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Introduction

I have been working in the domain of data science for more than a decade now, and I
was introduced to Python more than 15 years ago. When I first worked with libraries
such as NumPy, Matplotlib, and Pandas, I found it a bit tedious to comb through all
the available literature in the form of printed books, video tutorials, and online articles,
as most of them lacked comprehensive steps for beginners. It was then that I resolved
to write a book, and I am glad that I could bring my resolution to life with the help of
Apress.

This book is the result of thousands of hours (in addition to the ones spent writing
the actual book) going through technical documentation, watching training videos,
writing code with the help of different tools, debugging faulty code snippets, posting
questions and participating in discussions on various technical forums, and referring
to various code repositories for pointers. I have written the book in such a way that
beginners will find it easy to understand the topics. The book has hundreds of code
examples and images of code output so that you can fully understand each concept
introduced. All the code examples are explained in detail.

The book begins with a general discussion of Python and a small guide explaining
how to install it on various computing platforms such as the Windows OS and Linux
computers (like the Raspberry Pi). We then move on to discussing the scientific
ecosystem. Then we focus on NumPy, which is the fundamental library for numerical
computing. We specifically focus on the multidimensional, array-like data structure
of NumPy, called the Ndarray. We then explore data visualization libraries, such as
Matplotlib and Plotly, to learn how to plot Ndarrays.

Most of the chapters explore the data visualization library Matplotlib. You will learn a
lot of data visualization tips and techniques in these chapters.

Then we dive into Pandas so you can learn about its important data structures, called
the series and dataframe. Midway through the book, you will also learn how to read data
from various data sources using Python, NumPy, Matplotlib, and Pandas. You will also
learn how to visualize Pandas data with popular visualization libraries such as Matplotlib
and Seaborn, as well as how to work with time-indexed data.

xvii



INTRODUCTION

On an ending note, we started and finished working on this project at a very
turbulent time (the beginning of 2021) marked by hardships such as hospitalization and
deaths of friends, social unrest, lockdowns, curfews, economic slowdown, and a host of
other sociopolitical problems brought about in part by the COVID-19 pandemic. I myself
was hospitalized due to severe complications from pneumonia and breathing troubles
caused by a COVID-19 infection. It delayed the launch of this long-planned project. To
be frank, working on this book with the help of my longtime mentors at Apress (Celestin,
James, and Aditee) offered me a sense of purpose in these troubled times. I end this
introduction with a note of hope and positive words that we, as a society and a global
civilization, will overcome these turbulent times with the help of each other, and I look at
the future with a lot of hope and bright eyes.

xviii



CHAPTER 1

Introduction to Python 3

I welcome you all to the exciting journey of data visualization with Matplotlib and related
libraries such as NumPy, Pandas, and Seaborn.

This chapter covers the basics of the Python programming language including its
history, installation, and applications. You will be writing a few simple and introductory
Python 3 programs and be learning how to execute them on various OS platforms.

Then, we will start exploring the scientific Python ecosystem. We will briefly discuss
the member libraries of the scientific Python ecosystem, and toward the end, we will
explore Jupyter Notebook so we can use it throughout the rest of the book.

Specifically, the following are the topics covered in this chapter:

e Python programming language

o Python installation on various platforms
e Python modes

e Python IDEs

o Scientific Python ecosystem

e Overview and setup of Jupyter Notebook
¢ Running code in Jupyter Notebook

e Anaconda

After reading this chapter, you will be comfortable with the installation and the basic
usage of the Python 3 programming language in various modes on various platforms.

© Ashwin Pajankar 2022
A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_1
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CHAPTER 1  INTRODUCTION TO PYTHON 3

Introducing the Python 3 Programming Language

Python 3 is a general-purpose, high-level, and interpreted programming language. In
this section, we will discuss the Python programming language and its philosophy.

History of the Python Programming Language

Python is a successor to the ABC programming language, which itself was inspired by the
ALGOL 68 and SETL programming languages. Python was created by Guido van Rossum
as a side project during vacations in the late 1980s while he was working at Centrum
Wiskunde & Informatica (English: “National Research Institute for Mathematics and
Computer Science”) in the Netherlands. Van Rossum was born and raised in the
Netherlands. He obtained a master’s degree in math and computer science from the
University of Amsterdam. He worked for Google and Dropbox and retired after that.
However, in November 2020, he joined Microsoft.

Since the initial release of the Python programming language till July 2018, Guido
has been the lead developer and benevolent dictator for life (BDFL) for this project. He
worked on the steering committee for Python through 2019, but in 2020, he withdrew his
nomination from reelection to the steering committee.

The following are the important milestones in Python’s release timeline:

e February 1991: Van Rossum published the code (labeled version
0.9.0) to alt.sources.

e January 1994: Version 1.0 was released.
e October 2000: Python 2.0 was released.
e December 2006: Python 3.0 was released.

e December 2019: Python 2.x was officially retired and is no longer
supported by Python Software Foundation.

As you can see, Python 2.x versions are no longer supported, as Python 2 is retired.
Python 3 is not backward compatible with Python 2. Python 3 is the latest and supported
version of the Python programming language. So, we will use Python 3 programming
throughout the book to demonstrate the concepts covered. Unless explicitly mentioned,
Python means Python 3 throughout this book.
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Python Enhancement Proposals

To steer the development, maintenance, and support of Python, the Python leadership
came up with the concept of Python enhancement proposals (PEPs). They are the
primary mechanism for suggesting new features and fixing issues in the Python project.
You can read more about the PEPs at the following URLs:

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0001/

Philosophy of the Python Programming Language

The philosophy of Python is detailed in PEP20. It is known as the Zen of Python and is at
https://www.python.org/dev/peps/pep-0020/. The following are the points from that
PEP. A few are funny.

o Beautiful is better than ugly.
o Explicit is better than implicit.
e Simple is better than complex.
o Complex is better than complicated.
o Flatis better than nested.
o Sparse is better than dense.
» Readability counts.
o Special cases aren’t special enough to break the rules.
e Although practicality beats purity.
o Errors should never pass silently.
e Unless explicitly silenced.
e In the face of ambiguity, refuse the temptation to guess.
e There should be one—and preferably only one—obvious way to do it.

o Although that way may not be obvious at first unless you're Dutch.
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Now is better than never.

o Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea—let’s do more of those!

These are the general philosophical guidelines that continue to influence the

development of the Python programming language.

Applications of Python

As you have learned, Python is a general-purpose programming language; it has

numerous applications in the following areas:

You can read case studies of Python at https://www.python.org/success-stories/.

Web development

GUI development

Scientific and numerical computing
Software development

System administration

Installing Python on Various Platforms

A Python implementation is a program (the actual binary executable of the interpreter
of Python) that supports the execution of programs written in the Python programming

language. The original implementation created by Guido van Russom is known as

CPython and serves as the reference implementation. Throughout the book, we will be
using CPython. It is available on the Python website, and you will learn how to install
it on the Windows OS in this section. I prefer to write Python programs on a Windows

computer or a Raspberry Pi computer with the Raspberry Pi OS. You can find the
list of alternative Python implementations at https://www.python.org/download/
alternatives/.
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I think now is a good time to discuss various Python distributions. You saw that
the actual interpreter program for Python is known as an implementation. When it
is bundled with a few useful things such as an integrated development environment
(IDE), tools, and libraries, it is known as a distribution. You can find the list of Python
distributions at https://wiki.python.org/moin/PythonDistributions.

Now, let’s look at how to install Python on both platforms.

Installing on a Windows Computer

Visit the Python 3 download page located at https://www.python.org/downloads/
and download the setup file of Python 3 for your computer. The page will automatically
detect the operating system on your computer and show the appropriate downloadable
file, as shown in Figure 1-1.

Python

e python’ cm . I

About Downloads Documentation Community Success Stories Events

All releases

Download for Windows
Source code

Python 3.8.1

Windows

Note that Python 3.5+ cannot be used on Windows XP
Mac 05X or earlier.
Not the OS5 you are looking for? Python can be used on

SRR Cther Platforms :
ting systems and environments.

License

Alternative Implementations

Python is a programming language that lets you work quickly

and integrate systems more effectively. »> Learn More

Figure 1-1. Python project home page with download options

Run the setup file to install Python 3. During installation, select the check box related
to adding Python 3 to the PATH variable (Figure 1-2).


https://wiki.python.org/moin/PythonDistributions
https://www.python.org/downloads/

CHAPTER 1  INTRODUCTION TO PYTHON 3

& Python 3.8.1 (32-bit) Setup - X

Install Python 3.8.1 (32-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\Ashwin\AppData\Local\Programs\Python\Python38-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

python

for Install launcher for all users (recommended)

windows B[Add Python 3.8 to PATH | Cancel

Figure 1-2. Python installation wizard

Also, choose the “Customize installation” option. That will take you to more options,
as shown in Figure 1-3.
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& Python 3.8.1 (32-bit) Setup - X

Optional Features

Installs the Python documentation file.
M pip
Installs pip. which can download and install other Python packages.
£ td/tk and IDLE
Installs tkinter and the IDLE development environment.
M Python test suite
Installs the standard library test suite.
py launcher [ for all users (requires elevation)
[ Installs the global ‘py' launcher to make it easier to start Python.

python

{ for

WindOWS . Back | | Next Cancel

Figure 1-3. Python installation options

Select all the boxes and click the Next button to continue the setup. Complete the
setup. The name of the binary executable program for Python is python on Windows.
Once the installation completes, run the following command at the Windows command

prompt, cmd:
python -V

This will return the version of Python 3 as follows:
Python 3.8.1

You can also check the version of pip as follows:
pip3 -V

A recursive acronym, pip stands for “Pip installs Python” or “Pip installs packages.”
It is a package manager for the Python programming language. You can install the other
needed Python libraries for our demonstrations using the pip utility.
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To find out the exact location of Python, you can run the where command as follows:
where python

This returns the following result:
C:\Users\Ashwin\AppData\Local\Programs\Python\Python38-32\python.exe

Similarly, you can find out the location of the pip3 utility by running the following
command:

where pip3

We will be using this utility heavily throughout the book to install and manage
Python 3 libraries on the computer we are working with. The following command lists all
the installed packages:

pip3 list

Installing on Ubuntu/Debian Derivatives

Debian is a popular distribution. Ubuntu Linux and the Raspberry Pi OS are the other
popular distributions based on Debian. Python 3 and pip3 come pre-installed on all the
Debian distributions and derivatives such as Ubuntu or the Raspberry Pi OS. So, we do
not have to install them separately. I use the Raspberry Pi OS on a Raspberry Pi 4B with
8 GB RAM as my Linux computer. Both the major Python versions, Python 2 and Python
3, come preinstalled on all the Debian derivatives. Their executable files for interpreters
are named as python and python3 for Python 2 and Python 3, respectively. We will use
python3 for our demonstrations. To find out the versions and locations of the needed
binary executable files, run the following commands one by one:

python3 -V
pip3 -V
which python3
which pip3

Almost all the other popular Linux distributions come with Python pre-installed too.
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Using Python Modes

The Python programming language has various modes for executing programs (and
statements, as you will see soon). Let’s discuss them one by one. But before we get
started with that discussion, let’s look at what IDLE is. IDLE is an integrated development
and learning environment developed by the Python Software Foundation for Python
programming. When you install the CPython implementation of Python 3 on Windows,
IDLE is also installed. You can launch it on Windows OS in various ways. The first way is
to search for it in the Windows search bar by typing in IDLE, as shown in Figure 1-4.

D &
Best match

IDLE (Python 3.8 32-bit)
App

A

Search the web
L IDLE - see web results >
Command

] IDLE

Figure 1-4. Python IDLE on Windows
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The other way is to launch it from the command prompt (cmd) by running the

following command:

idle
This will launch the window shown in Figure 1-5.

o *

| 3 Python 374 She
Eile Edt Shell Debug QOptions Window Help

Python 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AM

D64)] on win32
Type "help", "copyright", "credits" or "license()" for more informati

on,.
>>> |

Lrc3 Cok:4 |

Figure 1-5. Python IDLE

Before proceeding, you need to customize IDLE so that it works for you. You can
change the font by selecting Options » Configure IDLE, as shown in Figure 1-6.

Options  Window Help

Configure IDLE
|
Show Code Context

Zoom Height Alt+2

Figure 1-6. Configuring IDLE
The window shown in Figure 1-7 opens so you can change the font and size of the

characters in IDLE.
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L&, Settings X

Fonts/Tabs Highlights Keys General Extensions

Shell/Editor Font

Font Face :

Courier New CE A

Courier New CYR
Courier New Greek
Courier New TUR
Curlz MT

Dosis

Dubai

Dubai Light

Dubai Medium
Ebrima

Edwardian Script ITC
Elephant
Engravers MT

Eras Bold ITC

Size: 22 —| [4Bold

Indentation Width
Python Standard: 4 Spaces!

4

LI
2 4 6 810121416

Ok

Eras Demi ITC v

Font Sample (Editable)

<ASCll/Latin1>
AaBbCcDdEeFfGgHhliJj
1234567890#:+=(){}[]

WoOwW F A A oam

boR

<IPA,Greek,Cyrillic>
esag)¥tBu sl JANSEZay
AaBRIYASEeZ{HNOBIIKK
BoAoXxMndpHYuybbIa
COERRXK

<Hebrew, Arabic>
qyolNNn737'vNTINTAAN

CYYYEOTYAY aa jgaan

<Devanagari, Tamil>
0333 ULV CRIMTZTIHIY AT

052 MB& (H &reld 5o ]
@\2_e6r
Apply Cancel Help

Figure 1-7. IDLE configuration window

11



CHAPTER 1  INTRODUCTION TO PYTHON 3

Adjust the options according to your own preferences.
All the Linux distributions may not come with IDLE pre-installed. You can install it
on the Debian and derivatives (Ubuntu and Raspberry Pi OS) by running the following

commands in sequence:

sudo apt-get update
sudo apt-get install idle3

Once the installation is complete, you can find IDLE in the menu (in this case the
Raspberry Pi OS menu), as shown in Figure 1-8.

Th Thonny Python IDE
Sound & Video
? Graphics

Figure 1-8. IDLE in Raspberry Pi OS menu

You can also launch IDLE on Linux by running the following command:
idle

Now let’s discuss the various modes of Python.

12
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Interactive Mode

Python'’s interactive mode is like a command-line shell that executes the current
statement and gives immediate feedback on the console. It runs the statements given
to itimmediately. As new statements are fed into and executed by the interpreter, the
code is evaluated. When you open IDLE, you will see a command-line prompt. This is
Python'’s interactive mode. To see a simple example, let’s type in the customary Hello

World program in the interactive prompt as follows:

print('Hello World!")

Press the Enter key to feed the line to the interpreter and execute it. Figure 1-9 shows

the output.

|
o *

| 3 Python 374 She
Ele Edt1 Shell Debug Options Window Help

Python 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] on

win32
Type "help”, "copyright”, “credits"” or "license()" for more information.

>>> print('Hello World!")

Hello World!
>>>

lres Cokd4

Figure 1-9. Python interactive mode on IDLE

You can launch Python’s interactive mode from the command prompt too. At
the Linux command prompt (e.g., Ixterminal), run the command python3, and at the
Windows command prompt (cmd), run the command python. Figure 1-10 shows the
interactive mode at the Windows command prompt.

13
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C:\Users\Ashwin>python

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:20:19) [MSC
v.1925 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more infor
mation.

>>>

Figure 1-10. Python interactive mode, Windows command prompt

Script Mode

You can write a Python program and save it to disk. Then you can launch it in multiple
ways. This is known as script mode. Let’s demonstrate it in IDLE. You can use any text
editor to write the Python program. But as IDLE is an IDE, it is convenient to write and
run the Python programs using IDLE. Let’s see that first. In IDLE, select File » New File.
This will create a new blank file. Add the following code to it:

print('Hello World!")

Then save it with the name prog01.py on the disk (Figure 1-11).

& prog01.py - C:/Users/Ashwin/OneDrive/Python Data Visualization/Code/Chapter01/prog01.py (3.7.4) == O X
File Edit Format Run Options Window Help

print('Hello World!’)

Ln: 1 Col: 21

Figure 1-11. A Python program in the IDLE code editor

In the menu, select Run » Run Module. This will execute the program at IDLE'’s
prompt, as shown in Figure 1-12.

14
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[ Python 374 Shell - o w |
Ede Edit Shell Debug Options Window Help

Python 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] on win32

Type "help", "copyright”, "credits" or "license()" for more information.

>>>

RESTART: C:/Users/Ashwin/OneDrive/Python Data Visualization/Code/Chapter01/prog01.py
Hello World!

>>>|

Figure 1-12. A Python program under execution at the IDLE prompt

You can even launch the program with Python’s interpreter at the command prompt
of the OS. Open the command prompt of the OS and navigate to the directory where the
program is stored. At the Windows command prompt, run the following command:

python progo1l.py
In the Linux terminal, you must run the following command prompt:
python3 progo1.py

Then the interpreter will run the program at the command prompt, and the output
(if any) will appear there.

In Linux, there is another way you can run the program without explicitly using the
interpreter. You can add a shebang line to the beginning of the code file. For example, say
our code file looks like this:

#!/usr/bin/python3
print('Hello World!")

The first line is known as a shebang line. It tells the shell what interpreter to use and
its location. Then run the following command to change the file permission to make it
executable for the owner as follows:

chmod 755 progo1.py

Then you can directly launch your Python program file like any other executable
with ./, as follows:

./prog01.py

15
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The shell will execute the program and print the output in the terminal. Note
that this is applicable only for Unix-like systems (Linux and macOS) as they support
executing programs like this. You will learn more about Python programming
throughout the book.

Using Python IDEs

You have learned how to work with the Python interpreter and IDLE to run Python 3
statements and programs. You can use other freely available IDEs and plugins for IDEs to
work with Python. The following is a list of a few famous IDEs and plugins for Python 3
along with the URLSs to their home pages:

o PyCharm Community Edition (https://www.jetbrains.com/
pycharm/)

o Spyder IDE (https://www.spyder-ide.org/)

o Thonny Python Editor (https://thonny.org/)

e Mu Editor (https://codewith.mu/)

o PyDev plugin for Eclipse (https://www.pydev.org/)

All these IDEs and plugins are free to download and use. As an exercise for this
chapter, you may want to explore them to find the IDE you are most comfortable with.

Exploring the Scientific Python Ecosystem

The scientific Python ecosystem is a collection of open source Python libraries for
scientific computing. It has the following core components:
e Python: This is a programming language.

e NumPy: This is the fundamental library for numerical computation.
Almost all the libraries in the scientific Python ecosystem are based
on NumPy. It provides a versatile data structure known as an Ndarray
(for “N-dimensional array”).
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e SciPy: This library has many routines for scientific computations.

e Matplotlib: This is a library for visualization. Its pyplot module has
routines for Matlab-style visualizations.

Together, all these components provide functionality like Matlab:

Pandas: This is a library for data science and provides high-
performance, easy-to-use data structures like the series and
dataframes for storing data.

SymPy: This is for symbolic mathematics and algebra.

NetworkX: This is a library for representing and visualizing graphs
and networks.

Scikit-image: This is a library for image processing.

Scikit-learn: This is a library for machine learning and artificial
intelligence.

In addition to these libraries, IPython provides a better interactive environment for
the Python interpreter. IPython’s interactive environment can be accessed through web-
based notebooks using Jupyter Notebook.

The rest of the chapter focuses on Jupyter Notebook.

Introducing Jupyter Notebook

Earlier in this chapter, you learned various ways to run Python statements. You ran
Python statements in a script and in the interpreter’s interactive mode. The main
advantage of using interactive mode is the immediate feedback. The main disadvantage
of this mode is that if you make any mistakes in the statements you're typing in, you
must write the entire statement again to re-execute it. Also, it is difficult to save it as a
program. The option for saving the statements to run on the interpreter can be found in
the File option of the menu. However, all the statements and their outputs will be saved
in plain-text format with the . py extension. If there is any graphical output, it is displayed
separately and cannot be stored with the statements.

Because of the limitations of interactive mode in the interpreter, we will use a better
tool for running the Python statements interactively in the web browser. The tool is

17
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known as Jupyter Notebook. It is a server program that can create interactive notebooks
in a web browser.

Jupyter Notebook is a web-based notebook that is used for interactive programming
of various programming languages like Python, Octave, Julia, and R. It is popular
with people who are working in research domains. Jupyter Notebook can save code,
visualizations, output, and rich text in a single file. The advantage of Jupyter Notebook
over Python’s own interactive prompt is that you can edit the code and see the new
output instantly, which is not possible in Python’s interactive mode. Another advantage
is that you have the code, rich-text elements, and output of the code (which can be in
graphical or rich-text format) in the same file on disk. This makes it easy to distribute.
You can save and share these notebooks over the Internet or using the portable storage
equipment. There are many services online that help to store and execute your notebook
scripts on cloud servers.

Setting Up Jupyter Notebook

You can easily install the Jupyter Notebook server program on any computer by running
the following command at the command prompt:

pip3 install jupyter

Let’s see how you can use Jupyter Notebook for writing and executing Python
statements now. Run the following command in the command prompt of the OS to
launch the Jupyter Notebook server process there:

jupyter notebook

The Jupyter Notebook server process will be launched, and the command prompt
window shows a server log, as in Figure 1-13.
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pi@raspberrypi:~ $ jupyter notebook

[T 10:02:23.804 NotebookApp] Serving notebooks from local directory: /home/pi

[T 10:02:23.804 NotebookApp] The Jupyter Notebook is running at:

[I 10:02:23.804 NotebookApp] http://localhost:8888/?token=72f78afdadcf74d58dc766

6b45e8dede2b7721c53abeeedd
[T 10:02:23.804 NotebookApp] or http://127.0.0.1:8888/?token=72f78afdadcf74d58d

c7666b45e8dede2b7721c53abeee4d
[I 10:02:23.804 NotebookApp] Use Control-C to stop this server and shut down all

kernels (twice to skip confirmation).
[C 10:02:23.877 NotebookApp]

To access the notebook, open this file in a browser:
file:///home/pi/.local/share/jupyter/runtime/nbserver-9026-open.html

Oor copy and paste one of these URLs:
http://localhost:8888/?token=72f78afdadcf74d58dc7666b45e8dede2b7721c53ab

eeedd
or http://127.0.0.1:8888/?token=72f78afdadcf74d58dc7666b45e8dede2b7721c53ab

eeedd

Figure 1-13. Launching a new Jupyter Notebook process

Also, it launches a web page in the default browser of the OS. If the browser window
is already open, then it launches the page in a new tab of the same browser window.
Another way to open the page (in case you close this browser window running Jupyter
Notebook) is to visit http://localhost:8888/ in your browser. It displays the page
shown in Figure 1-14.
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— lupyter Notebook X
- G © @ localhost:8888/login?next - O % IND 8 @ =
~— Jupyter r
~
Password or token: | | Log in

Token authentication is enabled

If no password has been configured, you need to open the
notebook server with its login token in the URL, or paste it above.
This requirement will be lifted if you enable a password.

The command:
jupyter notebook list

will show you the URLSs of running servers with their tokens, which
you can copy and paste into your browser. For example:

Currently running servers:
http://localhost:8888/?token=c8deSéfa...

: /Users/you/notebooks

| € >

Figure 1-14. Logging in with a token

The following lines of text are the server logs.
To access the notebook, open this file in a browser:
file:///C:/Users/Ashwin/AppData/Roaming/jupyter/runtime/nbserver-8420-open.html
Or copy and paste one of these URLs:

http://localhost:8888/?token=e4a4fab0od8c22cdo1b6530d5daced19d32d7e0c3a561925¢
http://127.0.0.1:8888/?token=e4a4fab0od8c22cdo1b6530d5daced19d32d7e0c3a56925¢

In the previous log, you can see a couple of URLs. They refer to the same
page (localhost and 127.0.0.1 are the same hosts). Either you can directly copy
and paste any of these URLs directly in the address bar of the browser tab and
open the Jupyter Notebook home page or you can visit http://localhost:8888/
as discussed earlier and then paste the token in the server log (in our case it is
e4a4fab0d8c22cd01b6530d5daced19d32d7e0c3a561925¢) and log in. This will take you
to the same home page.
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Note that every instance of the Jupyter Notebook server will have its own token, so
the token shown in the book will not work with your notebook. The token is valid only
for that server process.

So, if you follow any one of the routes explained earlier, you will see a home page tab
in the browser window, as shown in Figure 1-15.

Horme Page - Sebect of croate a natebook - Cheommum

Pa
c o &t %« WO O i
Z Jupyter qut | [ Logoe
Files Running Clusters
Select items to perform actions on them. Upload | Neww &
o ~ B Name ¥ | LastModified | | File size

[ book 9 days ago
2 peskiop 5 months ago
[2 pocuments 5 months ago
0 pownloads 5 months ago
[ MmagPi 5 months ago
3 Music 5 months ago
[ Pictures 5 months ago

Figure 1-15. A new home page tab of Jupyter Notebook

As you can see, there are three tabs on the web page: Files, Running, and Clusters.
The Files tab shows the directories and files in the directory from where you launched
the notebook server from the command prompt. In the previous example, I executed
the command jupyter notebook from Ixterminal of my Raspberry Pi. And the current
working directory is the home directory of the pi user /home/pi. That is why you can
see all the files and directories in the home directory of my Raspberry Pi computer in
Figure 1-15.

In the top-right corner, you can see the Quit and Logout buttons. If you click the
Logout button, then it logs out from the current session, and to log in, you again need
the token or URL with the embedded token from the notebook server log, as discussed
earlier. If you click the Quit button, then it stops the notebook server process running at
the command prompt and displays the modal message box shown in Figure 1-16.
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Server stopped

You have shut down Jupyter. You can now close this tab.
To use Jupyter again, you will need to relaunch it.

Figure 1-16. The message shown after clicking the Quit button

To work with the Jupyter Notebook, you need to execute the command jupyter
notebook again at the command prompt.

On the top-right side, just below the Quit and Logout buttons, you can see a small
button with a refresh symbol. This button refreshes the home page. You also have the
New button. Once clicked, it shows a drop-down, as shown in Figure 1-17.

Upload =

Notebook:
Octave

Python 3

Other:
Text File
Folder

Terminal

R R R

Figure 1-17. Options for a new notebook

As you can see, the drop-down is divided into two sections, Notebook and Other. You
can create the Octave and Python 3 notebooks. If your computer has more programming
languages installed that are supported by Jupyter Notebook, then all those languages
will show up here. You can also create text files and folders. You can open a command
prompt in the web browser by clicking Terminal. Figure 1-18 shows Ixterminal running
in a separate web browser tab.
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C @ locahost a + B9 O |

. J u pyter Logout

SSH is enabled and the default password for the 'pi' user has not been changed.
This 1is a security risk - please login as the 'pi' user and type 'passwd' to set a
| password,

p aspberrypi:~ $ 1s -la
total 15788

drwxr-xr-x 26 pi pi 12288

drwxr-xr-x 3 root root 4096 ..

