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Preface
Data is a collection of discrete objects, events, and facts in the form of numbers, text,
pictures, videos, objects, audio, and other entities. Processing data provides a great deal
of information. But the million-dollar question is—how do we get meaningful information
from data? The answer to this question is Exploratory Data Analysis (EDA), which is the
process of investigating datasets, elucidating subjects, and visualizing outcomes. EDA is an
approach to data analysis that applies a variety of techniques to maximize specific insights
into a dataset, reveal an underlying structure, extract significant variables, detect outliers
and anomalies, test assumptions, develop models, and determine best parameters for
future estimations. This book, Hands-On Exploratory Data Analysis with Python, aims to
provide practical knowledge about the main pillars of EDA, including data cleansing, data
preparation, data exploration, and data visualization. Why visualization? Well, several
research studies have shown that portraying data in graphical form makes complex
statistical data analyses and business intelligence more marketable. 

You will get the opportunity to explore open source datasets including healthcare datasets,
demographics datasets, a Titanic dataset, a wine quality dataset, automobile datasets, a
Boston housing pricing dataset, and many others. Using these real-life datasets, you will get
hands-on practice in understanding data, summarize data's characteristics, and visualizing
data for business intelligence purposes. This book expects you to use pandas, a powerful
library for working with data, and other core Python libraries including NumPy, scikit-
learn, SciPy, StatsModels for regression, and Matplotlib for visualization.

Who this book is for
This book is for anyone who intends to analyze data, including students, teachers,
managers, engineers, statisticians, data analysts, and data scientists. The practical concepts
presented in this hands-on book are applicable to applications in various disciplines,
including linguistics, sociology, astronomy, marketing, business, management, quality
control, education, economics, medicine, psychology, engineering, biology, physics,
computer science, geosciences, chemistry, and any other fields where data analysis and
synthesis is required in order to improve knowledge and help in decision-making
processes. Fundamental understanding of Python programming and some statistical
concepts is all you need to get started with this book.
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What this book covers
Chapter 1, Exploratory Data Analysis Fundamentals, will help us learn and revise the
fundamental aspects of EDA. We will dig into the importance of EDA and the main data
analysis tasks, and try to make sense out of data. In addition to that, we will use Python to
explore different types of data, including numerical data, time-series data, geospatial data,
categorical data, and others. 

Chapter 2, Visual Aids for EDA, will help us gain proficiency with different tools for
visualizing the information that we get from investigation and make analysis much clearer.
We will figure out how to use data visualization tools such as box plots, histograms, multi-
variate charts, and more. Notwithstanding that, we will get our hands dirty in plotting an
enlightening visual graph using real databases. Finally, we will investigate the intuitive
forms of these plots.

Chapter 3, EDA with Personal Email, will help us figure out how to import a dataset from
your personal Gmail account and work on analyzing the extracted dataset. We will perform
basic EDA techniques, including data loading, data cleansing, data preparation, data
visualization, and data analysis, on the extracted dataset. 

Chapter 4, Data Transformation, is where you will take your first steps in data wrangling.
We will see how to merge database-style DataFrames, merge on the index, concatenate
along an axis, combine data with overlaps, reshape with hierarchical indexing, and pivot
from long to wide format. We will look at what needs to be done with a dataset before
analysis takes place, such as removing duplicates, replacing values, renaming axis indexes,
discretization and binning, and detecting and filtering outliers. We will work on
transforming data using a function or mapping, permutation, and random sampling and
computing indicators/dummy variables.

Chapter 5, Descriptive Statistics, will teach you about essential statistical measures for
gaining insights about data that are not noticeable at the surface level. We will become
familiar with the equations for computing the variance and standard deviation of datasets
as well as figuring out percentiles and quartiles. Furthermore, we will envision those
factual measures with visualization. We will use tools such as box plots to gain knowledge
from statistics.

Chapter 6, Grouping Datasets, will cover the rudiments of grouping and how it can change
our datasets in order to help us to analyze them better. We will look at different group-by
mechanics that will amass our dataset into various classes in which we can perform
aggregate activities. We will also figure out how to dissect categorical data with
visualizations, utilizing pivot tables and cross-tabulations.
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Chapter 7, Correlation, will help us to understand the correlation between different factors
and to identify to what degree different factors are relevant. We will learn about the
different kinds of examinations that we can carry out to discover the relationships between
data, including univariate analysis, bivariate analysis, and multivariate analysis on the
Titanic dataset, as well as looking at Simpson's paradox. We will observe how correlation
does not always equal causation.

Chapter 8, Time Series Analysis, will help us to understand time-series data and how to
perform EDA on it. We will use the open power system data for time series analysis. 

Chapter 9, Hypothesis Testing and Regression, will help us learn about hypothesis testing and
linear, non-linear, and multiple linear regression. We will build a basis for model
development and evaluation. We will be using polynomial regression and pipelines for
model evaluation.

Chapter 10, Model Development and Evaluation, will help us learn about a unified machine
learning approach, discuss different types of machine learning algorithms and evaluation
techniques. Moreover, in this chapter, we are going to perform the unsupervised learning
task of clustering with text data. Furthermore, we will discuss model selection and model
deployment techniques. 

Chapter 11, EDA on Wine Quality Data, will teach us how to use all the techniques learned
throughout the book to perform advanced EDA on a wine quality dataset. We will import
the dataset, research the variables, slice the data based on different points of interest, and
perform data analysis. 

To get the most out of this book
All the EDA activities in this book are based on Python 3.x. So, the first and foremost
requirement to run any code from this book is for you to have Python 3.x installed on your
computer irrespective of the operating system. Python can be installed on your system by
following the documentation on its official website: https:/ ​/​www. ​python. ​org/ ​downloads/ ​. 

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
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Here is the software that needs to be installed in order to execute the code:

Software/hardware covered in
the book OS requirements

Python 3.x Windows, macOS, Linux, or any other OS

Python notebooks

There are several options:
Local: Jupyter: https:/ ​/​jupyter. ​org/ ​
Local: https:/ ​/​www. ​anaconda. ​com/ ​distribution/ ​
Online: https:/ ​/ ​colab. ​research. ​google. ​com/ ​

Python libraries NumPy, pandas, scikit-learn, Matplotlib, Seaborn,
StatsModel

We primarily used Python notebooks to execute our code. One of the reasons for that is,
with them, it is relatively easy to break code into a clear structure and see the output on the
fly. It is always safer to install a notebook locally. The official website holds great
information on how they can be installed. However, if you do not want the hassle and
simply want to start learning immediately, then Google Colab provides a great platform
where you can code and execute code using both Python 2.x and Python 3.x with support
for Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs). 

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​hands- ​on- ​exploratory- ​data- ​analysis- ​with- ​python. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789537253_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "we visualized a time series dataset using the
matplotlib and seaborn libraries."

A block of code is set as follows:

import os
import numpy as np
%matplotlib inline from matplotlib
import pyplot as plt
import seaborn as sns

Any command-line input or output is written as follows:

> pip install virtualenv
> virtualenv Local_Version_Directory -p Python_System_Directory

https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/hands-on-exploratory-data-analysis-with-python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789537253_ColorImages.pdf
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Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Time series data may contain a notable amount of outliers."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/


1
Section 1: The Fundamentals of

EDA
The main objective of this section is to cover the fundamentals of Exploratory Data
Analysis (EDA) and understand different stages of the EDA process. We will also look at
the key concepts of profiling, quality assessment, the main aspects of EDA, and the
challenges and opportunities in EDA. In addition to this, we will be discovering different
useful visualization techniques. Finally, we will be discussing essential data transformation
techniques, including database-style dataframe merges, transformation techniques, and
benefits of data transformation. 

This section contains the following chapters:

Chapter 1, Exploratory Data Analysis Fundamentals
Chapter 2, Visual Aids for EDA
Chapter 3, EDA with Personal Email
Chapter 4, Data Transformation



1
Exploratory Data Analysis

Fundamentals
The main objective of this introductory chapter is to revise the fundamentals of Exploratory
Data Analysis (EDA), what it is, the key concepts of profiling and quality assessment, the
main dimensions of EDA, and the main challenges and opportunities in EDA.  

Data encompasses a collection of discrete objects, numbers, words, events, facts,
measurements, observations, or even descriptions of things. Such data is collected and
stored by every event or process occurring in several disciplines, including biology,
economics, engineering, marketing, and others. Processing such data elicits useful
information and processing such information generates useful knowledge. But an important
question is: how can we generate meaningful and useful information from such data? An
answer to this question is EDA. EDA is a process of examining the available dataset to
discover patterns, spot anomalies, test hypotheses, and check assumptions using statistical
measures. In this chapter, we are going to discuss the steps involved in performing top-
notch exploratory data analysis and get our hands dirty using some open source databases.

As mentioned here and in several studies, the primary aim of EDA is to examine what data
can tell us before actually going through formal modeling or hypothesis formulation. John
Tuckey promoted EDA to statisticians to examine and discover the data and create newer
hypotheses that could be used for the development of a newer approach in data collection
and experimentations. 

In this chapter, we are going to learn and revise the following topics:

Understanding data science
The significance of EDA
Making sense of data
Comparing EDA with classical and Bayesian analysis
Software tools available for EDA
Getting started with EDA
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Understanding data science
Let's get this out of the way by pointing out that, if you have not heard about data science,
then you should not be reading this book. Everyone right now is talking about data science
in one way or another. Data science is at the peak of its hype and the skills for data
scientists are changing. Now, data scientists are not only required to build a performant
model, but it is essential for them to explain the results obtained and use the result for
business intelligence. During my talks, seminars, and presentations, I find several people
trying to ask me: what type of skillset do I need to learn in order to become a top-notch data
scientist? Do I need to get a Ph.D. in data science? Well, one thing I could tell you straight
away is you do not need a Ph.D. to be an expert in data science. But one thing that people
generally agree on is that data science involves cross-disciplinary knowledge from
computer science, data, statistics, and mathematics. There are several phases of data
analysis, including data requirements, data collection, data processing, data cleaning,
exploratory data analysis, modeling and algorithms, and data product and
communication. These phases are similar to the CRoss-Industry Standard Process for data
mining (CRISP) framework in data mining.

The main takeaway here is the stages of EDA, as it is an important aspect of data analysis
and data mining. Let's understand in brief what these stages are:

Data requirements: There can be various sources of data for an organization. It is
important to comprehend what type of data is required for the organization to be
collected, curated, and stored. For example, an application tracking the sleeping
pattern of patients suffering from dementia requires several types of sensors'
data storage, such as sleep data, heart rate from the patient, electro-dermal
activities, and user activities pattern. All of these data points are required to
correctly diagnose the mental state of the person. Hence, these are mandatory
requirements for the application. In addition to this, it is required to categorize
the data, numerical or categorical, and the format of storage and dissemination. 
Data collection: Data collected from several sources must be stored in the correct
format and transferred to the right information technology personnel within a
company. As mentioned previously, data can be collected from several objects on
several events using different types of sensors and storage tools.
Data processing: Preprocessing involves the process of pre-curating the dataset
before actual analysis. Common tasks involve correctly exporting the dataset,
placing them under the right tables, structuring them, and exporting them in the
correct format.
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Data cleaning: Preprocessed data is still not ready for detailed analysis. It must
be correctly transformed for an incompleteness check, duplicates check, error
check, and missing value check. These tasks are performed in the data cleaning
stage, which involves responsibilities such as matching the correct record,
finding inaccuracies in the dataset, understanding the overall data quality,
removing duplicate items, and filling in the missing values. However, how could
we identify these anomalies on any dataset? Finding such data issues requires us
to perform some analytical techniques. We will be learning several such
analytical techniques in Chapter 4, Data Transformation. To understand briefly,
data cleaning is dependent on the types of data under study. Hence, it is most
essential for data scientists or EDA experts to comprehend different types of
datasets. An example of data cleaning would be using outlier detection methods
for quantitative data cleaning.
EDA: Exploratory data analysis, as mentioned before, is the stage where we
actually start to understand the message contained in the data. It should be noted
that several types of data transformation techniques might be required during
the process of exploration. We will cover descriptive statistics in-depth in Section
2, Chapter 5, Descriptive Statistics, to understand the mathematical foundation
behind descriptive statistics. This entire book is dedicated to tasks involved in
exploratory data analysis.
Modeling and algorithm: From a data science perspective, generalized models
or mathematical formulas can represent or exhibit relationships among different
variables, such as correlation or causation. These models or equations involve
one or more variables that depend on other variables to cause an event. For
example, when buying, say, pens, the total price of pens(Total) = price for one
pen(UnitPrice) * the number of pens bought (Quantity). Hence, our model would be
Total = UnitPrice * Quantity. Here, the total price is dependent on the unit price.
Hence, the total price is referred to as the dependent variable and the unit price is
referred to as an independent variable. In general, a model always describes the
relationship between independent and dependent variables. Inferential statistics
deals with quantifying relationships between particular variables.
The Judd model for describing the relationship between data, model, and error
still holds true: Data = Model + Error. We will discuss in detail model
development in Section 3, Chapter 10, Model Evaluation. An example of
inferential statistics would be regression analysis. We will discuss regression
analysis in Chapter 9, Regression.
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Data Product: Any computer software that uses data as inputs, produces
outputs, and provides feedback based on the output to control the environment
is referred to as a data product. A data product is generally based on a model
developed during data analysis, for example, a recommendation model that
inputs user purchase history and recommends a related item that the user is
highly likely to buy.
Communication: This stage deals with disseminating the results to end
stakeholders to use the result for business intelligence. One of the most notable
steps in this stage is data visualization. Visualization deals with information
relay techniques such as tables, charts, summary diagrams, and bar charts to
show the analyzed result. We will outline several visualization techniques in
Chapter 2, Visual Aids for EDA, with different types of data. 

The significance of EDA
Different fields of science, economics, engineering, and marketing accumulate and store
data primarily in electronic databases. Appropriate and well-established decisions should
be made using the data collected. It is practically impossible to make sense of datasets
containing more than a handful of data points without the help of computer programs. To
be certain of the insights that the collected data provides and to make further decisions,
data mining is performed where we go through distinctive analysis processes. Exploratory
data analysis is key, and usually the first exercise in data mining. It allows us to visualize
data to understand it as well as to create hypotheses for further analysis. The exploratory
analysis centers around creating a synopsis of data or insights for the next steps in a data
mining project.

EDA actually reveals ground truth about the content without making any underlying
assumptions. This is the fact that data scientists use this process to actually understand
what type of modeling and hypotheses can be created. Key components of exploratory data
analysis include summarizing data, statistical analysis, and visualization of data. Python
provides expert tools for exploratory analysis, with pandas for summarizing; scipy, along
with others, for statistical analysis; and matplotlib and plotly for visualizations.

That makes sense, right? Of course it does. That is one of the reasons why you are going
through this book. After understanding the significance of EDA, let's discover what are the
most generic steps involved in EDA in the next section.
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Steps in EDA
Having understood what EDA is, and its significance, let's understand the various steps
involved in data analysis. Basically, it involves four different steps. Let's go through each of
them to get a brief understanding of each step:

Problem definition: Before trying to extract useful insight from the data, it is
essential to define the business problem to be solved. The problem definition
works as the driving force for a data analysis plan execution. The main tasks
involved in problem definition are defining the main objective of the analysis,
defining the main deliverables, outlining the main roles and responsibilities,
obtaining the current status of the data, defining the timetable, and performing
cost/benefit analysis. Based on such a problem definition, an execution plan can
be created.
Data preparation: This step involves methods for preparing the dataset before
actual analysis. In this step, we define the sources of data, define data schemas
and tables, understand the main characteristics of the data, clean the dataset,
delete non-relevant datasets, transform the data, and divide the data into
required chunks for analysis.
Data analysis: This is one of the most crucial steps that deals with descriptive
statistics and analysis of the data. The main tasks involve summarizing the data,
finding the hidden correlation and relationships among the data, developing
predictive models, evaluating the models, and calculating the accuracies. Some of
the techniques used for data summarization are summary tables, graphs,
descriptive statistics, inferential statistics, correlation statistics, searching,
grouping, and mathematical models.
Development and representation of the results: This step involves presenting
the dataset to the target audience in the form of graphs, summary tables, maps,
and diagrams. This is also an essential step as the result analyzed from the
dataset should be interpretable by the business stakeholders, which is one of the
major goals of EDA. Most of the graphical analysis techniques include scattering
plots, character plots, histograms, box plots, residual plots, mean plots, and
others. We will explore several types of graphical representation in Chapter 2,
Visual Aids for EDA.   
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Making sense of data
It is crucial to identify the type of data under analysis. In this section, we are going to learn
about different types of data that you can encounter during analysis. Different disciplines 
store different kinds of data for different purposes. For example, medical researchers store
patients' data, universities store students' and teachers' data, and real estate industries
storehouse and building datasets. A dataset contains many observations about a particular
object. For instance, a dataset about patients in a hospital can contain many observations. A
patient can be described by a patient identifier (ID), name, address, weight, date of birth, address,
email, and gender. Each of these features that describes a patient is a variable. Each
observation can have a specific value for each of these variables. For example, a patient can
have the following:

PATIENT_ID = 1001
Name = Yoshmi Mukhiya
Address = Mannsverk 61, 5094, Bergen, Norway
Date of birth = 10th July 2018
Email = yoshmimukhiya@gmail.com
Weight = 10
Gender = Female

These datasets are stored in hospitals and are presented for analysis. Most of this data is
stored in some sort of database management system in tables/schema. An example of a
table for storing patient information is shown here:

PATIENT_ID NAME ADDRESS DOB EMAIL Gender WEIGHT

001
Suresh
Kumar
Mukhiya

Mannsverk,
61 30.12.1989 skmu@hvl.no Male 68

002 Yoshmi
Mukhiya

Mannsverk
61, 5094,
Bergen

10.07.2018 yoshmimukhiya@gmail.com Female 1

003 Anju
Mukhiya

Mannsverk
61, 5094,
Bergen

10.12.1997 anjumukhiya@gmail.com Female 24

004 Asha
Gaire

Butwal,
Nepal 30.11.1990 aasha.gaire@gmail.com Female 23

005 Ola
Nordmann

Danmark,
Sweden 12.12.1789 ola@gmail.com Male 75
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To summarize the preceding table, there are four observations (001, 002, 003, 004, 005). Each
observation describes variables (PatientID, name, address, dob, email, gender, and
weight). Most of the dataset broadly falls into two groups—numerical data and categorical
data. 

Numerical data
This data has a sense of measurement involved in it; for example, a person's age, height,
weight, blood pressure, heart rate, temperature, number of teeth, number of bones, and the
number of family members. This data is often referred to as quantitative data in statistics.
The numerical dataset can be either discrete or continuous types. 

Discrete data
This is data that is countable and its values can be listed out. For example, if we flip a coin,
the number of heads in 200 coin flips can take values from 0 to 200 (finite) cases. A variable 
that represents a discrete dataset is referred to as a discrete variable. The discrete variable
takes a fixed number of distinct values. For example, the Country variable can have values
such as Nepal, India, Norway, and Japan. It is fixed. The Rank variable of a student in a
classroom can take values from 1, 2, 3, 4, 5, and so on.  

Continuous data
A variable that can have an infinite number of numerical values within a specific range is
classified as continuous data. A variable describing continuous data is a continuous
variable. For example, what is the temperature of your city today? Can we be finite?
Similarly, the weight variable in the previous section is a continuous variable. We are
going to use a car dataset in Chapter 5, Descriptive Statistics, to perform EDA.
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A section of the table is shown in the following table:

Check the preceding table and determine which of the variables are discrete and which of
the variables are continuous. Can you justify your claim? Continuous data can follow an
interval measure of scale or ratio measure of scale. We will go into more detail in the
Measurement scales section in this chapter. 

Categorical data
This type of data represents the characteristics of an object; for example, gender, marital
status, type of address, or categories of the movies. This data is often referred to as
qualitative datasets in statistics. To understand clearly, here are some of the most common
types of categorical data you can find in data:

Gender (Male, Female, Other, or Unknown)
Marital Status (Annulled, Divorced, Interlocutory, Legally Separated, Married,
Polygamous, Never Married, Domestic Partner, Unmarried, Widowed, or
Unknown)
Movie genres (Action, Adventure, Comedy, Crime, Drama, Fantasy, Historical,
Horror, Mystery, Philosophical, Political, Romance, Saga, Satire, Science Fiction,
Social, Thriller, Urban, or Western)
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Blood type (A, B, AB, or O)
Types of drugs (Stimulants, Depressants, Hallucinogens, Dissociatives, Opioids,
Inhalants, or Cannabis)

A variable describing categorical data is referred to as a categorical variable. These types of
variables can have one of a limited number of values. It is easier for computer science
students to understand categorical values as enumerated types or enumerations of
variables. There are different types of categorical variables:

A binary categorical variable can take exactly two values and is also referred to
as a dichotomous variable. For example, when you create an experiment, the
result is either success or failure. Hence, results can be understood as a binary
categorical variable. 
Polytomous variables are categorical variables that can take more than two
possible values. For example, marital status can have several values, such as
annulled, divorced, interlocutory, legally separated, married, polygamous, never
married, domestic partners, unmarried, widowed, domestic partner, and
unknown. Since marital status can take more than two possible values, it is a
polytomous variable. 

Most of the categorical dataset follows either nominal or ordinal measurement scales. Let's
understand what is a nominal or ordinal scale in the next section. 

Measurement scales
There are four different types of measurement scales described in statistics: nominal,
ordinal, interval, and ratio. These scales are used more in academic industries. Let's
understand each of them with some examples.

Nominal
These are practiced for labeling variables without any quantitative value. The scales are 
generally referred to as labels. And these scales are mutually exclusive and do not carry
any numerical importance. Let's see some examples:

What is your gender?
Male
Female
Third gender/Non-binary
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I prefer not to answer
Other

Other examples include the following:
The languages that are spoken in a particular country
Biological species
Parts of speech in grammar (noun, pronoun, adjective, and so on)
Taxonomic ranks in biology (Archea, Bacteria, and Eukarya)

Nominal scales are considered qualitative scales and the measurements that are taken using
qualitative scales are considered qualitative data. However, the advancement in qualitative
research has created confusion to be definitely considered as qualitative. If, for example,
someone uses numbers as labels in the nominal measurement sense, they have no concrete
numerical value or meaning. No form of arithmetic calculation can be made on nominal
measures. 

You might be thinking why should you care about whether data is nominal or ordinal? Should we
not just start loading the data and begin our analysis? Well, we could. But think about this: you
have a dataset, and you want to analyze it. How will you decide whether you can make a
pie chart, bar chart, or histogram? Are you getting my point?

Well, for example, in the case of a nominal dataset, you can certainly know the following:

Frequency is the rate at which a label occurs over a period of time within the
dataset. 
Proportion can be calculated by dividing the frequency by the total number of
events.  
Then, you could compute the percentage of each proportion.
And to visualize the nominal dataset, you can use either a pie chart or a bar
chart.  

If you know your data follows nominal scales, you can use a pie chart or bar chart. That's
one less thing to worry about, right? My point is, understanding the type of data is relevant
in understanding what type of computation you can perform, what type of model you
should fit on the dataset, and what type of visualization you can generate. 
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Ordinal 
The main difference in the ordinal and nominal scale is the order. In ordinal scales, the
order of the values is a significant factor. An easy tip to remember the ordinal scale is that it
sounds like an order. Have you heard about the Likert scale, which uses a variation of an
ordinal scale? Let's check an example of ordinal scale using the Likert scale: WordPress is
making content managers' lives easier. How do you feel about this statement? The following
diagram shows the Likert scale:

As depicted in the preceding diagram, the answer to the question of WordPress is making
content managers' lives easier is scaled down to five different ordinal values, Strongly Agree,
Agree, Neutral, Disagree, and Strongly Disagree. Scales like these are referred to as the
Likert scale. Similarly, the following diagram shows more examples of the Likert scale:

To make it easier, consider ordinal scales as an order of ranking (1st, 2nd, 3rd, 4th, and so
on). The median item is allowed as the measure of central tendency; however, the average
is not permitted. 
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Interval
In interval scales, both the order and exact differences between the values are significant.
Interval scales are widely used in statistics, for example, in the measure of central
tendencies—mean, median, mode, and standard deviations. Examples include location in
Cartesian coordinates and direction measured in degrees from magnetic north. The mean,
median, and mode are allowed on interval data. 

Ratio
Ratio scales contain order, exact values, and absolute zero, which makes it possible to be
used in descriptive and inferential statistics. These scales provide numerous possibilities for
statistical analysis. Mathematical operations, the measure of central tendencies, and the
measure of dispersion and coefficient of variation can also be computed from such
scales.  

Examples include a measure of energy, mass, length, duration, electrical energy, plan angle,
and volume. The following table gives a summary of the data types and scale measures:

In the next section, we will compare EDA with classical and Bayesian analysis.
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Comparing EDA with classical and Bayesian
analysis
There are several approaches to data analysis. The most popular ones that are relevant to 
this book are the following:

Classical data analysis: For the classical data analysis approach, the problem
definition and data collection step are followed by model development, which is
followed by analysis and result communication. 
Exploratory data analysis approach: For the EDA approach, it follows the same
approach as classical data analysis except the model imposition and the data
analysis steps are swapped. The main focus is on the data, its structure, outliers,
models, and visualizations. Generally, in EDA, we do not impose any
deterministic or probabilistic models on the data.
Bayesian data analysis approach: The Bayesian approach incorporates prior
probability distribution knowledge into the analysis steps as shown in the
following diagram. Well, simply put, prior probability distribution of any
quantity expresses the belief about that particular quantity before considering
some evidence. Are you still lost with the term prior probability
distribution? Andrew Gelman has a very descriptive paper about prior probability
distribution. The following diagram shows three different approaches for data
analysis illustrating the difference in their execution steps:
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Data analysts and data scientists freely mix steps mentioned in the preceding approaches to
get meaningful insights from the data. In addition to that, it is essentially difficult to judge
or estimate which model is best for data analysis. All of them have their paradigms and are
suitable for different types of data analysis. 

Software tools available for EDA
There are several software tools that are available to facilitate EDA. Here, we are going to
outline some of the open source tools:

Python: This is an open source programming language widely used in data
analysis, data mining, and data science (https:/ ​/​www. ​python. ​org/ ​). For this
book, we will be using Python. 
R programming language: R is an open source programming language that is
widely utilized in statistical computation and graphical data analysis (https:/ ​/
www.​r- ​project. ​org).
Weka: This is an open source data mining package that involves several EDA
tools and algorithms (https:/ ​/ ​www.​cs. ​waikato. ​ac. ​nz/ ​ml/​weka/ ​).
KNIME: This is an open source tool for data analysis and is based on Eclipse
(https:/ ​/ ​www. ​knime. ​com/ ​). 

Getting started with EDA
As mentioned earlier, we are going to use Python as the main tool for data analysis. Yay!
Well, if you ask me why, Python has been consistently ranked among the top 10
programming languages and is widely adopted for data analysis and data mining by data
science experts. In this book, we assume you have a working knowledge of Python. If you
are not familiar with Python, it's probably too early to get started with data analysis. I
assume you are familiar with the following Python tools and packages:

Python programming

Fundamental concepts of variables, string, and data
types
Conditionals and functions
Sequences, collections, and iterations
Working with files
Object-oriented programming
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NumPy

Create arrays with NumPy, copy arrays, and divide
arrays
Perform different operations on NumPy arrays
Understand array selections, advanced indexing,
and expanding
Working with multi-dimensional arrays
Linear algebraic functions and built-in NumPy
functions

pandas

Understand and create DataFrame objects
Subsetting data and indexing data 
Arithmetic functions, and mapping with pandas
Managing index
Building style for visual analysis

Matplotlib
Loading linear datasets
Adjusting axes, grids, labels, titles, and legends
Saving plots

SciPy

Importing the package
Using statistical packages from SciPy
Performing descriptive statistics
Inference and data analysis

Before diving into details about analysis, we need to make sure we are on the same page.
Let's go through the checklist and verify that you meet all of the prerequisites to get the best
out of this book:

Setting up a virtual environment > pip install virtualenv
> virtualenv Local_Version_Directory -p Python_System_Directory

Reading/writing to files

filename = "datamining.txt"
file = open(filename, mode="r", encoding='utf-8')
for line in file:
 lines = file.readlines()
print(lines)
file.close()

Error handling

try:
  Value = int(input("Type a number between 47 and 100:"))
except ValueError:
   print("You must type a number between 47 and 100!")
else:
   if (Value > 47) and (Value <= 100):
       print("You typed: ", Value)
   else:
       print("The value you typed is incorrect!")

Object-oriented concept

class Disease:
  def __init__(self, disease = 'Depression'):
    self.type = disease
  def getName(self):
    print("Mental Health Diseases: {0}".format(self.type))

d1 = Disease('Social Anxiety Disorder')
d1.getName()

Next, let's look at the basic operations of EDA using the NumPy library.
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NumPy
In this section, we are going to revise the basic operations of EDA using the NumPy library.
If you are familiar with these operations, feel free to jump to the next section. It might feel
obvious when going through the code, but it is essential to make sure you understand these
concepts before digging into EDA operations. When I started learning data science
approaches, I followed a lot of blogs where they just reshaped an array or matrix. When I
ran their code, it worked fine, but I never understood how I was able to add two matrices of
different dimensions. In this section, I have tried to explicitly point out some of the basic
numpy operations: 

For importing numpy, we will use the following code:

import numpy as np

For creating different types of numpy arrays, we will use the following code:

# importing numpy
import numpy as np

# Defining 1D array
my1DArray = np.array([1, 8, 27, 64])
print(my1DArray)

# Defining and printing 2D array
my2DArray = np.array([[1, 2, 3, 4], [2, 4, 9, 16], [4, 8, 18, 32]])
print(my2DArray)

#Defining and printing 3D array
my3Darray = np.array([[[ 1, 2 , 3 , 4],[ 5 , 6 , 7 ,8]], [[ 1, 2,
3, 4],[ 9, 10, 11, 12]]])
print(my3Darray)
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For displaying basic information, such as the data type, shape, size, and strides of
a NumPy array, we will use the following code: 

# Print out memory address
print(my2DArray.data)

# Print the shape of array
print(my2DArray.shape)

# Print out the data type of the array
print(my2DArray.dtype)

# Print the stride of the array.
print(my2DArray.strides)

For creating an array using built-in NumPy functions, we will use the following
code:

# Array of ones
ones = np.ones((3,4))
print(ones)

# Array of zeros
zeros = np.zeros((2,3,4),dtype=np.int16)
print(zeros)

# Array with random values
np.random.random((2,2))

# Empty array
emptyArray = np.empty((3,2))
print(emptyArray)

# Full array
fullArray = np.full((2,2),7)
print(fullArray)

# Array of evenly-spaced values
evenSpacedArray = np.arange(10,25,5)
print(evenSpacedArray)

# Array of evenly-spaced values
evenSpacedArray2 = np.linspace(0,2,9)
print(evenSpacedArray2)



Exploratory Data Analysis Fundamentals Chapter 1

[ 25 ]

For NumPy arrays and file operations, we will use the following code:

# Save a numpy array into file
x = np.arange(0.0,50.0,1.0)
np.savetxt('data.out', x, delimiter=',')

# Loading numpy array from text
z = np.loadtxt('data.out', unpack=True)
print(z)

# Loading numpy array using genfromtxt method
my_array2 = np.genfromtxt('data.out',
                      skip_header=1,
                      filling_values=-999)
print(my_array2)

For inspecting NumPy arrays, we will use the following code:

# Print the number of `my2DArray`'s dimensions
print(my2DArray.ndim)

# Print the number of `my2DArray`'s elements
print(my2DArray.size)

# Print information about `my2DArray`'s memory layout
print(my2DArray.flags)

# Print the length of one array element in bytes
print(my2DArray.itemsize)

# Print the total consumed bytes by `my2DArray`'s elements
print(my2DArray.nbytes)
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Broadcasting is a mechanism that permits NumPy to operate with arrays of
different shapes when performing arithmetic operations:

# Rule 1: Two dimensions are operatable if they are equal
# Create an array of two dimension
A =np.ones((6, 8))

# Shape of A
print(A.shape)

# Create another array
B = np.random.random((6,8))

# Shape of B
print(B.shape)

# Sum of A and B, here the shape of both the matrix is same.
print(A + B)

Secondly, two dimensions are also compatible when one of the dimensions of the
array is 1. Check the example given here:

# Rule 2: Two dimensions are also compatible when one of them is 1
# Initialize `x`
x = np.ones((3,4))
print(x)

# Check shape of `x`
print(x.shape)

# Initialize `y`
y = np.arange(4)
print(y)

# Check shape of `y`
print(y.shape)

# Subtract `x` and `y`
print(x - y)

Lastly, there is a third rule that says two arrays can be broadcast together if they
are compatible in all of the dimensions. Check the example given here:

# Rule 3: Arrays can be broadcast together if they are compatible
in all dimensions
x = np.ones((6,8))
y = np.random.random((10, 1, 8))
print(x + y)
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The dimensions of x(6,8) and y(10,1,8) are different. However, it is possible to add
them. Why is that? Also, change y(10,2,8) or y(10,1,4) and it will give
ValueError. Can you find out why? (Hint: check rule 1). 

For seeing NumPy mathematics at work, we will use the following example:

# Basic operations (+, -, *, /, %)
x = np.array([[1, 2, 3], [2, 3, 4]])
y = np.array([[1, 4, 9], [2, 3, -2]])

# Add two array
add = np.add(x, y)
print(add)

# Subtract two array
sub = np.subtract(x, y)
print(sub)

# Multiply two array
mul = np.multiply(x, y)
print(mul)

# Divide x, y
div = np.divide(x,y)
print(div)

# Calculated the remainder of x and y
rem = np.remainder(x, y)
print(rem)

Let's now see how we can create a subset and slice an array using an index:

x = np.array([10, 20, 30, 40, 50])

# Select items at index 0 and 1
print(x[0:2])

# Select item at row 0 and 1 and column 1 from 2D array
y = np.array([[ 1, 2, 3, 4], [ 9, 10, 11 ,12]])
print(y[0:2, 1])

# Specifying conditions
biggerThan2 = (y >= 2)
print(y[biggerThan2])

Next, we will use the pandas library to gain insights from data. 
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Pandas
Wes McKinney open sourced the pandas library (https:/ ​/​github. ​com/ ​wesm) that has been
widely used in data science. We will be utilizing this library to get meaningful insight from
the data. Before delving in detail into this section, we are going to revisit some of the most
fundamental techniques in pandas that you should be familiar with so as to be able to
follow upcoming chapters. If these things are new to you, feel free to check one of the
further reading sections for additional resources. Perform the following steps:

Use the following to set default parameters:1.

import numpy as np
import pandas as pd
print("Pandas Version:", pd.__version__)

pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)

In pandas, we can create data structures in two ways: series and dataframes.2.
Check the following snippet to understand how we can create a dataframe from
series, dictionary, and n-dimensional arrays. 

The following code snippet shows how we can create a dataframe from a series:

series = pd.Series([2, 3, 7, 11, 13, 17, 19, 23])
print(series)

# Creating dataframe from Series
series_df = pd.DataFrame({
    'A': range(1, 5),
    'B': pd.Timestamp('20190526'),
    'C': pd.Series(5, index=list(range(4)), dtype='float64'),
    'D': np.array([3] * 4, dtype='int64'),
    'E': pd.Categorical(["Depression", "Social Anxiety", "Bipolar
Disorder", "Eating Disorder"]),
    'F': 'Mental health',
    'G': 'is challenging'
})
print(series_df)

The following code snippet shows how to create a dataframe for a dictionary:

# Creating dataframe from Dictionary
dict_df = [{'A': 'Apple', 'B': 'Ball'},{'A': 'Aeroplane', 'B':
'Bat', 'C': 'Cat'}]
dict_df = pd.DataFrame(dict_df)
print(dict_df)

https://github.com/wesm
https://github.com/wesm
https://github.com/wesm
https://github.com/wesm
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The following code snippet shows how to create a dataframe from n-dimensional
arrays:

# Creating a dataframe from ndarrays
sdf = {
    'County':['Østfold', 'Hordaland', 'Oslo', 'Hedmark', 'Oppland',
'Buskerud'],
    'ISO-Code':[1,2,3,4,5,6],
    'Area': [4180.69, 4917.94, 454.07, 27397.76, 25192.10,
14910.94],
    'Administrative centre': ["Sarpsborg", "Oslo", "City of Oslo",
"Hamar", "Lillehammer", "Drammen"]
    }
sdf = pd.DataFrame(sdf)
print(sdf)

Now, let's load a dataset from an external source into a pandas DataFrame. After3.
that, let's see the first 10 entries:

columns = ['age', 'workclass', 'fnlwgt', 'education',
'education_num',
    'marital_status', 'occupation', 'relationship', 'ethnicity',
'gender','capital_gain','capital_loss','hours_per_week','country_of
_origin','income']
df =
pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databas
es/adult/adult.data',names=columns)
df.head(10)

If you run the preceding cell, you should get an output similar to the following
screenshot:
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The following code displays the rows, columns, data types, and memory used by4.
the dataframe:

df.info()

The output of the preceding code snippet should be similar to the following:

# Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
age 32561 non-null int64
workclass 32561 non-null object
fnlwgt 32561 non-null int64
education 32561 non-null object
education_num 32561 non-null int64
marital_status 32561 non-null object
occupation 32561 non-null object
relationship 32561 non-null object
ethnicity 32561 non-null object
gender 32561 non-null object
capital_gain 32561 non-null int64
capital_loss 32561 non-null int64
hours_per_week 32561 non-null int64
country_of_origin 32561 non-null object
income 32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB

Let's now see how we can select rows and columns in any dataframe:5.

# Selects a row
df.iloc[10]

# Selects 10 rows
df.iloc[0:10]

# Selects a range of rows
df.iloc[10:15]

 # Selects the last 2 rows
df.iloc[-2:]

# Selects every other row in columns 3-5
df.iloc[::2, 3:5].head()
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Let's combine NumPy and pandas to create a dataframe as follows:6.

import pandas as pd
import numpy as np

np.random.seed(24)
dFrame = pd.DataFrame({'F': np.linspace(1, 10, 10)})
dFrame = pd.concat([df, pd.DataFrame(np.random.randn(10, 5),
columns=list('EDCBA'))],
               axis=1)
dFrame.iloc[0, 2] = np.nan
dFrame

 It should produce a dataframe table similar to the following screenshot:

Let's style this table using a custom rule. If the values are greater than zero, we7.
change the color to black (the default color); if the value is less than zero, we
change the color to red; and finally, everything else would be colored green. Let's
define a Python function to accomplish that:

# Define a function that should color the values that are less than
0
def colorNegativeValueToRed(value):
  if value < 0:
    color = 'red'
  elif value > 0:
    color = 'black'
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  else:
    color = 'green'

  return 'color: %s' % color

Now, let's pass this function to the dataframe. We can do this by using the style8.
method provided by pandas inside the dataframe:

s = df.style.applymap(colorNegativeValueToRed,
subset=['A','B','C','D','E'])
s

It should display a colored dataframe as shown in the following screenshot:

It should be noted that the applymap and apply methods are computationally
expensive as they apply to each value inside the dataframe. Hence, it will take
some time to execute. Have patience and await execution. 

Now, let's go one step deeper. We want to scan each column and highlight the 9.
maximum value and the minimum value in that column:

def highlightMax(s):
    isMax = s == s.max()
    return ['background-color: orange' if v else '' for v in isMax]

def highlightMin(s):
    isMin = s == s.min()
    return ['background-color: green' if v else '' for v in isMin]
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We apply these two functions to the dataframe as follows:

df.style.apply(highlightMax).apply(highlightMin).highlight_null(nul
l_color='red')

 The output should be similar to the following screenshot:

Are you still not happy with your visualization? Let's try to use another Python10.
library called seaborn and provide a gradient to the table:

import seaborn as sns

colorMap = sns.light_palette("pink", as_cmap=True)

styled = df.style.background_gradient(cmap=colorMap)
styled

 The dataframe should have an orange gradient applied to it:
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There are endless possibilities. How you present your result depends on you. Keep in mind
that when you present your results to end stakeholders (your managers, boss, or non-
technical persons), no matter how intelligently written your code is, it is worthless to them
if they cannot make sense of your program. It is widely accepted that better-visualized
results are easy to market. 

