to use Matplotlib.

Let’s import NumPy too as follows:

import numpy as np

You can read more about Matplotlib at https://matplotlib.org/.

�Visualization with NumPy and Matplotlib
You are now going to learn how to create NumPy Ndarrays with Ndarray creation 

routines and then use Matplotlib to visualize them. Let’s get started with the routines to 

create Ndarrays.

The first routine is arange(). It creates evenly spaced values with the given interval. 

A stop value argument is compulsory. The start value and interval parameters have the 

default arguments 0 and 1, respectively. Here’s an example:

x = np.arange(6)

In the previous example, the stop value is 5. So, it creates an Ndarray starting with 0 

and ending at 4. The function returns the sequence that has a half-open interval, which 

Chapter 3  NumPy Routines and Getting Started with Matplotlib

https://matplotlib.org/


47

means the stop value is not included in the output. As we have not specified the interval, 

it assumes it to be 1. You can see the output and the datatype of it as follows:

print(x)

type(x)

The output is as follows:

[0 1 2 3 4 5]

numpy.ndarray

Let’s go ahead and plot these numbers. For plotting in 2D, we need x-y pairs. Let’s 

keep it simple and say y = f(x) = x by running the following statement:

y=x+1

Now, let’s use the function plot() to visualize this. It needs the values of x and y and 

the plotting options. You will learn more about the plotting options later in this chapter.

plt.plot(x, y, 'o--')

plt.show()

The function show() displays the plot. As you can see, we are visualizing with 

plotting options o--. This means the points are represented by the solid circles and the 

line is dashed, as shown in Figure 3-1.

Figure 3-1.  Visualizing y=f(x)=x+1

Chapter 3  NumPy Routines and Getting Started with Matplotlib



48

Here’s an example of the function call for the function arange() with the start and 

stop arguments:

np.arange(2, 6)

It returns the following output (it directly prints and we are not storing it in a 

variable):

array([2, 3, 4, 5])

We can even add an argument for the interval as follows:

np.arange(2, 6, 2)

The output is as follows:

array([2, 4])

We can draw multiple graphs as follows:

plt.plot(x, y, 'o--')

plt.plot(x, -y, 'o-')

plt.show()

The output will have one line and another dashed line, as shown in Figure 3-2.

Figure 3-2.  Visualizing multiple lines

Chapter 3  NumPy Routines and Getting Started with Matplotlib



49

You can even add a title to the graph as follows:

plt.plot(x, y, 'o--')

plt.plot(x, -y, 'o-')

plt.title('y=x and y=-x')

plt.show()

The output will have a title as shown in Figure 3-3.

The function linspace(start, stop, number) returns an array of evenly spaced 

numbers over a specified interval. You must pass it the starting value, the end value, and 

the number of values as follows:

N = 16

x = np.linspace(0, 15, N)

print(x)

The previous code creates 11 numbers (0 to 10, both inclusive) as follows:

[ 0.  1.  2.  3.  4.  5.  6.  7.  8.  9. 10. 11. 12. 13. 14. 15.]

Let’s visualize this as follows:

y = x

plt.plot(x, y, 'o--')

plt.axis('off')

plt.show()

Figure 3-3.  Visualizing multiple lines and title

Chapter 3  NumPy Routines and Getting Started with Matplotlib



50

Figure 3-4 shows the output.

As you can see, we are turning off the axis with the line plt.axis('off').

Similarly, you can compute and visualize values in the logspace as follows:

y = np.logspace(0.1, 2, N)

print(y)

plt.plot(x, y, 'o--')

plt.show()

The output of the print function is as follows:

[  1.25892541   1.68525904   2.25597007   3.01995172   4.04265487

   5.41169527   7.2443596    9.69765359  12.98175275  17.37800829

  23.26305067  31.14105584  41.68693835  55.80417175  74.70218989

 100.        ]

Figure 3-5 shows the output.

Figure 3-4.  Output of y = x with linspace()

Chapter 3  NumPy Routines and Getting Started with Matplotlib



51

You can even compute a series in the geometric progression as follows:

y = np.geomspace(0.1, 2000, N)

print(y)

plt.plot(x, y, 'o--')

plt.show()

The output of the print statement is as follows:

[1.00000000e-01 1.93524223e-01 3.74516250e-01 7.24779664e-01

 1.40262421e+00 2.71441762e+00 5.25305561e+00 1.01659351e+01

 1.96735469e+01 3.80730788e+01 7.36806300e+01 1.42589867e+02

 2.75945932e+02 5.34022222e+02 1.03346236e+03 2.00000000e+03]

Figure 3-6 shows the output.

Figure 3-5.  Output of logspace()

Figure 3-6.  Output of geomspace()

Chapter 3  NumPy Routines and Getting Started with Matplotlib



52

�Running the Matplotlib Program as a Script
You can use Python’s script mode to run the Matplotlib program. Save the program 

shown in Listing 3-1 as prog01.py.

Listing 3-1.  prog01.py

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(6)

print(x)

type(x)

y=x+1

plt.plot(x, y, 'o--')

plt.show()

When you run this program, the output is shown in a separate window, as shown in 

Figure 3-7.

Figure 3-7.  Output in a separate window

Chapter 3  NumPy Routines and Getting Started with Matplotlib



53

We will mostly be using Jupyter Notebook to show the visualizations in the  

browser window.

�Summary
This chapter focused on the routines for creating Ndarrays. You also learned the basics 

of Matplotlib. Along with the basics, you learned how to visualize Ndarrays with simple 

graphs. There is more to NumPy and Matplotlib than what you learned in this chapter. 

There are many more NumPy and data visualization routines.

In the next chapter, you will explore more such NumPy routines that manipulate 

NumPy Ndarrays.

Chapter 3  NumPy Routines and Getting Started with Matplotlib



55
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_4

CHAPTER 4

Revisiting Matplotlib 
Visualizations
In the previous chapter, you learned about the many routines for creating and 

manipulating Ndarrays in the NumPy library. You will need many of those routines 

throughout this book.

This chapter is dedicated to exploring the aesthetic aspects of visualizations 

prepared with Matplotlib. You will learn to customize the cosmetic aspects of the 

Matplotlib visualizations. Specifically, we will explore the following topics in detail:

•	 Single-line plots

•	 Multiline plots

•	 Grid, axes, and labels

•	 Colors, lines, and markers

•	 Subplots

•	 Object-oriented style

•	 Working with the text

After reading this chapter, you will be able to programmatically customize the 

aesthetic aspects of your visualizations to make them more presentable.

�Single-Line Plots
When there is only one visualization in a figure that uses the function plot(), then it 

is known as a single-line plot. In this section, you’ll see a few ways that you can draw a 

single-line plot. We have already used the function plot() to draw single-line plots. Let’s 

explore this concept further in detail with a few more solid examples.

https://doi.org/10.1007/978-1-4842-7410-1_4#DOI


56

Create a new notebook for the demonstrations in this chapter. You can also use 

Python lists to visualize the plots, as follows:

%matplotlib inline

import matplotlib.pyplot as plt

x = [4, 5, 3, 1, 6, 7]

plt.plot(x)

plt.show()

Figure 4-1 shows the output.

In this case, the values of the y-axis are assumed.

Here’s another example of a single-line graph that uses an Ndarray:

import numpy as np

x = np.arange(25)

plt.plot(x)

plt.show()

Figure 4-1.  Demonstrating a simple single-line graph

Chapter 4  Revisiting Matplotlib Visualizations



57

Figure 4-2 shows the output.

Let’s visualize the quadratic graph y = f(x) = x3+1. The code is as follows:

plt.plot(x, [(y**3 + 1) for y in x])

plt.show()

Figure 4-3 shows the output.

Figure 4-2.  A simple single-line graph with arange()

Figure 4-3.  y = f(x) = x3+1

Chapter 4  Revisiting Matplotlib Visualizations



58

You can write the same code in a simple way as follows:

plt.plot(x, x**3 + 1)

plt.show()

�Multiline Plots
It is possible to visualize multiple plots in the same output. Let’s see how to show 

multiple curves in the same visualization. The following is a simple example:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(7)

plt.plot(x, -x**2)

plt.plot(x, -x**3)

plt.plot(x, -2*x)

plt.plot(x, -2**x)

plt.show()

Figure 4-4 shows the output.

As you can see, Matplotlib automatically assigns colors to the curves separately.

Figure 4-4.  Multiline graph

Chapter 4  Revisiting Matplotlib Visualizations



59

You can write the same code in a simple way as follows:

plt.plot(x, -x**2, x, -x**3,

         x, -2*x, x, -2**x)

plt.show()

The output will be the same as Figure 4-4.

Let’s see another example:

x = np.array([[3, 2, 5, 6], [7, 4, 1, 5]])

plt.plot(x)

plt.show()

Figure 4-5 shows the output.

You can also create a multiline graph with random data as follows:

data = np.random.randn(2, 10)

print(data)

plt.plot([data[0], data[1]])

plt.show()

Figure 4-5.  Multiline graph, another example

Chapter 4  Revisiting Matplotlib Visualizations



60

Figure 4-6 shows the output.

In this example, we generated the data in a random way using the routine np.

random.randn(). Since this routine will generate the random data, the output will be 

different every time we execute it. So, the output you will see will be different every time 

you execute the code.

�Grid, Axes, and Labels
Now you will learn how to enable a grid in the visualizations. This can be done with the 

statement plt.grid(True). You will also learn how to manipulate the limits of axes. But 

before that, you will quickly learn how to save a visualization as an image on the hard 

disk. Look at the following code:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.grid(True)

plt.savefig('test.png')

plt.show()

The statement plt.savefig('test.png') saves the image in the current directory of 

the Jupyter Notebook file. Figure 4-7 shows the output.

Figure 4-6.  Multiline graph, random data

Chapter 4  Revisiting Matplotlib Visualizations



61

You can see that the limits of the axes are set by default as follows:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.grid(True)

print(plt.axis())

plt.show()

Figure 4-8 shows the output.

Figure 4-7.  Multiline graph

Figure 4-8.  Seeing the values of axes

Chapter 4  Revisiting Matplotlib Visualizations



62

You can also customize the values of the axes as follows:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.grid(True)

plt.axis([0, 2, -8, 0])

print(plt.axis())

plt.show()

The statement plt.axis([0, 2, -8, 0]) sets the values of the axes. The first pair, 

(0, 2), refers to the limits for the x-axis, and the second pair, (-8, 0), refers to the limits 

for the y-axis. You can write the previous code with different syntax using the functions 

xlim() and ylim() as follows:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.grid(True)

plt.xlim([0, 2])

plt.ylim([-8, 0])

print(plt.axis())

plt.show()

Both the examples produce the same output, as shown in Figure 4-9.

Figure 4-9.  Customizing the axes

Chapter 4  Revisiting Matplotlib Visualizations



63

You can add the title and the labels for the axes as follows:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.show()

This produces output with the labels and the title shown in Figure 4-10.

You can pass an argument for the parameter label in the plot() function and then 

call the function legend() to create a legend as follows:

x = np.arange(3)

plt.plot(x, -x**2, label='-x**2')

plt.plot(x, -x**3, label='-x**3')

plt.plot(x, -2*x, label='-2*x')

plt.plot(x, -2**x, label='-2**x')

plt.legend()

Figure 4-10.  Title for the visualization and labels for the axes

Chapter 4  Revisiting Matplotlib Visualizations



64

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.show()

This code produces output with legends for the curves, as shown in Figure 4-11.

Instead of passing the legend string as an argument to the function plot(), you can 

pass the list of strings as an argument to the function legend() as follows:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.legend(['-x**2', '-x**3', '-2*x', '-2**x'])

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.show()

Figure 4-11.  Output with legends

Chapter 4  Revisiting Matplotlib Visualizations



65

This produces the same output as Figure 4-11.

You can also change the location of the legend box by making the following changes 

to plt.legend() from the previous code:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.legend(['-x**2', '-x**3', '-2*x', '-2**x'],

           loc='lower center')

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.show()

Figure 4-12 shows the output.

Figure 4-12.  Output with legends in upper middle position

Finally, let’s save the visualization to disk with the following code:

x = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)

plt.legend(['-x**2', '-x**3', '-2*x', '-2**x'],

           loc='lower center')

Chapter 4  Revisiting Matplotlib Visualizations



66

plt.grid(True)

plt.xlabel('x = np.arange(3)')

plt.xlim([0, 2])

plt.ylabel('y = f(x)')

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.savefig('test.png')

plt.show()

�Colors, Styles, and Markers
Up until now, in the case of multiline plots, you have seen that Matplotlib automatically 

assigned colors, styles, and markers. You saw a few examples of how to customize them. 

Now, in this section, you will learn how to customize them in detail.

Let’s start with colors. The following code lists all the primary colors supported by 

Matplotlib (we are not customizing styles and markers in this example):

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

x = np.arange(5)

y = x

plt.plot(x, y+0.4, 'g')

plt.plot(x, y+0.2, 'y')

plt.plot(x, y, 'r')

plt.plot(x, y-0.2, 'c')

plt.plot(x, y-0.4, 'k')

plt.plot(x, y-0.6, 'm')

plt.plot(x, y-0.8, 'w')

plt.plot(x, y-1, 'b')

plt.show()

Chapter 4  Revisiting Matplotlib Visualizations



67

Figure 4-13 shows the output.

You can also write the previous code as follows:

plt.plot(x, y+0.4, 'g', x, y+0.2, 'y', x, y, 'r', x, y-0.2, 'c', x, y-0.4, 

'k', x, y-0.6, 'm', x, y-0.8, 'w', x, y-1, 'b')

plt.show()

The output will be the same as Figure 4-13.

You can customize the line style as follows:

plt.plot(x, y, '-', x, y+1, '--', x, y+2, '-.', x, y+3, ':')

plt.show()

Figure 4-14 shows the output.

Figure 4-13.  Demo of colors

Chapter 4  Revisiting Matplotlib Visualizations



68

You can even change the markers as follows:

plt.plot(x, y, '.')

plt.plot(x, y+0.5, ',')

plt.plot(x, y+1, 'o')

plt.plot(x, y+2, '<')

plt.plot(x, y+3, '>')

plt.plot(x, y+4, 'v')

plt.plot(x, y+5, '^')

plt.plot(x, y+6, '1')

plt.plot(x, y+7, '2')

plt.plot(x, y+8, '3')

plt.plot(x, y+9, '4')

plt.plot(x, y+10, 's')

plt.plot(x, y+11, 'p')

plt.plot(x, y+12, '*')

plt.plot(x, y+13, 'h')

plt.plot(x, y+14, 'H')

plt.plot(x, y+15, '+')

plt.plot(x, y+16, 'D')

plt.plot(x, y+17, 'd')

plt.plot(x, y+18, '|')

plt.plot(x, y+19, '_')

plt.show()

Figure 4-14.  Line styles

Chapter 4  Revisiting Matplotlib Visualizations



69

Figure 4-15 shows the output.

You can combine all three techniques (for colors, markers, and line styles) to 

customize the visualization as follows:

plt.plot(x, y, 'mo--')

plt.plot(x, y+1 , 'g*-.')

plt.show()

Figure 4-16 shows the output.

Figure 4-15.  Markers

Figure 4-16.  Customizing everything

Chapter 4  Revisiting Matplotlib Visualizations



70

These are the basic customizations you can do in Matplotlib. You can customize 

everything in great detail. Here is a code example:

plt.plot(x, y, color='g', linestyle='--', linewidth=1.5,

        marker='^', markerfacecolor='b', markeredgecolor='k',

        markeredgewidth=1.5, markersize=5)

plt.grid(True)

plt.show()

Figure 4-17 shows the output.

You can even customize the values on the x- and y-axes as follows:

x = y = np.arange(10)

plt.plot(x, y, 'o--')

plt.xticks(range(len(x)), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])

plt.yticks(range(0, 10, 1))

plt.show()

Figure 4-17.  Customizing everything in greater detail

Chapter 4  Revisiting Matplotlib Visualizations



71

Figure 4-18 shows the output.

�Object-Oriented Plotting
You can create plots in an object-oriented way. Let’s rewrite one of our earlier code 

examples as follows:

fig, ax = plt.subplots()

ax.plot(x, -x**2, label='-x**2')

ax.plot(x, -x**3, label='-x**3')

ax.plot(x, -2*x, label='-2*x')

ax.plot(x, -2**x, label='-2**x')

ax.set_xlabel('x = np.arange(3)')

ax.set_ylabel('y = f(x)')

ax.set_title('Simple Plot Demo')

ax.legend()

ax.grid(True)

plt.show()

Note that we are using the axis object to plot and set the labels and a title. Figure 4-19 

shows the output.

Figure 4-18.  Customizing the ticks on the axes

Chapter 4  Revisiting Matplotlib Visualizations



72

You can also add the text with the functions ax.text() or the function plt.text(). 

The functions accept the coordinates and the text to be displayed. The following is an 

example:

fig, ax = plt.subplots()

ax.plot(x, -x**2, label='-x**2')

ax.plot(x, -x**3, label='-x**3')

ax.plot(x, -2*x, label='-2*x')

ax.plot(x, -2**x, label='-2**x')

ax.set_xlabel('x = np.arange(3)')

ax.set_ylabel('y = f(x)')

ax.set_title('Simple Plot Demo')

ax.legend()

ax.grid(True)

ax.text(0.25, -5, "Simple Plot Demo")

plt.show()

Figure 4-19.  Output of object-oriented plotting

Chapter 4  Revisiting Matplotlib Visualizations



73

Figure 4-20.  Rendering text

Figure 4-20 shows the output.

�Subplots
You can show multiple separate graphs in the same output. The technique is known 

as subplotting. Subplots can have their own titles, own labels, and other specifications. 

Subplots are created in a grid. The first subplot position is at the top left. The other 

subplot positions are relative to the first position. The following is an example:

x = np.arange(3)

plt.subplots_adjust(wspace=0.3,

                    hspace=0.3)

plt.subplot(2, 2, 1)

plt.plot(x, -x**2)

plt.subplot(2, 2, 2)

plt.plot(x, -x**3)

plt.subplot(2, 2, 3)

plt.plot(x, -2*x)

plt.subplot(2, 2, 4)

plt.plot(x, -2**x)

plt.show()

The first two arguments passed to plt.subplot() represent the grid size, and the third 

argument indicates the position of that particular subplot. Figure 4-21 shows the output.

Chapter 4  Revisiting Matplotlib Visualizations



74

You can write the same code in object-oriented fashion as follows:

fig, axs = plt.subplots(2, 2)

plt.subplots_adjust(wspace=0.3,

                    hspace=0.3)

axs[0, 0].plot(x, -x**2)

axs[0, 1].plot(x, -x**3)

axs[1, 0].plot(x, -2*x)

axs[1, 1].plot(x, -2**x)

plt.show()

The code produces the same output as shown in Figure 4-21.

�Summary
This chapter focused on visualizations and various customizations. You learned a 

great deal about visualizing the data and customizing the visualizations as per the 

requirements. You also learned about the object-oriented style of plotting and subplots. 

The concepts you learned in this chapter will be used throughout this book to visualize 

the data.

In the next chapter, we will explore more stylesheets, legends, and layout 

computations.

Figure 4-21.  Subplots

Chapter 4  Revisiting Matplotlib Visualizations



75
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_5

CHAPTER 5

Styles and Layouts
In the previous chapter, you learned about many advanced concepts related to creating 

visualizations with Matplotlib.

We will continue exploring more concepts related to visualization in greater detail in 

this chapter. Specifically, we will explore the following topics in detail:

•	 Styles

•	 Layouts

After reading this chapter, you will be able to work with colors, stylesheets, and 

custom layouts.

�Styles
In this section, you will explore the various styles available in Matplotlib. Up until now 

we have been working with the default style. A style dictates things such as marker size, 

colors, and fonts. There are many built-in styles in Matplotlib. The following is a short 

example of applying a built-in style:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

plt.style.use('ggplot')

data = np.random.randn(10)

Let’s visualize it now:

plt.plot(data)

plt.show()

https://doi.org/10.1007/978-1-4842-7410-1_5#DOI


76

Here we are using the style of ggplot2, which is a visualization package for the R 

programming language. Figure 5-1 shows the output.

You must be curious to know the names of all the available styles. You can print the 

names using this:

print(plt.style.available)

The following is the output that shows the name of all the available styles:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_

background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 

'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-

dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 

'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 

'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 

'tableau-colorblind10']

Let’s apply the classic matplotlib style as follows:

plt.style.use('classic')

plt.plot(data)

plt.show()

Figure 5-1.  ggplot style

Chapter 5  Styles and Layouts



77

Figure 5-2 shows the output.

Note that once you apply a style, that style applies to the entire notebook. So, if you 

want to switch back to the default style, you can use the following code:

plt.style.use('default')

Let’s show the data with the following:

plt.plot(data)

plt.show()

Figure 5-2.  Classic style

Chapter 5  Styles and Layouts



78

Figure 5-3 shows the output.

Now let’s demonstrate how the colors are affected when we change the styles. Let’s 

define the data as shown here:

n = 3

data = np.linspace(0, 2*n*np.pi, 300)

In addition, let’s define a custom function as follows:

def sinusoidal(sty):

    plt.style.use(sty)

    fig, ax = plt.subplots()

    ax.plot(data, np.sin(data), label='Sine')

    ax.plot(data, np.cos(data), label='Cosine')

    ax.legend()

A function is a routine that can be called to perform some operation. Until now, we 

have been using library functions that come with Python itself and libraries like NumPy 

and Matplotlib. Here, in the code snippet, we have defined our own custom function. 