-rwW-r--r-- pi pi 336192 120 2020-02-16 920x1080_scrot.png
-rW-r--r-- pi pi 718258 ol 2020-6 4-20 24 8_scrot.png
-TW-Tr--r-- pi pi 718081 : : : 205717 _1024x768_scrot.png
-rw-r--r-- pi pi 717832 : D26 103 1024x ot.pngy
-rW-r--r-- pi pi 717832 : 2€ y 3848_1024x768_scrot.png

Figure 1-18. A new Ixterminal window within the browser

Clicking Python 3 in the drop-down creates a new Python 3 notebook, as shown in

Figure 1-19.

® " x4
@ localhost . 3o 8
J u p y ter Untitled (auosaved F Logout
File Edit View Insert Cell Kemel Widgets Help # |Python3 O
B + 3 @@ B |+ ¥ MRun B C | W Code - | B3

Figure 1-19. A new Python 3 notebook
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If you go to the home page again by clicking the home page tab in the browser and
then open the Running tab in the home page, you can see the entries corresponding to
the terminal and the Python 3 notebook, as shown in Figure 1-20.

* @ Untiled - hpyierNotobook X | = '

“ D loclhostiiEdireefunning a % 6 i
— Jupyte Quit | Logout
Files Running IPython Clusters

Currently running Jupyler processes

]

Terminals =

Terminals are 1 ilable

Notebooks =

& untitled.ipynb y EueLULE seconds ago

Figure 1-20. Summary of current Jupyter Notebook subprocesses

Running Code in Jupyter Notebook

Go to Python 3’s Untitled1 tab again and type in the following statement in the text area
(also known as a cell):

printf("Hello, World!\n");

Then click the Run button. Jupyter will execute the statement as a Python 3
statement and show the result immediately below the cell, as shown in Figure 1-21.

jear X B Untite - i Notebosk. X |4 - o

O (R s -
Z Jupyter Untitled wosses cranges A Logou
File Edit View Insert Cell Kernel Widgets Help Trusted ¢ |Python3 O
B + = @ B 4+ 4 MHRun B C W Code v || o3

In [1]: print('Hello World!')

Hello World!

In[ ]:

Figure 1-21. Code output in Jupyter Notebook
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As you can see, after execution, it automatically creates a new cell below the
result and sets the cursor there. Let’s discuss the menu bar and the icons above the
programming cells. You can save the file by clicking the floppy disk icon. You can add a
new empty cell after the current cell by clicking the + icon. The next three icons are Cut,
Copy, and Paste. Using the up and down arrows can shift the position of the current cell
up and down, respectively. The next option is to run the cell, which you already saw. The
next three icons are for interrupting the kernel, restarting the kernel, and rerunning all
the cells in the notebook. Next to that, you have a drop-down that tells you what type of
cell it should be. Figure 1-22 shows the drop-down when clicked.

Code v

Markdown
Raw NBConvert
Heading

Figure 1-22. Types of cells in Jupyter Notebook

The cell is treated as a Python 3 code cell when you choose the Code option. It is
treated as a Markdown cell when you choose the Markdown option. Markdown is a
markup language that can create rich-text output. For example, anything followed by #
creates a heading, anything followed by ## creates a subheading, and so on. Just type the
following lines in a Markdown cell and execute them:

# Heading 1
## Heading 2

During our Python 3 demonstrations, we will mostly use Markdown for headings.
However, you can further explore Markdown on your own by visiting https://jupyter-
notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20
Markdown%20Cells.html. Figure 1-23 shows the output of the previous demonstration.
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In [1]: print('Hello World!')

Hello World!

Heading 1

Heading 2

In[ ]:

Figure 1-23. Headings in Markdown

You can even change the name of the notebook file by clicking its name in the top
part of the notebook. Once you click, you'll see a modal box for renaming, as shown in
Figure 1-24.

Rename Notebook X

Enter a new notebook name:

[ e |

Figure 1-24. Renaming a notebook in Jupyter

Rename the notebook if you want. If you browse the location on disk from where you
launched the Jupyter Notebook from at the command prompt, you will find the file with
the .ipynb extension (meaning “IPython notebook”).

In the same way, you can use Jupyter Notebook for doing interactive programming
with the other programming languages that support Jupyter. We will mostly use this
notebook format to store our code snippets for interactive sessions. This is because
everything is saved in a single file that can be shared easily, as discussed earlier.
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You can clear the output of a cell or the entire notebook. In the menu bar, click the
Cell menu. In the drop-down, Current Outputs and All Output have a Clear option that
clears the output of cells. Figure 1-25 shows the options.

Cell Kernel Widgets Help

Run Cells v
Run Cells and Select Below

Run Cells and Insert Below

Run All

Run All Above

Run All Below

Cell Type 4
Current Outputs »
All Output 4 Toggle

Toggle Scrolling

Clear
Figure 1-25. Clearing the output in Jupyter

One of the most significant advantages of Jupyter Notebook is that you can edit an
already executed cell if there is any syntax error or you simply want to change the code.
Jupyter Notebook is like an IDE that runs within a web browser and produces the output
in the same window. This interactivity and facility to keep code, rich text, and output in
the same file has made Jupyter Notebook project hugely popular worldwide. The kernel
for running Python programs comes from the IPython project. As  mentioned earlier,
you can use it for other programming languages too. I have used it for running GNU
Octave programs.

You can find more information about Jupyter Notebook and IPython at the
following URLs:

https://jupyter.org/
https://ipython.org/
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Anaconda

Before we can conclude the chapter, we need to discuss the Python distributions. A
Python distribution is nothing more than the Python interpreter bundled with Python
libraries. One such popular distribution is Anaconda. You can download and install
Anaconda on Linux, Windows, and macOS. Anaconda has many versions. One of them
is free and meant for individual usage. You can find it at https://www.anaconda.com/
products/individual.

Anaconda comes with an open source package manager that can install packages for
Python and other programs. It is known as Conda. You can find more information about
the Conda package manager at https://docs.conda.io/en/latest/.

If you have already installed Python from Python’s website, I recommend using
another computer to install Anaconda. Having multiple interpreters and distributions of
Python can be confusing.

Summary

In this chapter, you learned the basics of Python programming language. You learned
how to write basic Python programs and how to execute them in various ways. You
learned to work with Python on various operating systems such as Windows and Linux.
You also learned various modes of the Python programming language and how to launch
Python from the command prompts of various operating systems. You learned the basics
of the built-in package manager of Python, called pip. We also briefly discussed other
IDEs for Python.

Then, you got a brief introduction to the scientific Python ecosystem. We will explore
many components of this ecosystem in the coming chapters. You also learned how to
install Jupyter Notebook on various platforms and explored how you can run simple
Python statements in Jupyter Notebook. You learned that you can store the code and the
output of the same code in a single file that can be shared easily over the Internet and
other media such as portable storage devices.

In the next chapter, we will get started with NumPy.
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CHAPTER 2

Getting Started with NumPy

In the previous chapter, you learned the basics of the Python programming language and
the scientific Python ecosystem. You also learned how to run simple Python programs in
interactive web-based notebooks with Jupyter. We will continue using Jupyter Notebook
for the majority of demonstrations in the rest of the chapters in the book.

In this chapter, we will give a brief overview of the NumPy library with a few coding
demonstrations. The following is the list of topics that we will explore in this chapter:

e Introduction to the NumPy Ndarrays
o Ndarray properties
¢ NumPy constants

Throughout the remaining chapters of this book, we will explore many components
of the scientific Python ecosystem one by one. Throughout this book, we will be
using different libraries that are part of this scientific Python ecosystem. The valuable
knowledge you will gain in this chapter serves as a foundation for the rest of the chapters.
As this is an introductory chapter for a broad ecosystem, I have kept it short yet practical.

NumPy and Ndarrays

NumPy is the fundamental package for numerical computation in Python. We can
use it for numerical computations. The most useful feature of the NumPy library is the
multidimensional container data structure known as an Ndarray.

An Ndarray is a multidimensional array (also known as a container) of items that
have the same datatype and size. We can define the size and datatype of the items at the
time of creating the Ndarray. Just like other data structures such as lists, we can access
the contents of an Ndarray with an index. The index in an Ndarray starts at 0 (just like
arrays in C or lists in Python). We can use Ndarrays for a variety of computations. All the
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other libraries in the scientific Python ecosystem recognize and utilize NumPy Ndarrays
and associated routines to represent their own data structures and operations on them.

Let’s get started with the hands-on material. Create a new notebook for this chapter.
Run the following command to install the NumPy library on your computer:

I'pip3 install numpy

Let’s import it to the current notebook by running the following command:
import numpy as np

You can create a list and use it to create a simple Ndarray as follows:

11 = [1, 2, 3]
x = np.array(l1, dtype=np.int16)

Here you are creating an Ndarray from a list. The datatype of the members is a 16-bit
integer. You can find the detailed list of datatypes supported at https://numpy.org/
devdocs/user/basics.types.html.

You can write the previous code in a single line as follows:

x = np.array([1, 2, 3], dtype=np.int16)
Let’s print the value of the Ndarray and its type (which, we know, is an Ndarray).

print(x)
print(type(x))

The output is as follows:

[1 2 3]
<class 'numpy.ndarray'>

As you can observe in the previous output, it is of the class numpy.ndarray.
You can also use Python’s interactive mode for running all the statements, as shown
in Figure 2-1.
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& Python 383 Shell
| Gl Edit Shell Debug Options Window Help

Python 3.8.3 (tags/v3.8.3:6f8¢832, May 13 2020
Type "help", "copyright”, "credits" or "license
>>> import numpy as np

>>>11=[1, 2, 3]

>>> x = np.array(l1, dtype=np.int16)

>>> print(x)

[123]

>>> type(x)

<class 'numpy.ndarray'>

>>> |

Figure 2-1. Running the example code in interactive mode in the Python shell

You can run most of the code examples you will practice in this book in the Python
shell too. Similarly, you can launch the IPython shell by typing the command ipython at
the command prompt and then run the code examples, as shown in Figure 2-2.

Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:20:19) [MSC v.1925 32 bit (Intel)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.1@.2 -- An enhanced Interactive Python. Type '?' for help.

1]: import numpy as np

Figure 2-2. Running the example code in interactive mode in the IPython shell

While you can use the Python interactive shell and IPython for running the code
examples, it is not possible to save the code, output, and other assets (like rich-text
titles) in a single file with these tools, so we will mostly be using Jupyter Notebook
files (*. ipynb files) in this book. We will also be using Python script mode programs
(*.py files) in a few cases.
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Indexing in Ndarrays

Let’s take a brief look at the indexing of Ndarrays. As you learned earlier briefly, the
indexing starts at 0. Let’s demonstrate that by accessing the members of the Ndarray as
follows:

print(x[0]); print(x[1]); print(x[2])

The output is as follows:

You can even use a negative index: -1 returns the last element, -2 returns the second
last, and so on. The following is an example:

print(x[-1])
If you provide any invalid index, then it throws an error.
print(x[3])

In the previous statement, you are trying to access the fourth element in the Ndarray,
which is nonexistent. This returns the following error:

IndexError Traceback (most recent call last)
<ipython-input-4-d3c02b9c2b5d> in <module>
----> 1 print(x[3])

IndexError: index 3 is out of bounds for axis 0 with size 3

Indexing in Ndarrays of More Than One Dimension
You can have more than one dimensions for an array as follows:
x1 = np.array([[1, 2, 3], [4, 5, 6]], np.int16)

The previous is a two-dimensional matrix. It has two rows and three columns. You
can access individual elements as follows:

print(x1[0, 0]); print(x1[o0, 1]); print(x1[0, 2]);
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You can even access entire rows as follows:

print(x1[o, :])
print(x1[1, :])

The output is as follows:

[1 2 3]

You can access an entire column as follows:
print(x[:, 0])

The output is as follows:
[1 4]

You can even have an Ndarray with more than two dimensions. The following is a
3D array:

X2 = np'arIaY([[[l) 2, 3]1 [4) 5, 6]]1[[0: -1, '2]) ['3: -4, '5]]])
np.int16)

In scientific and business applications, you'll often have multidimensional data.
Ndarrays are useful for storing numerical data. Try to run the following items and
retrieve the elements of the previous 3D matrix:

print(x2[0, 0, 0])
print(x2[1, 1, 2])
print(x2[:, 1, 1])

Ndarray Properties

You can learn more about the Ndarrays by referring to their properties. Let’s see all the
properties in action by looking at a demonstration. Specifically, let’s use the same 3D
matrix we used earlier.

X2 = np'arraY([[[l: 2: 3]) [4: 5: 6]]:[[0) '1) '2]: ['3: '41 '5]]]: np'intl6)
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You can find out the number of dimensions with the following statement:
print(x2.ndim)

The output returns the number of dimensions.

You can find out the shape of the Ndarray as follows:
print(x2.shape)

The shape means the size of the dimensions as follows:
(2, 2, 3)

You can find out the datatype of the members as follows:
print(x2.dtype)

The output is as follows:
int16

You can find out the size (number of elements) and the number of bytes required in
the memory for the storage as follows:

print(x2.size)
print(x2.nbytes)

The output is as follows:

12
24

You can compute the transpose with the following code:

print(x2.T)

NumPy Constants

The NumPy library has many useful mathematical and scientific constants you can use
in your programs. The following code snippet prints all such important constants.
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The following code snippet refers to infinity:
print(np.inf)
The following code snippet refers to Not a Number:
print(np.NAN)
The following code snippet refers to negative infinity:
print(np.NINF)
The following code snippet refers to negative and positive zeros:

print(np.NZERO)
print(np.PZERO)

The following code snippet refers to Euler’s number:
print(np.e)
The following code snippet refers to Euler’s gamma and pi:

print(np.euler_gamma)
print(np.pi)

The output is as follows:
inf
nan
-inf
-0.0
0.0
2.718281828459045
0.5772156649015329
3.141592653589793
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Slicing Ndarrays

Let’s see examples of slicing operations on Ndarrays. You can extract a part of an Ndarray
with slicing using indices as follows:

a1l = np.array([1, 2, 3, 4, 5, 6, 7])
a1[1:5]

This code will display the elements from the second position to the sixth position
(you know that the 0 is the starting index) as follows:

array([2, 3, 4, 5])

You can show the elements from the fourth position as follows:
ai[3:]

The output is as follows:
array([4, 5, 6, 7])

You can also show all the elements up to a particular index (excluding the element at
that index) as follows:

a1[:3]
The output is as follows:
array([1, 2, 3])
You saw the use of negative indices. We can use them for slicing as follows:
a1[-4:-1]
The output is as follows:
array([4, 5, 6])

You have been slicing the data with a step size of 1. This means you are retrieving the
continuous elements in the resultset. You can also change the step size as follows:

a1[1:6:2]
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In this example, the size of the step is 2. So, the output will list every second (every
other) element. The output is as follows:

array([2, 4, 6])

Summary

In this chapter, you started learning the basics of NumPy and Ndarrays. This is a big
library with lots of routines. There are entire books dedicated to NumPy. However, our
publishing constraints won’t warrant that sort of exploration of this useful library. We
will explore more routines from the NumPy library in the coming chapters as and when
we need them for our visualization demonstrations.

In the next chapter, you will learn about a few Ndarray creation routines and the
basics of data visualization with Matplotlib.
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NumPy Routines
and Getting Started
with Matplotlib

In the previous chapter, you learned the basics of NumPy. Specifically, you learned how
to install it and how to create Ndarrays. All the topics you learned in the previous chapter
will serve as a foundation for the remaining chapters, as the Ndarray is the fundamental
data structure that we will be using throughout the book.

In this chapter, we will continue where we left off in the previous chapter and
look at a few Ndarray creation routines. We will also get started with the main data
visualization library in the scientific computing ecosystem, Matplotlib. We will use the
Ndarray creation routines of NumPy to demonstrate visualizations with Matplotlib. This
is a detailed chapter with a lot of emphasis on programming and visualizations. The
following are the topics you will learn about in this chapter:

e Routines for creating Ndarrays
e Matplotlib
e Visualization with NumPy and Matplotlib

Throughout the remaining chapters of this book, we will frequently use Matplotlib
and NumPy to demonstrate data visualization.
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Routines for Creating Ndarrays

Let’s learn to create Ndarrays of 1s and 0s. We will explore many array creation routines
in this section. Use Jupyter Notebook to create a new notebook to save the code for this
chapter. np.empty() returns a new array of a given shape and type, without initializing
entries. As the entries corresponding to the members are not initialized, they are
arbitrary (random). Let’s see a small demonstration. Type the following code in a cell in
the notebook and run it:

import numpy as np
x = np.empty([3, 3], np.uint8)
print(x)

The output will be as follows:

[[ 64 244 49]
[ 4 1 0]
[ 0o 0 124]]

Note that the values will be different for every instance of execution as it does not
initialize the values upon the creation of the matrix. You can create a matrix of any size as

follows:

x = np.empty([3, 3, 3], np.uint8)
print(x)

The function np.eye() returns a 2D matrix with 1s on the diagonal and 0s for other
elements. The following is an example:

y = np.eye(5, dtype=np.uint8)
print(y)
The output is as follows:

[[1 000 0]
[0100 0]
[0010 0]
[00010]
[0000 1]]
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You can change the position of the index of the diagonal. The default is 0, which
refers to the main diagonal. A positive value means an upper diagonal. A negative value
means a lower diagonal. The following are examples. Let’s demonstrate the upper
diagonal first:

y = np.eye(5, dtype=np.uint8, k=1)
print(y)

The output is as follows:

[[01000]
[0010 0]
[00010]
[0000 1]
[0 000 0]]

The following is the code to demonstrate the lower diagonal:

y = np.eye(5, dtype=np.uint8, k=-1)
print(y)

The output is as follows:
[[00000]
[1 000 0]
[0100 0]
[0010 0]
[00010]]

An identity matrix is a matrix where all the elements at the diagonal are 1 and the
rest of the elements are 0. The function np.identity() returns an identity matrix of the
specified size, as shown here:

x = np.identity(5, dtype= np.uint8)
print(x)

The previous code produces the same output as the following code:

y = np.eye(5, dtype=np.uint8)
print(y)
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The output of both the methods will be as follows:

[[10000]
[01000]
[0010 0]
[00010]
[0000 1]]

The function np.ones () returns the matrix of the given size that has all the
elements as 1s.

x = np.ones((2, 5, 5), dtype=np.int16)
print(x)

Run the code and you will see the following output:

[

[1
[1
[1
[1
[1

R R R R R
PR R R R
N N N Y
=
e

[1
[1
[1
[1
[1

R R R R R
L N N
L = N N
=
e

The function np.zeroes () returns a matrix of a given size with all the element as 0s.

x = np.zeros((2, 5, 5, 2), dtype=np.int16)
print(x)

Run the code and check the output.
The function np.full() returns a new array of a given shape and type, filled with the
passed argument. Here’s an example:

x = np.full((3, 3, 3), dtype=np.int16, fill value = 5)
print(x)
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The output is as follows:

[[[55 5]
[5 5 5]
[5 5 5]]
[[55 5]
[5 5 5]
[5 5 5]]
[[55 5]
[5 5 5]
[5 5 5]]]

A lower triangular matrix is where the diagonal and all the elements below the
diagonal are 1 and the rest of the elements are 0. The function np.tri() returns a lower
triangular matrix of a given size, as shown here:

x = np.tri(3, 3, k=0, dtype=np.uint16)
print(x)

The output is as follows:

[[100]
[11 0]
[111]]

You can even change the position of the subdiagonal. All the elements below the
subdiagonal will be 0.

x = np.tri(5, 5, k=1, dtype=np.uint16)
print(x)

The output is as follows:

=

100 0]
110 0]
111 0]
111 1]
111 1]]

[N [N

mrm /s e
=

=
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Another example with a negative value for the subdiagonal is as follows:

x = np.tri(5, 5, k=-1, dtype=np.uint16)
print(x)

The output is as follows:

[[00000]
[10000]
[1100 0]
[11100]
[11110]]

Similarly, you can work with the function np.tril() to obtain a lower triangular
matrix. It accepts another matrix as an argument. Here’s a demonstration:

x = np.ones((5, 5), dtype=np.uint8)
y = np.tril(x, k=-1)
print(y)

The output is as follows:

[[0000O0]
[1000 0]
[1100 0]
[11100]
[11110]]

An upper triangular matrix is where the diagonal and all the elements above are 1
and the rest of the elements are 0.

x = np.ones((5, 5), dtype=np.uint8)
y = np.triu(x, k=0)
print(y)

The output is as follows:

[[11111]
[01111]
[00111]
[0001 1]
[0000 1]]

44



CHAPTER 3 NUMPY ROUTINES AND GETTING STARTED WITH MATPLOTLIB
You can have a negative subdiagonal as follows:

x = np.ones((5, 5), dtype=np.uint8)
y = np.triu(x, k=-1)
print(y)

The output is as follows:

[[11111]
[11111]
[01111]
[00111]
[00011]]

You can have a negative subdiagonal as follows:

np.ones((5, 5), dtype=np.uint8)
np.triu(x, k=1)

X

y
print(y)

The output is as follows:

[[01111]
[00111]
[0001 1]
[0000 1]
[0 000 0]]

Matplotlib

Matplotlib is an integral part of the scientific Python ecosystem, and it is used for
visualization. It is an extension of NumPy. It provides a Matlab-like interface for plotting
and visualization. It was originally developed by John D. Hunter as an open source
alternative usable with Python.

You can install it using Jupyter Notebook as follows:

I'pip3 install matplotlib
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Notice the ! symbol before the pip3 command. This is because when you want to
run an OS command in a notebook, you must prefix it with !.
Before installing the Matplotlib library, you may want to upgrade pip with the

following command:
I'python -m pip install --upgrade pip

To use the Matplotlib library in a notebook for basic plotting, you must import its
pyplot module as follows:

import matplotlib.pyplot as plt

The pyplot module provides a Matlab-like interface for creating visualizations. Also,
to show the Matplotlib visualizations in the notebook, you must run the following magic
command:

%matplotlib inline

This forces Matlab to show the output inline, directly below the code cell that
produces the visualization. We will always use this when we need to use Matplotlib.
Let’s import NumPy too as follows:

import numpy as np

You can read more about Matplotlib at https://matplotlib.org/.

Visualization with NumPy and Matplotlib

You are now going to learn how to create NumPy Ndarrays with Ndarray creation
routines and then use Matplotlib to visualize them. Let’s get started with the routines to
create Ndarrays.

The first routine is arange( ). It creates evenly spaced values with the given interval.
A stop value argument is compulsory. The start value and interval parameters have the
default arguments 0 and 1, respectively. Here’s an example:

X = np.arange(6)

In the previous example, the stop value is 5. So, it creates an Ndarray starting with 0
and ending at 4. The function returns the sequence that has a half-open interval, which
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means the stop value is not included in the output. As we have not specified the interval,
it assumes it to be 1. You can see the output and the datatype of it as follows:

print(x)
type(x)

The output is as follows:

[012345]
numpy .ndarray

Let’s go ahead and plot these numbers. For plotting in 2D, we need x-y pairs. Let’s
keep it simple and say y = f(x) = x by running the following statement:

y=x+1

Now, let’s use the function plot() to visualize this. It needs the values of x and y and
the plotting options. You will learn more about the plotting options later in this chapter.

plt.plot(x, y, 'o--")
plt.show()

The function show() displays the plot. As you can see, we are visualizing with
plotting options o- -. This means the points are represented by the solid circles and the
line is dashed, as shown in Figure 3-1.

Figure 3-1. Visualizing y=f(x)=x+1
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Here’s an example of the function call for the function arange () with the start and

stop arguments:
np.arange(2, 6)

It returns the following output (it directly prints and we are not storing it in a

variable):
array([2, 3, 4, 51)
We can even add an argument for the interval as follows:
np.arange(2, 6, 2)
The output is as follows:
array([2, 41)
We can draw multiple graphs as follows:

plt.plot(x, y, 'o--")
plt.plot(x, -y, 'o-")
plt.show()

The output will have one line and another dashed line, as shown in Figure 3-2.
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Figure 3-2. Visualizing multiple lines

48



CHAPTER 3 NUMPY ROUTINES AND GETTING STARTED WITH MATPLOTLIB
You can even add a title to the graph as follows:

plt.plot(x, y, 'o--")
plt.plot(x, -y, 'o-')
plt.title('y=x and y=-x")
plt.show()

The output will have a title as shown in Figure 3-3.

y=x and y=-x
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Figure 3-3. Visualizing multiple lines and title

The function linspace(start, stop, number) returnsan array of evenly spaced
numbers over a specified interval. You must pass it the starting value, the end value, and
the number of values as follows:

N = 16
x = np.linspace(0, 15, N)
print(x)

The previous code creates 11 numbers (0 to 10, both inclusive) as follows:
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.]

Let’s visualize this as follows:
y =X
plt.plot(x, y, 'o--")
plt.axis('off")
plt.show()
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Figure 3-4 shows the output.

Figure 3-4. Output of y = x with linspace()

As you can see, we are turning off the axis with the line plt.axis('off").
Similarly, you can compute and visualize values in the logspace as follows:

y = np.logspace(0.1, 2, N)

print(y)
plt.plot(x, y, 'o--")
plt.show()

The output of the print function is as follows:

[ 1.25892541  1.68525904  2.25597007  3.01995172  4.04265487

5.41169527  7.2443596 9.69765359 12.98175275 17.37800829

23.26305067 31.14105584 41.68693835 55.80417175 74.70218989
100. ]

Figure 3-5 shows the output.
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Figure 3-5. Output of logspace()

You can even compute a series in the geometric progression as follows:

y = np.geomspace(0.1, 2000, N)
print(y)

plt.plot(x, y, 'o--")
plt.show()

The output of the print statement is as follows:
[1.00000000e-01 1.93524223e-01 3.74516250e-01 7.24779664e-01
1.40262421e+00 2.71441762e+00 5.25305561e+00 1.01659351e+01

1.96735469e+01 3.80730788e+01 7.36806300e+01 1.42589867e+02
2.75945932e+02 5.34022222e+02 1.03346236€+03 2.00000000e+03 ]

Figure 3-6 shows the output.
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Figure 3-6. Output of geomspace()
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Running the Matplotlib Program as a Script

You can use Python'’s script mode to run the Matplotlib program. Save the program
shown in Listing 3-1 as prog01.py.
Listing 3-1. prog0l.py

import numpy as np
import matplotlib.pyplot as plt

X = np.arange(6)
print(x)
type(x)

y=x+1

plt.plot(x, y, 'o--")
plt.show()

When you run this program, the output is shown in a separate window, as shown in
Figure 3-7.

