

Hands-On Enterprise
Automation with Python

Automate common administrative and security tasks
with Python

Bassem Aly

BIRMINGHAM - MUMBAI

Hands-On Enterprise Automation with
Python
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ron Kurien
Technical Editor: Manish D Shanbhag
Copy Editor: Safis Editing
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: June 2018

Production reference: 1270618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-851-2

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Bassem Aly is an experienced SDN/NFV solution consultant at Juniper Networks and has
been working in the telco industry for the last 9 years. He has focused on designing and
implementing next-generation solutions by leveraging different automation and DevOps
frameworks. Also, he has extensive experience of architecting and deploying telco
applications over OpenStack. He also conducts corporate training on network automation
and network programmability using Python and Ansible.

I would like to thank my amazing wife, Sarah, and my fantastic daughter, Mariam.
They've sacrificed many nights and meals for this dream. I hope Mariam will read this
book one day and understand why I spent so much time on the computer instead of
“chasing”. Thanks to my parents for their encouragement, which made me who I am today.
Finally, thanks to my mentor, Ashraf Albasti, who has helped me in countless ways in my
career.

About the reviewer
Jere Julian is a senior network automation engineer with nearly two decades of automation
experience currently focused on workflow simplification through automation. The past few
years have found him on the speaker circuit at DevOps Days and Interop ITX, as well as
regularly contributing to network computing. He lives in NC with his wife and two boys
and fights fire as a community volunteer as opposed to the data center. He can be contacted
on Twitter at @julianje.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Setting Up Our Python Environment 8
An introduction to Python 9

Python versions 9
Why are there two active versions? 10
Should you only learn Python 3? 10
Does this mean I can't write code that runs on both Python 2 and Python 3? 11

Python installation 12
Installing the PyCharm IDE 15

Setting up a Python project inside PyCharm 18
Exploring some nifty PyCharm features 22

Code debugging 22
Code refactoring 24
Installing packages from the GUI 26

Summary 28

Chapter 2: Common Libraries Used in Automation 29
Understanding Python packages 29

Package search paths 30
Common Python libraries 32

Network Python Libraries 32
System and cloud Python libraries 34

Accessing module source code 36
Visualizing Python code 37

Summary 43

Chapter 3: Setting Up the Network Lab Environment 44
Technical requirements 45
When and why to automate the network 45

Why do we need automation? 45
Screen scraping versus API automation 46
Why use Python for network automation? 46
The future of network automation 48
Network lab setup 49
Getting ready – installing EVE-NG 49

Installation on VMware Workstation 50
Installation over VMware ESXi 53
Installation over Red Hat KVM 55
Accessing EVE-NG 56

Table of Contents

[ii]

Installing EVE-NG client pack 59
Loading network images into EVE-NG 61

Building an enterprise network topology 61
Adding new nodes 61
Connecting nodes together 63

Summary 65

Chapter 4: Using Python to Manage Network Devices 66
Technical requirements 66

Python and SSH 67
Paramiko module 67

Module installation 67
SSH to the network device 68

Netmiko module 70
Vendor support 71
Installation and verification 72
Using netmiko for SSH 73
Configuring devices using netmiko 75
Exception handling in netmiko 76
Device auto detect 77

Using the telnet protocol in Python 78
Push configuration using telnetlib 82

Handling IP addresses and networks with netaddr 84
Netaddr installation 85
Exploring netaddr methods 85

Sample use cases 87
Backup device configuration 88

Building the python script 88
Creating your own access terminal 91
Reading data from an Excel sheet 94
More use cases 97

Summary 98

Chapter 5: Extracting Useful Data from Network Devices 99
Technical requirements 100
Understanding parsers 100
Introduction to regular expressions 100

Creating a regular expression in Python 102
Configuration auditing using CiscoConfParse 110

CiscoConfParse library 111
Supported vendors 112
CiscoConfParse installation 112
Working with CiscoConfParse 113

Visualizing returned data with matplotLib 116
Matplotlib installation 117
Hands-on with matplotlib 117

Table of Contents

[iii]

Visualizing SNMP using matplotlib 121
Summary 123

Chapter 6: Configuration Generator with Python and Jinja2 124
What is YAML? 124

YAML file formatting 125
Text editor tips 128

Building a golden configuration with Jinja2 129
Reading templates from the filesystem 138
Using Jinja2 loops and conditions 139

Summary 148

Chapter 7: Parallel Execution of Python Script 149
How a computer executes your Python script 150
Python multiprocessing library 152

Getting started with multiprocessing 153
Intercommunication between processes 156

Summary 158

Chapter 8: Preparing a Lab Environment 159
Getting the Linux operating system 159

Downloading CentOS 160
Downloading Ubuntu 161

Creating an automation machine on a hypervisor 162
Creating a Linux machine over VMware ESXi 162
Creating a Linux machine over KVM 168

Getting started with Cobbler 172
Understanding how Cobbler works 173
Installing Cobbler on an automation server 174
Provisioning servers through Cobbler 178

Summary 184

Chapter 9: Using the Subprocess Module 185
The popen() subprocess 185
Reading stdin, stdout, and stderr 188
The subprocess call suite 191
Summary 192

Chapter 10: Running System Administration Tasks with Fabric 193
Technical requirements 193
What is Fabric? 194

Installation 195
Fabric operations 196

Using run operation 196
Using get operation 196
Using put operation 197

Table of Contents

[iv]

Using sudo operation 197
Using prompt operation 198
Using reboot operation 198

Executing your first Fabric file 199
More about the fab tool 203
Discover system health using Fabric 204

Other useful features in Fabric 210
Fabric roles 210
Fabric context managers 211

Summary 213

Chapter 11: Generating System Reports and System Monitoring 214
Collecting data from Linux 214

Sending generated data through email 220
Using the time and date modules 223
Running the script on a regular basis 225

Managing users in Ansible 226
Linux systems 226
Microsoft Windows 227

Summary 228

Chapter 12: Interacting with the Database 229
Installing MySQL on an automation server 229

Securing the installation 230
Verifying the database installation 232

Accessing the MySQL database from Python 232
Querying the database 235
Inserting records into the database 236

Summary 239

Chapter 13: Ansible for System Administration 240
Ansible terminology 241
Installing Ansible on Linux 242

On RHEL and CentOS 242
Ubuntu 243

Using Ansible in ad hoc mode 243
How Ansible actually works 247

Creating your first playbook 248
Understanding Ansible conditions, handlers, and loops 251

Designing conditions 252
Creating loops in ansible 255
Trigger tasks with handlers 256

Working with Ansible facts 258
Working with the Ansible template 259
Summary 262

Table of Contents

[v]

Chapter 14: Creating and Managing VMware Virtual Machines 263
Setting up the environment 263
Generating a VMX file using Jinja2 266

Building the VMX template 267
Handling Microsoft Excel data 270
Generating VMX files 273

VMware Python clients 281
Installing PyVmomi 282
First steps with pyvmomi 283
Changing the virtual machine state 288
There's more 290

Using Ansible playbook to manage instances 291
Summary 295

Chapter 15: Interacting with the OpenStack API 296
Understanding RESTful web services 297
Setting up the environment 299

Installing rdo-OpenStack package 300
On RHEL 7.4 300
On CentOS 7.4 300

Generating answer file 300
Editing answer file 300
Run the packstack 301
Access the OpenStack GUI 301

Sending requests to the OpenStack keystone 302
Creating instances from Python 306

Creating the image 306
Assigning a flavor 308
Creating the network and subnet 310
Launching the instance 312

Managing OpenStack instances from Ansible 314
Shade and Ansible installation 315
Building the Ansible playbook 315

Running the playbook 317
Summary 319

Chapter 16: Automating AWS with Boto3 320
AWS Python modules 320

Boto3 installation 321
Managing AWS instances 323

Instance termination 325
Automating AWS S3 services 326

Creating buckets 326
Uploading a file to a bucket 327
Deleting a bucket 328

Table of Contents

[vi]

Summary 328

Chapter 17: Using the Scapy Framework 329
Understanding Scapy 329
Installing Scapy 330

Unix-based systems 330
Installing in Debian and Ubuntu 331
Installing in Red Hat/CentOS 331

Windows and macOS X Support 331
Generating packets and network streams using Scapy 332
Capturing and replaying packets 337

Injecting data inside packets 340
Packet sniffing 342
Writing the packets to pcap 344

Summary 344

Chapter 18: Building a Network Scanner Using Python 345
Understanding the network scanner 345
Building a network scanner with Python 346

Enhancing the code 347
Scanning the services 351

Sharing your code on GitHub 355
Creating an account on GitHub 355
Creating and pushing your code 356

Summary 362

Other Books You May Enjoy 363

Index 366

Preface
The book starts by covering the set up of a Python environment to perform automation
tasks, as well as the modules, libraries, and tools you will be using.

We'll explore examples of network automation tasks using simple Python programs and
Ansible. Next, we will walk you through automating administration tasks with Python
Fabric, where you will learn to perform server configuration and administration along with
system administration tasks such as user management, database management, and process
management. As you progress through this book, you'll automate several testing services
with Python scripts and perform automation tasks on virtual machines and the cloud
infrastructure with Python. In the concluding chapters, you will cover Python-based
offensive security tools and learn to automate your security tasks.

By the end of this book, you will have mastered the skills of automating several system
administration tasks with Python.

You can visit the author's blog at the following link: https:/ ​/ ​basimaly.
wordpress. ​com/ ​. ​

Who this book is for
Hands-On Enterprise Automation with Python is for system administrators and DevOps
engineers who are looking for an alternative to major automation frameworks such as
Puppet and Chef. Basic programming knowledge with Python and Linux shell scripting is
necessary.

https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/

Preface

[2]

What this book covers
Chapter 1, Setting Up Python Environment, explores how to download and install the
Python interpreter along with the Python Integrated Development Environment,
called JetBrains PyCharm. The IDE provides you with smart autocompletion, intelligent code
analysis, powerful refactoring and integrates with Git, virtualenv, Vagrant, and Docker.
This will help you to write professional and robust Python code.

Chapter 2, Common Libraries Used in Automation, covers the Python libraries that are
available today and that are used for automation. We will categorize them based on their
usage (system, network, and cloud) and provide a simple introduction. As you progress
through the book, you will find yourself deep diving into each of them and understanding
their usage.

Chapter 3, Setting up Your Network Lab Environment, discusses the merits of network
automation and how network operators use it today to automate the current devices. We
will explore popular libraries that are used today to automate network nodes from Cisco,
Juniper, and Arista. This chapter covers how to build a networking lab to apply the Python
script on. We will use an open source network emulation tool called EVE-NG.

Chapter 4, Using Python to Manage Network Devices, dives into managing networking
devices through telnet and SSH connections using netmiko, paramiko, and telnetlib. We
will learn how to write the Python code to access switches and routers and execute
commands on the terminal and then return the output. We will also learn how to utilize
different Python techniques to back up and push configuration. The chapter ends with
some use cases used today in modern network environment.

Chapter 5, Extracting Useful Data from Network Devices, explains how to use different tools
and techniques inside Python to extract useful data from returned output and act upon it.
Also, we will use a special library called CiscoConfParse to audit the configuration. Then we
will learn how to visualize data to generate appealing graphs and reports with matplotlib.

Chapter 6, Configuration Generator with Python and Jinja2, explains how to generate a
common configuration for a site with hundreds of network nodes. We will learn how to
write a template and use it to generate a golden configuration with a templating language
called Jinja2.

Chapter 7, Parallel Execution of the Python Script, covers how to instantiate and execute your
Python code in parallel. This will allow us to finish the automation workflow faster as long
as it is not interdependent.

Preface

[3]

Chapter 8, Preparing a Lab Environment, covers the installation process and preparation for
our lab environment. We will install our automation server either in CentOS or Ubuntu
over different hypervisors. Then we will learn how to automate the operating system
installation with Cobbler.

Chapter 9, Using the Subprocess Module, explains how to send a command from a Python
script directly to the operating system shell and investigate the returning output.

Chapter 10, Running System Administration Tasks with Fabric, introduces Fabric, which is a
Python library for executing system administration tasks through SSH. Also, it's used in
large deployment of applications. We will learn how to utilize and leverage this library to
execute tasks on remote servers.

Chapter 11, Generating System Reports, Managing Users, and System Monitoring, explains that
collecting data and generating recurring reports from the system is an essential task for any
system administrator, and automating this task will help you to discover issues early and
provide a solutions for them. In this chapter, we will see some proven ways to automate
data collection from servers and generate formal reports. We will learn how to manage new
and existing users using Python and Ansible. Also, we will dive into monitoring the system
KPI and logs analysis. You can also schedule the monitoring scripts to run on a regular
basis and send the result to your mail inbox.

Chapter 12, Interacting with the Database, states that if you're a database administrator or
database developer, then Python provides a wide range of libraries and modules that cover
managing and working on popular DBMSes such as MySQL, Postgress, and Oracle. In this
chapter, we will learn how to interact with DBMSes using Python connectors.

Chapter 13, Ansible for System Administration, explores one of the most powerful tools in
configuration management software. Ansible is very powerful when it comes to system
administration and can be used to make sure the configuration is replicated exactly across
hundreds or even thousands of servers at the same time.

Chapter 14, Creating and Managing VMWare Virtual Machines, explains how to automate
VM creation on a VMWare hypervisor. We will discover different ways to create and
manage virtual machines over ESXi using VMWare's official binding library.

Chapter 15, Interacting with Openstack API, explains that OpenStack was very popular in
creating private IaaS when it came to private cloud. We will use Python modules such
as requests to create REST calls and interact with OpenStack services such as nova, cinder,
and neutron, and create the required resources over OpenStack. Later in the chapter,
we will use Ansible playbooks for the same workflow.

Preface

[4]

Chapter 16, Automating AWS with Python and Boto3, covers how to automate common AWS
services such as EC2 and S3 using official Amazon binindgs (BOTO3), which provides an
easy-to-use API for services access.

Chapter 17, Using the SCAPY Framework, introduces SCAPY, which is a powerful Python
tool used to build and craft packets and then send them on the wire. You can build any
type of network stream and send it on the wire. It can also help you to capture network
packets and replay them to the wire.

Chapter 18, Building Network Scanner Using Python, provides a complete example of
building a network scanner using Python. You can scan a complete subnet for different
protocols and ports and generate a report for each scanned host. Then, we will learn how to
share the code with the open source community (GitHub) by leveraging Git.

To get the most out of this book
The reader should be acquainted with the basic programming paradigm of Python
programming language and should have basic knowledge of Linux and Linux shell
scripting.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Enterprise- ​Automation- ​with- ​Python. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​HandsOnEnterpriseAutomationwithPython_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Some large packages such as matplotlib or django have hundreds of modules
inside them, and developers usually categorize the related modules into a sub-directories."

A block of code is set as follows:

from netmiko import ConnectHandler
from devices import R1,SW1,SW2,SW3,SW4

nodes = [R1,SW1,SW2,SW3,SW4]

for device in nodes:
 net_connect = ConnectHandler(**device)
 output = net_connect.send_command("show run")
 print output

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

hostname {{hostname}}

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf

Preface

[6]

Any command-line input or output is written as follows:

pip install jinja2

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:

"Choose your platform from the Download page, and either the x86 or x64 version."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Setting Up Our Python

Environment
In this chapter, we will provide a brief introduction to the Python programming language
and the differences between the current versions. Python ships in two active versions, and
making a decision on which one to use during development is important. In this chapter,
we will download and install Python binaries into the operating system.