SciPy
SciPy is a scientific library for Python and is open source. We are going to use this library in
the upcoming chapters. This library depends on the NumPy library, which provides an
efficient n-dimensional array manipulation function. We are going to learn more about
these libraries in the upcoming chapters. My intention here is just to inform you to get
prepared to face other libraries apart from NumPy and pandas. If you want to get started
early, check for scipy.stats from the SciPy library. 

Matplotlib
Matplotlib provides a huge library of customizable plots, along with a comprehensive set of
backends. It can be utilized to create professional reporting applications, interactive
analytical applications, complex dashboard applications, web/GUI applications, embedded
views, and many more. We are going to explore Matplotlib in detail in Chapter 2, Visual
Aids for EDA. 

Summary
In this chapter, we revisited the most fundamental theory behind data analysis and
exploratory data analysis. EDA is one of the most prominent steps in data analysis and
involves steps such as data requirements, data collection, data processing, data cleaning,
exploratory data analysis, modeling and algorithms, data production, and
communication. It is crucial to identify the type of data under analysis. Different disciplines
store different kinds of data for different purposes. For example, medical researchers store
patients' data, universities store students' and teachers' data, real estate industries store
house and building datasets, and many more. A dataset contains many observations about
a particular object. Most of the datasets can be divided into numerical data and categorical
datasets. There are four types of data measurement scales: nominal, ordinal, interval, and
ratio. 
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We are going to use several Python libraries, including NumPy, pandas, SciPy, and
Matplotlib, in this book for performing simple to complex exploratory data analysis. In the
next chapter, we are going to learn about various types of visualization aids for exploratory
data analysis. 

Further reading
Myatt, Glenn J. (2006). Making Sense of Data: A Practical Guide to Exploratory Data
Analysis and Data Mining. Print ISBN:9780470074718 |Online ISBN:9780470101025
|DOI:10.1002/0470101024
Chatfield, C. (1995). Problem Solving: A Statistician's Guide (2nd ed.). Chapman
and Hall. ISBN 978-0412606304.
Prior distribution, Andrew Gelman Volume 3, pp 1634–1637, http:/ ​/​www. ​stat.
columbia. ​edu/ ​~gelman/ ​research/ ​published/ ​p039- ​_​o. ​pdf 

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. J Data
Warehousing; 5:13—22.
Judd, Charles and McCleland, Gary (1989). Data Analysis. Harcourt Brace
Jovanovich. ISBN 0-15-516765-0.
Carifio, James and Perla, Rocco J. (2007). Ten Common Misunderstandings,
Misconceptions, Persistent Myths, and Urban Legends about Likert Scales and Likert
Response Formats and Their Antidotes. Journal of Social Sciences. 3 (3): 106–116.
DOI:10.3844/jssp.2007.106.116
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2
Visual Aids for EDA

As data scientists, two important goals in our work would be to extract knowledge from the
data and to present the data to stakeholders. Presenting results to stakeholders is very
complex in the sense that our audience may not have enough technical know-how to
understand programming jargon and other technicalities. Hence, visual aids are very useful
tools. In this chapter, we will focus on different types of visual aids that can be used with
our datasets. We are going to learn about different types of techniques that can be used in
the visualization of data. 

In this chapter, we will cover the following topics: 

Line chart
Bar chart
Scatter plot
Area plot and stacked plot
Pie chart
Table chart
Polar chart
Histogram
Lollipop chart
Choosing the best chart
Other libraries to explore
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Technical requirements
You can find the code for this chapter on GitHub: https:/ ​/​github. ​com/ ​PacktPublishing/
hands-​on-​exploratory- ​data- ​analysis- ​with- ​python. In order to get the best out of this
chapter, ensure the following:

Make sure you have Python 3.X installed on your computer. It is recommended
to use a Python notebook such as Anaconda. 
You must have Python libraries such as pandas, seaborn, and matplotlib
installed. 

Line chart
Do you remember what a continuous variable is and what a discrete variable is? If not,
have a quick look at Chapter 1, Exploratory Data Analysis Fundamentals. Back to the main
topic, a line chart is used to illustrate the relationship between two or more continuous
variables.

We are going to use the matplotlib library and the stock price data to plot time series
lines. First of all, let's understand the dataset. We have created a function using the faker
Python library to generate the dataset. It is the simplest possible dataset you can imagine,
with just two columns. The first column is Date and the second column is Price,
indicating the stock price on that date.

Let's generate the dataset by calling the helper method. In addition to this, we have saved
the CSV file. You can optionally load the CSV file using the pandas (read_csv) library and
proceed with visualization.

My generateData function is defined here:

import datetime
import math
import pandas as pd
import random
import radar
from faker import Faker
fake = Faker()

def generateData(n):
  listdata = []
  start = datetime.datetime(2019, 8, 1)
  end = datetime.datetime(2019, 8, 30)
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  delta = end - start
  for _ in range(n):
    date = radar.random_datetime(start='2019-08-1',
stop='2019-08-30').strftime("%Y-%m-%d")
    price = round(random.uniform(900, 1000), 4)
    listdata.append([date, price])
  df = pd.DataFrame(listdata, columns = ['Date', 'Price'])
  df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d')
  df = df.groupby(by='Date').mean()

  return df

Having defined the method to generate data, let's get the data into a pandas dataframe and
check the first 10 entries:

df = generateData(50)
df.head(10)

The output of the preceding code is shown in the following screenshot:

Let's create the line chart in the next section. 
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Steps involved
Let's look at the process of creating the line chart:

Load and prepare the dataset. We will learn more about how to prepare data in1.
Chapter 4, Data Transformation. For this exercise, all the data is preprocessed.
Import the matplotlib library. It can be done with this command:2.

import matplotlib.pyplot as plt

Plot the graph:3.

plt.plot(df)

Display it on the screen:4.

plt.show()

Here is the code if we put it all together:

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (14, 10)
plt.plot(df)

And the plotted graph looks something like this:
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In the preceding example, we assume the data is available in the CSV format. In real-life
scenarios, the data is mostly available in CSV, JSON, Excel, or XML formats and is mostly
disseminated through some standard API. For this series, we assume you are already
familiar with pandas and how to read different types of files. If not, it's time to revise
pandas. Refer to the pandas documentation for further details: https:/ ​/​pandas-
datareader.​readthedocs. ​io/ ​en/ ​latest/ ​.

Bar charts
This is one of the most common types of visualization that almost everyone must have
encountered. Bars can be drawn horizontally or vertically to represent categorical
variables.

Bar charts are frequently used to distinguish objects between distinct collections in order to
track variations over time. In most cases, bar charts are very convenient when the changes
are large. In order to learn about bar charts, let's assume a pharmacy in Norway keeps track
of the amount of Zoloft sold every month. Zoloft is a medicine prescribed to patients
suffering from depression. We can use the calendar Python library to keep track of the
months of the year (1 to 12) corresponding to January to December:

Let's import the required libraries:1.

import numpy as np
import calendar
import matplotlib.pyplot as plt

Set up the data. Remember, the range stopping parameter is exclusive, meaning2.
if you generate range from (1, 13), the last item, 13, is not included:

months = list(range(1, 13))
sold_quantity = [round(random.uniform(100, 200)) for x in range(1,
13)]

Specify the layout of the figure and allocate space:3.

figure, axis = plt.subplots()

In the x axis, we would like to display the names of the months:4.

plt.xticks(months, calendar.month_name[1:13], rotation=20)

Plot the graph:5.

plot = axis.bar(months, sold_quantity)
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This step is optional depending upon whether you are interested in displaying6.
the data value on the head of the bar. It visually gives more meaning to show an
actual number of sold items on the bar itself:

for rectangle in plot:
height = rectangle.get_height()
axis.text(rectangle.get_x() + rectangle.get_width() /2., 1.002 *
height, '%d' % int(height), ha='center', va = 'bottom')

Display the graph on the screen:7.

plt.show()

The bar chart is as follows:
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Here are important observations from the preceding visualizations:

months and sold_quantity are Python lists representing the amount of Zoloft
sold every month.
We are using the subplots() method in the preceding code. Why? Well, it
provides a way to define the layout of the figure in terms of the number of
graphs and provides ways to organize them. Still confused? Don't worry, we will
be using subplots plenty of times in this chapter. Moreover, if you need a quick
reference, Packt has several books explaining matplotlib. Some of the most
interesting reads have been mentioned in the Further reading section of this
chapter.
In step 3, we use the plt.xticks() function, which allows us to change the
x axis tickers from 1 to 12, whereas calender.months[1:13] changes this
numerical format into corresponding months from the calendar Python library.
Step 4 actually prints the bar with months and quantity sold.
ax.text() within the for loop annotates each bar with its corresponding
values. How it does this might be interesting. We plotted these values by getting
the x and y coordinates and then adding bar_width/2 to the x coordinates with
a height of 1.002, which is the y coordinate. Then, using the va and ha
arguments, we align the text centrally over the bar.
Step 6 actually displays the graph on the screen.

As mentioned in the introduction to this section, we said that bars can be either horizontal
or vertical. Let's change to a horizontal format. All the code remains the same,
except plt.xticks changes to plt.yticks() and plt.bar() changes to plt.barh().
We assume it is self-explanatory.
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In addition to this, placing the exact data values is a bit tricky and requires a few iterations
of trial and error to place them perfectly. But let's see them in action:

months = list(range(1, 13))
sold_quantity = [round(random.uniform(100, 200)) for x in range(1, 13)]

figure, axis = plt.subplots()

plt.yticks(months, calendar.month_name[1:13], rotation=20)

plot = axis.barh(months, sold_quantity)

for rectangle in plot:
  width = rectangle.get_width()
  axis.text(width + 2.5, rectangle.get_y() + 0.38, '%d' % int(width),
ha='center', va = 'bottom')

plt.show()

And the graph it generates is as follows:
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Well, that's all about the bar chart in this chapter. We are certainly going to use several
other attributes in the subsequent chapters. Next, we are going to visualize data using a
scatter plot. 

Scatter plot
Scatter plots are also called scatter graphs, scatter charts, scattergrams, and scatter
diagrams. They use a Cartesian coordinates system to display values of typically two
variables for a set of data.

When should we use a scatter plot? Scatter plots can be constructed in the following two
situations:

When one continuous variable is dependent on another variable, which is under 
the control of the observer
When both continuous variables are independent

There are two important concepts—independent variable and dependent variable. In
statistical modeling or mathematical modeling, the values of dependent variables rely on
the values of independent variables. The dependent variable is the outcome variable being
studied. The independent variables are also referred to as regressors. The takeaway
message here is that scatter plots are used when we need to show the relationship between
two variables, and hence are sometimes referred to as correlation plots. We will dig into
more details about correlation in Chapter 7, Correlation.

You are either an expert data scientist or a beginner computer science student, and no
doubt you have encountered a form of scatter plot before. These plots are powerful tools for
visualization, despite their simplicity. The main reasons are that they have a lot of options,
representational powers, and design choices, and are flexible enough to represent a graph
in attractive ways.

Some examples in which scatter plots are suitable are as follows:

Research studies have successfully established that the number of hours of sleep
required by a person depends on the age of the person.
The average income for adults is based on the number of years of education.
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Let's take the first case. The dataset can be found in the form of a CSV file in the GitHub
repository:

headers_cols = ['age','min_recommended', 'max_recommended',
'may_be_appropriate_min', 'may_be_appropriate_max', 'min_not_recommended',
'max_not_recommended']

sleepDf =
pd.read_csv('https://raw.githubusercontent.com/PacktPublishing/hands-on-exp
loratory-data-analysis-with-python/master/Chapter%202/sleep_vs_age.csv',
columns=headers_cols)
sleepDf.head(10)

Having imported the dataset correctly, let's display a scatter plot. We start by importing the
required libraries and then plotting the actual graph. Next, we display the x-label and the y-
label. The code is given in the following code block:

import seaborn as sns
import matplotlib.pyplot as plt
sns.set()

# A regular scatter plot
plt.scatter(x=sleepDf["age"]/12., y=sleepDf["min_recommended"])
plt.scatter(x=sleepDf["age"]/12., y=sleepDf['max_recommended'])
plt.xlabel('Age of person in Years')
plt.ylabel('Total hours of sleep required')
plt.show()

The scatter plot generated by the preceding code is as follows:
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That was not so difficult, was it? Let's see if we can interpret the graph. You can explicitly
see that the total number of hours of sleep required by a person is high initially and
gradually decreases as age increases. The resulting graph is interpretable, but due to the
lack of a continuous line, the results are not self-explanatory. Let's fit a line to it and see if
that explains the results in a more obvious way:

# Line plot
plt.plot(sleepDf['age']/12., sleepDf['min_recommended'], 'g--')
plt.plot(sleepDf['age']/12., sleepDf['max_recommended'], 'r--')
plt.xlabel('Age of person in Years')
plt.ylabel('Total hours of sleep required')
plt.show()
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A line chart of the same data is as follows:

From the graph, it is clear that the two lines decline as the age increases. It shows that
newborns between 0 and 3 months require at least 14-17 hours of sleep every day.
Meanwhile, adults and the elderly require 7-9 hours of sleep every day. Is your sleeping
pattern within this range?

Let's take another example of a scatter plot using the most popular dataset used in data
science—the Iris dataset. The dataset was introduced by Ronald Fisher in 1936 and is
widely adopted by bloggers, books, articles, and research papers to demonstrate various
aspects of data science and data mining. The dataset holds 50 examples each of three
different species of Iris, named setosa, virginica, and versicolor. Each example has four
different attributes: petal_length, petal_width, sepal_length, and sepal_width.
The dataset can be loaded in several ways.
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Here, we are using seaborn to load the dataset:

Import seaborn and set some default parameters of matplotlib:1.

import seaborn as sns
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (8, 6)
plt.rcParams['figure.dpi'] = 150

Use style from seaborn. Try to comment on the next line and see the difference2.
in the graph:

sns.set()

Load the Iris dataset:3.

df = sns.load_dataset('iris')

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1,
"virginica": 2})

Create a regular scatter plot:4.

plt.scatter(x=df["sepal_length"], y=df["sepal_width"], c =
df.species)

Create the labels for the axes:5.

plt.xlabel('Septal Length')
plt.ylabel('Petal length')

Display the plot on the screen:6.

plt.show()
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The scatter plot generated by the preceding code is as follows:

Do you find this graph informative? We would assume that most of you agree that you can
clearly see three different types of points and that there are three different clusters.
However, it is not clear which color represents which species of Iris. Thus, we are going to
learn how to create legends in the Scatter plot using seaborn section.

Bubble chart
A bubble plot is a manifestation of the scatter plot where each data point on the graph is
shown as a bubble. Each bubble can be illustrated with a different color, size, and
appearance.

Let 's continue using the Iris dataset to get a bubble plot. Here, the important thing to note
is that we are still going to use the plt.scatter method to draw a bubble chart:

# Load the Iris dataset
df = sns.load_dataset('iris')

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1,
"virginica": 2})

# Create bubble plot
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plt.scatter(df.petal_length, df.petal_width,
            s=50*df.petal_length*df.petal_width,
            c=df.species,
            alpha=0.3
            )

# Create labels for axises
plt.xlabel('Septal Length')
plt.ylabel('Petal length')
plt.show()

The bubble chart generated by the preceding code is as follows:

Can you interpret the results? Well, it is not clear from the graph which color represents 
which species of Iris. But we can clearly see three different clusters, which clearly indicates
for each specific species or cluster there is a relationship between Petal Length and Petal
Width. 

Scatter plot using seaborn
A scatter plot can also be generated using the seaborn library. Seaborn makes the graph
visually better. We can illustrate the relationship between x and y for distinct subsets of the
data by utilizing the size, style, and hue parameters of the scatter plot in seaborn.
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Get more detailed information about the parameters from seaborn's
documentation website: https:/ ​/​seaborn. ​pydata. ​org/ ​generated/
seaborn. ​scatterplot. ​html.

Now, let's load the Iris dataset:

df = sns.load_dataset('iris')

df['species'] = df['species'].map({'setosa': 0, "versicolor": 1,
"virginica": 2})
sns.scatterplot(x=df["sepal_length"], y=df["sepal_width"], hue=df.species,
data=df)

The scatter plot generated from the preceding code is as follows:

In the preceding plot, we can clearly see there are three species of flowers indicated by
three distinct colors. It is more clear from the diagram how different specifies of flowers
vary in terms of the sepal width and the length. 

https://seaborn.pydata.org/generated/seaborn.scatterplot.html
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https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
https://seaborn.pydata.org/generated/seaborn.scatterplot.html
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Area plot and stacked plot
The stacked plot owes its name to the fact that it represents the area under a line plot and
that several such plots can be stacked on top of one another, giving the feeling of a stack.
The stacked plot can be useful when we want to visualize the cumulative effect of multiple
variables being plotted on the y axis.

In order to simplify this, think of an area plot as a line plot that shows the area covered by
filling it with a color. Enough talk. Let's dive into the code base. First of all, let's define the
dataset:

# House loan Mortgage cost per month for a year
houseLoanMortgage = [9000, 9000, 8000, 9000,
                    8000, 9000, 9000, 9000,
                    9000, 8000, 9000, 9000]

# Utilities Bills for a year
utilitiesBills = [4218, 4218, 4218, 4218,
                  4218, 4218, 4219, 2218,
                  3218, 4233, 3000, 3000]
# Transportation bill for a year
transportation = [782, 900, 732, 892,
                  334, 222, 300, 800,
                  900, 582, 596, 222]

# Car mortgage cost for one year
carMortgage = [700, 701, 702, 703,
              704, 705, 706, 707,
              708, 709, 710, 711]

Now, let's import the required libraries and plot stacked charts:

import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

months= [x for x in range(1,13)]

# Create placeholders for plot and add required color
plt.plot([],[], color='sandybrown', label='houseLoanMortgage')
plt.plot([],[], color='tan', label='utilitiesBills')
plt.plot([],[], color='bisque', label='transportation')
plt.plot([],[], color='darkcyan', label='carMortgage')

# Add stacks to the plot
plt.stackplot(months, houseLoanMortgage, utilitiesBills, transportation,
carMortgage, colors=['sandybrown', 'tan', 'bisque', 'darkcyan'])
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plt.legend()

# Add Labels
plt.title('Household Expenses')
plt.xlabel('Months of the year')
plt.ylabel('Cost')

# Display on the screen
plt.show()

In the preceding snippet, first, we imported matplotlib and seaborn. Nothing new,
right? Then we added stacks with legends. Finally, we added labels to the axes and 
displayed the plot on the screen. Easy and straightforward. Now you know how to create
an area plot or stacked plot. The area plot generated by the preceding code is as follows:

Now the most important part is the ability to interpret the graph. In the preceding graph, it
is clear that the house mortgage loan is the largest expense since the area under the curve
for the house mortgage loan is the largest. Secondly, the area of utility bills stack covers the
second-largest area, and so on. The graph clearly disseminates meaningful information to
the targeted audience. Labels, legends, and colors are important aspects of creating a
meaningful visualization. 
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Pie chart
This is one of the more interesting types of data visualization graphs. We say interesting
not because it has a higher preference or higher illustrative capacity, but because it is one of
the most argued-about types of visualization in research.

A paper by Ian Spence in 2005, No Humble Pie: The Origins and Usage of a Statistical Chart,
argues that the pie chart fails to appeal to most experts. Despite similar studies, people have
still chosen to use pie charts. There are several arguments given by communities for not
adhering to the pie chart. One of the arguments is that human beings are naturally poor at
distinguishing differences in slices of a circle at a glance. Another argument is that people
tend to overestimate the size of obtuse angles. Similarly, people seem to underestimate the
size of acute angles.

Having looked at the criticism, let's also have some positivity. One counterargument is this:
if the pie chart is not communicative, why does it persist? The main reason is that people
love circles. Moreover, the purpose of the pie chart is to communicate proportions and it is
widely accepted. Enough said; let's use the Pokemon dataset to draw a pie chart. There are
two ways in which you can load the data: first, directly from the GitHub URL; or you can
download the dataset from the GitHub and reference it from your local machine by
providing the correct path. In either case, you can use the read_csv method from the
pandas library. Check out the following snippet:

# Create URL to JSON file (alternatively this can be a filepath)
url =
'https://raw.githubusercontent.com/hmcuesta/PDA_Book/master/Chapter3/pokemo
nByType.csv'

# Load the first sheet of the JSON file into a data frame
pokemon = pd.read_csv(url, index_col='type')

pokemon
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The preceding code snippet should display the dataframe as follows:

Next, we attempt to plot the pie chart:

import matplotlib.pyplot as plt

plt.pie(pokemon['amount'], labels=pokemon.index, shadow=False,
startangle=90, autopct='%1.1f%%',)
plt.axis('equal')
plt.show()

We should get the following pie chart from the preceding code:



Visual Aids for EDA Chapter 2

[ 56 ]

Do you know you can directly use the pandas library to create a pie chart? Checkout the
following one-liner:

pokemon.plot.pie(y="amount", figsize=(20, 10))

 The pie chart generated is as follows:
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We generated a nice pie chart with a legend using one line of code. This is why Python is
said to be a comedian. Do you know why? Because it has a lot of one-liners. Pretty true,
right?

Table chart
A table chart combines a bar chart and a table. In order to understand the table chart, let's
consider the following dataset. Consider standard LED bulbs that come in different
wattages. The standard Philips LED bulb can be 4.5 Watts, 6 Watts, 7 Watts, 8.5 Watts, 9.5
Watts, 13.5 Watts, and 15 Watts. Let's assume there are two categorical variables, the year
and the wattage, and a numeric variable, which is the number of units sold in a particular
year.

Now, let's declare variables to hold the years and the available wattage data. It can be done
as shown in the following snippet:

# Years under consideration
years = ["2010", "2011", "2012", "2013", "2014"]

# Available watt
columns = ['4.5W', '6.0W', '7.0W','8.5W','9.5W','13.5W','15W']
unitsSold = [
             [65, 141, 88, 111, 104, 71, 99],
             [85, 142, 89, 112, 103, 73, 98],
             [75, 143, 90, 113, 89, 75, 93],
             [65, 144, 91, 114, 90, 77, 92],
             [55, 145, 92, 115, 88, 79, 93],
            ]

# Define the range and scale for the y axis
values = np.arange(0, 600, 100)

We have now prepared the dataset. Let's now try to draw a table chart using the following
code block:

colors = plt.cm.OrRd(np.linspace(0, 0.7, len(years)))
index = np.arange(len(columns)) + 0.3
bar_width = 0.7

y_offset = np.zeros(len(columns))
fig, ax = plt.subplots()

cell_text = []

n_rows = len(unitsSold)
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for row in range(n_rows):
    plot = plt.bar(index, unitsSold[row], bar_width, bottom=y_offset,
                   color=colors[row])
    y_offset = y_offset + unitsSold[row]
    cell_text.append(['%1.1f' % (x) for x in y_offset])
    i=0
# Each iteration of this for loop, labels each bar with corresponding value
for the given year
    for rect in plot:
        height = rect.get_height()
        ax.text(rect.get_x() + rect.get_width()/2, y_offset[i],'%d'
                % int(y_offset[i]),
                ha='center', va='bottom')
        i = i+1

Finally, let's add the table to the bottom of the chart:

# Add a table to the bottom of the axes
the_table = plt.table(cellText=cell_text, rowLabels=years,
                rowColours=colors, colLabels=columns, loc='bottom')
plt.ylabel("Units Sold")
plt.xticks([])
plt.title('Number of LED Bulb Sold/Year')
plt.show()

The preceding code snippets generate a nice table chart, as follows:
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Look at the preceding table chart. Do you think it can be easily interpreted? It is pretty
clear, right? You can see, for example, in the year 2014, 345 units of the 4.5-Watt bulb were
sold. Similarly, the same information can be deduced from the preceding table plot. 

Polar chart
Do you remember the polar axis from mathematics class? Well, a polar chart is a diagram
that is plotted on a polar axis. Its coordinates are angle and radius, as opposed to the
Cartesian system of x and y coordinates. Sometimes, it is also referred to as a spider web
plot. Let's see how we can plot an example of a polar chart.

First, let's create the dataset:

Let's assume you have five courses in your academic year:1.

subjects = ["C programming", "Numerical methods", "Operating
system", "DBMS", "Computer Networks"]

And you planned to obtain the following grades in each subject:2.

plannedGrade = [90, 95, 92, 68, 68, 90]

However, after your final examination, these are the grades you got:3.

actualGrade = [75, 89, 89, 80, 80, 75]

Now that the dataset is ready, let's try to create a polar chart. The first significant step is to
initialize the spider plot. This can be done by setting the figure size and polar projection.
This should be clear by now. Note that in the preceding dataset, the list of grades contains
an extra entry. This is because it is a circular plot and we need to connect the first point and
the last point together to form a circular flow. Hence, we copy the first entry from each list
and append it to the list. In the preceding data, the entries 90 and 75 are the first entries of
the list respectively. Let's look at each step:

Import the required libraries:1.

import numpy as np
import matplotlib.pyplot as plt

Prepare the dataset and set up theta:2.

theta = np.linspace(0, 2 * np.pi, len(plannedGrade))
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Initialize the plot with the figure size and polar projection:3.

plt.figure(figsize = (10,6))
plt.subplot(polar=True)

Get the grid lines to align with each of the subject names:4.

(lines,labels) = plt.thetagrids(range(0,360,
int(360/len(subjects))),
 (subjects))

Use the plt.plot method to plot the graph and fill the area under it:5.

plt.plot(theta, plannedGrade)
plt.fill(theta, plannedGrade, 'b', alpha=0.2)

Now, we plot the actual grades obtained:6.

plt.plot(theta, actualGrade)

We add a legend and a nice comprehensible title to the plot:7.

plt.legend(labels=('Planned Grades','Actual Grades'),loc=1)
plt.title("Plan vs Actual grades by Subject")

Finally, we show the plot on the screen:8.

plt.show()

The generated polar chart is shown in the following screenshot:
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As illustrated in the preceding output, the planned and actual grades by subject can easily
be distinguished. The legend makes it clear which line indicates the planned grades (the
blue line in the screenshot) and which line indicates actual grades (the orange line in the
screenshot). This gives a clear indication of the difference between the predicted and actual
grades of a student to the target audience. 

Histogram
Histogram plots are used to depict the distribution of any continuous variable. These types
of plots are very popular in statistical analysis.

Consider the following use cases. A survey created in vocational training sessions of
developers had 100 participants. They had several years of Python programming
experience ranging from 0 to 20.

Let's import the required libraries and create the dataset:

import numpy as np
import matplotlib.pyplot as plt

#Create data set
yearsOfExperience = np.array([10, 16, 14, 5, 10, 11, 16, 14, 3, 14, 13, 19,
2, 5, 7, 3, 20,
       11, 11, 14, 2, 20, 15, 11, 1, 15, 15, 15, 2, 9, 18, 1, 17, 18,
       13, 9, 20, 13, 17, 13, 15, 17, 10, 2, 11, 8, 5, 19, 2, 4, 9,
       17, 16, 13, 18, 5, 7, 18, 15, 20, 2, 7, 0, 4, 14, 1, 14, 18,
        8, 11, 12, 2, 9, 7, 11, 2, 6, 15, 2, 14, 13, 4, 6, 15, 3,
        6, 10, 2, 11, 0, 18, 0, 13, 16, 18, 5, 14, 7, 14, 18])
yearsOfExperience

In order to plot the histogram chart, execute the following steps:

Plot the distribution of group experience:1.

nbins = 20
n, bins, patches = plt.hist(yearsOfExperience, bins=nbins)

Add labels to the axes and a title:2.

plt.xlabel("Years of experience with Python Programming")
plt.ylabel("Frequency")
plt.title("Distribution of Python programming experience in the
vocational training session")
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Draw a green vertical line in the graph at the average experience:3.

plt.axvline(x=yearsOfExperience.mean(), linewidth=3, color = 'g')

Display the plot:4.

plt.show()

The preceding code generates the following histogram:

Much better, right? Now, from the graph, we can say that the average experience of the
participants is around 10 years. Can we improve the graph for better readability? How
about we try to plot the percentage of the sum of all the entries in yearsOfExperience? In
addition to that, we can also plot a normal distribution using the mean and standard
deviation of this data to see the distribution pattern. If you're not sure what a normal
distribution is, we suggest you go through the references in Chapter 1, Exploratory Data
Analysis Fundamentals. In a nutshell, the normal distribution is also referred to as the
Gaussian distribution. The term indicates a probability distribution that is symmetrical
about the mean, illustrating that data near the average (mean) is more frequent than data
far from the mean. Enough theory; let's dive into the practice.
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To plot the distribution, we can add a density=1 parameter in the plot.hist function.
Let's go through the code. Note that there are changes in steps 1, 4, 5, and 6. The rest of the
code is the same as the preceding example:

Plot the distribution of group experience:1.

plt.figure(figsize = (10,6))

nbins = 20
n, bins, patches = plt.hist(yearsOfExperience, bins=nbins,
density=1)

Add labels to the axes and a title:2.

plt.xlabel("Years of experience with Python Programming")
plt.ylabel("Frequency")
plt.title("Distribution of Python programming experience in the
vocational training session")

Draw a green vertical line in the graph at the average experience:3.

plt.axvline(x=yearsOfExperience.mean(), linewidth=3, color = 'g')

Compute the mean and standard deviation of the dataset:4.

mu = yearsOfExperience.mean()
sigma = yearsOfExperience.std()

Add a best-fit line for the normal distribution:5.

y = ((1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma
* (bins - mu))**2))

Plot the normal distribution:6.

plt.plot(bins, y, '--')

Display the plot:7.

plt.show()

And the generated histogram with the normal distribution is as follows: 
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The preceding plot illustrates clearly that it is not following a normal distribution. There are
many vertical bars that are above and below the best-fit curve for a normal distribution.
Perhaps you are wondering where we got the formula to compute step 6 in the preceding
code. Well, there is a little theory involved here. When we mentioned the normal
distribution, we can compute the probability density function using the Gaussian
distribution function given by ((1 / (np.sqrt(2 * np.pi) * sigma)) *
np.exp(-0.5 * (1 / sigma * (bins - mu))**2)).

Lollipop chart
A lollipop chart can be used to display ranking in the data. It is similar to an ordered bar
chart. 

Let's consider the carDF dataset. It can be found in the GitHub repository for chapter 2.
Alternatively, it can be used from the GitHub link directly, as mention in the following
code:

Load the dataset:1.

#Read the dataset

carDF =
pd.read_csv('https://raw.githubusercontent.com/PacktPublishing/hand
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s-on-exploratory-data-analysis-with-
python/master/Chapter%202/cardata.csv')

Group the dataset by manufacturer. For now, if it does not make sense, just2.
remember that the following snippet groups the entries by a particular field (we
will go through groupby functions in detail in Chapter 4, Data Transformation):

#Group by manufacturer and take average mileage
processedDF =
carDF[['cty','manufacturer']].groupby('manufacturer').apply(lambda
x: x.mean())

Sort the values by cty and reset the index (again, we will go through sorting3.
and how we reset the index in Chapter 4, Data Transformation):

#Sort the values by cty and reset index
processedDF.sort_values('cty', inplace=True)
processedDF.reset_index(inplace=True)

Plot the graph:4.

#Plot the graph
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.vlines(x=processedDF.index, ymin=0, ymax=processedDF.cty,
color='firebrick', alpha=0.7, linewidth=2)
ax.scatter(x=processedDF.index, y=processedDF.cty, s=75,
color='firebrick', alpha=0.7)

Annotate the title:5.

#Annotate Title
ax.set_title('Lollipop Chart for Highway Mileage using car
dataset', fontdict={'size':22})

Annotate labels, xticks, and ylims:6.

ax.set_ylabel('Miles Per Gallon')
ax.set_xticks(processedDF.index)
ax.set_xticklabels(processedDF.manufacturer.str.upper(),
rotation=65, fontdict={'horizontalalignment': 'right', 'size':12})
ax.set_ylim(0, 30)

Write the actual mean values in the plot, and display the plot:7.

#Write the values in the plot
for row in processedDF.itertuples():
    ax.text(row.Index, row.cty+.5, s=round(row.cty, 2),
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horizontalalignment= 'center', verticalalignment='bottom',
fontsize=14)

#Display the plot on the screen
plt.show()

The lollipop chart generated by the preceding snippet is as follows:

Having seen the preceding output, you now know why it is called a lollipop chart, don't
you? The line and the circle on the top gives a nice illustration of different types of cars and
their associated miles per gallon consumption. Now, the data makes more sense, doesn't it?

Choosing the best chart
There is no standard that defines which chart you should choose to visualize your data.
However, there are some guidelines that can help you. Here are some of them:

As mentioned with each of the preceding charts that we have seen, it is
important to understand what type of data you have. If you have continuous
variables, then a histogram would be a good choice. Similarly, if you want to
show ranking, an ordered bar chart would be a good choice.
Choose the chart that effectively conveys the right and relevant meaning of the
data without actually distorting the facts.
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Simplicity is best. It is considered better to draw a simple chart that is
comprehensible than to draw sophisticated ones that require several reports and
texts in order to understand them.
Choose a diagram that does not overload the audience with information. Our
purpose should be to illustrate abstract information in a clear way.

Having said that, let's see if we can generalize some categories of charts based on various
purposes.

The following table shows the different types of charts based on the purposes:

Purpose Charts

Show correlation

Scatter plot
Correlogram
Pairwise plot

Jittering with strip plot
Counts plot

Marginal histogram
Scatter plot with a line of best fit

Bubble plot with circling

Show deviation

Area chart
Diverging bars
Diverging texts

Diverging dot plot
Diverging lollipop plot with markers

Show distribution

Histogram for continuous variable
Histogram for categorical variable

Density plot
Categorical plots

Density curves with histogram
Population pyramid

Violin plot
Joy plot

Distributed dot plot
Box plot

Show composition

Waffle chart
Pie chart
Treemap
Bar chart
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Show change

Time series plot
Time series with peaks and troughs annotated

Autocorrelation plot
Cross-correlation plot
Multiple time series

Plotting with different scales using the secondary y axis
Stacked area chart

Seasonal plot
Calendar heat map

Area chart unstacked

Show groups

Dendrogram
Cluster plot

Andrews curve
Parallel coordinates

Show ranking

Ordered bar chart
Lollipop chart

Dot plot
Slope plot

Dumbbell plot

Note that going through each and every type of plot mentioned in the table is beyond the
scope of this book. However, we have tried to cover most of them in this chapter. A few of
them will be used in the upcoming chapters; we will use these graphs in more contextual
ways and with advanced settings. 

Other libraries to explore
So far, we have seen different types of 2D and 3D visualization techniques using
matplotlib and seaborn. Apart from these widely used Python libraries, there are other
libraries that you can explore:

Ploty (https:/ ​/ ​plot. ​ly/ ​python/ ​): This is a web-application-based toolkit for
visualization. Its API for Jupyter Notebook and other applications makes it very
powerful to represent 2D and 3D charts.
Ggplot (http:/ ​/​ggplot. ​yhathq. ​com/ ​): This is a Python implementation based
on the Grammar of Graphics library from the R programming language.
Altair (https:/ ​/ ​altair- ​viz. ​github. ​io/ ​): This is built on the top of the
powerful Vega-Lite visualization grammar and follows very declarative 
statistical visualization library techniques. In addition to that, it has a very
descriptive and simple API.

https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/python/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
http://ggplot.yhathq.com/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
https://altair-viz.github.io/
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Summary
Portraying any data, events, concepts, information, processes, or methods graphically has
been always perceived with a high degree of comprehension on one hand and is easily
marketable on the other. Presenting results to stakeholders is very complex in the sense that
our audience may not be technical enough to understand programming jargon and
technicalities. Hence, visual aids are widely used. In this chapter, we discussed how to use
such data visualization tools.

In the next chapter, we are going to get started with exploratory data analysis in a very
simple way. We will try to analyze our mailbox and analyze what type of emails we send
and receive. 

Further reading
Matplotlib 3.0 Cookbook, Srinivasa Rao Poladi, Packt Publishing, October 22, 2018
Matplotlib Plotting Cookbook, Alexandre Devert, Packt Publishing, March 26, 2014
Data Visualization with Python, Mario Döbler, Tim Großmann, Packt
Publishing, February 28, 2019
No Humble Pie: The Origins and Usage of a Statistical Chart, Ian Spence, University of
Toronto, 2005.
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EDA with Personal Email

The exploration of useful insights from a dataset requires a great deal of thought and a high
level of experience and practice. The more you deal with different types of datasets, the
more experience you gain in understanding the types of insights that can be mined. For
example, if you have worked with text datasets, you will discover that you can mine a lot of
keywords, patterns, and phrases. Similarly, if you have worked with time-series datasets,
then you will understand that you can mine patterns relevant to weeks, months, and
seasons. The point here is that the more you practice, the better you become at
understanding the types of insights that can be pulled and the types of visualizations that
can be done. Having said that, in this chapter, we are going to use one of our own email
datasets and perform exploratory data analysis (EDA). 

You will learn about how to export all your emails as a dataset, how to use import them
inside a pandas dataframe, how to visualize them, and the different types of insights you
can gain. 

In this chapter, we will cover the following topics: 

Loading the dataset
Data transformation
Data analysis
Further reading recommendations
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Technical requirements
The code for this chapter can found inside the GitHub repository shared with this book
inside the Chapter 3 folder. This dataset consists of email data taken from my personal
Gmail account. Due to privacy issues, the dataset cannot be shared with you. However, in
this chapter, we will guide you on how you can download your own emails from Gmail to
perform initial data analysis.

Here are the steps to follow:

Log in to your personal Gmail account. 1.
Go to the following link: https:/ ​/ ​takeout. ​google. ​com/​settings/ ​takeout.2.
Deselect all the items but Gmail, as shown in the following screenshot:3.

Select the archive format, as shown in the following screenshot:4.

https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
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Note that I selected Send download link by email, One-time archive, .zip, and the
maximum allowed size. You can customize the format. Once done, hit Create archive. 

You will get an email archive that is ready for download. You can use the path to the mbox
file for further analysis, which will be discussed in this chapter. 

Now let's load the dataset.
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Loading the dataset
First of all, it is essential to download the dataset. Follow the preceding steps from the
Technical requirements section and download the data. Gmail (https:/ ​/​takeout. ​google.
com/​settings/​takeout) provides data in mbox format. For this chapter, I loaded my own
personal email from Google Mail. For privacy reasons, I cannot share the dataset. However,
I will show you different EDA operations that you can perform to analyze several aspects
of your email behavior:

Let's load the required libraries:1.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Note that for this analysis, we need to have the mailbox package
installed. If it is not installed on your system, it can be added to your
Python build using the pip install mailbox instruction.

When you have loaded the libraries, load the dataset:2.

import mailbox

mboxfile = "PATH TO DOWNLOADED MBOX FIL"
mbox = mailbox.mbox(mboxfile)
mbox

Note that it is essential that you replace the mbox file path with your own path.

The output of the preceding code is as follows:

<mailbox.mbox at 0x7f124763f5c0>

The output indicates that the mailbox has been successfully created.

Next, let's see the list of available keys:3.

for key in mbox[0].keys():
  print(key)

https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
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The output of the preceding code is as follows:

X-GM-THRID
X-Gmail-Labels
Delivered-To
Received
X-Google-Smtp-Source
X-Received
ARC-Seal
ARC-Message-Signature
ARC-Authentication-Results
Return-Path
Received
Received-SPF
Authentication-Results
DKIM-Signature
DKIM-Signature
Subject
From
To
Reply-To
Date
MIME-Version
Content-Type
X-Mailer
X-Complaints-To
X-Feedback-ID
List-Unsubscribe
Message-ID

The preceding output shows the list of keys that are present in the extracted dataset. 