® Figure 1 = ] X
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Figure 3-7. Output in a separate window
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We will mostly be using Jupyter Notebook to show the visualizations in the
browser window.

Summary

This chapter focused on the routines for creating Ndarrays. You also learned the basics
of Matplotlib. Along with the basics, you learned how to visualize Ndarrays with simple
graphs. There is more to NumPy and Matplotlib than what you learned in this chapter.
There are many more NumPy and data visualization routines.

In the next chapter, you will explore more such NumPy routines that manipulate
NumPy Ndarrays.
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Revisiting Matplotlib
Visualizations

In the previous chapter, you learned about the many routines for creating and
manipulating Ndarrays in the NumPy library. You will need many of those routines
throughout this book.

This chapter is dedicated to exploring the aesthetic aspects of visualizations
prepared with Matplotlib. You will learn to customize the cosmetic aspects of the
Matplotlib visualizations. Specifically, we will explore the following topics in detail:

o Single-line plots

e Multiline plots

o Grid, axes, and labels

e Colors, lines, and markers
e Subplots

e Object-oriented style

e Working with the text

After reading this chapter, you will be able to programmatically customize the
aesthetic aspects of your visualizations to make them more presentable.

Single-Line Plots

When there is only one visualization in a figure that uses the function plot(), then it

is known as a single-line plot. In this section, you'll see a few ways that you can draw a
single-line plot. We have already used the function plot() to draw single-line plots. Let’s
explore this concept further in detail with a few more solid examples.
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CHAPTER 4  REVISITING MATPLOTLIB VISUALIZATIONS

Create a new notebook for the demonstrations in this chapter. You can also use
Python lists to visualize the plots, as follows:

%matplotlib inline

import matplotlib.pyplot as plt
x = [4, 5, 3, 1, 6, 7]
plt.plot(x)

plt.show()

Figure 4-1 shows the output.

T T T T

0 1 2 3 4 5

Figure 4-1. Demonstrating a simple single-line graph

In this case, the values of the y-axis are assumed.
Here’s another example of a single-line graph that uses an Ndarray:

import numpy as np
X = np.arange(25)
plt.plot(x)
plt.show()
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Figure 4-2 shows the output.

25 A

20 4

]5 4

10 4

0 5 10 15 20 %
Figure 4-2. A simple single-line graph with arange()

Let’s visualize the quadratic graph y = f(x) = x>+1. The code is as follows:

plt.plot(x, [(y**3 + 1) for y in x])
plt.show()

Figure 4-3 shows the output.
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Figure 4-3. y=f(x) = x*+1
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You can write the same code in a simple way as follows:

plt.plot(x, x**3 + 1)
plt.show()

Multiline Plots

It is possible to visualize multiple plots in the same output. Let’s see how to show
multiple curves in the same visualization. The following is a simple example:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt
X = np.arange(7)

plt.plot(x, -x**2)

plt.plot(x, -x**3)

plt.plot(x, -2*x)

plt.plot(x, -2**x)

plt.show()

Figure 4-4 shows the output.
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-200 1 \

0 1 2 3 a 5

o

Figure 4-4. Multiline graph

As you can see, Matplotlib automatically assigns colors to the curves separately.
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You can write the same code in a simple way as follows:
plt.plot(x, -x**2, x, -x**3,
X, -2%x, x, -2%¥x)
plt.show()

The output will be the same as Figure 4-4.
Let’s see another example:

X = np'array([[3) 2, 5, 6]: [7) 4, 1, 5]])
plt.plot(x)
plt.show()

Figure 4-5 shows the output.

Figure 4-5. Multiline graph, another example

You can also create a multiline graph with random data as follows:

data = np.random.randn(2, 10)
print(data)
plt.plot([data[0], data[1]])
plt.show()
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Figure 4-6 shows the output.
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Figure 4-6. Multiline graph, random data

In this example, we generated the data in a random way using the routine np.
random.randn(). Since this routine will generate the random data, the output will be
different every time we execute it. So, the output you will see will be different every time
you execute the code.

Grid, Axes, and Labels

Now you will learn how to enable a grid in the visualizations. This can be done with the
statement plt.grid(True). You will also learn how to manipulate the limits of axes. But
before that, you will quickly learn how to save a visualization as an image on the hard
disk. Look at the following code:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2%*x)
plt.grid(True)

plt.savefig('test.png")

plt.show()

The statement plt.savefig('test.png') saves the image in the current directory of
the Jupyter Notebook file. Figure 4-7 shows the output.
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Figure 4-7. Multiline graph

You can see that the limits of the axes are set by default as follows:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)
plt.grid(True)

print(plt.axis())

plt.show()

Figure 4-8 shows the output.

(-0.1, 2.1, -8.4, 0.4)

., o

-8

000 025 050 075 100 125 150 175 200

Figure 4-8. Seeing the values of axes
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You can also customize the values of the axes as follows:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2%*x)
plt.grid(True)

plt.axis([0, 2, -8, 0])

print(plt.axis())

plt.show()

The statement plt.axis([0, 2, -8, 0]) sets the values of the axes. The first pair,
(0, 2), refers to the limits for the x-axis, and the second pair, (-8, 0), refers to the limits
for the y-axis. You can write the previous code with different syntax using the functions
x1im() and ylim() as follows:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2%*x)
plt.grid(True)

plt.xlim([0, 2])

plt.ylim([-8, 0])

print(plt.axis())

plt.show()

Both the examples produce the same output, as shown in Figure 4-9.

(0.0, 2.0, -8.0, 0.8)

000 025 050 075 100 125 150 175 200

Figure 4-9. Customizing the axes
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You can add the title and the labels for the axes as follows:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2%*x)
plt.grid(True)

plt.xlabel('x = np.arange(3)")

plt.xlim([0, 2])

plt.ylabel('y = f(x)")

plt.ylim([-8, 0])

plt.title('Simple Plot Demo")

plt.show()

This produces output with the labels and the title shown in Figure 4-10.

Simple Plot Demo

" \
o \\

000 025 050 075 100 125 150 175 200
x = np.arange(3)

fix)

y=

Figure 4-10. Title for the visualization and labels for the axes

You can pass an argument for the parameter label in the plot() function and then
call the function legend() to create a legend as follows:

X = np.arange(3)

plt.plot(x, -x**2, label='-x**2")
plt.plot(x, -x**3, label='-x**3")
plt.plot(x, -2*x, label="-2*x")
plt.plot(x, -2**x, label='-2%**x")
plt.legend()
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plt.grid(True)
plt.xlabel('x =
plt.xlim([0, 2])
plt.ylabel('y = f(x)")
plt.ylim([-8, 0])
plt.title('Simple Plot Demo')
plt.show()

np.arange(3)")

This code produces output with legends for the curves, as shown in Figure 4-11.

Simple Plot Demo
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fix)
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Figure 4-11. Output with legends

Instead of passing the legend string as an argument to the function plot(), you can
pass the list of strings as an argument to the function legend() as follows:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2**x)
plt.legend(['-x**2", '-x**3', '-2%x', "-2%*x'])
plt.grid(True)

plt.xlabel('x = np.arange(3)")

plt.xlim([0, 2])

plt.ylabel('y = f(x)")

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.show()
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This produces the same output as Figure 4-11.
You can also change the location of the legend box by making the following changes
to plt.legend() from the previous code:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**¥3, x, -2*x, x, -2%**x)

plt.legend(['-x**2", "-x*¥¥3', '-2%x", '-2%kx'],
loc="lower center")

plt.grid(True)

plt.xlabel('x = np.arange(3)")

plt.xlim([0, 2])

plt.ylabel('y = f(x)")

plt.ylim([-8, 0])

plt.title('Simple Plot Demo')

plt.show()

Figure 4-12 shows the output.

Simple Plot Demo
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Figure 4-12. Output with legends in upper middle position

Finally, let’s save the visualization to disk with the following code:

X = np.arange(3)

plt.plot(x, -x**2, x, -x**3, x, -2*x, x, -2%*x)

plt.legend(['-x*¥2', '-x¥¥3' ) '-2¥x', '-2¥kx'],
loc="lower center')
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plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

grid(True)

xlabel('x = np.arange(3)')
xlim([0, 2])

ylabel('y = f(x)")
ylin([-8, o])
title('Simple Plot Demo')
savefig('test.png")

show()

Colors, Styles, and Markers

Up until now, in the case of multiline plots, you have seen that Matplotlib automatically
assigned colors, styles, and markers. You saw a few examples of how to customize them.
Now, in this section, you will learn how to customize them in detail.

Matplotlib (we are not customizing styles and markers in this example):

Let’s start with colors. The following code lists all the primary colors supported by

Zmatplotlib inline
import matplotlib.pyplot as plt

import numpy as np

X =
y:

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

66

np.arange(5)

X

plot(x, y+0.4, 'g")
plot(x, y+0.2, 'y")
plot(x, y, 'r')
plot(x, y-0.2, 'c'
plot(x, y-0.4, 'k’
plot(x, y-0.6, 'm'
plot(x, y-0.8, 'w'
plot(x, y-1, 'b")
show()
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Figure 4-13 shows the output.

=1 1

Figure 4-13. Demo of colors

You can also write the previous code as follows:

plt.plot(x, y+0.4, 'g', x, y+0.2, 'y', x, y, 'r', x, y-0.2, 'c', x, y-0.4,
'k"', x, y-0.6, 'm", x, y-0.8, 'w', x, y-1, 'b")
plt.show()

The output will be the same as Figure 4-13.
You can customize the line style as follows:

- X y+1;

plt.plot(x, vy, -ty X, yH2, -ut, X, y#3, ')

plt.show()

Figure 4-14 shows the output.
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00 05 10 15 20 25 30 35 40
Figure 4-14. Line styles

You can even change the markers as follows:

plt.plot(x, y, ".")
plt.plot(x, y+0.5, '
plt.plot(x, y+1, '
plt.plot(x, y+2,

N—

- N N N N N N N N N e

Nl N N N N N N N N N

s < v A o

plt.plot(x, y+3,
plt.plot(x, y+4,
plt.plot(x, y+5,
plt.plot(x, y+6, '1
plt.plot(x, y+7, '2
plt.plot(x, y+8, '3’

4

plt.plot(x, y+9,

plt.plot(x, y+10, 's
plt.plot(x, y+11, 'p
plt.plot(x, y+12, '*
plt.plot(x, y+13, 'h
plt.plot(x, y+14, 'H'
plt.plot(x, y+15, '+
plt.plot(x, y+16, 'D
plt.plot(x, y+17, 'd
plt.plot(x, y+18, |

plt.plot(x, y+19, ' '
plt.show()
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Figure 4-15 shows the output.
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Figure 4-15. Markers

You can combine all three techniques (for colors, markers, and line styles) to

customize the visualization as follows:

plt.plot(x, y, 'mo--")
plt.plot(x, y+1 , 'g*-.")
plt.show()

Figure 4-16 shows the output.
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Figure 4-16. Customizing everything
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These are the basic customizations you can do in Matplotlib. You can customize
everything in great detail. Here is a code example:

plt.plot(x, y, color="g", linestyle='--', linewidth=1.5,
marker="""', markerfacecolor='b', markeredgecolor="k',
markeredgewidth=1.5, markersize=5)

plt.grid(True)

plt.show()

Figure 4-17 shows the output.
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Figure 4-17. Customizing everything in greater detail

You can even customize the values on the x- and y-axes as follows:

X =y = np.arange(10)

plt.plot(x, y, 'o--")

plt.xticks(range(len(x)), ['a', 'b", 'c', 'd', 'e', 'f', 'g', 'h", 'i', ''])
plt.yticks(range(0, 10, 1))

plt.show()
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Figure 4-18 shows the output.
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Figure 4-18. Customizing the ticks on the axes

Object-Oriented Plotting

You can create plots in an object-oriented way. Let’s rewrite one of our earlier code

examples as follows:

fig, ax = plt.subplots()

aX.
axX.

ax

aX.
ax.

ax
ax

aX.

ax

plot(x, -x**2, label='-x**2')
plot(x, -x**3, label="-x**3")
.plot(x, -2*x, label="-2*x")
plot(x, -2%*x, label='-2%*x')
set_xlabel('x = np.arange(3)"')
.set_ylabel('y = f(x)")
.set_title('Simple Plot Demo')
legend()

.grid(True)

plt.show()

Note that we are using the axis object to plot and set the labels and a title. Figure 4-19

shows the output.

71



CHAPTER 4  REVISITING MATPLOTLIB VISUALIZATIONS

Simple Plot Demo

f(x)

y=

000 025 050 075 100 125 150 175 200
X = np.arange(3)

Figure 4-19. Output of object-oriented plotting

You can also add the text with the functions ax. text() or the function plt.text().
The functions accept the coordinates and the text to be displayed. The following is an
example:

fig, ax = plt.subplots()
ax.plot(x, -x**2, label='-x**2")
ax.plot(x, -x**3, label="-x**3")
ax.plot(x, -2*x, label="-2*x")
ax.plot(x, -2**x, label='-2%**x")
ax.set xlabel('x = np.arange(3)')
ax.set_ylabel('y = f(x)")
ax.set_title('Simple Plot Demo')
ax.legend()

ax.grid(True)

ax.text(0.25, -5, "Simple Plot Demo")
plt.show()
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Figure 4-20 shows the output.
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Figure 4-20. Rendering text

Subplots

You can show multiple separate graphs in the same output. The technique is known
as subplotting. Subplots can have their own titles, own labels, and other specifications.
Subplots are created in a grid. The first subplot position is at the top left. The other
subplot positions are relative to the first position. The following is an example:

X = np.arange(3)
plt.subplots adjust(wspace=0.3,
hspace=0.3)
plt.subplot(2, 2, 1)
plt.plot(x, -x**2)
plt.subplot(2, 2, 2)
plt.plot(x, -x**3)
plt.subplot(2, 2, 3)
plt.plot(x, -2*x)
plt.subplot(2, 2, 4)
plt.plot(x, -2**x)
plt.show()

The first two arguments passed to plt.subplot() represent the grid size, and the third
argument indicates the position of that particular subplot. Figure 4-21 shows the output.
73



CHAPTER 4  REVISITING MATPLOTLIB VISUALIZATIONS

0 0.0 4
=25
-2
-5.0
_4 1 T T T -?Is 1 T T T
0 1 0 1 2
0 -1
_2 -
-2
_3 <
_4 1 T T T —4 1 T T T
0 1 0 1 2

Figure 4-21. Subplots

You can write the same code in object-oriented fashion as follows:

fig, axs = plt.subplots(2, 2)

plt.subplots adjust(wspace=0.3,
hspace=0.3)

axs[0, 0].plot(x, -x**2)

axs[0, 1].plot(x, -x**3)

axs[1, 0].plot(x, -2*x)

axs[1, 1].plot(x, -2**x)

plt.show()

The code produces the same output as shown in Figure 4-21.

Summary

This chapter focused on visualizations and various customizations. You learned a
great deal about visualizing the data and customizing the visualizations as per the
requirements. You also learned about the object-oriented style of plotting and subplots.
The concepts you learned in this chapter will be used throughout this book to visualize
the data.

In the next chapter, we will explore more stylesheets, legends, and layout
computations.
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Styles and Layouts

In the previous chapter, you learned about many advanced concepts related to creating
visualizations with Matplotlib.

We will continue exploring more concepts related to visualization in greater detail in
this chapter. Specifically, we will explore the following topics in detail:

o Styles
o Layouts

After reading this chapter, you will be able to work with colors, stylesheets, and
custom layouts.

Styles

In this section, you will explore the various styles available in Matplotlib. Up until now
we have been working with the default style. A style dictates things such as marker size,
colors, and fonts. There are many built-in styles in Matplotlib. The following is a short
example of applying a built-in style:

Zmatplotlib inline

import matplotlib.pyplot as plt
import numpy as np
plt.style.use('ggplot")

data = np.random.randn(10)

Let’s visualize it now:

plt.plot(data)
plt.show()
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Here we are using the style of ggplot2, which is a visualization package for the R
programming language. Figure 5-1 shows the output.
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F=3
o -
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Figure 5-1. ggplot style

You must be curious to know the names of all the available styles. You can print the
names using this:

print(plt.style.available)

The following is the output that shows the name of all the available styles:

['Solarize Light2', ' classic_test patch', 'bmh', 'classic', 'dark_
background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn',
'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-
dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted',
"seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster’,
'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid',

"tableau-colorblind10’]
Let’s apply the classic matplotlib style as follows:

plt.style.use('classic")
plt.plot(data)
plt.show()
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Figure 5-2 shows the output.

Figure 5-2. Classic style

Note that once you apply a style, that style applies to the entire notebook. So, if you
want to switch back to the default style, you can use the following code:

plt.style.use('default")
Let’s show the data with the following:

plt.plot(data)
plt.show()
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Figure 5-3 shows the output.
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Figure 5-3. Default style

Now let’s demonstrate how the colors are affected when we change the styles. Let’s
define the data as shown here:

n=3
data = np.linspace(0, 2*n*np.pi, 300)

In addition, let’s define a custom function as follows:

def sinusoidal(sty):
plt.style.use(sty)
fig, ax = plt.subplots()

ax.plot(data, np.sin(data), label='Sine')
ax.plot(data, np.cos(data), label="Cosine")
ax.legend()

A function is a routine that can be called to perform some operation. Until now, we
have been using library functions that come with Python itself and libraries like NumPy
and Matplotlib. Here, in the code snippet, we have defined our own custom function.
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This custom function accepts an argument. We are using the passed argument as a style
for our visualization. Let’s call this function with the default styling, as shown here:

sinusoidal('default")
plt.show()

Figure 5-4 shows the output.
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Figure 5-4. Default style sinusoidal graph

Let’s use the ggplot style as follows:

sinusoidal('ggplot")
plt.show()
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Figure 5-5 shows the output.
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Figure 5-5. ggplot-style sinusoidal graph

Let’s see the Seaborn style, as shown here:

sinusoidal('seaborn")
plt.show()

Figure 5-6 shows the output.
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Figure 5-6. Seaborn-style sinusoidal graph

80



CHAPTER5  STYLES AND LAYOUTS

You have seen that the styling is applied globally to the entire notebook, and you
have learned to switch to the default styling. You can locally change the styling for a
block of code as follows:

with plt.style.context('Solarize Light2'):
data = np.linspace(0, 6 * np.pi)
plt.plot(np.sin(data), 'g.--")
plt.show()

Figure 5-7 shows the output.
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Figure 5-7. Temporary styling

Layouts

In this section, you will study layouts. You already learned about subplots in Chapter 4,
and if you want to use the default style again, you can run the following line of code to
reset the styling to the default style:

plt.style.use('default")
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Let’s revise that and create a 2x2 visualization as follows:

fig, axs = plt.subplots(ncols=2, nrows=2,
constrained layout=True)
plt.show()

Figure 5-8 shows the output.
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Figure 5-8. Subplots

You can also use gridspec to create subplots as follows:
import matplotlib.gridspec as gridspec

fig = plt.figure(constrained_layout=True)
specs = gridspec.GridSpec(ncols=2, nrows=2, figure=fig)

axl = fig.add subplot(specs[0, 0])
ax2 = fig.add subplot(specs[0, 1])
ax3 = fig.add subplot(specs[1, 0])
ax4 = fig.add_subplot(specs[1, 1])
plt.show()

The previous code will create a subplot that looks like Figure 5-8. You have to write a
lot of code for the output that can be obtained in just a couple of lines of code. However,
you can use this method to create more complex visualizations. Let’s create a 3x3
visualization such that an entire row is occupied by a plot.
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fig = plt.figure(constrained layout=True)
gs = fig.add gridspec(3, 3)

ax1 = fig.add subplot(gs[o0, :])

ax1.set title('gs[o, :]')

ax2 = fig.add subplot(gs[1, :])
ax2.set_title('gs[1, :]")

ax3 = fig.add subplot(gs[2, :])
ax3.set_title('gs[2, :1")

plt.show()

This code will produce the output shown in Figure 5-9.
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Figure 5-9. Customized subplots

You can also have vertical plots as follows:

fig = plt.figure(constrained layout=True)
gs = fig.add gridspec(3, 3)
ax1 = fig.add subplot(gs[:, 0])
axl.set title('gs[:, 0]")
ax2 = fig.add subplot(gs[:, 1])
ax2.set_title('gs[:, 1]')
ax3 = fig.add_subplot(gs[:, 2])
ax3.set_title('gs[:, 2]")
plt.show()
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Figure 5-10 shows the output.
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Figure 5-10. Customized subplots

Let’s see a more complex example

fig = plt.figure(constrained layout=True)
gs = fig.add gridspec(3, 3)

ax1 = fig.add subplot(gs[o0, :])
axl.set title('gs[o, :]")

ax2 = fig.add subplot(gs[1, :-1])
ax2.set_title('gs[1, :-1]")

ax3 = fig.add subplot(gs[1:, -1])
ax3.set_title('gs[1:, -1]")

ax4 = fig.add subplot(gs[-1, 0])
ax4.set_title('gs[-1, 0]")

ax5 = fig.add subplot(gs[-1, -2])
ax5.set_title('gs[-1, -2]")
plt.show()
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Figure 5-11 shows the output.
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Figure 5-11. Customized subplots

This is how you can customize subplots.

Summary

This chapter focused on the styles and subplots. You will be using these concepts
sparingly throughout the book.
In the next chapter, we will explore a few recipes of Matplotlib to create

visualizations.
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CHAPTER 6

Lines, Bars, and
Scatter Plots

In the previous chapter, you learned about many advanced concepts related to
visualizations with Matplotlib.

In this chapter and the next few chapters, you will learn some techniques for creating
data visualizations. Specifically, in this chapter, you will learn how to create the following
data visualizations:

e Lines and logs
e Error bars

e Bargraphs

e Scatter plots

After reading this chapter, you will be able to work with lines, logs, bars, and scatter plots.

Lines and Logs

You already saw how to plot lines in an earlier chapter. Just to warm up, let’s look at an
example of a line again, as shown here:

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt
data = np.linspace(0, 9, 10)
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CHAPTER 6  LINES, BARS, AND SCATTER PLOTS
Let’s visualize it now.

plt.plot(data)
plt.show()

Figure 6-1 shows the output.

T T

0 2 4 6 8

Figure 6-1. Line plot example

Let’s create a graph such that the x-axis is logarithmic and the y-axis is normal, as
shown here:

t = np.arange(0.01, 10, 0.01)
plt.semilogx(t, np.cos(2 * np.pi * t))
plt.show()
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Figure 6-2 shows the output.
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Figure 6-2. Normal y-axis and logarithmic x-axis

Similarly, you can create alogarithmic y-axis and a normal x-axis as follows:

plt.semilogy(t, np.cos(2 * np.pi * t))

plt.show()

Figure 6-3 shows the output.
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Normal x-axis and logarithmic y-axis
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You can have both axes be logarithmic, as shown here:

plt.loglog(t, np.cos(2 * np.pi * t))
plt.show()

Figure 6-4 shows the output.
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Figure 6-4. Both logarithmic axes

Error Bars

You can also use visualizations to show error in data. When there is a possibility of errors
in the observed data, you usually want to mention it in the observation. You would say
something like “there’s a 96 percent confidence interval.” This means that there is a
possibility of 4 percent error in the given data. This gives people a general idea about the
precision of the quantity. When you want to represent this confidence (or lack thereof),
you can use error bars.

You have to use the function errorbar () for this. You can create an Ndarray or list to
store the error data. We can either have real-life data or simulate it as follows:

np.linspace (0, 2 * np.pi, 100)
y = np.sin(x)

ye = np.random.rand(len(x))/10
plt.errorbar(x, y, yerr = ye)
plt.show()
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In this example, we are showing the error on the y-axis. Figure 6-5 shows the output.
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Figure 6-5. Error on the y-axis

Similarly, you can show the error data on the x-axis.

xe = np.random.rand(len(x))/10
plt.errorbar(x, y, xerr = xe)
plt.show()

Figure 6-6 shows the output.
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Figure 6-6. Error on the x-axis
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You can show errors on both axes as follows:

plt.errorbar(x, y, xerr = xe, yerr = ye)
plt.show()

Figure 6-7 shows the output.
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Figure 6-7. Error on both axes

Bar Graphs

A bar graph is a representation of discrete and categorical data items with bars. You can
represent the data with vertical or horizontal bars. The height or length of bars is always
in proportion to the magnitude of the data. You can use bar charts or bar graphs when
you have discrete categorical data. The following is a simple example of a bar graph:

X = np.arange(4)

y = np.random.rand(4)
plt.bar(x, y)
plt.show()
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Figure 6-8 shows the output.
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Figure 6-8. Bar graph

You can have a combined bar graph as follows:

y = np.random.rand(3, 4)

plt.bar(x + 0.00, y[0], color = 'b', width = 0.25)
plt.bar(x + 0.25, y[1], color = 'g', width = 0.25)
plt.bar(x + 0.50, y[2], color = 'r', width = 0.25)

plt.show()

Figure 6-9 shows the output.
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Figure 6-9. Combined bar graph
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The previous graphs were examples of vertical bar graphs. Similarly, you can have
horizontal bar graphs as follows:

x = np.arange(4)

y = np.random.rand(4)
plt.barh(x, y)
plt.show()

Figure 6-10 shows the output.
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Figure 6-10. Horizontal bar graph

You can also have combined horizontal bar graphs as follows:

y = np.random.rand(3, 4)
plt.barh(x + 0.00, y[0], color
plt.barh(x + 0.25, y[1], color
plt.barh(x + 0.50, y[2], color
plt.show()

'b*, height=0.25)
'g", height=0.25)
'r', height=0.25)
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Figure 6-11 shows the output.
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Figure 6-11. Combined horizontal bar graph

Scatter Plot

You can also visualize your data with scatter plots. You will usually visualize a set of
two variables with a scatter plot. One variable is assigned to the x-axis, and another is
assigned to the y-axis. Then you draw a point for the values of x-y pairs. The size of x
and y must be same (they are always one-dimensional arrays). You can show additional
variables by manipulating the colors and sizes of the points. In that case, the sizes of the
one-dimensional arrays representing x, y, the color, and the size must be the same.

In the following example, we are assigning random x- and y-axes values and colors to
1,000 points. All points are of size 20.