At the end of the chapter, we will install one of the most advanced Integrated
Development Editors (IDEs) used by professional developers around the world:
PyCharm. PyCharm provides smart code completion, code inspections, on-the-fly error
highlighting and quick fixes, automated code refactoring, and rich navigation capabilities,
which we will go over throughout this book, as we write and develop Python code.

The following topics will be covered in this chapter:

An introduction to Python
Installing the PyCharm IDE
Exploring some nifty PyCharm features

Setting Up Our Python Environment Chapter 1

[9]

An introduction to Python
Python is a high-level programming language that provides a friendly syntax; it is easy to
learn and use, for both beginner and expert programmers.

Python was originally developed by Guido van Rossum in 1991; it depends on a mix of C,
C++, and other Unix shell tools. Python is known as a language for general purpose
programming, and today it's used in many fields, such as software development, web
development, network automation, system administration, and scientific fields. Thanks to
its large number of modules available for download, covering many fields, Python can cut
development time down to a minimum.

The Python syntax was designed to be readable; it has some similarities to the English
language, while the code construction itself is beautiful. Python core developers provide 20
informational rules, called the Zen of Python, that influenced the design of the Python
language; most of them involve building clean, organized, and readable code. The
following are some of the rules:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.

You can read more about the Zen of Python at https:/ ​/​www. ​python. ​org/ ​dev/ ​peps/ ​pep-
0020/​.

Python versions
Python comes with two major versions: Python 2.x and Python 3.x. There are subtle
differences between the two versions; the most obvious is the way their print functions
treat multiple strings. Also, all new features will only be added to 3.x, while 2.x will receive
security updates before full retirement. This won't be an easy migration, as many
applications are built on Python 2.x.

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/

Setting Up Our Python Environment Chapter 1

[10]

Why are there two active versions?
I will quote the reason from the official Python website:

"Guido van Rossum (the original creator of the Python language) decided to clean up
Python 2.x properly, with less regard for backwards compatibility than is the case for new
releases in the 2.x range. The most drastic improvement is the better Unicode support
(with all text strings being Unicode by default) as well as saner bytes/Unicode separation.

"Besides, several aspects of the core language (such as print and exec being statements,
integers using floor division) have been adjusted to be easier for newcomers to learn and to
be more consistent with the rest of the language, and old cruft has been removed (for
example, all classes are now new-style, "range()" returns a memory efficient iterable, not a
list as in 2.x)."

You can read more about this topic at https:/ ​/ ​wiki. ​python. ​org/ ​moin/ ​Python2orPython3.

Should you only learn Python 3?
It depends. Learning Python 3 will future-proof your code, and you will use up-to-date
features from the developers. However, note that some third-party modules and
frameworks lack support for Python 3 and will continue to do so for the near future, until
they completely port their libraries to Python 3.

Also, note that some network vendors, such as Cisco, provide limited support for Python
3.x, as most of the required features are already covered in Python 2.x releases. For
example, the following are the supported Python versions for Cisco devices; you will see
that all devices support 2.x, not 3.x:

Source: https:/ ​/​developer. ​cisco. ​com/​site/ ​python/ ​

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/

Setting Up Our Python Environment Chapter 1

[11]

Does this mean I can't write code that runs on both
Python 2 and Python 3?
No, you can, of course, write your code in Python 2.x and make it compatible with both
versions, but you will need to import a few libraries first, such as the __future__ module,
to make it backward compatible. This module contains some functions that tweak the
Python 2.x behavior and make it exactly like Python 3.x. Take a look at the following
examples to understand the differences between the two versions:

#python 2 only
print "Welcome to Enterprise Automation"

The following code is for Python 2 and 3:

python 2 and 3
print("Welcome to Enterprise Automation")

Now, if you need to print multiple strings, the Python 2 syntax will be as follows:

python 2, multiple strings
print "welcome", "to", "Enterprise", "Automation"

python 3, multiple strings
print ("welcome", "to", "Enterprise", "Automation")

If you try to use parentheses to print multiple strings in Python 2, it will interpret it as a
tuple, which is wrong. For that reason, we will import the __future__ module at the
beginning of our code, to prevent that behavior and instruct Python to print multiple
strings.

The output will be as follows:

Setting Up Our Python Environment Chapter 1

[12]

Python installation
Whether you choose to go with a popular Python version (2.x) or build future-proof code
with Python 3.x, you will need to download the Python binaries from the official website
and install them in your operating system. Python provides support for different platforms
(Windows, Mac, Linux, Raspberry PI, and so on):

Go to https:/ ​/​www. ​python. ​org/ ​downloads/ ​ and choose the latest version of1.
either 2.x or 3.x:

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Setting Up Our Python Environment Chapter 1

[13]

Choose your platform from the Download page, and either the x86 or x642.
version:

Install the package as usual. It's important to select the Add python to the path3.
option during the installation, in order to access Python from the command line
(in the case of Windows). Otherwise, Windows won't recognize the Python
commands and will throw an error:

Setting Up Our Python Environment Chapter 1

[14]

Verify that the installation is complete by opening the command line or terminal4.
in your operating system and typing python. This should access the Python
console and provide a verification that Python has successfully installed on your
system:

Setting Up Our Python Environment Chapter 1

[15]

Installing the PyCharm IDE
PyCharm is a fully fledged IDE, used by many developers around the world to write and
develop Python code. The IDE is developed by the Jetbrains company and provides rich
code analysis and completion, syntax highlighting, unit testing, code coverage, error
discovery, and other Python linting operations.

Also, PyCharm Professional Edition supports Python web frameworks, such as Django,
web2py, and Flask, beside integrations with Docker and vagrant for running a code over
them. It provides amazing integration with multiple version control systems, such as Git
(and GitHub), CVS, and subversion.

In the next few steps, we will install PyCharm Community Edition:

Go to the PyCharm download page (https:/ ​/​www. ​jetbrains. ​com/​pycharm/1.
download/ ​) and choose your platform. Also, choose to download either the
Community Edition (free forever) or the Professional Edition (the Community
version is completely fine for running the codes in this book):

Install the software as usual, but make sure that you select the following options:2.
32- or 64-bit launcher (depending on your operating system).
Create Associations (this will make PyCharm the default application
for Python files).
Download and install JRE x86 by JetBrains:

https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)

Setting Up Our Python Environment Chapter 1

[16]

Wait until PyCharm downloads the additional packages from the internet, and3.
installs it, then choose Run PyCharm Community Edition:

Setting Up Our Python Environment Chapter 1

[17]

Since this is a new and fresh installation, we won't import any settings from4.

Select the desired UI theme (either the default or darcula, for dark mode). You5.
can install some additional plugins, such as Markdown and BashSupport, which
will make PyCharm recognize and support those languages. When you finish,
click on Start Using PyCharm:

Setting Up Our Python Environment Chapter 1

[18]

Setting up a Python project inside PyCharm
Inside PyCharm, a Python project is a collection of Python files that you have developed
and Python modules that are either built in or were installed from a third party. You will
need to create a new project and save it to a specific location inside your machine before
starting to develop your code. Also, you will need to choose the default interpreter for this
project. By default, PyCharm will scan the default location on the system and search for the
Python interpreter. The other option is to create a completely isolated environment, using
Python virtualenv. The basic problem with the virtualenv address is its package
dependencies. Let's assume that you're working on multiple different Python projects, and
one of them needs a specific version of x package. On the other hand, one of the other
projects needs a completely different version from the same package. Notice that all
installed Python packages go to /usr/lib/python2.7/site-packages, and you can't
store different versions of the same package. The virtualenv will solve this problem by
creating an environment that has its own installation directories and its own package; each
time you work on either of the two projects, PyCharm (with the help of virtualenv) will
activate the corresponding environment to avoid any conflict between packages.

Follow these steps to set up the project:

Choose Create New Project:1.

Setting Up Our Python Environment Chapter 1

[19]

Choose the project settings:2.

Select the type of project; in our case, it will be Pure Python.1.
Choose the project's location on the local hard drive.2.
Choose the Project Interpreter. Either use the existing Python3.
installation in the default directory, or create a new virtual
environment tied specifically to that project.
Click on Create.4.

Create a new Python File inside the project:3.

Setting Up Our Python Environment Chapter 1

[20]

Right-click on the project name and select New.1.
Choose Python File from the menu, then choose a filename.2.

A new, blank file is opened, and you can write a Python code directly into it. Try to
import the __future__ module, for example, and PyCharm will automatically open a
pop-up window with all possible completions available as shown in the following
screenshot:

Run your code:4.

Enter the code that you wish to run.1.
 Choose Edit Configuration to configure the runtime settings for the2.
Python file.

Setting Up Our Python Environment Chapter 1

[21]

Configure new Python settings for running your file:5.

Click on the + sign to add a new configuration, and choose Python.1.
Choose the configuration name.2.
Choose the script path inside your project.3.
Click on OK.4.

Run the code:6.

Setting Up Our Python Environment Chapter 1

[22]

Click on the play button beside the configuration name.1.
PyCharm will execute the code inside the file specified in the2.
configuration, and will return the output to the terminal.

Exploring some nifty PyCharm features
In this section, we will explore some of PyCharm's features. PyCharm has a huge collection
of tools out of the box, including an integrated debugger and test runner, Python profiler, a
built-in Terminal, integration with major VCS and built-in database tools, remote
development capabilities with remote interpreters, an integrated SSH Terminal, and
integration with Docker and Vagrant. For a list of other features, please check the official
site (https:/​/​www. ​jetbrains. ​com/ ​pycharm/ ​features/ ​).

Code debugging
Code debugging is a process that can help you to understand the cause of an error, by
providing an input to the code and walking through each line of the code and seeing how it
evaluates at the end. The Python language contains some debugging tools to get insights
from the code, starting with a simple print function, assert command till a complete unit
testing for the code. PyCharm provides an easy way to debug the code and see the
evaluated values.

To debug code in PyCharm (say, a nested for loop with if clauses), you need to set a
breakpoint on the line at which you want PyCharm to stop the program execution. When
PyCharm hits this line, it will pause the program and dump the memory to see the contents
of each variable:

https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/

Setting Up Our Python Environment Chapter 1

[23]

Notice that the value of each variable is printed besides it, on the first iteration:

Also, you can right-click on the breakpoint and add a specific condition for any variable. If
the variable is evaluated to a specific value, then a log message will be printed:

Setting Up Our Python Environment Chapter 1

[24]

Code refactoring
Refactoring the code is the process of changing the structure of a specific variable name
inside your code. For example, you may choose a name for your variable and use it for a
project that consists of multiple source files, then later decide to rename the variable to
something more descriptive. PyCharm provides many refactoring techniques, to make sure
that the code can be updated without breaking the operation.

PyCharm does the following:

The refactoring itself
Scans every file inside the project and makes sure that the references to the
variables are updated
If something can't be updated automatically, it will give you a warning and open
a menu, so you can decide what to do
Saves the code before refactoring it, so you can revert it later

Let's look at an example. Assume that we have three Python files in our project, called
refactor_1.py, refactor_2.py, and refactor_3.py. The first file contains
important_funtion(x), which is also used in both refactor_2.py and
refactor_3.py.

Setting Up Our Python Environment Chapter 1

[25]

Copy the following code in a refactor_1.py file:

def important_function(x):
 print(x)

Copy the following code in a refactor_2.py file:

from refactor_1 import important_function
important_function(2)

Copy the following code in a refactor_3.py file:

from refactor_1 import important_function
important_function(10)

To perform the refactoring, you need to right-click on the method itself, select Refactor |
Rename, and enter the new name for the method:

Notice that a window opens at the bottom of the IDE, listing all references of this function,
the current value for each one, and which file will be affected after the refactoring:

Setting Up Our Python Environment Chapter 1

[26]

If you choose Do Refactor, all of the references will be updated with the new name, and
your code will not be broken.

Installing packages from the GUI
PyCharm can be used to install packages for existing interpreters (or the virtualenv)
using the GUI. Also, you can see a list of all installed packages, and whether upgrades are
available for them.

First, you need to go to File | Settings | Project | Project Interpreter:

Setting Up Our Python Environment Chapter 1

[27]

As shown in the preceding screenshot, PyCharm provides a list of installed packages and
their current versions. You can click on the + sign to add a new package to the project
interpreter, then enter the package initials into the search box:

You should see a list of available packages, containing a name and description for each one.
Also, you can specify a specific version to be installed on your interpreter. Once you have
clicked on Install Package, PyCharm will execute a pip command on your system (and
may ask you for a permission); then, it will download the package onto the installation
directory and execute the setup.py file.

Setting Up Our Python Environment Chapter 1

[28]

Summary
In this chapter, you learned the differences between Python 2 and Python 3, and how to
decide which one to use, based on your needs. Also, you learned how to install a Python
interpreter and how to use PyCharm as an advanced editor to write and manage your
code's life cycle.

In the next chapter, we will discuss the Python package structure and the common Python
packages used in automation.

2
Common Libraries Used in

Automation
This chapter will walk you through how Python packages are structured and the common
libraries used today to automate the system and network infrastructure. There's a long
growing list of Python packages that cover network automation, system administration,
and managing public and private clouds.

Also, it's important to understand how to access the module source code and how the small
pieces inside the Python package are related to each other so we can modify the code, add
or remove features, and share the code again with the community.

The following topics will be covered in this chapter:

Understanding Python packages
Common Python libraries
Accessing module source code

Understanding Python packages
Python core code is actually small by design to maintain simplicity. Most functionalities
will be through adding third-party packages and modules.

Module is a Python file that contains functions, statements, and classes that will be used
inside your code. The first thing to do is import the module then start to use its functions.

Common Libraries Used in Automation Chapter 2

[30]

On other hand, a package collects related modules connected to each other and puts them
in a single hierarchy. Some large packages such as matplotlib or django have hundreds
of modules inside them, and developers usually categorize the related modules into a sub-
directories. For example, the netmiko package contains multiple sub-directories and each
one contains modules to connect to network devices from different vendors:

Doing that gives the package maintainer the flexibility to add or remove features from each
module without breaking the global package operation.

Package search paths
Typically, Python searches for modules in some specific system paths. You can print these
paths by importing the sys module and printing the sys.path. This will actually return
the strings inside the PYTHONPATH environment variable and inside the operating system;
notice the result is just a normal Python list. You can add more paths to the search scope
using a list function such as insert().

Common Libraries Used in Automation Chapter 2

[31]

However, it's better to install the packages in the default search paths so the code won't
break when you share it with other developers:

A simple package structure with a single module will be something like this:

The __init__ file inside each package (in the global directory or in the sub-directory) will
tell the Python interpreter that this directory is a Python package, and each file ending with
.py will be a module file, which could be imported inside your code. The second function
of the init file is to execute any code inside it once the package is imported. However,
most developers leave it empty and just use it to mark the directory as a Python package.

Common Libraries Used in Automation Chapter 2

[32]

Common Python libraries
In the next sections, we will explore the common Python libraries used for network, system,
and cloud automation.