Data transformation
Although there are a lot of objects returned by the extracted data, we do not need all the
items. We will only extract the required fields. Data cleansing is one of the essential steps in
the data analysis phase. For our analysis, all we need is data for the following: subject, from,
date, to, label, and thread. 

Let's look at all the steps involved in data transformation in the following sections.
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Data cleansing
 Let's create a CSV file with only the required fields. Let's start with the following steps:

Import the csv package:1.

import csv

Create a CSV file with only the required attributes:2.

with open('mailbox.csv', 'w') as outputfile:
 writer = csv.writer(outputfile)
  writer.writerow(['subject','from','date','to','label','thread'])
  for message in mbox:
    writer.writerow([
      message['subject'],
      message['from'],
      message['date'],
      message['to'],
      message['X-Gmail-Labels'],
      message['X-GM-THRID']
    ]
  )

The preceding output is a csv file named mailbox.csv. Next, instead of loading the mbox
file, we can use the CSV file for loading, which will be smaller than the original dataset.

Loading the CSV file
We will load the CSV file. Refer to the following code block:

dfs = pd.read_csv('mailbox.csv', names=['subject', 'from', 'date', 'to',
'label', 'thread'])

The preceding code will generate a pandas dataframe with only the required fields stored
in the CSV file. 

Converting the date
Next, we will convert the date.

Check the datatypes of each column as shown here:

dfs.dtypes
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The output of the preceding code is as follows:

subject object
from object
date object
to object
label object
thread float64
dtype: object

Note that a date field is an object. So, we need to convert it into a DateTime argument. In
the next step, we are going to convert the date field into an actual DateTime argument. We
can do this by using the pandas to_datetime() method. See the following code:

dfs['date'] = dfs['date'].apply(lambda x: pd.to_datetime(x,
errors='coerce', utc=True))

Let's move onto the next step, that is, removing NaN values from the fields.

Removing NaN values
Next, we are going to remove NaN values from the field.

We can do this as follows:

dfs = dfs[dfs['date'].notna()]

Next, it is good to save the preprocessed file into a separate CSV file in case we need it
again. We can save the dataframe into a separate CSV file as follows:

dfs.to_csv('gmail.csv')

Great! Having done that, let's do some descriptive statistics. 

Applying descriptive statistics
Having preprocessed the dataset, let's do some sanity checking using descriptive statistics
techniques. 

We can implement this as shown here: 

dfs.info()



EDA with Personal Email Chapter 3

[ 77 ]

The output of the preceding code is as follows:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 37554 entries, 1 to 78442
Data columns (total 6 columns):
subject 37367 non-null object
from 37554 non-null object
date 37554 non-null datetime64[ns, UTC]
to 36882 non-null object
label 36962 non-null object
thread 37554 non-null object
dtypes: datetime64[ns, UTC](1), object(5)
memory usage: 2.0+ MB

We will learn more about descriptive statistics in Chapter 5, Descriptive Statistics. Note that
there are 37,554 emails, with each email containing six columns—subject, from, date, to,
label, and thread. Let's check the first few entries of the email dataset:

dfs.head(10)

The output of the preceding code is as follows:

Note that our dataframe so far contains six different columns. Take a look at the from field:
it contains both the name and the email. For our analysis, we only need an email address.
We can use a regular expression to refactor the column. 
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Data refactoring
We noticed that the from field contains more information than we need. We just need to
extract an email address from that field. Let's do some refactoring:

First of all, import the regular expression package:1.

import re

Next, let's create a function that takes an entire string from any column and2.
extracts an email address:

def extract_email_ID(string):
  email = re.findall(r'<(.+?)>', string)
  if not email:
    email = list(filter(lambda y: '@' in y, string.split()))
  return email[0] if email else np.nan

The preceding function is pretty straightforward, right? We have used a regular
expression to find an email address. If there is no email address, we populate the
field with NaN. Well, if you are not sure about regular expressions, don't worry.
Just read the Appendix. 

Next, let's apply the function to the from column:3.

dfs['from'] = dfs['from'].apply(lambda x: extract_email_ID(x))

We used the lambda function to apply the function to each and every value in the
column.

Next, we are going to refactor the label field. The logic is simple. If an email is4.
from your email address, then it is the sent email. Otherwise, it is a received
email, that is, an inbox email:

myemail = 'itsmeskm99@gmail.com'
dfs['label'] = dfs['from'].apply(lambda x: 'sent' if x==myemail
else 'inbox')

The preceding code is self-explanatory.
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Dropping columns
Let's drop a column:

Note that the to column only contains your own email. So, we can drop this1.
irrelevant column:

dfs.drop(columns='to', inplace=True)

This drops the to column from the dataframe. Let's display the first 10 entries2.
now:

dfs.head(10)

The output of the preceding code is as follows:

Check the preceding output. The fields are cleaned. The data is transformed into the correct
format. 

Refactoring timezones
Next, we want to refactor the timezone based on our timezone:

We can refactor timezones by using the method given here:1.

import datetime
import pytz

def refactor_timezone(x):
  est = pytz.timezone('US/Eastern')
  return x.astimezone(est)
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Note that in the preceding code, I converted the timezone into the US/Eastern
timezone. You can choose whatever timezone you like.

Now that our function is created, let's call it:2.

dfs['date'] = dfs['date'].apply(lambda x: refactor_timezone(x))

Next, we want to convert the day of the week variable into the name of the day,3.
as in, Saturday, Sunday, and so on. We can do that as shown here:

dfs['dayofweek'] = dfs['date'].apply(lambda x: x.weekday_name)
dfs['dayofweek'] = pd.Categorical(dfs['dayofweek'], categories=[
    'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
    'Saturday', 'Sunday'], ordered=True)

Great! Next, we do the same process for the time of the day. See the snippet4.
given here:

dfs['timeofday'] = dfs['date'].apply(lambda x: x.hour + x.minute/60
+ x.second/3600)

Next, we refactor the hour, the year integer, and the year fraction,5.
respectively. First, refactor the hour as shown here:

dfs['hour'] = dfs['date'].apply(lambda x: x.hour)

Refactor the year integer as shown here:6.

dfs['year_int'] = dfs['date'].apply(lambda x: x.year)

Lastly, refactor the year fraction as shown here:7.

dfs['year'] = dfs['date'].apply(lambda x: x.year +
x.dayofyear/365.25)

Having done that, we can set the date to index and we will no longer require the8.
original date field. So, we can remove that:

dfs.index = dfs['date']
del dfs['date']

Great! Good work so far. We have successfully executed our data transformation steps. If
some of the steps were not clear, don't worry—we are going to deal with each of these
phases in detail in upcoming chapters.
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Data analysis
This is the most important part of EDA. This is the part where we gain insights from the
data that we have.

Let's answer the following questions one by one:

How many emails did I send during a given timeframe? 1.
At what times of the day do I send and receive emails with Gmail?2.
What is the average number of emails per day?3.
What is the average number of emails per hour?4.
Whom do I communicate with most frequently?5.
What are the most active emailing days?6.
What am I mostly emailing about?7.

In the following sections, we will answer the preceding questions.

Number of emails
The answer to the first question, "How many emails did I send during a given timeframe?",
can be answered as shown here:

print(dfs.index.min().strftime('%a, %d %b %Y %I:%M %p'))
print(dfs.index.max().strftime('%a, %d %b %Y %I:%M %p'))

print(dfs['label'].value_counts())

The output of the preceding code is given here:

Tue, 24 May 2011 11:04 AM
Fri, 20 Sep 2019 03:04 PM
inbox 32952
sent 4602
Name: label, dtype: int64

If you analyze the output, you'll see that we analyzed emails from Tue, 24 May 2011 11:04
AM, to Fri, 20 Sep 2019 03:04 PM. There were 32,952 emails received and 4,602 emails sent
during this timeframe. That is a pretty good insight, right? Now, let's jump into the next
question. 
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Time of day
To answer the next question, At what times of the day do I send and receive emails with
Gmail? let's create a graph. We'll take a look at sent emails and received emails:

Let's create two sub-dataframe—one for sent emails and another for received1.
emails:

sent = dfs[dfs['label']=='sent']
received = dfs[dfs['label']=='inbox']

It is pretty obvious, right? Remember, we set a couple of labels, sent and inbox,
earlier. Now, let's create a plot.

First, let's import the required libraries:2.

import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from scipy import ndimage
import matplotlib.gridspec as gridspec
import matplotlib.patches as mpatches

Now, let's create a function that takes a dataframe as an input and creates a plot.3.
See the following function:

def plot_todo_vs_year(df, ax, color='C0', s=0.5, title=''):
  ind = np.zeros(len(df), dtype='bool')
  est = pytz.timezone('US/Eastern')
  df[~ind].plot.scatter('year', 'timeofday', s=s, alpha=0.6, ax=ax,
color=color)
  ax.set_ylim(0, 24)
  ax.yaxis.set_major_locator(MaxNLocator(8))
  ax.set_yticklabels([datetime.datetime.strptime(str(int(np.mod(ts,
24))), "%H").strftime("%I %p") for ts in ax.get_yticks()]);

  ax.set_xlabel('')
  ax.set_ylabel('')
  ax.set_title(title)
  ax.grid(ls=':', color='k')

  return ax
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By now, you should be familiar with how to create a scatter plot. We discussed
doing so in detail in Chapter 2, Visual Aids for EDA. If you are confused about
some terms, it is suggested that you revisit that chapter. 

Now, let's plot both received and sent emails. Check out the code given here:4.

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15, 4))

plot_todo_vs_year(sent, ax[0], title='Sent')
plot_todo_vs_year(received, ax[1], title='Received')

The output of the preceding code is as follows:

Check out the preceding graph. The higher the density of the graph data points, the higher
the number of emails. Note that the number of sent emails is less than the number of
received emails. I received more emails than I sent from 2018 to 2020. Note that I received
most of the emails between 03:00 PM and 09:00 AM. This graph gives a nice overview of the
time of day of email activity. This answers the second question. 

Average emails per day and hour
Let's answer the rest of the questions, taking a look at the average number of emails per day
and per hour:

To do so, we will create two functions, one that counts the total number of emails1.
per day and one that plots the average number of emails per hour:

def plot_number_perday_per_year(df, ax, label=None, dt=0.3,
**plot_kwargs):
    year = df[df['year'].notna()]['year'].values
    T = year.max() - year.min()
    bins = int(T / dt)
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    weights = 1 / (np.ones_like(year) * dt * 365.25)
    ax.hist(year, bins=bins, weights=weights, label=label,
**plot_kwargs);
    ax.grid(ls=':', color='k')

The preceding code creates a function that plots the average number of emails per
day. Similarly, let's create a function that plots the average number of emails per
hour:

def plot_number_perdhour_per_year(df, ax, label=None, dt=1,
smooth=False,
                      weight_fun=None, **plot_kwargs):

    tod = df[df['timeofday'].notna()]['timeofday'].values
    year = df[df['year'].notna()]['year'].values
    Ty = year.max() - year.min()
    T = tod.max() - tod.min()
    bins = int(T / dt)
    if weight_fun is None:
        weights = 1 / (np.ones_like(tod) * Ty * 365.25 / dt)
    else:
        weights = weight_fun(df)
    if smooth:
        hst, xedges = np.histogram(tod, bins=bins,
weights=weights);
        x = np.delete(xedges, -1) + 0.5*(xedges[1] - xedges[0])
        hst = ndimage.gaussian_filter(hst, sigma=0.75)
        f = interp1d(x, hst, kind='cubic')
        x = np.linspace(x.min(), x.max(), 10000)
        hst = f(x)
        ax.plot(x, hst, label=label, **plot_kwargs)
    else:
        ax.hist(tod, bins=bins, weights=weights, label=label,
**plot_kwargs);

    ax.grid(ls=':', color='k')
    orientation = plot_kwargs.get('orientation')
    if orientation is None or orientation == 'vertical':
        ax.set_xlim(0, 24)
        ax.xaxis.set_major_locator(MaxNLocator(8))
ax.set_xticklabels([datetime.datetime.strptime(str(int(np.mod(ts,
24))), "%H").strftime("%I %p")
                            for ts in ax.get_xticks()]);
    elif orientation == 'horizontal':
        ax.set_ylim(0, 24)
        ax.yaxis.set_major_locator(MaxNLocator(8))
ax.set_yticklabels([datetime.datetime.strptime(str(int(np.mod(ts,
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24))), "%H").strftime("%I %p")
                            for ts in ax.get_yticks()]);

Now, let's create a class that plots the time of the day versus year for all the emails
within the given timeframe:

class TriplePlot:
  def __init__(self):
    gs = gridspec.GridSpec(6, 6)
    self.ax1 = plt.subplot(gs[2:6, :4])
    self.ax2 = plt.subplot(gs[2:6, 4:6], sharey=self.ax1)
    plt.setp(self.ax2.get_yticklabels(), visible=False);
    self.ax3 = plt.subplot(gs[:2, :4])
    plt.setp(self.ax3.get_xticklabels(), visible=False);

  def plot(self, df, color='darkblue', alpha=0.8, markersize=0.5,
yr_bin=0.1, hr_bin=0.5):
    plot_todo_vs_year(df, self.ax1, color=color, s=markersize)
    plot_number_perdhour_per_year(df, self.ax2, dt=hr_bin,
color=color, alpha=alpha, orientation='horizontal')
    self.ax2.set_xlabel('Average emails per hour')
    plot_number_perday_per_year(df, self.ax3, dt=yr_bin,
color=color, alpha=alpha)
    self.ax3.set_ylabel('Average emails per day')

Now, finally, let's instantiate the class to plot the graph:

import matplotlib.gridspec as gridspec
import matplotlib.patches as mpatches

plt.figure(figsize=(12,12));
tpl = TriplePlot()

tpl.plot(received, color='C0', alpha=0.5)
tpl.plot(sent, color='C1', alpha=0.5)
p1 = mpatches.Patch(color='C0', label='Incoming', alpha=0.5)
p2 = mpatches.Patch(color='C1', label='Outgoing', alpha=0.5)
plt.legend(handles=[p1, p2], bbox_to_anchor=[1.45, 0.7],
fontsize=14, shadow=True);

The output of the preceding code is as follows:
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The average emails per hour and per graph is illustrated by the preceding graph. In my
case, most email communication happened between 2018 and 2020. 

Number of emails per day
Let's find the busiest day of the week in terms of emails:

counts = dfs.dayofweek.value_counts(sort=False)
counts.plot(kind='bar')
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The output of the preceding code is as follows:

The preceding output shows that my busiest day is Thursday. I receive most of my emails
on Thursdays. Let's go one step further and see the most active days for receiving and
sending emails separately:

sdw = sent.groupby('dayofweek').size() / len(sent)
rdw = received.groupby('dayofweek').size() / len(received)

df_tmp = pd.DataFrame(data={'Outgoing Email': sdw, 'Incoming Email':rdw})
df_tmp.plot(kind='bar', rot=45, figsize=(8,5), alpha=0.5)
plt.xlabel('');
plt.ylabel('Fraction of weekly emails');
plt.grid(ls=':', color='k', alpha=0.5)

The output of the preceding code is as follows:
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The output shown in the screenshot is pretty nice, right? Now, anyone can easily
understand that my most active email communication days are Thursday for incoming
emails and Monday for sending emails. That makes sense. I usually don't work on
weekends, so, on Mondays, I always reply to my emails before starting the day. That is why
on Monday, the analysis shows, I have more outgoing emails. 

We can even go one level further. Let's find the most active time of day for email
communication. We can do that easily. See the following code:

import scipy.ndimage
from scipy.interpolate import interp1d

plt.figure(figsize=(8,5))
ax = plt.subplot(111)
for ct, dow in enumerate(dfs.dayofweek.cat.categories):
    df_r = received[received['dayofweek']==dow]
    weights = np.ones(len(df_r)) / len(received)
    wfun = lambda x: weights
    plot_number_perdhour_per_year(df_r, ax, dt=1, smooth=True,
color=f'C{ct}',
                      alpha=0.8, lw=3, label=dow, weight_fun=wfun)

    df_s = sent[sent['dayofweek']==dow]
    weights = np.ones(len(df_s)) / len(sent)
    wfun = lambda x: weights
    plot_number_perdhour_per_year(df_s, ax, dt=1, smooth=True,
color=f'C{ct}',
                      alpha=0.8, lw=2, label=dow, ls='--', weight_fun=wfun)
ax.set_ylabel('Fraction of weekly emails per hour')
plt.legend(loc='upper left')
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The output of the preceding code is as follows:

Sweet. The graph is a bit complex but still intuitive. From the previous graph, we noticed
that my most active days were Monday (for outgoing emails) and Thursdays (for receiving
emails). This graph shows that on Mondays, my active duration is between 09:00 AM and
12:00 PM. On Thursdays, my active duration is also between 9:00 AM and 12:00 PM. What
are your most active hours based on your graph? 

If you encounter any error, please check the number of sent emails and the
number of received emails. The number of emails, in either case, should
be greater than one. If you have less or equal to one email, in either case,
make sure you comment out the appropriate line to remove the error.

Most frequently used words
One of the easiest things to analyze about your emails is the most frequently used words.
We can create a word cloud to see the most frequently used words. Let's first remove the
archived emails:

from wordcloud import WordCloud

df_no_arxiv = dfs[dfs['from'] != 'no-reply@arXiv.org']
text = ' '.join(map(str, sent['subject'].values))



EDA with Personal Email Chapter 3

[ 90 ]

Next, let's plot the word cloud:

stopwords = ['Re', 'Fwd', '3A_']
wrd = WordCloud(width=700, height=480, margin=0, collocations=False)
for sw in stopwords:
    wrd.stopwords.add(sw)
wordcloud = wrd.generate(text)

plt.figure(figsize=(25,15))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.margins(x=0, y=0)

I added some extra stop words to filter out from the graph. The output for me is as follows:

This tells me what I mostly communicate about. From the analysis of emails from 2011 to
2019, the most frequently used words are new, site, project, Data, WordPress, and website.
This is really good, right? What is presented in this chapter is just a starting point. You can
take this further in several other directions. 

Summary
In this chapter, we imported data from our own Gmail accounts in mbox format. Then, we
loaded the dataset and performed some primitive EDA techniques, including data loading,
data transformation, and data analysis. We also tried to answer some basic questions about
email communication. 
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In the next chapter, we are going to discuss data transformation. Data transformation is one
of the most important steps of data analysis, because the more qualitative your data is, the
better your results. 

Further reading
Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data
Visualization using Python 1st Edition, by Theodore Petrou, Packt Publishing, 2017 
Mastering pandas – Second Edition, by Ashish Kumar, Packt Publishing, October 25,
2019
Learning pandas – Second Edition, by Michael Heydt, Packt Publishing, June 29, 2017



4
Data Transformation

One of the fundamental steps of Exploratory Data Analysis (EDA) is data wrangling. In
this chapter, we will learn how to merge database-style dataframes, merging on the index,
concatenating along an axis, combining data with overlap, reshaping with hierarchical
indexing, and pivoting long to wide format. We will come to understand the work that
must be completed before transferring our information for further examination, including,
removing duplicates, replacing values, renaming axis indexes, discretization and binning,
and detecting and filtering outliers. We will work on transforming data using a function,
mapping, permutation and random sampling, and computing indicators/dummy
variables. 

This chapter will cover the following topics:

Background
Merging database-style dataframes 
Transformation techniques
Benefits of data transformation

Technical requirements
The code for this chapter can be found in the GitHub repo inside Chapter 4, https:/ ​/
github.​com/​PacktPublishing/ ​hands- ​on- ​exploratory- ​data- ​analysis- ​with- ​python.

We will be using the following Python libraries:

Pandas
NumPy
Seaborn
Matplotlib
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Background
Data transformation is a set of techniques used to convert data from one format or structure
to another format or structure. The following are some examples of transformation
activities:

Data deduplication involves the identification of duplicates and their removal.
Key restructuring involves transforming any keys with built-in meanings to the
generic keys.
Data cleansing involves extracting words and deleting out-of-date, inaccurate, and
incomplete information from the source language without extracting the
meaning or information to enhance the accuracy of the source data.
Data validation is a process of formulating rules or algorithms that help in
validating different types of data against some known issues.
Format revisioning involves converting from one format to another.
Data derivation consists of creating a set of rules to generate more information
from the data source.
Data aggregation involves searching, extracting, summarizing, and preserving
important information in different types of reporting systems.
Data integration involves converting different data types and merging them into a
common structure or schema.
Data filtering involves identifying information relevant to any particular user.
Data joining involves establishing a relationship between two or more tables.

The main reason for transforming the data is to get a better representation such that the
transformed data is compatible with other data. In addition to this, interoperability in a
system can be achieved by following a common data structure and format.

Having said that, let's start looking at data transformation techniques with data integration
in the next section. 
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Merging database-style dataframes
Many beginner developers get confused when working with pandas dataframes, especially
regarding when to use append, concat, merge, or join. In this section, we are going to
check out the separate use cases for each of these.

Let's assume that you are working at a university as a professor teaching a Software
Engineering course and an Introduction to Machine Learning course, and there are enough
students to split into two classes. The examination for each class was done in two separate
buildings and graded by two different professors. They gave you two different dataframes.
In the first example, let's only consider one subject— the Software Engineering course.

Check out the following screenshot:

In the preceding dataset, the first column contains information about student identifiers
and the second column contains their respective scores in any subject. The structure of the 
dataframes is the same in both cases. In this case, we would need to concatenate them. 

We can do that by using the pandas concat() method:

dataframe = pd.concat([dataFrame1, dataFrame2], ignore_index=True)
dataframe
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The output of the preceding code is a single dataframe combining both of the tables. These
tables would be merged into a single one as shown in the following screenshot:

The ignore_index argument creates a new index; in its absence, we'd keep the original
indices. Note that we combined the dataframes along axis=0, that is to say, we combined
them together in the same direction. What if we want to combine them side by side? Then
we have to specify axis=1.

See the difference using the following code:

pd.concat([dataFrame1, dataFrame2], axis=1)
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The output of the preceding code is shown in the following screenshot:

Note the difference in the output. When we specify axis=1, the concatenation happens on
a side-by-side basis. 

Let's continue using the same case we discussed in the preceding code. In the first example,
you received two dataframe files for the same subject. Now, consider another use case
where you are teaching two courses: Software Engineering and Introduction to Machine
Learning. You will get two dataframes from each subject:

Two for the Software Engineering course 
Another two for the Introduction to Machine Learning course
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Check the following dataframes:

In case you missed it, there are important details you need to note in the preceding
dataframes:

There are some students who are not taking the software engineering exam. 
There are some students who are not taking the machine learning exam.
There are students who appeared in both courses. 

Now, assume your head of department walked up to your desk and started bombarding
you with a series of questions:

How many students appeared for the exams in total?
How many students only appeared for the Software Engineering course?
How many students only appeared for the Machine Learning course?

There are several ways in which you can answer these questions. Using the EDA technique
is one of them. In this section, we are going to use the pandas library to answer the
preceding questions.
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Let's check the dataframes for both subjects:

import pandas as pd

df1SE = pd.DataFrame({ 'StudentID': [9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
29], 'ScoreSE' : [22, 66, 31, 51, 71, 91, 56, 32, 52, 73, 92]})
df2SE = pd.DataFrame({'StudentID': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30], 'ScoreSE': [98, 93, 44, 77, 69, 56, 31, 53, 78, 93, 56,
77, 33, 56, 27]})

df1ML = pd.DataFrame({ 'StudentID': [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
23, 25, 27, 29], 'ScoreML' : [39, 49, 55, 77, 52, 86, 41, 77, 73, 51, 86,
82, 92, 23, 49]})
df2ML = pd.DataFrame({'StudentID': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20],
'ScoreML': [93, 44, 78, 97, 87, 89, 39, 43, 88, 78]})`

As you can see in the preceding dataset, you have two dataframes for each subject. So, the
first task is to concatenate these two subjects into one. Secondly, these students have taken
the Introduction to Machine Learning course as well as the Software Engineering course. So, we
need to merge these scores into the same dataframes. There are several ways to do this.
Let's explore some options.

Concatenating along with an axis
This is the first option. We'll use the pd.concat() method from the pandas library.

The code for combining the dataframes is as follows:

# Option 1
dfSE = pd.concat([df1SE, df2SE], ignore_index=True)
dfML = pd.concat([df1ML, df2ML], ignore_index=True)

df = pd.concat([dfML, dfSE], axis=1)
df

The code should be self-explanatory by now. We first concatenated the dataframes from the
Software Engineering course and the Machine Learning course. Then, we concatenated the
dataframes with axis=1 to place them side by side.
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The output of the preceding code is as follows:

You probably noticed that the StudentID field is repeated. One hack that could be done
afterward is to delete the repeated field. However, let's see the other alternatives. 

Using df.merge with an inner join
This is the second option. Let's now use the df.merge() method from the pandas library.
The idea is simple. First of all, we concatenate the individual dataframes from each of the
subjects, and then we use df.merge() methods.
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Check the following code:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True)
dfML = pd.concat([df1ML, df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='inner')
df

Here, you performed an inner join on each dataframe. That is to say, if an item exists in
both dataframes, it will be included in the new dataframe. This means we will get a list of
students who appeared in both the courses. 

The output of the preceding code is shown in the following screenshot:

Note that this should answer one of the questions mentioned earlier: we now know there
are 21 students who took both the courses. 
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Using the pd.merge() method with a left join
The third option is to use the pd.merge() method with the left join technique. By now, you
should have understood the concept of a merge. The argument of the pd.merge() method
allows us to use different types of joins.

These are the following types of joins:

The inner join takes the intersection from two or more dataframes. It
corresponds to the INNER JOIN in Structured Query Language (SQL).
The outer join takes the union from two or more dataframes. It corresponds to
the FULL OUTER JOIN in SQL. 
The left join uses the keys from the left-hand dataframe only. It corresponds to
the LEFT OUTER JOIN in SQL. 
The right join uses the keys from the right-hand dataframe only. It corresponds
to the RIGHT OUTER JOIN in SQL. 

Let's see how we can use the left outer join:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True)
dfML = pd.concat([df1ML, df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='left')
df

The output of the preceding code is as follows:
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If you look at the preceding screenshot, you can correctly answer how many students only
appeared for the Software Engineering course. The total number would be 26. Note that these
students did not appear for the Machine Learning exam and hence their scores are marked as
NaN.

Using the pd.merge() method with a right join
This is the fourth option. Similarly to those options we've already looked at, we can use the
right join to get a list of all the students who appeared in the Machine Learning course.

The code for doing it is as follows:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True)
dfML = pd.concat([df1ML, df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='right')
df
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The output of this snippet is left as part of an exercise for you to complete. Check which
columns have NaN values. 

Using pd.merge() methods with outer join
This is the fifth option. Finally, we want to know the total number of students appearing for
at least one course. This can be done using an outer join:

dfSE = pd.concat([df1SE, df2SE], ignore_index=True)
dfML = pd.concat([df1ML, df2ML], ignore_index=True)

df = dfSE.merge(dfML, how='outer')
df

Check the output and compare the differences with the previous output.  

Merging on index
Sometimes the keys for merging dataframes are located in the dataframes index. In such a
situation, we can pass left_index=True or right_index=True to indicate that the index
should be accepted as the merge key.

Merging on index is done in the following steps:

Consider the following two dataframes:1.

left1 = pd.DataFrame({'key': ['apple','ball','apple', 'apple',
'ball', 'cat'], 'value': range(6)})
right1 = pd.DataFrame({'group_val': [33.4, 5]}, index=['apple',
'ball'])
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If you print these two dataframes, the output looks like the following screenshot:

Note that the keys in the first dataframe are apple, ball, and cat. In the second
dataframe, we have group values for the keys apple and ball.

Now, let's consider two different cases. Firstly, let's try merging using an inner2.
join, which is the default type of merge. In this case, the default merge is the
intersection of the keys. Check the following example code:

df = pd.merge(left1, right1, left_on='key', right_index=True)
df

 The output of the preceding code is as follows:

The output is the intersection of the keys from these dataframes. Since there is no
cat key in the second dataframe, it is not included in the final table. 

Secondly, let's try merging using an outer join, as follows:3.

df = pd.merge(left1, right1, left_on='key', right_index=True,
how='outer')
df
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The output of the preceding code is as follows:

Note that the last row includes the cat key. This is because of the outer join.

Reshaping and pivoting
During EDA, we often need to rearrange data in a dataframe in some consistent manner.
This can be done with hierarchical indexing using two actions:

Stacking: Stack rotates from any particular column in the data to the rows. 
Unstacking: Unstack rotates from the rows into the column. 

We will look at the following example:

Let's create a dataframe that records the rainfall, humidity, and wind conditions1.
of five different counties in Norway:

data = np.arange(15).reshape((3,5))
indexers = ['Rainfall', 'Humidity', 'Wind']
dframe1 = pd.DataFrame(data, index=indexers, columns=['Bergen',
'Oslo', 'Trondheim', 'Stavanger', 'Kristiansand'])
dframe1
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The output of the preceding snippet is as follows:

Now, using the stack() method on the preceding dframe1, we can pivot the2.
columns into rows to produce a series:

stacked = dframe1.stack()
stacked

The output of this stacking is as follows:

The preceding series stored unstacked in the variable can be rearranged into a3.
dataframe using the unstack() method:

stacked.unstack()

This should revert the series into the original dataframe. Note that there is a
chance that unstacking will create missing data if all the values are not present in
each of the sub-groups. Confused? Okay, let's look at two series, series1 and
series2, and then concatenate them. So far, everything makes sense.
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Now, let's unstack the concatenated frame:4.

series1 = pd.Series([000, 111, 222, 333], index=['zeros','ones',
'twos', 'threes'])
series2 = pd.Series([444, 555, 666], index=['fours', 'fives',
'sixes'])

frame2 = pd.concat([series1, series2], keys=['Number1', 'Number2'])
frame2.unstack()

The output of the preceding unstacking is shown in the following screenshot:

Since in series1, there are no fours, fives, and sixes, their values are stored as NaN
during the unstacking process. Similarly, there are no ones, twos, and zeros in series2,
so the corresponding values are stored as NaN. Now it makes sense, right? Good. 

Transformation techniques
In the Merging database-style dataframes section, we saw how we can merge different types of
series and dataframes. Now, let's dive more into how we can perform other types of data
transformations including cleaning, filtering, deduplication, and others. 

Performing data deduplication
It is very likely that your dataframe contains duplicate rows. Removing them is essential to
enhance the quality of the dataset. This can be done with the following steps:

Let's consider a simple dataframe, as follows:1.

frame3 = pd.DataFrame({'column 1': ['Looping'] * 3 + ['Functions']
* 4, 'column 2': [10, 10, 22, 23, 23, 24, 24]})
frame3



Data Transformation Chapter 4

[ 108 ]

The preceding code creates a simple dataframe with two columns. You can clearly
see from the following screenshot that in both columns, there are some duplicate
entries:

The pandas dataframe comes with a duplicated() method that returns a2.
Boolean series stating which of the rows are duplicates:

frame3.duplicated()

The output of the preceding code is pretty easy to interpret:

The rows that say True are the ones that contain duplicated data.

Now, we can drop these duplicates using the drop_duplicates() method:3.

frame4 = frame3.drop_duplicates()
frame4
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The output of the preceding code is as follows:

Note that rows 1, 4, and 6 are removed. Basically, both the duplicated() and
drop_duplicates() methods consider all of the columns for comparison.
Instead of all the columns, we could specify any subset of the columns to detect
duplicated items.

Let's add a new column and try to find duplicated items based on the second4.
column:

frame3['column 3'] = range(7)
frame5 = frame3.drop_duplicates(['column 2'])
frame5

The output of the preceding snippet is as follows:

Note that both the duplicated and drop_duplicates methods keep the first observed
value during the duplication removal process. If we pass the
take_last=True argument, the methods return the last one. 
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Replacing values
Often, it is essential to find and replace some values inside a dataframe. This can be done
with the following steps:

We can use the replace method in such cases:1.

import numpy as np
replaceFrame = pd.DataFrame({'column 1': [200., 3000., -786.,
3000., 234., 444., -786., 332., 3332. ], 'column 2': range(9)})
replaceFrame.replace(to_replace =-786, value= np.nan)

The output of the preceding code is as follows:

Note that we just replaced one value with the other values. We can also replace
multiple values at once.

In order to do so, we display them using a list:2.

replaceFrame = pd.DataFrame({'column 1': [200., 3000., -786.,
3000., 234., 444., -786., 332., 3332. ], 'column 2': range(9)})
replaceFrame.replace(to_replace =[-786, 0], value= [np.nan, 2])

In the preceding code, there are two replacements. All -786 values will be replaced by NaN
and all 0 values will be replaced by 2. That's pretty straightforward, right?
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Handling missing data
Whenever there are missing values, a NaN value is used, which indicates that there is no
value specified for that particular index. There could be several reasons why a value could
be NaN:

It can happen when data is retrieved from an external source and there are some
incomplete values in the dataset. 
It can also happen when we join two different datasets and some values are not
matched. 
Missing values due to data collection errors. 
When the shape of data changes, there are new additional rows or columns that
are not determined. 
Reindexing of data can result in incomplete data. 

Let's see how we can work with the missing data:

Let's assume we have a dataframe as shown here:1.

data = np.arange(15, 30).reshape(5, 3)
dfx = pd.DataFrame(data, index=['apple', 'banana', 'kiwi',
'grapes', 'mango'], columns=['store1', 'store2', 'store3'])
dfx

And the output of the preceding code is as follows:

Assume we have a chain of fruit stores all over town. Currently, the dataframe is
showing sales of different fruits from different stores. None of the stores are
reporting missing values.
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Let's add some missing values to our dataframe:2.

dfx['store4'] = np.nan
dfx.loc['watermelon'] = np.arange(15, 19)
dfx.loc['oranges'] = np.nan
dfx['store5'] = np.nan
dfx['store4']['apple'] = 20.
dfx

And the output will now look like the following screenshot:

Note that we've added two more stores, store4 and store5, and two more types of
fruits, watermelon and oranges. Assume that we know how many kilos of apples and
watermelons were sold from store4, but we have not collected any data from store5.
Moreover, none of the stores reported sales of oranges. We are quite a huge fruit dealer,
aren't we? 

Note the following characteristics of missing values in the preceding dataframe:

An entire row can contain NaN values. 
An entire column can contain NaN values. 
Some (but not necessarily all) values in both a row and a column can be NaN.

Based on these characteristics, let's examine NaN values in the next section. 
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NaN values in pandas objects
We can use the isnull() function from the pandas library to identify NaN values:

Check the following example:1.

dfx.isnull()

The output of the preceding code is as follows:

Note that the True values indicate the values that are NaN. Pretty obvious, right?
Alternatively, we can also use the notnull() method to do the same thing. The
only difference would be that the function will indicate True for the values which
are not null.

Check it out in action:2.

dfx.notnull()

And the output of this is as follows:

Compare these two tables. These two functions, notnull() and isnull(), are
the complement to each other. 
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We can use the sum() method to count the number of NaN values in each store.3.
How does this work, you ask? Check the following code:

dfx.isnull().sum()

And the output of the preceding code is as follows:

store1 1
store2 1
store3 1
store4 5
store5 7
dtype: int64

The fact that True is 1 and False is 0 is the main logic for summing. The preceding 
results show that one value was not reported by store1, store2, and store3.
Five values were not reported by store4 and seven values were not reported by
store5.

We can go one level deeper to find the total number of missing values:4.

dfx.isnull().sum().sum()

And the output of the preceding code is as follows:

15

This indicates 15 missing values in our stores. We can use an alternative way to
find how many values were actually reported.

So, instead of counting the number of missing values, we can count the number5.
of reported values:

dfx.count()

And the output of the preceding code is as follows:

store1 6
store2 6
store3 6
store4 2
store5 0
dtype: int64

Pretty elegant, right? We now know two different ways to find the missing values, and also
how to count the missing values.
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Dropping missing values
One of the ways to handle missing values is to simply remove them from our dataset. We
have seen that we can use the isnull() and notnull() functions from the pandas library
to determine null values:

dfx.store4[dfx.store4.notnull()]

The output of the preceding code is as follows:

apple 20.0
watermelon 18.0
Name: store4, dtype: float64

The output shows that store4 only reported two items of data. Now, we can use the
dropna() method to remove the rows:

dfx.store4.dropna()

The output of the preceding code is as follows:

apple 20.0
watermelon 18.0
Name: store4, dtype: float64

Note that the dropna() method just returns a copy of the dataframe by dropping the rows
with NaN. The original dataframe is not changed.  

If dropna() is applied to the entire dataframe, then it will drop all the rows from the
dataframe, because there is at least one NaN value in our dataframe:

dfx.dropna()

The output of the preceding code is an empty dataframe.

Dropping by rows
We can also drop rows that have NaN values. To do so, we can use the how=all
argument to drop only those rows entire values are entirely NaN:

dfx.dropna(how='all')
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The output of the preceding code is as follows:

Note that only the orange rows are removed because those entire rows contained NaN
values.

Dropping by columns
Furthermore, we can also pass axis=1 to indicate a check for NaN by columns.

Check the following example:

dfx.dropna(how='all', axis=1)

And the output of the preceding code is as follows:

Note that store5 is dropped from the dataframe. By passing in axis=1, we are instructing
pandas to drop columns if all the values in the column are NaN. Furthermore, we can also
pass another argument, thresh, to specify a minimum number of NaNs that must exist
before the column should be dropped:

dfx.dropna(thresh=5, axis=1)
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And the output of the preceding code is as follows:

Compared to the preceding, note that even the store4 column is now dropped because it
has more than five NaN values. 

Mathematical operations with NaN
The pandas and numpy libraries handle NaN values differently for mathematical
operations.

Consider the following example:

ar1 = np.array([100, 200, np.nan, 300])
ser1 = pd.Series(ar1)

ar1.mean(), ser1.mean()

The output of the preceding code is the following:

(nan, 200.0)

Note the following things:

When a NumPy function encounters NaN values, it returns NaN. 
Pandas, on the other hand, ignores the NaN values and moves ahead with
processing. When performing the sum operation, NaN is treated as 0. If all the
values are NaN, the result is also NaN.
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Let's compute the total quantity of fruits sold by store4:

ser2 = dfx.store4
ser2.sum()

The output of the preceding code is as follows:

38.0

Note that store4 has five NaN values. However, during the summing process, these 
values are treated as 0 and the result is 38.0. 

Similarly, we can compute averages as shown here:

ser2.mean()

The output of the code is the following:

19.0

Note that NaNs are treated as 0s. It is the same for cumulative summing:

ser2.cumsum()

And the output of the preceding code is as follows:

apple 20.0
banana NaN
kiwi NaN
grapes NaN
mango NaN
watermelon 38.0
oranges NaN
Name: store4, dtype: float64

Note that only actual values are affected in computing the cumulative sum. 

Filling missing values
We can use the fillna() method to replace NaN values with any particular values.

Check the following example:

filledDf = dfx.fillna(0)
filledDf
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The output of the preceding code is shown in the following screenshot:

Note that in the preceding dataframe, all the NaN values are replaced by 0. Replacing the
values with 0 will affect several statistics including mean, sum, and median.

Check the difference in the following two examples:

dfx.mean()

And the output of the preceding code is as follows:

store1 20.0
store2 21.0
store3 22.0
store4 19.0
store5 NaN
dtype: float64

Now, let's compute the mean from the filled dataframe with the following command:

filledDf.mean()

And the output we get is as follows:

store1 17.142857
store2 18.000000
store3 18.857143
store4 5.428571
store5 0.000000
dtype: float64

Note that there are slightly different values. Hence, filling with 0 might not be the optimal
solution. 
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Backward and forward filling
NaN values can be filled based on the last known values. To understand this, let's consider
taking our store dataframe as an example.

We want to fill store4 using the forward-filling technique:

dfx.store4.fillna(method='ffill')

And the output of the preceding code is the following:

apple 20.0
banana 20.0
kiwi 20.0
grapes 20.0
mango 20.0
watermelon 18.0
oranges 18.0
Name: store4, dtype: float64

Here, from the forward-filling technique, the last known value is 20 and hence the rest of
the NaN values are replaced by it. 