Figure 5-3.  Default style

Chapter 5  Styles and Layouts



79

This custom function accepts an argument. We are using the passed argument as a style 

for our visualization. Let’s call this function with the default styling, as shown here:

sinusoidal('default')

plt.show()

Figure 5-4 shows the output.

Let’s use the ggplot style as follows:

sinusoidal('ggplot')

plt.show()

Figure 5-4.  Default style sinusoidal graph

Chapter 5  Styles and Layouts



80

Figure 5-5 shows the output.

Let’s see the Seaborn style, as shown here:

sinusoidal('seaborn')

plt.show()

Figure 5-6 shows the output.

Figure 5-6.  Seaborn-style sinusoidal graph

Figure 5-5.  ggplot-style sinusoidal graph

Chapter 5  Styles and Layouts



81

You have seen that the styling is applied globally to the entire notebook, and you 

have learned to switch to the default styling. You can locally change the styling for a 

block of code as follows:

with plt.style.context('Solarize_Light2'):

    data = np.linspace(0, 6 * np.pi)

    plt.plot(np.sin(data), 'g.--')

    plt.show()

Figure 5-7 shows the output.

�Layouts
In this section, you will study layouts. You already learned about subplots in Chapter 4, 

and if you want to use the default style again, you can run the following line of code to 

reset the styling to the default style:

plt.style.use('default')

Figure 5-7.  Temporary styling

Chapter 5  Styles and Layouts



82

Let’s revise that and create a 2×2 visualization as follows:

fig, axs = plt.subplots(ncols=2, nrows=2,

                        constrained_layout=True)

plt.show()

Figure 5-8 shows the output.

You can also use gridspec to create subplots as follows:

import matplotlib.gridspec as gridspec

fig = plt.figure(constrained_layout=True)

specs = gridspec.GridSpec(ncols=2, nrows=2, figure=fig)

ax1 = fig.add_subplot(specs[0, 0])

ax2 = fig.add_subplot(specs[0, 1])

ax3 = fig.add_subplot(specs[1, 0])

ax4 = fig.add_subplot(specs[1, 1])

plt.show()

The previous code will create a subplot that looks like Figure 5-8. You have to write a 

lot of code for the output that can be obtained in just a couple of lines of code. However, 

you can use this method to create more complex visualizations. Let’s create a 3×3 

visualization such that an entire row is occupied by a plot.

Figure 5-8.  Subplots

Chapter 5  Styles and Layouts



83

fig = plt.figure(constrained_layout=True)

gs = fig.add_gridspec(3, 3)

ax1 = fig.add_subplot(gs[0, :])

ax1.set_title('gs[0, :]')

ax2 = fig.add_subplot(gs[1, :])

ax2.set_title('gs[1, :]')

ax3 = fig.add_subplot(gs[2, :])

ax3.set_title('gs[2, :]')

plt.show()

This code will produce the output shown in Figure 5-9.

You can also have vertical plots as follows:

fig = plt.figure(constrained_layout=True)

gs = fig.add_gridspec(3, 3)

ax1 = fig.add_subplot(gs[:, 0])

ax1.set_title('gs[:, 0]')

ax2 = fig.add_subplot(gs[:, 1])

ax2.set_title('gs[:, 1]')

ax3 = fig.add_subplot(gs[:, 2])

ax3.set_title('gs[:, 2]')

plt.show()

Figure 5-9.  Customized subplots

Chapter 5  Styles and Layouts



84

Figure 5-10 shows the output.

Let’s see a more complex example.

fig = plt.figure(constrained_layout=True)

gs = fig.add_gridspec(3, 3)

ax1 = fig.add_subplot(gs[0, :])

ax1.set_title('gs[0, :]')

ax2 = fig.add_subplot(gs[1, :-1])

ax2.set_title('gs[1, :-1]')

ax3 = fig.add_subplot(gs[1:, -1])

ax3.set_title('gs[1:, -1]')

ax4 = fig.add_subplot(gs[-1, 0])

ax4.set_title('gs[-1, 0]')

ax5 = fig.add_subplot(gs[-1, -2])

ax5.set_title('gs[-1, -2]')

plt.show()

Figure 5-10.  Customized subplots

Chapter 5  Styles and Layouts



85

Figure 5-11 shows the output.

Figure 5-11.  Customized subplots

This is how you can customize subplots.

�Summary
This chapter focused on the styles and subplots. You will be using these concepts 

sparingly throughout the book.

In the next chapter, we will explore a few recipes of Matplotlib to create 

visualizations.

Chapter 5  Styles and Layouts



87
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_6

CHAPTER 6

Lines, Bars, and  
Scatter Plots
In the previous chapter, you learned about many advanced concepts related to 

visualizations with Matplotlib.

In this chapter and the next few chapters, you will learn some techniques for creating 

data visualizations. Specifically, in this chapter, you will learn how to create the following 

data visualizations:

•	 Lines and logs

•	 Error bars

•	 Bar graphs

•	 Scatter plots

After reading this chapter, you will be able to work with lines, logs, bars, and scatter plots.

�Lines and Logs
You already saw how to plot lines in an earlier chapter. Just to warm up, let’s look at an 

example of a line again, as shown here:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

data = np.linspace(0, 9, 10)

https://doi.org/10.1007/978-1-4842-7410-1_6#DOI


88

Let’s visualize it now.

plt.plot(data)

plt.show()

Figure 6-1 shows the output.

Let’s create a graph such that the x-axis is logarithmic and the y-axis is normal, as 

shown here:

t = np.arange(0.01, 10, 0.01)

plt.semilogx(t, np.cos(2 * np.pi * t))

plt.show()

Figure 6-1.  Line plot example

Chapter 6  Lines, Bars, and Scatter Plots 



89

Figure 6-2 shows the output.

Similarly, you can create a logarithmic y-axis and a normal x-axis as follows:

plt.semilogy(t, np.cos(2 * np.pi * t))

plt.show()

Figure 6-3 shows the output.

Figure 6-2.  Normal y-axis and logarithmic x-axis

Figure 6-3.  Normal x-axis and logarithmic y-axis

Chapter 6  Lines, Bars, and Scatter Plots 



90

You can have both axes be logarithmic, as shown here:

plt.loglog(t, np.cos(2 * np.pi * t))

plt.show()

Figure 6-4 shows the output.

�Error Bars
You can also use visualizations to show error in data. When there is a possibility of errors 

in the observed data, you usually want to mention it in the observation. You would say 

something like “there’s a 96 percent confidence interval.” This means that there is a 

possibility of 4 percent error in the given data. This gives people a general idea about the 

precision of the quantity. When you want to represent this confidence (or lack thereof), 

you can use error bars.

You have to use the function errorbar() for this. You can create an Ndarray or list to 

store the error data. We can either have real-life data or simulate it as follows:

x = np.linspace (0, 2 * np.pi, 100)

y = np.sin(x)

ye = np.random.rand(len(x))/10

plt.errorbar(x, y, yerr = ye)

plt.show()

Figure 6-4.  Both logarithmic axes

Chapter 6  Lines, Bars, and Scatter Plots 



91

In this example, we are showing the error on the y-axis. Figure 6-5 shows the output.

Similarly, you can show the error data on the x-axis.

xe = np.random.rand(len(x))/10

plt.errorbar(x, y, xerr = xe)

plt.show()

Figure 6-6 shows the output.

Figure 6-5.  Error on the y-axis

Figure 6-6.  Error on the x-axis

Chapter 6  Lines, Bars, and Scatter Plots 



92

You can show errors on both axes as follows:

plt.errorbar(x, y, xerr = xe, yerr = ye)

plt.show()

Figure 6-7 shows the output.

�Bar Graphs
A bar graph is a representation of discrete and categorical data items with bars. You can 

represent the data with vertical or horizontal bars. The height or length of bars is always 

in proportion to the magnitude of the data. You can use bar charts or bar graphs when 

you have discrete categorical data. The following is a simple example of a bar graph:

x = np.arange(4)

y = np.random.rand(4)

plt.bar(x, y)

plt.show()

Figure 6-7.  Error on both axes

Chapter 6  Lines, Bars, and Scatter Plots 



93

Figure 6-8 shows the output.

You can have a combined bar graph as follows:

y = np.random.rand(3, 4)

plt.bar(x + 0.00, y[0], color = 'b', width = 0.25)

plt.bar(x + 0.25, y[1], color = 'g', width = 0.25)

plt.bar(x + 0.50, y[2], color = 'r', width = 0.25)

plt.show()

Figure 6-9 shows the output.

Figure 6-8.  Bar graph

Figure 6-9.  Combined bar graph

Chapter 6  Lines, Bars, and Scatter Plots 



94

The previous graphs were examples of vertical bar graphs. Similarly, you can have 

horizontal bar graphs as follows:

x = np.arange(4)

y = np.random.rand(4)

plt.barh(x, y)

plt.show()

Figure 6-10 shows the output.

You can also have combined horizontal bar graphs as follows:

y = np.random.rand(3, 4)

plt.barh(x + 0.00, y[0], color = 'b', height=0.25)

plt.barh(x + 0.25, y[1], color = 'g', height=0.25)

plt.barh(x + 0.50, y[2], color = 'r', height=0.25)

plt.show()

Figure 6-10.  Horizontal bar graph

Chapter 6  Lines, Bars, and Scatter Plots 



95

Figure 6-11 shows the output.

�Scatter Plot
You can also visualize your data with scatter plots. You will usually visualize a set of 

two variables with a scatter plot. One variable is assigned to the x-axis, and another is 

assigned to the y-axis. Then you draw a point for the values of x-y pairs. The size of x 

and y must be same (they are always one-dimensional arrays). You can show additional 

variables by manipulating the colors and sizes of the points. In that case, the sizes of the 

one-dimensional arrays representing x, y, the color, and the size must be the same.

In the following example, we are assigning random x- and y-axes values and colors to 

1,000 points. All points are of size 20.

N = 1000

x = np.random.rand(N)

y = np.random.rand(N)

colors = np.random.rand(N)

size = (20)

plt.scatter(x, y, s=size, c=colors, alpha=1)

plt.show()

Figure 6-11.  Combined horizontal bar graph

Chapter 6  Lines, Bars, and Scatter Plots 



96

Figure 6-12 shows the output.

The size of the points is fixed in this example. You can also set the size per the place 

on the graph (which depends on the values of the x and y coordinates). Here is an 

example:

N = 1000

x = np.random.rand(N)

y = np.random.rand(N)

colors = np.random.rand(N)

size = (50 * x * y)

plt.scatter(x, y, s=size, c=colors, alpha=1)

plt.show()

Figure 6-12.  Scatter plot

Chapter 6  Lines, Bars, and Scatter Plots 



97

Figure 6-13 shows the output.

You’ve just learned how to create scatter plots.

�Summary
In this chapter, we started with a little bit of a warm-up with a line plot. You then learned 

how to create various log graphs. You also learned how to show the margin of error and 

how to create bar plots. Finally, you learned how to create scatter plots.

In the next chapter, you will learn a few more techniques for creating data 

visualizations. You will learn how to create histograms, contours, stream plots, and 

heatmaps.

Figure 6-13.  Scatter plot

Chapter 6  Lines, Bars, and Scatter Plots 



99
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_7

CHAPTER 7

Histograms, Contours, 
and Stream Plots
In the previous chapter, you learned many ways to create visualizations with lines, bar 

plots, and scatter plots.

We will continue exploring various visualizations with Matplotlib in this chapter. You 

will learn how to create histograms and contours. You will also learn how to plot vectors 

with stream plots.

�Histograms
Before you learn how to create various types of histograms, you need to learn what 

they are. First, you need to know what frequency tables are. Suppose you have a set of 

members with various values. You can create a table that has various buckets of ranges 

of values in a column. Each bucket must have at least one value. Then you can count the 

number of members that fall into that bucket and note those counts against the buckets. 

Let’s see a simple example. Please create a new notebook for this, as shown here:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

Now let’s manually create a dataset and define the number of buckets equal to the 

cardinality (number of distinct elements) of the set.

x = [1, 3, 5, 1, 2, 4, 4, 2, 5, 4, 3, 1, 2]

n_bins = 5

https://doi.org/10.1007/978-1-4842-7410-1_7#DOI


100

You can show the output with the following code:

plt.hist(x, bins=n_bins)

plt.show()

Figure 7-1 shows the output.

Normal (or Gaussian) distribution is a type of continuous probability distribution. It 

is usually a bell-shaped curve. Let’s create a histogram with a normal distribution curve. 

To create the data, we will use a NumPy routine. Let’s draw a histogram of random data 

with normal distribution as follows:

np.random.seed(31415)

n_points = 10000

n_bins = 15

x = np.random.randn(n_points)

plt.hist(x, bins=n_bins)

plt.show()

Figure 7-1.  Simple histogram

Chapter 7  Histograms, Contours, and Stream Plots



101

Figure 7-2 shows the output.

The histogram of one-dimensional data is a 2D figure (as shown in Figure 7-2). When 

you want to create a histogram of 2D data, you have to create a 3D figure with the data 

variables on the x- and y-axes and the histogram on the z-axis. In other words, you can 

use 2D coordinates to show this 3D visualization and view the histogram from the top 

(top view). The bars can be color coded to signify their magnitude.

y = np.random.randn(n_points)

plt.hist2d(x, y, bins=50)

plt.show()

Figure 7-2.  Simple histogram of random data

Chapter 7  Histograms, Contours, and Stream Plots



102

Figure 7-3 shows the output.

You can customize the histogram by setting the transparency and the color as 

follows:

plt.hist(x, 20, density=True,

         histtype='stepfilled',

         facecolor='g', alpha=0.5)

plt.show()

Figure 7-4 shows the output.

Figure 7-3.  Simple histogram of 2D data

Figure 7-4.  Customized histogram

Chapter 7  Histograms, Contours, and Stream Plots



103

You can also show just the outline of the histogram as follows:

plt.hist(x, 20, density=True,

         histtype='step')

plt.show()

Figure 7-5 shows the output.

�Contours
Contours represent the outline of an object. Contours are continuous (and closed, in 

many cases) lines highlighting the shape of objects. Contours are useful in the area 

of cartography, which means map-making. On maps, a contour joins points of equal 

height. So, all the points on a contour line are at an equal elevation (from the sea level). 

In other applications where we use contours, all the points on the same contour line 

have the same values (or magnitude).

Let’s draw a simple contour. We will create and visualize our own data by creating 

circular contour as follows:

x = np.arange(-3, 3, 0.005)

y = np.arange(-3, 3, 0.005)

X, Y = np.meshgrid(x, y)

Z = (X**2 + Y**2)

Figure 7-5.  Customized histogram with outline only

Chapter 7  Histograms, Contours, and Stream Plots



104

out = plt.contour(X, Y, Z)

plt.clabel(out, inline=True,

           fontsize=10)

plt.show()

Figure 7-6 shows the output.

You can also add a color bar to the output as follows:

out = plt.contour(X, Y, Z)

plt.clabel(out, inline=True,

           fontsize=10)

plt.colorbar(out)

plt.show()

Figure 7-6.  Simple labeled contour

Chapter 7  Histograms, Contours, and Stream Plots



105

Figure 7-7 shows the output.

You can also set the colors of the contour as follows:

out = plt.contour(X, Y, Z,

                  colors='g')

plt.clabel(out, inline=True,

           fontsize=10)

plt.show()

Figure 7-8 shows the output.

Figure 7-7.  Simple labeled contour with a color bar

Figure 7-8.  Simple labeled contour with custom colors

Chapter 7  Histograms, Contours, and Stream Plots



106

You can also have a filled contour. The styles are used to highlight the various areas 

in the contour visualization. Let’s visualize filled contours as follows:

plt.contourf(X, Y, Z,

             hatches=['-', '/', '\\', '//'],

             cmap='cool',

             alpha=0.75)

plt.show()

Figure 7-9 shows the output.

�Visualizing Vectors with Stream Plots
Up to now, we have visualized scalar entities, which have magnitudes. All the 

visualizations you have learned about up to this point are great for scalars. Vectors, 

by contrast, are entities that have magnitude and direction. For example, force has a 

magnitude and a direction. A specific example is a magnetic force field. You can visualize 

vectors with stream plots. Let’s create our own dataset to visualize this. We will create a 

mesh with X and Y. Then we will create U and V to show the magnitude.

Y, X = np.mgrid[-5:5:200j, -5:5:300j]

U = X**2 + Y**2

V = X + Y

Figure 7-9.  Filled contour

Chapter 7  Histograms, Contours, and Stream Plots



107

You can create a simple stream plot as follows:

plt.streamplot(X, Y, U, V)

plt.show()

Figure 7-10 shows the output.

You can also have stream plots of variable densities as follows:

plt.streamplot(X, Y, U, V,

               density=[0.5, 0.75])

plt.show()

Figure 7-10.  Simple stream plot

Chapter 7  Histograms, Contours, and Stream Plots



108

Figure 7-11 shows the output.

You can also assign colors to the stream plot as follows:

plt.streamplot(X, Y, U, V, color=V,

           linewidth=1, cmap='cool')

plt.show()

Figure 7-12 shows the output.

Figure 7-12.  Stream plot with variable colors

Figure 7-11.  Stream plot with variable densities

Chapter 7  Histograms, Contours, and Stream Plots



109

You can also create a stream plot with variable line widths as follows:

plt.streamplot(X, Y, U, V,

               density=0.6,

               color='k',

               linewidth=X)

plt.show()

Figure 7-13 shows the output.

You can also use quiver plots for the vector visualizations as follows:

X = np.arange(-5, 5, 0.5)

Y = np.arange(-10, 10, 1)

U, V = np.meshgrid(X, Y)

plt.quiver(X, Y, U, V)

plt.show()

Figure 7-13.  Stream plot with variable line widths

Chapter 7  Histograms, Contours, and Stream Plots



110

Figure 7-14 shows the output.

�Summary
In this chapter, you learned about histograms, contours, and stream plots.

In the next chapter, you will learn how to visualize images and audio. You will also 

learn interpolation methods for images.

Figure 7-14.  Visualizing vector fields with a quiver plot

Chapter 7  Histograms, Contours, and Stream Plots



111
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_8

CHAPTER 8

Image and Audio 
Visualization
In the previous chapter, you learned how to create visualizations with histograms, 

contours, and stream plots.

In this chapter, you will learn how to process and visualize images and audio with 

Matplotlib. Specifically, you will learn about the following topics in this chapter:

•	 Visualizing images

•	 Interpolation methods

•	 Audio visualization

•	 Audio processing

After reading this chapter, we will be able to visualize images and audio with Matplotlib.

�Visualizing Images
You can read digital images with Matplotlib, which supports many image formats, 

although you do have to install a library called pillow. Install pillow as shown here:

!pip3 install pillow

I recommend that you create a fresh notebook for this chapter. Import the library 

with the following statements:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

https://doi.org/10.1007/978-1-4842-7410-1_8#DOI


112

You can read digital images with the function imread() on Windows as follows:

img1 = plt.imread("D:/Dataset/4.2.03.tiff")

The code is similar for Linux and Mac, as follows:

img1 = plt.imread("~/Dataset/4.2.03.tiff")

Let’s see the contents of the variable now, as shown here:

print(img1)

The output is as follows:

array([[[164, 150,  71],

        [ 63,  57,  31],

        [ 75,  43,  10],

        ...,

        [  5,   8,   5],

        [  2,   5,   0],

        [  4,   5,   2]]], dtype=uint8)

I have removed the middle part of the output to save space, but this is an Ndarray 

after all. We can confirm this with the following code:

type(img1)

The output is as follows:

numpy.ndarray

To learn more about the image, you can check the properties of the Ndarray that 

is storing the image data. A color image is stored as a 3D matrix, and each individual 

dimension of that matrix is used to visualize the intensity of the color channel. Color 

images are read and stored in red, green, blue (RGB) format. Since there are no colors in 

grayscale images, there is only a single plane (a 2D matrix) that stores the intensities of 

the grayscale values.

You can use the routine imshow() to show any Ndarray as an image as follows:

plt.imshow(img1)

plt.show()

Chapter 8  Image and Audio Visualization



113

Figure 8-1 shows the output.

This is a color image. The Matplotlib library automatically detects that the image has 

multiple channels and shows it as a color image. However, it goofs up a little bit when we 

show grayscale images.

img2 = plt.imread("D:/Dataset/5.1.11.tiff")

plt.imshow(img2)

plt.show()

Figure 8-2 shows the output.

Figure 8-1.  Visualizing an image

Figure 8-2.  Visualizing a grayscale image

Chapter 8  Image and Audio Visualization



114

The image data is interpreted correctly, but there seems to be some problem with 

the color. For grayscale images, Matplotlib uses the default color map, so you have to 

manually specify the color map as follows:

plt.imshow(img2, cmap = 'gray')

plt.show()

Figure 8-3 shows the output.

A color map is a matrix of values defining the colors for visualizations. Let’s try 

another color map for the image, as shown here:

plt.imshow(img2, cmap = 'cool')

plt.show()

Figure 8-3.  Visualizing a grayscale image with the correct color map

Chapter 8  Image and Audio Visualization



115

Figure 8-4 shows the output.

You can display a list of color maps in the current version of Matplotlib by using the 

following statement:

plt.colormaps()

The output is as follows:

['Accent',

 'Accent_r',

  .........

 'twilight_r',

 'twilight_shifted',

 'twilight_shifted_r',

 'viridis',

 'viridis_r',

 'winter',

 'winter_r']

I have removed a big portion of the output so that it will fit in the book. You can use 

any of these color maps for your visualization needs. As an exercise, try a few color maps 

with a grayscale image.