Network Python Libraries
Network environments nowadays contain multiple devices from many vendors, and each
device plays a different role. Design and automation frameworks for network devices are
essential to network engineers in order to automate repeated tasks and enhance the way
they usually do their job, while reducing human errors. Large enterprises and service
providers usually tend to design a workflow that can automate different network tasks and
improve network resiliency and agility. The workflow contains a series of related tasks that
together form a process or a workflow that will be executed when there's a change needed
on the network.

Some of the tasks that could be performed by a network automation framework without
human intervention are:

Root cause analysis for the problem
Checking and updating the device operating system
Discovering the topology and relationships between nodes
Security audits and compliance reporting
Installing and withdrawing routes from the network device based on the
application needs
Managing device configuration and rollback

Here are some Python libraries that are used to automate network devices:

Network Library Description Link

Netmiko

A multi-vendor library that supports SSHing and
Telnet for network devices and executes
commands on it. Support includes Cisco, Arista,
Juniper, HP, Ciena, and many other vendors.

https:/​/​github.​com/​ktbyers/
netmiko

NAPALM

A Python library that works as a wrapper for the
official Vendor API. It provides abstraction
methods that connect to devices from multiple
vendors and extract information from it while
returning the output in an structured format. This
can be easily processed by software.

https:/​/​github.​com/​napalm-
automation/​napalm

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm

Common Libraries Used in Automation Chapter 2

[33]

PyEZ

A Python library used to manage and automate
Juniper devices. It can perform CRUD operation on
the device from the Python client. Also, it can
retrieve facts about the device such as the
management IP, serial number, and version. The
returned output will be in JSON or XML format.

https:/​/​github.​com/​Juniper/​py-
junos-​eznc

infoblox-client
A Python client used to interact with infoblox
NIOS over the interface, based on a REST called
WAPI.

https:/​/​github.​com/​infobloxopen/
infoblox-​client

NX-API

A Cisco Nexus (some platforms only) series API
that exposes the CLI through HTTP and HTTPS.
You can enter a show command in the provided
sandbox portal and it will be converted to an API
call to the device and will return the output in
JSON and XML format.

https:/​/​developer.​cisco.​com/​docs/
nx-​os/​#!working-​with-​nx-​api-​cli

pyeapi

A Python library that acts as a wrapper around the
Arista EOS eAPI and is used to configure Arista
EOS devices. The library supports eAPI calls over
HTTP and HTTPs.

https:/​/​github.​com/​arista-
eosplus/​pyeapi

netaddr

A Python library for working with network
addresses such as IPv4, IPv6, and layer 2 addresses
(MAC addresses). It can iterate, slice, sort, and
summarize the IP block.

https:/​/​github.​com/​drkjam/​netaddr

ciscoconfparse

A Python library that is able to parse a Cisco IOS-
style configuration and returns the output in a
structured format. The library also provides
support for device configuration based on brace-
delimited configurations such as Juniper and F5.

https:/​/​github.​com/​mpenning/
ciscoconfparse

NSoT

A database for tracking the inventory and
metadata of network devices. It provides a
frontend GUI based on Python Django. The
backend is based on SQLite database where the
data is stored. Also, it provides the API interface
for the inventory using pynsot bindings.

https:/​/​github.​com/​dropbox/​nsot

Nornir

A new automation framework based on Python
and consumed directly from Python code without
a need to have custom DSL (Domain Specific
Language). The Python code is called runbook and
contains a set of tasks that can run against the
devices stored in the inventory (supports also
Ansible inventory format). The tasks can utilize
other libraries (such as NAPALM) to get
information or configure the devices.

https:/​/​github.​com/​nornir-
automation/​nornir

https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir

Common Libraries Used in Automation Chapter 2

[34]

System and cloud Python libraries
Here are some of the python packages that can be used for both system and cloud
administration. Public cloud providers such as Amazon Web Services (AWS) and Google
tend to provide open and standard access to their resources in order to be easily integrated
with the organization DevOps model. Phases like continuous integration, testing, and
deployment require continuous access to infrastructure (either virtualized or bare metal
servers) in order to complete the code life cycle. This can't be done manually and needs to
be automated:

Library Description Link

ConfigParser Python standard library to parse
and work with the INI files.

https:/​/​github.​com/​python/​cpython/​blob/
master/​Lib/​configparser.​py

Paramiko

Paramiko is a Python (2.7, 3.4+)
implementation of the SSHv2
protocol, providing both client and
server functionality.

https:/​/​github.​com/​paramiko/​paramiko

Pandas
A library providing high-
performance, easy-to-use data
structures and data analysis tools.

https:/​/​github.​com/​pandas-​dev/​pandas

boto3

Offifical Python interface that
manages different AWS
operations, such as creating EC2
instances and S3 storage.

https:/​/​github.​com/​boto/​boto3

google-api-python-client Google official API client library
for Google Cloud Platform.

https:/​/​github.​com/​google/​google-​api-
python-​client

pyVmomi
The official Python SDK from
VMWare that manages ESXi and
vCenter.

https:/​/​github.​com/​vmware/​pyvmomi

PyMYSQL A pure python MySQL driver to
work with MySQL DBMS. https:/​/​github.​com/​PyMySQL/​PyMySQL

https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL

Common Libraries Used in Automation Chapter 2

[35]

Psycopg
The PostgresSQL adapter for
python which conforms to DP-API
2.0 standard.

http:/​/​initd.​org/​psycopg/​

Django

A high-level open source web
framework based on Python. The
framework follows the MVT
(Model, View, and Template)
architecture design for building
web applications without the
hassle of web development and
common security mistakes.

https:/​/​www.​djangoproject.​com/​

Fabric

A simple Python tool for executing
commands and software
deployments on remote devices
based on SSH.

https:/​/​github.​com/​fabric/​fabric

SCAPY

A brilliant Python-based packet
manipulation that is able to handle
a wide range of protocols and can
build packets with any
combination of network layers; it
can also send them on the wire.

https:/​/​github.​com/​secdev/​scapy

Selenium

A python library used to automate
web-browser tasks and web-
acceptance testing. The library
works with Selenium webdrivers
for Firefox, Chrome, and Internet
Explorer to run tests on web
browsers.

https:/​/​pypi.​org/​project/​selenium/​

You can find more of the python packages categorized into different areas at the following
link: https:/​/​github. ​com/ ​vinta/ ​awesome- ​python.

http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python

Common Libraries Used in Automation Chapter 2

[36]

Accessing module source code
You can access the source code of any module that you use in two ways. First, go to the
module page at github.com and view all the files, releases, commits, and issues in one
place, as in the following screenshot. I have read access to all shared code via the netmiko
module maintainer and can see a full list of commits and file contents:

The second method is to install the package itself in the Python site-package directory using
pip or PyCharm GUI. What pip actually does is it goes to GitHub and downloads the
module content and runs setup.py to install and register the module. You can see the
module files, but this time you have full read/write access on all files and you can change
the original code. For example, the following code leverages the netmiko library to connect
to a Cisco device and execute the show arp command on it:

from netmiko import ConnectHandler

device = {"device_type": "cisco_ios",

https://github.com/

Common Libraries Used in Automation Chapter 2

[37]

 "ip": "10.10.88.110",
 "username": "admin",
 "password": "access123"}

net_connect = ConnectHandler(**device)
output = net_connect.send_command("show arp")

If I want to see the netmiko source code, I can go either to site-packages where the netmiko
library installed and list all files or I can use Ctrl and left-click on the module name in
PyCharm. This will open the source code in a new tab:

Visualizing Python code
Ever wondered how a Python custom module or class is manufactured? How does the
developer write the Python code and glue it together to create this nice and amazing x
module? What's going on under the hood?

Documentation is a good start, of course, but we all know that it's not usually updated with
every new step or detail that the developer added.

Common Libraries Used in Automation Chapter 2

[38]

For example, we all know the powerful netmiko library created and maintained by Kirk
Byers (https:/​/​github. ​com/ ​ktbyers/ ​netmiko) that leverages another popular SSH library
called Paramiko (http:/ ​/​www. ​paramiko. ​org/​). But we don't understand the details and
how the classes are related to each other. If you need to understand the magic behind
netmiko (or any other library) in order to process the request and return the result, please
follow the next steps (requires PyCharm professional edition).

Code visualization and inspection in PyCharm is not supported in
PyCharm community edition and is only supported in the professional
version.

Following are the steps you need to follow:

Go to the netmiko module source code inside the Python library location folder1.
(usually C:\Python27\Lib\site-packages on Windows or
/usr/local/lib/pyhon2.7/dist-packages on Linux) and open the file from
PyCharm.
Right-click on the module name that appears in the address bar and choose2.
Diagrams | Show Diagram. Select Python class diagram from the pop-up
window:

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/

Common Libraries Used in Automation Chapter 2

[39]

PyCharm will start to build the dependency tree between all classes and files in3.
the netmiko module and then will show it in the same window. Note this
process may require some time depending on your computer memory. Also, it's
better to save the graph as an external image to view it:

Based on the resulting graph, you can see that Netmiko is supporting a lot of vendors such
as HP Comware, entrasys, Cisco ASA, Force10, Arista, Avaya, and so on, and all of these
classes are are inheriting from the
netmiko.cisco_base_connection.CicsoSSHConnection parent class (I think this is
because they use the same SSH style as Cisco). This in turn inherits from another big parent
class called netmiko.cisco_base_connection.BaseConnection.

Common Libraries Used in Automation Chapter 2

[40]

Also, you can see that Juniper has its own class
(netmiko.juniper.juniper_ssh.JuniperSSH) that connects directly to the big parent.
Finally, we connect to the parent of all parents in python: the Object class (remember
everything in Python is an object in the end).

You can find a lot of interesting things such as an SCP transfer class and SNMP class, and
with each one you will find the methods and parameters used to initialize the class.

So the ConnectHandler method is primarily used to check the device_type availability
in the vendor classes and, based on returned data, it will use the corresponding SSH class:

Common Libraries Used in Automation Chapter 2

[41]

Another way to visualize your code is to see exactly which modules and functions are
being hit during code execution. This is called profiling and it allows you to examine the
functions during runtime.

First, you need to write your code as usual and then right-click on an empty space and
select profile instead of running the code as normal:

Common Libraries Used in Automation Chapter 2

[42]

Wait for the code to be executed. This time PyCharm will inspect each file that is called
from your code and generate the call graph for the execution so you can easily know which
files and functions are used and count the execution time for each one:

Common Libraries Used in Automation Chapter 2

[43]

As you can see in the previous graph, our code in profile_code.py (bottom of the graph)
will call the ConnectHandler() function which in turn will execute __init__.py, and
execution will continue. On the graph's left side, you can see all files that it touched during
your code execution.

Summary
In this chapter, we explored some of most popular network, system, and cloud packages
provided in Python. Also, we learned how to access the module source code and to
visualize it for better understanding of the internal code. We looked at the call flow for code
while running. In the next chapter, we will start building a lab environment and apply our
code to it.

3
Setting Up the Network Lab

Environment
We now have a fair idea of how to write and develop Python scripts, the building blocks to
creating programs. We will now move on to understanding why automation is an
important topic in today's network, and then we will build our network automation lab
using one of the popular pieces of software, called EVE-NG, which helps us to virtualize
network devices.

We will cover the following topics in this chapter:

When and why to automate the network
Screen scraping versus API automation
Why to use Python for network automation
The future of network automation
Lab setup
Getting ready: installing EVE-NG
Building an enterprise network topology

Setting Up the Network Lab Environment Chapter 3

[45]

Technical requirements
In this chapter, we will cover the EVE-NG installation steps and how to create our lab
environment. The installation will be done over VMware Workstation, VMware ESXi, and
finally Red Hat KVM, so you should be familiar with the virtualization concept and have
one of the hypervisors up and running prior to lab setup.

When and why to automate the network
Network automation is increasing all over the network world. However, it's really
important to understand when and why to automate your network. For example, if you're
an administrator of a few network devices (three or four switches) and you don't execute so
many tasks on them regularly, then you might not need full automation for them. Actually,
the time needed to write and develop a script and test and troubleshoot it might be greater
than the time to do a simple task manually. On the other hand, if you're responsible for a
big enterprise network that contains multi-vendor platforms and you always execute
repetitive tasks, then it's highly recommended to have a script to automate it.

Why do we need automation?
There are several reasons for why automation is important for networks today:

Lower costs: Using automation solutions (either developed in-house or
purchased from vendors) will reduce network operation complexity and the time
required to provision, configure, and operate network devices
Business continuity: Automation will reduce human error during service
creation over current infrastructure, and hence, allow businesses to reduce the
service time to market (TTM)
Business agility: Most network tasks are repeated and by automating them, you
will increase productivity and drive business innovation
Correlation: Building a solid automation workflow allows the network and
systems administrators to perform root cause analysis faster and increases the
possibility of solving the problem by correlating multiple events together

Setting Up the Network Lab Environment Chapter 3

[46]

Screen scraping versus API automation
For a long period of time, the CLI was the only access method available to manage and
operate network devices. Operators and administrators used to have SSH and Telnet to
access the network terminal for configuration and troubleshooting. Python, or any
programming language, has two approaches to communicating with devices. The first one
is to use SSH or telnet the same as before and get the information, then process it. This
method is called screen scraping and requires libraries that will be able to establish a
connection to the device and execute a command directly on the terminal, and other
libraries to process the returned information to extract useful data from it. This method
often requires knowledge of additional parsing languages, such as regular expressions, to
match the data pattern from the output and extract useful data from it.

The second method is called an Application Programmable Interface (API) and this
method depends entirely on sending a structured request using REST or SOAP protocols to
the device and returning the output, also in structured format, encoded in JSON or XML.
The time needed for processing the returned data in this method is quite small compared to
the first method; however, the API requires additional configuration on network devices to
support it.

Why use Python for network automation?
Python is a pretty well-structured and easy programming language available today and
targets many areas in technology, web and internet development, data mining and
visualization, desktop GUI, analysis, game building, and automation testing; that's why it's
called a general purpose language.

So, there are three reasons to choose Python:

Readability and ease of use: When you develop using Python, you actually find
yourself writing in English. Many keywords and program flows inside Python
are structured to have readable statements. Also, Python doesn't require ; or
curly braces to start and end blocks, which gives Python a shallow learning
curve. Finally, Python has some optional rules, called PEP 8, that tell Python
developers how to format their program to have readable code.

Setting Up the Network Lab Environment Chapter 3

[47]

You can configure PyCharm to take care of these rules and check whether your
code violates them or not by going to Settings | Inspections | PEP 8 coding style
violation:

Libraries: This is the real power of Python: libraries and packages. Python has a
wide range of libraries in many areas. Any Python developer can easily develop
a Python library and upload it online to make it available to other developers.
Libraries are uploaded to a website called PyPI (https:/ ​/ ​pypi. ​Python. ​org/
pypi) and linked to a GitHub repository. When you want to download the library
to your PC, then you use a tool called pip to connect to PyPI and download it
locally. Network vendors such as Cisco, Juniper, and Arista developed libraries
to facilitate access to their platforms. Most vendors are pushing to make their
libraries easy to use and require minimum installation and configuration steps to
retrieve useful information from devices.