The direction of the fill can be changed by changing method='bfill'. Check the following
example:

dfx.store4.fillna(method='bfill')

And the output of the preceding code is as follows:

apple 20.0
banana 18.0
kiwi 18.0
grapes 18.0
mango 18.0
watermelon 18.0
oranges NaN
Name: store4, dtype: float64

Note here that the NaN values are replaced by 18.0. 
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Interpolating missing values
The pandas library provides the interpolate() function both for the series and the
dataframe. By default, it performs a linear interpolation of our missing values. Check the
following example:

ser3 = pd.Series([100, np.nan, np.nan, np.nan, 292])
ser3.interpolate()

And the output of the preceding code is the following:

0 100.0
1 148.0
2 196.0
3 244.0
4 292.0
dtype: float64

Are you wondering how these values are calculated? Well, it is done by taking the first
value before and after any sequence of the NaN values. In the preceding series, ser3, the
first and the last values are 100 and 292 respectively. Hence, it calculates the next value as
(292-100)/(5-1) = 48. So, the next value after 100 is 100 + 48 = 148. 

We can perform more complex interpolation techniques, especially with
time series data. An example of this interpolation is shown in the
notebook provided with this chapter. 

Next, we are going to see how we can rename axis indexes. 

Renaming axis indexes
Consider the example from the Reshaping and pivoting section. Say you want to transform
the index terms to capital letters:

dframe1.index = dframe1.index.map(str.upper)
dframe1
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The output of the preceding code is as follows:

Note that the indexes have been capitalized. If we want to create a transformed version of
the dataframe, then we can use the rename() method. This method is handy when we do
not want to modify the original data. Check the following example:

dframe1.rename(index=str.title, columns=str.upper)

And the output of the code is as follows:

The rename method does not make a copy of the dataframe. 

Discretization and binning
Often when working with continuous datasets, we need to convert them into discrete or 
interval forms. Each interval is referred to as a bin, and hence the name binning comes into
play:

Let's say we have data on the heights of a group of students as follows:1.

height = [120, 122, 125, 127, 121, 123, 137, 131, 161, 145, 141,
132]

And we want to convert that dataset into intervals of 118 to 125, 126 to 135, 136 to
160, and finally 160 and higher.
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To convert the preceding dataset into intervals, we can use the cut() method2.
provided by the pandas library:

bins = [118, 125, 135, 160, 200]
category = pd.cut(height, bins)
category

The output of the preceding code is as follows:

[(118, 125], (118, 125], (118, 125], (125, 135], (118, 125], ...,
(125, 135], (160, 200], (135, 160], (135, 160], (125, 135]] Length:
12 Categories (4, interval[int64]): [(118, 125] < (125, 135] <
(135, 160] < (160, 200]]

If you look closely at the output, you'll see that there are mathematical notations
for intervals. Do you recall what these parentheses mean from your elementary
mathematics class? If not, here is a quick recap:

A parenthesis indicates that the side is open. 
A square bracket means that it is closed or inclusive. 

From the preceding code block, (118, 125] means the left-hand side is open
and the right-hand side is closed. This is mathematically denoted as follows:

Hence, 118 is not included, but anything greater than 118 is included, while 125
is included in the interval.

We can set a right=False argument to change the form of interval:3.

category2 = pd.cut(height, [118, 126, 136, 161, 200], right=False)
category2

And the output of the preceding code is as follows:

[[118, 126), [118, 126), [118, 126), [126, 136), [118, 126), ...,
[126, 136), [161, 200), [136, 161), [136, 161), [126, 136)] Length:
12 Categories (4, interval[int64]): [[118, 126) < [126, 136) <
[136, 161) < [161, 200)]
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Note that the output form of closeness has been changed. Now, the results are in
the form of right-closed, left-open.

We can check the number of values in each bin by using the4.
pd.value_counts() method:

pd.value_counts(category)

And the output is as follows:

(118, 125] 5
(135, 160] 3
(125, 135] 3
(160, 200] 1
dtype: int64

The output shows that there are five values in the interval [118-125).

We can also indicate the bin names by passing a list of labels:5.

bin_names = ['Short Height', 'Average height', 'Good Height',
'Taller']
pd.cut(height, bins, labels=bin_names)

And the output is as follows:

[Short Height, Short Height, Short Height, Average height, Short
Height, ..., Average height, Taller, Good Height, Good Height,
Average height]
Length: 12
Categories (4, object): [Short Height < Average height < Good
Height < Taller]

Note that we have passed at least two arguments, the data that needs to be
discretized and the required number of bins. Furthermore, we have used
a right=False argument to change the form of interval.

Now, it is essential to note that if we pass just an integer for our bins, it will6.
compute equal-length bins based on the minimum and maximum values in the
data. Okay, let's verify what we mentioned here:

import numpy as np
pd.cut(np.random.rand(40), 5, precision=2)
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In the preceding code, we have just passed 5 as the number of required bins, and
the output of the preceding code is as follows:

[(0.81, 0.99], (0.094, 0.27], (0.81, 0.99], (0.45, 0.63], (0.63,
0.81], ..., (0.81, 0.99], (0.45, 0.63], (0.45, 0.63], (0.81, 0.99],
(0.81, 0.99]] Length: 40
Categories (5, interval[float64]): [(0.094, 0.27] < (0.27, 0.45] <
(0.45, 0.63] < (0.63, 0.81] < (0.81, 0.99]]

We can see, based on the number of bins, it created five categories. There isn't anything
here that you don't understand, right? Good work so far. Now, let's take this one step
further. Another technical term of interest to us from mathematics is quantiles. Remember
the concept? If not, don't worry, as we are going to learn about quantiles and other
measures in Chapter 5, Descriptive Statistics. For now, it is sufficient to understand
that quantiles divide the range of a probability distribution into continuous intervals with
alike probabilities.  

Pandas provides a qcut method that forms the bins based on sample quantiles. Let's check
this with an example:

randomNumbers = np.random.rand(2000)
category3 = pd.qcut(randomNumbers, 4) # cut into quartiles
category3

And the output of the preceding code is as follows:

[(0.77, 0.999], (0.261, 0.52], (0.261, 0.52], (-0.000565, 0.261],
(-0.000565, 0.261], ..., (0.77, 0.999], (0.77, 0.999], (0.261, 0.52],
(-0.000565, 0.261], (0.261, 0.52]]
Length: 2000
Categories (4, interval[float64]): [(-0.000565, 0.261] < (0.261, 0.52] <
(0.52, 0.77] < (0.77, 0.999]]

Note that based on the number of bins, which we set to 4, it converted our data into four
different categories. If we count the number of values in each category, we should get
equal-sized bins as per our definition. Let's verify that with the following command:

pd.value_counts(category3)

And the output of the command is as follows:

(0.77, 0.999] 500
(0.52, 0.77] 500
(0.261, 0.52] 500
(-0.000565, 0.261] 500
dtype: int64
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Our claim is hence verified. Each category contains an equal size of 500 values. Note that,
similar to cut, we can also pass our own bins:

pd.qcut(randomNumbers, [0, 0.3, 0.5, 0.7, 1.0])

And the output of the preceding code is as follows:

[(0.722, 0.999], (-0.000565, 0.309], (0.309, 0.52], (-0.000565, 0.309],
(-0.000565, 0.309], ..., (0.722, 0.999], (0.722, 0.999], (0.309, 0.52],
(-0.000565, 0.309], (0.309, 0.52]] Length: 2000
Categories (4, interval[float64]): [(-0.000565, 0.309] < (0.309, 0.52] <
(0.52, 0.722] < (0.722, 0.999]]

Note that it created four different categories based on our code. Congratulations! We
successfully learned how to convert continuous datasets into discrete datasets. 

Outlier detection and filtering
Outliers are data points that diverge from other observations for several reasons. During
the EDA phase, one of our common tasks is to detect and filter these outliers. The main
reason for this detection and filtering of outliers is that the presence of such outliers can
cause serious issues in statistical analysis. In this section, we are going to perform simple
outlier detection and filtering. Let's get started:

Load the dataset that is available from the GitHub link as follows:1.

df =
pd.read_csv('https://raw.githubusercontent.com/PacktPublishing/hand
s-on-exploratory-data-analysis-with-
python/master/Chapter%204/sales.csv')
df.head(10)

The dataset was synthesized manually by creating a script. If you are interested in
looking at how we created the dataset, the script can be found inside the folder
named Chapter 4 in the GitHub repository shared with this book. 



Data Transformation Chapter 4

[ 127 ]

The output of the preceding df.head(10) command is shown in the following
screenshot:

Now, suppose we want to calculate the total price based on the quantity sold and2.
the unit price. We can simply add a new column, as shown here:

df['TotalPrice'] = df['UnitPrice'] * df['Quantity']
df

This should add a new column called TotalPrice, as shown in the following
screenshot:
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Now, let's answer some questions based on the preceding table.

Let's find the transaction that exceeded 3,000,000:

TotalTransaction = df["TotalPrice"]
TotalTransaction[np.abs(TotalTransaction) > 3000000]

The output of the preceding code is as follows:

2 3711433
7 3965328
13 4758900
15 5189372
17 3989325
         ...
9977 3475824
9984 5251134
9987 5670420
9991 5735513
9996 3018490
Name: TotalPrice, Length: 2094, dtype: int64

Note that, in the preceding example, we have assumed that any price greater than 3,000,000
is an outlier. 

Display all the columns and rows from the preceding table if TotalPrice is greater
than 6741112, as follows:

df[np.abs(TotalTransaction) > 6741112]

The output of the preceding code is the following:
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Note that in the output, all the TotalPrice values are greater than 6741112. We can use
any sort of conditions, either row-wise or column-wise, to detect and filter outliers. 

Permutation and random sampling
Well, now we have some more mathematical terms to learn: permutation and random
sampling. Let's examine how we can perform permutation and random sampling using the
pandas library:

With NumPy's numpy.random.permutation() function, we can randomly1.
select or permute a series of rows in a dataframe. Let's understand this with an
example:

dat = np.arange(80).reshape(10,8)
df = pd.DataFrame(dat)
df

And the output of the preceding code is as follows:

Next, we call the np.random.permutation() method. This method takes an2.
argument – the length of the axis we require to be permuted – and gives an array
of integers indicating the new ordering:

sampler = np.random.permutation(10)
sampler

The output of the preceding code is as follows:

array([1, 5, 3, 6, 2, 4, 9, 0, 7, 8])
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The preceding output array is used in ix-based indexing for the take() function3.
from the pandas library. Check the following example for clarification:

df.take(sampler)

The output of the preceding code is as follows:

It is essential that you understand the output. Note that our sampler array
contains array([1, 5, 3, 6, 2, 4, 9, 0, 7, 8]). Each of these array
items represents the rows of the original dataframe. So, from the original
dataframe, it pulls the first row, then the fifth row, then the third row, and so on.
Compare this with the original dataframe output and it will make more sense. 

Random sampling without replacement
To compute random sampling without replacement, follow these steps:

To perform random sampling without replacement, we first create1.
a permutation array.
Next, we slice off the first n elements of the array where n is the desired size of2.
the subset you want to sample.
Then we use the df.take() method to obtain actual samples:3.

df.take(np.random.permutation(len(df))[:3])
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The output of the preceding code is as follows:

Note that in the preceding code, we only specified a sample of size 3. Hence, we only get
three rows in the random sample. 

Random sampling with replacement
To generate random sampling with replacement, follow the given steps:

We can generate a random sample with replacement using the1.
numpy.random.randint() method and drawing random integers:

sack = np.array([4, 8, -2, 7, 5])
sampler = np.random.randint(0, len(sack), size = 10)
sampler

We created the sampler using the np.random.randint() method. The output of
the preceding code is as follows:

array([3, 3, 0, 4, 0, 0, 1, 2, 1, 4])

And now, we can draw the required samples:2.

draw = sack.take(sampler)
draw

The output of the preceding code is as follows:

array([ 7,  7,  4,  5,  4,  4,  8, -2,  8,  5])

Compare the index of the sampler and then compare it with the original dataframe. The
results are pretty obvious in this case. 
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Computing indicators/dummy variables
Often, we need to convert a categorical variable into some dummy matrix. Especially for
statistical modeling or machine learning model development, it is essential to create
dummy variables. Let's get started:

Let's say we have a dataframe with data on gender and votes, as shown here:1.

df = pd.DataFrame({'gender': ['female', 'female', 'male',
'unknown', 'male', 'female'], 'votes': range(6, 12, 1)})
df

The output of the preceding code is as follows:

So far, nothing too complicated. Sometimes, however, we need to encode these
values in a matrix form with 1 and 0 values.

We can do that using the pd.get_dummies() function:2.

pd.get_dummies(df['gender'])
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And the output of the preceding code is as follows:

Note the pattern. There are five values in the original dataframe with three
unique values of male, female, and unknown. Each unique value is transformed
into a column and each original value into a row. For example, in the original
dataframe, the first value is female, hence it is added as a row with 1 in the
female value and the rest of them are 0 values, and so on. 

Sometimes, we want to add a prefix to the columns. We can do that by adding3.
the prefix argument, as shown here:

dummies = pd.get_dummies(df['gender'], prefix='gender')
dummies

The output of the preceding code is as follows:

Note the gender prefix added to each of the column names. Not that difficult, right? Great
work so far.

Let's look into another type of transformation in the following section. 
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String manipulation
A lot of data found online is in the form of text, and manipulating these strings is a
fundamental part of data transformation. Examining every aspect of string manipulation is
beyond the scope of this book. However, we have summarized the major string
manipulation operations in the Appendix. We highly recommend going through the
Appendix, in order to comprehend string functions. 

Benefits of data transformation
Well, so far we have seen several useful use cases of data transformation.

Let's try to list these benefits:

Data transformation promotes interoperability between several applications. The
main reason for creating a similar format and structure in the dataset is that it
becomes compatible with other systems. 
Comprehensibility for both humans and computers is improved when using
better-organized data compared to messier data. 
Data transformation ensures a higher degree of data quality and protects
applications from several computational challenges such as null values,
unexpected duplicates, and incorrect indexings, as well as incompatible
structures or formats. 
Data transformation ensures higher performance and scalability for modern
analytical databases and dataframes. 

In the next section, we will outline some of the challenges encountered in data
transformation work. 

Challenges
Having discussed the benefits of data transformation, it is worth discussing some of the
notable challenges. The process of data transformation can be challenging for several
reasons:

It requires a qualified team of experts and state-of-the-art infrastructure. The cost
of attaining such experts and infrastructure can increase the cost of the
operation. 
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Data transformation requires data cleaning before data transformation and data
migration. This process of cleansing can be expensively time-consuming.
Generally, the activities of data transformations involve batch processing. This
means that sometimes, we might have to wait for a day before the next batch of
data is ready for cleansing. This can be very slow. 

Summary
In this chapter, we discussed several data wrangling techniques, including database-style
frame merging, concatenation along an axis, combining different frames, reshaping,
removing duplicates, renaming axis indexes, discretization and binning, detecting and
filtering outliers, and transformation functions. We have used different datasets to
understand different data transformation techniques.

In the next chapter, we are going to discuss in detail different descriptive statistics
measures, including the measure of the central tendency and the measure of dispersion.
Furthermore, we shall be using Python 3 with different libraries, including SciPy, Pandas,
and NumPy, to understand such descriptive measures. 

Further reading
Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data
Visualization using Python, First Edition, by Theodore Petrou, Packt, 2017 
Mastering Pandas, Second Edition, by Ashish Kumar, Packt, October 25, 2019
Learning Pandas, Second Edition, by Michael Heydt, Packt, June 29, 2017
Petr Aubrecht, Zdenek Kouba: Metadata driven data transformation; retrieved
from http:/ ​/ ​labe. ​felk. ​cvut. ​cz/​~aubrech/ ​bin/​Sumatra. ​pdf
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Section 2: Descriptive Statistics

Descriptive statistics help to summarize a provided dataset and identify the most
significant features of the data under consideration. The main objective of this section is to
familiarize you with descriptive statistics and its main techniques, including the measure of
central tendencies and the measure of variability. Moreover, we will be learning different
methods of grouping dataset, correlation, and, more importantly, time-series analysis.

This section contains the following chapters:

Chapter 5, Descriptive Statistics
Chapter 6, Grouping Datasets
Chapter 7, Correlation
Chapter 8, Time Series Analysis



5
Descriptive Statistics

In this chapter, we will explore descriptive statistics and their various techniques.
Descriptive statistics, as the name suggests, assist in describing and comprehending
datasets by providing a short summary pertaining to the dataset provided. The most
common types of descriptive statistics include the measure of central tendencies, the
measure of deviation, and others. In this chapter, we will become familiar with these
techniques and explore those factual measures with visualization. We will use tools such as
box plot to get bits of knowledge from statistics.

In this chapter, we'll cover the following topics:

Understanding statistics 
Measures of central tendency
Measures of dispersion

Technical requirements
The code for this chapter can be found in this book's GitHub repository, https:/ ​/​github.
com/​PacktPublishing/ ​hands- ​on- ​exploratory- ​data- ​analysis- ​with- ​python, inside the
Chapter 5 folder:

The dataset used in this chapter is available under open access in Kaggle. It can
be downloaded from here: https:/ ​/​www. ​kaggle. ​com/​toramky/ ​automobile-
dataset.
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Understanding statistics
In data science, both qualitative and quantitative analyses are important aspects. In
particular, the quantitative analysis of any dataset requires an understanding of statistical
concepts. Statistics is a branch of mathematics that deals with collecting, organizing, and
interpreting data. Hence, by using statistical concepts, we can understand the nature of the
data, a summary of the dataset, and the type of distribution that the data has. 

Distribution function
In order to understand the concept of the distribution function, it is essential to understand
the concept of a continuous function. So, what do we mean when we refer to a continuous
function? Basically, a continuous function is any function that does not have any
unexpected changes in value. These abrupt or unexpected changes are referred to as
discontinuities. For example, consider the following cubic function:

If you plot the graph of this function, you will see that there are no jumps or holes in the
series of values. Hence, this function is continuous:
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Having understood the continuous function, let's now try to understand what
the probability density function (PDF) is. The PDF can be defined in terms of a continuous
function, in other words, for any continuous function, the PDF is the probability that the
variate has the value of x. 

Now, if you have been paying attention, an obvious question should pop up in your mind.
What if the function is associated with discrete random variables rather than continuous
random variables? Well, then the function is referred to as a probability mass function
(PMF). For a more formal definition, refer to reference [6] in the Further reading section. 

The probability distribution or probability function of a discrete random variable is a list
of probabilities linked to each of its attainable values. Let's assume that a random variable,
A, takes all values over an interval of real numbers. Then, the probability that A is in the list
of outcomes Z, P(Z), is the area above Z and under a curve that describes a function p(a)
satisfying the following conditions:

The curve cannot have negative values (p(a) > 0 for all a).1.
The total area under the curve is always equal to 1.2.

Such curves are referred to as density curves. Continuous probability distributions include
normal distribution, exponential distribution, uniform distribution, gamma distribution,
Poisson distribution, and binomial distribution. 

Uniform distribution
The uniform probability distribution function of any continuous uniform distribution is
given by the following equation:

Let's plot the graph for uniform distribution using the Python libraries, seaborn and
matplotlib. First of all, let's import the important libraries needed to generate the graph:

import matplotlib.pyplot as plt
from IPython.display import Math, Latex
from IPython.core.display import Image
import seaborn as sns

sns.set(color_codes=True)
sns.set(rc={'figure.figsize':(10,6)})
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 Now, let's generate a uniform distribution:

from scipy.stats import uniform
number = 10000
start = 20
width = 25

uniform_data = uniform.rvs(size=number, loc=start, scale=width)
axis = sns.distplot(uniform_data, bins=100, kde=True, color='skyblue',
hist_kws={"linewidth": 15})
axis.set(xlabel='Uniform Distribution ', ylabel='Frequency')

The code is pretty obvious, right? We simply import the uniform function from the stats
library and generate the data. Once we generate the dataset, we plot the graph. The output
graph of the preceding code is as follows:

The uniform function is used to generate a uniform continuous variable between the given
start location (loc) and the width of the arguments (scale). The size arguments specify
the number of random variates taken under consideration. The graph illustrates the fact
that the dataset is uniformly distributed. 
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Normal distribution
Normal distribution, or Gaussian distribution, is a function that distributes the list of
random variables in a graph that is shaped like a symmetrical bell. I am pretty sure that you
will have encountered this term numerous times in your data science career. But have you
understood its concept? Well, a normal distribution has a density curve that is symmetrical
about its mean, with its spread typically defined by its standard deviation. It has two
parameters – the mean and the standard deviation. The fact that the normal distribution is
principally based on the central limit theorem makes it relevant. If the size of all possible
samples in a population is n, and the mean is μ and the variance σ2 , then the distribution
approaches a normal distribution. Mathematically, it is given as follows:

Now, let's see how we can draw an illustration for normal distribution using the Python
stats library: 

from scipy.stats import norm

normal_data = norm.rvs(size=90000,loc=20,scale=30)
axis = sns.distplot(normal_data, bins=100, kde=True, color='skyblue',
hist_kws={"linewidth": 15,'alpha':0.568})
axis.set(xlabel='Normal Distribution', ylabel='Frequency')
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The output of the preceding code is as follows:

We can get a normal distribution graph using the scipy.stats modules by the
norm.rvs() method. It allows the loc argument to set the mean of the distribution,
the scale argument to set the standard deviation, and finally the size argument to
indicate the number of random variables. 

Exponential distribution
A process in which some events occur continuously and independently at a constant
average rate is referred to as a Poisson point process. The exponential distribution
describes the time between events in such a Poisson point process, and the probability
density function of the exponential distribution is given as follows:
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We can visualize an exponentially distributed random variable using the scipy.stats
module by applying the expon.rvs() function. Check the following code:

# Exponential distribution
from scipy.stats import expon

expon_data = expon.rvs(scale=1,loc=0,size=1000)
axis = sns.distplot(expon_data, kde=True, bins=100, color='skyblue',
hist_kws={"linewidth": 15})
axis.set(xlabel='Exponential Distribution', ylabel='Frequency')

The output of the preceding code is as follows:

The graph shown in the preceding diagram illustrates the decreasing exponential function.
The curve is decreasing over the x axis. 

Binomial distribution
Binomial distribution, as the name suggests, has only two possible outcomes, success or
failure. The outcomes do not need to be equally likely and each trial is independent of the
other. 
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Let's generate a binomial distribution graph using the scipy.stats module by the binom
method:

from scipy.stats import binom

binomial_data = binom.rvs(n=10, p=0.8,size=10000)

axis = sns.distplot(binomial_data, kde=False, color='red',
hist_kws={"linewidth": 15})
axis.set(xlabel='Binomial Distribution', ylabel='Frequency')

The output of the preceding code is given in the following diagram:

The binom.rvs() method from the scipy.stats module takes n as the number of trial
arguments, and p as the probability of success as shape parameters to generate the graph. 

Cumulative distribution function
Now, the cumulative distribution function (CDF) is the probability that the variable takes
a value that is less than or equal to x. Mathematically, it is written as follows:
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When a distribution is a scalar continuous, it provides the area under the PDF, ranging
from minus infinity to x. The CDF specifies the distribution of multivariate random
variables.

Descriptive statistics
Descriptive statistics deals with the formulation of simple summaries of data so that they
can be clearly understood. The summaries of data may be either numerical representations
or visualizations with simple graphs for further understanding. Typically, such summaries
help in the initial phase of statistical analysis. There are two types of descriptive statistics:

Measures of central tendency1.
Measures of variability (spread)2.

Measures of central tendency include mean, median, and mode, while measures of
variability include standard deviation (or variance), the minimum and maximum
values of the variables, kurtosis, and skewness. We are going to discuss these two
categories in the next section. 

Measures of central tendency
The measure of central tendency tends to describe the average or mean value of datasets
that is supposed to provide an optimal summarization of the entire set of measurements.
This value is a number that is in some way central to the set. The most common measures
for analyzing the distribution frequency of data are the mean, median, and mode.

Mean/average
The mean, or average, is a number around which the observed continuous variables are
distributed. This number estimates the value of the entire dataset. Mathematically, it is the
result of the division of the sum of numbers by the number of integers in the dataset.

Let x be a set of integers:

x = (12,2,3,5,8,9,6,4,2)
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Hence, the mean value of x can be calculated as follows:

Next, let's look at the median.

Median
Given a dataset that is sorted either in ascending or descending order, the median divides
the data into two parts. The general formula for calculating the median is as follows:

Here, n is the number of items in the data. The steps involved in calculating the median are
as follows:

Sort the numbers in either ascending or descending order. 1.
If n is odd, find the (n+1)/2th term. The value corresponding to this term is the2.
median. 
If n is even, find the (n+1)/2th term. The median value is the average of3.
numbers on either side of the median position. 

For a set of integers such as x, we must arrange them in ascending order and then select the
middle integer.

x in ascending order = (2,2,3,4,5,6,8,9,12).

Here, the median is 5.

Mode
The mode is the integer that appears the maximum number of times in the dataset. It
happens to be the value with the highest frequency in the dataset. In the x dataset in the
median example, the mode is 2 because it occurs twice in the set.
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Python provides different libraries for operating descriptive statistics in the dataset.
Commonly used libraries are pandas, numpy, and scipy. These measures of central
tendency can simply be calculated by the numpy and pandas functionalities.

To practice descriptive statistics, we would require a dataset that has multiple numerical
records in it. Here is a dataset of automobiles that enlists different features and attributes of
cars, such as symboling, normalized losses, aspiration, and many others, an analysis of
which will provide some valuable insight and findings in relation to automobiles in this
dataset.

Let's begin by importing the datasets and the Python libraries required:

import pandas as pd
import numpy as np

Now, let's load the automobile database:

df = pd.read_csv("data.csv")
df.head()

In the preceding code, we assume that you have the database stored in your current drive.
Alternatively, you can change the path to the correct location. By now, you should be
familiar with data loading techniques. The output of the code is given here:

Data cleaning: In the previous chapter, we discussed several ways in
which we can clean our dataset. We need to clean numeric columns. Since
we have already discussed several ways in which we can clean the
dataset, I have skipped the codes for doing so. However, you can find a
section entitled Data cleaning in the Python notebook attached to this
chapter in the GitHub repository. 
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Now, let's start by computing measures of central tendencies. Before establishing these for
all the rows, let's see how we can get central tendencies for a single column. For example,
we want to obtain the mean, median, and mode for the column that represents the height.
In pandas, we can get an individual column easily by specifying the column name as
dataframe["column_name"]. In our case, our DataFrame is stored in the
df variable. Hence, we can get all the data items for height as df["height"]. Now, pandas
provides easy built-in functions to measure central tendencies. Let's compute this as
follows:

height =df["height"]
mean = height.mean()
median =height.median()
mode = height.mode()
print(mean , median, mode)

The output of the preceding code is as follows:

53.766666666666715 54.1 0 50.8
dtype: float64

Now, the important thing here is to interpret the results. Just with these simple statistics,
we can understand that the average height of the cars is around 53.766 and that there are a
lot of cars whose mode value is 50.8. Similarly, we can get measures of the central
tendencies for any columns whose data types are numeric. A list of similar functions that
are helpful is shown in the following screenshot:
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In addition to finding statistics for a single column, it is possible to find descriptive statistics
for the entire dataset at once. Pandas provides a very useful function, df.describe, for
doing so:

df.describe()

The output of the preceding code is shown in the following screenshot:

If you have used pandas before, I am pretty sure you have heard about or probably used
this function several times. But have you really understood the output you obtained? In the
preceding table, you can see that we have statistics for all the columns, excluding NaN
values. The function takes both numeric and objects series under consideration during the
calculation. In the rows, we get the count, mean, standard deviation, minimum value,
percentiles, and maximum values of that column. We can easily understand our dataset in a
better way. In fact, if you check the preceding table, you can answer the following
questions:

What is the total number of rows we have in our dataset?
What is the average length, width, height, price, and compression ratio of the
cars?
What is the minimum height of the car? What is the maximum height of the car?
What is the maximum standard deviation of the curb weight of the cars?. 

We can now, in fact, answer a lot of questions, just based on one table. Pretty good, right?
Now, whenever you start any data science work, it is always considered good practice to
perform a number of sanity checks. By sanity checks, I mean understanding your data
before actually fitting machine learning models. Getting a description of the dataset is one
such sanity check.  
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In the case of categorical variables that have discrete values, we can summarize the
categorical data by using the value_counts() function. Well, an example is better than a
precept. In our dataset, we have a categorical data column, make. Let's first count the total
number of entries according to such categories, and then take the first 30 largest values and
draw a bar chart:

df.make.value_counts().nlargest(30).plot(kind='bar', figsize=(14,8))
plt.title("Number of cars by make")
plt.ylabel('Number of cars')
plt.xlabel('Make of the cars')

By now, the preceding code should be pretty familiar. We are using the value_counts()
function from the pandas library. Once we have the list, we are getting the first 30 largest
values by using the nlargest() function. Finally, we exploit the plot function provided by
the pandas library. The output of the preceding code snippet is shown here:
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The table, as shown, is helpful. To add a degree of comprehension, we can use visualization
techniques as shown in the preceding diagram. It is pretty clear from the diagram that
Toyota's brand is the most popular brand. Similarly, we can easily visualize successive
brands on the list. 

Measures of dispersion
The second type of descriptive statistics is the measure of dispersion, also known as a
measure of variability. It is used to describe the variability in a dataset, which can be a
sample or population. It is usually used in conjunction with a measure of central tendency,
to provide an overall description of a set of data. A measure of
dispersion/variability/spread gives us an idea of how well the central tendency represents
the data. If we are analyzing the dataset closely, sometimes, the mean/average might not be
the best representation of the data because it will vary when there are large variations
between the data. In such a case, a measure of dispersion will represent the variability in a
dataset much more accurately.

Multiple techniques provide the measures of dispersion in our dataset. Some commonly
used methods are standard deviation (or variance), the minimum and maximum values of
the variables, range, kurtosis, and skewness.

Standard deviation
In simple language, the standard deviation is the average/mean of the difference between
each value in the dataset with its average/mean; that is, how data is spread out from the
mean. If the standard deviation of the dataset is low, then the data points tend to be close to
the mean of the dataset, otherwise, the data points are spread out over a wider range of
values.

Different Python libraries have functions to get the standard deviation of the dataset. The
NumPy library has the numpy.std(dataset) function. The statistics library has the
statistics.stdev(dataset). function. Using the pandas library, we calculate the
standard deviation in our df data frame using the df.std() function:

#standard variance of dataset using std() function
std_dev =df.std()
print(std_dev)
# standard variance of the specific column
sv_height=df.loc[:,"height"].std()
print(sv_height)
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The output of the preceding code is as follows:

Next, let's look at variance.

Variance
Variance is the square of the average/mean of the difference between each value in the
dataset with its average/mean; that is, it is the square of standard deviation.

Different Python libraries have functions to obtain the variance of the dataset. The NumPy
library has the numpy.var(dataset) function. The statistics library has
the statistics.variance(dataset) function. Using the pandas library, we calculate
the variance in our df data frame using the df.var() function:

# variance of dataset using var() function
variance=df.var()
print(variance)

# variance of the specific column
var_height=df.loc[:,"height"].var()
print(var_height)
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The output of the preceding code is as follows:

It is essential to note the following observations from the code snippet provided here:

It is important to note that df.var() will calculate the variance in the given data
frame across the column by default. In addition, we can specify axis=0 to
indicate that we need to calculate variance by column or by row.
Specifying df.var(axis=1) will calculate the row-wise variance in the given
data frame.
Finally, it is also possible to calculate the variance in any particular column by
specifying the location. For example, df.loc[:,"height"].var() calculates
the variance in the column height in the preceding dataset. 
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Skewness
In probability theory and statistics, skewness is a measure of the asymmetry of the variable
in the dataset about its mean. The skewness value can be positive or negative, or undefined.
The skewness value tells us whether the data is skewed or symmetric. Here's an illustration
of a positively skewed dataset, symmetrical data, and some negatively skewed data:

Note the following observations from the preceding diagram:

The graph on the right-hand side has a tail that is longer than the tail on the
right-hand side. This indicates that the distribution of the data is skewed to the
left. If you select any point in the left-hand longer tail, the mean is less than the
mode. This condition is referred to as negative skewness. 
The graph on the left-hand side has a tail that is longer on the right-hand side. If
you select any point on the right-hand tail, the mean value is greater than the
mode. This condition is referred to as positive skewness. 
The graph in the middle has a right-hand tail that is the same as the left-hand tail.
This condition is referred to as a symmetrical condition.

Different Python libraries have functions to get the skewness of the dataset. The SciPy
library has a scipy.stats.skew(dataset) function. Using the pandas library, we can
calculate the skewness in our df data frame using the df.skew() function.

Here, in our data frame of automobiles, let's get the skewness using the df.skew()
function:

df.skew()
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The output of the preceding code is as follows:

In addition, we can also compute skew at a column level. For example, the skew of the 
column height can be computed using the df.loc[:,"height"].skew(). function.

Kurtosis
We have already discussed normal distribution. Do you remember the bell-shaped graph?
If not, just check out the first section of this chapter again. You may well ask yourself, why 
should you remember that? It is necessary in order to understand the concept of kurtosis.
Basically, kurtosis is a statistical measure that illustrates how heavily the tails of
distribution differ from those of a normal distribution. This technique can identify whether
a given distribution contains extreme values. 

But hold on, isn't that similar to what we do with skewness? Not really.
Skewness typically measures the symmetry of the given distribution. On
the other hand, kurtosis measures the heaviness of the distribution tails. 

Kurtosis, unlike skewness, is not about the peakedness or flatness. It is the measure of
outlier presence in a given distribution. Both high and low kurtosis are an indicator that
data needs further investigation. The higher the kurtosis, the higher the outliers. 



Descriptive Statistics Chapter 5

[ 156 ]

Types of kurtosis
There are three types of kurtosis—mesokurtic, leptokurtic, and platykurtic. Let's look at
these one by one:

Mesokurtic: If any dataset follows a normal distribution, it follows a mesokurtic
distribution. It has kurtosis around 0. 
Leptokurtic: In this case, the distribution has kurtosis greater than 3 and the fat
tails indicate that the distribution produces more outliers. 
Platykurtic: In this case, the distribution has negative kurtosis and the tails are
very thin compared to the normal distribution. 

All three types of kurtosis are shown in the following diagram:

Different Python libraries have functions to get the kurtosis of the dataset. The SciPy library
has the scipy.stats.kurtosis(dataset) function. Using the pandas library, we
calculate the kurtosis of our df data frame using the df.kurt() function:

# Kurtosis of data in data using skew() function
kurtosis =df.kurt()
print(kurtosis)

# Kurtosis of the specific column
sk_height=df.loc[:,"height"].kurt()
print(sk_height)
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The output of the preceding code is given here:

Similarly, we can compute the kurtosis of any particular data column. For example, we can
compute the kurtosis of the column height as df.loc[:,"height"].kurt(). 

Calculating percentiles
Percentiles measure the percentage of values in any dataset that lie below a certain value. In
order to calculate percentiles, we need to make sure our list is sorted. An example would be
if you were to say that the 80th percentile of data is 130: then what does that mean? Well, it
simply means that 80% of the values lie below 130. Pretty easy, right? We will use the
following formula for this:

Suppose we have the given data: 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10. Then the percentile value of 4
= (4/12) * 100 = 33.33%.

This simply means that 33.33% of the data is less than 4.

Now, let's compute the percentile of the height column from the same data frame we have
been using so far:

height = df["height"]
percentile = np.percentile(height, 50,)
print(percentile)
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The output of the preceding code is as follows:

54.1

The preceding formula is very simple. But do you see any pattern with the
measures of central tendencies? What would be the 50th percentile? This
corresponds to the median. Were you able to deduce that?

Quartiles
Given a dataset sorted in ascending order, quartiles are the values that split the given
dataset into quarters. Quartiles refer to the three data points that divide the given dataset
into four equal parts, such that each split makes 25% of the dataset. In terms of percentiles,
the 25th percentile is referred to as the first quartile (Q1), the 50th percentile is referred to as
the second quartile (Q2), and the 75th percentile is referred to as the third quartile (Q3).

Based on the quartile, there is another measure called inter-quartile range that also
measures the variability in the dataset. It is defined as follows:

IQR is not affected by the presence of outliers. Let's get the IQR for the price column from
the same dataframe we have been using so far:

price = df.price.sort_values()
Q1 = np.percentile(price, 25)
Q2 = np.percentile(price, 50)
Q3 = np.percentile(price, 75)

IQR = Q3 - Q1
IQR
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The output of the preceding snippet is as follows:

8718.5

Next, let's visualize the quartiles using the box plot. 

Visualizing quartiles
First of all, let's generate some data. Let's assume that the following are the scores obtained
by students in three different subjects:

scorePhysics =
[34,35,35,35,35,35,36,36,37,37,37,37,37,38,38,38,39,39,40,40,40,40,40,41,42
,42,42,42,42,42,42,42,43,43,43,43,44,44,44,44,44,44,45,45,45,45,45,46,46,46
,46,46,46,47,47,47,47,47,47,48,48,48,48,48,49,49,49,49,49,49,49,49,52,52,52
,53,53,53,53,53,53,53,53,54,54,54,54,54,54,54,55,55,55,55,55,56,56,56,56,56
,56,57,57,57,58,58,59,59,59,59,59,59,59,60,60,60,60,60,60,60,61,61,61,61,61
,62,62,63,63,63,63,63,64,64,64,64,64,64,64,65,65,65,66,66,67,67,68,68,68,68
,68,68,68,69,70,71,71,71,72,72,72,72,73,73,74,75,76,76,76,76,77,77,78,79,79
,80,80,81,84,84,85,85,87,87,88]
scoreLiterature =
[49,49,50,51,51,52,52,52,52,53,54,54,55,55,55,55,56,56,56,56,56,57,57,57,58
,58,58,59,59,59,60,60,60,60,60,60,60,61,61,61,62,62,62,62,63,63,67,67,68,68
,68,68,68,68,69,69,69,69,69,69,70,71,71,71,71,72,72,72,72,73,73,73,73,74,74
,74,74,74,75,75,75,76,76,76,77,77,78,78,78,79,79,79,80,80,82,83,85,88]
scoreComputer =
[56,57,58,58,58,60,60,61,61,61,61,61,61,62,62,62,62,63,63,63,63,63,64,64,64
,64,65,65,66,66,67,67,67,67,67,67,67,68,68,68,69,69,70,70,70,71,71,71,73,73
,74,75,75,76,76,77,77,77,78,78,81,82,84,89,90]

Now, if we want to plot the box plot for a single subject, we can do that using
the plt.boxplot() function:

plt.boxplot(scoreComputer, showmeans=True, whis = 99)
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Let's print the box plot for scores from the computer subject:

The preceding diagram illustrates the fact that the box goes from the upper to the lower
quartile (around 62 and 73), while the whiskers (the bars extending from the box) go to a
minimum of 56 and a maximum of 90. The red line is the median (around 67), whereas the
little triangle (green color) is the mean. 

Now, let's add box plots to other subjects as well. We can do this easily by combining all the
scores into a single variable:

scores=[scorePhysics, scoreLiterature, scoreComputer]

Next, we plot the box plot:

box = plt.boxplot(scores, showmeans=True, whis=99)

plt.setp(box['boxes'][0], color='blue')
plt.setp(box['caps'][0], color='blue')
plt.setp(box['caps'][1], color='blue')
plt.setp(box['whiskers'][0], color='blue')
plt.setp(box['whiskers'][1], color='blue')

plt.setp(box['boxes'][1], color='red')
plt.setp(box['caps'][2], color='red')
plt.setp(box['caps'][3], color='red')
plt.setp(box['whiskers'][2], color='red')
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plt.setp(box['whiskers'][3], color='red')

plt.ylim([20, 95])
plt.grid(True, axis='y')
plt.title('Distribution of the scores in three subjects', fontsize=18)
plt.ylabel('Total score in that subject')
plt.xticks([1,2,3], ['Physics','Literature','Computer'])

plt.show()

The output of the preceding code is given here:

From the graph, it is clear that the minimum score obtained by the students was around 32,
while the maximum score obtained was 90, which was in the computer science subject. 
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Summary
In this chapter, we discussed several aspects of descriptive statistics. A descriptive statistic
is commonly referred to as a summary statistic that quantitatively describes a given dataset.
We discussed the most common summary measures used in this field, including measures
of central tendency (mean, median, and mode) and measures of variability (standard
deviation, minimum, maximum, kurtosis, and skewness). 