Figure 8-4.  Visualizing a grayscale image with a cool color map

Chapter 8  Image and Audio Visualization



116

�Image Masking
You can mask the areas of an image with a circle as follows:

import matplotlib.patches as patches

fig, ax = plt.subplots()

im = ax.imshow(img1)

patch = patches.Circle((245, 200),

                       radius=200,

                       transform=ax.transData)

im.set_clip_path(patch)

ax.axis('off')

plt.show()

In this code example, we are creating a circle with the routine Circle() at the XY 

co-ordinates 245, 200. The radius is 200 pixels. Also, we are clipping the image with the 

circle using the routine set_clip_path() and showing it. Figure 8-5 shows the output.

�Interpolation Methods
You can show a simple NumPy Ndarray as an image as follows:

img3 = [[1, 2, 3, 4],

       [5, 6, 7, 8],

       [9, 10, 11, 12],

Figure 8-5.  Clipping an image with a circle

Chapter 8  Image and Audio Visualization



117

       [13, 14, 15, 16]]

plt.imshow(img3)

plt.show()

Figure 8-6 shows the output.

The image is using no interpolation method for visualization. We can demo 

interpolation methods as follows:

methods = ['none', 'antialiased', 'nearest', 'bilinear',

           'bicubic', 'spline16', 'spline36', 'hanning',

           'hamming', 'hermite', 'kaiser', 'quadric',

           'catrom', 'gaussian', 'bessel', 'mitchell',

           'sinc', 'lanczos', 'blackman']

fig, axs = plt.subplots(nrows=4, ncols=6, figsize=(9, 6),

                        subplot_kw={'xticks': [], 'yticks': []})

for ax, interp_method in zip(axs.flat, methods):

    ax.imshow(img3, interpolation=interp_method, cmap='hot')

    ax.set_title(str(interp_method))

plt.tight_layout()

plt.show()

Figure 8-6.  NumPy Ndarray as an image

Chapter 8  Image and Audio Visualization



118

In this code example, we are simply showing the same Ndarray with all the 

interpolation methods available in Matplotlib. Figure 8-7 shows the output.

�Audio Visualization
You can use Matplotlib to visualize audio. You just need the SciPy library to read an 

audio file and store that data to an Ndarray. Let’s install it, as shown here:

!pip3 install scipy

Let’s import all the required libraries, as shown here:

%matplotlib inline

import matplotlib.pyplot as plt

from scipy.io import wavfile

Figure 8-7.  Demo of interpolation methods

Chapter 8  Image and Audio Visualization



119

Let’s read an audio file now. I am reading a WAV file as follows:

samplerate, data = wavfile.read('sample.wav')

Let’s see the sampling rate of the music, as shown here:

print(samplerate)

The output is as follows:

44100

This (44.1 kHz) is a common sampling rate. You can read an informative article 

about audio sampling rates at https://www.izotope.com/en/learn/digital-audio-

basics-sample-rate-and-bit-depth.html.

You can also display the data as follows:

print(data)

The data is as follows:

[[-204   23]

 [-233   32]

 [-191   34]

 ...

 [ 646  676]

 [ 679  707]

 [ 623  650]]

You can check the properties of the audio as follows:

print(type(data))

print(data.shape)

print(data.ndim)

print(data.dtype)

print(data.size)

print(data.nbytes)

Chapter 8  Image and Audio Visualization

https://www.izotope.com/en/learn/digital-audio-basics-sample-rate-and-bit-depth.html
https://www.izotope.com/en/learn/digital-audio-basics-sample-rate-and-bit-depth.html


120

The output is as follows:

<class 'numpy.ndarray'>

(2601617, 2)

2

int16

5203234

10406468

The audio data is retrieved and stored in the NumPy, as you have seen. It is stored 

in a 2D matrix. Suppose that there are N data points (also known as sample points) for 

the audio data; then the size of the NumPy array is N×2. As you can see, the audio has 

two channels, left and right. So, each channel in stored in a separate array of size N, and 

thus we have N×2. This is known as stereo audio. In this example, we have 2,601,617 

points (samples). Each point or sample is represented using a pair of integers of 16 bits 

(2 bytes). Thus, each sample needs four bytes. So, we can compute the total raw memory 

required for storing the audio data by multiplying the sample size by 4. When we 

visualize audio, we show the value of both channels of the sample. Let’s visualize the first 

2,000 data points as follows:

plt.plot(data[:2000])

plt.show()

Figure 8-8 shows the output.

Figure 8-8.  Visualization of an audio file

Chapter 8  Image and Audio Visualization



121

You can check the number of audio samples as follows:

samples = data.shape[0]

print(samples)

The output is as follows:

2601617

You can create a different visualization of the data as follows:

plt.plot(data[:10*samplerate])

plt.show()

Figure 8-9 shows the output.

Figure 8-9.  Visualization of an audio file

Let’s separate the data for both channels as follows:

channel1 = data[:, 0]

channel2 = data[:, 1]

print(channel1, channel2)

The output is as follows:

[-204 -233 -191 ...  646  679  623] [ 23  32  34 ... 676 707 650]

Chapter 8  Image and Audio Visualization



122

Let’s visualize the data as follows:

plt.subplot(2, 1, 1)

plt.plot(channel1[:10*samplerate])

plt.subplot(2, 1, 2)

plt.plot(channel2[:10*samplerate], c='g')

plt.show()

Figure 8-10 shows the output.

�Audio Processing
The Fourier transform converts the data represented as waves in the time domain into 

the frequency domain. So, when you compute the Fourier transform and visualize it, you 

are seeing the representation in the frequency domain.

The fast Fourier transform (FFT) is an efficient method of computing a Fourier 

transform of the waveform data. FFT reduces the number of computations, which is 

why it is speedy; that’s why it is known as a fast Fourier transform. Let’s compute the fast 

Fourier transform of the audio signal as follows:

import scipy.fftpack

datafft = scipy.fftpack.fft(data)

fftabs = abs(datafft)

print(fftabs)

Figure 8-10.  Visualization of both audio channels

Chapter 8  Image and Audio Visualization



123

The output is as follows:

[[ 181.  227.]

 [ 201.  265.]

 [ 157.  225.]

 ...

 [1322.   30.]

 [1386.   28.]

 [1273.   27.]]

Let’s compute the frequency and plot the graph as follows:

freqs = scipy.fftpack.fftfreq( samples, 1/samplerate )

plt.plot(freqs, fftabs)

plt.show()

Figure 8-11 shows the output.

�Summary
In this chapter, you learned how to create visualizations for images and audio.

In the next chapter, you will learn how to visualize pie and polar charts.

Figure 8-11.  Visualization of FFT

Chapter 8  Image and Audio Visualization



125
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_9

CHAPTER 9

Pie and Polar Charts
In the previous chapter, you learned how to visualize and process images and audio with 

Matplotlib and SciPy.

In this chapter, you will learn how to create pie and polar charts with Matplotlib.

�Pie Charts
Let’s learn the basics of the pie charts first. As the name indicates, a pie chart is a circle 

that is divided radially depending on the data. Imagine an apple pie or a pizza cut into 

slices. A pie chart fits that description well; however, unlike pizza or pies, which are 

usually divided symmetrically, a pie chart is not necessarily radially symmetrical. It all 

depends on the data to be visualized.

Let’s get started. I recommend creating a new notebook for this exercise.

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

Let’s create the data to be visualized, as follows:

data = np.array([35, 25, 25, 15])

Let’s visualize the data with a simple pie chart as follows:

plt.pie(data)

plt.show()

https://doi.org/10.1007/978-1-4842-7410-1_9#DOI


126

Figure 9-1 shows the output.

Let’s add labels as follows:

mylabels = ['A', 'B', 'C', 'D']

plt.pie(data,

        labels = mylabels)

plt.show()

Figure 9-2 shows the output.

Figure 9-1.  A simple pie chart

Figure 9-2.  A simple pie chart with labels

Chapter 9  Pie and Polar Charts



127

You can even separate the parts of the pie a bit, as follows:

explode = [0.0, 0.05, 0.1, 0.15]

plt.pie(data,

        labels = mylabels,

        explode = explode)

plt.show()

The output will have the parts of the pie separated as per the values in the explode 

argument. Figure 9-3 shows the output.

You can also enable shadows as follows:

plt.pie(data,

        labels = mylabels,

        explode = explode,

        shadow = True)

plt.show()

Figure 9-3.  A simple pie chart with labels and explosion

Chapter 9  Pie and Polar Charts



128

Figure 9-4 shows the output.

You can also add a legend to the output as follows:

plt.pie(data,

        labels = mylabels,

        explode = explode,

        shadow = True)

plt.legend()

plt.show()

Figure 9-5 shows the output.

Figure 9-4.  A simple pie chart with shadows

Figure 9-5.  A simple pie chart with a legend

Chapter 9  Pie and Polar Charts



129

You can add a title for the legend as follows:

plt.pie(data,

        labels = mylabels,

        explode = explode,

        shadow = True)

plt.legend(title='Data :')

plt.show()

Figure 9-6 shows the output.

You’ve just learned how to create polar graphs.

�Polar Charts
You can also create polar graphs that are in the shape of pie charts. However, a 

fundamental difference from the Cartesian (X-Y) coordinate system is that in a polar 

chart the coordinate system is radially arranged, so you need the angle (theta) and 

distance from the origin (r is the radius) to visualize a point or set of points. Let’s create a 

dataset as follows:

Figure 9-6.  A simple pie chart with legends and a title for the legend

Chapter 9  Pie and Polar Charts



130

N = 20

theta = np.linspace(0.0, 2 * np.pi, N)

r = 10 * np.random.rand(N)

The set of points can be visualized as follows:

plt.subplot(projection='polar')

plt.bar(theta, r, bottom=0.0,

       color=['r', 'g', 'b'], alpha=0.2)

plt.show()

Figure 9-7 shows the output.

You can see that this creates a bar visualization, as shown in Figure 9-7. There 

are a few useful video tutorials on YouTube where you can learn more about creating 

visualizations in the polar coordinate system.

https://www.youtube.com/watch?v=mDT_DG_A0JA

https://www.youtube.com/watch?v=GMcRqtm4mNo

https://www.youtube.com/watch?v=VmQ1isayjJI

Figure 9-7.  A simple polar graph

Chapter 9  Pie and Polar Charts



131

Let’s create a simple graph. Let’s create the dataset for it as shown here:

r = np.arange(0, 5, 0.2)

theta = 2 * np.pi * r

plt.subplot(projection='polar')

plt.plot(theta, r)

plt.show()

This creates a simple linear visualization on a polar graph. As this is a polar graph, 

you will see a spiral-like structure, as shown in Figure 9-8.

This is not a perfect spiral as the distance between the consecutive points is 0.2. If 

you reduce the distance, then you will get a perfect spiral. Let’s tweak the data as follows:

r = np.arange(0, 5, 0.01)

theta = 2 * np.pi * r

plt.subplot(projection='polar')

plt.plot(theta, r)

plt.show()

Figure 9-8.  A simple linear visualization on a polar graph

Chapter 9  Pie and Polar Charts



132

This creates a perfect spiral, as shown in Figure 9-9.

Let’s see a couple of examples of scatter plots on a polar graph. To start, prepare the 

data as shown here:

N = 150

r = np.random.rand(N)

theta = 2 * np.pi * np.random.rand(N)

size = r * 100

You can visualize this as follows:

plt.subplot(projection='polar')

plt.scatter(theta, r, c=theta,

            s=size, cmap='hsv',

            alpha=0.5)

plt.show()

Figure 9-9.  A spiral visualization

Chapter 9  Pie and Polar Charts



133

Figure 9-10 shows the output.

You can also show part of the visualization by setting the start and end angles, as 

follows:

fig = plt.figure()

ax = fig.add_subplot(projection='polar')

c = ax.scatter(theta, r, c=theta,

               s=size, cmap='hsv',

               alpha=0.5)

ax.set_thetamin(0)

ax.set_thetamax(90)

plt.show()

Figure 9-10.  A scatter plot

Chapter 9  Pie and Polar Charts



134

The output shows only part of the entire polar graph, as shown in Figure 9-11.

As an exercise, you may want to create partial spirals and bar graphs.

�Summary
In this chapter, learned how to create pie charts and polar charts in detail.

In the next chapter, you will learn how to create a few more visualizations, namely, 

using the routines pColor(), pColormesh(), and colorbar().

Figure 9-11.  A partial scatter plot

Chapter 9  Pie and Polar Charts



135
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_10

CHAPTER 10

Working with Colors
In the previous chapter, you learned how to visualize pie charts and polar charts with 

Matplotlib.

In this chapter, you will learn how to work with colors. The following are the routines 

you will learn to use in this chapter:

•	 pcolor()

•	 pcolormesh()

•	 colorbar()

After reading this chapter, we will be able to work with colors in Matplotlib.

�pcolor()
The routine pcolor() creates a pseudocolor plot with a rectangular (nonsquare) grid. 

Pseudocolor means the object or image is rendered in colors different than those in 

which it was recorded. Let’s create a new notebook for this chapter, as shown here:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

Let’s create a nonsquare matrix and use the routine pcolor() to visualize it, as 

shown here:

data = np.random.rand(5, 6)

plt.pcolor(data)

plt.show()

https://doi.org/10.1007/978-1-4842-7410-1_10#DOI


136

Figure 10-1 shows the output.

You can also use custom color maps as follows:

plt.pcolor(data, cmap='YlGnBu_r')

plt.show()

Figure 10-2 shows the output.

Figure 10-1.  A simple demonstration of pcolor()

Figure 10-2.  A simple demonstration of pcolor() with color maps

Chapter 10  Working with Colors



137

Let’s now try adding shading. Let’s create a new dataset, as follows:

N = 100

X, Y = np.meshgrid(np.linspace(-5, 5, N),

                   np.linspace(-4, 4, N))

Z = (X**2 + Y**2)

You can visualize it as follows:

plt.pcolor(X, Y, Z,

           cmap='YlGnBu_r',

           shading='auto')

plt.show()

Figure 10-3 shows the output.

You can also create a visualization with nearest as the method for shading. In this 

shading technique, each grid point has a color centered on it and it extends halfway 

between the adjacent grid centers.In this shading technique, each grid point has a color 

centered on it and it extends halfway between the adjacent grid centers. The example is 

as follows:

plt.pcolor(X, Y, Z,

           cmap='YlGnBu_r',

           shading='nearest')

plt.show()

Figure 10-3.  Shading

Chapter 10  Working with Colors



138

Figure 10-4 shows the output.

�pcolormesh()
The routine polormesh() behaves in the same way as pcolor(); however, it renders large 

datasets much faster. Let’s create a visualization of the same dataset used for Figure 10-4 

but with polormesh(). The code is as follows:

plt.pcolormesh(X, Y, Z,

               cmap='YlGnBu_r',

               shading='auto')

plt.show()

Let’s see an example with shading and a color map, as shown here:

nrows = ncols = 5

x = np.arange(ncols + 1)

y = np.arange(nrows + 1)

z = np.arange(nrows * ncols).reshape(nrows, ncols)

plt.pcolormesh(x, y, z,

               shading='flat',

               cmap='coolwarm')

plt.show()

Figure 10-4.  Shading with nearest

Chapter 10  Working with Colors



139

Figure 10-5 shows the output.

Run the following example with different arguments:

plt.pcolormesh(x, y, z,

               shading='auto',

               cmap='cool')

plt.show()

You can also apply a simple geometric transformation to the dataset as follows:

z = np.random.rand(6, 10)

x = np.arange(0, 10, 1)

y = np.arange(4, 10, 1)

T = 0.5

X, Y = np.meshgrid(x, y)

X = X + T * Y

Y = Y + T * X

plt.pcolormesh(X, Y, Z,

               shading='auto')

plt.show()

Figure 10-5.  Using pcolormesh() with shading and a color map

Chapter 10  Working with Colors



140

Figure 10-6 shows the output.

�colorbar()
You can also add a color bar that corelates with the magnitude of data points in the 

visualization. The routine colorbar() does the trick. The following is the code:

N = 100

X, Y = np.meshgrid(np.linspace(-5, 5, N),

                   np.linspace(-5, 5, N))

Z = (X**2 + Y**2)

img = plt.imshow(Z, cmap='YlGnBu_r')

plt.colorbar(img)

plt.show()

Figure 10-6.  Using polormesh() with a simple transformation

Chapter 10  Working with Colors



141

Figure 10-7 shows the output.

You can shrink the color bar and change its position as follows:

img = plt.imshow(Z, cmap='coolwarm')

plt.colorbar(img, location='left', shrink=0.6)

plt.show()

Figure 10-8 shows the output.

Figure 10-7.  Simple color bar

Figure 10-8.  Shrunken color bar

Chapter 10  Working with Colors



142

You can also extend the color bar as follows:

img = plt.imshow(Z, cmap='coolwarm')

plt.colorbar(img, extend='both')

plt.show()

Figure 10-9 shows the output.

�Summary
In this chapter, you learned how to work with colors. In the next chapter, you will learn 

how to create 3D visualizations.

Figure 10-9.  Extended color bar

Chapter 10  Working with Colors



143
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_11

CHAPTER 11

3D Visualizations 
in Matplotlib
In the previous chapter, you learned how to work with colors in Matplotlib.

In this chapter, you will learn how to work with 3D visualizations. The following are 

the topics you will learn about in this chapter:

•	 Plotting 3D lines, scatter plots, and contours

•	 Working with wireframes, surfaces, and sample data

•	 Plotting bar graphs

•	 Plotting quiver and stem plots

•	 Working with 3D volumes

Wireframes, surfaces, and 3D contours are used to show volumetric data. Bar graphs 

are used to show categorical data. Quiver plots are used for visualizing vectors. After 

reading this chapter, you will be able to work with all these 3D visualizations in Matplotlib.

�Getting Ready
I recommend that you create a new notebook for all the examples in this chapter. To get 

ready, you need to install one additional library as follows:

!pip3 install PyQt5

Qt is a cross-platform library for GUI. PyQt5 is the Python binding for Qt. Once 

the library is installed, you can use the following magical command to force Jupyter 

Notebook to show the visualizations in a separate QT window:

%matplotlib qt

https://doi.org/10.1007/978-1-4842-7410-1_11#DOI


144

So, when you create visualizations, you are also able to interact with them. Let’s learn 

the basics. First, we import all the required libraries, as shown here:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

Then we create a figure object, as shown here:

fig = plt.figure()

Then we create a 3D axis as follows:

ax = plt.axes(projection='3d')

You have to add the code for the visualization after this. However, for this example, 

you will create the visualization for an empty figure and axes with the following line:

plt.show()

Figure 11-1 shows the output.

Chapter 11  3D Visualizations in Matplotlib



145

You can interact with this visualization and change the orientation of it by using your 

mouse. Take the time to explore all the interactive possibilities before proceeding.

�Plotting 3D Lines
Let’s plot a 3D line. Let’s create a figure and axes, as shown here:

fig = plt.figure()

ax = plt.axes(projection='3d')

Let’s create 3D data as follows:

z = np.linspace(0, 30, 1000)

x = np.sin(z)

y = np.cos(z)

Figure 11-1.  An empty and interactive 3D visualization

Chapter 11  3D Visualizations in Matplotlib



146

You can create a 3D plot as follows:

ax.plot3D(x, y, z, 'red')

plt.show()

Figure 11-2 shows the output.

�3D Scatter Plots
You can create random points and show them with a 3D scatter as follows. Let’s create a 

figure and axes first, as shown here:

fig = plt.figure()

ax = plt.axes(projection='3d')

Figure 11-2.  3D linear plot

Chapter 11  3D Visualizations in Matplotlib



147

You can create the random data points as follows:

y = np.random.random(100)

x = np.random.random(100)

z = np.random.random(100)

The points can be visualized with a scatter plot as follows:

ax.scatter3D(x, y, z,  cmap='cool');

plt.show()

Figure 11-3 shows the output.

�3D Contours
You can create 3D contours with the functions contour() and contour3D(). Let’s create 

some data to be visualized.

Figure 11-3.  3D scatter plot

Chapter 11  3D Visualizations in Matplotlib



148

x = np.linspace(-10, 10, 30)

y = np.linspace(-10, 10, 30)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sqrt(X ** 2 + Y ** 2))

You can create a contour as follows:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

ax.contour(X, Y, Z, 50, cmap='coolwarm')

plt.show()

Figure 11-4 shows the output.

Figure 11-4.  3D contour plot

Chapter 11  3D Visualizations in Matplotlib



149

You can obtain similar output as visualized in Figure 11-4 using the following code:

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.contour3D(X, Y, Z, 40,

             cmap='coolwarm')

plt.show()

You can also create a filled contour with the function contourf() as follows:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

ax.contourf(X, Y, Z, 50, cmap='coolwarm')

plt.show()

�Wireframes, Surfaces, and Sample Data
You can plot a wireframe of the same dataset as follows:

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.plot_wireframe(X, Y, Z, color='Green')

ax.set_title('wireframe')

plt.show()

Figure 11-5 shows the output.

Chapter 11  3D Visualizations in Matplotlib



150

The same data can be visualized as a 3D surface as follows:

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.plot_surface(X, Y, Z, color='Blue')

ax.set_title('Surface Plot')

plt.show()

Figure 11-5.  3D wireframe

Chapter 11  3D Visualizations in Matplotlib



151

Figure 11-6 shows the output.

You can also use the sample data that comes with the Matplotlib library for 

demonstrating visualizations. The function get_test_data() can fetch that sample data 

as follows:

from mpl_toolkits.mplot3d import axes3d

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

X, Y, Z = axes3d.get_test_data(0.02)

ax.plot_wireframe(X, Y, Z,

                  rstride=10,

                  cstride=10)

plt.show()

Figure 11-6.  3D surface

Chapter 11  3D Visualizations in Matplotlib



152

Figure 11-7 shows the output.