N
X
y
colors = np.random.rand(N)

size = (20)

plt.scatter(x, y, s=size, c=colors, alpha=1)
plt.show()

1000
np.random.rand(N)
np.random.rand(N)
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Figure 6-12 shows the output.
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Figure 6-12. Scatter plot

The size of the points is fixed in this example. You can also set the size per the place
on the graph (which depends on the values of the x and y coordinates). Here is an
example:

N
X

1000

np.random.rand(N)

y = np.random.rand(N)

colors = np.random.rand(N)

size = (50 * x *y)

plt.scatter(x, y, s=size, c=colors, alpha=1)
plt.show()
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Figure 6-13 shows the output.
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Figure 6-13. Scatter plot

You've just learned how to create scatter plots.

Summary

In this chapter, we started with a little bit of a warm-up with a line plot. You then learned
how to create various log graphs. You also learned how to show the margin of error and
how to create bar plots. Finally, you learned how to create scatter plots.

In the next chapter, you will learn a few more techniques for creating data

visualizations. You will learn how to create histograms, contours, stream plots, and
heatmaps.
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CHAPTER 7

Histograms, Contours,
and Stream Plots

In the previous chapter, you learned many ways to create visualizations with lines, bar
plots, and scatter plots.

We will continue exploring various visualizations with Matplotlib in this chapter. You
will learn how to create histograms and contours. You will also learn how to plot vectors
with stream plots.

Histograms

Before you learn how to create various types of histograms, you need to learn what

they are. First, you need to know what frequency tables are. Suppose you have a set of
members with various values. You can create a table that has various buckets of ranges
of values in a column. Each bucket must have at least one value. Then you can count the
number of members that fall into that bucket and note those counts against the buckets.
Let’s see a simple example. Please create a new notebook for this, as shown here:

Zmatplotlib inline
import numpy as np
import matplotlib.pyplot as plt

Now let’s manually create a dataset and define the number of buckets equal to the
cardinality (number of distinct elements) of the set.

X = [1) 3, 5, 1, 2, 4, 4, 2, 5, 4, 3, 1, 2]
n_bins =5
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CHAPTER 7  HISTOGRAMS, CONTOURS, AND STREAM PLOTS
You can show the output with the following code:

plt.hist(x, bins=n_bins)
plt.show()

Figure 7-1 shows the output.
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Figure 7-1. Simple histogram

Normal (or Gaussian) distribution is a type of continuous probability distribution. It
is usually a bell-shaped curve. Let’s create a histogram with a normal distribution curve.
To create the data, we will use a NumPy routine. Let’s draw a histogram of random data
with normal distribution as follows:

np.random.seed(31415)
n_points = 10000

n_bins = 15

x = np.random.randn(n_points)
plt.hist(x, bins=n_bins)
plt.show()
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Figure 7-2 shows the output.
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Figure 7-2. Simple histogram of random data

The histogram of one-dimensional data is a 2D figure (as shown in Figure 7-2). When
you want to create a histogram of 2D data, you have to create a 3D figure with the data
variables on the x- and y-axes and the histogram on the z-axis. In other words, you can
use 2D coordinates to show this 3D visualization and view the histogram from the top
(top view). The bars can be color coded to signify their magnitude.

y = np.random.randn(n_points)
plt.hist2d(x, y, bins=50)
plt.show()
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Figure 7-3 shows the output.
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Figure 7-3. Simple histogram of 2D data

You can customize the histogram by setting the transparency and the color as
follows:

plt.hist(x, 20, density=True,
histtype="stepfilled’,
facecolor="g"', alpha=0.5)
plt.show()

Figure 7-4 shows the output.
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Figure 7-4. Customized histogram
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You can also show just the outline of the histogram as follows:

plt.hist(x, 20, density=True,
histtype="step")
plt.show()

Figure 7-5 shows the output.
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Figure 7-5. Customized histogram with outline only

Contours

Contours represent the outline of an object. Contours are continuous (and closed, in
many cases) lines highlighting the shape of objects. Contours are useful in the area
of cartography, which means map-making. On maps, a contour joins points of equal
height. So, all the points on a contour line are at an equal elevation (from the sea level).
In other applications where we use contours, all the points on the same contour line
have the same values (or magnitude).

Let’s draw a simple contour. We will create and visualize our own data by creating
circular contour as follows:

x
1]

np.arange(-3, 3, 0.005)
np.arange(-3, 3, 0.005)
X, Y = np.meshgrid(x, y)

Z = (X¥F2 + Y*¥2)

<
]
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out = plt.contour(X, Y, Z)
plt.clabel(out, inline=True,

fontsize=10)
plt.show()

Figure 7-6 shows the output.

Figure 7-6. Simple labeled contour

You can also add a color bar to the output as follows:

out = plt.contour(X, Y, Z)

plt.clabel(out, inline=True,
fontsize=10)

plt.colorbar(out)

plt.show()

104



CHAPTER 7  HISTOGRAMS, CONTOURS, AND STREAM PLOTS

Figure 7-7 shows the output.
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Figure 7-7. Simple labeled contour with a color bar
You can also set the colors of the contour as follows:
out = plt.contour(X, Y, Z,
colors="'g")
plt.clabel(out, inline=True,
fontsize=10)
plt.show()
Figure 7-8 shows the output.
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Figure 7-8. Simple labeled contour with custom colors
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You can also have a filled contour. The styles are used to highlight the various areas
in the contour visualization. Let’s visualize filled contours as follows:

plt.contourf(X, Y, Z,
hatches=["'-", '/', "\\', "//'],
cmap="cool",
alpha=0.75)

plt.show()

Figure 7-9 shows the output.
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Figure 7-9. Filled contour

Visualizing Vectors with Stream Plots

Up to now, we have visualized scalar entities, which have magnitudes. All the
visualizations you have learned about up to this point are great for scalars. Vectors,

by contrast, are entities that have magnitude and direction. For example, force has a
magnitude and a direction. A specific example is a magnetic force field. You can visualize
vectors with stream plots. Let’s create our own dataset to visualize this. We will create a
mesh with X and Y. Then we will create U and V to show the magnitude.

Y, X = np.mgrid[-5:5:200], -5:5:3007]
U = X¥*2 + Y**2
V=X+Y
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You can create a simple stream plot as follows:

plt.streamplot(X, VY,

plt.show()

U, V)

Figure 7-10 shows the output.
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Figure 7-10. Simple stream plot

You can also have stream plots of variable densities as follows:

plt.streamplot(X, YV,

U, v,

density=[0.5, 0.75])

plt.show()
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Figure 7-11 shows the output.
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Figure 7-11. Stream plot with variable densities

You can also assign colors to the stream plot as follows:

plt.streamplot(X, Y, U, V, color=V,
linewidth=1, cmap="cool")
plt.show()

Figure 7-12 shows the output.

Figure 7-12. Stream plot with variable colors
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You can also create a stream plot with variable line widths as follows:

plt.streamplot(X, Y, U, V,
density=0.6,
color="k"',
linewidth=X)

plt.show()

Figure 7-13 shows the output.

4 —
—
_‘__'_'__'____...
. —
—_—
0 A

Figure 7-13. Stream plot with variable line widths

You can also use quiver plots for the vector visualizations as follows:

X = np.arange(-5, 5, 0.5)
Y = np.arange(-10, 10, 1)
U, V = np.meshgrid(X, Y)
plt.quiver(X, Y, U, V)
plt.show()
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Figure 7-14 shows the output.
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In the next chapter, you will learn how to visualize images and audio. You will also

In this chapter, you learned about histograms, contours, and stream plots.

Figure 7-14. Visualizing vector fields with a quiver plot
learn interpolation methods for images.

Summary
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CHAPTER 8

Image and Audio
Visualization

In the previous chapter, you learned how to create visualizations with histograms,
contours, and stream plots.

In this chapter, you will learn how to process and visualize images and audio with
Matplotlib. Specifically, you will learn about the following topics in this chapter:

e Visualizing images

o Interpolation methods
e Audio visualization

e Audio processing

After reading this chapter, we will be able to visualize images and audio with Matplotlib.

Visualizing Images

You can read digital images with Matplotlib, which supports many image formats,
although you do have to install a library called pillow. Install pillow as shown here:

Ipip3 install pillow

Irecommend that you create a fresh notebook for this chapter. Import the library
with the following statements:

%Zmatplotlib inline
import numpy as np
import matplotlib.pyplot as plt
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CHAPTER 8  IMAGE AND AUDIO VISUALIZATION
You can read digital images with the function imread() on Windows as follows:
img1 = plt.imread("D:/Dataset/4.2.03.tiff")
The code is similar for Linux and Mac, as follows:
img1 = plt.imread("~/Dataset/4.2.03.tiff")
Let’s see the contents of the variable now, as shown here:
print(img1)
The output is as follows:

array([[[164, 150, 71],
[ 63, 57, 31],
[ 75, 43, 10],
[ 5, 8 5],
[ 2, 5, o],
[ 4, 5, 2]1], dtype=uint8)

I have removed the middle part of the output to save space, but this is an Ndarray
after all. We can confirm this with the following code:

type(img1)
The output is as follows:
numpy .ndarray

To learn more about the image, you can check the properties of the Ndarray that
is storing the image data. A color image is stored as a 3D matrix, and each individual
dimension of that matrix is used to visualize the intensity of the color channel. Color
images are read and stored in red, green, blue (RGB) format. Since there are no colors in
grayscale images, there is only a single plane (a 2D matrix) that stores the intensities of
the grayscale values.

You can use the routine imshow() to show any Ndarray as an image as follows:

plt.imshow(img1)
plt.show()
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Figure 8-1 shows the output.
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Figure 8-1. Visualizing an image

This is a color image. The Matplotlib library automatically detects that the image has
multiple channels and shows it as a color image. However, it goofs up a little bit when we
show grayscale images.

img2 = plt.imread("D:/Dataset/5.1.11.tiff")
plt.imshow(img2)
plt.show()

Figure 8-2 shows the output.
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Figure 8-2. Visualizing a grayscale image
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The image data is interpreted correctly, but there seems to be some problem with
the color. For grayscale images, Matplotlib uses the default color map, so you have to
manually specify the color map as follows:

plt.imshow(img2, cmap = 'gray')
plt.show()

Figure 8-3 shows the output.
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Figure 8-3. Visualizing a grayscale image with the correct color map

A color map is a matrix of values defining the colors for visualizations. Let’s try
another color map for the image, as shown here:

plt.imshow(img2, cmap = 'cool')
plt.show()
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Figure 8-4 shows the output.
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Figure 8-4. Visualizing a grayscale image with a cool color map

You can display a list of color maps in the current version of Matplotlib by using the
following statement:

plt.colormaps()
The output is as follows:

['Accent',
"Accent 1',
"twilight r',
"twilight_shifted',
"twilight shifted r',
'viridis',
'viridis r',
'winter',
‘winter r']

I have removed a big portion of the output so that it will fit in the book. You can use
any of these color maps for your visualization needs. As an exercise, try a few color maps
with a grayscale image.
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Image Masking

You can mask the areas of an image with a circle as follows:

import matplotlib.patches as patches
fig, ax = plt.subplots()
im = ax.imshow(img1)
patch = patches.Circle((245, 200),
radius=200,
transform=ax.transData)
im.set_clip path(patch)

ax.axis('off")
plt.show()

In this code example, we are creating a circle with the routine Circle() at the XY
co-ordinates 245, 200. The radius is 200 pixels. Also, we are clipping the image with the
circle using the routine set_clip path() and showing it. Figure 8-5 shows the output.

Figure 8-5. Clipping an image with a circle

Interpolation Methods

You can show a simple NumPy Ndarray as an image as follows:

im83 = [[1) 2, 3, 4])
[5: 6, 7, 8]:
[9, 10, 11, 12],
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plt.imshow(img3)
plt.show()

Figure 8-6 shows the output.
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Figure 8-6. NumPy Ndarray as an image

The image is using no interpolation method for visualization. We can demo
interpolation methods as follows:

methods = ['none', 'antialiased', 'nearest', 'bilinear’,
'bicubic', 'spline16', 'spline36', 'hanning’,
"hamming', 'hermite', 'kaiser', 'quadric',
‘catrom', 'gaussian', 'bessel', 'mitchell’,
'sinc', 'lanczos', 'blackman']

fig, axs = plt.subplots(nrows=4, ncols=6, figsize=(9, 6),
subplot kw={"xticks': [], 'yticks': []})

for ax, interp method in zip(axs.flat, methods):
ax.imshow(img3, interpolation=interp method, cmap="hot")
ax.set_title(str(interp method))

plt.tight layout()
plt.show()
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In this code example, we are simply showing the same Ndarray with all the
interpolation methods available in Matplotlib. Figure 8-7 shows the output.
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Figure 8-7. Demo of interpolation methods

Audio Visualization

You can use Matplotlib to visualize audio. You just need the SciPy library to read an
audio file and store that data to an Ndarray. Let’s install it, as shown here:

I'pip3 install scipy
Let’s import all the required libraries, as shown here:

%matplotlib inline
import matplotlib.pyplot as plt
from scipy.io import wavfile
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Let’s read an audio file now. I am reading a WAV file as follows:
samplerate, data = wavfile.read('sample.wav')
Let’s see the sampling rate of the music, as shown here:
print(samplerate)
The output is as follows:
44100

This (44.1 kHz) is a common sampling rate. You can read an informative article
about audio sampling rates at https://www.izotope.com/en/learn/digital-audio-
basics-sample-rate-and-bit-depth.html

You can also display the data as follows:

print(data)

The data is as follows:

[[-204 23]
[-233  32]
[-191  34]

[ 646 676]
[ 679 707]
[ 623 650]]

You can check the properties of the audio as follows:

print(type(data))
print(data.shape)
print(data.ndim)
print(data.dtype)
print(data.size)
print(data.nbytes)
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The output is as follows:

<class 'numpy.ndarray'>
(2601617, 2)

2

int16

5203234

10406468

The audio data is retrieved and stored in the NumPy, as you have seen. It is stored
in a 2D matrix. Suppose that there are N data points (also known as sample points) for
the audio data; then the size of the NumPy array is Nx2. As you can see, the audio has
two channels, left and right. So, each channel in stored in a separate array of size N, and
thus we have Nx2. This is known as stereo audio. In this example, we have 2,601,617
points (samples). Each point or sample is represented using a pair of integers of 16 bits
(2 bytes). Thus, each sample needs four bytes. So, we can compute the total raw memory
required for storing the audio data by multiplying the sample size by 4. When we
visualize audio, we show the value of both channels of the sample. Let’s visualize the first
2,000 data points as follows:

plt.plot(datal:2000])
plt.show()

Figure 8-8 shows the output.
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Figure 8-8. Visualization of an audio file
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You can check the number of audio samples as follows:

samples = data.shape[0]
print(samples)

The output is as follows:
2601617
You can create a different visualization of the data as follows:

plt.plot(data[:10*samplerate])
plt.show()

Figure 8-9 shows the output.
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Figure 8-9. Visualization of an audio file

Let’s separate the data for both channels as follows:

data[:, 0]
channel2 = data[:, 1]
print(channel1, channel2)

channel1

The output is as follows:

[-204 -233 -191 ... 646 679 623] [ 23 32 34 ... 676 707 650]
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Let’s visualize the data as follows:

plt.subplot(2, 1, 1)
plt.plot(channeli[:10*samplerate])
plt.subplot(2, 1, 2)
plt.plot(channel2[:10*samplerate], c="g")
plt.show()

Figure 8-10 shows the output.
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Figure 8-10. Visualization of both audio channels

Audio Processing

The Fourier transform converts the data represented as waves in the time domain into
the frequency domain. So, when you compute the Fourier transform and visualize it, you
are seeing the representation in the frequency domain.

The fast Fourier transform (FFT) is an efficient method of computing a Fourier
transform of the waveform data. FFT reduces the number of computations, which is
why it is speedy; that’s why it is known as a fast Fourier transform. Let’s compute the fast
Fourier transform of the audio signal as follows:

import scipy.fftpack

datafft = scipy.fftpack.fft(data)
fftabs = abs(datafft)
print(fftabs)
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The output is as follows:

[[ 181. 227.]
[ 201. 265.]
[ 157. 225.]

iiézz. 30.]
[1386.  28.]
[1273. 27.]]

Let’s compute the frequency and plot the graph as follows:

freqs = scipy.fftpack.fftfreq( samples, 1/samplerate )
plt.plot(freqs, fftabs)
plt.show()

Figure 8-11 shows the output.
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Figure 8-11. Visualization of FFT

Summary

In this chapter, you learned how to create visualizations for images and audio.
In the next chapter, you will learn how to visualize pie and polar charts.
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CHAPTER 9

Pie and Polar Charts

In the previous chapter, you learned how to visualize and process images and audio with
Matplotlib and SciPy.
In this chapter, you will learn how to create pie and polar charts with Matplotlib.

Pie Charts

Let’s learn the basics of the pie charts first. As the name indicates, a pie chart is a circle
that is divided radially depending on the data. Imagine an apple pie or a pizza cut into
slices. A pie chart fits that description well; however, unlike pizza or pies, which are
usually divided symmetrically, a pie chart is not necessarily radially symmetrical. It all
depends on the data to be visualized.

Let’s get started. I recommend creating a new notebook for this exercise.

Zmatplotlib inline
import matplotlib.pyplot as plt
import numpy as np

Let’s create the data to be visualized, as follows:
data = np.array([35, 25, 25, 15])
Let’s visualize the data with a simple pie chart as follows:

plt.pie(data)
plt.show()
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Figure 9-1 shows the output.

Figure 9-1. A simple pie chart

Let’s add labels as follows:
mylabels = ['A', 'B', 'C', 'D"]
plt.pie(data,

labels = mylabels)
plt.show()

Figure 9-2 shows the output.

C

Figure 9-2. A simple pie chart with labels
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You can even separate the parts of the pie a bit, as follows:

explode = [0.0, 0.05, 0.1, 0.15]
plt.pie(data,
labels = mylabels,
explode = explode)
plt.show()

The output will have the parts of the pie separated as per the values in the explode
argument. Figure 9-3 shows the output.

A

<V

Figure 9-3. A simple pie chart with labels and explosion

B

You can also enable shadows as follows:

plt.pie(data,
labels = mylabels,
explode = explode,
shadow = True)
plt.show()
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Figure 9-4 shows the output.

C
Figure 9-4. A simple pie chart with shadows

You can also add a legend to the output as follows:

plt.pie(data,
labels = mylabels,
explode = explode,
shadow = True)

plt.legend()

plt.show()

Figure 9-5 shows the output.

C

Figure 9-5. A simple pie chart with a legend
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You can add a title for the legend as follows:

plt.pie(data,
labels = mylabels,
explode = explode,
shadow = True)
plt.legend(title="Data :")
plt.show()

Figure 9-6 shows the output.

C

Figure 9-6. A simple pie chart with legends and a title for the legend

You've just learned how to create polar graphs.

Polar Charts

You can also create polar graphs that are in the shape of pie charts. However, a
fundamental difference from the Cartesian (X-Y) coordinate system is that in a polar
chart the coordinate system is radially arranged, so you need the angle (theta) and
distance from the origin (7 is the radius) to visualize a point or set of points. Let’s create a
dataset as follows:
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N = 20
theta = np.linspace(0.0, 2 * np.pi, N)
r = 10 * np.random.rand(N)

The set of points can be visualized as follows:

plt.subplot(projection="polar")
plt.bar(theta, r, bottom=0.0,

color=['r', 'g", 'b'], alpha=0.2)
plt.show()

Figure 9-7 shows the output.
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270°

Figure 9-7. A simple polar graph

You can see that this creates a bar visualization, as shown in Figure 9-7. There
are a few useful video tutorials on YouTube where you can learn more about creating
visualizations in the polar coordinate system.

https://www.youtube.com/watch?v=mDT_DG_A0JA
https://www.youtube.com/watch?v=GMcRqtm4mNo
https://www.youtube.com/watch?v=VmQ1isayjiI
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Let’s create a simple graph. Let’s create the dataset for it as shown here:

r = np.arange(0, 5, 0.2)

theta = 2 * np.pi * 1
plt.subplot(projection="polar")
plt.plot(theta, r)

plt.show()

This creates a simple linear visualization on a polar graph. As this is a polar graph,
you will see a spiral-like structure, as shown in Figure 9-8.
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Figure 9-8. A simple linear visualization on a polar graph

This is not a perfect spiral as the distance between the consecutive points is 0.2. If
you reduce the distance, then you will get a perfect spiral. Let’s tweak the data as follows:

r = np.arange(0, 5, 0.01)

theta = 2 * np.pi * 1
plt.subplot(projection="polar")
plt.plot(theta, r)

plt.show()
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This creates a perfect spiral, as shown in Figure 9-9.
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Figure 9-9. A spiral visualization

Let’s see a couple of examples of scatter plots on a polar graph. To start, prepare the
data as shown here:

N = 150
r

np.random.rand(N)
theta = 2 * np.pi * np.random.rand(N)
size = r * 100

You can visualize this as follows:

plt.subplot(projection="polar")
plt.scatter(theta, r, c=theta,
s=size, cmap="hsv',
alpha=0.5)
plt.show()
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Figure 9-10 shows the output.

180°

Figure 9-10. A scatter plot

You can also show part of the visualization by setting the start and end angles, as
follows:

fig = plt.figure()

ax = fig.add subplot(projection="polar")

c = ax.scatter(theta, r, c=theta,
s=size, cmap='hsv',
alpha=0.5)

ax.set_thetamin(0)

ax.set_thetamax(90)

plt.show()
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The output shows only part of the entire polar graph, as shown in Figure 9-11.
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Figure 9-11. A partial scatter plot

As an exercise, you may want to create partial spirals and bar graphs.

Summary

In this chapter, learned how to create pie charts and polar charts in detail.
In the next chapter, you will learn how to create a few more visualizations, namely,
using the routines pColor(), pColormesh(), and colorbar().
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CHAPTER 10

Working with Colors

In the previous chapter, you learned how to visualize pie charts and polar charts with
Matplotlib.
In this chapter, you will learn how to work with colors. The following are the routines

you will learn to use in this chapter:
o pcolor()
e pcolormesh()
e colorbar()

After reading this chapter, we will be able to work with colors in Matplotlib.

pcolor()

The routine pcolor () creates a pseudocolor plot with a rectangular (nonsquare) grid.
Pseudocolor means the object or image is rendered in colors different than those in
which it was recorded. Let’s create a new notebook for this chapter, as shown here:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

Let’s create a nonsquare matrix and use the routine pcolor () to visualize it, as
shown here:

data = np.random.rand(5, 6)
plt.pcolor(data)
plt.show()
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Figure 10-1 shows the output.
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Figure 10-1. A simple demonstration of pcolor()

You can also use custom color maps as follows:

plt.pcolor(data, cmap='Y1GnBu r")
plt.show()

Figure 10-2 shows the output.
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Figure 10-2. A simple demonstration of pcolor() with color maps
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Let’s now try adding shading. Let’s create a new dataset, as follows:
N = 100
X, Y = np.meshgrid(np.linspace(-5, 5, N),
np.linspace(-4, 4, N))
Z = (X**2 4 Y**2)

You can visualize it as follows:

plt.pcolor(X, Y, Z,
cmap="Y1GnBu_r',
shading="auto")

plt.show()

Figure 10-3 shows the output.

Figure 10-3. Shading

You can also create a visualization with nearest as the method for shading. In this
shading technique, each grid point has a color centered on it and it extends halfway
between the adjacent grid centers.In this shading technique, each grid point has a color
centered on it and it extends halfway between the adjacent grid centers. The example is
as follows:

plt.pcolor(X, Y, Z,
cmap="Y1GnBu_r',
shading="nearest")

plt.show()
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Figure 10-4 shows the output.

-4 -2

Figure 10-4. Shading with nearest

pcolormesh()

The routine polormesh() behaves in the same way as pcolor(); however, it renders large
datasets much faster. Let’s create a visualization of the same dataset used for Figure 10-4
but with polormesh(). The code is as follows:

plt.pcolormesh(X, Y, Z,
cmap="Y1GnBu_r',
shading="auto")

plt.show()

Let’s see an example with shading and a color map, as shown here:

nrows = ncols = §5

X = np.arange(ncols + 1)
y = np.arange(nrows + 1)
z = np.arange(nrows * ncols).reshape(nrows, ncols)

plt.pcolormesh(x, vy, z,
shading="flat’,
cmap="coolwarm")

plt.show()
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Figure 10-5 shows the output.
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Figure 10-5. Using pcolormesh() with shading and a color map

Run the following example with different arguments:

plt.pcolormesh(x, y, z,
shading="auto’,
cmap="cool")

plt.show()

You can also apply a simple geometric transformation to the dataset as follows:

z = np.random.rand(6, 10)
X = np.arange(0, 10, 1)

y = np.arange(4, 10, 1)

T =0.5

X, Y = np.meshgrid(x, y)
X=X+T*Y
Y=Y+T%*X

plt.pcolormesh(X, Y, Z,
shading="auto")
plt.show()
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Figure 10-6 shows the output.
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Figure 10-6. Using polormesh() with a simple transformation

colorbar()

You can also add a color bar that corelates with the magnitude of data points in the
visualization. The routine colorbar () does the trick. The following is the code:

N = 100

X, Y = np.meshgrid(np.linspace(-5, 5, N),
np.linspace(-5, 5, N))

Z = (X¥*2 + Y**2)

img = plt.imshow(Z, cmap='Y1GnBu r")

plt.colorbar(img)

plt.show()
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Figure 10-7 shows the output.
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Figure 10-7. Simple color bar

You can shrink the color bar and change its position as follows:

img = plt.imshow(Z, cmap='coolwarm")
plt.colorbar(img, location='left', shrink=0.6)
plt.show()

Figure 10-8 shows the output.
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Figure 10-8. Shrunken color bar
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You can also extend the color bar as follows:

img = plt.imshow(Z, cmap='coolwarm")
plt.colorbar(img, extend='both")
plt.show()

Figure 10-9 shows the output.

0

Figure 10-9. Extended color bar

Summary

In this chapter, you learned how to work with colors. In the next chapter, you will learn

how to create 3D visualizations.
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CHAPTER 11

3D Visualizations
in Matplotlib

In the previous chapter, you learned how to work with colors in Matplotlib.
In this chapter, you will learn how to work with 3D visualizations. The following are

the topics you will learn about in this chapter:
o Plotting 3D lines, scatter plots, and contours
o Working with wireframes, surfaces, and sample data
e Plotting bar graphs
» Plotting quiver and stem plots
e Working with 3D volumes

Wireframes, surfaces, and 3D contours are used to show volumetric data. Bar graphs
are used to show categorical data. Quiver plots are used for visualizing vectors. After
reading this chapter, you will be able to work with all these 3D visualizations in Matplotlib.