In the next chapter, we will continue more advanced descriptive statistics by using
grouping techniques. These grouping techniques are provided by the pandas library. 

Further reading
Measures of Skewness and Kurtosis: https:/ ​/​www. ​itl.​nist. ​gov/ ​div898/ ​handbook/
eda/​section3/ ​eda35b. ​htm

Pandas Cookbook, Theodore Petrou, Packt Publishing
Learning Pandas – Second Edition, Michael Heydt, Packt Publishing
Mastering Pandas, Femi Anthony, Packt Publishing
Hands-On Data Analysis with Pandas, Stefanie Molin, Packt Publishing
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6
Grouping Datasets

During data analysis, it is often essential to cluster or group data together based on certain
criteria. For example, an e-commerce store might want to group all the sales that were done
during the Christmas period or the orders that were received on Black Friday. These
grouping concepts occur in several parts of data analysis. In this chapter, we will cover the
fundamentals of grouping techniques and how doing this can improve data analysis. We
will discuss different groupby() mechanics that will accumulate our dataset into various
classes that we can perform aggregation on. We will also figure out how to dissect this
categorical data with visualization by utilizing pivot tables and cross-tabulations. 

In this chapter, we will cover the following topics:

Understanding groupby() 
Groupby mechanics
Data aggregation
Pivot tables and cross-tabulations

Technical requirements
The code for this chapter can be found in this book's GitHub repository, https:/ ​/​github.
com/​PacktPublishing/ ​hands- ​on- ​exploratory- ​data- ​analysis- ​with- ​python, inside the
Chapter 6 folder. 

The dataset we'll be using in this chapter is available under open access through Kaggle. It
can be downloaded from https:/ ​/​www. ​kaggle. ​com/ ​toramky/ ​automobile- ​dataset.

In this chapter, we are going to use the pandas library, so make sure you have it installed.
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Understanding groupby() 
During the data analysis phase, categorizing a dataset into multiple categories or groups is
often essential. We can do such categorization using the pandas library. The pandas
groupby function is one of the most efficient and time-saving features for doing this.
Groupby provides functionalities that allow us to split-apply-combine throughout the
dataframe; that is, this function can be used for splitting, applying, and combining
dataframes. 

Similar to the Structured Query Language (SQL), we can use pandas and Python to
execute more complex group operations by using any built-in functions that accept the
pandas object or the numpy array. 

In the next section, we are going to look into the groupby mechanics using the pandas
library. 

Groupby mechanics
While working with the pandas dataframes, our analysis may require us to split our data
by certain criteria. Groupby mechanics amass our dataset into various classes in which we
can perform exercises and make changes, such as the following:

Grouping by features, hierarchically
Aggregating a dataset by groups
Applying custom aggregation functions to groups
Transforming a dataset groupwise

The pandas groupby method performs two essential functions:

It splits the data into groups based on some criteria.
It applies a function to each group independently.

To work with groupby functionalities, we need a dataset that has multiple numerical as
well as categorical records in it so that we can group by different categories and ranges.
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Let's take a look at a dataset of automobiles that enlists the different features and attributes
of cars, such as symbolling, normalized-losses, make, aspiration, body-style,
drive-wheels, engine-location, and many others. Let's get started:

Let's start by importing the required Python libraries and datasets:1.

import pandas as pd
df = pd.read_csv("/content/automobileEDA.csv")
df.head()

Here, we're assuming that you have the database stored in your current drive. If
you don't, you can change the path to the correct location. By now, you should be
familiar with the appropriate data loading techniques for doing this, so we won't
cover this again here. 

The output of the preceding code is as follows:

As you can see, there are multiple columns with categorical variables.

Using the groupby() function lets us group this dataset on the basis of the2.
body-style column:

df.groupby('body-style').groups.keys()

The output of the preceding code is as follows:

dict_keys(['convertible', 'hardtop', 'hatchback', 'sedan',
'wagon'])

From the preceding output, we know that the body-style column has five
unique values, including convertible, hardtop, hatchback, sedan, and
wagon. 



Grouping Datasets Chapter 6

[ 166 ]

Now, we can group the data based on the body-style column. Next, let's print3.
the values contained in that group that have the body-style value of
convertible. This can be done using the following code:

# Group the dataset by the column body-style
style = df.groupby('body-style')

# Get values items from group with value convertible
style.get_group("convertible")

The output of the preceding code is as follows:

In the preceding example, we have grouped by using a single body-style column. We can
also select a subset of columns. We'll learn how to do this in the next section.

Selecting a subset of columns
To form groups based on multiple categories, we can simply specify the column names in
the groupby() function. Grouping will be done simultaneously with the first category, the
second category, and so on. 

Let's groupby using two categories, body-style and drive wheels, as follows: 

double_grouping = df.groupby(["body-style","drive-wheels"])
double_grouping.first()

The output of the preceding code is as follows:
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Not only can we group the dataset with specific criteria, but we can also perform arithmetic
operations directly on the whole group at the same time and print the output as a series or
dataframe. There are functions such as max(), min(), mean(), first(), and last() that
can be directly applied to the GroupBy object in order to obtain summary statistics for each
group.

In the next section, we are going to discuss these functions one by one. 

Max and min
Let's compute the maximum and minimum entry for each group. Here, we will find the
maximum and minimum for the normalized-losses column:

# max() will print the maximum entry of each group
style['normalized-losses'].max()

# min() will print the minimum entry of each group
style['normalized-losses'].min()
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The output of the preceding code is as follows:

body-style
convertible 122
hardtop 93
hatchback 65
sedan 65
wagon 74
Name: normalized-losses, dtype: int64

As illustrated in the preceding output, the minimum value for each category is presented. 

Mean
We can find the mean values for the numerical column in each group. This can be done
using the df.mean() method.

The code for finding the mean is as follows:

# mean() will print mean of numerical column in each group
style.mean()

The output of the preceding code is as follows:

Note that we can get the average of each column by specifying a column, as follows:

# get mean of each column of specific group
style.get_group("convertible").mean()

The output of the preceding code is as follows:



Grouping Datasets Chapter 6

[ 169 ]

Next, we can also count the number of symboling/records in each group. To do so, use
the following code:

# get the number of symboling/records in each group
style['symboling'].count()

The output of the preceding code is as follows:

body-style
convertible 6
hardtop 8
hatchback 68
sedan 94
wagon 25
Name: symboling, dtype: int64

Having understood the counting part, in the next section, we are going to discuss different
types of data aggregation techniques.
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Data aggregation
Aggregation is the process of implementing any mathematical operation on a dataset or a
subset of it. Aggregation is one of the many techniques in pandas that's used to manipulate
the data in the dataframe for data analysis.

The Dataframe.aggregate() function is used to apply aggregation across one or more
columns. Some of the most frequently used aggregations are as follows:

sum: Returns the sum of the values for the requested axis
min: Returns the minimum of the values for the requested axis
max: Returns the maximum of the values for the requested axis

We can apply aggregation in a DataFrame, df, as df.aggregate() or df.agg().

Since aggregation only works with numeric type columns, let's take some of the numeric
columns from the dataset and apply some aggregation functions to them:

# new dataframe that consist length,width,height,curb-weight and price
new_dataset = df.filter(["length","width","height","curb-
weight","price"],axis=1)
new_dataset

The output of the preceding code snippet is as follows:
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Next, let's apply a single aggregation to get the mean of the columns. To do this, we can use
the agg() method, as shown in the following code:

# applying single aggregation for mean over the columns
new_dataset.agg("mean", axis="rows")

The output of the preceding code is as follows:

length 0.837102
width 0.915126
height 53.766667
curb-weight 2555.666667
price 13207.129353
dtype: float64

We can aggregate more than one function together. For example, we can find the sum and
the minimum of all the columns at once by using the following code:

# applying aggregation sum and minimum across all the columns
new_dataset.agg(['sum', 'min'])

The output of the preceding code is as follows:

The output is a dataframe with rows containing the result of the respective aggregation that
was applied to the columns. To apply aggregation functions across different columns, you
can pass a dictionary with a key containing the column names and values containing the
list of aggregation functions for any specific column:

# find aggregation for these columns
new_dataset.aggregate({"length":['sum', 'min'],
              "width":['max', 'min'],
              "height":['min', 'sum'],
              "curb-weight":['sum']})
# if any specific aggregation is not applied on a column
# then it has NaN value corresponding to it
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The output of the preceding code is as follows:

Check the preceding output. The maximum, minimum, and the sum of rows present the
values for each column. Note that some values are NaN based on their column values. 

Group-wise operations
The most important operations groupBy implements are aggregate, filter, transform, and
apply. An efficient way of implementing aggregation functions in the dataset is by doing so
after grouping the required columns. The aggregated function will return a single
aggregated value for each group. Once these groups have been created, we can apply
several aggregation operations to that grouped data.

Let's group the DataFrame, df, by body-style and drive-wheels and extract stats
from each group by passing a dictionary of aggregation functions:

# Group the data frame df by body-style and drive-wheels and extract stats
from each group
df.groupby(
   ["body-style","drive-wheels"]
).agg(
    {
         'height':min, # minimum height of car in each group
         'length': max, # maximum length of car in each group
         'price': 'mean', # average price of car in each group
    }
)

The output of the preceding code is as follows:
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The preceding code groups the dataframe according to body-style and then driver-
wheels. Then, the aggregate functions are applied to the height, length, and price
columns, which return the minimum height, maximum length, and average price in the
respective groups.

We can make an aggregation dictionary of functions we want to perform in groups, and
then use it later:

# create dictionary of aggregations
aggregations=(
    {
         'height':min, # minimum height of car in each group
         'length': max, # maximum length of car in each group
         'price': 'mean', # average price of car in each group
    }
)
# implementing aggregations in groups
df.groupby(
   ["body-style","drive-wheels"]
).agg(aggregations)
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The output of the preceding code is as follows:

We can use numpy functions in aggregation as well:

# import the numpy library as np
import numpy as np
# using numpy libraries for operations
df.groupby(
   ["body-style","drive-wheels"])["price"].agg([np.sum, np.mean, np.std])

The output of the preceding code is as follows:
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As shown in the preceding screenshot, we selected two categories, body-style and
drive-wheels. The sum, mean, and standard deviation for each row can be seen here.
Pretty straightforward, right? Now, let's learn how to rename grouped aggregated
columns. 

Renaming grouped aggregation columns
Don't you think the output dataframe would be more informative if we could rename the
column name with the operation we performed in that column or group?

We can perform aggregation in each group and rename the columns according to the
operation performed. This is useful for understanding the output dataset:

df.groupby(
   ["body-style","drive-wheels"]).agg(
    # Get max of the price column for each group
    max_price=('price', max),
    # Get min of the price column for each group
    min_price=('price', min),
    # Get sum of the price column for each group
    total_price=('price', 'mean')
)
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The output of the preceding code is as follows:

As shown in the preceding screenshot, we only selected two categories: body-style and
drive-wheels. For each row in these categories, the maximum price, the minimum price,
and the total price is computed in the successive columns. 

Group-wise transformations
Working with groupby() and aggregation, you must have thought, why can't we group
data, apply aggregation, and append the result into the dataframe directly? Is it possible to do all this
in a single step? Yes, it is.

Performing a transformation on a group or a column returns an object that is indexed by
the same axis length as itself. It is an operation that's used in conjunction with
groupby(). The aggregation operation has to return a reduced version of the data, whereas
the transformation operation can return a transformed version of the full data. Let's take a
look:

Let's begin by using a simple transformation function to increase the price of1.
each car by 10% using the lambda function:

df["price"]=df["price"].transform(lambda x:x + x/10)
df.loc[:,'price']
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The output of the preceding code is as follows:

0 14844.5
1 18150.0
2 18150.0
3 15345.0
4 19195.0
        ...
196 18529.5
197 20949.5
198 23633.5
199 24717.0
200 24887.5
Name: price, Length: 201, dtype: float64

Let's observe the average price of cars for each grouping by body-style and2.
drive-wheels:

df.groupby(["body-style","drive-
wheels"])["price"].transform('mean')

The output of the preceding code is as follows:

0 26344.560000
1 26344.560000
2 15771.555556
3 10792.980000
4 13912.066667
           ...
196 23883.016667
197 23883.016667
198 23883.016667
199 23883.016667
200 23883.016667
Name: price, Length: 201, dtype: float64

If you look at the preceding output, you will notice how this returns a different
sized dataset from our normal groupby() functions.

Now, create a new column for an average price in the original dataframe:3.

df["average-price"]=df.groupby(["body-style","drive-
wheels"])["price"].transform('mean')

# selecting columns body-style,drive-wheels,price and average-price
df.loc[:,["body-style","drive-wheels","price","average-price"]]
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The output of the preceding code is as follows:

The output shown in the preceding screenshot is pretty obvious. We computed the price
and the average price for two categories: body-style and drive-wheels. Next, we are
going to discuss how to use pivot tables and cross-tabulation techniques.

Pivot tables and cross-tabulations
Pandas offers several options for grouping and summarizing data. We've already discussed
groupby, aggregation, and transformation, but there are other options available, such
as pivot_table and crosstab. First, let's understand pivot tables.

Pivot tables
The pandas.pivot_table() function creates a spreadsheet-style pivot table as a
dataframe. The levels in the pivot table will be stored in MultiIndex objects (hierarchical
indexes) on the index and columns of the resulting dataframe.
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The simplest pivot tables must have a dataframe and an index/list of the index. Let's take a
look at how to do this:

Let's make a pivot table of a new dataframe that consists of the body-style,1.
drive-wheels, length, width, height, curb-weight, and price columns:

new_dataset1 = df.filter(["body-style","drive-wheels",
                          "length","width","height","curb-
weight","price"],axis=1)
#simplest pivot table with dataframe df and index body-style
table = pd.pivot_table(new_dataset1, index =["body-style"])
table

The output of the preceding code is as follows:

The output table is similar to how we group a dataframe with respect to body-
style. The values in the preceding table are the mean of the values in the
corresponding category. Let's make a more precise pivot table.

Now, design a pivot table with the new_dataset1 dataframe and make body-2.
style and drive-wheels as an index. Note that providing multiple indexes
will make a grouping of the dataframe first and then summarize the data:

#pivot table with dataframe df and index body-style and drive-
wheels
table = pd.pivot_table(new_dataset1, index =["body-style","drive-
wheels"])
table
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The output of the preceding code is as follows:

The output is a pivot table grouped by body-style and drive-wheels. It
contains the average of the numerical values of the corresponding columns.

The syntax for the pivot table takes some arguments, such as c, values, index,
column, and aggregation function. We can apply the aggregation function to a
pivot table at the same time. We can pass the aggregation function, values, and
columns that aggregation will be applied to, in order to create a pivot table of a
summarized subset of a dataframe:

# import numpy for aggregation function
import numpy as np

# new data set with few columns
new_dataset3 = df.filter(["body-style","drive-
wheels","price"],axis=1)

table = pd.pivot_table(new_dataset3, values='price', index=["body-
style"],
                       columns=["drive-
wheels"],aggfunc=np.mean,fill_value=0)
table
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In terms of syntax, the preceding code represents the following:

A pivot table with a dataset called new_dataset3.
The values are the columns that the aggregation function is to be applied to.
The index is a column for grouping data.
Columns for specifying the category of data.
aggfunc is the aggregation function to be applied.
fill_value is used to fill in missing values.

The output of the preceding code is as follows:

The preceding pivot table represents the average price of cars with different
body-style and available drive-wheels in those body-style.

We can also apply a different aggregation function to different columns:3.

table = pd.pivot_table(new_dataset1,
values=['price','height','width'],
                       index =["body-style","drive-wheels"],
                       aggfunc={'price': np.mean,'height': [min,
max],'width': [min, max]},
                       fill_value=0)
table
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The output of the preceding code is as follows:

This pivot table represents the maximum and minimum of the height and width and the
average price of cars in the respective categories mentioned in the index.

Cross-tabulations
We can customize the pandas dataframe with another technique called cross-tabulation.
This allows us to cope with groupby and aggregation for better data analysis. pandas has
the crosstab function, which helps when it comes to building a cross-tabulation table. The
cross-tabulation table shows the frequency with which certain groups of data appear. Let's
take a look:

Let's use pd.crosstab() to look at how many different body styles cars are1.
made by different makers:

pd.crosstab(df["make"], df["body-style"])
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The output of the preceding code is as follows:

Let's apply margins and the margins_name attribute to display the row-wise and
column-wise sum of the cross tables, as shown in the following code:

# apply margins and margins_name attribute to displays the row wise
# and column wise sum of the cross table
pd.crosstab(df["make"], df["body-
style"],margins=True,margins_name="Total Made")
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The output of the preceding code is as follows:

Applying multiple columns in the crosstab function for the row index or
column index or both will print the output with grouping automatically.

Let's see how the data is distributed by the body-type and drive_wheels2.
columns within the maker of car and their door type in a crosstab:

pd.crosstab([df["make"],df["num-of-doors"]], [df["body-
style"],df["drive-wheels"]],
            margins=True,margins_name="Total Made")

The output of the preceding code is as follows:
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Now, let's rename the column and row index. Renaming gives us a better
understanding of cross-tabulation, as shown in the following code:

# rename the columns and row index for better understanding of
crosstab
pd.crosstab([df["make"],df["num-of-doors"]], [df["body-
style"],df["drive-wheels"]],
            rownames=['Auto Manufacturer', "Doors"],
            colnames=['Body Style', "Drive Type"],
            margins=True,margins_name="Total Made").head()

The output of the preceding code is as follows:
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These were some cross-tabulation examples that gave us the frequency
distributions of data in the respective categories.

The pivot table syntax of pd.crosstab also takes some arguments, such as
dataframe columns, values, normalize, and the aggregation function. We can
apply the aggregation function to a cross table at the same time. Passing the
aggregation function and values, which are the columns that aggregation will be
applied to, gives us a cross table of a summarized subset of the dataframe.

First, let's look at the average curb-weight of cars made by different makers3.
with respect to their body-style by applying the mean() aggregation function
to the crosstable:

# values are the column in which aggregation function is to be
applied
# aggfunc is the aggregation function to be applied
# round() to round the output

pd.crosstab(df["make"], df["body-style"],values=df["curb-weight"],
            aggfunc='mean').round(0)

The output of the preceding code is as follows:
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A normalized crosstab will show the percentage of time each combination
occurs. This can be accomplished using the normalize parameter, as follows:

pd.crosstab(df["make"], df["body-style"],normalize=True).head(10)

The output of the preceding code is as follows:

Cross-tabulation techniques can be handy when we're trying to analyze two or more
variables. This helps us inspect the relationships between them. 

Summary
Grouping data into similar categories is an essential operation in any data analysis task. In
this chapter, we discussed different grouping techniques, including groupby mechanics,
rearranging, reshaping data structures, data aggregation methods, and cross-tabulation
methods. In addition to this, we also checked various examples for each case. 

In the next chapter, we are going to learn about correlation, which describes how two or
more variables can be related. In addition to this, we will look at different types of
correlation techniques and their applications with suitable examples.
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Further reading
Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data
Visualization using Python 1st Edition, by Theodore Petrou, PACKT Publication, 2017 
Mastering pandas - Second Edition, by Ashish Kumar, PACKT Publication, October
25, 2019
Learning pandas - Second Edition, by Michael Heydt, PACKT Publication, June 29,
2017
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Correlation

In this chapter, we will explore the correlation between different factors and estimate to
what degree these different factors are reliable. Additionally, we will learn about the
different types of examinations we can carry out in order to discover the relationship
between data including univariate analysis, bivariate analysis, and multivariate analysis.
We will perform these analyses using the Titanic dataset. We'll also introduce Simpson's
paradox. Likewise, we will take an insightful look at the well-known fact that correlation
does not imply causation.

In this chapter, we will cover the following topics:

Introducing correlation 
Understanding univariate analysis
Understanding bivariate analysis
Understanding multivariate analysis
Discussing multivariate analysis using the Titanic dataset
Outlining Simpson's paradox
Correlation does not imply causation
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Technical requirements
The code for this chapter can be found in the GitHub repository (https:/ ​/​github. ​com/
PacktPublishing/​hands- ​on- ​exploratory- ​data- ​analysis- ​with- ​python) inside the
chapter 7 folder: 

Dataset A: The automobile dataset used in this chapter is inside the chapter
7/automobile.csv folder. 
Dataset B: The Titanic dataset used in this chapter is available with Open ML.
You can download it at https:/ ​/​www. ​openml. ​org/​d/ ​40945. The dataset has been
downloaded for you inside the folder. 
GitHub: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​hands- ​on-​exploratory- ​data-
analysis- ​with- ​python/ ​tree/ ​master/ ​Chapter%207.

Introducing correlation
Any dataset that we want to analyze will have different fields (that is, columns) of multiple
observations (that is, variables) representing different facts. The columns of a dataset are,
most probably, related to one another because they are collected from the same event. One
field of record may or may not affect the value of another field. To examine the type of
relationships these columns have and to analyze the causes and effects between them, we
have to work to find the dependencies that exist among variables. The strength of such a
relationship between two fields of a dataset is called correlation, which is represented by a
numerical value between -1 and 1.

In other words, the statistical technique that examines the relationship and explains
whether, and how strongly, pairs of variables are related to one another is known as
correlation. Correlation answers questions such as how one variable changes with respect
to another. If it does change, then to what degree or strength? Additionally, if the
relation between those variables is strong enough, then we can make predictions for future
behavior.

For example, height and weight are both related; that is, taller people tend to be heavier
than shorter people. If we have a new person who is taller than the average height that we
observed before, then they are more likely to weigh more than the average weight we
observed.
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Correlation tells us how variables change together, both in the same or opposite directions
and in the magnitude (that is, strength) of the relationship. To find the correlation, we
calculate the Pearson correlation coefficient, symbolized by ρ (the Greek letter rho). This is
obtained by dividing the covariance by the product of the standard deviations of the
variables:

In terms of the strength of the relationship, the value of the correlation between two
variables, A and B, varies between +1 and -1. If the correlation is +1, then it is said to be a
perfect positive/linear correlation (that is, variable A is directly proportional to variable B),
while a correlation of -1 is a perfect negative correlation (that is, variable A is inversely
proportional to variable B). Note that values closer to 0 are not supposed to be correlated at
all. If correlation coefficients are near to 1 in absolute value, then the variables are said to be
strongly correlated; in comparison, those that are closer to 0.5 are said to be weakly
correlated.

Let's take a look at some examples using scatter plots. Scatter plots show how much one
variable is affected by another:
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As depicted in the first and last charts, the closer the distance between the data points when
plotted to make a straight line, the higher the correlation between the associated variables.
The higher the correlation between them, the stronger the relationship between the
variables. The more scattered the data points get when plotted (thus making no patterns),
the lower the correlation between the two variables. Here, you should observe the
following four important points:

When the data points plot has a straight line going through the origin to the x
and y values, then the variables are said to have a positive correlation. 
When the data points plot to generate a line that goes from a high value on the y
axis to a high value on the x axis, the variables are said to have a negative
correlation. 
A perfect correlation has a value of 1. 
A perfect negative correlation has a value of -1. 

A highly positive correlation is given a value closer to 1. A highly negative correlation is
given a value closer to -1. In the preceding diagram, +0.8 gives a high positive correlation
and -0.8 gives a high negative correlation. The closer the number is to 0 (in the diagram, this
is +0.3 and -0.3), the weaker the correlation.

Before analyzing the correlation in our dataset, let's learn about the various types of
analysis. 

Types of analysis
In this section, we are going to explore different types of analysis. We will start with
univariate analysis, then move on to bivariate analysis, and, finally, we will discuss
multivariate analysis. 

Understanding univariate analysis
Remember the variables we worked with in Chapter 5, Descriptive Statistics, for measures
of descriptive statistics? There we had a set of integers ranging from 2 to 12. We calculated
the mean, median, and mode of that set and analyzed the distribution patterns of
integers. Then, we calculated the mean, mode, median, and standard deviation of the
values available in the height column of each type of automobile dataset. Such an
analysis on a single type of dataset is called univariate analysis. 
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Univariate analysis is the simplest form of analyzing data. It means that our data has only
one type of variable and that we perform analysis over it. The main purpose of univariate
analysis is to take data, summarize that data, and find patterns among the values. It doesn't
deal with causes or relationships between the values. Several techniques that describe the
patterns found in univariate data include central tendency (that is the mean, mode, and
median) and dispersion (that is, the range, variance, maximum and minimum quartiles
(including the interquartile range), and standard deviation).

Why don't you try doing an analysis over the same set of data again? This time, remember
that this is univariate analysis:

Start by importing the required libraries and loading the dataset:1.

#import libraries
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

Now, load the data:2.

# loading dataset as Pandas dataframe
df = pd.read_csv("data.csv")
df.head()

The output of this code is given as follows:

First, check the data types of each column. By now, you must be familiar with the3.
following:

df.dtypes
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The output is as follows:

symboling int64
normalized-losses int64
make object
aspiration object
num-of-doors object
body-style object
drive-wheels object
engine-location object
wheel-base float64
length float64
width float64
height float64
curb-weight int64
engine-type object
num-of-cylinders object
engine-size int64
fuel-system object
bore float64
stroke float64
compression-ratio float64
horsepower float64
peak-rpm float64
city-mpg int64
highway-mpg int64
price float64
city-L/100km float64
horsepower-binned object
diesel int64
gas int64
dtype: object

Now compute the measure of central tendency of the height column. Recall that4.
we discussed several descriptive statistics in Chapter 5, Descriptive Statistics:

#calculate mean, median and mode of dat set height
mean = df["height"].mean()
median =df["height"].median()
mode = df["height"].mode()
print(mean , median, mode)

The output of those descriptive functions is as follows:

53.766666666666715 54.1 0 50.8
dtype: float64
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Now, let's visualize this analysis in the graph:5.

#distribution plot
sns.FacetGrid(df,size=5).map(sns.distplot,"height").add_legend()

The code will generate a distribution plot of values in the height column:

From the graph, we can observe that the maximum height of maximum cars ranges from 53
to 57. Now, let's do the same with the price column:

#distribution plot
sns.FacetGrid(df,size=5).map(sns.distplot,"price").add_legend()

The output of this code is given as follows:
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Looking at this diagram, we can say that the price ranges from 5,000 to 45,000, but the
maximum car price ranges between 5,000 and 10,000.

A box plot is also an effective method for the visual representation of statistical measures
such as the median and quartiles in univariate analysis:

#boxplot for price of cars
sns.boxplot(x="price",data=df)
plt.show()

The box plot generated from the preceding code is given as follows:

The right border of the box is Q3, that is, the third quartile, and the left border of the box is
Q1, that is, the first quartile. Lines extend from both sides of the box boundaries toward the
minimum and maximum. Based on the convention that our plotting tool uses, though, they
may only extend to a certain statistic; any values beyond these statistics are marked as
outliers (using points).

This analysis was for a dataset with a single type of variable only. Now, let's take a look at
the next form of analysis for a dataset with two types of variables, known as bivariate
analysis.
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Understanding bivariate analysis
As its name suggests, this is the analysis of more than one (that is, exactly two) type of
variable. Bivariate analysis is used to find out whether there is a relationship between two
different variables. When we create a scatter plot by plotting one variable against another
on a Cartesian plane (think of the x and y axes), it gives us a picture of what the data is
trying to tell us. If the data points seem to fit the line or curve, then there is a relationship or
correlation between the two variables. Generally, bivariate analysis helps us to predict a
value for one variable (that is, a dependent variable) if we are aware of the value of the
independent variable. 

Here's a diagram showing a scatter plot of advertising dollars and sales rates over a period
of time:

This diagram is the scatter plot for bivariate analysis, where Sales and Advertising Dollars
are two variables. While plotting a scatter plot, we can see that the sales values are
dependent on the advertising dollars; that is, as the advertising dollars increase, the sales
values also increase. This understanding of the relationship between two variables will
guide us in our future predictions:

It's now time to perform bivariate analysis on our automobiles dataset. Let's look1.
at whether horsepower is a dependent factor for the pricing of cars or not:

# plot the relationship between “horsepower” and ”price”
plt.scatter(df["price"], df["horsepower"])
plt.title("Scatter Plot for horsepower vs price")
plt.xlabel("horsepower")
plt.ylabel("price")
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This code will generate a scatter plot with a price range on the y axis and
horsepower values on the x axis, as follows:

As you can see in the preceding diagram, the horsepower of cars is a dependent
factor for the price. As the horsepower of a car increases, the price of the car also
increases.

A box plot is also a nice way in which to view some statistical measures along
with the relationship between two values.

Now, let's draw a box plot between the engine location of cars and their price:2.

#boxplot
sns.boxplot(x="engine-location",y="price",data=df)
plt.show()

This code will generate a box plot with the price range on the y axis and the types
of engine locations on the x axis:
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This diagram shows that the price of cars having a front engine-location is much
lower than that of cars having a rear engine-location. Additionally, there are
some outliers that have a front engine location but the price is much higher.

Next, plot another box plot with the price range and the driver wheel type:3.

#boxplot to visualize the distribution of "price" with types of
"drive-wheels"
sns.boxplot(x="drive-wheels", y="price",data=df)

The output of this code is given as follows:

This diagram shows the range of prices of cars with different wheel types. Here, the box 
plot shows the average and median price in respective wheel types and some outliers too.

This was a brief introduction, along with a few practice examples of bivariate analysis.
Now, let's learn about a more efficient type of practice for data analysis, multivariate
analysis.

Understanding multivariate analysis
Multivariate analysis is the analysis of three or more variables. This allows us to look at
correlations (that is, how one variable changes with respect to another) and attempt to
make predictions for future behavior more accurately than with bivariate analysis.

Initially, we explored the visualization of univariate analysis and bivariate analysis;
likewise, let's visualize the concept of multivariate analysis.
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One common way of plotting multivariate data is to make a matrix scatter plot, known as a
pair plot. A matrix plot or pair plot shows each pair of variables plotted against each other.
The pair plot allows us to see both the distribution of single variables and the relationships
between two variables:

We can use the scatter_matrix() function from the1.
pandas.tools.plotting package or the seaborn.pairplot() function from
the seaborn package to do this:

# pair plot with plot type regression
sns.pairplot(df,vars = ['normalized-losses', 'price','horsepower'],
kind="reg")
plt.show()

This code will plot a 3 x 3 matrix of different plots for data in the normalized
losses, price, and horsepower columns:



Correlation Chapter 7

[ 201 ]

As shown in the preceding diagram, the histogram on the diagonal allows us to
illustrate the distribution of a single variable. The regression plots on the upper
and the lower triangles demonstrate the relationship between two variables. The
middle plot in the first row shows the regression plot; this represents that there is
no correlation between normalized losses and the price of cars. In comparison, the
middle regression plot in the bottom row illustrates that there is a huge
correlation between price and horsepower.

Similarly, we can carry out multivariate analysis using a pair plot by specifying2.
the colors, labels, plot type, diagonal plot type, and variables. So, let's make
another pair plot:

#pair plot (matrix scatterplot) of few columns
sns.set(style="ticks", color_codes=True)
sns.pairplot(df,vars = ['symboling', 'normalized-losses','wheel-
base'], hue="drive-wheels")
plt.show()

The output of this code is given as follows:
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This is a pair plot of records of the symboling, normalized-losses, wheel-base, and
drive-wheels columns.

The density plots on the diagonal allow us to see the distribution of a single
variable, while the scatter plots on the upper and lower triangles show the
relationship (or correlation) between two variables. The hue parameter is the
column name used for the labels of the data points; in this diagram, the drive-
wheels type is labeled by color. The left-most plot in the second row shows the
scatter plot of normalized-losses versus wheel-base.

As discussed earlier, correlation analysis is an efficient technique for finding out
whether any of the variables in a multivariate dataset are correlated. To calculate
the linear (Pearson) correlation coefficient for a pair of variables, we can use the
dataframe.corr(method ='pearson') function from the pandas package
and the pearsonr() function from the scipy.stats package:

For example, to calculate the correlation coefficient for the price and horsepower,3.
use the following:

from scipy import stats
corr = stats.pearsonr(df["price"], df["horsepower"])
print("p-value:\t", corr[1])
print("cor:\t\t", corr[0])

The output is as follows:

p-value: 6.369057428260101e-48
cor: 0.8095745670036559

Here, the correlation between these two variables is 0.80957, which is close to +1.
Therefore, we can make sure that both price and horsepower are highly positively
correlated.

Using the pandas corr( function, the correlation between the entire numerical4.
record can be calculated as follows:

correlation = df.corr(method='pearson')
correlation
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The output of this code is given as follows:

Now, let's visualize this correlation analysis using a heatmap. A heatmap is the5.
best technique to make this look beautiful and easier to interpret:

sns.heatmap(correlation,xticklabels=correlation.columns,
            yticklabels=correlation.columns)

The output of this code is given as follows:
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A coefficient close to 1 means that there's a very strong positive correlation between the two
variables. The diagonal line is the correlation of the variables to themselves – so they'll, of
course, be 1.

This was a brief introduction to, along with a few practice examples of multivariate
analysis. Now, let's practice them with the popular dataset, Titanic, which is frequently
used for practicing data analysis and machine learning algorithms all around the world.
The data source is mentioned in the Technical requirements section of this chapter.

Discussing multivariate analysis using the
Titanic dataset
On April 15, 1912, the largest passenger liner ever made at the time collided with an iceberg
during her maiden voyage. When the Titanic sank, it killed 1,502 out of 2,224 passengers
and crew. The titanic.csv (https:/ ​/ ​web.​stanford. ​edu/ ​class/ ​archive/ ​cs/​cs109/
cs109.​1166/​stuff/ ​titanic. ​csv) file contains data for 887 real Titanic passengers. Each
row represents one person. The columns describe different attributes about the person in
the ship where the PassengerId column is a unique ID of the passenger, Survived is the
number that survived (1) or died (0), Pclass is the passenger's class (that is, first, second,
or third), Name is the passenger's name, Sex is the passenger's sex, Age is the passenger's
age, Siblings/Spouses Aboard is the number of siblings/spouses aboard the Titanic,
Parents/Children Aboard is the number of parents/children aboard the Titanic, Ticket
is the ticket number, Fare is the fare for each ticket, Cabin is the cabin number, and
Embarked is where the passenger got on the ship (for instance: C refers to Cherbourg,
S refers to Southampton, and Q refers to Queenstown).

Let's analyze the Titanic dataset and identify those attributes that have maximum
dependencies on the survival of the passengers:

First load the dataset and the required libraries:1.

# load python libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#load dataset
titanic=pd.read_csv("/content/titanic.csv")
titanic.head()
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The output of this code is given as follows:

Let's take a look at the shape of the DataFrame in the code:

titanic.shape

The output is as follows:

(891, 12)

Let's take a look at the number of records missing in the dataset:3.

total = titanic.isnull().sum().sort_values(ascending=False)
total

The output is as follows:

Cabin 687
Age 177
Embarked 2
Fare 0
Ticket 0
Parch 0
SibSp 0
Sex 0
Name 0
Pclass 0
Survived 0
PassengerId 0
dtype: int64

All the records appear to be fine except for Embarked, Age, and Cabin. The
Cabin feature requires further investigation to fill up so many, but let's not use it
in our analysis because 77% of it is missing. Additionally, it will be quite tricky to
deal with the Age feature, which has 177 missing values. We cannot ignore the
age factor because it might correlate with the survival rate. The Embarked feature
has only two missing values, which can easily be filled.
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Since the PassengerId, Ticket, and Name columns have unique values, they do
not correlate with a high survival rate.

First, let's find out the percentages of women and men who survived the disaster:4.

#percentage of women survived
women = titanic.loc[titanic.Sex == 'female']["Survived"]
rate_women = sum(women)/len(women)

#percentage of men survived
men = titanic.loc[titanic.Sex == 'male']["Survived"]
rate_men = sum(men)/len(men)

print(str(rate_women) +" % of women who survived." )
print(str(rate_men) + " % of men who survived." )

The output is as follows:

0.7420382165605095 % of women who survived.
0.18890814558058924 % of men who survived.

Here, you can see the number of women who survived was high, so gender5.
could be an attribute that contributes to analyzing the survival of any variable
(person). Let's visualize this information using the survival numbers of males
and females:

titanic['Survived'] = titanic['Survived'].map({0:"not_survived",
1:"survived"})

fig, ax = plt.subplots(1, 2, figsize = (10, 8))
titanic["Sex"].value_counts().plot.bar(color = "skyblue", ax =
ax[0])
ax[0].set_title("Number Of Passengers By Sex")
ax[0].set_ylabel("Population")
sns.countplot("Sex", hue = "Survived", data = titanic, ax = ax[1])
ax[1].set_title("Sex: Survived vs Dead")
plt.show()

The output of this code is given as follows:
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Let's visualize the number of survivors and deaths from different Pclasses:6.

fig, ax = plt.subplots(1, 2, figsize = (10, 8))
titanic["Pclass"].value_counts().plot.bar(color = "skyblue", ax =
ax[0])
ax[0].set_title("Number Of Passengers By Pclass")
ax[0].set_ylabel("Population")
sns.countplot("Pclass", hue = "Survived", data = titanic, ax =
ax[1])
ax[1].set_title("Pclass: Survived vs Dead")
plt.show()

The output of this code is given as follows:
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Well, it looks like the number of passengers in Pclass 3 was high, and the7.
majority of them could not survive. In Pclass 2, the number of deaths is high.
And, Pclass 1 shows the maximum number of passengers who survived:

fig, ax = plt.subplots(1, 2, figsize = (10, 8))
titanic["Embarked"].value_counts().plot.bar(color = "skyblue", ax =
ax[0])
ax[0].set_title("Number Of Passengers By Embarked")
ax[0].set_ylabel("Number")
sns.countplot("Embarked", hue = "Survived", data = titanic, ax =
ax[1])
ax[1].set_title("Embarked: Survived vs Unsurvived")
plt.show()

The output of the code is given as follows:

Most passengers seemed to arrive on to the ship from S (Southampton) and
nearly 450 of them did not survive.

To visualize the Age records, we will plot the distribution of data using the8.
distplot() method. As we previously analyzed, there are 177 null values in the
Age records, so we will drop them before plotting the data:

sns.distplot(titanic['Age'].dropna())
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The output of this code is given as follows:

Now, let's first carry out a multivariate analysis on the Titanic dataset using9.
the Survived, Pclass, Fear, and Age variables:

sns.set(style="ticks", color_codes=True)
sns.pairplot(titanic,vars = [ 'Fare','Age','Pclass'],
hue="Survived")
plt.show()

The output of this code is given as follows:
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Now, let's view the correlation table with a heatmap. Note that the10.
first Embarked map records with integer values so that we can include
Embarked in our correlation analysis too:

titanic['Embarked'] = titanic['Embarked'].map({"S":1,
"C":2,"Q":2,"NaN":0})
Tcorrelation = titanic.corr(method='pearson')
Tcorrelation

The output of this code is given as follows:

The result is pretty straightforward. It shows the correlation between the11.
individual columns. As you can see, in this table, PassengerId shows a weak
positive relationship with the Fare and Age columns: 

sns.heatmap(Tcorrelation,xticklabels=Tcorrelation.columns,
            yticklabels=Tcorrelation.columns)

The output of this code is given as follows:
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You can get the same dataset in Kaggle if you want to practice more analysis and prediction
algorithms. 

So far, you have learned about correlation and types of data analysis. You have made
different analyses over the dataset too. Now we need to closely consider the facts before
making any conclusions on the analysis based on the output we get.