As an exercise, try to create a surface and contour with the test data.

�Bar Graphs
You can show 2D bars in 3D axes. Let’s create a figure and axes, as shown here:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

Figure 11-7.  Visualizing the test data

Chapter 11  3D Visualizations in Matplotlib



153

Let’s define colors for the bars.

colors = ['r', 'g', 'b', 'c', 'm', 'y','k']

yticks = [0, 1, 2, 3, 4, 5, 6]

Now, let’s create bar graphs with the defined colors with the following loop:

for c, k in zip(colors, yticks):

    x = np.arange(25)

    y = np.random.rand(25)

    ax.bar(x, y, zs=k, zdir='y',

           color=c, alpha=0.8)

plt.show()

Figure 11-8 shows the output.

Figure 11-8.  Visualizing 2D bars in 3D coordinates

Chapter 11  3D Visualizations in Matplotlib



154

You can also create a 3D bar graph with Matplotlib. Let’s create the data first, as 

shown here:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

x = np.arange(10) * np.arange(10)

y = np.arange(10) * np.arange(10)

x, y = np.meshgrid(x, y)

x, y = x.ravel(), y.ravel()

top = x + y

bottom = np.zeros_like(top)

width = depth = 5

You can then show this as 3D bars as follows:

ax.bar3d(x, y, bottom, width,

         depth, top,

         shade=True,

         color='g')

plt.show()

Chapter 11  3D Visualizations in Matplotlib



155

Figure 11-9 shows the output.

�Quiver and Stem Plots
A quiver plot is used to represent directional entities (for example, vectors). Let’s define 

the data, as shown here:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

x = y = z = np.arange(-0.1, 1, 0.2)

X, Y, Z = np.meshgrid(x, y, z)

u = np.cos(np.pi * X) * np.sin(np.pi * Y) * np.sin(np.pi * Z)

v = -np.sin(np.pi * X) * np.cos(np.pi * Y) * np.sin(np.pi * Z)

w = np.sin(np.pi * X) * np.sin(np.pi * Y) * np.cos(np.pi * Z)

Figure 11-9.  Visualizing 3D bars

Chapter 11  3D Visualizations in Matplotlib



156

Finally, you can visualize the data as follows:

ax.quiver(X, Y, Z, u, v, w,

          length=0.1,

          normalize=True)

plt.show()

Figure 11-10 shows the output.

You can also create stem plots where perpendicular lines are drawn in the 

visualization. Let’s use trigonometric functions to define the data, as shown here:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

theta = np.linspace(0, 2 * np.pi)

Figure 11-10.  Quiver plots

Chapter 11  3D Visualizations in Matplotlib



157

x = np.sin(theta)

y = np.cos(theta)

z = np.cos(theta)

You can visualize the stem plot as follows:

ax.stem(x, y, z)

plt.show()

Figure 11-11 shows the output.

Figure 11-11.  Stem plot

Chapter 11  3D Visualizations in Matplotlib



158

�3D Volumes
You can show 3D volumetric data as enclosed surfaces. Let’s create such data as follows:

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

u = np.linspace(0, 2 * np.pi, 100)

v = np.linspace(0, np.pi, 100)

x = 10 * np.outer(np.cos(u), np.sin(v))

y = 10 * np.outer(np.sin(u), np.sin(v))

z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))

You can show this data as a sphere as follows:

ax.plot_surface(x, y, z)

plt.show()

Figure 11-12 shows the output.

Figure 11-12.  Surface plot as a volume

Chapter 11  3D Visualizations in Matplotlib



159

You can also use the function voxels() to visualize a volume as follows:

ma = np.random.randint(1, 3, size=(3, 3, 3))

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.voxels(ma, edgecolor='k')

plt.show()

Figure 11-13 shows the output.

�Summary
In this chapter, you learned how to work with 3D visualizations. Wireframes, surfaces, 

and 3D contours are used to show volumetric data. Bar graphs are used to show 

categorical data. Quiver plots are used for visualizing vectors.

In the next chapter, you will learn how to create animations.

Figure 11-13.  3D volume plot

Chapter 11  3D Visualizations in Matplotlib



161
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_12

CHAPTER 12

Animations with Matplotlib
In the previous chapter, you learned how to work with 3D visualizations in Matplotlib.

In this chapter, you will learn how to work with animations. The following are the 

topics you will learn in this chapter:

•	 Animation basics

•	 Celluloid library

After reading this chapter, you will be able to work with animations in Matplotlib and 

another useful library.

�Animation Basics
In this section, you will learn how to create animations with Matplotlib. First let’s create a 

new notebook for this chapter. Then import the following libraries:

%matplotlib qt

import numpy as np

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation

Let’s define the objects, in other words, the figure, axes, and plot, as follows:

fig = plt.figure()

ax = plt.axes(xlim=(0, 4), ylim=(-2, 2))

line, = ax.plot([], [], lw=3)

https://doi.org/10.1007/978-1-4842-7410-1_12#DOI


162

Let’s define the function init(), which will initialize the animation and set the data 

for the animation, as shown here:

def init():

    line.set_data([], [])

    return line,

Let’s define an animation function, as shown here:

def animate(i):

    x = np.linspace(0, 4, 1000)

    y = np.sin(2 * np.pi * (x - 0.01 * i))

    line.set_data(x, y)

    return line,

This function accepts the frame number as an argument (in this case the variable 

named i) and renders the frame for animation.

Now that we have defined the components, let’s create an animation object using 

the function call FuncAnimation(). It accepts the created functions as arguments. It 

also accepts the number of frames and the interval as arguments. The argument for the 

parameter blit is True. This means that only the parts of the plot that have changed are 

redrawn.

anim = FuncAnimation(fig, animate,

                     init_func=init,

                     frames=1000,

                     interval=10,

                     blit=True)

You can also save the animation as a GIF as follows:

anim.save('sine_wave.gif', writer='pillow')

Chapter 12  Animations with Matplotlib



163

Figure 12-1 shows the output.

You can interact with animation and change the orientation with your mouse. 

Explore all the interactive possibilities before proceeding further.

You can create a progressive spiral, as shown here:

fig = plt.figure()

ax = plt.axes(xlim=(-50, 50), ylim=(-50, 50))

line, = ax.plot([], [], lw=2)

def init():

    line.set_data([], [])

    return line,

xdata, ydata = [], []

def animate(i):

      t = 0.2*i

Figure 12-1.  Visualizing a sine wave

Chapter 12  Animations with Matplotlib



164

      x = t*np.cos(t)

      y = t*np.sin(t)

      xdata.append(x)

      ydata.append(y)

      line.set_data(xdata, ydata)

      return line,

anim = FuncAnimation(fig, animate,

                               init_func=init,

                               frames=3000,

                               interval=5,

                               blit=True)

Figure 12-2 shows the output.

Figure 12-2.  Visualizing a spiral animation

Chapter 12  Animations with Matplotlib



165

�Celluloid Library
You can use another simple library called Celluloid for animation. Let’s install it as 

follows:

!pip3 install celluloid

You can import it as follows:

from celluloid import Camera

Let’s create a figure and camera object as follows:

fig = plt.figure()

camera = Camera(fig)

Let’s create the frames of an animation and save them in memory with the function 

called camera.snap(), as follows:

for i in range(10):

    plt.plot([i] * 10)

    camera.snap()

Let’s create the animation as follows:

animation = camera.animate()

Chapter 12  Animations with Matplotlib



166

Figure 12-3 shows the output.

You can also create a sine wave as follows:

fig, axes = plt.subplots()

camera = Camera(fig)

t = np.linspace(0, 2 * np.pi, 128, endpoint=False)

for i in t:

    plt.plot(t, np.sin(t + i), color='green')

    camera.snap()

animation = camera.animate()

Figure 12-3.  Animation with the Celluloid library

Chapter 12  Animations with Matplotlib



167

Figure 12-4 shows the output.

Another example with a bar graph is as follows:

fig, axes = plt.subplots()

camera = Camera(fig)

y = np.arange(5)

for i in y:

    plt.bar( np.random.rand(5)*10 , y)

    camera.snap()

animation = camera.animate()

Figure 12-4.  Sine wave animation with the Celluloid library

Chapter 12  Animations with Matplotlib



168

Figure 12-5 shows the output.

�Summary
In this chapter, you learned how to work with animations.

In the next chapter, you will learn how to do even more with Matplotlib.

Figure 12-5.  Bar graph animation with the Celluloid library

Chapter 12  Animations with Matplotlib



169
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_13

CHAPTER 13

More Visualizations 
with Matplotlib
In the previous chapter, you learned how to work with animations in Matplotlib.

In this chapter, you will learn a few more techniques for using Matplotlib. This 

chapter is the culmination of all the knowledge you have gained up to now. The chapter 

has an assortment of techniques for using Matplotlib that I did not cover in the earlier 

chapters. Specifically, the following are the topics you will learn in this chapter:

•	 Visualizing a function as an image and a contour

•	 Using 3D vignettes

•	 Decorating scatter plots

•	 Working with time plots and signals

•	 Working with filled plots, step plots, and hexbins

•	 Using XKCD style

After reading this chapter, you will be able to create all sorts of new visualizations in 

Matplotlib.

�Visualizing a Function as an Image and a Contour
Let’s visualize a numerical function. Import all the needed libraries as follows:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

https://doi.org/10.1007/978-1-4842-7410-1_13#DOI


170

Let’s define the function as follows:

def f(x, y):

    return (x ** 3 + y ** 2)

Let’s visualize it as an image, as follows:

n = 10

x = np.linspace(-3, 3, 8 * n)

y = np.linspace(-3, 3, 6 * n)

X, Y = np.meshgrid(x, y)

Z = f( X, Y )

plt.imshow(Z, interpolation='nearest',

          cmap = 'cool', origin='lower')

plt.axis('off')

plt.show()

Figure 13-1 shows the output.

You can visualize the function as a contour too.

n = 256

x = np.linspace(-3, 3, n)

y = np.linspace(-3, 3, n)

X, Y = np.meshgrid(x, y)

plt.contourf(X, Y, f(X, Y), 8,

Figure 13-1.  Visualizing a function as an image

Chapter 13  More Visualizations with Matplotlib



171

            alpha = 0.75, cmap='hot')

C = plt.contour(X, Y, f(X, Y), 8,

               colors='black')

plt.clabel(C, inline=1, fontsize=10)

plt.axis('off')

plt.show()

Figure 13-2 shows the output.

�3D Vignettes
You can create a 3D vignette visualization as follows:

%matplotlib qt

fig = plt.figure()

ax = plt.axes(projection='3d')

X = np.arange(-4, 4, 0.25)

Y = np.arange(-4, 4, 0.25)

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X ** 2 + Y ** 2)

Z = np.sin(R)

ax.plot_surface(X, Y, Z, rstride=1,

               cstride=1, cmap='hot')

ax.contourf(X, Y, Z, zdir='z',

           offset=-2, cmap='hot')

ax.set_zlim(-2, 2)

Figure 13-2.  Visualizing a function as a contour

Chapter 13  More Visualizations with Matplotlib



172

plt.axis('off')

ax.set_zticks(())

plt.show()

Figure 13-3 shows the output.

�Decorated Scatter Plots
You can create decorated scatter plots with Matplotlib. You need to pass the color and 

size as arguments. Here’s an example:

%matplotlib inline

n = 1024

X = np.random.normal(0, 1, n)

Y = np.random.normal(0, 1, n)

color = np.arctan2(Y, X)

plt.scatter(X, Y, s=75, c=color, alpha=0.5)

plt.xlim(-1.5, 1.5)

Figure 13-3.  Visualizing a 3D vignette

Chapter 13  More Visualizations with Matplotlib



173

plt.ylim(-1.5, 1.5)

plt.axis('off')

plt.show()

Figure 13-4 shows the output.

�Time Plots and Signals
You can visualize time plots and signals as follows:

N = 100

x = np.arange(N) # timestamps

y1 = np.random.randn(N)

y2 = np.random.randn(N)

y3 = np.random.randn(N)

y4 = np.random.randn(N)

plt.subplot(2, 1, 1)

plt.plot(x, y1)

plt.plot(x, y2, ':')

plt.grid()

plt.xlabel('Time')

plt.ylabel('y1 and y2')

plt.axis('tight')

plt.subplot(2, 1, 2)

Figure 13-4.  Visualizing a decorated scatter plot

Chapter 13  More Visualizations with Matplotlib



174

plt.plot(x, y3)

plt.plot(x, y4, 'r')

plt.grid()

plt.xlabel('Time')

plt.ylabel('y3 and y4')

plt.axis('tight')

plt.show()

Figure 13-5 shows the output.

You can also multiply two signals. In the following code example, we are using the 

same x-axis to show all three graphs.

f = 1

t = np.arange( 0.0, 4.0, 0.01)

s1 = np.sin(2 *np.pi * f * t)

s2 = np.exp(-t)

s3 = s1 * s2

f = plt.figure()

plt.subplots_adjust(hspace=0.001)

ax1 = plt.subplot( 311 )

ax1.plot(t, s1)

plt.yticks(np.arange(-0.9, 1.0, 0.4))

plt.ylim(-1, 1)

Figure 13-5.  Visualizing time plots and signals

Chapter 13  More Visualizations with Matplotlib



175

ax2 = plt.subplot(312, sharex=ax1)

ax2.plot(t, s2)

plt.yticks(np.arange(0.1, 1.0, 0.2))

plt.ylim(0, 1)

ax3 = plt.subplot(313, sharex = ax1)

ax3.plot(t, s3)

plt.yticks(np.arange(-0.9, 1.0, 0.4))

plt.ylim(-1, 1)

xticklabels = ax1.get_xticklabels() + ax2.get_xticklabels()

plt.setp(xticklabels, visible=False)

plt.show()

Figure 13-6 shows the output.

Figure 13-6.  Multiplying signals

�Filled Plots
You can fill in the empty spaces within the boundaries of plots as follows:

N = 1000

x = np.linspace(0, 1, N)

y = np.sin(4 * np.pi * x) + np.exp(-5 * x)

plt.fill(x, y, 'g', alpha = 0.8)

plt.grid(True)

plt.show()

Chapter 13  More Visualizations with Matplotlib



176

Figure 13-7 shows the output.

�Step Plots
Let’s visualize some sine waves first.

N = 100

x = np.linspace(-np.pi, np.pi, N)

y1 = 0.5 * np.sin(3*x)

y2 = 1.25 * np.sin(2*x)

y3 = 2 * np.sin(4*x)

plt.plot(x, y1, x, y2, x, y3)

plt.show()

Figure 13-7.  Filled-in plots

Chapter 13  More Visualizations with Matplotlib



177

Figure 13-8 shows the output.

You can show them as step plots as follows:

plt.step(x, y1)

plt.step(x, y2)

plt.step(x, y3)

plt.show()

Figure 13-9 shows the output.

Figure 13-8.  Sinusoidals

Figure 13-9.  Sinusoidals with step plots

Chapter 13  More Visualizations with Matplotlib



178

�Hexbins
You can show data as hexbins as follows:

x, y = np.random.normal(size=(2, 10000))

plt.hexbin(x, y,

           gridsize=20,

           cmap='cool')

plt.colorbar()

plt.show()

Figure 13-10 shows the output.

�XKCD Style
You can visualize plots in the XKCD style. The XKCD is a popular a web comic. https://

xkcd.com is the homepage of the web comic.

y = np.random.randn(1000)

plt.xkcd()

plt.hist(y)

plt.show()

Figure 13-10.  Hexbin visualizations

Chapter 13  More Visualizations with Matplotlib

https://xkcd.com
https://xkcd.com


179

Figure 13-11 shows the output.

Another example is as follows:

y = np.random.randn(1000)

plt.xkcd()

plt.hist(y, bins = 30,

         range=[-3.5, 3.5],

         facecolor='r',

         alpha=0.6,

         edgecolor='k')

plt.grid()

plt.show()

Figure 13-12 shows the output.

Figure 13-11.  XKCD histogram

Figure 13-12.  Another XKCD histogram

Chapter 13  More Visualizations with Matplotlib



180

You can visualize 2D histograms too in the same way, as shown here:

data = np.random.randn(1000, 1000)

plt.xkcd()

plt.hist2d(data[0], data[1])

plt.show()

Figure 13-13 shows the output.

�Summary
In this chapter, you learned how to work with some additional visualization techniques 

using Matplotlib.

In the next chapter, you will get acquainted with a data science library known as Pandas.

Figure 13-13.  A third XKCD histogram

Chapter 13  More Visualizations with Matplotlib



181
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_14

CHAPTER 14

Introduction to Pandas
In the previous chapter, you learned many Matplotlib techniques. You will now learn 

how to use another library that is common in data science and data visualization.

In this chapter, we will be focusing on the basics of the main data science and 

analytics library in the scientific Python ecosystem: Pandas. You will learn about the data 

structures in this library. The following are the topics in the chapter:

•	 Introduction to Pandas

•	 Series in Pandas

•	 Dataframe in Pandas

After reading this chapter, you will be comfortable doing basic tasks with Pandas.

�Introduction to Pandas
Pandas is a data analytics component in the scientific Python ecosystem. In fact, it is an 

integral part of the scientific Python ecosystem. It comes with versatile data structures 

and routines to manage them. It comes with versatile data structures and routines to 

manage those data structures.

Let’s install Pandas on a computer by running the following command in Jupyter 

Notebook:

!pip3 install pandas

You can import it to the current session by running the following commands:

import pandas as pd

You can read more about Pandas at https://pandas.pydata.org/.

https://doi.org/10.1007/978-1-4842-7410-1_14#DOI
https://pandas.pydata.org/


182

�Series in Pandas
A series is a one-dimensional array with labels. It can hold data of any type. The labels 

are collectively known as the index.

You can create a series as follows:

s1 = pd.Series([3, 2, 1 , 75, -3.14])

You can check its datatypes as follows:

type(s1)

The following is the output:

<class 'pandas.core.series.Series'>

You can see the values and index associated with the data as follows:

print(s1)

The following is the output:

0     3.00

1     2.00

2     1.00

3    75.00

4    -3.14

dtype: float64

You can explicitly mention the datatype as follows:

s2 = pd.Series([3, 2, 1 , 75, -3.14], dtype=np.float32)

print(s2)

You can pass a list as an argument to the constructor function to create a series, as 

follows:

x = [3, 2, 1 , 75, -3.14]

s3 = pd.Series(x)

Chapter 14  Introduction to Pandas



183

You can even pass a NumPy Ndarray as an argument to the constructor function to 

create a series, as follows:

import numpy as np

y = np.array(x)

s4 = pd.Series(y)

You can see the values as follows:

print(s4.values)

The following is the output:

[ 3.    2.    1.   75.   -3.14]

You can retrieve the index as follows:

print(s4.index)

The output is as follows:

RangeIndex(start=0, stop=5, step=1)

You can assign a custom index as follows:

s5 = pd.Series( x, index = ['a', 'b', 'c', 'd', 'e'])

print(s5)

The output is as follows:

a     3.00

b     2.00

c     1.00

d    75.00

e    -3.14

dtype: float64

Chapter 14  Introduction to Pandas



184

�Basic Operations on Series
You can perform a few basic operations on a series. For example, you can display the 

negative numbers as follows:

print(s5[s5 < 0])

The output is as follows:

e   -3.14

dtype: float64

You can retrieve the positive numbers as follows:

print(s5[s5 > 0])

The output is as follows:

a     3.0

b     2.0

c     1.0

d    75.0

dtype: float64

These were examples of a comparison operation. You can perform arithmetic 

operations such as multiplication as follows:

c = 3

print ( s5 * c )

The output is as follows:

a      9.00

b      6.00

c      3.00

d    225.00

e     -9.42

dtype: float64

Chapter 14  Introduction to Pandas



185

�Dataframe in Pandas
A dataframe is a two-dimensional labeled data structure with columns that can 

be different datatypes. You can create dataframes from series, Ndarrys, lists, and 

dictionaries.

Dataframes have labels, which are collectively called an index. You can easily view 

and manipulate the data in the dataframes. The data is stored in a rectangular grid 

format in dataframes.

You can create a dataframe from a list as follows. The following is a dictionary:

data = {'city': ['Delhi', 'Delhi', 'Delhi',

                'Bangalore', 'Bangalore', 'Bangalore'],

       'year': [2020, 2021, 2022, 2020, 2021, 2022,],

       'population': [10.0, 10.1, 10.2, 5.2, 5.3, 5.5]}

Let’s create a dataframe from this, as shown here:

df1 = pd.DataFrame(data)

print(df1)

The output is as follows:

        city  year  population

0      Delhi  2020        10.0

1      Delhi  2021        10.1

2      Delhi  2022        10.2

3  Bangalore  2020         5.2

4  Bangalore  2021         5.3

5  Bangalore  2022         5.5

You can see the top five records as follows:

df1.head()

The output is as follows:

        city  year  population

0      Delhi  2020        10.0

1      Delhi  2021        10.1

2      Delhi  2022        10.2

Chapter 14  Introduction to Pandas



186

3  Bangalore  2020         5.2

4  Bangalore  2021         5.3

You can also pass other numbers as arguments to the function head(), and it will 

show that many top records from the dataframe. Similarly, you can use df1.tail() to 

see the last records. It also has 5 as the default argument, but you can customize the 

argument passed to it.