Getting Ready

I recommend that you create a new notebook for all the examples in this chapter. To get
ready, you need to install one additional library as follows:

Ipip3 install PyQt5

Qt s a cross-platform library for GUIL PyQt5 is the Python binding for Qt. Once
the library is installed, you can use the following magical command to force Jupyter
Notebook to show the visualizations in a separate QT window:

%Zmatplotlib qt
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CHAPTER 11 3D VISUALIZATIONS IN MATPLOTLIB

So, when you create visualizations, you are also able to interact with them. Let’s learn
the basics. First, we import all the required libraries, as shown here:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

Then we create a figure object, as shown here:
fig = plt.figure()

Then we create a 3D axis as follows:
ax = plt.axes(projection="'3d")

You have to add the code for the visualization after this. However, for this example,
you will create the visualization for an empty figure and axes with the following line:

plt.show()

Figure 11-1 shows the output.

144



CHAPTER 11 3D VISUALIZATIONS IN MATPLOTLIB
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Figure 11-1. An empty and interactive 3D visualization

You can interact with this visualization and change the orientation of it by using your
mouse. Take the time to explore all the interactive possibilities before proceeding.

Plotting 3D Lines

Let’s plot a 3D line. Let’s create a figure and axes, as shown here:

fig = plt.figure()
ax = plt.axes(projection="3d")

Let’s create 3D data as follows:

z = np.linspace(0, 30, 1000)
X = np.sin(z)
y = np.cos(z)
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You can create a 3D plot as follows:

ax.plot3D(x, y, z, 'red")
plt.show()

Figure 11-2 shows the output.
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Figure 11-2. 3D linear plot

3D Scatter Plots

You can create random points and show them with a 3D scatter as follows. Let’s create a
figure and axes first, as shown here:

fig = plt.figure()
ax = plt.axes(projection="3d")
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You can create the random data points as follows:

y = np.random.random(100)
X = np.random.random(100)
z = np.random.random(100)

The points can be visualized with a scatter plot as follows:

ax.scatter3D(x, y, z, cmap="cool');
plt.show()

Figure 11-3 shows the output.
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Figure 11-3. 3D scatter plot

3D Contours

You can create 3D contours with the functions contour() and contour3D(). Let’s create
some data to be visualized.
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x = np.linspace(-10, 10, 30)
y = np.linspace(-10, 10, 30)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sqrt(X ** 2 + Y ** 2))

You can create a contour as follows:

fig = plt.figure()

ax = fig.add subplot(projection="3d")
ax.contour(X, Y, Z, 50, cmap="'coolwarm")
plt.show()

Figure 11-4 shows the output.
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Figure 11-4. 3D contour plot
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You can obtain similar output as visualized in Figure 11-4 using the following code:

fig = plt.figure()

ax = plt.axes(projection="3d")

ax.contour3D(X, Y, Z, 40,
cmap="coolwarm")

plt.show()

You can also create a filled contour with the function contourf() as follows:

fig = plt.figure()

ax = fig.add subplot(projection="3d")
ax.contourf(X, Y, Z, 50, cmap="coolwarm')
plt.show()

Wireframes, Surfaces, and Sample Data

You can plot a wireframe of the same dataset as follows:

fig = plt.figure()

ax = plt.axes(projection="3d")

ax.plot wireframe(X, Y, Z, color='Green")
ax.set_title('wireframe")

plt.show()

Figure 11-5 shows the output.
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Figure 11-5. 3D wireframe
The same data can be visualized as a 3D surface as follows:

fig = plt.figure()

ax = plt.axes(projection="3d")

ax.plot surface(X, Y, Z, color="Blue")
ax.set_title('Surface Plot')
plt.show()
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Figure 11-6 shows the output.
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Figure 11-6. 3D surface

You can also use the sample data that comes with the Matplotlib library for
demonstrating visualizations. The function get_test data() can fetch that sample data
as follows:

from mpl_toolkits.mplot3d import axes3d
fig = plt.figure()
ax = fig.add subplot(projection="'3d")
X, Y, Z = axes3d.get test data(0.02)
ax.plot wireframe(X, Y, Z,
rstride=10,
cstride=10)
plt.show()
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Figure 11-7 shows the output.

1 Figure 1 = O X

A (. -) q.I.. Q = |'\_1‘ X=38.2225, y=4.8692, z=71.6930|"

—r
TTET

.: )' N e |
) :full”” :’,”’,"f" |

20

Figure 11-7. Visualizing the test data

As an exercise, try to create a surface and contour with the test data.

Bar Graphs

You can show 2D bars in 3D axes. Let’s create a figure and axes, as shown here:

fig = plt.figure()
= fig.add_subplot(projection="3d")
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Let’s define colors for the bars.
colors ['Il, Igl, lbl, Icl, Iml, Iyl,lkl]
yticks = [0, 1, 2, 3, 4, 5, 6]

Now, let’s create bar graphs with the defined colors with the following loop:

for c, k in zip(colors, yticks):
X = np.arange(25)
y = np.random.rand(25)
ax.bar(x, y, zs=k, zdir='y',
color=c, alpha=0.8)
plt.show()

Figure 11-8 shows the output.
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Figure 11-8. Visualizing 2D bars in 3D coordinates
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You can also create a 3D bar graph with Matplotlib. Let’s create the data first, as
shown here:

fig = plt.figure()
ax = fig.add subplot(projection="3d")

X = np.arange(10) * np.arange(10)
y = np.arange(10) * np.arange(10)
X, y = np.meshgrid(x, y)

X, y = x.ravel(), y.ravel()

top = x +y
bottom = np.zeros like(top)
width = depth = 5

You can then show this as 3D bars as follows:

ax.bar3d(x, y, bottom, width,
depth, top,
shade=True,
color="'g")
plt.show()
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Figure 11-9 shows the output.
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Figure 11-9. Visualizing 3D bars

Quiver and Stem Plots

A quiver plot is used to represent directional entities (for example, vectors). Let’s define
the data, as shown here:

fig = plt.figure()

ax = fig.add subplot(projection="'3d")

X =y =2z = np.arange(-0.1, 1, 0.2)

X, Y, Z = np.meshgrid(x, y, z)

u = np.cos(np.pi * X) * np.sin(np.pi * Y) * np.sin(np.pi * Z)
v = -np.sin(np.pi * X) * np.cos(np.pi * Y) * np.sin(np.pi * Z)
w = np.sin(np.pi * X) * np.sin(np.pi * Y) * np.cos(np.pi * Z)
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Finally, you can visualize the data as follows:

ax.quiver(X, Y, Z, u, v, w,
length=0.1,
normalize=True)

plt.show()

Figure 11-10 shows the output.
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Figure 11-10. Quiver plots

You can also create stem plots where perpendicular lines are drawn in the
visualization. Let’s use trigonometric functions to define the data, as shown here:

fig = plt.figure()
ax = fig.add subplot(projection="'3d")
theta = np.linspace(0, 2 * np.pi)
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np.sin(theta)
np.cos(theta)
np.cos(theta)

N <<
1l

You can visualize the stem plot as follows:

ax.stem(x, y, z)
plt.show()

Figure 11-11 shows the output.
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Figure 11-11. Stem plot
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3D Volumes

You can show 3D volumetric data as enclosed surfaces. Let’s create such data as follows:

fig = plt.figure()

ax = fig.add subplot(projection="3d")
np.linspace(0, 2 * np.pi, 100)

= np.linspace(0, np.pi, 100)

10 * np.outer(np.cos(u), np.sin(v))

10 * np.outer(np.sin(u), np.sin(v))

10 * np.outer(np.ones(np.size(u)), np.cos(v))

N < X < <
1]

You can show this data as a sphere as follows:

ax.plot surface(x, y, z)
plt.show()

Figure 11-12 shows the output.
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Figure 11-12. Surface plot as a volume
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You can also use the function voxels () to visualize a volume as follows:

ma = np.random.randint(1, 3, size=(3, 3, 3))
fig = plt.figure()

ax = plt.axes(projection="'3d")

ax.voxels(ma, edgecolor="k")

plt.show()

Figure 11-13 shows the output.

1% Figure 1 - (] X

A ey C'I'D Q==+ x=-0.1303, y=3.1565, 2=2.7756/
f ﬂ
7

A

Figure 11-13. 3D volume plot

Summary

In this chapter, you learned how to work with 3D visualizations. Wireframes, surfaces,
and 3D contours are used to show volumetric data. Bar graphs are used to show
categorical data. Quiver plots are used for visualizing vectors.

In the next chapter, you will learn how to create animations.
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Animations with Matplotlib

In the previous chapter, you learned how to work with 3D visualizations in Matplotlib.
In this chapter, you will learn how to work with animations. The following are the
topics you will learn in this chapter:

e« Animation basics
o Celluloid library

After reading this chapter, you will be able to work with animations in Matplotlib and
another useful library.

Animation Basics

In this section, you will learn how to create animations with Matplotlib. First let’s create a
new notebook for this chapter. Then import the following libraries:

Zmatplotlib qt

import numpy as np

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation

Let’s define the objects, in other words, the figure, axes, and plot, as follows:

fig = plt.figure()
ax = plt.axes(xlim=(0, 4), ylim=(-2, 2))
line, = ax.plot([], [], 1w=3)
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Let’s define the function init (), which will initialize the animation and set the data
for the animation, as shown here:

def init():
line.set data([], [])
return line,

Let’s define an animation function, as shown here:

def animate(i):
x = np.linspace(0, 4, 1000)
y = np.sin(2 * np.pi * (x - 0.01 * i))
line.set data(x, y)
return line,

This function accepts the frame number as an argument (in this case the variable
named i) and renders the frame for animation.

Now that we have defined the components, let’s create an animation object using
the function call FuncAnimation(). It accepts the created functions as arguments. It
also accepts the number of frames and the interval as arguments. The argument for the
parameter blit is True. This means that only the parts of the plot that have changed are
redrawn.

anim = FuncAnimation(fig, animate,
init func=init,
frames=1000,
interval=10,
blit=True)

You can also save the animation as a GIF as follows:

anim.save('sine wave.gif', writer="pillow")
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Figure 12-1 shows the output.
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Figure 12-1. Visualizing a sine wave

You can interact with animation and change the orientation with your mouse.
Explore all the interactive possibilities before proceeding further.
You can create a progressive spiral, as shown here:

fig = plt.figure()
ax = plt.axes(xlim=(-50, 50), ylim=(-50, 50))
line, = ax.plot([], [], lw=2)
def init():

line.set data([], [])

return line,
xdata, ydata = [], []
def animate(i):

t = 0.2*%1
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X = t*np.cos(t)

y = t*np.sin(t)
xdata.append(x)
ydata.append(y)

line.set data(xdata, ydata)
return line,

anim = FuncAnimation(fig, animate,
init func=init,
frames=3000,
interval=5,
blit=True)

Figure 12-2 shows the output.
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Figure 12-2. Visualizing a spiral animation
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Celluloid Library

You can use another simple library called Celluloid for animation. Let’s install it as
follows:

I'pip3 install celluloid
You can import it as follows:
from celluloid import Camera
Let’s create a figure and camera object as follows:

fig = plt.figure()
camera = Camera(fig)

Let’s create the frames of an animation and save them in memory with the function
called camera.snap(), as follows:

for i in range(10):
plt.plot([i] * 10)
camera.snap()

Let’s create the animation as follows:

animation = camera.animate()
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Figure 12-3 shows the output.
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Figure 12-3. Animation with the Celluloid library

You can also create a sine wave as follows:
fig, axes = plt.subplots()
camera = Camera(fig)

t = np.linspace(0, 2 * np.pi, 128, endpoint=False)
for i in t:

plt.plot(t, np.sin(t + i), color="green")
camera.snap()

animation = camera.animate()
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Figure 12-4 shows the output.
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Figure 12-4. Sine wave animation with the Celluloid library

Another example with a bar graph is as follows:

fig, axes = plt.subplots()

camera = Camera(fig)

y = np.arange(5)

for i iny:
plt.bar( np.random.rand(5)*10 , y)
camera.snap()

animation = camera.animate()
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Figure 12-5 shows the output.

%, Figure 1 - O X

XK "I"QElﬁ_’, X=6.02 y=3.286

4.0 4

3.5 A

3.0 1
2.5 1
] 2.0 '
1.5
i 1.0 1 i
0.5
0.0 T T T
2 4 6 8 10

Figure 12-5. Bar graph animation with the Celluloid library

Summary

In this chapter, you learned how to work with animations.
In the next chapter, you will learn how to do even more with Matplotlib.
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CHAPTER 13

More Visualizations
with Matplotlib

In the previous chapter, you learned how to work with animations in Matplotlib.

In this chapter, you will learn a few more techniques for using Matplotlib. This
chapter is the culmination of all the knowledge you have gained up to now. The chapter
has an assortment of techniques for using Matplotlib that I did not cover in the earlier
chapters. Specifically, the following are the topics you will learn in this chapter:

e Visualizing a function as an image and a contour
¢ Using 3D vignettes

o Decorating scatter plots

o Working with time plots and signals

o Working with filled plots, step plots, and hexbins
o Using XKCD style

After reading this chapter, you will be able to create all sorts of new visualizations in
Matplotlib.

Visualizing a Function as an Image and a Contour

Let’s visualize a numerical function. Import all the needed libraries as follows:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
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Let’s define the function as follows:

def f(x, y):
return (x ** 3 + y ** 2)

Let’s visualize it as an image, as follows:

10

np.linspace(-3, 3, 8 * n)

np.linspace(-3, 3, 6 * n)

X, Y = np.meshgrid(x, y)

Z=F(X V)

plt.imshow(Z, interpolation='nearest’,
cmap = 'cool', origin="lower")

plt.axis('off")

plt.show()

n
X
y

Figure 13-1 shows the output.

Figure 13-1. Visualizing a function as an image

You can visualize the function as a contour too.

n=256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)

X, Y = np.meshgrid(x, y)
plt.contourf(X, Y, f(X, Y), 8,
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alpha = 0.75, cmap="hot")
C = plt.contour(X, Y, f(X, Y), 8,
colors="black")
plt.clabel(C, inline=1, fontsize=10)
plt.axis('off")
plt.show()

Figure 13-2 shows the output.

Figure 13-2. Visualizing a function as a contour

3D Vignettes

You can create a 3D vignette visualization as follows:

%matplotlib qt

fig = plt.figure()

ax = plt.axes(projection="3d")

X = np.arange(-4, 4, 0.25)

Y = np.arange(-4, 4, 0.25)

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X ** 2 + Y ** 2)

Z = np.sin(R)

ax.plot _surface(X, Y, Z, rstride=1,

cstride=1, cmap="hot")

ax.contourf(X, Y, Z, zdir="'z",
offset=-2, cmap="hot")

ax.set_zlim(-2, 2)
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plt.axis('off")
ax.set_zticks(())
plt.show()

Figure 13-3 shows the output.
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Figure 13-3. Visualizing a 3D vignette

Decorated Scatter Plots

You can create decorated scatter plots with Matplotlib. You need to pass the color and
size as arguments. Here’s an example:

Zmatplotlib inline

n = 1024

X = np.random.normal(0, 1, n)
Y = np.random.normal(0, 1, n)

color = np.arctan2(Y, X)
plt.scatter(X, Y, s=75, c=color, alpha=0.5)
plt.xlim(-1.5, 1.5)
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plt.ylim(-1.5, 1.5)
plt.axis('off")
plt.show()

Figure 13-4 shows the output.
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Figure 13-4. Visualizing a decorated scatter plot

Time Plots and Signals

You can visualize time plots and signals as follows:

N = 100

x = np.arange(N) # timestamps
y1l = np.random.randn(N)

y2 = np.random.randn(N)

y3 = np.random.randn(N)

y4 = np.random.randn(N)

plt.subplot(2, 1, 1)
plt.plot(x, y1)
plt.plot(x, y2, ':")
plt.grid()
plt.xlabel('Time")
plt.ylabel('y1l and y2')
plt.axis('tight")
plt.subplot(2, 1, 2)
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plt.plot(x, y3)
plt.plot(x, y4, 'r')
plt.grid()
plt.xlabel('Time")
plt.ylabel('y3 and y4')
plt.axis('tight")
plt.show()

Figure 13-5 shows the output.
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Figure 13-5. Visualizing time plots and signals

You can also multiply two signals. In the following code example, we are using the
same x-axis to show all three graphs.

f=1

t = np.arange( 0.0, 4.0, 0.01)

s1 = np.sin(2 *np.pi * f * t)

s2 = np.exp(-t)

s3 = s1 * s2

f = plt.figure()

plt.subplots adjust(hspace=0.001)
axl = plt.subplot( 311 )
axl.plot(t, s1)
plt.yticks(np.arange(-0.9, 1.0, 0.4))
plt.ylim(-1, 1)
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ax2 = plt.subplot(312, sharex=ax1)
ax2.plot(t, s2)
plt.yticks(np.arange(0.1, 1.0, 0.2))
plt.ylim(o, 1)

ax3 = plt.subplot(313, sharex = ax1)
ax3.plot(t, s3)
plt.yticks(np.arange(-0.9, 1.0, 0.4))
plt.ylim(-1, 1)

xticklabels = ax1.get xticklabels() + ax2.get xticklabels()
plt.setp(xticklabels, visible=False)
plt.show()

Figure 13-6 shows the output.
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Figure 13-6. Multiplying signals

Filled Plots

You can fill in the empty spaces within the boundaries of plots as follows:

N = 1000

x = np.linspace(0, 1, N)

y = np.sin(4 * np.pi * x) + np.exp(-5 * x)
plt.fill(x, y, 'g', alpha = 0.8)
plt.grid(True)

plt.show()
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Figure 13-7 shows the output.
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Figure 13-7. Filled-in plots

Step Plots

Let’s visualize some sine waves first.

N = 100
x = np.linspace(-np.pi, np.pi, N)

yl = 0.5 * np.sin(3*x)
y2 = 1.25 * np.sin(2*x)
y3 = 2 * np.sin(4*x)

plt.plot(x, y1, x, y2, x, y3)
plt.show()
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Figure 13-8 shows the output.
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Figure 13-8. Sinusoidals

You can show them as step plots as follows:

plt.step(x, y1)
plt.step(x, y2)
plt.step(x, y3)
plt.show()

Figure 13-9 shows the output.
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Figure 13-9. Sinusoidals with step plots
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Hexbins

You can show data as hexbins as follows:

X, y = np.random.normal(size=(2, 10000))
plt.hexbin(x, vy,
gridsize=20,
cmap="cool")
plt.colorbar()
plt.show()

Figure 13-10 shows the output.
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Figure 13-10. Hexbin visualizations

XKCD Style

You can visualize plots in the XKCD style. The XKCD is a popular a web comic. https://
xkcd. comis the homepage of the web comic.

y = np.random.randn(1000)
plt.xkcd()
plt.hist(y)
plt.show()
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Figure 13-11 shows the output.
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Figure 13-11. XKCD histogram

Another example is as follows:

y = np.random.randn(1000)

plt.xkcd()

plt.hist(y, bins = 30,
range=[-3.5, 3.5],
facecolor="r",
alpha=0.6,
edgecolor="k")

plt.grid()

plt.show()

Figure 13-12 shows the output.
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Figure 13-12. Another XKCD histogram
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You can visualize 2D histograms too in the same way, as shown here:

data = np.random.randn(1000, 1000)
plt.xkcd()

plt.hist2d(data[0], data[1])
plt.show()

Figure 13-13 shows the output.

Figure 13-13. A third XKCD histogram

Summary

In this chapter, you learned how to work with some additional visualization techniques
using Matplotlib.

In the next chapter, you will get acquainted with a data science library known as Pandas.
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CHAPTER 14

Introduction to Pandas

In the previous chapter, you learned many Matplotlib techniques. You will now learn
how to use another library that is common in data science and data visualization.

In this chapter, we will be focusing on the basics of the main data science and
analytics library in the scientific Python ecosystem: Pandas. You will learn about the data

structures in this library. The following are the topics in the chapter:
e Introduction to Pandas
o Series in Pandas
o Dataframe in Pandas

After reading this chapter, you will be comfortable doing basic tasks with Pandas.

Introduction to Pandas

Pandas is a data analytics component in the scientific Python ecosystem. In fact, it is an
integral part of the scientific Python ecosystem. It comes with versatile data structures
and routines to manage them. It comes with versatile data structures and routines to
manage those data structures.

Let’s install Pandas on a computer by running the following command in Jupyter
Notebook:

I'pip3 install pandas
You can import it to the current session by running the following commands:
import pandas as pd

You can read more about Pandas at https://pandas.pydata.org/.
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Series in Pandas

A series is a one-dimensional array with labels. It can hold data of any type. The labels
are collectively known as the index.
You can create a series as follows:

s1 = pd.Series([3, 2, 1, 75, -3.14])
You can check its datatypes as follows:
type(s1)
The following is the output:
<class 'pandas.core.series.Series'>
You can see the values and index associated with the data as follows:
print(s1)

The following is the output:

0 3.00
1 2.00
2 1.00
3 75.00
4 -3.14

dtype: float64
You can explicitly mention the datatype as follows:

s2 = pd.Series([3, 2, 1, 75, -3.14], dtype=np.float32)
print(s2)

You can pass a list as an argument to the constructor function to create a series, as
follows:

X = [3) 2, 1, 75, '3-14]
s3 = pd.Series(x)
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You can even pass a NumPy Ndarray as an argument to the constructor function to
create a series, as follows:

import numpy as np

y = np.array(x)
s4 = pd.Series(y)

You can see the values as follows:
print(s4.values)

The following is the output:
[ 3. 2. 1. 75.  -3.14]

You can retrieve the index as follows:
print(s4.index)

The output is as follows:
RangeIndex(start=0, stop=5, step=1)

You can assign a custom index as follows:

s5 = pd.Series( x, index = ['a', 'b', 'c', 'd', 'e'])
print(s5)

The output is as follows:

a 3.00
b 2.00
C 1.00
d 75.00
e -3.14

dtype: float64
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Basic Operations on Series

You can perform a few basic operations on a series. For example, you can display the

negative numbers as follows:
print(s5[s5 < 0])
The output is as follows:

e -3.14
dtype: float64

You can retrieve the positive numbers as follows:
print(s5[s5 > 0])

The output is as follows:
a 3.0
b 2.0
C 1.0
d

75.0
dtype: float64

These were examples of a comparison operation. You can perform arithmetic
operations such as multiplication as follows:

c =3
print ( s5 * c )

The output is as follows:

a 9.00
b 6.00
C 3.00
d 225.00
e -9.42

dtype: float64
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Dataframe in Pandas

A dataframe is a two-dimensional labeled data structure with columns that can
be different datatypes. You can create dataframes from series, Ndarrys, lists, and
dictionaries.

Dataframes have labels, which are collectively called an index. You can easily view
and manipulate the data in the dataframes. The data is stored in a rectangular grid
format in dataframes.

You can create a dataframe from a list as follows. The following is a dictionary:

data = {'city': ['Delhi', 'Delhi', 'Delhi’,
'Bangalore', 'Bangalore', 'Bangalore'],
'year': [2020, 2021, 2022, 2020, 2021, 2022,],
'population’: [10.0, 10.1, 10.2, 5.2, 5.3, 5.5]}

Let’s create a dataframe from this, as shown here:

df1 = pd.DataFrame(data)
print(dfi)

The output is as follows:

city year population

0 Delhi 2020 10.0
1 Delhi 2021 10.1
2 Delhi 2022 10.2
3 Bangalore 2020 5.2
4 Bangalore 2021 5.3
5 Bangalore 2022 5.5

You can see the top five records as follows:
df1.head()

The output is as follows:

city year population

0 Delhi 2020 10.0
1 Delhi 2021 10.1
2 Delhi 2022 10.2
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3 Bangalore 2020
4 Bangalore 2021

You can also pass other numbers as arguments to the function head(), and it will
show that many top records from the dataframe. Similarly, you can use df1.tail() to
see the last records. It also has 5 as the default argument, but you can customize the

argument passed to it.

You can create a dataframe with a particular order of columns as follows:

df2 = pd.DataFrame(data, columns=['year', 'city', 'population'])

print(df2)

The output is as follows:

year
2020
2021
2022

Ui A W N LB O

Let’s create a dataframe with an additional column and custom index as follows:

df3 = pd.DataFrame(data, columns=['year', 'city', 'population', 'GDP'],

print(df3)

5.2
5.3

city population

Delhi
Delhi
Delhi

2020 Bangalore
2021 Bangalore
2022 Bangalore

index = ['one', 'two', 'three', 'four', 'five', 'six'])

10.0
10.1
10.2
5.2
5.3
5.5

The following is the new dataframe:

year
one 2020
two 2021
three 2022
four 2020
five 2021
six 2022

city
Delhi
Delhi
Delhi
Bangalore
Bangalore
Bangalore

population
10.0

10.1

10.2

5.2

5.3

5.5

GDP
NaN
NaN
NaN
NaN
NaN
NaN

You can print the list of columns as follows:
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print(df3.columns)

The output is as follows:
Index([ 'year', 'city', 'population', 'GDP'], dtype='object"')

You can print the list of indexes as follows:
print(df3.index)

The output is as follows:
Index(['one", 'two', 'three', 'four', 'five', 'six'], dtype='object")

You can see the data of a column with the following statement:
print(df3.year)

or you can also use the following statement:
print(df3['year'])

The following is the output:

one 2020
two 2021
three 2022
four 2020
five 2021
six 2022

Name: year, dtype: int64
You can see the datatype of a column with the following statement:
print(df3['year'].dtype)
or you can use the following:
print(df3.year.dtype)
The output is as follows:
int64

You can see the datatype of all the columns as follows:
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print(df3.dtypes)

The output is as follows:

year int64
city object
population float64
GDP object

dtype: object
You can retrieve any record using the index as follows:
df3.loc['one']

The output is as follows:

year 2020
city Delhi
population 10.0
GDP NaN

Name: one, dtype: object
You can assign the same value to all the members of a column as follows:

df3.GDP = 10
print(df3)

The output is as follows:

year city population GDP
one 2020 Delhi 10.0 10
two 2021 Delhi 10.1 10
three 2022 Delhi 10.2 10
four 2020 Bangalore 5.2 10
five 2021 Bangalore 5.3 10
six 2022 Bangalore 5.5 10

You can assign an Ndarray to the column GDP as follows:

import numpy as np
df3.GDP = np.arange(6)
print(df3)
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The output is as follows:

year city population GDP
one 2020 Delhi 10.0 0
two 2021 Delhi 10.1 1
three 2022 Delhi 10.2 2
four 2020 Bangalore 5.2 3
five 2021 Bangalore 5.3 4
six 2022 Bangalore 5.5 5

You can also assign it a list as follows:

df3.GDP = [3, 2, 0, 9, -0.4, 7]
print(df3)

The output is as follows:

year city population GDP
one 2020 Delhi 10.0 3.0
two 2021 Delhi 10.1 2.0
three 2022 Delhi 10.2 0.0
four 2020 Bangalore 5.2 9.0
five 2021 Bangalore 5.3 -0.4
six 2022 Bangalore 5.5 7.0

Let’s assign a series to it as follows:

val = pd.Series([-1.4, 1.5, -1.3], index=['two', 'four', 'five'])
df3.GDP = val
print(df3)

The output is as follows:

year city population GDP
one 2020 Delhi 10.0 NaN
two 2021 Delhi 10.1 -1.4
three 2022 Delhi 10.2 NaN
four 2020 Bangalore 5.2 1.5
five 2021 Bangalore 5.3 -1.3
six 2022 Bangalore 5.5 NaN
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Summary

In this chapter, you explored the basics of the Pandas data science library of the scientific
Python ecosystem. You learned the basics of creating and using the fundamental Pandas
data structures, which are the series and dataframe.