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi

Setting Up the Network Lab Environment Chapter 3

[48]

Powerful: Python tries to minimize the number of steps required to reach the
end result. For example, to print hello world using Java, you will need this block
of code:

However, in Python, the whole block is written in one line to print it, as shown in the
following screenshot:

Combining all these reasons together leads to making Python the de facto standard for
automation and the first choice for vendors when it comes to automating network devices.

The future of network automation
For a long period of time, network automation only meant developing a script using a
programming language such as Perl, TcL, or Python in order to execute tasks on different
network platforms. This approach is known as script-driven network automation. But as
the network becomes more complex and more service-oriented, new types of automation
were required and started to appear, such as the following:

Software-defined network automation: Network devices will have only a
forwarding plane, while the control plane is implemented and created using an
external software called an SDN controller. The benefit of this approach is there
will be a single point of contact for any network changes and the SDN controller
can accept those change requests from other software, such as an external portal,
through well-implemented northbound interfaces.

Setting Up the Network Lab Environment Chapter 3

[49]

High-level orchestration: This approach requires software called an orchestrator
that integrates with SDN controllers and enables the creation of network service
models using languages, such as YANG, that abstract the service from the
underlying devices that will run over it. Also, an orchestrator can integrate with
a Virtual Infrastructure Manager (VIM) such as OpenStack and vCenter, in
order to manage virtual machines as a part of network service modeling.
Policy-based networking: In this type of automation, you describe what you
want to have in the network and the system has all the details to figure out how
to implement it in the underlying devices. This allows software engineers and
developers to implement changes in the network and describe their application's
needs in declarative policies.

Network lab setup
Now, we will start building our networking lab on a popular platform called EVE-NG. You
could, of course, use a physical node to implement the topology, but a virtualized
environment gives us an isolated and sandboxed environment to test many different
configurations, plus the flexibility to add/remove nodes to/from the topology with a few
clicks. Also, we can have multiple snapshots to our configuration so we can revert back to
any scenario at any time.

EVE-NG (formerly known as UNetLab) is one of the most popular choices in network
emulation. It supports a wide range of virtualized nodes from different vendors. There's
another option, which is GNS3, but, as we will see during this chapter and the next one,
EVE-NG provides many features that make it a solid choice for network modeling.

EVE-NG comes in three editions: Community, Pro, and Learning Center. We will use the
Community edition as it contains all the features that we will need during this book.

Getting ready – installing EVE-NG
EVE-NG Community edition came with two options, OVA and ISO. The first option is to
use OVA, which gives you the minimum installation steps required, given that you already
have VMware Player/Workstation/Fusion, or VMware ESXi, or Red Hat KVM. The second
option is to install it directly over a bare metal server without a hypervisor, this time using
Ubuntu 16.06 LTS OS:

Setting Up the Network Lab Environment Chapter 3

[50]

The ISO option, however, requires some advanced skills in Linux to prepare the machine
itself and import the installation repositories into the operating system.

Oracle VirtualBox doesn't support the hardware acceleration needed by
EVE-NG, so it's better to install it either in VMware or KVM.

First, head to http:/ ​/ ​www. ​eve- ​ng. ​net/ ​index. ​php/ ​downloads/ ​eve- ​ng to download the
latest version of EVE-NG, then import it into your hypervisor. I dedicated 8 GB of memory
and four vCPUs to the created machine, but you can add additional resources to it. In the
next section, we will see how to import the downloaded image to hypervisors and
configure each one.

Installation on VMware Workstation
In the following steps, we will import the downloaded EVE-NG OVA image into VMware
Workstation. OVA-based images contain files that describe the virtual machine in terms of
hard disk, CPU, and RAM values. You can later modify these numbers after importing
them:

Open VMware workstation and from File, choose Open to import the OVA.1.
After completing the import process, right-click on the newly created machine2.
and choose Edit Settings.

http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng

Setting Up the Network Lab Environment Chapter 3

[51]

Increase the number of processors to 4 and the memory allocated to 8 GB (again,3.
you could add more if you have the resources but this setting will be enough for
our lab).
Make sure the Virtualize Intel VT-x/EPT or AMD-V/RVI checkbox is enabled.4.
This option instructs VMware workstation to pass the virtualization flags to the
guest OS (nested virtualization):

Setting Up the Network Lab Environment Chapter 3

[52]

Also, it's recommended to expand the hard disk by adding additional space to the existing
hard disk in order to have enough space to host multiple images from vendors:

A message will appear after expanding the disk, indicating that the operation was done
successfully and you need to follow some procedures in the guest operating system to
merge the new space with the old one. Luckily for us, we don't need to do that as EVE-NG
will merge any new space found in the hard disk with the old one during system boot:

Setting Up the Network Lab Environment Chapter 3

[53]

Installation over VMware ESXi
VMware ESXi is a good example of a type 1 hypervisor that runs directly on the system.
Sometimes they're called bare-metal hypervisors, and they provide many features
compared to type 2 hypervisors, such as VMware workstation/Fusion or VirtualBox:

Open the vSphere client and connect to your ESXi server1.
From the File menu, choose Deploy OVF Template2.
Enter the path for the downloaded OVA image and click Next:3.

Setting Up the Network Lab Environment Chapter 3

[54]

Accept all the default settings suggested by the hypervisor till you land on the4.
final page, Ready to Complete, and click on Finish:

ESXi will start to deploy the image on the hypervisor, and later you can change its settings
and add more resources to it, as we did before in VMware workstation.

Setting Up the Network Lab Environment Chapter 3

[55]

Installation over Red Hat KVM
You need to convert the downloaded OVA image to QCOW2 format, which is supported
by KVM. Follow these steps to convert one format into another. We will need a special
utility called qemu-img available inside the qemu-utils package:

Untar the downloaded OVA to extract the VMDK file (the HDD of the image):1.

tar -xvf EVE\ Community\ Edition.ova
EVE Community Edition.ovf
EVE Community Edition.vmdk

Install the qemu-utils tools:2.

sudo apt-get install qemu-utils

Now, convert the VMDK to QCOW2. It may take a few minutes for the3.
conversion to be complete:

qemu-img convert -O qcow2 EVE\ Community\ Edition.vmdk eve-ng.qcow

Finally, we have our own qcow2 file ready to be hosted inside the Red Hat KVM. Open the
KVM console and choose the Import existing disk image option from the menu:

Setting Up the Network Lab Environment Chapter 3

[56]

Then, choose the path of the converted image and click on Forward:

Accessing EVE-NG
After you import the image to the hypervisor and start it, you will be asked to provide
some information to complete the installation. First, you will be greeted with the EVE logo
as an indication that the machine has been successfully imported over the hypervisor and it
is ready to start the boot phase:

Provide the root password that will be used for SSHing to the EVE machine. By1.
default, it will be eve:

Setting Up the Network Lab Environment Chapter 3

[57]

Provide the hostname that will be used as a name inside Linux:2.

Provide a domain name for the machine:3.

Setting Up the Network Lab Environment Chapter 3

[58]

Choose to configure networking with the static method. This will ensure the IP4.
address given will be persistent even after machine reboot:

Finally, provide the static IP address from a range that is reachable from your5.
network. This IP will be used to SSH to EVE and upload vendor images to the
repositories:

Setting Up the Network Lab Environment Chapter 3

[59]

In order to access the EVE-NG GUI, you need to open a browser and go to
http://<server_ip>. Please note server_IP is what we used during the installation
steps:

The default username for the GUI is admin and the password is eve,
while the default username for SSH is root and the password is what was
provided during the installation steps.

Installing EVE-NG client pack
The client pack that comes with EVE-NG allows us to choose which application is used
when you telnet or SSH to the device (either PuTTY or SecureCRT) and set up Wireshark
for remote packet captures between links. Also, it facilitates work on RDP- and VNC-based
images. First, you need to download the client pack to your PC from http:/ ​/​eve- ​ng. ​net/
index.​php/​downloads/ ​windows- ​client- ​side- ​pack, then extract the file to C:\Program
Files\EVE-NG:

http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack

Setting Up the Network Lab Environment Chapter 3

[60]

The extracted files contain many scripts written in Windows batch scripting (.bat) to
configure the machine that will be used to access EVE-NG. You will find scripts that
configure the default Telnet/SSH client and another one for Wireshark and the VNC. The
software sources are also available inside the folder:

If you are using a Linux desktop such as Ubuntu or Fedora, then you
could use this excellent project from GitHub to get the client pack:
https:/ ​/​github. ​com/ ​SmartFinn/ ​eve- ​ng- ​integration.

https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration

Setting Up the Network Lab Environment Chapter 3

[61]

Loading network images into EVE-NG
All network images obtained from vendors should be uploaded to
/opt/unetlab/addons/qemu. EVE-NG support QEMU-based images and Dynamics
images, and also iOL (iOS On Linux).

When you get an image from a vendor, you should create a directory inside
/opt/unetlab/addons/qemu and upload the image to that directory; then, you should
execute this script to fix the permission of the uploaded image:

/opt/unetlab/wrappers/unl_wrapper -a fixpermission

Building an enterprise network topology
In our base lab setup, we will simulate an enterprise network that has four switches and
one router that act as a gateway to outside networks. Here is the IP schema that will be
used for each node:

Node name IP
GW 10.10.88.110

Switch1 10.10.88.111

Switch2 10.10.88.112

Switch3 10.10.88.113

Switch4 10.10.88.114

Our Python script (or Ansible playbook) will be hosted on an external Windows PC that
connects to the management of each device.

Adding new nodes
We will start by choosing the IOSv image that was already uploaded to EVE and add four
switches to the topology. Right-click on any empty space in the topology and from the
drop-down menu named Add a new object, choose to add a Node:

Setting Up the Network Lab Environment Chapter 3

[62]

You should see two Cisco images colored blue as indication that they were successfully
added to the available images inside the EVE-NG library and mapped to the corresponding
template. Choose Cisco vIOS L2 to add Cisco switches:

Setting Up the Network Lab Environment Chapter 3

[63]

Increase the Number of nodes to add to 4 and click OK:

Now, you will see four switches added to the topology; repeat this again and add the
router, but this time choose Cisco vIOS:

Connecting nodes together
Now, start to connect the nodes with each other while the nodes are offline, and repeat for
each node till you finish connecting all of them inside the topology; then, start the lab:

Setting Up the Network Lab Environment Chapter 3

[64]

The final view after adding IP addresses and some custom shapes to the topology will be as
follows:

Now, our topology is ready and should be loaded with basic configuration. I used the
following snippet as a configuration base for any Cisco-IOS device that enabled SSH and
telnet and configured the username for access. Notice that there are some parameters
surrounded with {{ }}. We will discuss them in the next chapter when we generate a
golden configuration using a Jinja2 template but, for now, replace them with hostname and
the management IP address for each device respectively:

hostname {{hostname}}
int gig0/0
 no shutdown
 ip address {{mgmt_ip}} 255.255.255.0

aaa new-model
aaa session-id unique

Setting Up the Network Lab Environment Chapter 3

[65]

aaa authentication login default local
aaa authorization exec default local none

enable password access123
username admin password access123
no ip domain-lookup

lldp run

ip domain-name EnterpriseAutomation.net
ip ssh version 2
ip scp server enable
crypto key generate rsa general-keys modulus 1024

Summary
In this chapter, we learned about the different types of network automation available today
and why we chose Python to be our primary tool in network automation. Also, we learned
how to install EVE-NG over different hypervisors and platforms, how to provide the initial
configuration, and how to add our network images to the images catalog. Then, we added
different nodes and connected them together to create our network enterprise lab.

In the next chapter, we will start building our Python scripts that automate different tasks
in the topology using different Python libraries, such as telnetlib, Netmiko, Paramiko, and
Pexpect.

4
Using Python to Manage

Network Devices
Now we have a fair knowledge about how to use and install Python in different operating
systems and also how to build the network topology using the EVE-NG. In this chapter, we
will discover how to leverage many network automation libraries, used today to automate
various network tasks. Python can interact with network devices on many layers.

First, it can handle low-level layers with socket programming and socket modules, which
serve as low-level networking interfaces between operating systems that run Python and
the network device. Also, Python modules provide higher-level interaction through telnet,
SSH, and API. In this chapter, we will dive deep into how to use Python to establish remote
connections and execute commands on remote devices using telnet and SSH modules.

The following topics will be covered:

Using Python to telnet to devices
Python and SSH
Handling IP addresses and networks with netaddr
Network automation sample use cases

Technical requirements
The following tools should be installed and available in your environment:

Python 2.7.1x
PyCharm Community or Pro Edition
EVE-NG topology; please refer to Chapter 3, Setting up the Network Lab
Environment, for how to install and configure the emulator

Using Python to Manage Network Devices Chapter 4

[67]

You can find the full scripts developed in this chapter at the following GitHub
URL: https:/​/​github. ​com/ ​TheNetworker/ ​EnterpriseAutomation. ​git.

Python and SSH
Unlike telnet, SSH provides a secure channel to exchange data between client and server.
The tunnel created between the client and the device is encrypted with different security
mechanisms that make it hard for anyone to decrypt the communication. The SSH protocol
is the first choice for network engineers who need to securely administrate network nodes.

Python can communicate with network devices using the SSH protocol by utilizing a
popular library called Paramiko that supports authentication, key handling (DSA, RSA,
ECDSA, and ED25519), and other SSH features such as the proxy command and SFTP.

Paramiko module
The most widely used module for SSH in Python is called Paramiko and, as the GitHub
official page says, the name Paramiko is a combination of the Esperanto words for
"paranoid" and "friend." The module itself is written and developed using Python, though
some core functions like crypto depend on the C language. You can find out more about the
contributors and module history at the official GitHub link here: https:/ ​/​github. ​com/
paramiko/​paramiko.

Module installation
Open Windows cmd or Linux shell and execute the following command to download the
latest paramiko module from PyPI. It will download additional dependency packages such
as cyrptography, ipaddress, and six and install them on your machine:

pip install paramiko

https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko

Using Python to Manage Network Devices Chapter 4

[68]

You can verify that the installation is done successfully by entering the Python shell and
importing the paramiko module as shown in the following screenshot. Python should
import it successfully without printing any errors:

SSH to the network device
As usual, in every Python module, we first need to import it into our Python script, then we
will create an SSH client by inheriting from SSHClient(). After that, we will configure the
Paramiko to automatically add any unknown host-key and trust the connection between
you and the server. Then, we will use the connect function and provide the remote host
credentials:

#!/usr/bin/python
__author__ = "Bassim Aly"

Using Python to Manage Network Devices Chapter 4

[69]

__EMAIL__ = "basim.alyy@gmail.com"

import paramiko
import time
Channel = paramiko.SSHClient()
Channel.set_missing_host_key_policy(paramiko.AutoAddPolicy())
Channel.connect(hostname="10.10.88.112", username='admin',
password='access123', look_for_keys=False,allow_agent=False)

shell = Channel.invoke_shell()

AutoAddPolicy() is one of the policies that can be used inside the
set_missing_host_key_policy() function. It's preferred and
acceptable in a lab environment. However, we should use a more
restrictive policy in a production environment, such as WarningPolicy()
or RejectPolicy().

Finally, the invoke_shell() will start the interactive shell session towards our SSH
server. You can provide additional parameters to it such as the terminal type, width, and
height.