You can create a dataframe with a particular order of columns as follows:

df2 = pd.DataFrame(data, columns=['year', 'city', 'population'])

print(df2)

The output is as follows:

   year       city  population

0  2020      Delhi        10.0

1  2021      Delhi        10.1

2  2022      Delhi        10.2

3  2020  Bangalore         5.2

4  2021  Bangalore         5.3

5  2022  Bangalore         5.5

Let’s create a dataframe with an additional column and custom index as follows:

df3 = pd.DataFrame(data, columns=['year', 'city', 'population', 'GDP'],

                  index = ['one', 'two', 'three', 'four', 'five', 'six'])

print(df3)

The following is the new dataframe:

       year       city  population  GDP

one    2020      Delhi        10.0  NaN

two    2021      Delhi        10.1  NaN

three  2022      Delhi        10.2  NaN

four   2020  Bangalore         5.2  NaN

five   2021  Bangalore         5.3  NaN

six    2022  Bangalore         5.5  NaN

You can print the list of columns as follows:

Chapter 14  Introduction to Pandas



187

print(df3.columns)

The output is as follows:

Index(['year', 'city', 'population', 'GDP'], dtype='object')

You can print the list of indexes as follows:

print(df3.index)

The output is as follows:

Index(['one', 'two', 'three', 'four', 'five', 'six'], dtype='object')

You can see the data of a column with the following statement:

print(df3.year)

or you can also use the following statement:

print(df3['year'])

The following is the output:

one      2020

two      2021

three    2022

four     2020

five     2021

six      2022

Name: year, dtype: int64

You can see the datatype of a column with the following statement:

print(df3['year'].dtype)

or you can use the following:

print(df3.year.dtype)

The output is as follows:

int64

You can see the datatype of all the columns as follows:

Chapter 14  Introduction to Pandas



188

print(df3.dtypes)

The output is as follows:

year            int64

city           object

population    float64

GDP            object

dtype: object

You can retrieve any record using the index as follows:

df3.loc['one']

The output is as follows:

year           2020

city          Delhi

population     10.0

GDP             NaN

Name: one, dtype: object

You can assign the same value to all the members of a column as follows:

df3.GDP = 10

print(df3)

The output is as follows:

       year       city  population  GDP

one    2020      Delhi        10.0   10

two    2021      Delhi        10.1   10

three  2022      Delhi        10.2   10

four   2020  Bangalore         5.2   10

five   2021  Bangalore         5.3   10

six    2022  Bangalore         5.5   10

You can assign an Ndarray to the column GDP as follows:

import numpy as np

df3.GDP = np.arange(6)

print(df3)

Chapter 14  Introduction to Pandas



189

The output is as follows:

       year       city  population  GDP

one    2020      Delhi        10.0    0

two    2021      Delhi        10.1    1

three  2022      Delhi        10.2    2

four   2020  Bangalore         5.2    3

five   2021  Bangalore         5.3    4

six    2022  Bangalore         5.5    5

You can also assign it a list as follows:

df3.GDP = [3, 2, 0, 9, -0.4, 7]

print(df3)

The output is as follows:

       year       city  population  GDP

one    2020      Delhi        10.0  3.0

two    2021      Delhi        10.1  2.0

three  2022      Delhi        10.2  0.0

four   2020  Bangalore         5.2  9.0

five   2021  Bangalore         5.3 -0.4

six    2022  Bangalore         5.5  7.0

Let’s assign a series to it as follows:

val = pd.Series([-1.4, 1.5, -1.3], index=['two', 'four', 'five'])

df3.GDP = val

print(df3)

The output is as follows:

       year       city  population  GDP

one    2020      Delhi        10.0  NaN

two    2021      Delhi        10.1 -1.4

three  2022      Delhi        10.2  NaN

four   2020  Bangalore         5.2  1.5

five   2021  Bangalore         5.3 -1.3

six    2022  Bangalore         5.5  NaN

Chapter 14  Introduction to Pandas



190

�Summary
In this chapter, you explored the basics of the Pandas data science library of the scientific 

Python ecosystem. You learned the basics of creating and using the fundamental Pandas 

data structures, which are the series and dataframe.

In the next chapter, you will learn how to programmatically read the data stored in 

various formats using the libraries NumPy, Pandas, and Matplotlib.

Chapter 14  Introduction to Pandas



191
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_15

CHAPTER 15

Data Acquisition
In the previous chapter, you learned the basics of using two Pandas data structures, 

namely, the series and the dataframe.

This chapter focuses on acquiring data with Python using all the libraries you have 

studied up to now (NumPy, Matplotlib, and Pandas). The following are the topics you 

will learn about in this chapter:

•	 Handling plain-text files

•	 Handling CSV files with Python

•	 Using Python and Excel

•	 Writing and reading files with NumPy

•	 Reading data from a CSV file with NumPy

•	 Using a Matplotlib CBook

•	 Reading data from a CSV file

•	 Reading data from an Excel file

•	 Reading data from a JSON file

•	 Reading data from a Pickle file

•	 Reading data from the Web

•	 Reading data from a relational database

•	 Reading data from the clipboard

After reading this chapter, you will be comfortable reading data from various file 

formats and saving it.

https://doi.org/10.1007/978-1-4842-7410-1_15#DOI


192

�Plain-Text File Handling
Let’s learn how to read data from and write data to a plain-text file. Python comes with 

the functionality to read and write plain-text files. We have four modes for opening a file, 

as listed here:

•	 w: Write

•	 r: Read

•	 a: Append

•	 r+: Read and write mode

You can use them (one at a time) as follows:

f = open('testfile.txt', 'w')

print(f)

This code opens the testfile.txt file in write mode. If the file does not exist, 

then Python creates this file in the current location on disk. If the file already exists, it 

overwrites the contents of the file. The previous code prints the file object as follows:

<_io.TextIOWrapper name='testfile.txt' mode='w' encoding='cp1252'>

Let’s write some data to the file. In this case, the data consists of multicharacter 

strings.

f.write('This is a test string.\n')

f.write('This is the middle line.\n')

f.write('This is the last line.')

You can close the file object (also called the file handle) as follows:

f.close()

You know that opening a file again in write mode will overwrite its data. So, this time, 

let’s open the same file in append mode as follows:

f = open('testfile.txt', 'a')

f.write('\nThis is the appended line.')

f.close()

Chapter 15  Data Acquisition



193

We are writing one line into the file and then closing the file. Let’s read the data and 

print it as follows:

f = open('testfile.txt', 'r')

print(f.read())

f.close()

The output is as follows:

This is a test string.

This is the middle line.

This is the last line.

This is the appended line

You can retrieve the lines in a list (with every line in the file corresponding to an 

element in the list), as follows:

f = open('testfile.txt', 'r')

print(f.readlines())

f.close()

The output is as follows:

['This is a test string.\n', 'This is the middle line.\n', 'This is the 

last line.\n', 'This is the appended line.']

You can also retrieve the data in the file line by line as follows:

f = open('testfile.txt', 'r')

for line in f:

    print(line)

f.close()

The output is as follows:

This is a test string.

This is the middle line.

This is the last line.

This is the appended line.

Chapter 15  Data Acquisition



194

�Handling CSV Files with Python
Let’s learn a few things about the comma-separated file (CSV) format. CSV files store 

data in plain-text format, and the data items are either a fixed length or separated by a 

delimiter such as a comma (,), a pipe (|), or a colon(:). The most common CSV format 

uses a comma as the delimiter, and many times the first line is used to store the names of 

the columns.

In this section, you will learn how to handle a CSV file with Python 3. Python 3 comes 

with a built-in library to handle CSV files. You do not have to install anything. You can 

import the library as follows:

import csv

You can open the file as a plain-text file in read mode as follows:

file = open('test.csv', 'r')

print(file)

Once you open the file, you can pass the file handle to the routine csv.reader() as 

follows:

csvfile = csv.reader(file, delimiter=',')

print(csvfile)

This prints the value of the object as follows:

<_csv.reader object at 0x0590AC68>

You can retrieve the data line by line as follows:

for row in csvfile:

    print(row)

This produces the following output:

['Banana', 'Yellow', '250']

['Orange', 'Orange', '200']

['Grapes', 'Green', '400']

['Tomato', 'Red', '100']

['Spinach', 'Green', '40']

['Potatoes', 'Gray', '400']

Chapter 15  Data Acquisition



195

['Rice', 'White', '300']

['Rice', 'Brown', '400']

['Wheat', 'Brown', '500']

['Barley', 'Yellow', '500']

You can display the elements individually as follows:

for row in csvfile:

    for element in row:

        print(element)

The output is as follows:

Banana

Yellow

250

Orange

Orange

200

Grapes

Green

400

Tomato

Red

100

Spinach

Green

40

Potatoes

Gray

400

Rice

White

300

Rice

Brown

400

Chapter 15  Data Acquisition



196

Wheat

Brown

500

Barley

Yellow

500

Let’s close the file handle as follows:

file.close()

�Python and Excel
Let’s see how to read the data from Excel. You need an external library for that. The 

following code installs the library that we will use in this section:

!pip3 install openpyxl

You can import it as follows:

import openpyxl

You can open an Excel file as follows:

wb = openpyxl.load_workbook('test.xlsx')

print(wb)

print(type(wb))

The output is as follows:

<openpyxl.workbook.workbook.Workbook object at 0x0E87F7D8>

<class 'openpyxl.workbook.workbook.Workbook'>

You can retrieve the names of all the sheets as follows:

print(wb.sheetnames)

The output is as follows:

['Sheet1', 'Sheet2', 'Sheet3']

Chapter 15  Data Acquisition



197

You can select a sheet as follows:

currSheet = wb['Sheet1']

print(currSheet)

print(type(currSheet))

The output is as follows:

<Worksheet "Sheet1">

<class 'openpyxl.worksheet.worksheet.Worksheet'>

Similarly, the following code has the same effect:

currSheet = wb[wb.sheetnames[0]]

print(currSheet)

print(type(currSheet))

You can print the name of the current sheet as follows:

print(currSheet.title)

The output is as follows:

Sheet1

You can print the value of a cell as follows:

var1 = currSheet['A1']

print(var1.value)

The output is as follows:

Food Item

The other way to do the same activity is as follows:

print(currSheet['B1'].value)

You can do this another way as follows:

var2 = currSheet.cell(row=2, column=2)

print(var2.value)

Chapter 15  Data Acquisition



198

The number of rows and columns can be obtained as follows:

print(currSheet.max_row)

print(currSheet.max_column)

The output is as follows:

11

3

Let’s print all the data in the spreadsheet as follows:

for i in range(currSheet.max_row):

    print('---Beginning of Row---')

    for j in range(currSheet.max_column):

        var = currSheet.cell(row=i+1, column=j+1)

        print(var.value)

    print('---End of Row---')

The output is very long, so I’ve truncated it here. Please run the code to see it for 

yourself.

�Writing and Reading Files with NumPy
Let’s see how to read and write files with NumPy. Let’s create a dataset with NumPy as 

follows:

import numpy as np

x = np.arange(100)

print(x)

The output is as follows:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

 96 97 98 99]

Chapter 15  Data Acquisition



199

You can save it to a file (in NumPy data format) as follows:

np.save('test.npy', x)

You can load the data from a file into a variable as follows:

data = np.load('test.npy')

print(data)

The output is as follows:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

 96 97 98 99]

�Reading the Data from a CSV File with NumPy
The CSV file can be read with NumPy too as follows:

import numpy as np

# Reads only numeric data

data = np.loadtxt('data.csv', delimiter=',')

print(data)

The output is as follows:

[[  0.   1.  18.   2.]

 [  1.   6.   1.   3.]

 [  2.   3. 154.   0.]

 [  4. 978.   3.   6.]

 [  5.   2.  41.  45.]

 [  6.  67.   2.   3.]

 [  7.   5.  67.   2.]]

Chapter 15  Data Acquisition



200

You can also skip rows and columns as follows:

data = np.loadtxt('data.csv', delimiter=',',

                 skiprows=3, usecols=[1, 3])

print(data)

The output is as follows:

[[978.   6.]

 [  2.  45.]

 [ 67.   3.]

 [  5.   2.]]

�Matplotlib CBook
You can read data that is stored in Matplotlib’s CBook format. Matplotlib comes with a 

few sample files in that format. Let’s see how to read the data:

import matplotlib.cbook as cbook

datafile = cbook.get_sample_data('aapl.npz')

r = np.load(datafile)

print(r.files)

This will print the names of the data files, as shown here:

['price_data']

Let’s read the data from that data file:

print(r['price_data'])

This shows the Apple share price data as follows:

[('1984-09-07',  26.5 ,  26.87,  26.25,  26.5 ,  2981600,   3.02)

 ('1984-09-10',  26.5 ,  26.62,  25.87,  26.37,  2346400,   3.01)

 ('1984-09-11',  26.62,  27.37,  26.62,  26.87,  5444000,   3.07) ...

 ('2008-10-10',  85.7 , 100.  ,  85.  ,  96.8 , 79260700,  96.8 )

 ('2008-10-13', 104.55, 110.53, 101.02, 110.26, 54967000, 110.26)

 ('2008-10-14', 116.26, 116.4 , 103.14, 104.08, 70749800, 104.08)]

Chapter 15  Data Acquisition



201

�Reading Data from a CSV
As mentioned earlier, a CSV file contains values separated by commas. You can  

use the versatile function read_csv() in Pandas to read a CSV file on the Web or on the 

local/networked disk. The following are the contents of a CSV file that we will use in this 

demonstration:

rank,discipline,phd,service,sex,salary

Prof,B,56,49,Male,186960

Prof,A,12,6,Male,93000

Prof,A,23,20,Male,110515

Prof,A,40,31,Male,131205

Prof,B,20,18,Male,104800

Prof,A,20,20,Male,122400

AssocProf,A,20,17,Male,81285

The first row is the header row. Most CSV files will have a header row, although it 

is not required. As you can see, the values are separated by commas. This is a common 

format of CSV files. Depending on the system and application, you can use a variety 

of separators like a space, a semicolon (;), or a pipe (|). Also, CSV files can use a fixed 

number of characters for storing data in columns. In this example, as discussed, we are 

using one of the most common CSV formats for storing data.

Let’s learn how to read data from such files with Pandas. Create a new notebook for 

this chapter.

Import the Pandas library as follows:

import pandas as pd

Let’s read a CSV file located on the Web as follows:

df1 = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/

Salaries.csv")

print(df1)

You can also read a CSV stored on the local disk as follows:

df2 = pd.read_csv("Salaries.csv")

print(df2)

Chapter 15  Data Acquisition



202

You can also dump the data of a dataframe to a CSV file at a disk location as follows:

df2.to_csv('output.csv', index=True, header=False)

The code will create a CSV file on the disk in the current directory.

�Reading Data from an Excel File
To read data from an Excel file into a Pandas dataframe, you need the support of an 

external package. Let’s install a package as follows:

!pip3 install xlrd

Now let’s read the Excel file stored on the disk, as follows:

excel_file = 'test.xlsx'

df1 = pd.read_excel(excel_file)

Here (and in the earlier example too), the file is stored in the same directory as the 

notebook file. If you need to read the file in any other location, you must specify the full 

path of that file. The previous code, when executed, will load the contents of an Excel file 

into a Pandas dataframe. You can see the contents using the following line of code:

print(df1)

Figure 15-1 shows the output.

Figure 15-1.  The data from an Excel sheet

Chapter 15  Data Acquisition



203

�Reading Data from JSON
You can read the data of a JSON string into a dataframe as follows. Create a JSON string first.

obj = """

{"name": "Ashwin",

"places_lived": ["Nashik", "Hyderabad", "Bangalore"],

"pet": null,

"siblings": [{"name": "Scott", "age": 30, "pets": ["Zeus", "Zuko"]},

{"name": "Katie", "age": 38,

"pets": ["Sixes", "Stache", "Cisco"]}]

}

"""

You can print the string as follows:

print(obj)

You can also check the type of the variable (it is a string in JSON format),  

as shown here:

print(type(obj))

You can convert this JSON-formatted string to a dictionary as follows:

import json

result = json.loads(obj)

print(result)

Let’s check the data type of the newly created variable, as shown here:

print(type(result))

This will produce the following result:

<class 'dict'>

Let’s load the data into a dataframe as follows:

df1 = pd.DataFrame(result['siblings'], columns=['name', 'age'])

print(df1)

Chapter 15  Data Acquisition



204

The output is as follows:

    name  age

0  Scott   30

1  Katie   38

You can also read the data from a JSON file as follows:

df2 = pd.read_json('example_2.json')

print(df2)

This is how you can read the JSON data into dataframes.

�Reading Data from a Pickle File
In Python programming, Pickle is used in serializing and deserializing Python Objects. 

You can store a Pandas dataframe to a Pickle file on the disk as follows:

data = [1, 2, 3, 4, 5]

df1 = pd.DataFrame(data)

print(df1)

df1.to_pickle('mypickle')

You can read the data from a Pickle file stored on the disk as follows:

df2 = pd.read_pickle('mypickle')

print(df2)

�Reading Data from the Web
Let’s read the data from the Web. For that, you will need a few libraries. You can install 

them as follows:

!pip3 install lxml html5lib BeautifulSoup4

You can read an HTML file located on the Web as follows:

df1 = pd.read_html('https://www.google.com/')

Chapter 15  Data Acquisition



205

Let’s get the details of the object and the data as follows:

print(df1)

len(df1)

type(df1)

df1[0].head()

You can also parse this retrieved HTML text and fetch important information from 

the tags as follows:

from lxml import objectify

from io import StringIO

The following is an HTML tag string and a way to parse it, as shown here:

tag = '<a href="http://www.google.com/">Google</a>'

root = objectify.parse(StringIO(tag)).getroot()

You retrieve the root and the text of this object as follows:

print(root)

root.get('href')

print(root.text)

This will produce the following output:

Google

Google

�Interacting with the Web API
Let’s learn to interact with the web API to retrieve and store the data into a Pandas 

dataframe. Install the necessary library as follows:

!pip3 install requests

Let’s import the library as follows:

import requests

Chapter 15  Data Acquisition



206

Let’s create a URL string as follows:

url='https://api.github.com/repos/pandas-dev/pandas/issues'

You can fetch the data from the URL with the HTTP GET request issued 

programmatically as follows:

resp = requests.get(url)

You can check the response code and its datatype as follows:

print(resp)

print(type(resp))

The output is as follows:

<Response [200]>

<class 'requests.models.Response'>

The HTTP response code 200 stands for success in retrieving the information. You 

can retrieve the actual information as follows:

data = resp.json()

print(type(data))

It will be a list, as shown here:

<class 'list'>

You can convert it into a dataframe as follows:

output = pd.DataFrame(data, columns=['number', 'title', 'labels', 'state'])

print(output)

Chapter 15  Data Acquisition



207

Figure 15-2 shows the output.

This is how you can work with data available on the Web.

�Reading Data from a Relational Database Table
You can read the data stored in a table in a relational database like MySQL or 

MariaDB. You can read more about the installation and usage at the following URLs:

https://www.mysql.com/

https://mariadb.org/

You have to install an external library as follows:

!pip3 install pymysql

Then you need to import the library to the notebook as follows:

import pymysql

Figure 15-2.  The data from an HTTPS GET response

Chapter 15  Data Acquisition



208

You can connect to a MySQL or MariaDB database instance as follows:

db = pymysql.connect(host="localhost", user="root",

                     password="test123", database="world")

Then you can read the output of a SELECT query into a dataframe as follows:

df1 = pd.read_sql('select * from country', db)

print(df1)

This produces the output shown in Figure 15-3.

�Reading Data from the Clipboard
You can read the data stored on the clipboard. The clipboard is a temporary and 

unnamed buffer in the computer’s main memory (RAM) that a few operating systems 

provide for the short-term storage and transfer of data within and between programs. 

For example, whenever you copy text data from a file, it is stored on the clipboard of the 

operating system.

Figure 15-3.  The data from a MySQL/MariaDB table

Chapter 15  Data Acquisition



209

Copy the following data into your computer’s clipboard by selecting it and pressing 

the Ctrl+C buttons on the keyboard.

  A B C

x 1 2 a

y 2 3 b

z 3 4 c

You can load it into a Pandas dataframe using the following code:

df = pd.read_clipboard()

You can also copy data onto the clipboard programmatically as follows:

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3))

df.to_clipboard()

You can see this data either by reading the clipboard programmatically into a 

dataframe as explained earlier or by pasting it with the Ctrl+V command into a text 

editor like Notepad (on Windows) or Leafpad or gedit (on Linux).

�Summary
In this chapter, you learned how to read data from multiple file formats and how to load 

that data into Python variables.

In the next chapter, you will study how to visualize Pandas data using Matplotlib.

Chapter 15  Data Acquisition



211
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_16

CHAPTER 16

Visualizing Data with  
Pandas and Matplotlib
In the previous chapter, you learned how to read the data stored in various file formats 

into Python variables using NumPy, Pandas, and Matplotlib.

You should be comfortable working with data now. In this chapter, you will practice 

writing programs related to another important and practical aspect of the field of data 

science: dataset visualization. This chapter contains lots of examples of short code 

snippets to demonstrate how to create visualizations of datasets. So, let’s continue our 

journey of data science with the following topics in this chapter:

•	 Simple plots

•	 Bar graphs

•	 Histograms

•	 Box plots

•	 Area plots

•	 Scatter plots

•	 Hexagonal bin plots

•	 Pie charts

After this chapter, you will be able to create impressive visualizations of datasets with 

Pandas and Matplotlib.

https://doi.org/10.1007/978-1-4842-7410-1_16#DOI


212

�Simple Plots
Let’s jump directly into the hands-on examples for data visualization. You will learn 

how to visualize simple plots first. I recommend you create a new notebook for the code 

examples in this chapter.