In the next chapter, you will learn how to programmatically read the data stored in
various formats using the libraries NumPy, Pandas, and Matplotlib.
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Data Acquisition

In the previous chapter, you learned the basics of using two Pandas data structures,

namely, the series and the dataframe.

This chapter focuses on acquiring data with Python using all the libraries you have

studied up to now (NumPy, Matplotlib, and Pandas). The following are the topics you

will learn about in this chapter:

After reading this chapter, you will be comfortable reading data from various file

Handling plain-text files

Handling CSV files with Python

Using Python and Excel

Writing and reading files with NumPy
Reading data from a CSV file with NumPy
Using a Matplotlib CBook

Reading data from a CSV file

Reading data from an Excel file
Reading data from a JSON file

Reading data from a Pickle file

Reading data from the Web

Reading data from a relational database

Reading data from the clipboard

formats and saving it.

© Ashwin Pajankar 2022

A. Pajankar, Hands-on Matplotlib, https://doi.org/10.1007/978-1-4842-7410-1_15
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Plain-Text File Handling

Let’s learn how to read data from and write data to a plain-text file. Python comes with
the functionality to read and write plain-text files. We have four modes for opening a file,
as listed here:

e w: Write
e T:Read
e a:Append

e 1+:Read and write mode

You can use them (one at a time) as follows:

f = open('testfile.txt', 'w')
print(f)

This code opens the testfile.txt file in write mode. If the file does not exist,
then Python creates this file in the current location on disk. If the file already exists, it
overwrites the contents of the file. The previous code prints the file object as follows:

<_io.TextIOWrapper name='testfile.txt' mode='w' encoding='cp1252'>

Let’s write some data to the file. In this case, the data consists of multicharacter
strings.

f.write('This is a test string.\n')
f.write('This is the middle line.\n')
f.write('This is the last line.')

You can close the file object (also called the file handle) as follows:
f.close()

You know that opening a file again in write mode will overwrite its data. So, this time,
let’s open the same file in append mode as follows:

f = open('testfile.txt', 'a')
f.write('\nThis is the appended line.")
f.close()
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We are writing one line into the file and then closing the file. Let’s read the data and
print it as follows:

f = open('testfile.txt', 'r')
print(f.read())
f.close()

The output is as follows:

This is a test string.
This is the middle line.
This is the last line.
This is the appended line

You can retrieve the lines in a list (with every line in the file corresponding to an
element in the list), as follows:

f = open('testfile.txt', 'r')
print(f.readlines())
f.close()

The output is as follows:

['This is a test string.\n', 'This is the middle line.\n', 'This is the
last 1line.\n', 'This is the appended line.']

You can also retrieve the data in the file line by line as follows:

f = open('testfile.txt', 'r'")
for line in f:

print(line)
f.close()

The output is as follows:
This is a test string.
This is the middle line.
This is the last line.

This is the appended line.
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Handling CSV Files with Python

Let’s learn a few things about the comma-separated file (CSV) format. CSV files store
data in plain-text format, and the data items are either a fixed length or separated by a
delimiter such as a comma (, ), a pipe (|), or a colon(:). The most common CSV format
uses a comma as the delimiter, and many times the first line is used to store the names of
the columns.

In this section, you will learn how to handle a CSV file with Python 3. Python 3 comes
with a built-in library to handle CSV files. You do not have to install anything. You can
import the library as follows:

import csv
You can open the file as a plain-text file in read mode as follows:

file = open('test.csv', 'r'")
print(file)

Once you open the file, you can pass the file handle to the routine csv.reader() as
follows:

csvfile = csv.reader(file, delimiter=',")
print(csvfile)

This prints the value of the object as follows:
<_csv.reader object at 0x0590AC68>
You can retrieve the data line by line as follows:

for row in csvfile:
print(row)

This produces the following output:

['Banana', 'Yellow', '250']
['Orange', 'Orange', '200']
[ 'Grapes', 'Green', '400']
['Tomato', 'Red', '100']
['Spinach', 'Green', '40']
[ 'Potatoes', 'Gray', '400']
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'Rice', 'White', '300']
'Rice', 'Brown', '400']
'Wheat', 'Brown', '500']

[
[
[
['Barley', 'Yellow', '500']

You can display the elements individually as follows:

for row in csvfile:
for element in row:
print(element)

The output is as follows:

Banana
Yellow
250
Orange
Orange
200
Grapes
Green
400
Tomato
Red
100
Spinach
Green
40
Potatoes
Gray
400
Rice
White
300
Rice
Brown
400

CHAPTER 15

DATA ACQUISITION
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Wheat
Brown
500
Barley
Yellow
500

Let’s close the file handle as follows:

file.close()

Python and Excel

Let’s see how to read the data from Excel. You need an external library for that. The
following code installs the library that we will use in this section:

'pip3 install openpyxl
You can import it as follows:
import openpyxl
You can open an Excel file as follows:

wb = openpyxl.load workbook('test.x1lsx")
print(wb)
print(type(wb))

The output is as follows:

<openpyxl.workbook.workbook.Workbook object at OxOE87F7D8>
<class 'openpyxl.workbook.workbook.Workbook" >

You can retrieve the names of all the sheets as follows:
print(wb.sheetnames)
The output is as follows:

['Sheet1', 'Sheet2', 'Sheet3']
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You can select a sheet as follows:

currSheet = wb['Sheet1']
print(currSheet)
print(type(currSheet))

The output is as follows:

<Worksheet "Sheet1">
<class 'openpyxl.worksheet.worksheet.Worksheet'>

Similarly, the following code has the same effect:

currSheet = wb[wb.sheetnames[0]]
print(currSheet)
print(type(currSheet))

You can print the name of the current sheet as follows:
print(currSheet.title)

The output is as follows:
Sheet1

You can print the value of a cell as follows:

varl = currSheet['A1']
print(vari.value)

The output is as follows:
Food Item

The other way to do the same activity is as follows:
print(currSheet['B1'].value)

You can do this another way as follows:

var2 = currSheet.cell(row=2, column=2)
print(var2.value)

DATA ACQUISITION
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The number of rows and columns can be obtained as follows:

print(currSheet.max_row)
print(currSheet.max_column)

The output is as follows:

11

Let’s print all the data in the spreadsheet as follows:

for i in range(currSheet.max_row):
print('---Beginning of Row---")
for j in range(currSheet.max_column):
var = currSheet.cell(row=i+1, column=j+1)
print(var.value)
print('---End of Row---")

The output is very long, so I've truncated it here. Please run the code to see it for
yourself.

Writing and Reading Files with NumPy

Let’s see how to read and write files with NumPy. Let’s create a dataset with NumPy as
follows:

import numpy as np
X = np.arange(100)
print(x)

The output is as follows:

[0 1 2 3 45 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99]
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You can save it to a file (in NumPy data format) as follows:
np.save('test.npy', x)
You can load the data from a file into a variable as follows:

data = np.load('test.npy")
print(data)

The output is as follows:

[0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99]

Reading the Data from a CSV File with NumPy

The CSV file can be read with NumPy too as follows:

import numpy as np

# Reads only numeric data

data = np.loadtxt('data.csv', delimiter=",")
print(data)

The output is as follows:

[[ o. 1. 18. 2.]
[ 1. 6. 1. 3.]
[ 2. 3. 154. 0.]
[ 4. 978. 3. 6.]
[ 5. 2. 41. 45.]
[ 6. 67. 2. 3.]
[ 7. 5. 67. 2.]]
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You can also skip rows and columns as follows:

data = np.loadtxt('data.csv', delimiter=',",
skiprows=3, usecols=[1, 3])
print(data)

The output is as follows:

[[978. 6
[ 2. 45
[ 67. 3.]
[ 5 2.1]

Matplotlib CBook

You can read data that is stored in Matplotlib’'s CBook format. Matplotlib comes with a
few sample files in that format. Let’s see how to read the data:

import matplotlib.cbook as cbook

datafile = cbook.get sample data('aapl.npz')
T = np.load(datafile)

print(r.files)

This will print the names of the data files, as shown here:
['price data']

Let’s read the data from that data file:
print(r['price data'])

This shows the Apple share price data as follows:

[('1984-09-07", 26.5 , 26.87, 26.25, 26.5 , 2981600, 3.02)
('1984-09-10', 26.5 , 26.62, 25.87, 26.37, 2346400, 3.01)
('1984-09-11', 26.62, 27.37, 26.62, 26.87, 5444000, 3.07) ...
('2008-10-10', 85.7 , 100. , 85. , 96.8 , 79260700, 96.8 )
('2008-10-13"', 104.55, 110.53, 101.02, 110.26, 54967000, 110.26)
('2008-10-14"', 116.26, 116.4 , 103.14, 104.08, 70749800, 104.08)]
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Reading Data from a CSV

As mentioned earlier, a CSV file contains values separated by commas. You can

use the versatile function read_csv() in Pandas to read a CSV file on the Web or on the
local/networked disk. The following are the contents of a CSV file that we will use in this
demonstration:

rank,discipline,phd,service,sex,salary
Prof,B,56,49,Male, 186960
Prof,A,12,6,Male, 93000
Prof,A,23,20,Male, 110515
Prof,A,40,31,Male, 131205
Prof,B,20,18,Male, 104800
Prof,A,20,20,Male, 122400
AssocProf,A,20,17,Male, 81285

The first row is the header row. Most CSV files will have a header row, although it
is not required. As you can see, the values are separated by commas. This is a common
format of CSV files. Depending on the system and application, you can use a variety
of separators like a space, a semicolon (;), or a pipe (|). Also, CSV files can use a fixed
number of characters for storing data in columns. In this example, as discussed, we are
using one of the most common CSV formats for storing data.

Let’s learn how to read data from such files with Pandas. Create a new notebook for
this chapter.

Import the Pandas library as follows:

import pandas as pd
Let’s read a CSV file located on the Web as follows:

df1 = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/
Salaries.csv")
print(dfi)

You can also read a CSV stored on the local disk as follows:

df2 = pd.read csv("Salaries.csv")
print(df2)
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You can also dump the data of a dataframe to a CSV file at a disk location as follows:
df2.to_csv('output.csv', index=True, header=False)

The code will create a CSV file on the disk in the current directory.

Reading Data from an Excel File

To read data from an Excel file into a Pandas dataframe, you need the support of an
external package. Let’s install a package as follows:

'pip3 install xlrd
Now let’s read the Excel file stored on the disk, as follows:

excel file = 'test.xlsx'
df1 = pd.read excel(excel file)

Here (and in the earlier example too), the file is stored in the same directory as the
notebook file. If you need to read the file in any other location, you must specify the full
path of that file. The previous code, when executed, will load the contents of an Excel file
into a Pandas dataframe. You can see the contents using the following line of code:

print(dfi)
Figure 15-1 shows the output.

Fruit Color Weight

0 Banana Yellow 250
1 Orange CQOrange 200
2 Grapes Green 400
3  Tomato Red 100
4 Spinach  Green 40
5 Potatoes Gray 400
6 Rice  White 300
7 Rice  Brown 400
8 Wheat Brown 500

9 Barley  Yellow 500

Figure 15-1. The data from an Excel sheet
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Reading Data from JSON

You can read the data of a JSON string into a dataframe as follows. Create a JSON string first.

obj =
"name": "Ashwin",
"places lived": ["Nashik", "Hyderabad", "Bangalore"],

"pet": null,

"siblings": [{"name": "Scott", "age": 30, "pets": ["Zeus", "Zuko"]},
"name": "Katie", "age": 38,

"pets": ["Sixes", "Stache", "Cisco"]}]

}

You can print the string as follows:
print(obj)

You can also check the type of the variable (it is a string in JSON format),
as shown here:

print(type(obj))
You can convert this JSON-formatted string to a dictionary as follows:

import json
result = json.loads(obj)
print(result)

Let’s check the data type of the newly created variable, as shown here:
print(type(result))

This will produce the following result:
<class 'dict'>

Let’s load the data into a dataframe as follows:

df1 = pd.DataFrame(result['siblings'], columns=['name', 'age'])
print(dfi1)
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The output is as follows:

name age
0 Scott 30
1 Katie 38

You can also read the data from a JSON file as follows:

df2 = pd.read json('example 2.json")
print(df2)

This is how you can read the JSON data into dataframes.

Reading Data from a Pickle File

In Python programming, Pickle is used in serializing and deserializing Python Objects.
You can store a Pandas dataframe to a Pickle file on the disk as follows:

data = [1, 2, 3, 4, 5]
df1 = pd.DataFrame(data)
print(dfi)
df1.to_pickle('mypickle")

You can read the data from a Pickle file stored on the disk as follows:

df2 = pd.read_pickle('mypickle")
print(df2)

Reading Data from the Web

Let’s read the data from the Web. For that, you will need a few libraries. You can install
them as follows:

I'pip3 install 1xml html51lib BeautifulSoup4
You can read an HTML file located on the Web as follows:

df1 = pd.read html('https://www.google.com/")
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Let’s get the details of the object and the data as follows:

print(dfi)
len(df1)
type(df1)
df1[0].head()

You can also parse this retrieved HTML text and fetch important information from
the tags as follows:

from 1xml import objectify
from io import StringIO

The following is an HTML tag string and a way to parse it, as shown here:

tag = '<a href="http://www.google.com/">Google</a>"
root = objectify.parse(StringIO(tag)).getroot()

You retrieve the root and the text of this object as follows:

print(root)
root.get('href")
print(root.text)

This will produce the following output:

Google
Google

Interacting with the Web API

Let’s learn to interact with the web API to retrieve and store the data into a Pandas
dataframe. Install the necessary library as follows:

Ipip3 install requests
Let’s import the library as follows:

import requests

205



CHAPTER 15  DATA ACQUISITION
Let’s create a URL string as follows:
url="https://api.github.com/repos/pandas-dev/pandas/issues’

You can fetch the data from the URL with the HTTP GET request issued
programmatically as follows:

resp = requests.get(url)
You can check the response code and its datatype as follows:

print(resp)
print(type(resp))

The output is as follows:

<Response [200]>
<class 'requests.models.Response’>

The HTTP response code 200 stands for success in retrieving the information. You
can retrieve the actual information as follows:

data = resp.json()
print(type(data))

It will be a list, as shown here:
<class 'list'>
You can convert it into a dataframe as follows:

output = pd.DataFrame(data, columns=['number', 'title', 'labels', 'state'])
print(output)
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Figure 15-2 shows the output.

SITION

number title labels state
o soosy 000 Upite IS lenmarormar
1 40649 BUG: read_excel failed with emapfttyl; rrri")w\c\j'? 'MDUST[{CI;(:i:Zm\B\E[\’]jEES,q% ld‘ open
I DU TS B oSe 0 en
3 40646 BUG: MDUGTGFIZWWINIGHMcE..  OPN
¢ aess OO S oueick ioto e
5 40644 DOC: Change user guide style notebook 0 open

to reST

6 40642 TYP: IndexOpsMixin HId=812809883 27 nodemid; open

'MDUBTGFiZWwxM;...

Figure 15-2. The data from an HTTPS GET response

This is how you can work with data available on the Web.

Reading Data from a Relational Database Table

You can read the data stored in a table in a relational database like MySQL or
MariaDB. You can read more about the installation and usage at the following URLSs

https://www.mysql.com/
https://mariadb.org/

You have to install an external library as follows:
'pip3 install pymysql
Then you need to import the library to the notebook as follows:

import pymysql
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You can connect to a MySQL or MariaDB database instance as follows:

db = pymysql.connect(host="1localhost", user="root",
password="test123", database="world")

Then you can read the output of a SELECT query into a dataframe as follows:

df1 = pd.read sql('select * from country', db)
print(dfi1)

This produces the output shown in Figure 15-3.

Code Name Continent Region SurfaceArea IndepYear Population
0 ABW Aruba e gir Caribbean 193.0 NaN 103000
America ’
1 AFG  Afghanistan Asia SouthemandCental 6520000 1919.0 22720000
2 AGO Angola Africa Central Africa 1246700.0 1975.0 12878000
3 AlA Anguilla No.nh Caribbean 96.0 NaN 8000
America
4 ALB Albania Europe Southern Europe 28748.0 1912.0 3401200
5 AND Andorra Europe Southern Europe 468.0 1278.0 78000

Figure 15-3. The data from a MySQL/MariaDB table

Reading Data from the Clipboard

You can read the data stored on the clipboard. The clipboard is a temporary and
unnamed buffer in the computer’s main memory (RAM) that a few operating systems
provide for the short-term storage and transfer of data within and between programs.
For example, whenever you copy text data from a file, it is stored on the clipboard of the
operating system.
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Copy the following data into your computer’s clipboard by selecting it and pressing
the Ctrl+C buttons on the keyboard.

ABC
Xx12a
y23b
z34c

You can load it into a Pandas dataframe using the following code:
df = pd.read clipboard()
You can also copy data onto the clipboard programmatically as follows:

import numpy as np
df = pd.DataFrame(np.random.randn(5, 3))
df.to _clipboard()

You can see this data either by reading the clipboard programmatically into a
dataframe as explained earlier or by pasting it with the Ctrl+V command into a text
editor like Notepad (on Windows) or Leafpad or gedit (on Linux).

Summary

In this chapter, you learned how to read data from multiple file formats and how to load
that data into Python variables.
In the next chapter, you will study how to visualize Pandas data using Matplotlib.
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CHAPTER 16

Visualizing Data with
Pandas and Matplotlib

In the previous chapter, you learned how to read the data stored in various file formats

into Python variables using NumPy, Pandas, and Matplotlib.

You should be comfortable working with data now. In this chapter, you will practice

writing programs related to another important and practical aspect of the field of data

science: dataset visualization. This chapter contains lots of examples of short code

snippets to demonstrate how to create visualizations of datasets. So, let’s continue our

journey of data science with the following topics in this chapter:

Simple plots

Bar graphs
Histograms

Box plots

Area plots

Scatter plots
Hexagonal bin plots

Pie charts

After this chapter, you will be able to create impressive visualizations of datasets with
Pandas and Matplotlib.
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CHAPTER 16  VISUALIZING DATA WITH PANDAS AND MATPLOTLIB

Simple Plots

Let’s jump directly into the hands-on examples for data visualization. You will learn
how to visualize simple plots first. I recommend you create a new notebook for the code
examples in this chapter.

Let’s start with the magical command that imports all the required libraries, as
follows:

Zmatplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Let’s create some data using the routine cumsum( ), as follows:

df1 = pd.DataFrame(np.random.randn(100, 2), columns=['B', 'C']).cumsum()
df1['A"] = pd.Series(list(range(100)))
print(dfi)

The resultant dataset will have three columns, as follows:

B C
-0.684779 -0.655677
-0.699163 -1.868611
.315527 -3.513103
-0.504069 -4.175940
0.998419 -4.385832

A W N R O
1
o

A W N P O >

.149399 -1.445029 95
.035029 -1.886731 96
.938699 0.188980 97
.449148 0.335828 98
.204369 -1.304379 99

95
96
97
98
99

N N O N B

[100 rows x 3 columns]
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Let’s use the routine plot () to visualize this data. The plot() routine that the
dataframe object uses calls Pyplot’s plot () by default. Here’s an example:

plt.figure()
df1.plot(x="A", y="B")
plt.show()

This code is self-explanatory. We are passing strings that contain the names
of columns as arguments for the x- and y-axes. It produces the output depicted in
Figure 16-1.

T T T T T

20 40 €0 80 100

(=1 |

Figure 16-1. Visualizing a simple plot

You can use other columns in the visualization as well, as shown here:

plt.figure()
df1.plot(x="A", y="C")
plt.show()

Run this example to see the result. This is how you can use different combinations of
columns to visualize data.

Bar Graphs

Let’s create a simple bar graph using the same dataset. Let’s pick a record from this
dataframe as follows:

print(dfi.iloc[4])
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The following is the output:

B 0.998419
C -4.385832
A 4.000000
Name: 4, dtype: float64

Let’s draw a simple bar graph with this data using the routine bar (). The following is
the code snippet for that:

plt.figure()
df1.iloc[4].plot.bar()
plt.axhline(0, color="k")
plt.show()

In this code example, we are using axhline() to draw a horizontal line
corresponding to the x-axis. Figure 16-2 shows the output.

® o <
Figure 16-2. Visualizing a simple bar graph
Let’s discuss a more complex example of a bar graph. Let’s create a new dataset as

follows:

df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
print(df2)
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The output is as follows:

a b C d
0 0.352173 0.127452 0.637665 0.734944
1 0.375190 0.931818 0.769403 0.927441
2 0.830744 0.942059 0.781032 0.557774
3 0.977058 0.594992 0.557016 0.862058
4 0.960796 0.329448 0.493713 0.971139
5 0.364460 0.516401 0.432365 0.587528
6 0.292020 0.500945 0.889294 0.211502
7 0.770808 0.519468 0.279582 0.419549
8 0.982924 0.458197 0.938682 0.123614
9 0.578290 0.186395 0.901216 0.099061

In the earlier example, we visualized only a single row. Now, let’s visualize the entire
dataset as follows:

plt.figure()
df2.plot.bar()
plt.show()

This will create a bar graph for every row. The graphs will be grouped together per
the rows, as shown in Figure 16-3.
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Figure 16-3. Visualizing a more complex bar graph
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You can see that the indices are represented on the x-axis, and magnitudes are
marked on the y-axis. This is an unstacked vertical bar graph. You can create a stacked
variation of it by just passing a simple argument as follows:

plt.figure()
df2.plot.bar(stacked=True)
plt.show()

Figure 16-4 shows the output.
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Figure 16-4. Visualizing vertically stacked bar graphs
You can even create horizontal stacked and unstacked bar graphs too. Let’s create a
horizontally stacked bar graph with the routine barh() as follows:

plt.figure()
df2.plot.barh(stacked=True)
plt.show()
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Figure 16-5 shows the output.
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Figure 16-5. Visualizing horizontally stacked bar graphs

Let’s write a code snippet for an unstacked horizontal bar graph by omitting the
argument as follows:

plt.figure()
df2.plot.barh()
plt.show()

Figure 16-6 shows the output.
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Figure 16-6. Visualizing horizontal unstacked bar graphs

You've just learned how to create various types of bar graphs.
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Histograms

A histogram is a visual representation of the frequency distribution of numerical data. It
was first used by Karl Pearson.

We first divide the data into various buckets, or bins. The size of the bins depends
on the requirements. For integer datasets, you can have the smallest bin size, which is 1.
Then for each bin, you can list the number of occurrences of elements that fall under the
bin. Then you can show that table as a bar graph.

You can draw the histogram of a given dataset with Pandas and Matplotlib. Let’s
create a dataset as follows:

df4 = pd.DataFrame({'a': np.random.randn(1000) + 1,
'b": np.random.randn(1000),
‘c': np.random.randn(1000) - 1},
columns=["a", 'b', 'c'])
print(dfs)

The generated dataset is as follows:

a b d
.454474 -0.517940 -0.772909
.886328 0.868393 0.109613
.041313 -1.959168 -0.713575
.650075 0.457937 -0.501023
.684392 -0.072837 1.821190

N wWw N R O
P O O L B,

995 0.800481 -1.209032 -0.249132
996 0.490104 0.253966 -1.185503
997 2.304285 0.082134 -1.068881
998 1.249055 0.040750 -0.488890

-1.216627 0.444629 -1.198375

[1000 rows x 3 columns]
Let’s visualize this dataset as a histogram using the routine hist(), as follows:

plt.figure();
df4.plot.hist(alpha=0.7)
plt.show()
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Figure 16-7 shows the output.

-4 -2 0

Figure 16-7. Visualizing a dataset as a histogram

The argument passed to routine decides the opacity (or alpha transparency) of the
output. You had to make this transparent in the previous example because the histogram
was unstacked. Let’s create a stacked histogram with the size of the buckets as 20, as
follows:

plt.figure();
df4.plot.hist(stacked=True, bins=20)
plt.show()

Figure 16-8 shows the output.
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Figure 16-8. Visualizing the same dataset as an unstacked histogram
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Let’s create a horizontal cumulative histogram of a single column as follows:

plt.figure();
df4['a'].plot.hist(orientation="horizontal', cumulative=True)
plt.show()

Figure 16-9 shows the output.

0 200 400 €00 800 1000
Frequency

Figure 16-9. Horizontal cumulative histogram

The vertical version of the same histogram can be created as follows:

plt.figure();
df4['a'].plot.hist(orientation="vertical', cumulative=True)
plt.show()
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Figure 16-10 shows the output.

Figure 16-10. Vertical cumulative histogram
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Let’s try a fancy type of histogram next. The routine diff() computes the numeric

difference between the previous row and the current one.

print(df4.diff())

The output will have the first row populated with NaN for all the columns (as there is

no row before the first one). The output is as follows:

a
NaN
0.431854
.845015
0.608762
1.034317

N W N R O
1
=

995 0.411207
996 -0.310378
997 1.814182
998 -1.055230
999 -2.465682

-0.
0.

b
NaN

386333 0
.827562 -0.
.417105 O.
.530774
.847858 0.
462998 -0
.171832 0.
041384 0.
.709485

403880 -0

[1000 rows x 3 columns]

C
NaN

.882522

823188
212552

2.322213

325067

.936370

116622
579991
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Let’s visualize this dataset, as shown here:

plt.figure()
df4.diff().hist(color="k"', alpha=0.5, bins=50)
plt.show()

Figure 16-11 shows the output.
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Figure 16-11. Column-wise histograms

You've just learned how to visualize datasets as histograms.