Paramiko connect parameters:

 Look_For_Keys: By default, it's True, and it will force the Paramiko to use the
key-pair authentication where the user is using both private and public keys to
authenticate against the network device. In our case, we will set it to False as we
will use password authentication.
allow_agent paramiko: It can connect to a local SSH agent OS. This is
necessary when working with keys; in this case, since authentication is
performed using a login/password, we will disable it.

The final step is to send a series of commands such as show ip int b and show arp to
the device terminal and get the output back to our Python shell:

shell.send("enable\n")
shell.send("access123\n")
shell.send("terminal length 0\n")
shell.send("show ip int b\n")
shell.send("show arp \n")
time.sleep(2)
print shell.recv(5000)
Channel.close()

Using Python to Manage Network Devices Chapter 4

[70]

The script output is:

It's preferable to use time.sleep() when you need to execute commands
that will take a long time on a remote device to force Python to wait some
time till the device generates output and sends it back to python.
Otherwise, python may return blank output to the user.

Netmiko module
The netmiko module is an enhanced version of paramiko and targets network devices
specifically. While paramiko is designed to handle SSH connections to a device and to
check whether the device is a server, printer, or network device, Netmiko is designed with
network devices in mind and handles SSH connections more efficiently. Also, Netmiko
supports a wide range of vendors and platforms.

Netmiko is considered a wrapper around paramiko and extends its features with many
additional enhancements, such as access to vendor-enabled modes directly given the enable
password, reading configuration from a file and pushing it to devices, disabling paging
during login, and sending the carriage return "\n" by default after each command.

Using Python to Manage Network Devices Chapter 4

[71]

Vendor support
Netmiko supports many vendors and regularly adds new vendors to the supported list.
Following is a list of supported vendors categorized into three groups: Regularly tested,
Limited testing, and Experimental. You can find the list on the module GitHub page
at https:/​/​github. ​com/ ​ktbyers/ ​netmiko#supports.

The following screenshot shows the number of supported vendors under the Regularly
tested category:

The following screenshot shows the number of supported vendors under the Limited
testing category:

https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports

Using Python to Manage Network Devices Chapter 4

[72]

The following screenshot shows the number of supported vendors under the Experimental
category:

Installation and verification
To install netmiko, open the Windows cmd or Linux shell and execute the following
command to get the latest package from PyPI:

pip install netmiko

Using Python to Manage Network Devices Chapter 4

[73]

Then import netmiko from the Python shell to make sure the module is correctly installed
into Python site-packages:

$python
>>>import netmiko

Using netmiko for SSH
Now it's time to utilize netmiko and see its power for SSHing to network devices and
executing commands. By default, netmiko handles many operations in the background
during session establishment, such as adding unknown SSH key hosts, setting the terminal
type, width, and height, and accessing enable mode when required, then disabling paging
by running a vendor-specific command. You will need to define the devices first in
dictionary format and provide five mandatory keys:

R1 = {
 'device_type': 'cisco_ios',
 'ip': '10.10.88.110',
 'username': 'admin',
 'password': 'access123',
 'secret': 'access123',
}

The first parameter is device_type, and it is used to define the platform vendor in order
to execute the correct commands. Then, we need the ip address for SSH. This parameter
could be the device hostname if it's already been resolved by your DNS, or just the IP
address. Then we provide the username, password, and enable-mode password in
secret. Notice you can use the getpass() module to hide the passwords and only
prompt them during the script execution.

While the keys order inside the variable is not important, the key's name
should be exactly the same as provided in the previous example in order
for netmiko to correctly parse the dictionary and to start to establish a
connection to the device.

Using Python to Manage Network Devices Chapter 4

[74]

Next, we will import the ConnectHandler function from the netmiko module and give it
the defined dictionary to start the connection. Since all our devices are configured with an
enable-mode password, we need to access the enable mode by providing .enable() to the
created connection. We will execute the command on the router terminal by using
.send_command(), which will execute the command and return the device output to the
variable:

from netmiko import ConnectHandler
connection = ConnectHandler(**R1)
connection.enable()
output = connection.send_command("show ip int b")
print output

The script output is:

Notice how the output is already cleaned from the device prompt and the command that
we executed on the device. By default, Netmiko replaces them and generates a cleaned
output, which could be processed by regular expressions, as we will see in the next chapter.

If you need to disable this behavior and want to see the device prompt and executed
command in the returned output, then you need to provide additional flags
to .send_command() functions:

output = connection.send_command("show ip int
b",strip_command=False,strip_prompt=False)

Using Python to Manage Network Devices Chapter 4

[75]

The strip_command=False and strip_prompt=False flags tell netmiko to keep both the
prompt and command and not to replace them. They're True by default and you can toggle
them if you want:

Configuring devices using netmiko
Netmiko can be used to configure remote devices over SSH. It does that by accessing config
mode using the .config method and then applies the configuration given in list format.
The list itself can be provided inside the Python script or read from the file, then converted
to a list using the readlines() method:

from netmiko import ConnectHandler

SW2 = {
 'device_type': 'cisco_ios',
 'ip': '10.10.88.112',
 'username': 'admin',
 'password': 'access123',
 'secret': 'access123',
}

core_sw_config = ["int range gig0/1 - 2","switchport trunk encapsulation
dot1q",
 "switchport mode trunk","switchport trunk allowed vlan
1,2"]

print "########## Connecting to Device {0} ############".format(SW2['ip'])
net_connect = ConnectHandler(**SW2)
net_connect.enable()

Using Python to Manage Network Devices Chapter 4

[76]

print "***** Sending Configuration to Device *****"
net_connect.send_config_set(core_sw_config)

In the previous script, we did the same thing that we did before to connect to SW2 and
enter enable mode, but this time we leveraged another netmiko method called
send_config_set(), which takes the configuration in list format and accesses device
configuration mode and starts to apply it. We have a simple configuration that modifies the
gig0/1 and gig0/2 and applies trunk configuration on them. You can check if the
command executed successfully by running show run command on the device; you should
get output similar to the following:

Exception handling in netmiko
When we design our Python script, we assume that the device is up and running and also
that the user has provided the correct credentials, which is not always the case. Sometimes
there's a network connectivity issue between Python and the remote device or the user
enters the wrong credentials. Usually, python will throw an exception if this happens and
will exit, which is not the optimum solution.

The exception handling module in netmiko, netmiko.ssh_exception, provides some
exception classes that can handle such situations. The first one is
AuthenticationException, and will catch the authentication errors in the remote device.
The second class is NetMikoTimeoutException, which will catch timeouts or any
connectivity issues between netmiko and the device. What we will need to do is wrap our
ConnectHandler() method with the try-except clause and catch timeout and authentication
exceptions:

from netmiko import ConnectHandler
from netmiko.ssh_exception import AuthenticationException,
NetMikoTimeoutException

Using Python to Manage Network Devices Chapter 4

[77]

device = {
 'device_type': 'cisco_ios',
 'ip': '10.10.88.112',
 'username': 'admin',
 'password': 'access123',
 'secret': 'access123',
}

print "########## Connecting to Device {0}
############".format(device['ip'])
try:
 net_connect = ConnectHandler(**device)
 net_connect.enable()

 print "***** show ip configuration of Device *****"
 output = net_connect.send_command("show ip int b")
 print output

 net_connect.disconnect()

except NetMikoTimeoutException:
 print "=========== SOMETHING WRONG HAPPEN WITH {0}
============".format(device['ip'])

except AuthenticationException:
 print "========= Authentication Failed with {0}
============".format(device['ip'])

except Exception as unknown_error:
 print "============ SOMETHING UNKNOWN HAPPEN WITH {0} ============"

Device auto detect
Netmiko provides a mechanism that can guess the device type and detect it. It uses a
combination of SNMP discovery OIDS and executes several show commands on the remote
console to detect the router operating system and type, based on the output string. Then
netmiko will load the appropriate driver into the ConnectHandler() class:

#!/usr/local/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from netmiko import SSHDetect, Netmiko

Using Python to Manage Network Devices Chapter 4

[78]

device = {
 'device_type': 'autodetect',
 'host': '10.10.88.110',
 'username': 'admin',
 'password': "access123",
}

detect_device = SSHDetect(**device)
device_type = detect_device.autodetect()
print(device_type)
print(detect_device.potential_matches)

device['device_type'] = device_type
connection = Netmiko(**device)

In the previous script:

The device_type inside the device dictionary will be autodetect, which will
tell netmiko to wait and not load the driver till the netmiko guesses it.
Then we instruct the netmiko to perform device detection using
the SSHDetect() class. The class will connect to the device using SSH and will
execute some discovery commands to define the operating system type. The
returned result will be a dictionary, and the best match will be assigned to
the device_type variable using the autodetect() function.
You can see all the matching results by printing the potential_matches.
Now we can update the device dictionary and assign the new device_type to it.

Using the telnet protocol in Python
Telnet is one of the oldest protocols available in the TCP/IP stack. It is used primarily to
exchange data over an established connection between a server and client. It uses TCP port
23 in the server for listening to the incoming connection from the client.

In our case, we will create a Python script that acts as a telnet client, and other routers and
switches in the topology will act as the telnet server. Python comes with a native support
for telnet via a library called telnetlib so we don't need to install it.

Using Python to Manage Network Devices Chapter 4

[79]

After creating the client object by instantiating it from the Telnet() class, available from
the telnetlib module, we can use the two important functions available inside
telnetlib, which are read_until() (used to read the output) and write() (used to
write on the remote device). Both functions are used to interact with the created channel,
either by writing or reading the output returned from it.

Also, it's important to note that reading the channel using read_until() will clear the
buffer and data won't be available for any further reading. So, if you read important data
and you will process and work on it later, then you need to save it as a variable before you
continue with your script.

Telnet data is sent in clear text format, so your credentials and password
may be captured and viewed by anyone performing a man-in-the-middle
attack. Some service providers and enterprises still use it and integrate it
with VPNs and radius/tacacs protocols to provide lightweight and secure
access.

Follow the steps to understand the whole script:

We will import the telnetlib module inside our Python script and define the1.
username and passwords in variables, as in the following code snippet:

import telnetlib
username = "admin"
password = "access123"
enable_password = "access123"

We will define a variable that establishes the connection with the remote host.2.
Note that we won't provide the username or password during connection
establishment; we will only provide the IP address of the remote host:

cnx = telnetlib.Telnet(host="10.10.88.110") #here we're telnet to
Gateway

Now we will provide the username for the telnet connection by reading the3.
returned output from the channel and searching for the Username: keyword.
Then we write our admin username. The same process is used when we need to
enter the telnet password and enable password:

cnx.read_until("Username:")
cnx.write(username + "\n")
cnx.read_until("Password:")
cnx.write(password + "\n")
cnx.read_until(">")

Using Python to Manage Network Devices Chapter 4

[80]

cnx.write("en" + "\n")
cnx.read_until("Password:")
cnx.write(enable_password + "\n")

It's important to provide the exact keywords that appear in the console
when you establish the telnet connection or the connection, will enter an
infinite loop. Then Python script will be timed out with an error.

Finally, we will write the show ip interface brief command on the channel4.
and read till the router prompt # to get the output. This should get us the
interface configuration in the router:

cnx.read_until("#")
cnx.write("show ip int b" + "\n")
output = cnx.read_until("#")
print output

The full script is:

Using Python to Manage Network Devices Chapter 4

[81]

The script output is:

Notice that the output contains the executed command show ip int b, and the router
prompt "R1#" is returned and printed in the stdout. We could use built-in string functions
like replace() to clean them from the output:

cleaned_output = output.replace("show ip int b","").replace("R1#","")
print cleaned_output

As you noticed, we provided both the password and enable password as clear text inside
our script, which is considered a security issue. It's also not good practice to hardcode the
values inside your Python script. Later, in the next section, we will hide the password and
design a mechanism to provide credentials during script runtime only.

Also, if you want to execute commands that span multiple pages in output like show
running config then you will need to disable paging first by sending terminal length
0 after connecting to the device and before sending the command to it.

Using Python to Manage Network Devices Chapter 4

[82]

Push configuration using telnetlib
In previous section, we looked at a simplified operation of telnetlib by executing the
show ip int brief. Now we need to utilize it to push VLAN configuration to the four
switches in our topology. We could create a VLAN list using the python range() function
and iterate over it to push the VLAN ID to the current switch. Notice we defined the switch
IP addresses as an item inside the list, and this list will be our outer for loop. Also, I will
use another built-in module called getpass to hide the password from the console and
only provide it when the script is running:

#!/usr/bin/python
import telnetlib
import getpass
import time

switch_ips = ["10.10.88.111", "10.10.88.112", "10.10.88.113",
"10.10.88.114"]
username = raw_input("Please Enter your username:")
password = getpass.getpass("Please Enter your Password:")
enable_password = getpass.getpass("Please Enter your Enable Password:")

for sw_ip in switch_ips:
 print "\n#################### Working on Device " + sw_ip + "
####################"
 connection = telnetlib.Telnet(host=sw_ip.strip())
 connection.read_until("Username:")
 connection.write(username + "\n")
 connection.read_until("Password:")
 connection.write(password + "\n")
 connection.read_until(">")
 connection.write("enable" + "\n")
 connection.read_until("Password:")
 connection.write(enable_password + "\n")
 connection.read_until("#")
 connection.write("config terminal" + "\n") # now i'm in config mode
 vlans = range(300,400)
 for vlan_id in vlans:
 print "\n********* Adding VLAN " + str(vlan_id) + "**********"
 connection.read_until("#")
 connection.write("vlan " + str(vlan_id) + "\n")
 time.sleep(1)
 connection.write("exit" + "\n")
 connection.read_until("#")
 connection.close()

Using Python to Manage Network Devices Chapter 4

[83]

In our outermost for loop, we are iterating over the devices and then, inside each iteration
(each device), we're generating a vlan range from 300 to 400 and pushing them to the
current device.

The script output is:

Also, you can check the output from the switch console itself (output is omitted):

Using Python to Manage Network Devices Chapter 4

[84]

Handling IP addresses and networks with
netaddr
Working and manipulating IP addresses is one of the most important tasks for network
engineers. Python developers provide an amazing library that can understand the IP
addresses and work on them, called netaddr. For example, assume you developed an
application and part of it is to get the network and broadcast address for
129.183.1.55/21. You can do that easily via two built-in methods inside the modules
called network and broadcast respectively:

net.network
129.183.0.
net.broadcast
129.183.0.0

In general, netaddr provides support for the following features:

Layer 3 addresses:

IPv4 and IPv6 addresses, subnets, masks, prefixes
Iterating, slicing, sorting, summarizing, and classifying IP networks
Dealing with various range formats (CIDR, arbitrary ranges and globs, nmap)
Set-based operations (unions, intersections, and so on) over IP addresses and
subnets
Parsing a large variety of different formats and notations
Looking up IANA IP block information
Generating DNS reverse lookups
Supernetting and subnetting

Layer 2 addresses:

Representation and manipulation MAC addresses and EUI-64 identifiers
Looking up IEEE organisational information (OUI, IAB)
Generating derived IPv6 addresses

Using Python to Manage Network Devices Chapter 4

[85]

Netaddr installation
The netaddr module can be installed using pip, as shown in the following command:

pip install netaddr

As a verification for successfully installing the module, you could open PyCharm or the
Python console and import the module after installation. If there is no error produced, then
the module installed successfully:

python
>>>import netaddr

Exploring netaddr methods
The netaddr module provides two important methods to define the IP address and work
on it. The first one is called IPAddress() and it's used to define a single classful IP address
with the default subnet mask. The second method is IPNetwork() and is used to define
classless a IP address with CIDR.