Let’s start with the magical command that imports all the required libraries, as 

follows:

%matplotlib inline

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

Let’s create some data using the routine cumsum(), as follows:

df1 = pd.DataFrame(np.random.randn(100, 2), columns=['B', 'C']).cumsum()

df1['A'] = pd.Series(list(range(100)))

print(df1)

The resultant dataset will have three columns, as follows:

           B         C   A

0  -0.684779 -0.655677   0

1  -0.699163 -1.868611   1

2  -0.315527 -3.513103   2

3  -0.504069 -4.175940   3

4   0.998419 -4.385832   4

..       ...       ...  ..

95  1.149399 -1.445029  95

96  2.035029 -1.886731  96

97  0.938699  0.188980  97

98  2.449148  0.335828  98

99  2.204369 -1.304379  99

[100 rows x 3 columns]

Chapter 16  Visualizing Data with Pandas and Matplotlib 



213

Let’s use the routine plot() to visualize this data. The plot() routine that the 

dataframe object uses calls Pyplot’s plot() by default. Here’s an example:

plt.figure()

df1.plot(x='A', y='B')

plt.show()

This code is self-explanatory. We are passing strings that contain the names 

of columns as arguments for the x- and y-axes. It produces the output depicted in 

Figure 16-1.

You can use other columns in the visualization as well, as shown here:

plt.figure()

df1.plot(x='A', y='C')

plt.show()

Run this example to see the result. This is how you can use different combinations of 

columns to visualize data.

�Bar Graphs
Let’s create a simple bar graph using the same dataset. Let’s pick a record from this 

dataframe as follows:

print(df1.iloc[4])

Figure 16-1.  Visualizing a simple plot

Chapter 16  Visualizing Data with Pandas and Matplotlib 



214

The following is the output:

B    0.998419

C   -4.385832

A    4.000000

Name: 4, dtype: float64

Let’s draw a simple bar graph with this data using the routine bar(). The following is 

the code snippet for that:

plt.figure()

df1.iloc[4].plot.bar()

plt.axhline(0, color='k')

plt.show()

In this code example, we are using axhline() to draw a horizontal line 

corresponding to the x-axis. Figure 16-2 shows the output.

Let’s discuss a more complex example of a bar graph. Let’s create a new dataset as 

follows:

df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

print(df2)

Figure 16-2.  Visualizing a simple bar graph

Chapter 16  Visualizing Data with Pandas and Matplotlib 



215

The output is as follows:

          a         b         c         d

0  0.352173  0.127452  0.637665  0.734944

1  0.375190  0.931818  0.769403  0.927441

2  0.830744  0.942059  0.781032  0.557774

3  0.977058  0.594992  0.557016  0.862058

4  0.960796  0.329448  0.493713  0.971139

5  0.364460  0.516401  0.432365  0.587528

6  0.292020  0.500945  0.889294  0.211502

7  0.770808  0.519468  0.279582  0.419549

8  0.982924  0.458197  0.938682  0.123614

9  0.578290  0.186395  0.901216  0.099061

In the earlier example, we visualized only a single row. Now, let’s visualize the entire 

dataset as follows:

plt.figure()

df2.plot.bar()

plt.show()

This will create a bar graph for every row. The graphs will be grouped together per 

the rows, as shown in Figure 16-3.

Figure 16-3.  Visualizing a more complex bar graph

Chapter 16  Visualizing Data with Pandas and Matplotlib 



216

You can see that the indices are represented on the x-axis, and magnitudes are 

marked on the y-axis. This is an unstacked vertical bar graph. You can create a stacked 

variation of it by just passing a simple argument as follows:

plt.figure()

df2.plot.bar(stacked=True)

plt.show()

Figure 16-4 shows the output.

You can even create horizontal stacked and unstacked bar graphs too. Let’s create a 

horizontally stacked bar graph with the routine barh() as follows:

plt.figure()

df2.plot.barh(stacked=True)

plt.show()

Figure 16-4.  Visualizing vertically stacked bar graphs

Chapter 16  Visualizing Data with Pandas and Matplotlib 



217

Figure 16-5 shows the output.

Let’s write a code snippet for an unstacked horizontal bar graph by omitting the 

argument as follows:

plt.figure()

df2.plot.barh()

plt.show()

Figure 16-6 shows the output.

Figure 16-5.  Visualizing horizontally stacked bar graphs

Figure 16-6.  Visualizing horizontal unstacked bar graphs

You’ve just learned how to create various types of bar graphs.

Chapter 16  Visualizing Data with Pandas and Matplotlib 



218

�Histograms
A histogram is a visual representation of the frequency distribution of numerical data. It 

was first used by Karl Pearson.

We first divide the data into various buckets, or bins. The size of the bins depends 

on the requirements. For integer datasets, you can have the smallest bin size, which is 1. 

Then for each bin, you can list the number of occurrences of elements that fall under the 

bin. Then you can show that table as a bar graph.

You can draw the histogram of a given dataset with Pandas and Matplotlib. Let’s 

create a dataset as follows:

df4 = pd.DataFrame({'a': np.random.randn(1000) + 1,

                    'b': np.random.randn(1000),

                    'c': np.random.randn(1000) - 1},

                   columns=['a', 'b', 'c'])

print(df4)

The generated dataset is as follows:

            a         b         c

0    1.454474 -0.517940 -0.772909

1    1.886328  0.868393  0.109613

2    0.041313 -1.959168 -0.713575

3    0.650075  0.457937 -0.501023

4    1.684392 -0.072837  1.821190

..        ...       ...       ...

995  0.800481 -1.209032 -0.249132

996  0.490104  0.253966 -1.185503

997  2.304285  0.082134 -1.068881

998  1.249055  0.040750 -0.488890

999 -1.216627  0.444629 -1.198375

[1000 rows x 3 columns]

Let’s visualize this dataset as a histogram using the routine hist(), as follows:

plt.figure();

df4.plot.hist(alpha=0.7)

plt.show()

Chapter 16  Visualizing Data with Pandas and Matplotlib 



219

Figure 16-7 shows the output.

The argument passed to routine decides the opacity (or alpha transparency) of the 

output. You had to make this transparent in the previous example because the histogram 

was unstacked. Let’s create a stacked histogram with the size of the buckets as 20, as 

follows:

plt.figure();

df4.plot.hist(stacked=True, bins=20)

plt.show()

Figure 16-8 shows the output.

Figure 16-7.  Visualizing a dataset as a histogram

Figure 16-8.  Visualizing the same dataset as an unstacked histogram

Chapter 16  Visualizing Data with Pandas and Matplotlib 



220

Let’s create a horizontal cumulative histogram of a single column as follows:

plt.figure();

df4['a'].plot.hist(orientation='horizontal', cumulative=True)

plt.show()

Figure 16-9 shows the output.

The vertical version of the same histogram can be created as follows:

plt.figure();

df4['a'].plot.hist(orientation='vertical', cumulative=True)

plt.show()

Figure 16-9.  Horizontal cumulative histogram

Chapter 16  Visualizing Data with Pandas and Matplotlib 



221

Figure 16-10 shows the output.

Let’s try a fancy type of histogram next. The routine diff() computes the numeric 

difference between the previous row and the current one.

print(df4.diff())

The output will have the first row populated with NaN for all the columns (as there is 

no row before the first one). The output is as follows:

            a         b         c

0         NaN       NaN       NaN

1    0.431854  1.386333  0.882522

2   -1.845015 -2.827562 -0.823188

3    0.608762  2.417105  0.212552

4    1.034317 -0.530774  2.322213

..        ...       ...       ...

995  0.411207 -2.847858  0.325067

996 -0.310378  1.462998 -0.936370

997  1.814182 -0.171832  0.116622

998 -1.055230 -0.041384  0.579991

999 -2.465682  0.403880 -0.709485

[1000 rows x 3 columns]

Figure 16-10.  Vertical cumulative histogram

Chapter 16  Visualizing Data with Pandas and Matplotlib 



222

Let’s visualize this dataset, as shown here:

plt.figure()

df4.diff().hist(color='k', alpha=0.5, bins=50)

plt.show()

Figure 16-11 shows the output.

You’ve just learned how to visualize datasets as histograms.

�Box Plots
You can visualize data with box plots as well. Box plots (also spelled as boxplots) display 

the groups of numerical data through their quartiles. Let’s create a dataset as follows:

df = pd.DataFrame(np.random.rand(10, 5),

                  columns=['A', 'B', 'C', 'D', 'E'])

print(df)

The generated dataset is as follows:

          A         B         C         D         E

0  0.684284  0.033906  0.099369  0.684024  0.533463

1  0.614305  0.645413  0.871788  0.561767  0.149080

2  0.226480  0.440091  0.096022  0.076962  0.674901

Figure 16-11.  Column-wise histograms

Chapter 16  Visualizing Data with Pandas and Matplotlib 



223

3  0.541253  0.409599  0.487924  0.649260  0.582250

4  0.436995  0.142239  0.781428  0.634987  0.825146

5  0.804633  0.874081  0.018661  0.306459  0.008134

6  0.228287  0.418942  0.157755  0.561070  0.740077

7  0.699860  0.230533  0.240369  0.108759  0.843307

8  0.530943  0.374583  0.650235  0.370809  0.595791

9  0.213455  0.221367  0.035203  0.887068  0.593629

You can draw box plots as follows:

plt.figure()

df.plot.box()

plt.show()

This will show the dataset as box plots, as shown in Figure 16-12.

The colors shown here are the default values. You can change them. First, you need 

to create a dictionary as follows:

color = dict(boxes='DarkGreen',

             whiskers='DarkOrange',

             medians='DarkBlue',

             caps='Gray')

print(color)

Figure 16-12.  Vertical box plot

Chapter 16  Visualizing Data with Pandas and Matplotlib 



224

The following is the output:

{'boxes': 'DarkGreen', 'whiskers': 'DarkOrange', 'medians': 'DarkBlue', 

'caps': 'Gray'}

Finally, you pass this dictionary as an argument to the routine that draws the box plot 

as follows:

plt.figure()

df.plot.box(color=color, sym='r+')

plt.show()

Figure 16-13 shows the output.

The following example creates a horizontal box plot visualization:

plt.figure()

df.plot.box(vert=False, positions=[1, 2, 3, 4 , 5])

plt.show()

Figure 16-13.  Vertical box plot with customized colors

Chapter 16  Visualizing Data with Pandas and Matplotlib 



225

Figure 16-14 shows the output.

Let’s see another routine, boxplot(), that also creates box plots. For that, let’s create 

another dataset, as shown here:

df = pd.DataFrame(np.random.rand(10, 5))

print(df)

The output dataset is as follows:

          0         1         2         3         4

0  0.936845  0.365561  0.890503  0.264896  0.937254

1  0.931661  0.226297  0.887385  0.036719  0.941609

2  0.127896  0.291034  0.161724  0.952966  0.925534

3  0.938686  0.336536  0.934843  0.806043  0.104054

4  0.743787  0.600116  0.989178  0.002870  0.453338

5  0.256692  0.773945  0.165381  0.809204  0.162431

6  0.822131  0.486780  0.453981  0.612403  0.614633

7  0.062387  0.958844  0.247515  0.573431  0.194665

8  0.453193  0.152337  0.062436  0.865115  0.220440

9  0.832040  0.237582  0.837805  0.423779  0.119027

Figure 16-14.  Horizontal box plot

Chapter 16  Visualizing Data with Pandas and Matplotlib 



226

You can draw box plots as follows:

plt.figure()

bp = df.boxplot()

plt.show()

Figure 16-15 shows the output.

The main advantage of the routine boxplot() is that you can have column-wise 

visualizations in a single output. Let’s create an appropriate dataset as follows:

df = pd.DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'] )

df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])

print(df)

The output dataset is as follows:

       Col1      Col2  X

0  0.469416  0.341874  A

1  0.176359  0.921808  A

2  0.135188  0.149354  A

3  0.475295  0.360012  A

4  0.566289  0.142729  A

5  0.408705  0.571466  B

6  0.233820  0.470200  B

7  0.679833  0.633349  B

Figure 16-15.  Box plot in action

Chapter 16  Visualizing Data with Pandas and Matplotlib 



227

8  0.183652  0.559745  B

9  0.192431  0.726981  B

Let’s create column-wise visualizations as follows:

plt.figure();

bp = df.boxplot(by='X')

plt.show()

The output will have a title by default explaining how the data is grouped, as shown 

in Figure 16-16.

Let’s look at a little more complex example for this. The following is the code for a 

new dataset:

df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])

df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])

df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])

print(df)

This code creates the following dataset:

       Col1      Col2      Col3  X  Y

0  0.542771  0.175804  0.017646  A

1  0.247552  0.503725  0.569475  A  B

Figure 16-16.  Box plots with groups

Chapter 16  Visualizing Data with Pandas and Matplotlib 



228

2  0.593635  0.842846  0.755377  A

3  0.210409  0.235510  0.633318  A  B

4  0.268419  0.170563  0.478912  A

5  0.526251  0.258278  0.549876  B

6  0.311182  0.212787  0.966183  B  A

7  0.100687  0.432545  0.586907  B

8  0.416833  0.879384  0.635664  B  A

9  0.249280  0.558648  0.661523  B

You can create box plots in groups of multiple columns (this means the grouping 

criteria will have multiple columns).

plt.figure();

bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])

plt.show()

Figure 16-17 shows the output.

Let’s see a bit more complex example with a dataset that has more variation. The 

following code creates such a dataset:

np.random.seed(1234)

df_box = pd.DataFrame(np.random.randn(10, 2), columns=['A', 'B'])

Figure 16-17.  Box plots with groups (multiple columns in the grouping 
criteria)

Chapter 16  Visualizing Data with Pandas and Matplotlib 



229

df_box['C'] = np.random.choice(['Yes', 'No'], size=10)

print(df_box)

The output is the following dataset:

          A         B    C

0  0.471435 -1.190976   No

1  1.432707 -0.312652  Yes

2 -0.720589  0.887163   No

3  0.859588 -0.636524  Yes

4  0.015696 -2.242685   No

5  1.150036  0.991946  Yes

6  0.953324 -2.021255   No

7 -0.334077  0.002118   No

8  0.405453  0.289092   No

9  1.321158 -1.546906   No

You can use the routine groupby() in Pandas to group the data and visualize it as 

follows:

plt.figure()

bp = df_box.boxplot(by='C')

plt.show()

Figure 16-18 shows the output grouped by column C.

Figure 16-18.  Box plot plt.figure()visualization grouped by column C

Chapter 16  Visualizing Data with Pandas and Matplotlib 



230

Another example is as follows:

bp = df_box.groupby('C').boxplot()

plt.show()

Figure 16-19 shows the output.

This is how you can visualize datasets as box plots.

�Area Plots
You can visualize datasets as area plots too. Let’s create a dataset with four columns as 

follows:

df = pd.DataFrame(np.random.rand(10, 4),

                  columns=['A', 'B', 'C', 'D'])

print(df)

This creates the following dataset:

          A         B         C         D

0  0.982005  0.123943  0.119381  0.738523

1  0.587304  0.471633  0.107127  0.229219

2  0.899965  0.416754  0.535852  0.006209

3  0.300642  0.436893  0.612149  0.918198

Figure 16-19.  Box plot visualization grouped by column C

Chapter 16  Visualizing Data with Pandas and Matplotlib 



231

4  0.625737  0.705998  0.149834  0.746063

5  0.831007  0.633726  0.438310  0.152573

6  0.568410  0.528224  0.951429  0.480359

7  0.502560  0.536878  0.819202  0.057116

8  0.669422  0.767117  0.708115  0.796867

9  0.557761  0.965837  0.147157  0.029647

You can visualize all this data with the routine area() as follows:

plt.figure()

df.plot.area()

plt.show()

The previous example creates a stacked area plot, as shown in Figure 16-20.

You can also create unstacked area plots by passing an argument to the routine 

area() as follows:

plt.figure()

df.plot.area(stacked=False)

plt.show()

The unstacked area plot will be transparent by default so that all the individual area 

plots are visible. Figure 16-21 shows the output.

Figure 16-20.  Stacked area plots

Chapter 16  Visualizing Data with Pandas and Matplotlib 



232

This is how to create area plots.

�Scatter Plots
You can also visualize any dataset as a scatter plot. Let’s create a dataset as follows:

df = pd.DataFrame(np.random.rand(10, 4),

                  columns=['A', 'B', 'C', 'D'])

print(df)

The output dataset is as follows:

          A         B         C         D

0  0.593893  0.114066  0.950810  0.325707

1  0.193619  0.457812  0.920403  0.879069

2  0.252616  0.348009  0.182589  0.901796

3  0.706528  0.726658  0.900088  0.779164

4  0.599155  0.291125  0.151395  0.335175

5  0.657552  0.073343  0.055006  0.323195

6  0.590482  0.853899  0.287062  0.173067

7  0.134021  0.994654  0.179498  0.317547

8  0.568291  0.009349  0.900649  0.977241

9  0.556895  0.084774  0.333002  0.728429

Figure 16-21.  Unstacked area plots

Chapter 16  Visualizing Data with Pandas and Matplotlib 



233

You can visualize columns A and B as a scatter plot as follows:

plt.figure()

df.plot.scatter(x='A', y='B')

plt.show()

Figure 16-22 shows the output.

You can visualize multiple groups as follows:

ax = df.plot.scatter(x='A', y='B',

                     color='Blue',

                     label='Group 1')

plt.figure()

df.plot.scatter(x='C', y='D',

                color='Green',

                label='Group 2',

                ax=ax)

plt.show()

Figure 16-23 shows the output.

Figure 16-22.  Simple scatter plot

Chapter 16  Visualizing Data with Pandas and Matplotlib 



234

Let’s see how to customize the scatter plot. You can customize the color and the size 

of the points. The color or size can be a constant or can be variable. The following is 

an example of variable colors and a constant size for the data points. When the color is 

variable, a color bar is added to the output by default.

plt.figure()

df.plot.scatter(x='A', y='B', c='C', s=40)

plt.show()

Figure 16-24 shows the output.

Figure 16-23.  Scatter plot with multiple groups

Figure 16-24.  Scatter plot with different colors for the data points

Chapter 16  Visualizing Data with Pandas and Matplotlib 



235

Let’s assign the size to be variable as follows:

plt.figure()

df.plot.scatter(x='A', y='B', s=df['C']*100)

plt.show()

Figure 16-25 shows the output.

Finally, let’s see an example with fully customized variable sizes and variable colors 

as follows:

plt.figure()

df.plot.scatter(x='A', y='B', c='C', s=df['D']*100)

plt.show()

Figure 16-26 shows the output.

Figure 16-25.  Scatter plot with different sizes for the data points

Chapter 16  Visualizing Data with Pandas and Matplotlib 



236

You’ve just learned how to create and customize scatter plots.

�Hexagonal Bin Plots
You can also visualize data with hexagonal bin (hexbin) plots. Let’s prepare a dataset as 

follows:

df = pd.DataFrame(np.random.randn(100, 2),

                  columns=['A', 'B'])

df['B'] = df['B'] + np.arange(100)

print(df)

The output is as follows:

           A          B

0   0.165445  -1.127470

1  -1.192185   1.818644

2   0.237185   1.663616

3   0.694727   3.750161

4   0.247055   4.645433

..       ...        ...

95  0.650346  94.485664

96  0.539429  97.526762

97 -3.277193  95.151439

Figure 16-26.  Scatter plot with different sizes for the data points

Chapter 16  Visualizing Data with Pandas and Matplotlib 



237

98  0.672125  96.507021

99 -0.827198  99.914196

[100 rows x 2 columns]

Let’s visualize this data with a hexbin plot as follows:

plt.figure()

df.plot.hexbin(x='A', y='B', gridsize=20)

plt.show()

Figure 16-27 shows the output.

As you can see, you can customize the size of the grid.

�Pie Charts
Finally, you will learn how to create pie charts to visualize datasets. Let’s create a dataset 

as follows:

series = pd.Series(3 * np.random.rand(4),

                   index=['A', 'B', 'C', 'D'],

                   name='series')

print(series)

Figure 16-27.  Hexbin plot example

Chapter 16  Visualizing Data with Pandas and Matplotlib 



238

This creates the following dataset:

A    1.566910

B    0.294986

C    2.140910

D    2.652122

Name: series, dtype: float64

You can visualize it as follows:

plt.figure()

series.plot.pie(figsize=(6, 6))

plt.show()

Figure 16-28 shows the output.

Let’s create a dataset with two columns as follows:

df = pd.DataFrame(3 * np.random.rand(4, 2),

                  index=['A', 'B', 'C', 'D'],

                  columns=['X', 'Y'])

print(df)

Figure 16-28.  A simple pie chart

Chapter 16  Visualizing Data with Pandas and Matplotlib 



239

This generates the following data:

          X         Y

A  1.701163  2.983445

B  0.536219  0.036600

C  1.370995  2.795256

D  2.538074  1.419990

Figure 16-29 shows the output.

You can customize pie charts. Specifically, you can customize the font, colors, and 

labels as follows:

plt.figure()

series.plot.pie(labels=['A', 'B', 'C', 'D'],

                colors=['r', 'g', 'b', 'c'],

                autopct='%.2f', fontsize=20,

                figsize=(6, 6))

plt.show()

Figure 16-29.  A simple pie chart for a multicolumn dataset

Chapter 16  Visualizing Data with Pandas and Matplotlib 



240

Figure 16-30 shows the output.

Let’s create a partial pie chart by passing values whose sum is less than 1.0. The 

following is the data for that:

series = pd.Series([0.1] * 4,

                   index=['A', 'B', 'C', 'D'],

                   name='series2')

print(series)

This creates the following dataset:

A    0.1

B    0.1

C    0.1

D    0.1

Name: series2, dtype: float64

Figure 16-30.  A simple yet customized pie chart

Chapter 16  Visualizing Data with Pandas and Matplotlib 



241

The partial pie chart can be visualized as follows:

plt.figure()

series.plot.pie(figsize=(6, 6))

plt.show()

This creates a partial pie chart (or a semicircle), as shown in Figure 16-31.