Box Plots

You can visualize data with box plots as well. Box plots (also spelled as boxplots) display
the groups of numerical data through their quartiles. Let’s create a dataset as follows:

df = pd.DataFrame(np.random.rand(10, 5),
columns=['A", 'B', 'C', 'D', 'E'])
print(df)

The generated dataset is as follows:

A B C D E
0 0.684284 0.033906 0.099369 0.684024 0.533463
1 0.614305 0.645413 0.871788 0.561767 0.149080
2 0.226480 0.440091 0.096022 0.076962 0.674901
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3 0.541253 0.409599 0.487924 0.649260 0.582250
4 0.436995 0.142239 0.781428 0.634987 0.825146
5 0.804633 0.874081 0.018661 0.306459 0.008134
6 0.228287 0.418942 0.157755 0.561070 0.740077
7 0.699860 0.230533 0.240369 0.108759 0.843307
8 0.530943 0.374583 0.650235 0.370809 0.595791
9 0.213455 0.221367 0.035203 0.887068 0.593629

You can draw box plots as follows:

plt.figure()
df.plot.box()
plt.show()

This will show the dataset as box plots, as shown in Figure 16-12.

e R
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Figure 16-12. Vertical box plot

The colors shown here are the default values. You can change them. First, you need
to create a dictionary as follows:

color = dict(boxes='DarkGreen',
whiskers="'DarkOrange',
medians='DarkBlue",
caps="Gray")
print(color)
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The following is the output:

{'boxes': 'DarkGreen', 'whiskers': 'DarkOrange', 'medians': 'DarkBlue’,
‘caps': 'Gray'}
Finally, you pass this dictionary as an argument to the routine that draws the box plot

as follows:

plt.figure()
df.plot.box(color=color, sym="r+")
plt.show()

Figure 16-13 shows the output.
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Figure 16-13. Vertical box plot with customized colors

The following example creates a horizontal box plot visualization:

plt.figure()
df.plot.box(vert=False, positions=[1, 2, 3, 4, 5])
plt.show()
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Figure 16-14. Horizontal box plot
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Figure 16-14 shows the output.

T I
ol ] o
o T

= -

Let’s see another routine, boxplot(), that also creates box plots. For that, let’s create

another dataset, as shown here:

df = pd.DataFrame(np.random.rand(10, 5))
print(df)

O 60N O U1 » W N B O

The output dataset is as follows:

O O O O ©O O o o o o

0

.936845
.931661
.127896
.938686
.743787
.256692
.822131
.062387
.453193
.832040

O O O O ©O © o o o o

1

.365561
.226297
.291034
.336536
.600116
. 773945
.486780
.958844
.152337
.237582

O O O O O O o o o o

2

.890503
.887385
.161724
934843
.989178
.165381
453981
.247515
.062436
.837805

O O O O O O O O o o

3

.264896
.036719
.952966
.806043
.002870
.809204
.612403
.573431
.865115
.423779

O O O O O O O o o o

4

.937254
.941609
.925534
.104054
.453338
.162431
.614633
.194665
.220440
.119027
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You can draw box plots as follows:

plt.figure()
bp = df.boxplot()
plt.show()

Figure 16-15 shows the output.
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Figure 16-15. Box plot in action

The main advantage of the routine boxplot() is that you can have column-wise
visualizations in a single output. Let’s create an appropriate dataset as follows:

df = pd.DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'] )
d_F[IXl] - pd.SeIieS([lAl’ IAl) IAI’ IAI, |A|’ IBI’ IBl) IBI’ IBI’ IBI])
print(df)

The output dataset is as follows:

Cola Col2 X
0 0.469416 0.341874 A
1 0.176359 0.921808 A
2 0.135188 0.149354 A
3 0.475295 0.360012 A
4 0.566289 0.142729 A
5 0.408705 0.571466 B
6 0.233820 0.470200 B
7 0.679833 0.633349 B
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8 0.183652 0.559745 B
9 0.192431 0.726981 B

Let’s create column-wise visualizations as follows:

plt.figure();
bp = df.boxplot(by="X")
plt.show()

The output will have a title by default explaining how the data is grouped, as shown

in Figure 16-16.
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Figure 16-16. Box plots with groups

Let’s look at a little more complex example for this. The following is the code for a
new dataset:

df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])
df['X'] = pd.Series(['A','A",'A",'A",'A",'B','B",'B",'B",'B"])

df['Y'] = pd.Series(['A','B',"'A",'B',"A","'B","A","B","A",'B"])

print(df)

This code creates the following dataset:

Col1 Col2 Col3 X VY
0 0.542771 0.175804 0.017646 A
1 0.247552 0.503725 0.569475 A B
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2 0.593635 0.842846 0.755377 A
3 0.210409 0.235510 0.633318 A B
4 0.268419 0.170563 0.478912 A
5 0.526251 0.258278 0.549876 B
6 0.311182 0.212787 0.966183 B A
7 0.100687 0.432545 0.586907 B
8 0.416833 0.879384 0.635664 B A
9 0.249280 0.558648 0.661523 B

You can create box plots in groups of multiple columns (this means the grouping
criteria will have multiple columns).

plt.figure();
bp = df.boxplot(column=["'Col1', 'Col2"], by=['X","'Y'])
plt.show()

Figure 16-17 shows the output.
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Figure 16-17. Box plots with groups (multiple columns in the grouping
criteria)
Let’s see a bit more complex example with a dataset that has more variation. The

following code creates such a dataset:

np.random.seed(1234)
df box = pd.DataFrame(np.random.randn(10, 2), columns=['A', 'B'])
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df box['C'] = np.random.choice(['Yes', 'No'], size=10)
print(df box)

The output is the following dataset:

A B C
0.471435 -1.190976 No
1.432707 -0.312652 Yes
-0.720589 0.887163 No
0.859588 -0.636524 Yes
0.015696 -2.242685 No
.150036 0.991946 Yes
0.953324 -2.021255 No
-0.334077 0.002118 No
0.405453 0.289092 No
1.321158 -1.546906 No

O 0N O L1 » W N B O
[N

You can use the routine groupby () in Pandas to group the data and visualize it as
follows:

plt.figure()
bp = df box.boxplot(by="C")
plt.show()

Figure 16-18 shows the output grouped by column C.
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Figure 16-18. Box plot plt.figure()visualization grouped by column C
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Another example is as follows:

bp = df box.groupby('C").boxplot()
plt.show()

Figure 16-19 shows the output.
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Figure 16-19. Box plot visualization grouped by column C

This is how you can visualize datasets as box plots.

Area Plots

You can visualize datasets as area plots too. Let’s create a dataset with four columns as
follows:

df = pd.DataFrame(np.random.rand(10, 4),
columns=["'A', 'B', 'C', 'D'])
print(df)

This creates the following dataset:

A B C D
0.982005 0.123943 0.119381 0.738523
0.587304 0.471633 0.107127 0.229219
0.899965 0.416754 0.535852 0.006209
0.300642 0.436893 0.612149 0.918198

w N = O
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4 0.625737 0.705998 0.149834 0.746063
5 0.831007 0.633726 0.438310 0.152573
6 0.568410 0.528224 0.951429 0.480359
7 0.502560 0.536878 0.819202 0.057116
8 0.669422 0.767117 0.708115 0.796867
9 0.557761 0.965837 0.147157 0.029647

You can visualize all this data with the routine area() as follows:

plt.figure()
df.plot.area()
plt.show()

The previous example creates a stacked area plot, as shown in Figure 16-20.
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Figure 16-20. Stacked area plots

You can also create unstacked area plots by passing an argument to the routine
area() as follows:

plt.figure()
df.plot.area(stacked=False)
plt.show()

The unstacked area plot will be transparent by default so that all the individual area
plots are visible. Figure 16-21 shows the output.
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Figure 16-21. Unstacked area plots

This is how to create area plots.

Scatter Plots

You can also visualize any dataset as a scatter plot. Let’s create a dataset as follows:

df = pd.DataFrame(np.random.rand(10, 4),
columns=["'A', 'B"', 'C', 'D'])
print(df)

The output dataset is as follows:

A B C D
0 0.593893 0.114066 0.950810 0.325707
1 0.193619 0.457812 0.920403 0.879069
2 0.252616 0.348009 0.182589 0.901796
3 0.706528 0.726658 0.900088 0.779164
4 0.599155 0.291125 0.151395 0.335175
5 0.657552 0.073343 0.055006 0.323195
6 0.590482 0.853899 0.287062 0.173067
7 0.134021 0.994654 0.179498 0.317547
8 0.568291 0.009349 0.900649 0.977241
9 0.556895 0.084774 0.333002 0.728429
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You can visualize columns A and B as a scatter plot as follows:

plt.figure()
df.plot.scatter(x="A", y="B")
plt.show()

Figure 16-22 shows the output.
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Figure 16-22. Simple scatter plot

You can visualize multiple groups as follows:

ax = df.plot.scatter(x="A", y="B",
color="Blue',
label="Group 1")
plt.figure()
df.plot.scatter(x="C", y='D",
color="Green',
label="Group 2",
ax=ax)
plt.show()

Figure 16-23 shows the output.
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Figure 16-23. Scatter plot with multiple groups

0.8

Let’s see how to customize the scatter plot. You can customize the color and the size

of the points. The color or size can be a constant or can be variable. The following is

an example of variable colors and a constant size for the data points. When the color is

variable, a color bar is added to the output by default.

plt.figure()

df.plot.scatter(x="A", y="'B', c="C', s=40)

plt.show()

Figure 16-24 shows the output.
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Figure 16-24. Scatter plot with different colors for the data points
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Let’s assign the size to be variable as follows:

plt.figure()
df.plot.scatter(x="A", y="B', s=df['C']*100)
plt.show()

Figure 16-25 shows the output.
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Figure 16-25. Scatter plot with different sizes for the data points
Finally, let’s see an example with fully customized variable sizes and variable colors
as follows:

plt.figure()
df.plot.scatter(x="A", y="B', c='C', s=df['D']*100)
plt.show()

Figure 16-26 shows the output.
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Figure 16-26. Scatter plot with different sizes for the data points

You've just learned how to create and customize scatter plots.

Hexagonal Bin Plots

You can also visualize data with hexagonal bin (hexbin) plots. Let’s prepare a dataset as
follows:

df = pd.DataFrame(np.random.randn(100, 2),

columns=["A", 'B'])
df['B'] = df['B'] + np.arange(100)
print(df)

The output is as follows:

A B
0 0.165445 -1.127470
1 -1.192185 1.818644
2 0.237185 1.663616
3 0.694727  3.750161
4 0.247055  4.645433

95 0.650346 94.485664
96 0.539429 97.526762
97 -3.277193 95.151439

236



CHAPTER 16  VISUALIZING DATA WITH PANDAS AND MATPLOTLIB

98 0.672125 96.507021
99 -0.827198 99.914196

[100 rows x 2 columns]
Let’s visualize this data with a hexbin plot as follows:

plt.figure()
df.plot.hexbin(x="A"', y="B', gridsize=20)
plt.show()

Figure 16-27 shows the output.
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Figure 16-27. Hexbin plot example

As you can see, you can customize the size of the grid.

Pie Charts

Finally, you will learn how to create pie charts to visualize datasets. Let’s create a dataset

as follows:

series = pd.Series(3 * np.random.rand(4),
index=['A', 'B', 'C', 'D'],
name="'series")
print(series)
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This creates the following dataset:

A 1.566910
B 0.294986
C 2.140910
D 2.652122

Name: series, dtype: float64
You can visualize it as follows:

plt.figure()
series.plot.pie(figsize=(6, 6))
plt.show()

Figure 16-28 shows the output.

series

Figure 16-28. A simple pie chart

Let’s create a dataset with two columns as follows:
df = pd.DataFrame(3 * np.random.rand(4, 2),
index=['A', 'B', 'C', 'D'],
columns=["'X", 'Y'])
print(df)
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This generates the following data:

X Y
A 1.701163 2.983445
B 0.536219 0.036600
C 1.370995 2.795256
D 2.538074 1.419990
Figure 16-29 shows the output.
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Figure 16-29. A simple pie chart for a multicolumn dataset

You can customize pie charts. Specifically, you can customize the font, colors, and
labels as follows:

plt.figure()

series.plot.pie(labels=['A"', 'B', 'C', 'D'],
colors=['r', 'g', 'b', 'c'],
autopct="%.2f", fontsize=20,
figsize=(6, 6))

plt.show()
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Figure 16-30 shows the output.

series

D

Figure 16-30. A simple yet customized pie chart

Let’s create a partial pie chart by passing values whose sum is less than 1.0. The
following is the data for that:

series = pd.Series([0.1] * 4,
index=['A', 'B', 'C', 'D'],
name="series2")

print(series)

This creates the following dataset:

A 0.1
B 0.1
C 0.1
D 0.1

Name: series2, dtype: float64
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The partial pie chart can be visualized as follows:

plt.figure()
series.plot.pie(figsize=(6, 6))
plt.show()

This creates a partial pie chart (or a semicircle), as shown in Figure 16-31.

C

series2

Figure 16-31. A simple yet customized pie chart

You've just learned how to visualize data with pie charts.

Summary

In this chapter, you learned how to visualize data with various techniques. You can
use these visualization techniques in real-life projects. In the coming chapters, we will
explore other libraries for creating data visualizations in Python.

In the next chapter, you will learn about how to create data visualizations with a new
library called Seaborn.

241



CHAPTER 17

Introduction to Data
Visualization with Seaborn

In the previous chapter, you learned how to visualize data stored in the Pandas series
and dataframe.

In the previous chapters of this book, you studied the data visualization library
Matplotlib extensively along with other important data science libraries called NumPy
and Pandas. You will take a break in this chapter from Matplotlib and learn how to use
another related library for data visualization called Seaborn. The following are the topics
you will learn about in this chapter:

e Whatis Seaborn?

o Plotting statistical relationships

o Plotting lines

e Visualizing the distribution of data

After reading this chapter, you will be comfortable using the Seaborn library and will
be able to create great visualizations of datasets.

What Is Seaborn?

You have learned how to use the Matplotlib library for data visualization. Matplotlib

is not the only data visualization library in Python. There are numerous libraries in
Python that can visualize data. The scientific data visualization libraries support the
data structures of NumPy and Pandas. One such library for the visualization of scientific
Python is Seaborn (https://seaborn.pydata.org/index.html). Seaborn is based on
and built on top of Matplotlib. It provides a lot of functionality for drawing attractive
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graphics. It has built-in support for the series and dataframe data structures in Pandas
and for Ndarrays in NumPy.

Let’s create a new notebook for the demonstrations in this chapter. Now, let’s install
Seaborn with the following command:

Ipip3 install seaborn

You can import the library to your notebook or a Python script with the following
statement:

import seaborn as sns

You know that the Seaborn library supports the Pandas dataframes. The Seaborn
library also has many dataframes stored in it that are populated with data. So, we can use
them for our demonstrations. Let’s see how to retrieve these dataframes. The following
command returns the list of all the built-in sample dataframes:

sns.get dataset names()
The following is the output:

[ 'anagrams',
"anscombe’,
'attention’,
'brain_networks',
‘car_crashes’,
"diamonds’,
"dots’,
'exercise’,
"flights',
"fmri',
‘gammas ',
‘geyser’,
'iris',

‘mpg’,
'penguins’,
‘planets’,
"tips’,
"titanic']
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You can load these dataframes into Python variables as follows:

CHAPTER 17

iris = sns.load dataset('iris')

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Let’s see the data stored in the iris dataset with the following statement:

iris

Figure 17-1 shows the output.

In [6]: iris]

Out[6]: sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa

1 4.9 3.0 1.4 0.2  setosa

2 4.7 3.2 13 0.2 setosa

3 4.6 3.1 1.5 0.2 setosa

4 5.0 3.6 1.4 0.2 setosa
145 6.7 3.0 52 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 34 54 2.3 virginica
149 5.9 3.0 55 1.8 virginica

Figure 17-1. The iris dataset

Plotting Statistical Relationships

You can plot the statistical relationship between two variables with various functions

in Seaborn. The general plotting function to do this is relplot(). You can plot various

types of data with this function. By default, the relplot() function plots a scatter plot.

Here is an example:

%matplotlib inline
import numpy as np
import pandas as pd
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import matplotlib.pyplot as plt

sns.relplot(x="sepal length',
y="sepal width',
data=iris)

plt.grid('on")

plt.show()

This produces the scatter plot shown in Figure 17-2.
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Figure 17-2. The scatter plot

You can explicitly specify the type of plot as follows:

sns.relplot(x="sepal length', y='sepal width',
data=iris, kind="scatter")

plt.grid('on")

plt.show()
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The function replot() is a generic function where you can pass an argument
to specify the type of plot. You can also create a scatter plot with the function
scatterplot(). For example, the following code creates the same result as shown in

Figure 17-2:
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sns.scatterplot(x="sepal length',
y="'sepal width',
data=iris)

plt.grid('on")
plt.show()

You can feed some other columns of the dataset to the plotting function as follows:

sns.relplot(x="petal length',
y="petal width',

data=iris)
plt.grid('on")
plt.show()

Figure 17-3 shows the output.
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Figure 17-3. Another example of a scatter plot
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You can also write this with the scatterplot() function as follows:

sns.scatterplot(x="petal length’,
y="petal width',
data=iris)

plt.grid('on")

plt.show()

You can customize the plot and show an additional column with color coding as
follows:

sns.relplot(x="sepal length',
y="'sepal width',
hue="species"',
data=iris)

plt.grid('on")

plt.show()

Figure 17-4 shows the output.
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Figure 17-4. Scatter plot with colors
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You get the same result as shown in Figure 17-4 with the following code:

sns.scatterplot(x="sepal length',
y="sepal width',
hue="species',
data=iris)

plt.grid('on")

plt.show()

You can also assign the styles to the scatter plot data points (markers) as follows:

sns.relplot(x="sepal length', y="sepal width',
hue="petal length', style='species',
data=iris)

plt.grid('on")

plt.show()

You can see the output in Figure 17-5.
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Figure 17-5. Scatter plot with colors and custom styles
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The following code produces the same output as shown in Figure 17-5:

sns.scatterplot(x="sepal length', y='sepal width',
hue="'petal length', style='species’,
data=iris)

plt.grid('on")

plt.show()

You can also adjust the sizes of the markers as follows:

sns.relplot(x="sepal length', y="sepal width',
size="'petal length', style='species’,
hue="species', data=iris)

plt.grid('on")

plt.show()

Figure 17-6 shows the output.
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Figure 17-6. Scatter plot with colors and custom styles and marker sizes
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The following code produces the same result as shown in Figure 17-5:

sns.scatterplot(x="sepal length', y='sepal width',
size="petal length', style='species',
hue="species', data=iris)

plt.grid('on")

plt.show()

Plotting Lines

You can also show continuous data such as time-series data along a line. Time-series
data has timestamp data in at least one column or has an index. A great example of a
time series is a table of daily temperature records. Let’s create a time-series dataframe to
demonstrate the line plots.

df = pd.DataFrame(np.random.randn(100, 4),
index=pd.date_range("1/1/2020",
periods=100),
columns=1ist("ABCD"))
df = df.cumsum()

You can use the function relplot() to draw the line as follows:

sns.relplot(x=df.index, y="A", kind="line", data=df)
plt.xticks(rotation=45)
plt.show()
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Figure 17-7 shows the output.
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Figure 17-7. Line plot of time-series data

You can also produce the output shown in Figure 17-7 with the following code:

sns.lineplot(x=df.index,

y="A", data=df)
plt.xticks(rotation=45)
plt.show()

In the next section, you will learn how to visualize the distribution of data.

Visualizing the Distribution of Data

One of the most prominent examples of visualizing the distribution of data is a frequency
table or a frequency distribution table. You can create buckets of value ranges that the
data can have (the domain), and then you can list the number of items that satisfy the
criteria for the bucket. You can also vary the bucket size, with the smallest size being 1.
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You can visually show the information of a frequency distribution using bars
and lines. If you use bars, then it is known as a histogram. You can use the function
displot() to visualize the frequency data. Let’s start with dummy univariate data.

X = np.random.randn(100)
sns.displot(x)
plt.show()

Figure 17-8 shows the output.
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Figure 17-8. Histogram

You can also make it explicit that you need a histogram in the output as follows:

sns.displot(x, kind="hist")
plt.show()

A histogram is the default kind of graph. You can also show a Gaussian kernel density
estimation (KDE) as follows:

sns.displot(x, kind="kde")
plt.show()
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Figure 17-9 shows the output.
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Figure 17-9. KDE graph

You can visualize an empirical cumulative distribution function (eCDF) as follows:

sns.displot(x, kind="ecdf')
plt.show()
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Figure 17-10 shows the output.
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Figure 17-10. eCDF graph

You can combine a histogram and a KDE as follows:

sns.displot(x, kind="hist', kde=True)
plt.show()
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Figure 17-11 shows the output.
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Figure 17-11. Histogram combined with KDE

Now let’s use some real-life data, as follows:

tips = sns.load dataset("tips")
sns.displot(x="total bill', data=tips, kind="hist")
plt.show()
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Figure 17-12 shows the output.
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Figure 17-12. Real-life data visualized as a histogram

You can customize the size of bins (or buckets) in the visualization as follows:

sns.displot(x="total bill', data=tips,

kind="hist', bins=30, kde=True)
plt.show()
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Figure 17-13 shows the output.

Figure 17-13. Customized buckets in a histogram

You can adjust the hue of the plots based on a criterion of your choice as follows:

sns.displot(x="total bill', data=tips,
kind="kde', hue="size")
plt.show()
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Figure 17-14 shows the output.
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Figure 17-14. Customized colors in a KDE plot

Up to now, we have used a single variable to show the plot. When you use two
variables for plotting, it is known as a bivariate plot. Here is a simple example:

sns.displot(x="total bill',
y="tip', data=tips)
plt.show()
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Figure 17-15 shows the output.
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Figure 17-15. A simple bivariate histogram

You can add color to this example as follows:

sns.displot(x="total bill", y="tip',
hue="size', data=tips)
plt.show()
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Figure 17-16 shows the output.
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Figure 17-16. A simple bivariate histogram with color
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You can also customize the size of bins and add ticks on the x- and y-axes (known as

a rug plot) as follows:

sns.displot(x="total bill', y="tip",
data=tips, rug=True,
kind="hist', bins=30)
plt.show()
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Figure 17-17 shows the output.

10 ++~

T

(=]
TITT

0 10 20 30 40 50
total_bill

Figure 17-17. A simple bivariate histogram with custom bins and rug plot

A more interesting type of visualization is a bivariate KDE plot. It looks like a contour.
The code is as follows:

sns.displot(x="total bill', y="tip",
data=tips, kind="kde")
plt.show()
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Figure 17-18 shows the output.
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Figure 17-18. A simple bivariate KDE plot

You can add a rug plot to the output as follows:

sns.displot(x="total bill', y="tip",
data=tips, rug=True,
kind="kde")

plt.show()
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The output has KDE and rug visualizations, both as shown in Figure 17-19.
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Figure 17-19. A simple bivariate KDE plot with a rug plot

Based on the columns in the dataframe, you can create individual visualizations
arranged in rows or columns. Let’s create a visualization based on the size of tips as
follows:

sns.displot(x="total bill', y="tip",
data=tips, rug=True,
kind="kde', col="size")
plt.show()

In the previous example, we are enabling the rug plot feature, and the plots
will be separately generated based on the sizes of the tips. Figure 17-20 shows
the output.
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Figure 17-20. A simple bivariate KDE plot with a rug plot arranged in
columns
You can also arrange the individual graphs in rows as follows:

sns.displot(x="total bill', y="tip",
data=tips, rug=True,
kind="kde', row="size'")
plt.show()

Figure 17-21 shows the output.
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Figure 17-21. A simple bivariate KDE plot with a rug plot arranged in rows
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You've just learned how to visualize the distribution of data.

Summary

This chapter contained lots of demonstrations. You explored the Seaborn data
visualization library of Python in detail. Seaborn is a vast library, and we have just
scratched its surface in this chapter. You can refer to the home page of the Seaborn
project at https://seaborn.pydata.org/index.html for the API documentation,
tutorials, and an example gallery.

In the next and final chapter of this book, you will learn how to visualize the real-life
data of the currently ongoing COVID-19 pandemic with the Matplotlib and Seaborn data
visualization libraries.
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CHAPTER 18

Visualizing Real-Life
Data with Matplotlib
and Seaborn

In the previous chapter, you learned how to visualize data with a new data visualization
library for scientific Python tasks. You learned to create visualizations from data stored in
various formats.

In this chapter, you will take all the knowledge you have obtained in the earlier
chapters of this book and put it together to prepare visualizations for real-life data from
the COVID-19 pandemic and animal disease datasets obtained from the Internet. The
following are the topics you will explore in this chapter:

e COVID-19 pandemic data

o Fetching the pandemic data programmatically

e Preparing the data for visualization

o Creating visualizations with Matplotlib and Seaborn
o Creating visualizations of animal disease data

After reading this chapter, you will be comfortable working with and creating

visualizations of real-life datasets.

COVID-19 Pandemic Data

The world is facing the COVID-19 pandemic as of this writing (May 2021). COVID-19
is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
symptoms include common flu-like symptoms and breathing troubles.
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There are multiple organizations in the world that collect and share real-time data
for pandemics. One is Johns Hopkins University (https://coronavirus.jhu.edu/
map.html), and the other one is Worldometers (https://www.worldometers.info/
coronavirus/). Both of these web pages have data about the COVID-19 pandemic,
and they are refreshed quite frequently. Figure 18-1 shows the Johns Hopkins page for
COVID-19.
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Figure 18-1. Johns Hopkins COVID-19 home page

Figure 18-2 shows the Worldometers website.
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Figure 18-2. Worldometers COVID-19 home page

As I mentioned, the data is refreshed on a frequent basis, so these websites are quite
reliable for up-to-date information.

Fetching the Pandemic Data Programmatically

In this section, you will learn how to fetch both datasets (Johns Hopkins and
Worldometers) using Python programs. To do that, you need to install a library for
Python. The library’s home page is located at https://ahmednafies.github.io/covid/,
and the PyPI page is https://pypi.org/project/covid/. Create a new notebook for
this chapter using Jupyter Notebook. You can easily install the library with the following
command in the notebook:

Ipip3 install covid
You can import the library to a notebook or a Python script/program as follows:

from covid import Covid
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You can create an object to fetch the data from an online source. By default, the data
source is as follows for Johns Hopkins:

covid = Covid()

Note that due to high traffic, sometimes the servers are unresponsive. I experienced
this multiple times.
You can explicitly mention the data source as follows:

covid = Covid(source="john hopkins")
You can specify Worldometers explicitly as follows:
covid = Covid(source="worldometers")
You can see the source of the data as follows:
covid.source
Based on the data source, this returns a relevant string, as shown here:
"john_hopkins'
You can get status by country name as follows:
covid.get status by country name("italy")
This returns a dictionary, as follows:

{'id': '86",
‘country': 'Italy’,
"confirmed': 4188190,
‘active': 283744,
"deaths': 125153,
'recovered': 3779293,
'latitude': 41.8719,
'‘longitude': 12.5674,
'last update': 1621758045000}
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You can also fetch the status by country ID, although only the Johns Hopkins dataset
has this column, so the code will return an error for Worldometers.