Both methods take the IP address as a string and return an IP address or IP network object
for this string. There are many operations that could be executed on the returned object. For
example, we can check if the IP address is unicast, multicast, loopback, private, public, or
even valid or not valid. The output of the previous operation is either True or False,
which can be used inside Python if conditions.

Also, the module supports comparison operations such as ==, <, and > to compare two IP
addresses, generating the subnets, and it is also possible to retrieve the list of supernets that
a given IP address or subnet belongs to. Finally, the netaddr module can generate a full list
of valid hosts (excluding the network IP and network broadcast):

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"
from netaddr import IPNetwork,IPAddress
def check_ip_address(ipaddr):
 ip_attributes = []
 ipaddress = IPAddress(ipaddr)

 if ipaddress.is_private():
 ip_attributes.append("IP Address is Private")
 else:
 ip_attributes.append("IP Address is public")

Using Python to Manage Network Devices Chapter 4

[86]

 if ipaddress.is_unicast():
 ip_attributes.append("IP Address is unicast")
 elif ipaddress.is_multicast():
 ip_attributes.append("IP Address is multicast")
 if ipaddress.is_loopback():
 ip_attributes.append("IP Address is loopback")

 return "\n".join(ip_attributes)

def operate_on_ip_network(ipnet):

 net_attributes = []
 net = IPNetwork(ipnet)
 net_attributes.append("Network IP Address is " + str(net.network) + "
and Netowrk Mask is " + str(net.netmask))

 net_attributes.append("The Broadcast is " + str(net.broadcast))
 net_attributes.append("IP Version is " + str(net.version))
 net_attributes.append("Information known about this network is " +
str(net.info))
 net_attributes.append("The IPv6 representation is " + str(net.ipv6()))
 net_attributes.append("The Network size is " + str(net.size))
 net_attributes.append("Generating a list of ip addresses inside the
subnet")

 for ip in net:
 net_attributes.append("\t" + str(ip))
 return "\n".join(net_attributes)

ipaddr = raw_input("Please Enter the IP Address: ")
print check_ip_address(ipaddr)

ipnet = raw_input("Please Enter the IP Network: ")
print operate_on_ip_network(ipnet)

The preceding script first requests the IP address and IP network from the user, using
the raw_input() function, then will call two user methods, check_ip_address() and
operate_on_ip_network(), and pass the entered values to them. The first
function, check_ip_address(), will check the IP address entered and try to generate a
report about IP address attributes, such as whether it is a unicast IP, multicast, private, or
loopback, and will return the output to the user.

The second function operate_on_ip_network() takes the IP network and generates the
network ID, netmask, broadcast, version, information known about this network, the IPv6
representation, and finally generates all IP addresses inside this subnet.

Using Python to Manage Network Devices Chapter 4

[87]

It's important to notice that net.info will work and generate useful information only for
public IP addresses, not private.

Notice we need to import the IP Network and IP Address from the netaddr module
before using them.

The script output is:

Sample use cases
As our network becomes bigger and starts to contain many devices from different vendors,
we need to create modular Python script to automate various tasks in it. In the following
sections, we will explore three use cases, which could be used to collect different
information from our network and to lower the time needed for troubleshooting a problem,
or at least restore the network configuration to its last known good state. This will allow
network engineers to focus more on getting their job done and will provide an automated
workflow for the business to handle network failure and restoration.

Using Python to Manage Network Devices Chapter 4

[88]

Backup device configuration
Backup device configuration is one of the most important tasks for any network engineer.
In this use case, we will design a sample python script that can be used for different
vendors and platforms in order to back up the device configuration. We will leverage
the netmiko library to do this task.

The result files should be formatted with the device IP address in them for easy access or
referencing later. For example, the result file for the SW1 backup operation should be
dev_10.10.88.111_.cfg.

Building the python script
We will start by defining our switches. We want to back up their configuration as a text file
and provide the credentials and access details separated by commas. This will allow us to
use the split() function inside the python script to get the data and use it inside the
ConnectHandler function. Also, the file can be easily exported and imported from a
Microsoft Excel sheet or from any database.

The file structure is:

<device_ipaddress>,<username>,<password>,<enable_password>,<vendor>

Now we will start building our Python script by importing the file inside it, using the with
open clause. We use the readlines() on the file to have each line as an item inside a list.
We will create a for loop to iterate over each line and use the split() function to get the
access details separated by commas and assign them to variables:

from netmiko import ConnectHandler
from datetime import datetime

with
open("/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chap
ter5_Using_Python_to_manage_network_devices/UC1_devices.txt") as
devices_file:

Using Python to Manage Network Devices Chapter 4

[89]

 devices = devices_file.readlines()

for line in devices:
 line = line.strip("\n")
 ipaddr = line.split(",")[0]
 username = line.split(",")[1]
 password = line.split(",")[2]
 enable_password = line.split(",")[3]

 vendor = line.split(",")[4]

 if vendor.lower() == "cisco":
 device_type = "cisco_ios"
 backup_command = "show running-config"

 elif vendor.lower() == "juniper":
 device_type = "juniper"
 backup_command = "show configuration | display set"

As we need to create a modular and multi-vendor script, we need to have the if clause
check the vendor in each line and assign a correct device_type and backup_command to
the current device.

Moving on, we are now ready to establish the SSH connection to the device and execute the
backup command on it using the .send_command() method available inside the netmiko
module:

print str(datetime.now()) + " Connecting to device {}" .format(ipaddr)

net_connect = ConnectHandler(device_type=device_type,
 ip=ipaddr,
 username=username,
 password=password,
 secret=enable_password)
net_connect.enable()
running_config = net_connect.send_command(backup_command)

print str(datetime.now()) + " Saving config from device {}" .format(ipaddr)

f = open("dev_" + ipaddr + "_.cfg", "w")
f.write(running_config)
f.close()
print "=="

Using Python to Manage Network Devices Chapter 4

[90]

In the last few statements, we opened a file for writing and made its name contain the
ipaddr variable collected from our text file.

The script output is:

Also, notice the backup configuration files are created in the project home directory, and its
name contains the IP address of each device:

Using Python to Manage Network Devices Chapter 4

[91]

You can design a simple cron job on a Linux server or schedule a job on a
Windows server, which runs the previous python script at a specific time.
For example, the script could run on a daily basis at midnight and store
the configuration in the latest directory so the team could refer to it
later.

Creating your own access terminal
In Python, and programming in general, you are the vendor! You can create any code
combination and procedures you like in order to serve your needs. In the second use case,
we will create our own terminal that accesses the router through telnetlib. By writing a
few words in the terminal, it will be translated too many commands executed in the
network device and return output, which could be just printed in the standard output or
saved in file:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import telnetlib

connection = telnetlib.Telnet(host="10.10.88.110")
connection.read_until("Username:")
connection.write("admin" + "\n")
connection.read_until("Password:")
connection.write("access123" + "\n")
connection.read_until(">")
connection.write("en" + "\n")
connection.read_until("Password:")
connection.write("access123" + "\n")
connection.read_until("#")
connection.write("terminal length 0" + "\n")
connection.read_until("#")
while True:
 command = raw_input("#:")
 if "health" in command.lower():
 commands = ["show ip int b",
 "show ip route",
 "show clock",
 "show banner motd"
]

 elif "discover" in command.lower():
 commands = ["show arp",

Using Python to Manage Network Devices Chapter 4

[92]

 "show version | i uptime",
 "show inventory",
]
 else:
 commands = [command]
 for cmd in commands:
 connection.write(cmd + "\n")
 output = connection.read_until("#")
 print output
 print "==================="

First, we establish a telnet connection to the router and enter the user access details till we
reach enable mode. Then we create an infinite while loop that is always true, and we
expect a command from the user using the raw_input() built-in function. When the user
enters any command, the script will capture it and execute it directly to the network device.

However, if the user enters health or discover keywords then our terminal will be smart
enough to execute a series of commands to reflect the desired operation. This should be
extremely useful in case of network troubleshooting, and you can extend it with any daily
operation. Imagine that you need to troubleshoot OSPF neighbourship problems between
two routers. You just need to open your own terminal python script that you already
taught him few commands needed for troubleshooting, and write something like
tshoot_ospf. Once your script sees this magic keyword it will launch a series of multiple
commands that print the OSPF neighborship status, interfaces of MTU, advertised network
under OSPF, and so on till you find the issue.

Using Python to Manage Network Devices Chapter 4

[93]

Script output:

Try the first command in our script by writing health in the prompt:

As you can see, the script returns the output of multiple commands executed in the device.

Now try the second supported command, discover:

Using Python to Manage Network Devices Chapter 4

[94]

This time the script returns the output of discover commands. In later chapters, we can
parse the returned output and extract the useful information from it.

Reading data from an Excel sheet
Network and IT engineers always use the excel sheet to store information about the
infrastructure such as IP addresses, the device vendor, and credentials. Python support
reading the information from an excel sheet and processes it so you can use it later during
the script.

In this use case, we will use the Excel Read (xlrd) module to read the UC3_devices.xlsx
file which contains the hostname, IP, username, password, enable password and vendor for
our infrastructure and use this information to feed the netmiko module.

The Excel sheet will be as shown in the following screenshot:

First we will need to install the xlrd module, using pip as we will use it to read the
Microsoft excel sheet:

pip install xlrd

The XLRD module read the excel workbook and convert the row and columns into a
matrix. For example, if you need to get the first item on the left, then you will need to access
row[0][0]. The next item on the right will be row[0][1] and so on.

Using Python to Manage Network Devices Chapter 4

[95]

Also, when xlrd reads the sheet, it will increase a special counter called nrows (number of
rows) by one each time it reads a row. Similarly, it will increase the ncols (number of
columns) by one each time it reads the columns so you can know the size of your matrix via
these two parameters:

You can provide the file path to xlrd using the open_workbook() function. Then you can
access your sheet that contains the data either by using sheet_by_index() or
sheet_by_name() functions. For our use case, our data is stored in the first sheet
(index=0), and the file path is stored under the chapter name. Then we will iterate over the
rows in the sheet and use the row() function to access a specific row. The returned output
is a list, and we can access any item in it using the index.

Python script:

__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from netmiko import ConnectHandler
from netmiko.ssh_exception import AuthenticationException,
NetMikoTimeoutException
import xlrd

Using Python to Manage Network Devices Chapter 4

[96]

from pprint import pprint

workbook =
xlrd.open_workbook(r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomat
ionProject/Chapter4_Using_Python_to_manage_network_devices/UC3_devices.xlsx
")

sheet = workbook.sheet_by_index(0)

for index in range(1, sheet.nrows):
 hostname = sheet.row(index)[0].value
 ipaddr = sheet.row(index)[1].value
 username = sheet.row(index)[2].value
 password = sheet.row(index)[3].value
 enable_password = sheet.row(index)[4].value
 vendor = sheet.row(index)[5].value

 device = {
 'device_type': vendor,
 'ip': ipaddr,
 'username': username,
 'password': password,
 'secret': enable_password,

 }
 # pprint(device)

 print "########## Connecting to Device {0}
############".format(device['ip'])
 try:
 net_connect = ConnectHandler(**device)
 net_connect.enable()

 print "***** show ip configuration of Device *****"
 output = net_connect.send_command("show ip int b")
 print output

 net_connect.disconnect()

 except NetMikoTimeoutException:
 print "=======SOMETHING WRONG HAPPEN WITH
{0}=======".format(device['ip'])

 except AuthenticationException:
 print "=======Authentication Failed with
{0}=======".format(device['ip'])

Using Python to Manage Network Devices Chapter 4

[97]

 except Exception as unknown_error:
 print "=======SOMETHING UNKNOWN HAPPEN WITH {0}======="

More use cases
Netmiko could be used to realize many network automation use cases. It could be used for
uploading, downloading files from remote devices during upgrade, loading configuration
from Jinja2 templates, accessing terminal servers, accessing end devices, and many more.
You can find a list of some useful use cases at https:/ ​/​github. ​com/​ktbyers/ ​pynet/ ​tree/
master/​presentations/ ​dfwcug/ ​examples:

https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples

Using Python to Manage Network Devices Chapter 4

[98]

Summary
In this chapter, we started our practical journey into the network automation world with
Python. We explored the different tools that are available in python to establish a
connection to remote nodes with telnet and SSH and executed commands on them. Also,
we learned how to handle IP addresses and network subnets with the help of the netaddr
module. Finally, we strengthened our knowledge with two practical use cases.

In the next chapter, we will work on the returned output and start to extract useful
information from it.

5
Extracting Useful Data from

Network Devices
We have already seen in the previous chapter how to access a network device using
different methods and protocols, then execute commands on the remote device to get an
output back to Python. Now, it's time to extract some useful data from this output.

In this chapter, you'll learn how to use different tools and libraries in Python to extract
useful data from returned output and act on it using regular expressions. Also, we will use
a special library called CiscoConfParse to audit the configuration, then we will learn how
to visualize data to generate visually appealing graphs and reports using the matplotlib
library.

We will cover the following topics in this chapter:

Understanding parsers
Introduction to regular expressions
Configuration auditing using Ciscoconfparse
Visualizing returned data with matplotlib

Extracting Useful Data from Network Devices Chapter 5

[100]

Technical requirements
The following tools should be installed and available in your environment:

Python 2.7.1x
PyCharm Community or Pro edition
EVE-NG lab

You can find the full scripts developed in this chapter at the following GitHub URL:

https:/​/​github.​com/ ​TheNetworker/ ​EnterpriseAutomation. ​git

Understanding parsers
In the previous chapter, we explored different ways to access network devices, execute
commands, and return output to our terminal. We now need to work on the returned
output and extract some useful information from it. Notice that, from Python's point of
view, the output is just a multiline string and Python doesn't differentiate between IP
address, interface name, or node hostname because they're all strings. So, the first step is to
design and develop our own parser using Python to categorize and differentiate between
items based on the important information in the returned output.

After that, you can work on the parsed data and generate graphs that help to visualize or
even store them to persistent and external storage or databases.

Introduction to regular expressions
Regular expressions are a language used to match specific occurrences of strings by
following their pattern across the whole string. When a match is found, the resulting
matched string will be returned back to user and will be held inside a structure in Python
format, such as tuple, list, or dictionary. The following table summarizes the most
common patterns in regular expressions:

https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git

Extracting Useful Data from Network Devices Chapter 5

[101]

Also, one of the important rules in regular expressions is you can write your own regex and
surround it with parentheses (), which is called the capturing group and helps you to hold
important data to reference it later using the capturing group number:

line = '30 acd3.b2c6.aac9 FastEthernet0/1'
match = re.search('(\d+) +([0-9a-f.]+) +(\S+)', line)
print match.group(1)
print match.group(2)

Extracting Useful Data from Network Devices Chapter 5

[102]

PyCharm will automatically color strings written as regular expressions
and can help you to check the validity of a regex before applying it to
data. Make sure the Check RegExp intention is enabled in the settings, as
shown here:

Creating a regular expression in Python
You can construct a regular expression in Python using the re module that is natively
shipped with the Python installation. There are several methods inside this module, such as
search(), sub(), split(), compile(), and findall(), which will return the result as a
regex object. Here is a summary of the use of each function:

Function Name Usage
search() Search and match the first occurrence of the pattern.

findall()
Search and match all occurrences of the pattern and return the result
as a list.