Outlining Simpson's paradox
Usually, the decisions we make from our dataset are influenced by the output of statistical
measures we apply to them. Those outputs tell us about the type of correlation and the 
basic visualizations of the dataset. However, sometimes, the decisions differ when we
segregate the data into groups and apply statistical measures, or when we aggregate it
together and then apply statistical measures. This kind of anomalous behavior in the results
of the same dataset is generally called Simpson's paradox. Put simply, Simpson's paradox
is the difference that appears in a trend of analysis when a dataset is analyzed in two
different situations: first, when data is separated into groups and, second, when data is
aggregated.

Here's a table that represents the recommendation rate for two different game consoles by
males and females individually and also combined:

Recommendation 
PS4

Recommendation
Xbox One

Male 50/150=30% 180/360=50%

Female 200/250=80% 36/40=90%

Combined 250/400=62.5% 216/400=54%

The preceding table presents the recommendation rate of two different game consoles: PS4
and Xbox One by males and females, both individually and combined.

Suppose you are going to buy a game console that has a maximum recommendation. As
shown in the preceding table, Xbox One is recommended by a higher percentage of both
men and women than the PS4. However, using the same data when combined, the PS4 has
a higher recommended percentage (62.5%) according to all users. So, how would you
decide which one to go with? The calculations look fine but, logically, the decision making
does not seem okay. This is Simpson's paradox. The same dataset here proves two
opposing arguments. 
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Well, the main issue, in this case, is that when we only see the percentages of the separate
data, it does not consider the sample size. Since each fraction shows the number of users
who would recommend the game console by the number asked, it is relevant to consider
the entire sample size. The sample size in the separate data of males and females differs by
a large amount. For example, the recommendations of males for the PS4 is 50, while the
recommendation for Xbox One is 180. There is a huge difference in these numbers. Xbox
One has far more responses from men than from women, while the case is the opposite for
the PS4. Because fewer men recommend the PlayStation, which results in a lower average
rating for the PS4 when the data is combined, it leads to the paradox.

In order to come to a single decision regarding which console we should go with, we need
to decide whether the data can be combined or whether we should look at it separately. In
this case, we have to find out which console is most likely to satisfy both males and females.
There might be other factors influencing these reviews, but we don't have this data, so we
look for the maximum number of good reviews irrespective of the gender bias. Here,
aggregating the data makes the most sense. We will combine the review and go with the
overall average. Since our aim is to combine the reviews and see the total average, the
aggregation of the data makes more sense. 

It looks like Simpson's paradox is a far-fetched problem that is theoretically possible but
never occurs in practice because our statistical analysis of the overall available data is
accurate. However, there are many well-known studies of Simpson's paradox in the real
world.

One real-world example is with mental health treatments such as depression. The following
is a table about the effectiveness of two types of therapies given to patients: 

Therapy A Therapy B
Mild depression 81/87=93% 234/270=87%
Severe depression 192/263=73% 55/80=69%
Both 273/350=78% 289/350=83%

As you can see, in the preceding table, there are two types of therapies: Therapy A and
Therapy B. Therapy A seems to work better for both mild and severe depression, but
aggregating the data reveals that treatment B works better for both cases. How is this
possible? Well, we cannot conclude that the results after the data aggregation are correct,
because the sample size differs in each type of therapy. In order to come to a single decision
regarding which therapies we should go with, we need to think practically: how was the
data generated? And what factors influence the results that are not seen at all?

In reality, mild depression is considered to be a less serious case by doctors and therapy A
is cheaper than therapy B. Therefore, doctors recommend the simpler therapy, A, for mild
depression. 
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The details and facts of the two therapy types are not mentioned in our dataset. The kind of
depression and seriousness of the case leads to confounding variables (confounding
variables are something we don't see in the data table but they can be determined by
background analysis of the data) because it affects the decision regarding what treatment
and recovery method to select. So, the factor that decides which treatment works better for
the patient is dependent on the confounding variable, which is the seriousness of the case
here. To determine which therapy works better, we require a report of the seriousness of
the cases and then need to compare the recovery rates with both therapies rather than
aggregated data across groups.

Answering the questions we want from a set of data sometimes requires more analysis than
just looking at the available data. The lesson to take from Simpson's paradox is that
data alone is insufficient. Data is never purely objective and neither is the final plot.
Therefore, we must consider whether we are getting the whole story when dealing with a
set of data.

Another fact that must be considered before concluding the analysis based on the output
we get is that correlation does not imply causation. This is so important in the field of
statistics that Wikipedia has a separate article on this statement.

Correlation does not imply causation
Correlation does not imply causation is an interesting phrase that you will hear mostly in
statistics and when learning about data science in detail. But what does it mean? Well, it
merely indicates that just because two things correlate does not always mean that one
causes the other. For example, the Norwegian winter is cold, and people tend to spend
more money on buying hot foods such as soup than they do in summer. However, this does
not mean that cold weather causes people to spend more money on soup. Therefore,
although the expenditure of people in Norway is related to cold weather, the spending is
not the cause of the cold weather. Hence, correlation is not causation. 

Note that there are two essential terms in this phrase: correlation and causation.
Correlation reveals how strongly a pair of variables are related to each other and change
together. Causation explains that any change in the value of one variable will cause a
difference in the amount of another variable. In this case, one variable makes the other
variable happen. This phenomenon is known as cause and effect. For example, when you
exercise (X), the amount of calories (Y) you burn is higher every minute. Hence, X causes Y.
According to the theory of logic, we can say the following:
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The most common example found in any data analysis book is about the sales of ice cream
and the rise and fall of homicide. According to this example, as there is an increase in ice
cream sales, there is an increase in the number of homicides. Based on the correlation, these
two events are highly co-related. However, the consumption of ice cream is not causing the
death of people. These two things are not based on the cause and effect theory. Therefore,
correlation does not mean causation.

So, what is the takeaway from this critical phrase? Well, first of all, we should not form our
conclusions too quickly based on correlation. It is essential to invest some time in finding
the underlying factors of the data in order to understand any critical, hidden factors. 

Summary
In this chapter, we discussed correlation. Correlation is a statistical measure that can be
used to inspect how a pair of variables are related. Understanding these relationships can
help you to decide the most important features from a set of variables. Once we understand
the correlation, we can use it to make better predictions. The higher the relationship
between the variables, the higher the accuracy of the prediction. Since correlation is of
higher importance, in this chapter, we have covered several methods of correlation and the
different types of analysis, including univariate analysis, bivariate analysis, and
multivariate analysis. 

In the next chapter, we will take a closer look at time series analysis. We will use several
real-life databases, including time series analysis, in order to perform exploratory data
analysis. 

Further reading
Associations and Correlations, by Lee Baker, Packt Publishing, June 28, 2019
Data Science with Python, by Rohan Chopra, Aaron England, and Mohamed Noordeen
Alaudeen, Packt Publishing, July 2019
Hands-On Data Analysis with NumPy and Pandas, by Curtis Miller, Packt Publishing,
June 2018



8
Time Series Analysis

Time series data includes timestamps and is often generated while monitoring the
industrial process or tracking any business metrics. An ordered sequence of timestamp
values at equally spaced intervals is referred to as a time series. Analysis of such a time
series is used in many applications such as sales forecasting, utility studies, budget analysis,
economic forecasting, inventory studies, and so on. There are a plethora of methods that
can be used to model and forecast time series. 

In this chapter, we are going to explore Time Series Analysis (TSA) using Python libraries.
Time series data is in the form of a sequence of quantitative observations about a system or
process and is made at successive points in time.

In this chapter, we are going to cover the following topics:

Understanding time series datasets
TSA with Open Power System Data

Technical requirements
All the code and datasets used in this chapter can be found inside the GitHub repository
(https:/​/​github.​com/ ​PacktPublishing/ ​hands- ​on- ​exploratory- ​data- ​analysis- ​with-
python):

Code: The code you'll need for this chapter can be found inside the folder
marked Chapter 8/.
Datasets: We are going to use Open Power System Data for TSA. It can be
downloaded from https:/ ​/​open- ​power- ​system- ​data. ​org/​. You can also find
the dataset inside the GitHub repository inside Chapter 9/datasets.
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Understanding the time series dataset
The most essential question would be, what do we mean by time series data? Of course, we
have heard about it on several occasions. Perhaps we can define it? Sure we
can. Essentially, a time series is a collection of observations made sequentially in time. Note
that there are two important key phrases here—a collection of observations and
sequentially in time. Since it is a series, it has to be a collection of observations, and since it
deals with time, it has to deal with it in a sequential fashion. 

Let's take an example of time series data:

The preceding screenshot illustrates solar energy production (measured in Gigawatt Hours
(GWh)) for the first six months of 2016. It also shows the consumption of electricity on both
a daily and weekly basis. 

Fundamentals of TSA
In order to understand the time series dataset, let's randomly generate a normalized
dataset:

We can generate the dataset using the numpy library:1.

import os
import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns

zero_mean_series = np.random.normal(loc=0.0, scale=1., size=50)
zero_mean_series
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We have used the NumPy library to generate random datasets. So, the output
given here will be different for you. The output of the preceding code is given
here:

array([-0.73140395, -2.4944216 , -1.44929237, -0.40077112,
0.23713083, 0.89632516, -0.90228469, -0.96464949, 1.48135275,
0.64530002, -1.70897785,  0.54863901, -1.14941457, -1.49177657,
-2.04298133, 1.40936481,  0.65621356, -0.37571958, -0.04877503,
-0.84619236, -1.46231312,  2.42031845, -0.91949491,  0.80903063,
0.67885337, -0.1082256 , -0.16953567,  0.93628661,  2.57639376,
-0.01489153, 0.9011697 , -0.29900988,  0.04519547,  0.71230853,
-0.00626227, 1.27565662, -0.42432848,  1.44748288,  0.29585819,
0.70547011, -0.6838063 ,  1.61502839, -0.04388889,  1.06261716,
0.17708138, 0.3723592 , -0.77185183, -3.3487284 ,  0.59464475,
-0.89005505])

Next, we are going to use the seaborn library to plot the time series data. Check2.
the code snippet given here:

plt.figure(figsize=(16, 8))
g = sns.lineplot(data=zero_mean_series)
g.set_title('Zero mean model')
g.set_xlabel('Time index')
plt.show()

We plotted the time series graph using the seaborn.lineplot() function which
is a built-in method provided by the seaborn library. The output of the
preceding code is given here:
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We can perform a cumulative sum over the list and then plot the data using a3.
time series plot. The plot gives more interesting results. Check the following code
snippet:

random_walk = np.cumsum(zero_mean_series)
random_walk

It generates an array of the cumulative sum as shown here:

array([ -0.73140395,  -3.22582556,  -4.67511792,
-5.07588904,-4.83875821,  -3.94243305,  -4.84471774,
-5.80936723,-4.32801448,  -3.68271446,  -5.39169231,  -4.8430533
,-5.99246787,  -7.48424444,  -9.52722576,  -8.11786095,-7.46164739,
-7.83736697,  -7.886142  ,  -8.73233436, -10.19464748,
-7.77432903,  -8.69382394,  -7.88479331,-7.20593994,  -7.31416554,
-7.4837012 ,  -6.5474146 ,-3.97102084,  -3.98591237,  -3.08474267,
-3.38375255,-3.33855708,  -2.62624855,  -2.63251082,
-1.35685419,-1.78118268,  -0.3336998 ,  -0.03784161,
0.66762849,-0.01617781,   1.59885058,   1.55496169,   2.61757885,
2.79466023,   3.16701943,   2.3951676 ,  -0.9535608 ,-0.35891606,
-1.2489711 ])

Note that for any particular value, the next value is the sum of previous values.

Now, if we plot the list using the time series plot as shown here, we get an4.
interesting graph that shows the change in values over time:

plt.figure(figsize=(16, 8))
g = sns.lineplot(data=random_walk)
g.set_title('Random Walk')
g.set_xlabel('Time index')
plt.show()

The output of the preceding code is given here:
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Note the graph shown in the preceding diagram. It shows the change of values over time.
Great – so far, we have generated different time series data and plotted it using the built-in
seaborn.tsplot() method.

Univariate time series
When we capture a sequence of observations for the same variable over a particular
duration of time, the series is referred to as univariate time series. In general, in a
univariate time series, the observations are taken over regular time periods, such as the
change in temperature over time throughout a day. 

Characteristics of time series data
When working with time series data, there are several unique characteristics that can be
observed. In general, time series tend to exhibit the following characteristics:

When looking at time series data, it is essential to see if there is any trend.
Observing a trend means that the average measurement values seem either to
decrease or increase over time. 
Time series data may contain a notable amount of outliers. These outliers can be
noted when plotted on a graph. 
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Some data in time series tends to repeat over a certain interval in some patterns.
We refer to such repeating patterns as seasonality.
Sometimes, there is an uneven change in time series data. We refer to such
uneven changes as abrupt changes. Observing abrupt changes in time series is
essential as it reveals essential underlying phenomena. 
Some series tend to follow constant variance over time. Hence, it is essential to
look at the time series data and see whether or not the data exhibits constant
variance over time. 

The characteristics listed previously help us to make better analyses when it comes to TSA.
Now that we know what to see and expect in time series data, it would be useful to see
some real examples in action. Next, let's import a real database and perform various TSA
methods on it. 

TSA with Open Power System Data
In this section, we are going to use Open Power System Data to understand TSA. We'll look
at the time series data structures, time-based indexing, and several ways to visualize time
series data. 

We will start by importing the dataset. Look at the code snippet given here:

# load time series dataset
df_power =
pd.read_csv("https://raw.githubusercontent.com/jenfly/opsd/master/opsd_germ
any_daily.csv")
df_power.columns

The output of the preceding code is given here:

Index(['Consumption', 'Wind', 'Solar', 'Wind+Solar'], dtype='object')

The columns of the dataframe are described here:

Date: The date is in the format yyyy-mm-dd. 
Consumption: This indicates electricity consumption in GWh. 
Solar: This indicates solar power production in GWh. 
Wind+Solar: This represents the sum of solar and wind power production in
GWh.

Note the date column, which contains the time series dataset. We can use this dataset to
discover how electricity consumption and production varies over time in Germany. 
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Data cleaning
Let's now clean our dataset for outliers:

We can start by checking the shape of the dataset:1.

df_power.shape

The output of the preceding code is given here:

(4383, 5)

The dataframe contains 4,283 rows and 5 columns. 

We can also check few entries inside the dataframe. Let's examine the last 102.
entries:

df_power.tail(10)

The output of the preceding code is given here:

Next, let's review the data types of each column in our df_power dataframe:3.

df_power.dtypes

The output of the preceding code is given here:

Date object
Consumption float64
Wind float64
Solar float64
Wind+Solar float64
dtype: object
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Note that the Date column has a data type of object. This is not correct. So, the4.
next step is to correct the Date column, as shown here:

#convert object to datetime format
df_power['Date'] = pd.to_datetime(df_power['Date'])

It should convert the Date column to Datetime format. We can verify this again:5.

df_power.dtypes

The output of the preceding code is given here:

Date datetime64[ns]
Consumption float64
Wind float64
Solar float64
Wind+Solar float64
dtype: object

Note that the Date column has been changed into the correct data type. 

Let's next change the index of our dataframe to the Date column:6.

df_power = df_power.set_index('Date')
df_power.tail(3)

The output of the preceding code is given here:

Note from the preceding screenshot that the Date column has been set as
DatetimeIndex.
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We can simply verify this by using the code snippet given here:7.

df_power.index

The output of the preceding code is given here:

DatetimeIndex(['2006-01-01', '2006-01-02', '2006-01-03',
'2006-01-04', '2006-01-05', '2006-01-06', '2006-01-07',
'2006-01-08', '2006-01-09', '2006-01-10', ... '2017-12-22',
'2017-12-23', '2017-12-24', '2017-12-25', '2017-12-26',
'2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30',
'2017-12-31'],dtype='datetime64[ns]', name='Date', length=4383,
freq=None)

Since our index is the DatetimeIndex object, now we can use it to analyze the8.
dataframe. Let's add more columns to our dataframe to make our lives easier.
Let's add Year, Month, and Weekday Name:

# Add columns with year, month, and weekday name
df_power['Year'] = df_power.index.year
df_power['Month'] = df_power.index.month
df_power['Weekday Name'] = df_power.index.weekday_name

Let's display five random rows from the dataframe:9.

# Display a random sampling of 5 rows
df_power.sample(5, random_state=0)

The output of this code is given here:

Note that we added three more columns—Year, Month, and Weekday Name. Adding these 
columns helps to make the analysis of data easier. 
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Time-based indexing
Time-based indexing is a very powerful method of the pandas library when it comes to
time series data. Having time-based indexing allows using a formatted string to select data.
See the following code, for example:

df_power.loc['2015-10-02']

The output of the preceding code is given here:

Consumption 1391.05
Wind 81.229
Solar 160.641
Wind+Solar 241.87
Year 2015
Month 10
Weekday Name Friday
Name: 2015-10-02 00:00:00, dtype: object

Note that we used the pandas dataframe loc accessor. In the preceding example, we used a
date as a string to select a row. We can use all sorts of techniques to access rows just as we
can do with a normal dataframe index. 

Visualizing time series
Let's visualize the time series dataset. We will continue using the same
df_power dataframe:

The first step is to import the seaborn and matplotlib libraries:1.

import matplotlib.pyplot as plt
import seaborn as sns
sns.set(rc={'figure.figsize':(11, 4)})
plt.rcParams['figure.figsize'] = (8,5)
plt.rcParams['figure.dpi'] = 150

Next, let's generate a line plot of the full time series of Germany's daily electricity2.
consumption:

df_power['Consumption'].plot(linewidth=0.5)
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The output of the preceding code is given here:

As depicted in the preceding screenshot, the y-axis shows the electricity
consumption and the x-axis shows the year. However, there are too many
datasets to cover all the years.

Let's use the dots to plot the data for all the other columns: 3.

cols_to_plot = ['Consumption', 'Solar', 'Wind']
axes = df_power[cols_to_plot].plot(marker='.', alpha=0.5,
linestyle='None',figsize=(14, 6), subplots=True)
for ax in axes:
    ax.set_ylabel('Daily Totals (GWh)')

The output of the preceding code is given here:
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The output shows that electricity consumption can be broken down into two
distinct patterns:

One cluster roughly from 1,400 GWh and above
Another cluster roughly below 1,400 GWh

Moreover, solar production is higher in summer and lower in winter. Over the
years, there seems to have been a strong increasing trend in the output of wind
power.

We can further investigate a single year to have a closer look. Check the code4.
given here:

ax = df_power.loc['2016', 'Consumption'].plot()
ax.set_ylabel('Daily Consumption (GWh)');

The output of the preceding code is given here:

From the preceding screenshot, we can see clearly the consumption of electricity for 2016.
The graph shows a drastic decrease in the consumption of electricity at the end of the year
(December) and during August. We can look for further details in any particular month.
Let's examine the month of December 2016 with the following code block:

ax = df_power.loc['2016-12', 'Consumption'].plot(marker='o', linestyle='-')
ax.set_ylabel('Daily Consumption (GWh)');
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The output of the preceding code is given here:

As shown in the preceding graph, electricity consumption is higher on weekdays and
lowest at the weekends. We can see the consumption for each day of the month. We can
zoom in further to see how consumption plays out in the last week of December. 

In order to indicate a particular week of December, we can supply a specific date range as
shown here:

ax = df_power.loc['2016-12-23':'2016-12-30',
'Consumption'].plot(marker='o', linestyle='-')
ax.set_ylabel('Daily Consumption (GWh)');

As illustrated in the preceding code, we want to see the electricity consumption between
2016-12-23 and 2016-12-30. The output of the preceding code is given here:

As illustrated in the preceding screenshot, electricity consumption was lowest on the day of
Christmas, probably because people were busy partying. After Christmas, the consumption
increased. 
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Grouping time series data
We can group the data by different time periods and present them in box plots:

We can first group the data by months and then use the box plots to visualize the1.
data: 

fig, axes = plt.subplots(3, 1, figsize=(8, 7), sharex=True)
for name, ax in zip(['Consumption', 'Solar', 'Wind'], axes):
  sns.boxplot(data=df_power, x='Month', y=name, ax=ax)
  ax.set_ylabel('GWh')
  ax.set_title(name)
  if ax != axes[-1]:
    ax.set_xlabel('')

The output of the preceding code is given here:

The preceding plot illustrates that electricity consumption is generally higher in
the winter and lower in the summer. Wind production is higher during the
summer. Moreover, there are many outliers associated with electricity
consumption, wind production, and solar production. 
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Next, we can group the consumption of electricity by the day of the week, and2.
present it in a box plot:

sns.boxplot(data=df_power, x='Weekday Name', y='Consumption');

The output of the preceding code is given here:

The preceding screenshot shows that electricity consumption is higher on weekdays than
on weekends. Interestingly, there are more outliers on the weekdays. 

Resampling time series data
It is often required to resample the dataset at lower or higher frequencies. This resampling
is done based on aggregation or grouping operations. For example, we can resample the
data based on the weekly mean time series as follows:

We can use the code given here to resample our data:1.

columns = ['Consumption', 'Wind', 'Solar', 'Wind+Solar']

power_weekly_mean = df_power[columns].resample('W').mean()
power_weekly_mean
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The output of the preceding code is given here:

As shown in the preceding screenshot, the first row, labeled 2006-01-01,
includes the average of all the data. We can plot the daily and weekly time series
to compare the dataset over the six-month period. 

Let's see the last six months of 2016. Let's start by initializing the variable:2.

start, end = '2016-01', '2016-06'

Next, let's plot the graph using the code given here:3.

fig, ax = plt.subplots()

ax.plot(df_power.loc[start:end, 'Solar'],
marker='.', linestyle='-', linewidth=0.5, label='Daily')
ax.plot(power_weekly_mean.loc[start:end, 'Solar'],
marker='o', markersize=8, linestyle='-', label='Weekly Mean
Resample')
ax.set_ylabel('Solar Production in (GWh)')
ax.legend();
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The output of the preceding code is given here:

The preceding screenshot shows that the weekly mean time series is increasing over time
and is much smoother than the daily time series. 

Summary
In this chapter, we have discussed how to import, clean, analyze, and visualize time series
datasets using the pandas library. Moreover, we visualized a time series dataset using the
matplotlib and seaborn libraries. Finally, we used Python to load and examine the Open
Power System Data dataset and performed several techniques associated with TSA.

In the next chapter, we are going to learn about different methods for model development
using classical machine learning techniques and three different types of machine learning,
namely, supervised learning, unsupervised machine learning, and reinforcement learning.

Further reading
Practical Time Series Analysis, by Dr. Avishek Pal and Dr. PKS Prakash, Packt
Publishing
Python Machine Learning - Third Edition, by Sebastian Raschka and Vahid Mirjalili,
Packt Publishing
Data Analysis with Python, by David Taieb, Packt Publishing
Regression Analysis with Python, by Luca Massaron and Alberto Boschetti, Packt
Publishing
Statistics for Machine Learning, by Pratap Dangeti, Packt Publishing
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Statistics for Data Science, by James D. Miller, Packt Publishing
Data Science Algorithms in a Week - Second Edition, by Dávid Natingga, Packt
Publishing
Machine Learning with scikit-learn Quick Start Guide, by Kevin Jolly, Packt Publishing
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Section 3: Model Development

and Evaluation
One of the main aims of EDA is to prepare your dataset to develop a useful model capable
of characterizing sensed data. To create such models, we first need to understand the
dataset. If our data set is labeled, we will be performing supervised learning tasks, and if
our data is unlabeled, then we will be performing unsupervised learning tasks. Moreover,
once we create these models, we need to quantify how effective our model is. We can do
this by performing several evaluations on these models. In this section, We are going to
discuss in-depth how to use EDA for model development and evaluation. The main
objective of this section is to allow you to use EDA techniques on real datasets, prepare
different types of models, and evaluate them.

This section contains the following chapters:

Chapter 9, Hypothesis Testing and Regression
Chapter 10, Model Development and Evaluation
Chapter 11, EDA on Wine Quality Data



9
Hypothesis Testing and

Regression
In this chapter, we will dive into two important concepts, hypothesis testing and
regression. First, we will discuss several aspects of hypothesis testing, the basic principles
of hypothesis testing and types of hypothesis testing and run through some working
examples. Next, we will discuss types of regression and develop models using the scikit-
learn library.

In this chapter, we will cover the following topics:

Hypothesis testing
p-hacking
Understanding regression
Types of regression
Model development and evaluation

Technical requirements
The code for this chapter can be found in the GitHub repository (https:/ ​/​github. ​com/
PacktPublishing/​hands- ​on- ​exploratory- ​data- ​analysis- ​with- ​python) inside the folder
for Chapter 9, Hypothesis Testing and Regression.
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Hypothesis testing
Hypothesis testing is often used to facilitate statistical decisions using experimental
datasets. The testing is used to validate assumptions about a population parameter. For
example, consider the following statements:

The average score of students taking the Machine Learning course at the
University of Nepal is 78.
The average height of boys is higher than that of girls among the students taking
the Machine Learning course.

In all these examples, we assume some statistical facts to prove those statements. A
situation like this is where hypothesis testing helps. A hypothesis test assesses two
mutually exclusive statements about any particular population and determines which
statement is best established by the sample data. Here, we used two essential keywords:
population and sample. A population includes all the elements from a set of data, whereas
a sample consists of one or more observations taken from any particular population. 

In the next section, we are going to discuss hypothesis testing and discuss how we can use
Python libraries to perform hypothesis testing.

Hypothesis testing principle
Hypothesis testing is based on two fundamental principles of statistics, namely,
normalization and standard normalization:

Normalization: The concept of normalization differs with respect to the context.
To understand the concept of normalization easily, it is the process of adjusting
values measured on different scales to common scales before performing
descriptive statistics, and it is denoted by the following equation:

Standard normalization: Standard normalization is similar to normalization
except it has a mean of 0 and a standard deviation of 1. Standard normalization is
denoted by the following equation:
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Besides these concepts, we need to know about some important parameters of hypothesis
testing:

The null hypothesis is the most basic assumption made based on the knowledge
about the domain. For example, the average typing speed of a person is 38-40
words per minute. 
An alternative hypothesis is a different hypothesis that opposes the null
hypothesis. The main task here is whether we accept or reject the alternative
hypothesis based on the experimentation results. For example, the average
typing speed of a person is always less than 38-40 words per minute. We can
either accept or reject this hypothesis based on certain facts. For example, we can
find a person who can type at a speed of 38 words per minute and it will
disprove this hypothesis. Hence, we can reject this statement. 
Type I error and Type II error: When we either accept or reject a hypothesis,
there are two types of errors that we could make. They are referred to as Type I
and Type II errors:

False-positive: A Type I error is when we reject the null hypothesis
(H0) when H0 is true.
False-negative: A Type II error is when we do not reject the null
hypothesis (H0) when H0 is false.

P-values: This is also referred to as the probability value or asymptotic
significance. It is the probability for a particular statistical model given that the
null hypothesis is true. Generally, if the P-value is lower than a predetermined
threshold, we reject the null hypothesis. 
Level of significance: This is one of the most important concepts that you should
be familiar with before using the hypothesis. The level of significance is the
degree of importance with which we are either accepting or rejecting the null
hypothesis. We must note that 100% accuracy is not possible for accepting or
rejecting. We generally select a level of significance based on our subject and
domain. Generally, it is 0.05 or 5%. It means that our output should be 95%
confident that it supports our null hypothesis. 

To summarize, see the condition before either selecting or rejecting the null hypothesis:

# Reject H0
p <= α
# Accept the null hypothesis
p > α

Generally, we set the significance level before we start calculating new values. Next, we
will see how we can use the stats library to perform hypothesis testing.
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statsmodels library
Let's perform hypothesis testing using the stats library. Let's consider the following
scenario.

In a study about mental health in youth, 48% of parents believed that social media was the
cause of their teenagers' stress:

Population: Parent with a teenager (age >= 18)
Parameter of interest: p
Null hypothesis: p = 0.48
Alternative hypothesis: p > 0.48

Data: 4,500 people were surveyed, and 65% of those who were surveyed believed that their
teenagers' stress is due to social media.

Let's start the hypothesis testing:

First, import the required libraries:1.

import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Next, let's declare the variables:2.

n = 4500
pnull= 0.48
phat = 0.65

Now, we can use the proportions_ztest method to calculate the new P-value.3.
Check out the following snippet:

sm.stats.proportions_ztest(phat * n, n, pnull,
alternative='larger')

The output of the preceding code is as follows:

(23.90916877786327, 1.2294951052777303e-126)

Our calculated P-value of 1.2294951052777303e-126 is pretty small, and we can reject
the null hypothesis, which is that social media is the cause of teenagers' stress. 
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Average reading time 
Let's say a reading competition was conducted with some adults. The data looks like the
following:

[236, 239, 209, 246, 246, 245, 215, 212, 242, 241, 219, 242, 236, 211, 216,
214, 203, 223, 200, 238, 215, 227, 222, 204, 200, 208, 204, 230, 216, 204,
201, 202, 240, 209, 246, 224, 243, 247, 215,249, 239, 211, 227, 211, 247,
235, 200, 240, 213, 213, 209, 219,209, 222, 244, 226, 205, 230, 238, 218,
242, 238, 243, 248, 228,243, 211, 217, 200, 237, 234, 207, 217, 211, 224,
217, 205, 233, 222, 218, 202, 205, 216, 233, 220, 218, 249, 237, 223]

Now, our hypothesis question is this: Is the average reading speed of random students
(adults) more than 212 words per minute? 

We can break down the preceding concept into the following parameters:

Population: All adults
Parameter of interest: μ, the population of a classroom
Null hypothesis: μ = 212
Alternative hypothesis: μ > 212
Confidence level: α = 0.05

We know all the required parameters. Now, we can use a Z-test from the statsmodels
package with alternate="larger":

import numpy as np

sdata = np.random.randint(200, 250, 89)
sm.stats.ztest(sdata, value = 80, alternative = "larger")

The output of the preceding code is as follows:

(91.63511530225408, 0.0)

Since the computed P-value (0.0) is lower than the standard confidence level (α = 0.05), we
can reject the null hypothesis. That means the statement the average reading speed of adults is
212 words per minute is rejected. 
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Types of hypothesis testing
There are different types of hypothesis testing. The most commonly used ones are as
follows:

Z-test
T-test
ANOVA test
Chi-squared test

Going through each type of test is beyond the scope of this book. We recommend checking
out Wikipedia or the links in the Further reading section to get detailed information about
them. However, we are going to look at the Z-test and the T-test in this book. In the
preceding examples, we only used the Z-test.

T-test
The T-test is a type of test most commonly used in inferential statistics. This test is most
commonly used in scenarios where we need to understand if there is a significant
difference between the means of two groups. For example, say we have a dataset of
students from certain classes. The dataset contains the height of each student. We are
checking whether the average height is 175 cm or not:

Population: All students in that class
Parameter of interest: μ, the population of a classroom
Null hypothesis: The average height is μ = 175
Alternative hypothesis: μ > 175
Confidence level: α = 0.05

We have listed all the parameters. Now, we can use hypothesis testing:

Let's first set up the dataset:1.

import numpy as np
height = np.array([172, 184, 174, 168, 174, 183, 173, 173, 184,
179, 171, 173, 181, 183, 172, 178, 170, 182, 181, 172, 175, 170,
168, 178, 170, 181, 180, 173, 183, 180, 177, 181, 171, 173, 171,
182, 180, 170, 172, 175, 178, 174, 184, 177, 181, 180, 178, 179,
175, 170, 182, 176, 183, 179, 177])
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Next, we are going to use the stats module from the SciPy library. Note that in2.
the previous examples, we used the statsmodels API library. We could also
continue using that, but our intention here is to introduce you to the new
modules of the SciPy library. Let's import the library:

from scipy.stats import ttest_1samp
import numpy as np

Now, let's use the NumPy library to compute the average height:3.

height_average = np.mean(height)
print("Average height is = {0:.3f}".format(height_average))

The output of the preceding code is as follows:

Average height is = 175.618

Now, let's use the T-test to compute the new P-value:4.

tset,pval = ttest_1samp(height, 175)

print("P-value = {}".format(pval))

if pval < 0.05:
 print("We are rejecting the null Hypothesis.")
else:
  print("We are accepting the null hypothesis.")

The output of the preceding code is as follows:

Average height is = 175.618
P-value = 0.35408130524750125
We are accepting the null hypothesis

Note that our significance level (alpha = 0.05) and the computed P-value is 0.354. Since it is
greater than alpha, we are accepting the null hypothesis. This means that the average 
height of students is 175 cm with a 95% confidence value. 

p-hacking
p-hacking is a serious methodological issue. It is also referred to as data fishing, data
butchery, or data dredging. It is the misuse of data analysis to detect patterns in data that
can be statistically meaningful. This is done by conducting one or more tests and only
publishing those that come back with higher-significance results.
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We have seen in the previous section, Hypothesis testing, that we rely on the P-value to draw
a conclusion. In simple words, this means we compute the P-value, which is the probability
of the results. If the P-value is small, the result is declared to be statistically significant. This
means if you create a hypothesis and test it with some criteria and report a P-value less
than 0.05, the readers are likely to believe that you have found a real correlation or effect.
However, this could be totally false in real life. There could be no effect or correlation at all.
So, whatever is reported is a false positive. This is seen a lot in the field of publications.
Many journals will only publish studies that can report at least one statistically significant
effect. As a result of this, the researchers try to wrangle the dataset, or experiment to get a
significantly lower P-value. This is called p-hacking.

Having covered the concept of data dredging, it's now time we start learning how to build
models. We will start with one of the most common and basic models—regression. 

Understanding regression
We use correlation in statistical terms to denote the association between two quantitative
variables. Note that we have used the term quantitative variables. This should be
meaningful to you. If not, we suggest you pause here and go through Chapter 1,
Exploratory Data Analysis Fundamentals.

When it comes to quantitative variables and correlation, we also assume that the
relationship is linear, that is, one variable increases or decreases by a fixed amount when
there is an increase or decrease in another variable. To determine a similar relationship,
there is the other method that's often used in these situations, regression, which includes
determining the best straight line for the relationship. A simple equation, called the
regression equation, can represent the relation:

Let's examine this formula:

Y = The dependent variable (the variable that you are trying to predict). It is often
referred to as the outcome variable.
X = The independent variable (the variable that you are using to predict Y). It is
often referred to as the predictor, or the covariate or feature.
a = The intercept.
b = The slope.
u = The regression residual.
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If y represents the dependent variable and x represents the independent variable, this
relationship is described as the regression of y on x. The relationship between x and y is
generally represented by an equation. The equation shows how much y changes with
respect to x.

There are several reasons why people use regression analysis. The most obvious reasons are
as follows:

We can use regression analysis to predict future economic conditions, trends, or
values.
We can use regression analysis to determine the relationship between two or
more variables. 
We can use regression analysis to understand how one variable changes when
another also change. 

In a later section, we will use the regression function for model development to predict the
dependent variable while implementing a new explanatory variable in our function.
Basically, we will build a prediction model. So, let's dive further into the regression.

Types of regression
The two main regression types are linear regression and multiple linear regression. Most
simple data can be represented by linear regression. Some complex data follows multiple
linear regression. We will examine the types of regression with Python in this chapter.
Finally, we will end the discussion with different aspects of a nonlinear example.

Simple linear regression
Linear regression, which is also called simple linear regression, defines the relationship
between two variables using a straight line. During linear regression, our aim is to draw a
line closest to the data by finding the slope and intercept that define the line. The equation
for simple linear regression is generally given as follows:

X is a single feature, Y is a target, and a and b are the intercept and slope respectively. The
question is, how do we choose a and b? The answer is to choose the line that minimizes the
error function, u. This error function is also known as loss or cost function, which is the
sum of the square (to ignore the positive and negative cancelation) of the difference of the
vertical distance between the line and the data point.
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This calculation is called the Ordinary Least Squares (OLS). Note that explaining every
aspect of regression is beyond the scope of this book, and we suggest you explore the
Further reading section to broaden your knowledge about the subject.

Multiple linear regression
In the case of multiple linear regression, two more independent variables or explanatory
variables show a linear relationship with the target or dependent variables. Most of the
linearly describable phenomena in nature are captured by multiple linear regression. For
example, the price of any item depends on the quantity being purchased, the time of the
year, and the number of items available in the inventory. For instance, the price of a bottle
of wine depends primarily on how many bottles you bought. Also, the price is a bit higher
during festivals such as Christmas. Moreover, if there are a limited number of bottles in the
inventory, the price is likely to go even higher. In this case, the price of wine is dependent
on three variables: quantity, time of year, and stock quantity. This type of relationship can
be captured using multiple linear regression. 

The equation for multiple linear regression is generally given as follows:

Here, Y is the dependent variable and Xis is the independent variable. 

Nonlinear regression
Nonlinear regression is a type of regression analysis in which data follows a model and is
then represented as a function of mathematics. Simple linear regression relates to two
variables (X and Y) with a straight line function, , whereas nonlinear regression
has to generate a curve. Nonlinear regression uses a regression equation, which is as
follows:

Let's look at this formula:

X = A vector of p predictors
β = A vector of k parameters
f(-) = A known regression function
ε = An error term
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Nonlinear regression can fit an enormous variety of curves. It uses logarithmic functions,
trigonometric functions, exponential functions, and many other fitting methods. This
modeling is similar to linear regression modeling because both attempt to graphically
control a specific answer from a set of variables. These are more complicated to develop
than linear models because the function is generated by means of a series of
approximations (iterations) that may result from trial and error. Mathematicians use a
variety of established methods, such as the Gauss-Newton and Levenberg-Marquardt
methods. The goal of this nonlinear model generated curve line is to make the OLS as small
as possible. The smaller the OLS the better the function fits in the dataset's points. It
measures how many observations vary from the dataset average.

In the next section, we are going to learn how we can develop and evaluate the regression
model using the Python libraries.

Model development and evaluation
In the previous section, we discussed different types of regression theoretically. Now that
we've covered the theoretical concepts, it's time to get some practical experience. In this
section, we are going to use the scikit-learn library to implement linear regression and
evaluate the model. To do this, we will use the famous Boston housing pricing dataset,
which is widely used by researchers. We will discuss different model evaluation techniques
used in the case of regression.

Let's try to develop some regression models based on the explanation we saw earlier.

Constructing a linear regression model
The first concept that comes to mind of any data science professional when solving any 
regression problem is to construct a linear regression model. Linear regression is one of the
oldest algorithms, but it's still very efficient. We will build a linear regression model in
Python using a sample dataset. This dataset is available in scikit-learn as a sample dataset
called the Boston housing prices dataset. We will use the sklearn library to load the
dataset and build the actual model. Let's start by loading and understanding the data:

Let's begin by importing all the necessary libraries and creating our dataframe:1.

# Importing the necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
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from sklearn.datasets import load_boston

sns.set(style="ticks", color_codes=True)
plt.rcParams['figure.figsize'] = (8,5)
plt.rcParams['figure.dpi'] = 150

# loading the data
df =
pd.read_csv("https://raw.githubusercontent.com/PacktPublishing/hand
s-on-exploratory-data-analysis-with-
python/master/Chapter%209/Boston.csv")

Now, we have the dataset loaded into the boston variable. We can look at the2.
keys of the dataframe as follows:

print(df.keys())

This returns all keys and values as the Python dictionary. The output of the
preceding code is as follows:

Index(['CRIM', ' ZN ', 'INDUS ', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',
'RAD', 'TAX', 'PTRATIO', 'LSTAT', 'MEDV'], dtype='object')

Now that our data is loaded, let's get our DataFrame ready quickly and work3.
ahead:

df.head()
# print the columns present in the dataset
print(df.columns)
# print the top 5 rows in the dataset
print(df.head())

The output of the preceding code is as follows:

Figure 9.1: The first five rows of the DataFrame
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The column MEDV is the target variable and, it will be used as the target variable
while building the model. The target variable (y) is separate from the feature
variable (x).