You’ve just learned how to visualize data with pie charts.

�Summary
In this chapter, you learned how to visualize data with various techniques. You can 

use these visualization techniques in real-life projects. In the coming chapters, we will 

explore other libraries for creating data visualizations in Python.

In the next chapter, you will learn about how to create data visualizations with a new 

library called Seaborn.

Figure 16-31.  A simple yet customized pie chart

Chapter 16  Visualizing Data with Pandas and Matplotlib 



243
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_17

CHAPTER 17

Introduction to Data 
Visualization with Seaborn
In the previous chapter, you learned how to visualize data stored in the Pandas series 

and dataframe.

In the previous chapters of this book, you studied the data visualization library 

Matplotlib extensively along with other important data science libraries called NumPy 

and Pandas. You will take a break in this chapter from Matplotlib and learn how to use 

another related library for data visualization called Seaborn. The following are the topics 

you will learn about in this chapter:

•	 What is Seaborn?

•	 Plotting statistical relationships

•	 Plotting lines

•	 Visualizing the distribution of data

After reading this chapter, you will be comfortable using the Seaborn library and will 

be able to create great visualizations of datasets.

�What Is Seaborn?
You have learned how to use the Matplotlib library for data visualization. Matplotlib 

is not the only data visualization library in Python. There are numerous libraries in 

Python that can visualize data. The scientific data visualization libraries support the 

data structures of NumPy and Pandas. One such library for the visualization of scientific 

Python is Seaborn (https://seaborn.pydata.org/index.html). Seaborn is based on 

and built on top of Matplotlib. It provides a lot of functionality for drawing attractive 

https://doi.org/10.1007/978-1-4842-7410-1_17#DOI
https://seaborn.pydata.org/index.html


244

graphics. It has built-in support for the series and dataframe data structures in Pandas 

and for Ndarrays in NumPy.

Let’s create a new notebook for the demonstrations in this chapter. Now, let’s install 

Seaborn with the following command:

!pip3 install seaborn

You can import the library to your notebook or a Python script with the following 

statement:

import seaborn as sns

You know that the Seaborn library supports the Pandas dataframes. The Seaborn 

library also has many dataframes stored in it that are populated with data. So, we can use 

them for our demonstrations. Let’s see how to retrieve these dataframes. The following 

command returns the list of all the built-in sample dataframes:

sns.get_dataset_names()

The following is the output:

['anagrams',

 'anscombe',

 'attention',

 'brain_networks',

 'car_crashes',

 'diamonds',

 'dots',

 'exercise',

 'flights',

 'fmri',

 'gammas',

 'geyser',

 'iris',

 'mpg',

 'penguins',

 'planets',

 'tips',

 'titanic']

Chapter 17  Introduction to Data Visualization with Seaborn



245

You can load these dataframes into Python variables as follows:

iris = sns.load_dataset('iris')

Let’s see the data stored in the iris dataset with the following statement:

iris

Figure 17-1 shows the output.

�Plotting Statistical Relationships
You can plot the statistical relationship between two variables with various functions 

in Seaborn. The general plotting function to do this is relplot(). You can plot various 

types of data with this function. By default, the relplot() function plots a scatter plot. 

Here is an example:

%matplotlib inline

import numpy as np

import pandas as pd

Figure 17-1.  The iris dataset

Chapter 17  Introduction to Data Visualization with Seaborn



246

import matplotlib.pyplot as plt

sns.relplot(x='sepal_length',

            y='sepal_width',

            data=iris)

plt.grid('on')

plt.show()

This produces the scatter plot shown in Figure 17-2.

You can explicitly specify the type of plot as follows:

sns.relplot(x='sepal_length', y='sepal_width',

            data=iris, kind='scatter')

plt.grid('on')

plt.show()

Figure 17-2.  The scatter plot

Chapter 17  Introduction to Data Visualization with Seaborn



247

The function replot() is a generic function where you can pass an argument 

to specify the type of plot. You can also create a scatter plot with the function 

scatterplot(). For example, the following code creates the same result as shown in 

Figure 17-2:

sns.scatterplot(x='sepal_length',

                y='sepal_width',

                data=iris)

plt.grid('on')

plt.show()

You can feed some other columns of the dataset to the plotting function as follows:

sns.relplot(x='petal_length',

            y='petal_width',

            data=iris)

plt.grid('on')

plt.show()

Figure 17-3 shows the output.

Figure 17-3.  Another example of a scatter plot

Chapter 17  Introduction to Data Visualization with Seaborn



248

You can also write this with the scatterplot() function as follows:

sns.scatterplot(x='petal_length',

                y='petal_width',

                data=iris)

plt.grid('on')

plt.show()

You can customize the plot and show an additional column with color coding as 

follows:

sns.relplot(x='sepal_length',

            y='sepal_width',

            hue='species',

            data=iris)

plt.grid('on')

plt.show()

Figure 17-4 shows the output.

Figure 17-4.  Scatter plot with colors

Chapter 17  Introduction to Data Visualization with Seaborn



249

You get the same result as shown in Figure 17-4 with the following code:

sns.scatterplot(x='sepal_length',

                y='sepal_width',

                hue='species',

                data=iris)

plt.grid('on')

plt.show()

You can also assign the styles to the scatter plot data points (markers) as follows:

sns.relplot(x='sepal_length', y='sepal_width',

            hue='petal_length', style='species',

            data=iris)

plt.grid('on')

plt.show()

You can see the output in Figure 17-5.

Figure 17-5.  Scatter plot with colors and custom styles

Chapter 17  Introduction to Data Visualization with Seaborn



250

The following code produces the same output as shown in Figure 17-5:

sns.scatterplot(x='sepal_length', y='sepal_width',

            hue='petal_length', style='species',

            data=iris)

plt.grid('on')

plt.show()

You can also adjust the sizes of the markers as follows:

sns.relplot(x='sepal_length', y='sepal_width',

            size='petal_length', style='species',

            hue='species', data=iris)

plt.grid('on')

plt.show()

Figure 17-6 shows the output.

Figure 17-6.  Scatter plot with colors and custom styles and marker sizes

Chapter 17  Introduction to Data Visualization with Seaborn



251

The following code produces the same result as shown in Figure 17-5:

sns.scatterplot(x='sepal_length', y='sepal_width',

            size='petal_length', style='species',

            hue='species', data=iris)

plt.grid('on')

plt.show()

�Plotting Lines
You can also show continuous data such as time-series data along a line. Time-series 

data has timestamp data in at least one column or has an index. A great example of a 

time series is a table of daily temperature records. Let’s create a time-series dataframe to 

demonstrate the line plots.

df = pd.DataFrame(np.random.randn(100, 4),

                  index=pd.date_range("1/1/2020",

                                      periods=100),

                  columns=list("ABCD"))

df = df.cumsum()

You can use the function relplot() to draw the line as follows:

sns.relplot(x=df.index, y='A', kind="line", data=df)

plt.xticks(rotation=45)

plt.show()

Chapter 17  Introduction to Data Visualization with Seaborn



252

Figure 17-7 shows the output.

You can also produce the output shown in Figure 17-7 with the following code:

sns.lineplot(x=df.index,

             y='A', data=df)

plt.xticks(rotation=45)

plt.show()

In the next section, you will learn how to visualize the distribution of data.

�Visualizing the Distribution of Data
One of the most prominent examples of visualizing the distribution of data is a frequency 

table or a frequency distribution table. You can create buckets of value ranges that the 

data can have (the domain), and then you can list the number of items that satisfy the 

criteria for the bucket. You can also vary the bucket size, with the smallest size being 1.

Figure 17-7.  Line plot of time-series data

Chapter 17  Introduction to Data Visualization with Seaborn



253

You can visually show the information of a frequency distribution using bars 

and lines. If you use bars, then it is known as a histogram. You can use the function 

displot() to visualize the frequency data. Let’s start with dummy univariate data.

x = np.random.randn(100)

sns.displot(x)

plt.show()

Figure 17-8 shows the output.

You can also make it explicit that you need a histogram in the output as follows:

sns.displot(x, kind='hist')

plt.show()

A histogram is the default kind of graph. You can also show a Gaussian kernel density 

estimation (KDE) as follows:

sns.displot(x, kind='kde')

plt.show()

Figure 17-8.  Histogram

Chapter 17  Introduction to Data Visualization with Seaborn



254

Figure 17-9 shows the output.

You can visualize an empirical cumulative distribution function (eCDF) as follows:

sns.displot(x, kind='ecdf')

plt.show()

Figure 17-9.  KDE graph

Chapter 17  Introduction to Data Visualization with Seaborn



255

Figure 17-10 shows the output.

Figure 17-10.  eCDF graph

You can combine a histogram and a KDE as follows:

sns.displot(x, kind='hist', kde=True)

plt.show()

Chapter 17  Introduction to Data Visualization with Seaborn



256

Figure 17-11 shows the output.

Now let’s use some real-life data, as follows:

tips = sns.load_dataset("tips")

sns.displot(x='total_bill', data=tips, kind='hist')

plt.show()

Figure 17-11.  Histogram combined with KDE

Chapter 17  Introduction to Data Visualization with Seaborn



257

You can customize the size of bins (or buckets) in the visualization as follows:

sns.displot(x='total_bill', data=tips,

            kind='hist', bins=30, kde=True)

plt.show()

Figure 17-12 shows the output.

Figure 17-12.  Real-life data visualized as a histogram

Chapter 17  Introduction to Data Visualization with Seaborn



258

Figure 17-13 shows the output.

You can adjust the hue of the plots based on a criterion of your choice as follows:

sns.displot(x='total_bill', data=tips,

            kind='kde', hue='size')

plt.show()

Figure 17-13.  Customized buckets in a histogram

Chapter 17  Introduction to Data Visualization with Seaborn



259

Figure 17-14 shows the output.

Up to now, we have used a single variable to show the plot. When you use two 

variables for plotting, it is known as a bivariate plot. Here is a simple example:

sns.displot(x='total_bill',

            y='tip', data=tips)

plt.show()

Figure 17-14.  Customized colors in a KDE plot

Chapter 17  Introduction to Data Visualization with Seaborn



260

Figure 17-15 shows the output.

Figure 17-15.  A simple bivariate histogram

You can add color to this example as follows:

sns.displot(x='total_bill', y='tip',

            hue='size', data=tips)

plt.show()

Chapter 17  Introduction to Data Visualization with Seaborn



261

Figure 17-16 shows the output.

You can also customize the size of bins and add ticks on the x- and y-axes (known as 

a rug plot) as follows:

sns.displot(x='total_bill', y='tip',

            data=tips, rug=True,

            kind='hist', bins=30)

plt.show()

Figure 17-16.  A simple bivariate histogram with color

Chapter 17  Introduction to Data Visualization with Seaborn



262

Figure 17-17 shows the output.

A more interesting type of visualization is a bivariate KDE plot. It looks like a contour. 

The code is as follows:

sns.displot(x='total_bill', y='tip',

            data=tips, kind='kde')

plt.show()

Figure 17-17.  A simple bivariate histogram with custom bins and rug plot

Chapter 17  Introduction to Data Visualization with Seaborn



263

You can add a rug plot to the output as follows:

sns.displot(x='total_bill', y='tip',

            data=tips, rug=True,

            kind='kde')

plt.show()

Figure 17-18 shows the output.

Figure 17-18.  A simple bivariate KDE plot

Chapter 17  Introduction to Data Visualization with Seaborn



264

The output has KDE and rug visualizations, both as shown in Figure 17-19.

Based on the columns in the dataframe, you can create individual visualizations 

arranged in rows or columns. Let’s create a visualization based on the size of tips as 

follows:

sns.displot(x='total_bill', y='tip',

            data=tips, rug=True,

            kind='kde', col='size')

plt.show()

In the previous example, we are enabling the rug plot feature, and the plots  

will be separately generated based on the sizes of the tips. Figure 17-20 shows  

the output.

Figure 17-19.  A simple bivariate KDE plot with a rug plot

Chapter 17  Introduction to Data Visualization with Seaborn



265

Figure 17-20.  A simple bivariate KDE plot with a rug plot arranged in 
columns

You can also arrange the individual graphs in rows as follows:

sns.displot(x='total_bill', y='tip',

            data=tips, rug=True,

            kind='kde', row='size')

plt.show()

Figure 17-21 shows the output.

Chapter 17  Introduction to Data Visualization with Seaborn



266

Figure 17-21.  A simple bivariate KDE plot with a rug plot arranged in rows

Chapter 17  Introduction to Data Visualization with Seaborn



267

You’ve just learned how to visualize the distribution of data.

�Summary
This chapter contained lots of demonstrations. You explored the Seaborn data 

visualization library of Python in detail. Seaborn is a vast library, and we have just 

scratched its surface in this chapter. You can refer to the home page of the Seaborn 

project at https://seaborn.pydata.org/index.html for the API documentation, 

tutorials, and an example gallery.

In the next and final chapter of this book, you will learn how to visualize the real-life 

data of the currently ongoing COVID-19 pandemic with the Matplotlib and Seaborn data 

visualization libraries.

Chapter 17  Introduction to Data Visualization with Seaborn

https://seaborn.pydata.org/index.html


269
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_18

CHAPTER 18

Visualizing Real-Life 
Data with Matplotlib 
and Seaborn
In the previous chapter, you learned how to visualize data with a new data visualization 

library for scientific Python tasks. You learned to create visualizations from data stored in 

various formats.

In this chapter, you will take all the knowledge you have obtained in the earlier 

chapters of this book and put it together to prepare visualizations for real-life data from 

the COVID-19 pandemic and animal disease datasets obtained from the Internet. The 

following are the topics you will explore in this chapter:

•	 COVID-19 pandemic data

•	 Fetching the pandemic data programmatically

•	 Preparing the data for visualization

•	 Creating visualizations with Matplotlib and Seaborn

•	 Creating visualizations of animal disease data

After reading this chapter, you will be comfortable working with and creating 

visualizations of real-life datasets.

�COVID-19 Pandemic Data
The world is facing the COVID-19 pandemic as of this writing (May 2021). COVID-19 

is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 

symptoms include common flu-like symptoms and breathing troubles.

https://doi.org/10.1007/978-1-4842-7410-1_18#DOI


270

There are multiple organizations in the world that collect and share real-time data 

for pandemics. One is Johns Hopkins University (https://coronavirus.jhu.edu/

map.html), and the other one is Worldometers (https://www.worldometers.info/

coronavirus/). Both of these web pages have data about the COVID-19 pandemic, 

and they are refreshed quite frequently. Figure 18-1 shows the Johns Hopkins page for 

COVID-19.

Figure 18-2 shows the Worldometers website.

Figure 18-1.  Johns Hopkins COVID-19 home page

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/


271

As I mentioned, the data is refreshed on a frequent basis, so these websites are quite 

reliable for up-to-date information.

�Fetching the Pandemic Data Programmatically
In this section, you will learn how to fetch both datasets (Johns Hopkins and 

Worldometers) using Python programs. To do that, you need to install a library for 

Python. The library’s home page is located at https://ahmednafies.github.io/covid/, 

and the PyPI page is https://pypi.org/project/covid/. Create a new notebook for 

this chapter using Jupyter Notebook. You can easily install the library with the following 

command in the notebook:

!pip3 install covid

You can import the library to a notebook or a Python script/program as follows:

from covid import Covid

Figure 18-2.  Worldometers COVID-19 home page

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn

https://ahmednafies.github.io/covid/
https://pypi.org/project/covid/


272

You can create an object to fetch the data from an online source. By default, the data 

source is as follows for Johns Hopkins:

covid = Covid()

Note that due to high traffic, sometimes the servers are unresponsive. I experienced 

this multiple times.

You can explicitly mention the data source as follows:

covid = Covid(source="john_hopkins")

You can specify Worldometers explicitly as follows:

covid = Covid(source="worldometers")

You can see the source of the data as follows:

covid.source

Based on the data source, this returns a relevant string, as shown here:

'john_hopkins'

You can get status by country name as follows:

covid.get_status_by_country_name("italy")

This returns a dictionary, as follows:

{'id': '86',

 'country': 'Italy',

 'confirmed': 4188190,

 'active': 283744,

 'deaths': 125153,

 'recovered': 3779293,

 'latitude': 41.8719,

 'longitude': 12.5674,

 'last_update': 1621758045000}

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



273

You can also fetch the status by country ID, although only the Johns Hopkins dataset 

has this column, so the code will return an error for Worldometers.

# Only valid for Johns Hopkins

covid.get_status_by_country_id(115)

The output is similar to the earlier example, as shown here:

{'id': '115',

 'country': 'Mexico',

 'confirmed': 2395330,

 'active': 261043,

 'deaths': 221597,

 'recovered': 1912690,

 'latitude': 23.6345,

 'longitude': -102.5528,

 'last_update': 1621758045000}

You can also fetch the list of countries as follows:

covid.list_countries()

Here is part of the output:

[{'id': '179', 'name': 'US'},

 {'id': '80', 'name': 'India'},

 {'id': '24', 'name': 'Brazil'},

 {'id': '63', 'name': 'France'},

 {'id': '178', 'name': 'Turkey'},

 {'id': '143', 'name': 'Russia'},

 {'id': '183', 'name': 'United Kingdom'},

....

You will continue using the Johns Hopkins dataset throughout the chapter.

You can get active cases as follows:

covid.get_total_active_cases()

The output is as follows:

27292520

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



274

You can get the total confirmed cases as follows:

covid.get_total_confirmed_cases()

The output is as follows:

166723247

You can get the total recovered cases as follows:

covid.get_total_recovered()

The output is as follows:

103133392

You can get total deaths as follows:

covid.get_total_deaths()

The output is as follows:

3454602

You can fetch all the data with the function call covid.get_data(). This returns a list 

of dictionaries where every dictionary holds the data of one country. The following is the 

output:

[{'id': '179',

  'country': 'US',

  'confirmed': 33104963,

  'active': None,

  'deaths': 589703,

  'recovered': None,

  'latitude': 40.0,

  'longitude': -100.0,

  'last_update': 1621758045000},

 {'id': '80',

  'country': 'India',

  'confirmed': 26530132,

  'active': 2805399,

  'deaths': 299266,

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



275

  'recovered': 23425467,

  'latitude': 20.593684,

  'longitude': 78.96288,

  'last_update': 1621758045000},

......

�Preparing the Data for Visualization
You have to prepare this fetched data for visualization. For that you have to convert the 

list of dictionaries in the Pandas dataframe. It can be done as follows:

import pandas as pd

df = pd.DataFrame(covid.get_data())

print(df)

Figure 18-3 shows the output.

Figure 18-3.  Pandas dataframe for COVID-19 data

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



276

You can sort it as follows:

sorted = df.sort_values(by=['confirmed'], ascending=False)

Then you have to exclude the data for the world and continents so only the data for 

the individual countries remains.

excluded = sorted [ ~sorted.country.isin(['Europe', 'Asia',

                                          'South America',

                                          'World', 'Africa',

                                          'North America'])]

Let’s find out the top ten records.

top10 = excluded.head(10)

print(top10)

You can then assign the columns to the individual variables as follows:

x = top10.country

y1 = top10.confirmed

y2 = top10.active

y3 = top10.deaths

y4 = top10.recovered

�Creating Visualizations with Matplotlib and Seaborn
Let’s visualize the data with Matplotlib and Seaborn. First import all the needed libraries, 

as shown here:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

A simple linear plot can be obtained as follows:

plt.plot(x, y1)

plt.xticks(rotation=90)

plt.show()

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



277

Figure 18-4 shows the output.

You can add a title to this plot. You can also use the Seaborn library for it. The 

following is an example of a line plot with Seaborn:

sns.set_theme(style='whitegrid')

sns.lineplot(x=x, y=y1)

plt.xticks(rotation=90)

plt.show()

In the code example, we are using the function set_theme(). It sets the theme for the 

entire notebook for the Matplotlib and Seaborn visualizations. You can pass one of the 

strings 'darkgrid', 'whitegrid', 'dark', 'white', or 'ticks' as an argument to this 

function. Figure 18-5 shows the output.

Figure 18-4.  Linear plot with Matplotlib

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



278

You can create a simple bar plot with Matplotlib as follows:

plt.bar(x, y1)

plt.xticks(rotation=45)

plt.show()

Figure 18-6 shows the output.

Figure 18-5.  Linear plot with Seaborn

Figure 18-6.  Bar plot with Matplotlib

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



279

The same visualization can be prepared with Seaborn, which produces a much 

better bar plot aesthetically.

sns.barplot(x=x, y=y1)

plt.xticks(rotation=45)

plt.show()

Figure 18-7 shows the output.

You can even change the color palette as follows:

sns.barplot(x=x, y=y1,

            palette="Blues_d")

plt.xticks(rotation=45)

plt.show()

Figure 18-7.  Bar plot with Seaborn

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



280

Figure 18-8 shows the output.

You can create a multiline graph as follows:

labels = ['Confirmed', 'Active', 'Deaths', 'Recovered']

plt.plot(x, y1, x, y2, x, y3, x, y4)

plt.legend(labels, loc='upper right')

plt.xticks(rotation=90)

plt.show()

Figure 18-8.  Bar plot using Seaborn with custom palette

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



281

Figure 18-9 shows the output.

You can use the Seaborn library to create the same graph as follows:

sns.lineplot(x=x, y=y1)

sns.lineplot(x=x, y=y2)

sns.lineplot(x=x, y=y3)

sns.lineplot(x=x, y=y4)

plt.legend(labels, loc='upper right')

plt.xticks(rotation=45)

plt.show()

Figure 18-9.  Multiline graph

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



282

Figure 18-10 shows the output.