# Only valid for Johns Hopkins
covid.get status by country id(115)
The output is similar to the earlier example, as shown here:

{'id": "115',

‘country': 'Mexico',

"confirmed': 2395330,

'active': 261043,

'deaths': 221597,

'recovered': 1912690,

'latitude': 23.6345,

"longitude': -102.5528,

'last_update': 1621758045000}

You can also fetch the list of countries as follows:
covid.list countries()
Here is part of the output:

[{'id': "279', 'name': 'US'},

{'id': '80', 'name': 'India'},

{'id': '24', 'name': 'Brazil'},

{'id': '63', 'name': 'France'},

{'id': '178', 'name': 'Turkey'},

{'id"': '143', 'name': 'Russia'},

{'id"': "'183"', 'name': 'United Kingdom'},

You will continue using the Johns Hopkins dataset throughout the chapter.
You can get active cases as follows:

covid.get total active cases()
The output is as follows:

27292520
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You can get the total confirmed cases as follows:
covid.get total confirmed cases()
The output is as follows:
166723247
You can get the total recovered cases as follows:
covid.get total recovered()
The output is as follows:
103133392
You can get total deaths as follows:
covid.get total deaths()
The output is as follows:
3454602

You can fetch all the data with the function call covid.get data(). This returns a list
of dictionaries where every dictionary holds the data of one country. The following is the
output:

[{'id': "179",
‘country': 'US',
"confirmed': 33104963,
'active': None,
'deaths': 589703,
'recovered': None,
'latitude': 40.0,
"longitude': -100.0,
'last_update': 1621758045000},

{'id': '80',
‘country': 'India’,
"confirmed': 26530132,
'active': 2805399,
"deaths': 299266,
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'recovered': 23425467,
'latitude': 20.593684,
"longitude': 78.96288,
'last_update': 1621758045000},

Preparing the Data for Visualization

You have to prepare this fetched data for visualization. For that you have to convert the
list of dictionaries in the Pandas dataframe. It can be done as follows:

import pandas as pd
df = pd.DataFrame(covid.get data())
print(df)

Figure 18-3 shows the output.

id country confirmed active deaths recovered \
0 179 US 33164963 NaN 589763 NaN
1 80 India 26530132 2805399.0 299266 23425467.90
2 24 Brazil 16047439 1466788.0 448208 14132443.0
3 63 France 5979597 5161260.0 108345 382519.0
4 178 Turkey 5178648  119466.0 46071  5013111.0
187 165 MS Zaandam 9 0.0 2 7.0
188 112 Marshall Islands 4 0.0 0 4.0
189 186 Vanuatu 4 0.0 1 3.0
196 148 Samoa 3 0.0 0 3.0
191 116 Micronesia 1 0.0 0 1.0
latitude longitude last_update
0 40.000000 -100.00000 1621758045000
1 20.593684  78.96288 1621758045000
2 -14.235600 -51.92530 1621758045000
3 46.227600 2.21370 1621758045000
4 38.963760  35.24330 1621758045000

Figure 18-3. Pandas dataframe for COVID-19 data
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You can sort it as follows:
sorted = df.sort values(by=['confirmed'], ascending=False)

Then you have to exclude the data for the world and continents so only the data for
the individual countries remains.

excluded = sorted [ ~sorted.country.isin(['Europe', 'Asia’,
'South America’,
'"World', 'Africa’,
"North America'])]

Let’s find out the top ten records.

top10 = excluded.head(10)
print(top10)

You can then assign the columns to the individual variables as follows:

X = top10.country

yl = top10.confirmed
y2 = top10.active
y3 = top10.deaths
y4 = topl0.recovered

Creating Visualizations with Matplotlib and Seaborn

Let’s visualize the data with Matplotlib and Seaborn. First import all the needed libraries,
as shown here:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

A simple linear plot can be obtained as follows:

plt.plot(x, y1)
plt.xticks(rotation=90)
plt.show()
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Figure 18-4 shows the output.
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Figure 18-4. Linear plot with Matplotlib

You can add a title to this plot. You can also use the Seaborn library for it. The

following is an example of a line plot with Seaborn:

sns.set_theme(style="whitegrid")
sns.lineplot(x=x, y=y1)
plt.xticks(rotation=90)
plt.show()

In the code example, we are using the function set_theme(). It sets the theme for the
entire notebook for the Matplotlib and Seaborn visualizations. You can pass one of the
strings 'darkgrid’, 'whitegrid', 'dark’, 'white', or 'ticks' as an argument to this
function. Figure 18-5 shows the output.
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Figure 18-5. Linear plot with Seaborn

You can create a simple bar plot with Matplotlib as follows:

plt.bar(x, y1)
plt.xticks(rotation=45)
plt.show()

Figure 18-6 shows the output.
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Figure 18-6. Bar plot with Matplotlib
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The same visualization can be prepared with Seaborn, which produces a much
better bar plot aesthetically.

sns.barplot(x=x, y=y1)
plt.xticks(rotation=45)
plt.show()

Figure 18-7 shows the output.
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Figure 18-7. Bar plot with Seaborn

You can even change the color palette as follows:

sns.barplot(x=x, y=y1,

palette="Blues d")
plt.xticks(rotation=45)
plt.show()
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Figure 18-8 shows the output.
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Figure 18-8. Bar plot using Seaborn with custom palette

You can create a multiline graph as follows:

labels = ['Confirmed', 'Active', 'Deaths', 'Recovered']
plt.plot(x, y1, X, y2, X, y3, X, y4)

plt.legend(labels, loc="upper right")
plt.xticks(rotation=90)

plt.show()
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Figure 18-9. Multiline graph
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You can use the Seaborn library to create the same graph as follows:
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lineplot(x=x, y=y2)
lineplot(x=x, y=y3)

.lineplot(x=x, y=y4)

show()
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Figure 18-10 shows the output.
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Figure 18-10. Multiline graph with Seaborn

You will now see how to create a multiple-bar graph with Matplotlib as follows:

df2 = pd.DataFrame([y1, y2, y3, y4])
df2.plot.bar()

plt.legend(x, loc='best")
plt.xticks(rotation=45)

plt.show()
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Figure 18-11 shows the output.
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Figure 18-11. Multiline bar graph
You can even show this in a horizontal fashion as follows:
df2.plot.barh()
plt.legend(x, loc='best")
plt.xticks(rotation=45)
plt.show()
Figure 18-12 shows the output.
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Figure 18-12.
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283



CHAPTER 18  VISUALIZING REAL-LIFE DATA WITH MATPLOTLIB AND SEABORN
You can use Seaborn to create a scatter plot as follows:

sns.scatterplot(x=x, y=y1)
sns.scatterplot(x=x, y=y2)
sns.scatterplot(x=x, y=y3)
sns.scatterplot(x=x, y=y4)
plt.legend(labels, loc="best")
plt.xticks(rotation=45)
plt.show()

Figure 18-13 shows the output.
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Figure 18-13. Multiline horizontal bar graph

You can even create an area plot with Matplotlib with the following code:

df2.plot.area()
plt.legend(x, loc='best")
plt.xticks(rotation=45)
plt.show()

284



CHAPTER 18  VISUALIZING REAL-LIFE DATA WITH MATPLOTLIB AND SEABORN

Figure 18-14 shows the output.
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Figure 18-14. Stacked area plot

You can create an unstacked and transparent area plot for the data as follows:

df2.plot.area(stacked=False)
plt.legend(x, loc="best")
plt.xticks(rotation=45)
plt.show()

Figure 18-15 shows the output.
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Figure 18-15. Stacked area plot
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You can create a pie chart as follows:

plt.pie(y3, labels=x)
plt.title('Death Toll")
plt.show()

Figure 18-16 shows the output.
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Figure 18-16. Pie chart

You can also create a KDE plot with a rug plot, but with the data that we’re using for
this example, that may not make a lot of sense.

sns.set_theme(style="ticks")
sns.kdeplot(x=y1)
sns.rugplot(x=y1)

plt.show()
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Figure 18-17 shows the output.
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Figure 18-17. KDE plot

Creating Visualizations of Animal Disease Data

You can create visualizations for other real-life datasets too. Let’s create visualizations for
animal disease data. Let’s first read it from an online repository.

df = pd.read _csv("https://github.com/Kesterchia/Global-animal-diseases/
blob/main/Data/Outbreak 240817.csv?raw=True")

Let’s see the top five records.

df.head()
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Figure 18-18 shows the output.

Out[36]:
Id source latitude longitude region country admini localityName
0 230399  OIE -27.800000 30.800000 Africa South  KwaZulu-pp) psng 2017 019
Africa Natal - = -
1 230381  OIE 54.837037 73.354155 Europe Fe?:r'“’;:z: Omégf;'; Novaya Stanica
2 230333 QIE -21.077740 30.211620 Africa Zimbabwe Masvingo Mwambe
3 230396  OIE -26.000000 28.300000 Africa i‘f’r‘l‘é’; Gauteng HPAI_H5N8_2017_020
4 230371  OIE 49.237900 17.700200 Euro (G=E -
;i - pe Republic Jihomoravsky Hvozdna
5 rows x 24 columns
Figure 18-18. Animal disease data
Let’s get information about the columns as follows:
df.info()
The output is as follows:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17008 entries, 0 to 17007
Data columns (total 24 columns):
# Column Non-Null Count Dtype
0 Id 17008 non-null int64
1 source 17008 non-null object
2 latitude 17008 non-null float64
3 longitude 17008 non-null float64
4 region 17008 non-null object
5 country 17008 non-null object
6  adminl 17008 non-null object
7  localityName 17008 non-null object
8 localityQuality 17008 non-null object
9 observationDate 16506 non-null object
10 reportingDate 17008 non-null object
11 status 17008 non-null object
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12 disease 17008 non-null object
13 serotypes 10067 non-null object
14 speciesDescription 15360 non-null object
15 sumAtRisk 9757 non-null  float64
16 sumCases 14535 non-null float64
17 sumDeaths 14168 non-null float64
18 sumDestroyed 13005 non-null float64
19 sumSlaughtered 12235 non-null float64
20 humansGenderDesc 360 non-null object
21 humansAge 1068 non-null  float64
22 humansAffected 1417 non-null  float64
23 humansDeaths 451 non-null float64

dtypes: float64(10), int64(1), object(13)
memory usage: 3.1+ MB

Let’s perform a “group by” operation on the column country and compute the sum
of total cases, as shown here:

df2 = pd.DataFrame(df.groupby('country').sum('sumCases")["sumCases'])
Now let’s sort and select the top ten cases.

df3 = df2.sort_values(by='sumCases', ascending = False).head(10)
Let’s plot a bar graph, using the following code:

df3.plot.bar()
plt.xticks(rotation=90)
plt.show()
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Figure 18-19 shows the output.
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Figure 18-19. Bar chart

You can convert the index to a column as follows:

Bulgaria

China

Egypt

Taiwan (Province of China)

country

df3.reset_index(level=0, inplace=True)

df3
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The output is as follows:

country
Italy
Iraq
Bulgaria
China

Taiwan (Province of China)

Egypt

Iran (Islamic Republic of)

Nigeria
Germany
Republic of Korea

sumCases
846756.
590049.
453353.
370357.
296268.
284449.
225798.
203688.
133425.
117018.

O O O O O O O o o o

Iran (Islamic Republic of)

mmm sumCases

Migena
Germany

Republic of Korea
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Let’s make a pie chart as follows:

plt.pie(df3['sumCases'],

labels=df3['country'])
plt.title('Death Toll")
plt.show()

Figure 18-20 shows the output.
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Figure 18-20. Pie chart

You can create a more aesthetically pleasing bar chart with Seaborn as follows:

sns.barplot(x="country’,
y="'sumCases",
data=df3)
plt.xticks(rotation=90)
plt.show()
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Figure 18-21 shows the output.
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Figure 18-21. Bar chart with Seaborn

You've just learned to visualize real-life animal disease data.

Summary

In this chapter, you explored more functionality of the Seaborn data visualization library,
which is part of the scientific Python ecosystem. You also learned how to import real-life
data into Jupyter Notebook. You used the Matplotlib and Seaborn libraries to visualize
the data.

As you know, this is the last chapter in the book. While we explored Matplotlib
in great detail, we have just scratched the surface of the vast body of knowledge and
programming APIs. You now have the knowledge to further explore Matplotlib and other
data visualization libraries on your own. Python has many data visualization libraries for
scientific data. Examples include Plotly, Altair, and Cartopy. Armed with your knowledge
of the basics of data visualization, have fun continuing your journey further into data
science and visualization!
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Animal disease data visualization
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Animation basics
animation function, 162
celluloid library, 166
FuncAnimation(), 162
function init(), 162
libraries, 161
progressive spiral, creation, 163
sine wave visualizing, 163
spiral animation visualizing, 164
Area plots, 230-232
Audio processing, 122, 123
Audio visualization
audio file, 120, 121
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NumPy, 120
properties, 119
SciPy library, 118
stereo audio, 120
Axes, 61, 62
ax.text() function, 72
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Bar graphs, 92-95
animation, celluloid library, 168
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data visualizations with Pandas and
Matplotlib, 213-217
Bivariate plot, 259
Bivariate histogram, 260
with color, 261
with custom bins and rug plot, 262
Bivariate KDE plot
with a rug plot, 264
with a rug plot arranged in
columns, 265
with a rug plot arranged in rows, 266
boxplot(), 226
Box plots, 222
in action, 226
customized colors, 224
data visualizations with Pandas and
Matplotlib, 222-230
with groups, 227, 228
horizontal, 225
vertical, 223
visualization grouped by column C, 230

C

camera.snap(), 165
Celluloid library

animation, 165, 166

bar graph animation, 168

sine wave animation, 167
Circular contour, 103
Classic style, 77
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Constructor function, 182
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color bar, 104, 105

custom colors, 105

filled, 106
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COVID-19 pandemic data, 269, 271
CPython, 4
Custom color maps, 136
Custom function, 78
Custom index, 183
Customized subplots, 83-85
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Dataframe, in Pandas, 185-189
Data visualizations
bar graphs, 92-95
COVID-19 data, 275
error bars, 90-92
lines and logs, 87-90
with Pandas and Matplotlib
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bar graphs, 213-217
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pie charts, 237-241
scatter plots, 232-236
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scatter plot, 95-97
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Default style, 78
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errorbar() function, 90

Error bars, 90-92
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Fast Fourier transform (FFT), 122
Filled contour, 106

Filled-in plots, 176

Fourier transform, 122
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Gaussian kernel density estimation
(KDE), 253

ggplot style, 76, 79

Grayscale image, 113

Grayscale image, 115

Grid, 60
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Handling CSV files, 194, 196
Hexagonal bin plots, 236, 237
Hexbin visualizations, 178
Histograms

customized, 102, 103

data visualizations with Pandas and

Matplotlib, 218-222



random data, 100, 101
transparency, 102
2D data, 102
Horizontal bar graph, 94, 95
Horizontal box plot, 225
Horizontal cumulative histogram, 220
Horizontally stacked bar graphs, 217
Horizontal unstacked bar graphs, 217

Identity matrix, 41
Image masking, 116
Images visualizations
colorimage, 113
color images, 112
grayscale image, 113
cool color map, 115
correct color map, 114
image masking, 116
import library, 111
Matplotlib library, 113
pillow, 111
imread() function, 112
Index, 182, 185
Integrated development environment
(IDE), 5
Interactive mode, 17
Interpolation methods, 116, 118

J,K
Johns Hopkins COVID-19 home
page, 270
JSON string, 203, 204
Jupyter Notebook
advantage, 18
cells types, 25

INDEX

code output, 24

home page tab, 21

options, 22

Python 3 notebook, 23
running code, 24-27
scripts on cloud servers, 18
setting up, 18-24
subprocesses, 24

token, 20

web-based notebook, 18

L

Labeled contour, 104
Layouts
customized subplots, 83-85
gridspec, 82
subplots, 82
legend() function, 64
Linear plot, with Matplotlib, 277
Linear visualization on polar
graph, 131
Line plot, 88
Line styles, 68
Logarithmic axes, 90
Logarithmic x-axis, 89
Logarithmic y-axis, 89
Lower triangular matrix, 43

Magnetic force field, 106
Markers, 69
Matplotlib, 45
program running, 52, 53
visualization, 46-51
Matplotlib, 17
Matplotlib’s CBook format, 200
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Matplotlib visualizations Normal y-axis, 89
axes, 61, 62 np.identity() function, 41
colors, 66, 67 np.zeroes() function, 42
customizations, 70, 71 NumPy, 16
function as contour, 171 constants, 34, 35
function as image, 170 and Ndarrays, 29, 31
grid, 60 routines, Ndarrays creation, 40-45
hexbins, 178 visualization, 46-51
labels for axes, 63 writing and reading files, 198

layouts (see Layouts)
legends in upper middle position, 65 o)
legend string, 64

line styles, 68 Object-oriented plotting, 71-73

markers, 69

Multiline Plots, 58-60 P

object-oriented plotting, 71-73 Pandas

single-line plot, 55, 57, 58 Pandas, 17

styles (see Styles) data analytics component, 181

subplotting, 73, 74 dataframe, 185-189

3D vignette, 172 install, 181

time plots and signals, 173-175 operations on series, 184
Multiline bar graph, 283 read_csv(), 201
Multiline graph, 58-61, 281 series, 182, 183
Multiline horizontal bar graph, 284 Pandemic data programmatically,
Multiline horizontal graph, 283 271-275
Multiline plots, 58-60 Partial scatter plot, 134

pcolormesh()
geometric transformation, 139, 140

N shading and a color map, 138, 139
Ndarrays pcolor() routine

container, 29 adding shading, 137

indexing, 32, 33 color maps, 136

NumPy, 29, 31 demonstration, 136

properties, 33, 34 nearest value, shading, 137

slicing operations, 36, 37 nonsquare matrix, 135
NetworkX, 17 Pickle file, 204
Normal distribution, 100 Pie charts
Normal x-axis, 89 with explosion, 127
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with legend, 128
notebook creation, 125
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title for legend, 129
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data visualizations with Pandas and
Matplotlib, 237-241
Pillow, 111
Plain-text file handling, 192, 193
plot() function, 47, 55, 63
plt.text() function, 72
Polar charts
bar visualization, 130
dataset creation, 129
linear visualization, 131
partial scatter plot, 134
polar coordinate system, 130
polar graph, 130
scatter plot, 133
spiral visualization, 132
Polar graph, 130, 131
pyplot module, 46
Python
Anaconda, 28
and Excel, 196, 198
IDLE, 10, 16
IDLE configuration window, 11
IDLE in Raspberry Pi OS menu, 12
IDLE on Windows, 9
installation
Ubuntu/Debian derivatives, 8
Windows Computer, 5-8
interactive mode, 13
Jupyter Notebook, 18
scientific Python ecosystem, 16
script mode, 14, 15
Python 3 programming language
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CSYV file with NumPy, 199
Excel file, 196, 198, 202
JSON, 203, 204
Matplotlib CBook, 200
Pickle file, 204
relational database table, 207, 208
Web, 204, 205
web API, 205, 207
Real-life data visualizations with and
Seaborn
KDE plot, 287
Real-life data visualizations with
Matplotlib and Seaborn
bar plot, 278-280
linear plot, 277, 278
multiline bar graph, 283
multiline graph, 281, 282
multiline horizontal graph, 283
Pie chart, 286
stacked area plot, 285
Relational database, 207, 208
relplot() function, 245, 247, 251
Rendering text, 73
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Scientific Python ecosystem, 16
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Script mode, 14
Seaborn
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dataframes, 244
definition, 243
distribution of data, visualizing
bivariate histogram with color, 261
bivariate histogram with custom
bins and rug plot, 262
bivariate KDE plot, 263
bivariate KDE plot with a rug plot
arranged in columns, 265
bivariate KDE plot with a rug plot
arranged in rows, 266
bivariate KDE plot with rug
plot, 264
customized buckets in
histogram, 258
customized colors in KDE plot, 259
eCDF graph, 255
histogram, 253
KDE graph, 254
real-life data visualized as
histogram, 257
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iris dataset, 245
plotting lines, time-series data, 252
plotting statistical relationships
scatter plot, 246, 247
scatter plot with colors, 248
scatter plot with colors and custom
styles, 249
scatter plot with colors and custom
styles and marker sizes, 250
Seaborn-style sinusoidal graph, 80
set_theme() function, 277
Shebang line, 15
Shrunken color bar, 141
Simple Plots, data visualizations with
Pandas and Matplotlib, 212, 213
Sine wave animation, 167
Single-line graph, 56, 57
Single-line plots, 55, 57, 58
Sinusoidals, 177
Slicing Ndarrays, 36, 37
Stacked area plots, 231, 285
Stacked bar graphs, 216
Stacked histogram, 219
Stem plot, 157
Step plots, 177
Stereo audio, 120
Stream plots
assign colors, 108
creation, 107
quiver plots, vector
visualizations, 109, 110
variable colors, 108
variable densities, 107, 108
variable line widths, 109
Styles
built-in style, 75
custom function, 79



default style, 75, 78
ggplot, 76
ggplot-style sinusoidal graph, 80
classic matplotlib style, 76
Seaborn-style sinusoidal graph, 80
sinusoidal graph, 79
temporary styling, 81

Subplots, 73, 74, 82

SymPy, 17

T

Temporary styling, 81
3D bars, 155
3D contours, 147, 148
3D linear plot, 146
3D scatter plot, 147
3D surface, 151
3D vignette visualization, 171, 172
3D visualizations
bar graphs, 152, 153, 155
contours, 147, 148
empty and interactive, 145
plotting 3D lines, 145
QT window, 143
quiver plots, 155, 156
Scatter Plots, 147
stem plot, 157
surface, 151
test data, 152
volumes, 158
wireframe, 149

INDEX

3D volume plot, 159
3D wireframe, 150
Time plots and signals, 173-175

U

Unstacked area plots, 232

Unstacked histogram, 219

Unstacked horizontal bar
graph, 217

Vv

Vertical cumulative histogram, 221
Visualization, NumPy and
Matplotlib
arange() function, 46
geomspace(), 51
logspace(), 51
multiple lines and title, 49
print function, 50
voxels() function, 159

W

Worldometers COVID-19 home
page, 271

XY 2Z
XKCD histogram, 179, 180
XKCD style, 178-180

299



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Python 3
	Introducing the Python 3 Programming Language
	History of the Python Programming Language
	Python Enhancement Proposals
	Philosophy of the Python Programming Language
	Applications of Python

	Installing Python on Various Platforms
	Installing on a Windows Computer
	Installing on Ubuntu/Debian Derivatives

	Using Python Modes
	Interactive Mode
	Script Mode

	Using Python IDEs
	Exploring the Scientific Python Ecosystem
	Introducing Jupyter Notebook
	Setting Up Jupyter Notebook
	Running Code in Jupyter Notebook
	Anaconda
	Summary

	Chapter 2: Getting Started with NumPy
	NumPy and Ndarrays
	Indexing in Ndarrays
	Indexing in Ndarrays of More Than One Dimension

	Ndarray Properties
	NumPy Constants
	Slicing Ndarrays
	Summary

	Chapter 3: NumPy Routines and Getting Started with Matplotlib
	Routines for Creating Ndarrays
	Matplotlib
	Visualization with NumPy and Matplotlib
	Running the Matplotlib Program as a Script
	Summary

	Chapter 4: Revisiting Matplotlib Visualizations
	Single-Line Plots
	Multiline Plots
	Grid, Axes, and Labels
	Colors, Styles, and Markers
	Object-Oriented Plotting
	Subplots
	Summary

	Chapter 5: Styles and Layouts
	Styles
	Layouts
	Summary

	Chapter 6: Lines, Bars, and Scatter Plots
	Lines and Logs
	Error Bars
	Bar Graphs
	Scatter Plot
	Summary

	Chapter 7: Histograms, Contours, and Stream Plots
	Histograms
	Contours
	Visualizing Vectors with Stream Plots
	Summary

	Chapter 8: Image and Audio Visualization
	Visualizing Images
	Image Masking

	Interpolation Methods
	Audio Visualization
	Audio Processing
	Summary

	Chapter 9: Pie and Polar Charts
	Pie Charts
	Polar Charts
	Summary

	Chapter 10: Working with Colors
	pcolor()
	pcolormesh()
	colorbar()
	Summary

	Chapter 11: 3D Visualizations in Matplotlib
	Getting Ready
	Plotting 3D Lines
	3D Scatter Plots
	3D Contours
	Wireframes, Surfaces, and Sample Data
	Bar Graphs
	Quiver and Stem Plots
	3D Volumes
	Summary

	Chapter 12: Animations with Matplotlib
	Animation Basics
	Celluloid Library
	Summary

	Chapter 13: More Visualizations with Matplotlib
	Visualizing a Function as an Image and a Contour
	3D Vignettes
	Decorated Scatter Plots
	Time Plots and Signals
	Filled Plots
	Step Plots
	Hexbins
	XKCD Style
	Summary

	Chapter 14: Introduction to Pandas
	Introduction to Pandas
	Series in Pandas
	Basic Operations on Series

	Dataframe in Pandas
	Summary

	Chapter 15: Data Acquisition
	Plain-Text File Handling
	Handling CSV Files with Python
	Python and Excel
	Writing and Reading Files with NumPy
	Reading the Data from a CSV File with NumPy
	Matplotlib CBook
	Reading Data from a CSV
	Reading Data from an Excel File
	Reading Data from JSON
	Reading Data from a Pickle File
	Reading Data from the Web
	Interacting with the Web API

	Reading Data from a Relational Database Table
	Reading Data from the Clipboard
	Summary

	Chapter 16: Visualizing Data with Pandas and Matplotlib
	Simple Plots
	Bar Graphs
	Histograms
	Box Plots
	Area Plots
	Scatter Plots
	Hexagonal Bin Plots
	Pie Charts
	Summary

	Chapter 17: Introduction to Data Visualization with Seaborn
	What Is Seaborn?
	Plotting Statistical Relationships
	Plotting Lines
	Visualizing the Distribution of Data
	Summary

	Chapter 18: Visualizing Real-Life Data with Matplotlib and Seaborn
	COVID-19 Pandemic Data
	Fetching the Pandemic Data Programmatically
	Preparing the Data for Visualization
	Creating Visualizations with Matplotlib and Seaborn
	Creating Visualizations of Animal Disease Data
	Summary

	Index