Finditer()
Search and match all occurrences of the pattern and return the result
as an iterator.

Extracting Useful Data from Network Devices Chapter 5

[103]

compile()

Compile the regex into a pattern object that has methods for various
operations, such as searching for pattern matches or performing
string substitutions. This is extremely useful if you use the same
regex pattern multiple times inside your script.

sub() Used to replace matched pattern with another string.
split() Used to split on matched pattern and create a list.

Regular expressions are hard to read; for that reason, let's start simple and look at some
easy regular expressions at the most basic level.

The first step of working with the re module is to import it inside your Python code

import re

We will start to explore the most common function in the re module, which is search(),
and then we will explore findall(). The search() function is suitable when you need to
find only one match in a string or when you write your regex pattern to match the entire
output and need to get the result with a method called groups(), as we will see in the
following examples.

The syntax of the re.search() function is as follows:

match = re.search('regex pattern', 'string')

The first parameter, 'regex pattern', is the regular expression developed in order to
match a specific occurrence inside the 'string'. When a match is found, the search()
function returns a special match object, otherwise it will return None. Note that search()
will return the first occurrence only of the pattern and will ignore the rest of them. Let's see
a few examples of using the re module in Python:

Example 1: Searching for a specific IP address

import re
intf_ip = 'Gi0/0/0.911 10.200.101.242 YES NVRAM up
up'
match = re.search('10.200.101.242', intf_ip)

if match:
 print match.group()

Extracting Useful Data from Network Devices Chapter 5

[104]

In this example, we can see the following:

The re module is imported into our Python script.
We have a string that corresponds to interface details and contains the name, IP
address, and status. This string could be hardcoded in the script or generated
from the network device using the Netmiko library.
We passed this string to the search() function, along with our regular
expression, which is just the IP address.
Then, the script checks whether there's a match object returned from the
previous operation; if so, it will print it.

The most basic method of testing for a match is via the re.match function, as we did in the
previous example. The match function takes a regular expression pattern and a string
value.

Notice we're only searching for a specific string inside the intf_ip parameter, not every IP
address pattern.

Example 1 output

Example 2: Matching the IP address pattern

import re
intf_ip = '''Gi0/0/0.705 10.103.17.5 YES NVRAM up
up
Gi0/0/0.900 86.121.75.31 YES NVRAM up up
Gi0/0/0.911 10.200.101.242 YES NVRAM up up
Gi0/0/0.7000 unassigned YES unset up up
'''
match = re.search("\d+\.\d+\.\d+\.\d+", intf_ip)

Extracting Useful Data from Network Devices Chapter 5

[105]

if match:
 print match.group()

In this example, we can see the following:

The re module is imported into our Python script.
We have a multi-line string that corresponds to the interface details and contains
the name, IP address, and status.
We passed this string to the search() function along with our regular
expression, which is the IP address pattern constructed using both \d+, which
matches one or more digits, and \., which matches the occurrence of the dot.
Then, the script checks whether there's a match object returned from a previous
operation; if so, it will print it. Otherwise, the None object is returned.

Example 2 output

Notice the search() function returns only the first matched occurrence of the pattern, not
all occurrences.

Example 3: Using groups() regular expressions

If you have a long output and you need to extract multiple strings from it, then you could
surround the extracted value with () and write your regex inside it. This is called a
capturing group and is used to catch a specific pattern within a long string, as shown in the
following snippet:

import re
log_msg = 'Dec 20 12:11:47.417: %LINK-3-UPDOWN: Interface

Extracting Useful Data from Network Devices Chapter 5

[106]

GigabitEthernet0/0/4, changed state to down'
match = re.search("(\w+\s\d+\s\S+):\s(\S+): Interface (\S+), changed state
to (\S+)", log_msg)
if match:
 print match.groups()

In this example, we can see the following:

The re module is imported into our Python script.
We have a string that corresponds to an event that occurred in the router and is
stored in logging.
We passed this string to the search() function along with our regular
expression. Notice that we enclosed the timestamp, event type, interface name,
and the new state of the capturing group and wrote our regex inside it.
Then, the script checks whether there's a match object returned from the previous
operation; if so, it will print it, but this time we used groups() instead of
group(), as we are capturing multiple strings.

Example 3 output

Notice the returned data is in a structured format called a tuple. We could use this output
later to trigger an event and start, for example, a recovery procedure on a redundant
interface.

Extracting Useful Data from Network Devices Chapter 5

[107]

We could enhance our previous code and use a Named group to give each
capture group a name that could be referenced later or used to create a
dictionary. In this case, we prefixed our regex with ?P<"NAME"> as in the
next example (Example 4 in the GitHub repository):

Example 4: Named group

Example 5-1: Searching for multiple lines using re.search()

Assume we have multiple lines in the output and we need to check all of them against the
regex pattern. Remember that the search() function exits when it finds the first pattern
match. In that case, we have two solutions. The first one is to feed each line to the search
function by splitting the whole string on "\n", and the second solution is to use the
findall() function. Let's explore the two solutions:

import re

show_ip_int_br_full = """
GigabitEthernet0/0/0 110.110.110.1 YES NVRAM up
up
GigabitEthernet0/0/1 107.107.107.1 YES NVRAM up
up
GigabitEthernet0/0/2 108.108.108.1 YES NVRAM up
up
GigabitEthernet0/0/3 109.109.109.1 YES NVRAM up
up
GigabitEthernet0/0/4 unassigned YES NVRAM up up
GigabitEthernet0/0/5 10.131.71.1 YES NVRAM up
up
GigabitEthernet0/0/6 10.37.102.225 YES NVRAM up
up
GigabitEthernet0/1/0 unassigned YES unset up
up
GigabitEthernet0/1/1 57.234.66.28 YES manual up
up
GigabitEthernet0/1/2 10.10.99.70 YES manual up
up
GigabitEthernet0/1/3 unassigned YES manual deleted

Extracting Useful Data from Network Devices Chapter 5

[108]

down
GigabitEthernet0/1/4 192.168.200.1 YES manual up
up
GigabitEthernet0/1/5 unassigned YES manual down
down
GigabitEthernet0/1/6 10.20.20.1 YES manual down
down
GigabitEthernet0/2/0 10.30.40.1 YES manual down
down
GigabitEthernet0/2/1 57.20.20.1 YES manual down
down

"""
for line in show_ip_int_br_full.split("\n"):
 match =
re.search(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>\d+.\d+.\d+.\d+)", line)
 if match:
 intf_ip = match.groupdict()
 if intf_ip["ip"].startswith("57"):
 print "Subnet is configured on " + intf_ip["interface"] + " and
ip is " + intf_ip["ip"]

The preceding script will split the show ip interface brief output and search for a
specific pattern, which is the interface name and the IP address configured on it. Based on
the matched data, the script will continue to check each IP address and validate it
using start with 57, then the script will print the corresponding interface and the full IP
address.

Example 5-1 output

Extracting Useful Data from Network Devices Chapter 5

[109]

If you're searching only for the first occurrence, you can optimize the
script and only get the first result by breaking the outer for loop upon
locating the first match, but note that the second match won't be located or
printed.

Example 5-2: Searching for multiple lines using re.findall()

The findall() function searches for all non-overlapping matches in the provided string
and returns a list of strings (unlike the search function, which returns the match object)
that matched by regex pattern if there's no capturing group. If you enclosed your regex
with a capturing group, then findall() will return a list of tuples. In the following script,
we have the same multi-line output and we will use the findall() method to get all
interfaces that are configured with an IP address that starts with 57:

import re
from pprint import pprint
show_ip_int_br_full = """
GigabitEthernet0/0/0 110.110.110.1 YES NVRAM up
up
GigabitEthernet0/0/1 107.107.107.1 YES NVRAM up
up
GigabitEthernet0/0/2 108.108.108.1 YES NVRAM up
up
GigabitEthernet0/0/3 109.109.109.1 YES NVRAM up
up
GigabitEthernet0/0/4 unassigned YES NVRAM up up
GigabitEthernet0/0/5 10.131.71.1 YES NVRAM up
up
GigabitEthernet0/0/6 10.37.102.225 YES NVRAM up
up
GigabitEthernet0/1/0 unassigned YES unset up
up
GigabitEthernet0/1/1 57.234.66.28 YES manual up
up
GigabitEthernet0/1/2 10.10.99.70 YES manual up
up
GigabitEthernet0/1/3 unassigned YES manual deleted
down
GigabitEthernet0/1/4 192.168.200.1 YES manual up
up
GigabitEthernet0/1/5 unassigned YES manual down
down
GigabitEthernet0/1/6 10.20.20.1 YES manual down
down
GigabitEthernet0/2/0 10.30.40.1 YES manual down
down

Extracting Useful Data from Network Devices Chapter 5

[110]

GigabitEthernet0/2/1 57.20.20.1 YES manual down
down
"""

intf_ip =
re.findall(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>57.\d+.\d+.\d+)",
show_ip_int_br_full)
pprint(intf_ip)

Example 5-2 output:

Notice this time we didn't have to write a for loop to check each line against the regex
pattern. This will be done automatically in the findall() method.

Configuration auditing using
CiscoConfParse
Applying regular expressions on network configuration to get specific information from the
output requires us to write some complex expressions to solve some complex use cases. In
some cases, you just need to retrieve some configuration or modify an existing one without
going deeply into writing regular expressions, and that was the reason for the birth of the
CiscoConfParse library (https:/ ​/ ​github. ​com/ ​mpenning/ ​ciscoconfparse).

https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse

Extracting Useful Data from Network Devices Chapter 5

[111]

CiscoConfParse library
As the official GitHub page says, the library examines an iOS-style config and breaks it into
a set of linked parent/child relationships. You can perform complex queries on these
relationships:

Source: https:/ ​/ ​github. ​com/​mpenning/ ​ciscoconfparse

So, the first line of the configuration is considered the parent, while the subsequent lines are
considered the children of the parent. The CiscoConfparse library builds the relationship
between parent and child into an object so the end user can easily retrieve the configuration
of a specific parent without the need to write complex expressions.

It's extremely important that your configuration file is well-formatted in
order to build the correct relationship between the parent and child.

The same concept also applies if you need to inject configuration into the file. The library
will search for the given parent and will insert the configuration just under it and save it to
the new file. This is helpful in case you need to run a config audit job on multiple files and
make sure they all have a consistent configuration.

https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse

Extracting Useful Data from Network Devices Chapter 5

[112]

Supported vendors
As a rule of thumb, any file that has a tab-delimited configuration can be parsed by
CiscoConfParse and it will build the parent and child relationship.

The following is the list of supported vendors:

Cisco IOS, Cisco Nexus, Cisco IOS-XR, Cisco IOS-XE, Aironet OS, Cisco ASA,
Cisco CatOS
Arista EOS
Brocade
HP switches
Force10 switches
Dell PowerConnect switches
Extreme Networks
Enterasys
ScreenOS

Also, starting from version 1.2.4, CiscoConfParse can handle the curly braces delimited
configuration, which means it can handle the following vendors:

Juniper Network's Junos OS
Palo Alto Networks firewall configurations
F5 Networks configurations

CiscoConfParse installation
CiscoConfParse can be installed by using pip on the Windows command line or Linux
shell:

pip install ciscoconfparse

Extracting Useful Data from Network Devices Chapter 5

[113]

Notice that some additional dependencies are also installed, such as ipaddr, dnsPython,
and colorama, which are used by CiscoConfParse.

Working with CiscoConfParse
The first example that we will work on is extracting the shutdown interfaces from a sample
Cisco configuration located in a file named Cisco_Config.txt.

In this example, we can see the following:

From the CiscoConfParse module, we imported the CiscoConfParse class.
Also, we imported the pprint module to print the output in readable format to
fit the Python console output.
Then, we provided the config file full path to the CiscoConfParse class.

Extracting Useful Data from Network Devices Chapter 5

[114]

The final step is to use one of the built-in functions such as
find_parents_w_child() and provide two parameters. The first one is the
parent specification, which is searching for anything starting with the
interface keyword, while the child specification has the shutdown keyword.

As you can see, in three simple steps, we were able to get all interfaces that have the
shutdown keyword inside and output as a structured list.

Example 1 output

Example 2: Checking the existing of a specific feature

The second example will check whether the router keyword exists within the configuration
file as an indication of whether a routing protocol, such as ospf or bgp is enabled or not. If
the module finds it, then the result will be True. Otherwise, it will be False. This can be
achieved by a built-in function within a module called has_line_with():

This method can be used to design a condition inside an if statement, as we will see in the
next and final example.

Extracting Useful Data from Network Devices Chapter 5

[115]

Example 2 output

Example 3: Printing specific children from a parent:

In this example, we can see the following:

From the CiscoConfParse module, we imported the CiscoConfParse class.
Also, we imported the pprint module to print the output in readable format to
fit the Python console output.
Then, we provided the config file full path to the CiscoConfParse class.
We used one of the built-in functions, such as find_all_children(), and
provided only the parent. This will instruct the CiscoConfParse class to list all
configuration lines under this parent.
Finally, we iterated over the returned output (remember, it's a list) and checked
whether the network keyword exists within the string. If yes, then it will append
it to the network list, which will be printed at the end.

Extracting Useful Data from Network Devices Chapter 5

[116]

Example 3 output:

There're many other functions available inside the CiscoConfParse module that could be
used to easily extract data from the configuration file and return the output in a structured
format. Here is a list of other functions:

find_lineage

find_lines()

find_all_children()

find_blocks()

find_parent_w_children()

find_children_w_parent()

find_parent_wo_children()

find_children_wo_parent()

Visualizing returned data with matplotLib
As an old saying goes, a picture is worth a thousand words. There's a lot of information that
could be extracted from the network, such as interface status, interface counters, router
updates, packets dropped, traffic volume, and more. Visualizing this data and putting it
into a graph will help you to see the big picture of your network. Python has an excellent
library called matplotlib (https:/ ​/​matplotlib. ​org/ ​) that is used to generate graphs and
customize them.

Matplotlib is capable of creating most kinds of charts, such as line graphs, scatter plots, bar
charts, pie charts, stack plots, 3D graphs, and geographic map graphs.

https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/

Extracting Useful Data from Network Devices Chapter 5

[117]

Matplotlib installation
We will start by first installing the library from PYpI using pip. Notice some additional
packages will be installed along with matplotlib, such as numpy and six:

pip install matplotlib

Now, try to import matplotlib and, if no errors are printed, then the module is
successfully imported:

Hands-on with matplotlib
We will start with simple examples to explore matplotlib's functionality. The first thing we
do usually is import matplotlib into our Python script:

import matplotlib.pyplot as plt

Extracting Useful Data from Network Devices Chapter 5

[118]

Notice we imported pyplot as a short name, plt, to be used inside our script. Now, we
will use the plot() method inside it to plot our data, which consists of two lists. The first
list represents the values of the x-axis while the second list represents the values of the y-
axis:

plt.plot([0, 1, 2, 3, 4], [0, 10, 20, 30, 40])

Now, the values are dropped into the plot.