In the new overall dataframe, let's check if we have any missing values:4.

df.isna().sum()

Take a look at the following output:

CRIM 0
ZN 0
INDUS 0
CHAS 0
NOX 0
RM 0
AGE 0
DIS 0
RAD 0
TAX 0
PTRATIO 0
LSTAT 0
MEDV 0
dtype: int64

Particularly in the case of regression, it is important to make sure that our data
does not have any missing values because regression won't work if the data has
missing values.

Correlation analysis is a crucial part of building any model. We have to 
understand the distribution of the data and how the independent variables
correlate with the dependent variable.

Let's plot a heatmap describing the correlation between the columns in the5.
dataset:

#plotting heatmap for overall data set
sns.heatmap(df.corr(), square=True, cmap='RdYlGn')
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The output plot looks like this:

Figure 9.2: Correlation matrix generated from the preceding code snippet

Since we want to build a linear regression model, let's look for a few independent
variables that have a significant correlation with MEDV. From the preceding
heatmap, RM (the average number of rooms per dwelling) has a positive
correlation with MEDV (the median value of owner-occupied homes in $1,000s), so
we will take RM as a feature (X) and MEDV as a predictor (y) for our linear
regression model. 

We can use the lmplot method from seaborn to see the relationship between RM6.
and MEDV. Check out the following snippet:

sns.lmplot(x = 'RM', y = 'MEDV', data = df)
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The output of the preceding code is as follows:

Figure 9.3: Lmplot illustrating the relationship between the RM and MEDV columns

The preceding screenshot shows a strong correlation between these two variables.
However, there are some outliers that we can easily spot from the graph. Next,
let's create grounds for model development. 

Scikit-learn needs to create features and target variables in arrays, so be careful
when assigning columns to X and y:

# Preparing the data
X = df[['RM']]
y = df[['MEDV']]

And now we need to split our data into train and test sets. Sklearn provides
methods through which we can split our original dataset into train and test
datasets. As we already know, the reason behind the regression model
development is to get a formula for predicting output in the future. But how can
we be sure about the accuracy of the model's prediction? A logical technique for
measuring the model's accuracy is to divide the number of correct predictions, by
the total number of observations for the test.
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For this task, we must have a new dataset with already known output
predictions. The most commonly used technique for this during model
development is called the train/test split of the dataset. Here, you divide the
dataset into a training dataset and a testing dataset. We train, or fit, the model to
the training dataset and then compute the accuracy by making predictions on the
test (labeled or predicted) dataset.

This is done using the train_test_split() function available7.
in sklearn.model_selection:

# Splitting the dataset into train and test sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
= 0.3, random_state = 10)

X is our independent variable here, and Y is our target (output) variable. In
train_test_split, test_size indicates the size of the test dataset. test_size
is the proportion of our data that is used for the test dataset. Here, we passed a
value of 0.3 for test_size, which means that our data is now divided into 70%
training data and 30% test data. Lastly, random_state sets the seed for the
random number generator, which splits the data. The train_test_split()
function will return four arrays: the training data, the testing data, the training
outputs, and the testing outputs.

Now the final step is training the linear regression model. From the extremely8.
powerful sklearn library, we import the LinearRegression() function to fit
our training dataset to the model. When we run LinearRegression().fit(),
the function automatically calculates the OLS, which we discussed earlier, and
generates an appropriate line function:

#Training a Linear Regression Model
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()

# Fitting the training data to our model
regressor.fit(X_train, y_train)

Now, we have a model called regressor that is fully trained on the training dataset. The
next step is to evaluate how well the model predicts the target variable correctly.
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Model evaluation
Our linear regression model has now been successfully trained. Remember that we
separated some data from our dataset for testing, which we intend to use to find the
accuracy of the model. We will be using that to assess the efficiency of our model. R2-
statistics is a common method of measuring the accuracy of regression models:

R2 can be determined using our test dataset in the LinearRegression.score()1.
method:

#check prediction score/accuracy
regressor.score(X_test, y_test)

The output of this score() function is as follows:

0.5383003344910231

The score(y_test, y_pred) method predicts the Y values for an input set, X,
and compares them against the true Y values. The value of R2 is generally between
0 and 1. The closer the value of R2 to 1, the more accurate the model is. Here, the
R2 score is 0.53 ≈ 53% accuracy, which is okay. With more than one independent
variable, we will improve the performance of our model, which we will be
looking at next.

Before that, let's predict the y values with our model and evaluate it more. And a2.
target variables DataFrame is also built:

# predict the y values
y_pred=regressor.predict(X_test)
# a data frame with actual and predicted values of y
evaluate = pd.DataFrame({'Actual': y_test.values.flatten(),
'Predicted': y_pred.flatten()})
evaluate.head(10)
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The target variables DataFrame is as follows:

Figure 9.4: The first 10 entries showing the actual values and the predicted values

The preceding screenshot shows the difference between the actual values and the predicted
values. We can see them if we plot them:

evaluate.head(10).plot(kind = 'bar')

The output of the preceding code is as follows:

Figure 9.5: Stacked bar plot showing the actual values and the predicted values
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Much easier to understand, right? Note that most of the predicted values are lower than the
actual values. 

Computing accuracy
Sklearn provides metrics that help us evaluate our models with multiple formulas. The
three main metrics used to evaluate models are mean absolute error, mean squared error,
and R2score.

Let's quickly try these methods:

# Scoring the model
from sklearn.metrics import r2_score,
mean_squared_error,mean_absolute_error

# R2 Score
print(f"R2 score: {r2_score(y_test, y_pred)}")

# Mean Absolute Error (MAE)
print(f"MSE score: {mean_absolute_error(y_test, y_pred)}")

# Mean Squared Error (MSE)
print(f"MSE score: {mean_squared_error(y_test, y_pred)}")

The output of the preceding code is as follows:

R2 score: 0.5383003344910231
MSE score: 4.750294229575126
MSE score: 45.0773394247183

Note that we are not evaluating the accuracies we got in the preceding output. In any
machine learning scenario, we try to improve accuracy by performing several optimization
techniques. 

Understanding accuracy
We have used the scikit-learn library to train a regression model. In addition to that, we
have used the trained model to predict some data, and then we computed the accuracy. For
example, examine Figure 9.5. The first entry says the actual value is 28.4 but our trained
regression model predicted it to be 25.153909. Hence, we have a discrepancy of 28.4 -
25.153909 = 3.246091. Let's try to understand how these discrepancies are understood. Let
xi be the actual value and  be the value predicted by the model for any sample i.
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The error is given by the following formula:

For any sample i, we can get the difference between the prediction and the actual value.
We could compute the mean error by just summing the errors, but since some errors are
negative and some are positive it is likely that they will cancel each other out. Then, the
question remains, how can we know how accurately our trained model performed on all
the datasets? This is where we use the concept of squared error. You should know that the
square of positive and negative numbers is always positive. Hence, they have no chance to
cancel each other out. So, we can represent the squared error with the following equation:

 

Once we know how to compute the squared error, we can compute the mean squared error.
That would be easy, right? Of course, so to compute the mean squared error, we can use the
following formula:

Now, if we take the root of the mean squared error, we get another accuracy measure called
the root mean squared error (RMSE). The equation now becomes this:

Another type of accuracy measure that is widely used is called the relative mean squared
error (rMSE). Don't get it confused with RMSE. The formula for computing rMSE is as
follows:

In the preceding equation, E(x) is referred to as the expected value of x. In addition to
rMSE, we have used the R2 method. The formula for computing R2 is as follows:
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One more type of accuracy measure that is often seen in data science is the absolute error.
As the name suggests, it takes the absolute value and computes the sum. The formula for
measuring absolute error is as follows:

Finally, one more type of error that can be used in addition to absolute error is the mean
absolute error. The formula for computing mean absolute error is as follows:

Was that too many? It was. However, if you check the equations closely, you will see that
they are very closely related. Try to focus on the name, which explains what the accuracy
measure does. Now, whenever you see any data science model using these accuracy
measures, it will make much more sense, won't it?

Congratulations on learning about accuracy measures. In the next section, let's dig more
into multiple linear regression, and we will try to use these accuracy measures. 

Implementing a multiple linear regression model
When a dependent variable relies on several independent variables, the relationship can be
captured using multiple linear regression. Multiple linear regression can be viewed as an
extension of simple linear regression. When it comes to implementing multiple linear
regression using sklearn, there is not much difference between simple and multiple linear
regression:

Simply include the extra columns in the X variable and run the code. So, let's1.
include the additional columns for the X variable and follow the same code. 
Remember, a two-dimensional linear regression model is a straight line; it is a2.
plane in three dimensions, and a hyperplane in over three dimensions:

# Preparing the data
X = df[['LSTAT','CRIM','NOX','TAX','PTRATIO','CHAS','DIS']]
y = df[['MEDV']]

# Splitting the dataset into train and test sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
= 0.3, random_state = 10)
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# Fitting the training data to our model
regressor.fit(X_train, y_train)

#score of this model
regressor.score(X_test, y_test)

The output of this score() function is as follows:

0.6446942534265363

Let's predict the y values with our model and evaluate it:3.

# predict the y values
y_pred=regressor.predict(X_test)
# a data frame with actual and predicted values of y
evaluate = pd.DataFrame({'Actual': y_test.values.flatten(),
'Predicted': y_pred.flatten()})
evaluate.head(10)

The target variables DataFrame is as follows:

Figure 9.6: The first 10 entries showing the actual values and the predicted values
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Let's make another multiple linear regression model with fewer features:4.

# Preparing the data
X = df[['LSTAT','CRIM','NOX','TAX','PTRATIO']]
y = df[['MEDV']]

# Splitting the dataset into train and test sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
= 0.3, random_state = 10)

# Fitting the training data to our model
regressor.fit(X_train, y_train)

#score of this model
regressor.score(X_test, y_test)

The output of this score() function is as follows:

0.5798770784084717

The accuracy of this model is 57%. The table below shows the actual and predicted value
for the target variable MEDV for this built model is as follows:

Figure 9.7: The first 10 entries showing the actual values and the predicted values
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As you can see, changing the features in X will make a change in the accuracy of the model.
So you must analyze the correlation among the features carefully and then use them to 
build the model with greater accuracy.

Summary
In this chapter, we discussed two important concepts: hypothesis testing and regression
analysis. In hypothesis testing, we learned about the hypothesis, its basic principles, and
different types of hypothesis testing, and we used two different Python libraries
(statsmodels and SciPy) to create different hypothesis tests. Moreover, we discussed p-
hacking, which is one of the most commonly encountered challenges during hypothetical
testing. Next, we discussed different types of regression, and we used scikit-learn to build,
test, and evaluate some regression models.

In the next chapter, we are going to discuss model development and evaluation in more
detail. We will be discussing several other types of models that we can use besides
regression. 

Further reading
Regression Analysis with Python, by Luca Massaron, Alberto Boschetti, Packt
Publishing, February 29, 2016
Statistics for Machine Learning, by Pratap Dangeti, Packt Publishing, July 20, 2017
Statistics for Data Science, by James D. Miller, Packt Publishing, November 17, 2017
Data Science Algorithms in a Week - Second Edition, by Dávid Natingga, Packt
Publishing, October 31, 2018
Machine Learning with scikit-learn Quick Start Guide, by Kevin Jolly, Packt
Publishing, October 30, 2018
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Model Development and

Evaluation
We have discussed several Exploratory Data Analysis (EDA) techniques so far. The reason
we performed EDA was to prepare our dataset and make sense of it so that it can be used
for predictive and analytical purposes. By predictive and analytical, we mean to create and
evaluate Machine Learning (ML) models. In this chapter, we are going to lay the
groundwork for data science, understand different types of models that can be built, and
how can they be evaluated. 

In this chapter, we will cover the following topics:

Types of machine learning
Understanding supervised learning
Understanding unsupervised learning
Understanding reinforcement learning
Unified machine learning workflow

Technical requirements
In this chapter, we are going to use a few clustering algorithms. The dataset we'll be using
in this chapter can be found at https:/ ​/ ​github. ​com/​sureshHARDIYA/ ​phd- ​resources/ ​blob/
master/​Data/​Review%20Paper/ ​acm/ ​preprocessed. ​xlsx? ​raw= ​true.

We are also going to use some modules from the scikit-learn library, including
MiniBatchKMeans, TfidfVectorizer, PCA, and TSNE. 
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Types of machine learning
Machine learning (ML) is a field of computer science that deals with the creation of
algorithms that can discover patterns by themselves without being explicitly programmed.
There are different types of ML algorithms, and these are categorized into three different
categories, as shown in the following diagram:

As shown in the preceding diagram, there are three different categories of ML algorithms:

Supervised learning
Unsupervised learning
Reinforcement learning

We will discuss each of these algorithms in brief in the following sections.

Understanding supervised learning
The primary objective of supervised learning is to generalize a model from labeled training
data. Once a model has been trained, it allows users to make predictions about unseen
future data. Here, by labeled training data, we mean the training examples know the
associated output labels. Hence, it is referred to as supervised learning. The learning 
process can be thought of as a teacher supervising the entire process. In such a learning
process, we know the correct answer initially, and the students learn enough iteratively
over time and try to answer unseen questions. The errors in the answers are corrected by
the teacher. The process of learning stops when we can ensure the performance of the
student has reached an acceptable level. 
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In supervised learning, we have input variables (xi) and output variables (Yi). With this, we
can learn a function, f, as shown by the following equation:

The objective is to learn a general mapping function, f, so that the function can predict the
output variable, Y, for any new input data, x. Supervised learning algorithms can be
categorized into two groups, as follows:

Regression
Classification

Let's take a brief look at these.

Regression
A regression problem has an output variable or dependent variable. This is a real value,
such as weight, age, or any other real numbers. We discussed regression in detail in
Chapter 9, Hypothesis Testing and Regression, including the different types of regression
(simple linear regression, multiple linear regression, and non-linear regression), and used
the Boston Housing dataset to perform regression analysis. 

Since we discussed regression problems in Chapter 9, Hypothesis Testing and Regression, we
are going to move on and learn more about the classification problem.

Classification
A classification problem has the output variable in the form of a category value; for
example, red or white wines; young, adult, or old. For classification problems, there are
different types of classification algorithms.

Some of the most popular ones are as follows:

Linear classifier: Naive Bayes classifier, logistic regression, linear SVM
Nearest neighbor
Decision tree classifier

https://cdp.packtpub.com/hands_on_exploratory_data_analysis_with_python_/wp-admin/post.php?post=33&action=edit#post_32
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Support vector machines
Random Forest classifier
Neural network classifiers
Boosted trees classifier

Having listed the most popular classification algorithms, we must point out that going
through each of these classifications algorithms is beyond the scope of this book. However,
our main intention here is to point you in the right direction. We suggest that you check out
the Further reading sections of this book for more details regarding the respective topics.

A proof of concept regarding how these classifiers can be implemented in Python with the
Red and White wine dataset can be found in Chapter 11, EDA on Wine Quality Data
Analysis. We will discuss different evaluation techniques that can be used for classification
purposes in that chapter too.

Understanding unsupervised learning
Unsupervised machine learning deals with unlabeled data. This type of learning can
discover all kinds of unknown patterns in the data and can facilitate useful categorization.
Consider a scenario where patients use an online web application to learn about a disease,
learn about their symptoms, and manage their illness. Such web applications that provide
psychoeducation about certain diseases are referred to as Internet-Delivered Treatments
(IDT). Imagine several thousand patients accessing the website at different timestamps of
the day, learning about their illness, and all their activities are being logged into our
database. When we analyze these log files and plot them using a scatter plot, we find a
large group of patients who are accessing the website in the afternoon and a large chunk
accessing the website in the evening. Some other patients also follow random login
patterns. This scenario illustrates two distinct clusters of patients: one active in the
afternoon and one active in the evening. This typical scenario is an example of a clustering
task. 

There are several types of unsupervised learning algorithms that we can use. However, two
major unsupervised learning tasks are clustering and dimensionality reductions. In the
next section, we will discuss more regarding the different applications of unsupervised
learning algorithms.
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Applications of unsupervised learning 
There are several applications of unsupervised learning algorithms. Let's take a look at a
few here:

Clustering: These types of algorithms allow us to categorize the dataset into
several similar groups, referred to as a cluster. Each cluster represents a group of
similar points. 
Association mining: These types of unsupervised learning algorithms allow us
to find frequently occurring items in our dataset. 
Anomaly detection: These types of unsupervised learning algorithms help us to
determine unusual data points in any existing dataset. 
Dimensionality reduction: These techniques are commonly used in data
processing in order to reduce the number of features in a dataset. This is one of
the most important tasks to perform in unsupervised learning. 

Clustering using MiniBatch K-means clustering 
In this section, we are going to use one of the unsupervised learning algorithms, that is,
clustering. To be specific, we are going to cluster texts based on an algorithm named
MiniBatch K-means clustering algorithm. Let's get some context regarding this.

Whenever a researcher starts working on any particular domain, they perform various
literature reviews to comprehend the state of the art in any particular domain. Such a study
is referred to as a review paper. When writing such review papers, you set up a set of
search keywords and execute the search in many research paper indexing databases, such
as scholar.google.com (https:/ ​/​scholar. ​google. ​com/ ​). After performing the search in
several databases, you will have a list of relevant articles that you want to study. In this
case, we have performed the search and the lists of relevant articles have been provided in
the form of an Excel sheet. Note that each row in the Excel file contains some metadata
about the related paper.

You can find out more about the MiniBatch K-means clustering algorithm
by looking at the official documentation of the sklearn library: https:/ ​/
scikit- ​learn. ​org/ ​stable/ ​modules/ ​generated/ ​sklearn. ​cluster.
MiniBatchKMeans. ​html. 
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Having understood the context, let's load the dataset into our notebook. This should be no
mystery to us by now:

Let's load the Excel file: 1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import seaborn as sns

sns.set()
plt.rcParams['figure.figsize'] = (14, 7)

df =
pd.read_excel("https://github.com/sureshHARDIYA/phd-resources/blob/
master/Data/Review%20Paper/acm/preprocessed.xlsx?raw=true")

Next, let's check the first 10 entries to understand what the data looks like:2.

df.head(10)

The output of the preceding code is as follows:

As we can see, there are several columns. We are only interested in the title of the research
paper. Therefore, we'll only focus on the Title column. 
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Extracting keywords
The next step is to extract the keywords from the title. There are several ways we can
extract keywords. Here, we are going to use the TfidfVectorizer utility method 
provided by the sklearn.feature_extraction module. Let's get started:

To use the library, we need to import the essential libraries:1.

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import MiniBatchKMeans
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

Next, let's learn how to extract the keywords:2.

tfidf = TfidfVectorizer(
   min_df = 5,
    max_df = 0.95,
    max_features = 8000,
    stop_words = 'english'
)
tfidf.fit(df.Title)
text = tfidf.transform(df.Title)

You can find out more about TfidfVectorizer by reading the official
documentation: https:/ ​/​scikit- ​learn. ​org/ ​stable/ ​modules/ ​generated/
sklearn. ​feature_ ​extraction. ​text. ​TfidfVectorizer. ​html.

In the preceding code, we are converting the title into TF-IDF features. We are removing the
stop words from the title. 

You can read more about stop words at https:/ ​/​nlp. ​stanford. ​edu/ ​IR-
book/ ​html/ ​htmledition/ ​dropping- ​common- ​terms- ​stop- ​words- ​1. ​html. 

If you understood the concept of clustering, you probably already understand one of the
biggest challenges surrounding the clustering; that is, determining how many clusters there
are is optimal. There are some algorithms that can help us in determining the best number
of clusters. One such algorithm is the elbow method (https:/ ​/​www. ​scikit- ​yb. ​org/ ​en/
latest/​api/​cluster/ ​elbow. ​html). 

Let's create a function that takes the text and the maximum number of clusters and plot
them on a graph. The code for doing so is as follows:
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def generate_optimal_clusters(data, max_k):
    iters = range(2, max_k+1, 2)
    sse = []
    for k in iters:
        sse.append(MiniBatchKMeans(n_clusters=k, init_size=1024,
batch_size=2048, random_state=20).fit(data).inertia_)
        print('Fitting {} clusters'.format(k))
    f, ax = plt.subplots(1, 1)
    ax.plot(iters, sse, marker='o')
    ax.set_xlabel('Cluster Centers')
    ax.set_xticks(iters)
    ax.set_xticklabels(iters)
    ax.set_ylabel('SSE')
    ax.set_title('SSE by Cluster Center Plot')
generate_optimal_clusters(text, 20)

Note the following points regarding the preceding function:

It takes two arguments, the text and the maximum number of clusters. In this
case, we assume that the maximum number of clusters is 20. 
Next, inside the function, we call the fit() method on the MiniBatchKMeans
cluster for a range from 2, to the maximum number of clusters allowed (2 to 20). 
For each cluster, we calculate the sum of squared error (SSE) plot on the graph. 

The output of the preceding code is as follows:
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As shown in the preceding plot, the elbow changes at 4. According to the elbow theory, the
plot creates an elbow at the optimal cluster number. Hence, the best cluster, in this case, is
4. 

Plotting clusters
Now, let's plot the clusters on the graph. We will start plotting using Principal Component
Analysis (PCA) since it is good at capturing the global structure of the data. Then, we will
use t-Distributed Stochastic Neighbor Embedding (TSNE) to plot the graph as it is good
at capturing the relationship with the neighbors. Let's get started:

Let's start by creating the model again:1.

clusters = MiniBatchKMeans(n_clusters=4, init_size=1024,
batch_size=2048, random_state=20).fit_predict(text)

Let's plot both graphs. First, we will plot using the PCA technique and then using2.
the TSNE technique. Use the following code to do so:

max_label = max(clusters)
max_items = np.random.choice(range(text.shape[0]), size=3000,
replace=True)
pca =
PCA(n_components=2).fit_transform(text[max_items,:].todense())
tsne =
TSNE().fit_transform(PCA(n_components=50).fit_transform(text[max_it
ems,:].todense()))

idx = np.random.choice(range(pca.shape[0]), size=300, replace=True)
label_subset = clusters[max_items]
label_subset = [cm.hsv(i/max_label) for i in label_subset[idx]]

f, ax = plt.subplots(1, 2, figsize=(14, 6))
ax[0].scatter(pca[idx, 0], pca[idx, 1], c=label_subset)
ax[0].set_title('Generated PCA Cluster Plot')

ax[1].scatter(tsne[idx, 0], tsne[idx, 1], c=label_subset)
ax[1].set_title('Generated TSNE Cluster Plot')
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The output of the preceding code is as follows:

Each color represents one kind of cluster. In the preceding code, we sampled down the
features to capture just 3,000 documents for faster processing and plotted them using a
scatter plot. For PCA, we reduced the dimensions to 50. 

You can learn more about TSNE from the official website: https:/ ​/
scikit- ​learn. ​org/ ​stable/ ​modules/ ​generated/ ​sklearn. ​manifold. ​TSNE.
html.

Note that it is very difficult to find out which keywords were found in each type of cluster.
To visualize this better, we need to plot the word cloud from each cluster. 

Word cloud
In order to see the top few keywords that belong to each cluster, we need to create a
function that provides us with the top 50 words from each of the clusters and plot the word
cloud.

Check the function, as follows:

from wordcloud import WordCloud

fig, ax = plt.subplots(4, sharex=True, figsize=(15,10*4))

plt.rcParams["axes.grid"] = False
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def high_frequency_keywords(data, clusters, labels, n_terms):
    df = pd.DataFrame(data.todense()).groupby(clusters).mean()
    for i,r in df.iterrows():
      words = ','.join([labels[t] for t in np.argsort(r)[-n_terms:]])
      print('Cluster {} \n'.format(i))
      print(words)
      wordcloud = WordCloud(max_font_size=40, collocations=False, colormap
= 'Reds', background_color = 'white').generate(words)
      ax[i].imshow(wordcloud, interpolation='bilinear')
      ax[i].set_title('Cluster {} '.format(i), fontsize = 20)
      ax[i].axis('off')
high_frequency_keywords(text, clusters, tfidf.get_feature_names(), 50)

The output of the preceding code is split into two. Let's take a look at the text output:

Cluster 0
bipolar,patient,framework,evaluation,risk,older,internet,healthcare,activit
y,approach,online,anxiety,research,digital,children,assessment,clinical,dem
entia,adaptive,cognitive,intervention,disorders,technology,learning,psychia
tric,community,interventions,management,therapy,review,adults,use,support,d
esigning,schizophrenia,stress,data,people,analysis,care,self,mobile,disorde
r,using,patients,design,study,treatment,based,depression

Cluster 1
cessation,brief,comparing,single,disorder,people,adults,symptoms,risk,clini
cal,women,prevention,reduce,improve,training,use,results,online,personalize
d,internet,cluster,alcohol,anxiety,feedback,efficacy,patients,health,mental
,therapy,primary,help,self,program,care,effects,cognitive,pilot,treatment,d
epression,tailored,effectiveness,web,based,randomised,study,intervention,pr
otocol,randomized,controlled,trial

Cluster 2
qualitative,physical,digital,implementation,self,medical,management,patient
,adults,designing,life,quality,work,development,systems,data,related,childr
en,persons,support,online,analysis,assessment,information,intervention,vete
rans,service,design,patients,problems,behavioral,using,research,systematic,
disorders,use,interventions,primary,treatment,based,study,services,review,s
evere,people,community,illness,care,mental,health

Cluster 3
modeling,implications,ethical,emotion,behavioral,dementia,based,young,desig
ning,homeless,dynamics,group,experiences,robot,predicting,mobile,game,depre
ssion,understanding,physical,people,challenges,therapy,study,patients,manag
ement,technology,impact,technologies,self,anxiety,use,skills,interaction,ne
tworking,personal,disclosure,sites,data,networks,disclosures,using,design,o
nline,network,support,mental,health,media,social
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Note that it printed four different clusters and 50 frequently occurring words in each
cluster. It is easy to see the keywords that belong to each of the clusters and decide if
clustering was done correctly or not. To present these words correctly, we generated a
word cloud.

The word cloud is as follows:

As we can see, there are four clusters. Each cluster shows the most related word. For
example, cluster 0 shows a lot of words related to healthcare, intervention, framework,
digital health, and so on. By doing this, it is easier to see the relationship between the
keywords. 

In the next section, we are going to discuss reinforcement learning.
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Understanding reinforcement learning
In reinforcement learning, an agent changes its states to maximize its goals. There are four
distinct concepts here: agent, state, action, and reward. Let's take a look at these in more
detail:

Agent: This is the program we train. It chooses actions over time from its action
space within the environment for a specified task.
State: This is the observation that's received by the agent from its environment
and represents the agent's current situation.
Action: This is a choice that's made by an agent from its action space. The action
changes the state of the agent.
Reward: This is the resultant feedback regarding the agent's action and describes
how the agent ought to behave.

Each of these concepts has been illustrated in the following diagram:

As shown in the preceding diagram, reinforcement learning involves an agent, an
environment, a set of actions, a set of states, and a reward system. The agent interacts with
the environment and modifies its state. Based on this modification, it gets rewards or
penalties for its input. The goal of the agent is to maximize the reward over time.

Difference between supervised and
reinforcement learning
A supervised learning algorithm is used when we have a labeled training dataset.
Reinforcement learning is used in a scenario where an agent interacts with an environment
to observe a basic behavior and change its state to maximize its rewards or goal. 
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Other differences between them have been given in the following table:

Criteria Supervised Learning Reinforcement Learning
Example Digit recognition. Chess game.
Works on Given labeled dataset. Interacting with the given environment.
Decision A decision is made on the input given at the beginning. Here, the algorithm helps make a decision linearly.

One of the essential features of RL is that the agent's action may not affect the immediate
state of the environment that it is working in, but it can affect the subsequent states. Hence,
the algorithm might not learn in the initial state but can learn after a few states are
changed. 

Applications of reinforcement learning
There are several use cases of RL algorithms.

Some of the most essential use cases are as follows:

Text mining: Several researchers and companies have started to use the RL-
based text generation model to produce highly readable text summaries from
long text. 
Robotics: Several deep RL-based algorithms are used in the field of robotics
engineering to enhance the performance of robotics based on the reward system.
Healthcare: Several studies show that RL can be used in healthcare to optimize
medication dosage and treatment policies.
Trading: Several RL-based models are used in trading businesses to optimize
trading outcomes. 

Unified machine learning workflow 
The choice of what machine learning algorithm to use always depends on the type of data
you have. If you have a labeled dataset, then your obvious choice will be to select one of the
supervised machine learning techniques. Moreover, if your labeled dataset contains real
values in the target variable, then you will opt for regression algorithms. Finally, if your
labeled dataset contains a categorical variable in the target variable, then you will opt for
the classification algorithm. In any case, the algorithm you choose always depends on the
type of dataset you have. 

In a similar fashion, if your dataset does not contain any target variables, then the obvious
choice is unsupervised algorithms. In this section, we are going to look at the unified
approach to machine learning.



Model Development and Evaluation Chapter 10

[ 272 ]

The machine learning workflow can be divided into several stages:

Data preprocessing
Data preparation
Training sets and corpus creation
Model creation and training
Model evaluation
Best model selection and evaluation
Model deployment

The entire workflow of the machine learning algorithm can be seen in the following
diagram:
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As depicted in the preceding diagram, the first step in any machine learning workflow is
data preprocessing. We'll briefly explain each stage in the following sections.

Data preprocessing
Data preprocessing involves several steps, including data collection, data analysis, data
cleaning, data normalization, and data transformation. The first step in data preprocessing
is data collection. Let's take a look.

Data collection
In data science, the most important thing is data. The data holds the ground truth about
any events, phenomena, or experiments that are going on around us. Once we've processed
the data, we get information. Once we've processed this information, we can derive
knowledge from it. Hence, the most prominent stage in knowledge extraction is how
relevant the data that's being captured is. There are different types of data,
including structured data, unstructured data, and semi-structured data. Structured data 
maintains a uniform structure in all the observations, similar to relational database tables.
Unstructured data does not maintain any particular structure. Semi-structured data
maintains some structure in the observation. JavaScript Object Notation (JSON) is one of
the most popular ways to store semi-structured data. 

The process of collecting data in any company depends on the kind of project and the type
of information that needs to be studied. The different types of datasets range from text data,
file, database, sensors data, and many other Internet of Things (IoT) data. However, when
learning about a machine learning workflow, most students prefer to avoid the data
collection phase and use open source data from places such as Kaggle and the UCI Machine
Learning Repository.

Data analysis
This is one of the preliminary analysis phases where we perform exploratory data analysis
to understand the dataset. We discussed several techniques that we can perform to do this
in Chapter 3, EDA with Personal Email Analysis. This step tells us about the type of data we
have at hand, the target variable, how many rows and columns we have in the data, the
data types of each column, how many missing rows we have, what the data distribution
looks like, and so on.
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Data cleaning, normalization, and transformation
We discussed data cleaning, normalization, and data transformation in detail in Chapter 4,
Data Transformation. We discussed how we can rescale the dataset, how we can convert the
dataset into a standard dataset, how we can binarize data, and how we can perform one-hot
encoding and label encoding. 

After all these three steps, our missing data will have been taken care of in terms of noisy
data being filtered and inconsistent data being removed. 

Data preparation
Sometimes, the dataset we have is not always in the right shape for it to be consumed by
machine learning algorithms. In such conditions, data preparation is one of the most
essential things we can do. We need to integrate data from several sources, perform slicing
and grouping, and aggregate them into the correct format and structure. This step is
referred to as data preparation. 

We discussed this process in detail in Chapter 6, Grouping Datasets. It is essential to note
that some books consider data preprocessing and data preparation as the same step as there
are several overlapping operations.

Training sets and corpus creation
After the data preparation step, the resulting dataset is used as a training corpus. Generally,
the training corpus is split into three chunks: a training set, a validation set, and a testing
set. 

The training set is the chunk of data that you use to train one or more machine learning
algorithms. The validation set is the chunk of data that you use to validate the trained
model. Finally, the testing set is the chunk of data that you use to assess the performance of
a fully trained classifier. 

Model creation and training
Once we have split the dataset into three chunks, we can start the training process. We use
the training set to construct the machine learning model. Then, we use the validation set to
validate the model. Once the model has been trained, we use the test set to find the final
performance of the model. 
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Model evaluation
Based on the performance of the test data, we can create a confusion matrix. This matrix 
contains four different parameters: true positive, true negative, false positive, and false
negative. Consider the following confusion matrix:

Predicted: Positive Predicted: Negative
Actual: Positive True Positive (TP) False Negative (FN)
Actual: Negative False Positive (FP) True Negative (TN)

This matrix shows four distinct parameters:

True positives: The model predicts TRUE when the actual value is TRUE.
True negatives: The model predicts FALSE when the actual value is FALSE.
False-positives: The model predicts TRUE when the actual value is FALSE. This
is also referred to as a Type I Error. 
False-negatives: The model predicts FALSE when the actual value is TRUE. This
is also referred to as a Type II Error. 

Once we know about the confusion matrix, we can compute several accuracies of the
model, including precision, negative predicate value, sensitivity, specificity, and accuracy.
Let's take a look at each of them, one by one, and learn how they can be computed. 

The precision is the ratio of true positive and the sum of a true positive and false positive.
The formula is as follows:

The formula for the Negative Predictive Value (NPV) is as follows:

Similarity, the formula for sensitivity is as follows:

The formula for specificity is as follows:
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Finally, the accuracy of the model is given by the formula as:

Let's take a look at an example. Consider we built a supervised classification algorithm that
looks at the picture of a window and classifies it as dirty or not dirty. The final confusion
matrix is as follows:

Predicted: Dirty Predicted: Not dirty
Actual: Dirty TP = 90  FN = 40
Actual: Not dirty FP = 10  TN = 60

Now, let's compute the accuracy measures for this case:

Precision = TP / (TP + FP) = 90 /(90 + 10) = 90%. This means 90% of the pictures
that were classified as dirty were actually dirty. 
Sensitivity = TP / (TP + FN) = 90/(90 + 40) = 69.23%. This means 69.23% of the
dirty windows were correctly classified and excluded from all non-dirty
windows.
Specificity = TN / (TN + FP) = 60 / (10 + 60) = 85.71%. This means that 85.71% of
the non-dirty windows were accurately classified and excluded from the dirty
windows.
Accuracy = (TP + TN)/(TP + TN + FP + FN) = 75%. This means 75% of the samples
were correctly classified. 

Another commonly used accuracy model that you will encounter is the F1 Score. It is given
by the following equation:

As we can see, the F1 score is a weighted average of the recall and precision. There are too
many accuracy measures, right? This can be intimidating at the beginning, but you will get
used to it over time. 
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Best model selection and evaluation
Model selection is an essential step in the machine learning algorithm workflow. However,
model selection carries different meanings in different contexts:

Context 1: In the machine learning workflow context, model selection is the
process of selecting the best machine learning algorithms, such as logistic
regression, SVM, decision tree, Random Forest classifier, and so on. 
Context 2: Similarly, the model selection phase also refers to the process of
choosing between different hyperparameters for any selected machine learning
algorithm. 

In general, model selection is the method of choosing one best machine learning algorithm
from a list of possible candidate algorithms for a given training dataset. There are different
model selection techniques. In a normal scenario, we split the training corpus into a
training set, a validation set, and a testing set. Then, we fit several candidate models on the
training set, evaluate the models using the validation set, and report the performance of the
model on the testing set. However, this scenario of model selection only works when we
have a sufficiently large training corpus. 

However, in many cases, the amount of data for training and testing is limited. In such a
case, the model selection becomes difficult. In such a case, we can use two different
techniques: probabilistic measure and resampling method. We suggest that you go 
through the Further reading section of this chapter if you wish to understand these model
selection techniques.

Model deployment
Once you've got the best model based on your dataset and the model has been fully trained,
it is time to deploy it. Showing how a model can be fully deployed into a working
environment is beyond the scope of this book. You can find sufficient resources that will
point you in the right direction in the Further reading section.

The main idea regarding model deployment is to use the trained model in a real working
environment. Once deployed, it should go through A/B user testing so that you know how
it will work in a real scenario. Once it has been fully tested, the API can be made available
to the public.
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Summary
In this chapter, we laid some of the groundwork for data science, understood different
types of models that can be built, and how they can be evaluated. First, we discussed
several supervised learning algorithms, including regression and classification. Then, we
discussed the unsupervised learning algorithm, including clustering and using text data to
cluster them into different clusters using the MiniBatchKMeans algorithm. Finally, we
briefly discussed reinforcement learning. 

In the next chapter, we are going to use all the techniques we have learned so far to perform
EDA on the Wine Quality dataset. Moreover, we will be using supervised learning
algorithms to classify wine quality. 

Further reading
Supervised Machine Learning with Python, Taylor Smith, Packt Publishing
Large Scale Machine Learning with Python, Bastiaan Sjardin, Luca Massaron, Et al.,
Packt Publishing
Advanced Machine Learning with Python, John Hearty, Packt Publishing
Hands-On Unsupervised Learning with Python, Giuseppe Bonaccorso, Packt Publishing
Mastering Machine Learning for Penetration Testing, Chiheb Chebbi, Packt Publishing
Hands-On Data Science and Python Machine Learning, Frank Kane, Packt Publishing
Building Machine Learning Systems with Python - Third Edition, Luis Pedro Coelho,
Willi Richert, Et al., Packt Publishing



11
EDA on Wine Quality Data

Analysis
We have discussed a plethora of tools and techniques regarding Exploratory Data Analysis
(EDA) so far, including how we can import datasets from different sources and how to
remove outliers from the dataset, perform data analysis on the dataset, and generate
illustrative visualization from such a dataset. In addition to this, we have discussed how we
can apply advanced data analysis such as the correlation between variables, regression
analysis, and time series analysis, and build advanced models based on such datasets. In
this chapter, we are going to apply all of these techniques to the Wine Quality dataset.

The main topics discussed in this chapter include the following:

Disclosing the wine quality dataset
Analyzing red wine 
Analyzing white wine
Model development and evaluation
Further reading
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Technical requirements
The entire code base for this chapter can be found in the GitHub repository shared with this
book inside the CH012 folder. The dataset used in this chapter can be downloaded from the
UCI website (https:/ ​/​archive. ​ics. ​uci. ​edu/​ml/ ​datasets/ ​wine+quality), which is open
source for end users.

We assume that you have been following the previous chapters and have ample knowledge
about the required Python libraries. 

Disclosing the wine quality dataset
The Wine Quality dataset contains information about various physicochemical properties
of wines. The entire dataset is grouped into two categories: red wine and white wine. Each
wine has a quality label associated with it. The label is in the range of 0 to 10. In the next
section, we are going to download and load the dataset into Python and perform an initial
analysis to disclose what is inside it. 

Loading the dataset
As mentioned in the Technical requirements section, the dataset can be download from the
UCI website directly. Now, let's use the pandas pd.read_csv() method to load the
dataset into the Python environment. By now, this operation should be relatively easy and
intuitive:

We start by loading the pandas library and create two different dataframes,1.
namely, df_red for holding the red wine dataset and df_white for holding
the white wine dataset:

import pandas as pd

df_red =
pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databa
ses/wine-quality/winequality-red.csv", delimiter=";")
df_white =
pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databa
ses/wine-quality/winequality-white.csv", delimiter=";")

We have two dataframes created. Let's check the name of the available columns:2.

df_red.columns

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
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Furthermore, the output of the preceding code is given here:

Index(['fixed acidity', 'volatile acidity', 'citric acid',
'residual sugar',
       'chlorides', 'free sulfur dioxide', 'total sulfur dioxide',
'density',
       'pH', 'sulphates', 'alcohol', 'quality'],
      dtype='object')

As shown in this output, the dataset contains the following columns:

Fixed acidity: It indicates the amount of tartaric acid in wine and is measured
in g/dm3.
Volatile acidity: It indicates the amount of acetic acid in the wine. It is
measured in g/dm3.
Citric acid: It indicates the amount of citric acid in the wine. It is also
measured in g/dm3.
Residual sugar: It indicates the amount of sugar left in the wine after the
fermentation process is done. It is also measured in g/dm3.
Free sulfur dioxide: It measures the amount of sulfur dioxide (SO2) in free
form. It is also measured in g/dm3.  
Total sulfur dioxide: It measures the total amount of SO2 in the wine. This
chemical works as an antioxidant and antimicrobial agent. 
Density: It indicates the density of the wine and is measured in g/dm3.
pH: It indicates the pH value of the wine. The range of value is between 0 to 14.0,
which indicates very high acidity, and 14 indicates basic acidity. 
Sulphates: It indicates the amount of potassium sulphate in the wine. It is also
measured in g/dm3.
Alcohol: It indicates the alcohol content in the wine. 
Quality: It indicates the quality of the wine, which is ranged from 1 to 10. Here,
the higher the value is, the better the wine. 