You will now see how to create a multiple-bar graph with Matplotlib as follows:

df2 = pd.DataFrame([y1, y2, y3, y4])

df2.plot.bar()

plt.legend(x, loc='best')

plt.xticks(rotation=45)

plt.show()

Figure 18-10.  Multiline graph with Seaborn

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



283

Figure 18-11 shows the output.

You can even show this in a horizontal fashion as follows:

df2.plot.barh()

plt.legend(x, loc='best')

plt.xticks(rotation=45)

plt.show()

Figure 18-12 shows the output.

Figure 18-11.  Multiline bar graph

Figure 18-12.  Multiline horizontal graph

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



284

You can use Seaborn to create a scatter plot as follows:

sns.scatterplot(x=x, y=y1)

sns.scatterplot(x=x, y=y2)

sns.scatterplot(x=x, y=y3)

sns.scatterplot(x=x, y=y4)

plt.legend(labels, loc='best')

plt.xticks(rotation=45)

plt.show()

Figure 18-13 shows the output.

You can even create an area plot with Matplotlib with the following code:

df2.plot.area()

plt.legend(x, loc='best')

plt.xticks(rotation=45)

plt.show()

Figure 18-13.  Multiline horizontal bar graph

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



285

Figure 18-14 shows the output.

You can create an unstacked and transparent area plot for the data as follows:

df2.plot.area(stacked=False)

plt.legend(x, loc='best')

plt.xticks(rotation=45)

plt.show()

Figure 18-15 shows the output.

Figure 18-14.  Stacked area plot

Figure 18-15.  Stacked area plot

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



286

You can create a pie chart as follows:

plt.pie(y3, labels=x)

plt.title('Death Toll')

plt.show()

Figure 18-16 shows the output.

You can also create a KDE plot with a rug plot, but with the data that we’re using for 

this example, that may not make a lot of sense.

sns.set_theme(style="ticks")

sns.kdeplot(x=y1)

sns.rugplot(x=y1)

plt.show()

Figure 18-16.  Pie chart

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



287

Figure 18-17.  KDE plot

Figure 18-17 shows the output.

�Creating Visualizations of Animal Disease Data
You can create visualizations for other real-life datasets too. Let’s create visualizations for 

animal disease data. Let’s first read it from an online repository.

df = pd.read_csv("https://github.com/Kesterchia/Global-animal-diseases/

blob/main/Data/Outbreak_240817.csv?raw=True")

Let’s see the top five records.

df.head()

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



288

Figure 18-18 shows the output.

Let’s get information about the columns as follows:

df.info()

The output is as follows:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 17008 entries, 0 to 17007

Data columns (total 24 columns):

 #   Column              Non-Null Count  Dtype

---  ------              --------------  -----

 0   Id                  17008 non-null  int64

 1   source              17008 non-null  object

 2   latitude            17008 non-null  float64

 3   longitude           17008 non-null  float64

 4   region              17008 non-null  object

 5   country             17008 non-null  object

 6   admin1              17008 non-null  object

 7   localityName        17008 non-null  object

 8   localityQuality     17008 non-null  object

 9   observationDate     16506 non-null  object

 10  reportingDate       17008 non-null  object

 11  status              17008 non-null  object

Figure 18-18.  Animal disease data

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



289

 12  disease             17008 non-null  object

 13  serotypes           10067 non-null  object

 14  speciesDescription  15360 non-null  object

 15  sumAtRisk           9757 non-null   float64

 16  sumCases            14535 non-null  float64

 17  sumDeaths           14168 non-null  float64

 18  sumDestroyed        13005 non-null  float64

 19  sumSlaughtered      12235 non-null  float64

 20  humansGenderDesc    360 non-null    object

 21  humansAge           1068 non-null   float64

 22  humansAffected      1417 non-null   float64

 23  humansDeaths        451 non-null    float64

dtypes: float64(10), int64(1), object(13)

memory usage: 3.1+ MB

Let’s perform a “group by” operation on the column country and compute the sum 

of total cases, as shown here:

df2 = pd.DataFrame(df.groupby('country').sum('sumCases')['sumCases'])

Now let’s sort and select the top ten cases.

df3 = df2.sort_values(by='sumCases', ascending = False).head(10)

Let’s plot a bar graph, using the following code:

df3.plot.bar()

plt.xticks(rotation=90)

plt.show()

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



290

Figure 18-19 shows the output.

You can convert the index to a column as follows:

df3.reset_index(level=0, inplace=True)

df3

The output is as follows:

      country                      sumCases

0     Italy                        846756.0

1     Iraq                         590049.0

2     Bulgaria                     453353.0

3     China                        370357.0

4     Taiwan (Province of China)   296268.0

5     Egypt                        284449.0

6     Iran (Islamic Republic of)   225798.0

7     Nigeria                      203688.0

8     Germany                      133425.0

9     Republic of Korea            117018.0

Figure 18-19.  Bar chart

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



291

Figure 18-20.  Pie chart

Let’s make a pie chart as follows:

plt.pie(df3['sumCases'],

        labels=df3['country'])

plt.title('Death Toll')

plt.show()

Figure 18-20 shows the output.

You can create a more aesthetically pleasing bar chart with Seaborn as follows:

sns.barplot(x='country',

            y='sumCases',

            data=df3)

plt.xticks(rotation=90)

plt.show()

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



292

Figure 18-21 shows the output.

You’ve just learned to visualize real-life animal disease data.

�Summary
In this chapter, you explored more functionality of the Seaborn data visualization library, 

which is part of the scientific Python ecosystem. You also learned how to import real-life 

data into Jupyter Notebook. You used the Matplotlib and Seaborn libraries to visualize 

the data.

As you know, this is the last chapter in the book. While we explored Matplotlib 

in great detail, we have just scratched the surface of the vast body of knowledge and 

programming APIs. You now have the knowledge to further explore Matplotlib and other 

data visualization libraries on your own. Python has many data visualization libraries for 

scientific data. Examples include Plotly, Altair, and Cartopy. Armed with your knowledge 

of the basics of data visualization, have fun continuing your journey further into data 

science and visualization!

Figure 18-21.  Bar chart with Seaborn

Chapter 18  Visualizing Real-Life Data with Matplotlib and Seaborn



293
© Ashwin Pajankar 2022 
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1

Index

A
Anaconda, 28
Animal disease data visualization

bar chart, 290, 292
creation, 287
pie chart, 291

Animation basics
animation function, 162
celluloid library, 166
FuncAnimation(), 162
function init(), 162
libraries, 161
progressive spiral, creation, 163
sine wave visualizing, 163
spiral animation visualizing, 164

Area plots, 230–232
Audio processing, 122, 123
Audio visualization

audio file, 120, 121
channels, 122
NumPy, 120
properties, 119
SciPy library, 118
stereo audio, 120

Axes, 61, 62
ax.text() function, 72

B
Bar graphs, 92–95

animation, celluloid library, 168

data visualizations with Pandas and 
Matplotlib, 213–217

Bivariate plot, 259
Bivariate histogram, 260

with color, 261
with custom bins and rug plot, 262

Bivariate KDE plot
with a rug plot, 264
with a rug plot arranged in  

columns, 265
with a rug plot arranged in rows, 266

boxplot(), 226
Box plots, 222

in action, 226
customized colors, 224
data visualizations with Pandas and 

Matplotlib, 222–230
with groups, 227, 228
horizontal, 225
vertical, 223
visualization grouped by column C, 230

C
camera.snap(), 165
Celluloid library

animation, 165, 166
bar graph animation, 168
sine wave animation, 167

Circular contour, 103
Classic style, 77

https://doi.org/10.1007/978-1-4842-7410-1#DOI


294

Clipboard, 208, 209
colorbar()

coding, 140
extended, 142
shrunken color bar, 141

Color image, 112
Color maps, 114, 115
Colors, 66, 67
Column-wise histograms, 222
Comma-separated file (CSV) format, 194
Constructor function, 182
Contours

color bar, 104, 105
custom colors, 105
filled, 106
labeled, 104

COVID-19 pandemic data, 269, 271
CPython, 4
Custom color maps, 136
Custom function, 78
Custom index, 183
Customized subplots, 83–85

D
Dataframe, in Pandas, 185–189
Data visualizations

bar graphs, 92–95
COVID-19 data, 275
error bars, 90–92
lines and logs, 87–90
with Pandas and Matplotlib

area plots, 230–232
bar graphs, 213–217
box plots, 222–230
histograms, 218–222
pie charts, 237–241
scatter plots, 232–236

simple plots, 212, 213
scatter plot, 95–97
with Seaborn (see Seaborn)

Decorated scatter plots, 172
Default style, 78

E
Empirical cumulative distribution 

function (eCDF), 254
errorbar() function, 90
Error bars, 90–92

F
Fast Fourier transform (FFT), 122
Filled contour, 106
Filled-in plots, 176
Fourier transform, 122

G
Gaussian kernel density estimation 

(KDE), 253
ggplot style, 76, 79
Grayscale image, 113
Grayscale image, 115
Grid, 60

H
Handling CSV files, 194, 196
Hexagonal bin plots, 236, 237
Hexbin visualizations, 178
Histograms

customized, 102, 103
data visualizations with Pandas and 

Matplotlib, 218–222

Index



295

random data, 100, 101
transparency, 102
2D data, 102

Horizontal bar graph, 94, 95
Horizontal box plot, 225
Horizontal cumulative histogram, 220
Horizontally stacked bar graphs, 217
Horizontal unstacked bar graphs, 217

I
Identity matrix, 41
Image masking, 116
Images visualizations

color image, 113
color images, 112
grayscale image, 113

cool color map, 115
correct color map, 114

image masking, 116
import library, 111
Matplotlib library, 113
pillow, 111

imread() function, 112
Index, 182, 185
Integrated development environment 

(IDE), 5
Interactive mode, 17
Interpolation methods, 116, 118

J, K
Johns Hopkins COVID-19 home  

page, 270
JSON string, 203, 204
Jupyter Notebook

advantage, 18
cells types, 25

code output, 24
home page tab, 21
options, 22
Python 3 notebook, 23
running code, 24–27
scripts on cloud servers, 18
setting up, 18–24
subprocesses, 24
token, 20
web-based notebook, 18

L
Labeled contour, 104
Layouts

customized subplots, 83–85
gridspec, 82
subplots, 82

legend() function, 64
Linear plot, with Matplotlib, 277
Linear visualization on polar  

graph, 131
Line plot, 88
Line styles, 68
Logarithmic axes, 90
Logarithmic x-axis, 89
Logarithmic y-axis, 89
Lower triangular matrix, 43

M
Magnetic force field, 106
Markers, 69
Matplotlib, 45

program running, 52, 53
visualization, 46–51

Matplotlib, 17
Matplotlib’s CBook format, 200

Index



296

Matplotlib visualizations
axes, 61, 62
colors, 66, 67
customizations, 70, 71
function as contour, 171
function as image, 170
grid, 60
hexbins, 178
labels for axes, 63
layouts (see Layouts)
legends in upper middle position, 65
legend string, 64
line styles, 68
markers, 69
Multiline Plots, 58–60
object-oriented plotting, 71–73
single-line plot, 55, 57, 58
styles (see Styles)
subplotting, 73, 74
3D vignette, 172
time plots and signals, 173–175

Multiline bar graph, 283
Multiline graph, 58–61, 281
Multiline horizontal bar graph, 284
Multiline horizontal graph, 283
Multiline plots, 58–60

N
Ndarrays

container, 29
indexing, 32, 33
NumPy, 29, 31
properties, 33, 34
slicing operations, 36, 37

NetworkX, 17
Normal distribution, 100
Normal x-axis, 89

Normal y-axis, 89
np.identity() function, 41
np.zeroes() function, 42
NumPy, 16

constants, 34, 35
and Ndarrays, 29, 31
routines, Ndarrays creation, 40–45
visualization, 46–51
writing and reading files, 198

O
Object-oriented plotting, 71–73

P
Pandas
Pandas, 17

data analytics component, 181
dataframe, 185–189
install, 181
operations on series, 184
read_csv(), 201
series, 182, 183

Pandemic data programmatically, 
271–275

Partial scatter plot, 134
pcolormesh()

geometric transformation, 139, 140
shading and a color map, 138, 139

pcolor() routine
adding shading, 137
color maps, 136
demonstration, 136
nearest value, shading, 137
nonsquare matrix, 135

Pickle file, 204
Pie charts

with explosion, 127

Index



297

with labels, 126, 127
with legend, 128
notebook creation, 125
with shadows, 128
title for legend, 129

Pie Charts
data visualizations with Pandas and 

Matplotlib, 237–241
Pillow, 111
Plain-text file handling, 192, 193
plot() function, 47, 55, 63
plt.text() function, 72
Polar charts

bar visualization, 130
dataset creation, 129
linear visualization, 131
partial scatter plot, 134
polar coordinate system, 130
polar graph, 130
scatter plot, 133
spiral visualization, 132

Polar graph, 130, 131
pyplot module, 46
Python

Anaconda, 28
and Excel, 196, 198
IDLE, 10, 16
IDLE configuration window, 11
IDLE in Raspberry Pi OS menu, 12
IDLE on Windows, 9
installation

Ubuntu/Debian derivatives, 8
Windows Computer, 5–8

interactive mode, 13
Jupyter Notebook, 18
scientific Python ecosystem, 16
script mode, 14, 15

Python 3 programming language

applications, 4
enhancement proposals, 3
history, 2
philosophy, 3, 4

Python enhancement proposals (PEPs), 3

Q
Quiver plots, 155, 156

R
Reading data

clipboard, 208, 209
CSV, 201
CSV file with NumPy, 199
Excel file, 196, 198, 202
JSON, 203, 204
Matplotlib CBook, 200
Pickle file, 204
relational database table, 207, 208
Web, 204, 205
web API, 205, 207

Real-life data visualizations with and 
Seaborn

KDE plot, 287
Real-life data visualizations with 

Matplotlib and Seaborn
bar plot, 278–280
linear plot, 277, 278
multiline bar graph, 283
multiline graph, 281, 282
multiline horizontal graph, 283
Pie chart, 286
stacked area plot, 285

Relational database, 207, 208
relplot() function, 245, 247, 251
Rendering text, 73

Index



298

S
Sample points, 120
scatterplot() function, 247, 248
Scatter plot, 133

with different sizes, 235
with multiple groups, 234

Scatter Plots, 95–97
data visualizations with Pandas and 

Matplotlib, 232–236
Scientific Python ecosystem, 16
Scikit-image, 17
Scikit-learn, 17
SciPy library, 17, 118
Script mode, 14
Seaborn

bar plot, 280
dataframes, 244
definition, 243
distribution of data, visualizing

bivariate histogram with color, 261
bivariate histogram with custom 

bins and rug plot, 262
bivariate KDE plot, 263
bivariate KDE plot with a rug plot 

arranged in columns, 265
bivariate KDE plot with a rug plot 

arranged in rows, 266
bivariate KDE plot with rug  

plot, 264
customized buckets in  

histogram, 258
customized colors in KDE plot, 259
eCDF graph, 255
histogram, 253
KDE graph, 254
real-life data visualized as 

histogram, 257

iris dataset, 245
plotting lines, time-series data, 252
plotting statistical relationships

scatter plot, 246, 247
scatter plot with colors, 248
scatter plot with colors and custom 

styles, 249
scatter plot with colors and custom 

styles and marker sizes, 250
Seaborn-style sinusoidal graph, 80
set_theme() function, 277
Shebang line, 15
Shrunken color bar, 141
Simple Plots, data visualizations with 

Pandas and Matplotlib, 212, 213
Sine wave animation, 167
Single-line graph, 56, 57
Single-line plots, 55, 57, 58
Sinusoidals, 177
Slicing Ndarrays, 36, 37
Stacked area plots, 231, 285
Stacked bar graphs, 216
Stacked histogram, 219
Stem plot, 157
Step plots, 177
Stereo audio, 120
Stream plots

assign colors, 108
creation, 107
quiver plots, vector  

visualizations, 109, 110
variable colors, 108
variable densities, 107, 108
variable line widths, 109

Styles
built-in style, 75
custom function, 79

Index



299

default style, 75, 78
ggplot, 76
ggplot-style sinusoidal graph, 80
classic matplotlib style, 76
Seaborn-style sinusoidal graph, 80
sinusoidal graph, 79
temporary styling, 81

Subplots, 73, 74, 82
SymPy, 17

T
Temporary styling, 81
3D bars, 155
3D contours, 147, 148
3D linear plot, 146
3D scatter plot, 147
3D surface, 151
3D vignette visualization, 171, 172
3D visualizations

bar graphs, 152, 153, 155
contours, 147, 148
empty and interactive, 145
plotting 3D lines, 145
QT window, 143
quiver plots, 155, 156
Scatter Plots, 147
stem plot, 157
surface, 151
test data, 152
volumes, 158
wireframe, 149

3D volume plot, 159
3D wireframe, 150
Time plots and signals, 173–175

U
Unstacked area plots, 232
Unstacked histogram, 219
Unstacked horizontal bar  

graph, 217

V
Vertical cumulative histogram, 221
Visualization, NumPy and  

Matplotlib
arange() function, 46
geomspace(), 51
logspace(), 51
multiple lines and title, 49
print function, 50

voxels() function, 159

W
Worldometers COVID-19 home  

page, 271

X, Y, Z
XKCD histogram, 179, 180
XKCD style, 178–180

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Python 3
	Introducing the Python 3 Programming Language
	History of the Python Programming Language
	Python Enhancement Proposals
	Philosophy of the Python Programming Language
	Applications of Python

	Installing Python on Various Platforms
	Installing on a Windows Computer
	Installing on Ubuntu/Debian Derivatives

	Using Python Modes
	Interactive Mode
	Script Mode

	Using Python IDEs
	Exploring the Scientific Python Ecosystem
	Introducing Jupyter Notebook
	Setting Up Jupyter Notebook
	Running Code in Jupyter Notebook
	Anaconda
	Summary

	Chapter 2: Getting Started with NumPy
	NumPy and Ndarrays
	Indexing in Ndarrays
	Indexing in Ndarrays of More Than One Dimension

	Ndarray Properties
	NumPy Constants
	Slicing Ndarrays
	Summary

	Chapter 3: NumPy Routines and Getting Started with Matplotlib
	Routines for Creating Ndarrays
	Matplotlib
	Visualization with NumPy and Matplotlib
	Running the Matplotlib Program as a Script
	Summary

	Chapter 4: Revisiting Matplotlib Visualizations
	Single-Line Plots
	Multiline Plots
	Grid, Axes, and Labels
	Colors, Styles, and Markers
	Object-Oriented Plotting
	Subplots
	Summary

	Chapter 5: Styles and Layouts
	Styles
	Layouts
	Summary

	Chapter 6: Lines, Bars, and Scatter Plots
	Lines and Logs
	Error Bars
	Bar Graphs
	Scatter Plot
	Summary

	Chapter 7: Histograms, Contours, and Stream Plots
	Histograms
	Contours
	Visualizing Vectors with Stream Plots
	Summary

	Chapter 8: Image and Audio Visualization
	Visualizing Images
	Image Masking

	Interpolation Methods
	Audio Visualization
	Audio Processing
	Summary

	Chapter 9: Pie and Polar Charts
	Pie Charts
	Polar Charts
	Summary

	Chapter 10: Working with Colors
	pcolor()
	pcolormesh()
	colorbar()
	Summary

	Chapter 11: 3D Visualizations in Matplotlib
	Getting Ready
	Plotting 3D Lines
	3D Scatter Plots
	3D Contours
	Wireframes, Surfaces, and Sample Data
	Bar Graphs
	Quiver and Stem Plots
	3D Volumes
	Summary

	Chapter 12: Animations with Matplotlib
	Animation Basics
	Celluloid Library
	Summary

	Chapter 13: More Visualizations with Matplotlib
	Visualizing a Function as an Image and a Contour
	3D Vignettes
	Decorated Scatter Plots
	Time Plots and Signals
	Filled Plots
	Step Plots
	Hexbins
	XKCD Style
	Summary

	Chapter 14: Introduction to Pandas
	Introduction to Pandas
	Series in Pandas
	Basic Operations on Series

	Dataframe in Pandas
	Summary

	Chapter 15: Data Acquisition
	Plain-Text File Handling
	Handling CSV Files with Python
	Python and Excel
	Writing and Reading Files with NumPy
	Reading the Data from a CSV File with NumPy
	Matplotlib CBook
	Reading Data from a CSV
	Reading Data from an Excel File
	Reading Data from JSON
	Reading Data from a Pickle File
	Reading Data from the Web
	Interacting with the Web API

	Reading Data from a Relational Database Table
	Reading Data from the Clipboard
	Summary

	Chapter 16: Visualizing Data with Pandas and Matplotlib
	Simple Plots
	Bar Graphs
	Histograms
	Box Plots
	Area Plots
	Scatter Plots
	Hexagonal Bin Plots
	Pie Charts
	Summary

	Chapter 17: Introduction to Data Visualization with Seaborn
	What Is Seaborn?
	Plotting Statistical Relationships
	Plotting Lines
	Visualizing the Distribution of Data
	Summary

	Chapter 18: Visualizing Real-Life Data with Matplotlib and Seaborn
	COVID-19 Pandemic Data
	Fetching the Pandemic Data Programmatically
	Preparing the Data for Visualization
	Creating Visualizations with Matplotlib and Seaborn
	Creating Visualizations of Animal Disease Data
	Summary

	Index