Having discussed different columns in the dataset, let's now see some basic statistics of the
data in the next section. 
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Descriptive statistics
Let's see some sample data from the red wine dataframe. Remember, we can use different
methods to see the data from a dataframe, including pd.head(), pd.tail(), and
pd.iloc():

Here, I am going to check the entries between the 100th and 110th rows:1.

df_red.iloc[100:110]

The output of the preceding code is given here:

Figure 12.1 - Display the entries from the 100th to 110th rows from the red wine dataframe

In addition to this, we can see the datatypes for each column. Let's use the2.
snippet given here:

df_red.dtypes

The output of the preceding code is as follows:

fixed acidity float64
volatile acidity float64
citric acid float64
residual sugar float64
chlorides float64
free sulfur dioxide float64
total sulfur dioxide float64
density float64
pH float64
sulphates float64
alcohol float64
quality int64
dtype: object
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As shown in the preceding output, most of the columns are in float64 format,
except the quality column, which is int64.  

We can also describe the dataframe to get more descriptive information. Do you3.
remember the name of the method to do so? Of course, we use the
pd.describe() method. Check out the snippet:

df_red.describe()

The output of the preceding code is given here:

Figure 12.2 - Output of the described method 

Note that Figure 12.2, which is the output of the pd.describe() method, indicates that
each column has the same number of entries, 1,599, which is shown in the row count. By
now, each row and column value should make sense. If you are still confused, we would
highly recommend revising Chapter 5, Descriptive Statistics.

Data wrangling
Well, Figure 12.2 shows that each column has the same number of items, indicating there
are no missing values.

We can verify that by using the pd.info() method shown here:

df_red.info()

The output of the preceding code is given:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
fixed acidity 1599 non-null float64
volatile acidity 1599 non-null float64
citric acid 1599 non-null float64
residual sugar 1599 non-null float64
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chlorides 1599 non-null float64
free sulfur dioxide 1599 non-null float64
total sulfur dioxide 1599 non-null float64
density 1599 non-null float64
pH 1599 non-null float64
sulphates 1599 non-null float64
alcohol 1599 non-null float64
quality 1599 non-null int64
dtypes: float64(11), int64(1)
memory usage: 150.0 KB

As shown in the preceding output, none of the columns have a null value. Since there are
no null entries, we don't need to deal with the missing values. Assuming there were some,
then we would take care of them using techniques we outlined in Chapter 4, Data
Transformation.  

We can also access the data quality and missing values using the ways
shown in Chapter 4, Data Transformation. We can use the pandas
method, df_red.isnull().sum().

Knowing that there is no need for further data transformation steps, let's just go over the
data analysis of the red wine in the next section. 

Analyzing red wine
In this section, we will continue analyzing the red wine dataset. First, we will start by 
exploring the most correlated columns. Second, we will compare two different columns and
observe their columns. 

Let's first start with the quality column: 

import seaborn as sns

sns.set(rc={'figure.figsize': (14, 8)})
sns.countplot(df_red['quality'])

The output of the preceding code is given here:



EDA on Wine Quality Data Analysis Chapter 11

[ 285 ]

Figure 12.3 - The output indicates that the majority of wine is of medium quality 

That was not difficult, was it? As I always argue, one of the most important aspects when
you have a graph, is to be able to interpret the results. If you check Figure 12.3, you can see
that the majority of the red wine belongs to the group with quality labels 3 and 4, followed
by the labels 5 and 6, and some of the red wine belongs to the group with label 7, and so
on. 

Finding correlated columns
Let's next find out which of the columns from the red wine database are highly correlated.
If you recall, we discussed different types of correlation in Chapter 7, Correlation. Just so
you grasp the intention behind the correlation, I highly recommend going through Chapter
7, Correlation, just to revamp your memory. Having said that, let's continue with finding
highly correlated columns: 

We can continue using the seaborn.pairplot() method, as shown here:1.

sns.pairplot(df_red)
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And you should get a highly comprehensive graph, as shown in the screenshot:

Figure 12.4 - Correlation between different columns of the red wine dataframe
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The preceding screenshot shows scattered plots for every possible combination
pair of columns. The graph illustrates some positive correlation between fixed
acidity and density. There is a negative correlation of acidity with pH. Similarly,
there is a negative correlation between alcohol percentage and density. Moreover,
you can exactly see which columns have a positive or negative correlation with
other columns. However, since there are no numbers of the pairplot graph, it
might be a bit biased to interpret the results. For example, examine the correlation
between the columns for the fixed acidity and the volatile acidity. The graph
might be somehow symmetric. However, you might argue there are some sparse
points on the right side of the graph so there's lightly negative correlation. Here,
my point is, without any specific quantifiable number, it is hard to tell. This is the
reason why we can use the sns.heatmap() method to quantify the correlation. 

We can generate the heatmap graph, as shown here:2.

sns.heatmap(df_red.corr(), annot=True, fmt='.2f', linewidths=2)

And the output it generates is as follows:

Figure 12.5 - Heatmap showing the correlation between different columns
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Figure 12.5 depicts the correlation between different columns. Since we are focusing on the
quality column, the quality column has a positive correlation with alcohol, sulfates, residual
sugar, citric acid, and fixed acidity. Since there are numbers, it is easy to see which columns
are positively correlated and which columns are negatively correlated. 

Look at Figure 12.5 and see whether you can draw the following conclusions:

Alcohol is positively correlated with the quality of the red wine. 
Alcohol has a weak positive correlation with the pH value. 
Citric acid and density have a strong positive correlation with fixed acidity. 
pH has a negative correlation with density, fixed acidity, citric acid, and sulfates. 

There are several conclusions we can draw from the heatmap in Figure 12.5. Moreover, it is
essential we realize the significance of the correlation and how it can benefit us in deciding
feature sets during data science model development. 

A column has a perfect positive correlation with itself. For example, the
quality of wine has a positive correlation with itself. This is the reason
why all of the diagonal elements have a positive correlation of 1. 

We can further dive into individual columns and check their distribution. Say, for example,
we want to see how alcohol concentration is distributed with respect to the quality of the
red wine. First, let's plot the distribution plot, as shown here:

sns.distplot(df_red['alcohol'])

The output of the preceding code is as follows:
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Figure 12.6 - Alcohol distribution graph

From Figure 12.6, we can see that alcohol distribution is positively skewed with the quality
of the red wine. We can verify this using the skew method from scipy.stats. Check the
snippet given here:

from scipy.stats import skew
skew(df_red['alcohol'])

And the output of the preceding code is as follows:

0.8600210646566755

The output verifies that alcohol is positively skewed. That gives deeper insight into the
alcohol column.  

Note that we can verify each column and try to see their skewness, distribution, and
correlation with respect to the other column. This is generally essential as we are going
through the process of feature engineering.
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Alcohol versus quality
Let's see how the quality of wine varies with respect to alcohol concentration. This can be
done using the box plot. Check the code snippet given here:

sns.boxplot(x='quality', y='alcohol', data = df_red)

And the output of the preceding code is as follows:

Figure 12.7 - A box plot showing the variation of the quality of wine with respect to alcohol concentration

Note the box in Figure 12.7 showing some dots outside of the graph. Those are outliers.
Most of the outliers as shown in Figure 12.7 are around wine with quality 5 and 6. We can
remove the outliers by passing an argument, showoutliers=False, as shown in the
following code:

sns.boxplot(x='quality', y='alcohol', data = df_red, showfliers=False)

And the output of the code is much cleaner, as shown here:
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Figure 12.8 -A box plot showing the variation of the quality of wine with respect to alcohol concentration without outliers

Note that, from Figure 12.8, it seems that as the quality of wine increases, so does the
alcohol concentration. That would make sense, right? The higher the alcohol concentration
is, the higher the quality of the wine. 

Alcohol versus pH
Next, let's also see the correlation between the alcohol column and pH values. From Figure
12.5, we already know they are weakly positively correlated. Let's verify the results in this
section:

First, let's see the joint plot:1.

sns.jointplot(x='alcohol',y='pH',data=df_red, kind='reg')
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The preceding code should not be new to you by now. We have already discussed
the significance of these plots in Chapter 2, Visual Aids in EDA, and Chapter 7,
Correlation. The graph produced by the preceding code is shown in the
screenshot:

Figure 12.9 - Joint plot illustrating the correlation between alcohol concentration and the pH values 

This screenshot shows that alcohol is weakly positively related to the pH values.
Moreover, the regression line is depicted in the screenshot, illustrating the
correlation between them.
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We can quantify the correlation using Pearson regression from scipy.stats, as2.
shown here:

from scipy.stats import pearsonr

def get_correlation(column1, column2, df):
  pearson_corr, p_value = pearsonr(df[column1], df[column2])
  print("Correlation between {} and {} is {}".format(column1,
column2, pearson_corr))
  print("P-value of this correlation is {}".format(p_value))

And we can use the preceding method to see the correlation between any two3.
columns. Let's see the correlation between alcohol and pH:

get_correlation('alcohol','pH', df_red)

The output of the preceding code is given as follows:

Correlation between alcohol and pH is 0.20563250850549825
P-value of this correlation is 9.96449774146556e-17

Note that, this is approximately the same value that is shown in Figure 12.5. Now you know
different ways in which you can check how strongly or weakly two or more columns are
related. 

In the next section, we are going to analyze the white wine dataframe and compare it with
the red wine. 

Analyzing white wine
In this section, we are going to analyze white wine and compare it with the red wine
analysis from the previous section. Let's start by loading the white wine dataframe:

df_white =
pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine
-quality/winequality-white.csv", delimiter=";")

This code loads the white wine dataset into the df_white dataframe.  
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Red wine versus white wine 
Our output class is the quality column. Based on that column, we can try to find the 
average quality of each wine as follows:

print("white mean = ",df_white["quality"].mean())
print("red mean =",df_red["quality"].mean())

And the output of the code is as follows:

white mean = 5.87790935075541
red mean = 5.6360225140712945

As the output says, the average white wine quality is 5.877 and that of red wine is 5.63. The
columns in both dataframes are the same.

Adding a new attribute
Let's add a new attribute, wine_category, to both dataframes. Do you recall how we did
that?

Of course, check the example code given as follows:

df_white['wine_category'] = 'white'
df_red['wine_category'] = 'red'

That was easy, right? Next, let's see what are the unique values of the column quality in
both types of wines:

print('RED WINE: List of "quality"', sorted(df_red['quality'].unique()))
print('WHITE WINE: List of "quality"',
sorted(df_white['quality'].unique()))

The output of the preceding code is given as follows:

RED WINE: List of "quality" [3, 4, 5, 6, 7, 8]
WHITE WINE: List of "quality" [3, 4, 5, 6, 7, 8, 9]

Note that both the red and the white wines have the same unique values for the quality
column. 
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Converting into a categorical column
Although the quality column is numerical, here, we are interested in taking quality as the
class. To make it clear, let's convert numerical values into categorical values in this
subsection. 

To do so, we need a set of rules. Let's define a set of rules:

That sounds doable, right? Of course, it is. Let's check the code, given as follows:

df_red['quality_label'] = df_red['quality'].apply(lambda value: ('low' if
value <= 5 else 'medium') if value <= 7 else 'high')
df_red['quality_label'] = pd.Categorical(df_red['quality_label'],
categories=['low', 'medium', 'high'])

df_white['quality_label'] = df_white['quality'].apply(lambda value: ('low'
if value <= 5 else 'medium') if value <= 7 else 'high')
df_white['quality_label'] = pd.Categorical(df_white['quality_label'],
categories=['low', 'medium', 'high'])

The preceding code should be self-explanatory by now. We just used the pandas.apply()
method to check the value in the quality columns. Based on their values, if they are less
than or equal to five, we categorized them as low-quality wine. Similarly, if the value of the
quality column is greater than 5 and less than or equal to 7, we classified them as
medium-quality wine. Finally, any rows with a quality column containing a value greater
than 7 were classified as high-quality wine. 

Let's count the number of values in each category of wine:

print(df_white['quality_label'].value_counts())
df_red['quality_label'].value_counts()

And the output of the preceding code is given as follows:

medium 3078
low 1640
high 180
Name: quality_label, dtype: int64

medium 837
low 744
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high 18
Name: quality_label, dtype: int64

The top one is for white wine and the lower one is red wine. It is pretty obvious from the
preceding output that most of the wines are of medium quality in both cases. 

Concatenating dataframes
Let's perform a combined exploration of both types of dataframes. Do you remember how
we can merge dataframes? If not, I highly recommend pausing here and quickly skimming
through Chapter 6, Grouping Datasets:

Let's see how we can concatenate both dataframes:1.

df_wines = pd.concat([df_red, df_white])

Let's also re-shuffle the rows so that it randomizes the data points:2.

df_wines = df_wines.sample(frac=1.0,
random_state=42).reset_index(drop=True)

Note that the drop=True argument resets the indexes to the default integer index.

Next, we would like to check the first few columns to see whether all of the rows3.
are correctly merged:

df_wines.head()

The output of the preceding code is given as follows:

Figure 12.10 - Output of the df.head(10) code snippet shown earlier

Note that in Figure 12.10, we have correctly populated the columns, wine_category and
quality_label. 
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Grouping columns
We have already discussed several ways in which we can group columns and rows using
the pandas dataframe in Chapter 6, Grouping Dataset. In this section, we will use the same
technique to group different columns together: 

Let's use the combined dataframe and group them using the columns, alcohol,1.
density, pH, and quality.
Next, we can apply the pd.describe() method to get the most frequently used2.
descriptive statistics:

subset_attr = ['alcohol', 'density', 'pH', 'quality']

low = round(df_wines[df_wines['quality_label'] ==
'low'][subset_attr].describe(), 2)
medium = round(df_wines[df_wines['quality_label'] ==
'medium'][subset_attr].describe(), 2)
high = round(df_wines[df_wines['quality_label'] ==
'high'][subset_attr].describe(), 2)

pd.concat([low, medium, high], axis=1,

          keys=['  Low Quality Wine',

                '  Medium Quality Wine',

                '  High Quality Wine'])

In the preceding code snippet, first, we created a subset of attributes that we are interested
in. Then, we created three different dataframes for low-quality wine, medium-quality wine,
and high-quality wine. Finally, we concatenated them. The output of the preceding code is
given here:

Figure 12.11 - Output of grouping the columns and performing the describe operation
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As shown in the preceding screenshot, we have grouped the dataset into three distinct
groups: low-quality wine, medium-quality wine, and high-quality wine. Each group shows
three different attributes: alcohol, density, and pH value. Using the concatenation method
to group the columns based on certain conditions can be very handy during the data
analysis phase.

In the next section, we are going to discuss the univariate analysis for the wine quality
dataset.

Univariate analysis
We have already discussed univariate, bivariate, and multivariate analysis in Chapter 7,
Correlation. Let's revise and see how much you remember. 

The simplest way to visualize the numeric data and their distribution is by using a
histogram. Let's plot the histogram here; we start by importing the required
matplotlib.pyplot library:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

Next, we draw the histogram, as shown:

fig = df_wines.hist(bins=15, color='fuchsia', edgecolor='darkmagenta',
linewidth=1.0, xlabelsize=10, ylabelsize=10, xrot=45, yrot=0,
figsize=(10,9), grid=False)

plt.tight_layout(rect=(0, 0, 1.5, 1.5))

Note that we have used the tight_layout() method to keep the graph combined. 

You can get the list of all matplotlib color codes from the official
website, at https:/ ​/​matplotlib. ​org/ ​examples/ ​color/ ​named_ ​colors.
html. 

The output of the preceding code is given as follows:

https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/named_colors.html
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Figure 12.12 - Output of the univariate analysis
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The preceding screenshot shows each of the variables/columns and their distribution in the
combined dataframe. The resulting graph should be self-explanatory by now. 

Multivariate analysis on the combined dataframe
Let's perform the multivariate analysis with the combined dataset. We are going to use the
same heatmap diagram to perform multivariate analysis:

Let's start by creating the figure. First, we create a subplot:1.

fig, (ax) = plt.subplots(1, 1, figsize=(14,8))

Next, we create the heatmap, as follows:2.

hm = sns.heatmap(df_wines.corr(),
                ax=ax,
                 cmap="bwr",
                 annot=True,
                 fmt='.2f',
                 linewidths=.05)

Finally, let's plot the subplot and populate it with a suitable title:3.

fig.subplots_adjust(top=0.93)
fig.suptitle('Combined Wine Attributes and their Correlation
Heatmap', fontsize=14, fontweight='bold')

The output of the preceding code is given as follows:
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Figure 12.13 - A heatmap illustrating correlation between several columns

Note the preceding screenshot is similar to Figure 12.5 and should be interpreted in the
same way. The only difference, in this case, is that we have performed multivariate analysis
on the combined dataframe. 

Discrete categorical attributes
We have one discrete categorical column in our dataframe, wine_category.

Let's visualize it using a count plot using the seaborn library:

fig = plt.figure(figsize=(16, 8))

sns.countplot(data=df_wines, x="quality", hue="wine_category")
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The output of the preceding code is given as follows:

Figure 12.14 - Visualizing the discrete categorical dataset

Figure 12.14 shows different categories of wine [3, 4, 5, 6, 7, 8, 9] and their frequency
distributions over a nice count plot. It is a clearer illustration for end stakeholders.

3-D visualization
Generally, we start with one-dimensional visualization and move to further dimensions.
Having seen 2-D visualization earlier, let's add one more dimension and plot 3-D charts.
We will use the matplotlib.pyplot method to do so:

Let's start first by creating the axes:1.

fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')

Then, add the columns to the axes:2.

xscale = df_wines['residual sugar']
yscale = df_wines['free sulfur dioxide']
zscale = df_wines['total sulfur dioxide']
ax.scatter(xscale, yscale, zscale, s=50, alpha=0.6, edgecolors='w')
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Here, we are interested in looking into the residual sugar, free sulfur dioxide, and
total sulfur dioxide columns.

Finally, let's add the labels to all of the axes:3.

ax.set_xlabel('Residual Sugar')
ax.set_ylabel('free sulfur dioxide')
ax.set_zlabel('Total sulfur dioxide')

plt.show()

The output of the preceding code is given as follows:

Figure 12.14 - 3-D plot illustrating the correlation between three different columns
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Figure 12.14 shows that three variables show a positive correlation with respect to one
another. In the preceding example, we used the Matplotlib library. We can also use the
seaborn library to plot three different variables. Check the code snippet given here:

fig = plt.figure(figsize=(16, 12))

plt.scatter(x = df_wines['fixed acidity'],
            y = df_wines['free sulfur dioxide'],
            s = df_wines['total sulfur dioxide'] * 2,
            alpha=0.4,
            edgecolors='w')

plt.xlabel('Fixed Acidity')
plt.ylabel('free sulfur dioxide')
plt.title('Wine free sulfur dioxide Content - Fixed Acidity - total sulfur
dioxide', y=1.05)

Note that we have used the s parameter to denote the third variable (total sulfur dioxide).
The output of the code is as follows:

Figure 12.16 - Plot illustrating three different variables as shown in the preceding code
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Note that in Figure 12.16, the size of the circles denotes the third variable. In this case, the
larger the radius of the circle is, the higher the value of residual sugar. So, if you look
carefully, you will notice most of the higher circles are located between the x axis with
values of 4 and 10 and with the y axis with values between 25 and 150. 

In the next section, we are going to develop different types of models and apply some
classical Machine Learning (ML) algorithms and evaluate their performances.

Model development and evaluation
In this section, we are going to develop different types of classical ML models and evaluate
their performances. We have already discussed in detail the development of models and
their evaluation in Chapter 9, Hypothesis Testing and Regression and Chapter 10, Model
Development and Evaluation. Here, we will dive directly into implementation. 

We are going to use different types of following algorithms and evaluate their
performances:

Logistic regression
Support vector machine
K-nearest neighbor classifier
Random forest classifier
Decision tree classifier
Gradient boosting classifier
Gaussian Naive Bayes classifier

While going over each classifier in depth is out of the scope of this chapter and book, our
aim here is to present how we can continue developing ML algorithms after performing
EDA operations on certain databases: 

Let's first import the required libraries:1.

from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC,SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import
RandomForestClassifier,GradientBoostingClassifier,AdaBoostClassifie
r
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split,cross_validate
from sklearn.preprocessing import
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MinMaxScaler,StandardScaler,LabelEncoder
from sklearn.metrics import
accuracy_score,precision_score,recall_score,f1_score

Note that we are going to use the combined dataframe. Next, we are going to
encode the categorical values for the quality_label column. We will encode the
values so that all of the low values will be changed to 0, the medium values will
be changed to 1, and the high values will be changed to 2.

Let's perform the encoding:2.

label_quality = LabelEncoder()

df_wines['quality_label'] =
label_quality.fit_transform(df_wines['quality_label'])

That was not difficult, right? We just utilized the LabelEncoder utility function
provided by the sklearn preprocessing functionality. 

Now, let's split our dataset into a training set and test set. We will use 70% of the3.
dataset as the training set and the remaining 30% as the test set: 

x_train,x_test,y_train,y_test=train_test_split(df_wines.drop(['qual
ity','wine_category'],axis=1),df_wines['quality_label'],test_size=0
.30,random_state=42)

We used the train_test_split() method provided by the sklearn library.
Note the following things in the preceding category:

In the preceding code, we no longer need
the quality and wine_category columns, so we drop them. 
Next, we take 30% of the data as the test set. We can do that by simply
passing the test_size = 0.30 argument.

Next, we create the model. Note that we could build the model individually for4.
each of the algorithms we listed above. Instead, here we are going to list them
and loop over each of them and compute the accuracy. Check the code snippet
given as follows:

models=[LogisticRegression(),
        LinearSVC(),
        SVC(kernel='rbf'),
        KNeighborsClassifier(),
        RandomForestClassifier(),
        DecisionTreeClassifier(),
        GradientBoostingClassifier(),
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        GaussianNB()]

model_names=['LogisticRegression','LinearSVM','rbfSVM',
'KNearestNeighbors', 'RandomForestClassifier', 'DecisionTree',
'GradientBoostingClassifier', 'GaussianNB']

Next, we will loop over each model, create a model, and then evaluate the5.
accuracy. Check the code snippet given as follows:

acc=[]
eval_acc={}

for model in range(len(models)):
    classification_model=models[model]
    classification_model.fit(x_train,y_train)
    pred=classification_model.predict(x_test)
    acc.append(accuracy_score(pred,y_test))
eval_acc={'Modelling Algorithm':model_names,'Accuracy':acc}
eval_acc

The output of the preceding code is given here:

{'Accuracy': [0.9687179487179487,
  0.9733333333333334,
  0.6051282051282051,
  0.6912820512820513,
  1.0,
  1.0,
  1.0,
  1.0],
 'Modelling Algorithm': ['LogisticRegression',
  'LinearSVM',
  'rbfSVM',
  'KNearestNeighbors',
  'RandomForestClassifier',
  'DecisionTree',
  'GradientBoostingClassifier',
  'GaussianNB']}

Let's create a dataframe of the accuracy and show it in a bar chart:6.

acc_table=pd.DataFrame(eval_acc)
acc_table = acc_table.sort_values(by='Accuracy', ascending=[False])
acc_table
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The output of the preceding code is given as follows:

Figure 12.17 - Accuracy dataframe of different algorithms

Note that converting quality into a categorical dataset gave us higher accuracy.
Most of the algorithms gave 100% accuracy as shown in the previous screenshot.

Let's create a bar plot:7.

sns.barplot(y='Modelling Algorithm',x='Accuracy',data=acc_table)

The output of the preceding code is given as follows:

Figure 12.18 - Different types of algorithms and their accuracies

Note that, as shown in the screenshot, the random forest, the decision tree, the gradient
boosting classifier, and the Gaussian Naive Bayes classifier all gave 100% accuracy.
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Great! Congratulations, you have successfully completed the main project. Please note that
all of the code, snippets, and methods illustrated in this book have been given to provide
minimal ways in which a particular problem can be solved. There is always a way in which
you can perform deeper analysis. We motivate you to go through the Further reading
sections on each chapter to get advanced knowledge about the particular domain. 

Summary
In this chapter, we used the Wine Quality dataset provided by UCI to perform EDA. We
discussed how we can perform EDA techniques such as data loading, data wrangling, data
transformation, correlation between variables, regression analysis, and building classical
ML models based on the datasets. 

This is the final chapter in this book. As mentioned earlier, the explanation of the theory,
codes, and illustrations provided in this book have been given to provide you with a base
knowledge set. We assume that after reading this book, you will gain sufficient insights,
techniques, and skills to take it to the next level.  

Further reading
Supervised Machine Learning with Python, Taylor Smith, Packt Publishing, May 26,
2019
Large Scale Machine Learning with Python, Bastiaan Sjardin, Luca Massaron, et al.,
Packt Publishing, August 2, 2016
Advanced Machine Learning with Python, John Hearty, Packt Publishing, July 27, 2016
Hands-On Unsupervised Learning with Python, Giuseppe Bonaccorso, Packt Publishing,
February 28, 2019
Mastering Machine Learning for Penetration Testing, Chiheb Chebbi, Packt Publishing,
June 26, 2018
Hands-On Data Science and Python Machine Learning, Frank Kane, Packt Publishing,
July 30, 2017
Building Machine Learning Systems with Python – Third Edition, Luis Pedro Coelho,
Willi Richert, et al., Packt Publishing, July 30, 2018
The wine quality dataset is attributed to P. Cortez, A. Cerdeira, F. Almeida, T.
Matos, and J. Reis. Modeling wine preferences by data mining from physicochemical
properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.



Appendix
As mentioned previously, data preprocessing and data transformation are two of the most
essential processes in data mining and other data science approaches. During the data
processing stage, our data is often in the form of a string. Most of the datasets found on the
internet are string-based. Hence, string manipulation techniques are an essential part
of exploratory data analysis (EDA).

In this appendix chapter, we are going to learn about the following topics:

String manipulation
Using pandas vectorized string functions
Using regular expressions

String manipulation
By string manipulation, we mean how you can create strings, access characters in those
strings, slice the strings, and delete or update characters in the strings and other string
operators. In the following sections, we are going to see all these steps, one by one. 

Creating strings
We can create strings in Python in three different ways:

Using a single quote
Using a double quote
Using a triple quote.

Have a look at the following example:

String1 = 'Creating a String with single Quotes.'
String2 = "Creating a String with double Quotes."
String3 = '''Creating a String with triple Quotes.'''
print(String1)
print(String2)
print(String3)

The output of all three print statements is the same. They create a string, as intended.
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Accessing characters in Python 
Python provides an indexing mechanism to access any character from any string. The index
of any string starts with 0. We can also access any character from the back of any string,
using a negative index value. For example, -1 indicates the last character of the string, -2
refers to the second-to-last character, and so on. Note that if we try accessing any index that
is not within the limit of the string, Python alerts us with a TypeError. 

Here's the Python code used to access the characters of a string:

# characters of String
String = "Exploratory Data Analysis"

# Printing First character
print("\nFirst character of String is: ")
print(String[0])

# Printing Last character
print("\nLast character of String is: ")
print(String[-1])

The output of each code block is displayed with an inline comment, which makes it easier
to comprehend. 

String slicing
To access a range of characters in a string, a slicing method is used. Slicing in a string is
done using a slicing operator (:). Here's a program that demonstrates string slicing:

# Creating a String
String = "Exploratory Data Analysis"

# Outputs: Slicing characters from 3-12:loratory
print("\nSlicing characters from 3-12: ")
print(String[3:12])

# Outputs:Slicing characters between 3rd and 2nd last character: loratory
Data Analys
print("\nSlicing characters between " + "3rd and 2nd last character: ")
print(String[3:-2])

The output of each code block is displayed with an inline comment, which makes it easier
to comprehend. 
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Deleting/updating from a string
Python does not support string mutation. That is to say, it does not allow any characters
from a string to be deleted or updated. If we attempt to do so, it raises an error. However,
the deletion of the entire string is possible with the use of the built-in del keyword. The
main reason for getting an error in the case of a string update is that strings are
immutable. In the following code block, let's create a string, and try to update some
characters in it, as follows:

# Updation of a character

String = "Exploratory Data Analysis"

String[2] = 'p'
print("\nUpdating character at 2nd Index: ")
print(String)

The preceding code should give you an error. 

Escape sequencing in Python
A string already comes with the single (') and double ('') quotes incorporated within its
syntax. Hence, if we need to print a single or a double quote within a string, it causes a
SyntaxError. To avoid such an error, the quotes—whether they are single or double
quotes—must be escaped. This phenomenon is called an escape sequence. An escape
sequence begins with a backslash (\) and can be understood differently. If we intend to use
a single quote or a double quote as a string, then it must be escaped by appending a
backslash before it. Let's see it in action.

We will show the following example for all three cases (a single quote, a double quote, and
a triple quote):

String = '''I'm a "Data Scientist"'''

# Initial String
print("Initial String with use of Triple Quotes: ")
print(String)

# Escaping Single Quote
String = 'I\'m a "Data Scientist"'
print("\nEscaping Single Quote: ")
print(String)

# Escaping Double Quotes
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String = "I'm a \"Data Scientist\""
print("\nEscaping Double Quotes: ")
print(String)

In computer science, we often need to provide a path to some files or datasets on different
occasions. This is the same when working with data science. The first step is to load the
dataset. To do so, we have to provide a link or path to the file by using a double slash, in
order to escape the double slash. We then print the paths with escape sequences, as shown
in the following example: 

String = "C:\\Python\\DataScience\\"
print("\nEscaping Backslashes: ")
print(String)

The preceding code generates the following output:

Escaping Backslashes:
C:\Python\DataScience\

Note the use of the double slash in the code—this provides a single slash as the output. This
is why escaping is a very useful mechanism. 

Formatting strings
We can use the format() method to format a string in Python. This method is very flexible
and powerful when displaying output in any particular format. The format() method
holds curly braces {} as placeholders that can be replaced by any particular arguments
according to a specific order. Have a look at these next examples.

Let's first see an example for a default order:

# Default order
String1 = "{} {} {}".format('Exploratory ', 'Data ', 'Analysis')
print("Print String in default order: ")
print(String1)

The output of the preceding code is as follows:

Print String in default order:
Exploratory Data Analysis
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In addition to this default order, we can use positional formatting. For example, you have a
string such as ('Exploratory', 'Data', 'Analysis'), and we want to display
a ('Data', 'Exploratory', 'Analysis') string. We can do this by using positional
formatting, as shown in the following example:

# Positional Formatting
String1 = "{1} {0} {2}".format('Exploratory', 'Data', 'Analysis')
print("\nPrint String in Positional order: ")
print(String1)

We can also format any string by using keywords. For example, have a look at the
following code:

# Keyword Formatting
String1 = "{l} {f} {g}".format(g = 'Exploratory', f = 'Data', l =
'Analysis')
print("\nPrint String in order of Keywords: ")
print(String1)

The output of the preceding code is as follows:

Print String in order of Keywords:
Analysis Data Exploratory

Next, we are going to look at how we can load a text dataset and perform preprocessing
operations. 

Using pandas vectorized string functions
For string formatting, it would be better to use a dataset that's a little messier. We will use
the dataset that I collected during my Ph.D. research study when writing a review paper. It
can be found here: https:/ ​/​raw. ​githubusercontent. ​com/ ​sureshHARDIYA/ ​phd-​resources/
master/​Data/​Review%20Paper/ ​preprocessed. ​csv. 

Let's load this text article and then display the first eight entries. Let's start by1.
loading the data and checking its structure and a few of the comments, as
follows:

import numpy as np
import pandas as pd
import os

https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
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https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
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https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
https://github.com/sureshHARDIYA/phd-resources/blob/master/Data/Review%20Paper/preprocessed.csv
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Next, let's read the text file and display the last 10 items, as follows:2.

text =
pd.read_csv("https://raw.githubusercontent.com/sureshHARDIYA/phd-re
sources/master/Data/Review%20Paper/preprocessed.csv")
text = text["TITLE"]
print (text.shape)
print( text.tail(10))

The output of the preceding code can be seen in the following screenshot:3.

Figure 1: This is the output of the preceding code

Pandas extends built-in functions that operate on an entire series of strings. In the next
section, we are going to use the same dataset with pandas string functions. 

Using string functions with a pandas DataFrame
Let's use built-in functions with a pandas DataFrame. We will continue to use the same
dataset that was imported in the previous section. Most of the string manipulation
functions in Python work with the pandas vectorized string methods. 

Here is a list of pandas string functions that reflect Python string methods:

Figure 2 - List of vectorized string functions in pandas 
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Let's practice the following use cases:

Extract the first sentence from the text column of the DataFrame and convert it1.
into lowercase characters, as follows:

 text[0].lower()

Convert all the comments in the text column to lowercase and display the first2.
eight entries, as follows:

text.str.lower().head(8)

Extract the first sentence and convert it into uppercase characters, as follows:3.

text[0].upper()

Get the length of each comment in the text field and display the first eight entries,4.
as follows:

text.str.len().head(8)

Combine all the comments into a single string and display the first 5005.
characters, as follows:

text.str.cat()[0:500]

It is wise to verify that all the comments are concatenated together. Can you think
of any use cases where we probably need to combine all the comments together
into a single string? Well, how about—say—we want to see the most frequent
words chosen by all users when commenting. 

Slice each string in a series and return the result in an elementwise fashion with s6.
eries.str.slice(), as shown in the following code snippet:

text.str.slice(0, 10).head(8)

Replace the occurrences of a given substring with a different substring using7.
str.replace(), as shown in the following code snippet:

text.str.replace("Wolves", "Fox").head(8)

In the preceding example, all the cases of Wolves would be replaced with Fox. This acts as
a search and replace functionality that you can find in many content management systems
and editors. 
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While working with text data, we frequently test whether character strings contain a certain
substring or pattern of characters. Let's search for only those comments that mention
Andrew Wiggins. We'd need to match all posts that mention him and avoid matching posts
that don't mention him.

Use series.str.contains() to get a series of true/false values, indicating whether each
string contains a given substring, as follows:

# Get first 10 comments about Andrew Wiggins
selected_comments = text.str.lower().str.contains("wigg|drew")

text[selected_comments].head(10)

Just for information, let's calculate the ratio of comments that mention Andrew Wiggins, as
follows:

len(text[selected_comments])/len(text)

And the output is 0.06649063850216035. As you can see, 6.6% of comments make mention
of Andrew Wiggins. This is the output of the string pattern argument we supplied to
str.contains().

Posts about Andrew Wiggins could use any number of different names to refer to
him—Wiggins, Andrew, Wigg, Drew—so we needed something that is a little more flexible
than a single substring to match all the posts we're interested in. The pattern we supplied is
a simple example of a regular expression.

Using regular expressions
A regular expression, or regex, is a sequence of characters and special metacharacters used
to match a set of character strings. Regular expressions allow you to be more expressive
with string-matching operations than just providing a simple substring. You can think of it
as a pattern that you want to match with strings of different lengths, made up of different
characters.

In the str.contains() method, we supplied the regular expression, wigg|drew. In this
case, the vertical bar | is a metacharacter that acts as the OR operator, so this regular
expression matches any string that contains the substring wigg or drew.

Metacharacters let you change how you make matches. When you provide a regular
expression that contains no metacharacters, it simply matches the exact substring. For
instance, Wiggins would only match strings containing the exact substring, Wiggins.
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Here is a list of basic metacharacters, and what they do:

".": The period is a metacharacter that matches any character other than a
newline, as illustrated in the following code block:

# Match any substring ending in ill
my_words = pd.Series(["abaa","cabb","Abaa","sabb","dcbb"])

my_words.str.contains(".abb")

"[ ]": Square brackets specify a set of characters to match. Look at the following
example snippet and compare your output with the notebook given with this
chapter: 

my_words.str.contains("[Aa]abb")

"^": Outside of square brackets, the caret symbol searches for matches at the
beginning of a string, as illustrated in the following code block:

Sentence_series= pd.Series(["Where did he go", "He went to the
shop", "he is good"])

Sentence_series.str.contains("^(He|he)")

"( )": Parentheses in regular expressions are used for grouping and to enforce
the proper order of operations, just as they are used in math and logical
expressions. In the preceding examples, the parentheses let us group the
OR expressions so that the "^" and "$" symbols operate on the entire OR
statement.
"*": An asterisk matches 0 or more copies of the preceding character.
"?": A question mark matches 0 or 1 copy of the preceding character.
"+": A plus sign matches 1 or more copies of the preceding character. 
"{ }": Curly braces match a preceding character for a specified number of
repetitions:

"{m}": The preceding element is matched m times.
"{m,}": The preceding element is matched m times or more.
"{m,n}": The preceding element is matched between m and n times.

Regular expressions include several special character sets that allow us to quickly specify
certain common character types. They include the following:

[a-z]: Match any lowercase letter.
[A-Z]: Match any uppercase letter.
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[0-9]: Match any digit.
[a-zA-Z0-9]: Match any letter or digit.
Adding the "^" symbol inside the square brackets matches any characters not in
the set:

[^a-z]: Match any character that is not a lowercase letter.
[^A-Z]: Match any character that is not an uppercase letter.
[^0-9]: Match any character that is not a digit.
[^a-zA-Z0-9]: Match any character that is not a letter or digit.

Python regular expressions also include a shorthand for specifying common
sequences:

\d: Match any digit.
\D: Match any non-digit.
\w: Match a word character.
\W: Match a non-word character.
\s: Match whitespace (spaces, tabs, newlines, and so on.).
\S: Match non-whitespace.

Remember—we did escape sequencing while string formatting. Likewise, you must escape
with "" in a metacharacter when you want to match the metacharacter symbol itself.

For instance, if you want to match periods, you can't use "." because it is a metacharacter
that matches anything. Instead, you'd use . to escape the period's metacharacter behavior
and match the period itself. This is illustrated in the following code block:

# Match a single period and then a space

Word_series3 = pd.Series(["Mr. SK","Dr. Deepak","Miss\Mrs Gaire."])

Word_series3.str.contains("\. ")

If you want to match the escape character \ itself, you either have to use four backslashes
"\" or encode the string as a raw string in the form r"mystring" and then use double
backslashes. Raw strings are an alternate string representation in Python that simplifies
some oddities in performing regular expressions on normal strings, as illustrated in the
following code snippet:

# Match strings containing a backslash
Word_series3.str.contains(r"\\")
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While dealing with special string characters in regular expressions, a raw string is often
used because it avoids issues that may arise with those special characters.

Regular expressions are commonly used to match the patterns of phone numbers, email
addresses, and web addresses in between the text. Pandas has several string functions that
accept regular expression patterns and perform the operation. We are now familiar with
these functions: series.str.contains() and series.str.replace().

Now, let's use some more functions in our dataset of comments.

Use series.str.count() to count the occurrences of a pattern in each string, as follows:

text.str.count(r"[Ww]olves").head(8)

Use series.str.findall() to get each matched substring and return the result as a list,
as follows:

text.str.findall(r"[Ww]olves").head(8)

There are endless ways in which a string can be manipulated. We chose to illustrate the
most basic ways in order to make it simple for you to understand. 

Further reading
Python Text Processing with NLTK 2.0 Cookbook, Jacob Perkins, Packt Publishing,
November 9, 2010.
NLTK Essentials, Nitin Hardeniya, Packt Publishing, July 26, 2015.
Hands-On Natural Language Processing with Python, Rajesh Arumugam,
Rajalingappaa Shanmugamani, Packt Publishing, July 17, 2018.
Data Analysis with Python, David Taieb, Packt Publishing, December 31, 2018.
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