The last step is to show that plot as a window using the show() method:

plt.show()

You may need to install Python-tk in Ubuntu in order to view the graph.
Use apt install Python-tk.

Extracting Useful Data from Network Devices Chapter 5

[119]

The resulted graph will show a line representing the input values of the x and y axes. In the
window, you can do the following:

Move the graph around with the cross icon
Resize the graph
Zoom into a specific area with the zoom icon
Reset to the original view with the home icon
Save the figure with the save icon

You can customize the generated figure by adding a title to it and labels to both axes. Also,
add a legend that explains the meaning of each line in case there are multiple lines on the
same graph:

import matplotlib.pyplot as plt
plt.plot([0, 1, 2, 3, 4], [0, 10, 20, 30, 40])
plt.xlabel("numbers")
plt.ylabel("numbers multiplied by ten")
plt.title("Generated Graph\nCheck it out")
plt.show()

Extracting Useful Data from Network Devices Chapter 5

[120]

Notice that we usually don't hardcode the plotted values inside the
Python script, but we will get them externally from the network, as we
will see in the next example.

Also, you can plot multiple datasets on the same figure. You can add another list that
represents data to the previous figure and matplotlib will draw it. Also, you can add
labels to differentiate between the datasets on the graph. The legend for these labels will be
printed on the graph using the legend() function:

import matplotlib.pyplot as plt
plt.plot([0, 1, 2, 3, 4], [0, 10, 20, 30, 40], label="First Line")
plt.plot([5, 6, 7, 8, 9], [50, 60, 70, 80, 90], label="Second Line")
plt.xlabel("numbers")
plt.ylabel("numbers multiplied by ten")
plt.title("Generated Graph\nCheck it out")
plt.legend()
plt.show()

Extracting Useful Data from Network Devices Chapter 5

[121]

Visualizing SNMP using matplotlib
In this use case, we will utilize the pysnmp module to send SNMP GET requests to our
router, retrieve the input and output traffic rates for a specific interface, and visualize the
output using the matplotlib library. The OIDs used are .1.3.6.1.4.1.9.2.2.1.1.6
and .1.3.6.1.4.1.9.2.2.1.1.8, which represent the input and output rates
respectively:

from pysnmp.entity.rfc3413.oneliner import cmdgen
import time
import matplotlib.pyplot as plt

cmdGen = cmdgen.CommandGenerator()

snmp_community = cmdgen.CommunityData('public')
snmp_ip = cmdgen.UdpTransportTarget(('10.10.88.110', 161))
snmp_oids = [".1.3.6.1.4.1.9.2.2.1.1.6.3",".1.3.6.1.4.1.9.2.2.1.1.8.3"]

slots = 0
input_rates = []
output_rates = []
while slots <= 50:
 errorIndication, errorStatus, errorIndex, varBinds =
cmdGen.getCmd(snmp_community, snmp_ip, *snmp_oids)

 input_rate = str(varBinds[0]).split("=")[1].strip()
 output_rate = str(varBinds[1]).split("=")[1].strip()

 input_rates.append(input_rate)
 output_rates.append(output_rate)

 time.sleep(6)
 slots = slots + 1
 print slots

time_range = range(0, slots)

print input_rates
print output_rates
plt.figure()
plt.plot(time_range, input_rates, label="input rate")
plt.plot(time_range, output_rates, label="output rate")
plt.xlabel("time slot")
plt.ylabel("Traffic Measured in bps")
plt.title("Interface gig0/0/2 Traffic")

Extracting Useful Data from Network Devices Chapter 5

[122]

plt.legend()
plt.show()

In this example, we can see the following:

We imported cmdgen from the pysnmp module, which was used to create SNMP
GET commands for the router. We also imported the matplotlib module.
Then, we used cmdgen to define the transport channel properties between
Python and the router and provide the SNMP community.
pysnmp will start to send the SNMP GET requests with the provided OIDs and
return the output and errors (if any) to errorIndication, errorStatus,
errorIndex, and varBinds. We are interested in varBinds as it holds the
actual values for the input and output traffic rate.
Note that varBinds will be in the form of <oid> = <value>, so we extracted
only the value and added it to the corresponding list we created before.
This operation will be repeated 100 times at 6-second intervals to collect useful
data.
Finally, we provided the collected data to the plt imported from matplotlib
and customized the graph by providing the xlabel, ylabel, title, and legends:

Script output:

Extracting Useful Data from Network Devices Chapter 5

[123]

Summary
In this chapter, we learned how to use different tools and techniques inside Python to
extract useful data from returned output and act upon it. Also, we used a special library
called CiscoConfParse to audit the configuration and learned how to visualize data to
generate appealing graphs and reports.

In the next chapter, we will learn how to write a template and use it to generate
configurations with a Jinja2 templating language.

6
Configuration Generator with

Python and Jinja2
This chapter introduces you to the YAML format for representing data and generating a
configuration from the golden templates created by the Jinja2 language. We will use these
two concepts in both Ansible and Python to create a data model store for our configuration.

We will cover the following topics in this chapter:

What is YAML?
Building golden configuration templates with Jinja2

What is YAML?
YAML Ain’t Markup Language (YAML) is often called a data serialization language. It
was intended to be human-readable and organize data into a structured format.
Programming languages can understand the content of YAML files (which usually have
a .yml or .yaml extension) and map them to built-in data types. For example, when you
consume a .yaml file in your Python script, it will automatically convert the content into
either a dictionary {} or list [], so you can work and iterate over it.

YAML rules help to construct a readable file so it's important to understand them in order
to write a valid and well formatted YAML file.

Configuration Generator with Python and Jinja2 Chapter 6

[125]

YAML file formatting
There're a few rules to follow while developing YAML files. YAML uses indentation (like
Python), which builds the relationship of items with one another:

So, the first rule when writing a YAML file is to make your indentation1.
consistent, using either whitespace or tabs, and don't mix them.
The second rule is to use a colon : when creating a dictionary with a key and2.
value (sometimes they're called associative arrays in yaml). The item to the left of
the colon is the key, while the item to the right of the colon is the value.
The third rule is to use dashes "-" when grouping items inside a list. You can3.
mix dictionaries and lists inside the YAML file in order to effectively describe
your data. The left-hand side serves as a dictionary key, while the right-hand side
serves as a dictionary value. You can create any number of levels to have
structured data:

Configuration Generator with Python and Jinja2 Chapter 6

[126]

Let's take an example and apply these rules to it:

There are a number of things to look at it. Firstly, the file has one top level,
my_datacenter, which serves as a top-level key and its values consists of all the indented
lines after it, which are GW, switch1, and switch2. Those items also serve as keys and have
values inside them, which are eve_port,
device_template, hostname, mgmt_int, mgmt_ip, and mgmt_subnet and which serve
as Level 3 keys and Level 2 values at the same time.

The other thing to notice is enabled_ports, which is a key but has a value that serves as a
lists. We know this because the next level of indentation is a dash.

Notice that all interfaces are sibling elements because they have the same
level of indentation.

Finally, it's not required to have a single or double quotation around strings. Python will do
that automatically when we load the file into it and it will also determine the data type and
location of each item based on indentation.

Configuration Generator with Python and Jinja2 Chapter 6

[127]

Now, let's develop a Python script that reads this YAML file and converts it into
dictionaries and lists using the yaml module:

In this example, we can see the following:

We imported the yaml module inside our Python script in order to handle the
YAML files. Also, we imported the pprint function to show the hierarchy of
nested dictionaries and lists.
Then, we opened the yaml_example.yml file using the with clause and
the open() function as a yaml_file.
Finally, we use the load() function to load the file into the yaml_data variable.
At this stage, the Python interpreter will analyze the yaml file's content and build
the relationships between items, then convert them to the standard data type.
The output can be shown at the console using the pprint() function.

Script output

Configuration Generator with Python and Jinja2 Chapter 6

[128]

It's now fairly easy to access any information using standard Python methods. For example,
you can access the switch1 config by using my_datacenter followed by the switch1
keys, as in the following code snippet:

pprint(yaml_data['my_datacenter']['switch1'])

{'device_template': 'vIOSL2_Template',
 'eve_port': 32769,
 'hostname': 'SW1',
 'mgmt_intf': 'gig0/0',
 'mgmt_ip': '10.10.88.111',
 'mgmt_subnet': '255.255.255.0'}

Also, you can iterate over the keys with a simple for loop and print the values of any level:

for device in yaml_data['my_datacenter']:
 print device

GW
switch2
switch1

As a best practice, it's recommended you keep the key names consistent
and change only the values while you describe your data. For example,
the hostname, mgmt_intf, and mgmt_ip items exist on all devices with
the same name, while they have different values in the .yaml file.

Text editor tips
Correct indentation is very important for YAML data. It's recommended to use an
advanced text editor such as, Sublime Text or Notepad++, as they have options that convert
the tabs to a specific number of whitespaces. At the same time, you can choose the specific
tab indentation size to be 2 or 4. So, your editor will convert the tab to a static number of
whitespaces whenever you click on the Tab button. Finally, you can choose to display
vertical lines at each indentation to ensure that lines are indented the same amount.

Please note that Microsoft Windows Notepad doesn't have that option
and this may result in a formatting error in your YAML file.

Configuration Generator with Python and Jinja2 Chapter 6

[129]

The following is an example of an advanced editor called Sublime Text that can be
configured with the aforementioned options:

The screenshot shows the vertical line guides that ensure that the sibling items are at the
same indentation level and number of spaces when you click on Tab.

Building a golden configuration with Jinja2
Most network engineers have a text file that serves as a template for a specific device
configuration. This file contains sections of network configuration with many values. When
the network engineer wants to provision a new device or change its configuration,
they will basically replace specific values from this file with another one to generate a new
configuration.

Using Python and Ansible, later in this book we will automate this process efficiently using
the Jinja2 template language (http:/ ​/ ​jinja. ​pocoo. ​org). The core concept of and driver for
developing Jinja2 is to have a unified syntax across all template files for specific
network/system configurations and to separate the data from the actual configuration. This
allows us to use the same template multiple times but with a different set of data. Also, as
shown on the Jinja2 web page, it has some unique features that make it stand out from the
other template languages.

http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org

Configuration Generator with Python and Jinja2 Chapter 6

[130]

The following are some of the features mentioned on the official website:

Powerful automatic HTML escaping system for cross-site scripting prevention.
High performance with just-in-time compilation to Python bytecode. Jinja2 will
translate your template sources on first load into Python bytecode for the best
runtime performance.
Optional ahead-of-time compilation.
Easy to debug with a debug system that integrates template compile and runtime
errors into the standard Python traceback system.
Configurable syntax: For instance, you can reconfigure Jinja2 to better fit output
formats, such as LaTeX or JavaScript.
Template designer helpers: Jinja2 ships with a wide range of useful little helpers
that help solve common tasks in templates, such as breaking up sequences of
items into multiple columns.

Another important Jinja feature is template inheritance, with which we can create a
base/parent template that defines a basic structure for our system or the Day 0 initial
configuration for all devices. This initial configuration will be the base configuration and
contains the common pieces such as usernames, management subnet, default routes, and
SNMP communities. The other child templates extend the base template and inherit it.

The terms Jinja and Jinja2 are used interchangeably throughout this
chapter.

Let's take a few examples of building templates before we deep dive into more features
provided by the Jinja2 language:

First, we need to make sure that Jinja2 is installed in your system by using the1.
following command:

pip install jinja2

The package will be downloaded from PyPi and then will be installed on the site
packages.

Configuration Generator with Python and Jinja2 Chapter 6

[131]

Now, open your favorite text editor and write the following template, which2.
represents a simple Day 0 (initial) configuration for a Layer 2 switch that
configures the device hostname, some aaa parameters, default VLANs that
should exist on each switch, and the management of IP addresses:

hostname {{ hostname }}

aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200

int {{ mgmt_intf }}
no switchport
no shut
ip address {{ mgmt_ip }} {{ mgmt_subnet }}

Some text editors (such as Sublime Text and Notepad++) provide support
for Jinja2 and can do syntax highlighting and auto-completion for you,
either by natively supporting it or through extension.

Notice that in the previous template, the variables were written in double curly braces {{
}}. So, when the Python script loads the template, it will replace those variables with the
desired values:

#!/usr/bin/python

from jinja2 import Template
template = Template('''
hostname {{hostname}}

aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200

int {{mgmt_intf}}
 no switchport
 no shut
 ip address {{mgmt_ip}} {{mgmt_subnet}}
''')

Configuration Generator with Python and Jinja2 Chapter 6

[132]

sw1 = {'hostname': 'switch1', 'mgmt_intf': 'gig0/0', 'mgmt_ip':
'10.10.88.111', 'mgmt_subnet': '255.255.255.0'}
print(template.render(sw1))

In this example, we can see the following:

The first thing is we imported the Template class from the jinja2 module. This
class will validate and parse the Jinja2 file.
Then, we defined a variable, sw1, as a dictionary with keys that have names
equal to variables inside the template. The dictionary values will be the data that
renders the template.
Finally, we used the render() method inside the template which takes sw1 as
an input to connect the Jinja2 template with the rendered values and prints the
configuration.

Script output

Configuration Generator with Python and Jinja2 Chapter 6

[133]

Now, let's enhance our script and use YAML to render the template instead of hard-coding
the values inside dictionaries. The concept is simple: we will model the day0 configuration
for our lab inside the YAML file, then load this file into our Python script using
yaml.load() and use the output to feed the Jinja2 template, which will result in
generating the day0 configuration files for each device:

First, we will extend the YAML file that we developed last time and add other devices to it
while keeping the hierarchy for each node the same:

dc1:
 GW:
 eve_port: 32773
 device_template: vIOSL3_Template
 hostname: R1
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.110
 mgmt_subnet: 255.255.255.0

 switch1:
 eve_port: 32769
 device_template: vIOSL2_Template
 hostname: SW1
 mgmt_intf: gig0/0

Configuration Generator with Python and Jinja2 Chapter 6

[134]

 mgmt_ip: 10.10.88.111
 mgmt_subnet: 255.255.255.0

 switch2:
 eve_port: 32770
 device_template: vIOSL2_Template
 hostname: SW2
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.112
 mgmt_subnet: 255.255.255.0

 switch3:
 eve_port: 32769
 device_template: vIOSL2_Template
 hostname: SW3
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.113
 mgmt_subnet: 255.255.255.0

 switch4:
 eve_port: 32770
 device_template: vIOSL2_Template
 hostname: SW4
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.114
 mgmt_subnet: 255.255.255.0

Following is the Python script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import yaml
from jinja2 import Template

with
open('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chap
ter6_Configuration_generator_with_python_and_jinja2/network_dc.yml', 'r')
as yaml_file:
 yaml_data = yaml.load(yaml_file)

router_day0_template = Template("""
hostname {{hostname}}
int {{mgmt_intf}}
 no shutdown
 ip add {{mgmt_ip}} {{mgmt_subnet}}

Configuration Generator with Python and Jinja2 Chapter 6

[135]

lldp run

ip domain-name EnterpriseAutomation.net
ip ssh version 2
ip scp server enable
crypto key generate rsa general-keys modulus 1024

snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager

logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging

""")

switch_day0_template = Template("""
hostname {{hostname}}

aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200

int {{mgmt_intf}}
 no switchport
 no shut
 ip address {{mgmt_ip}} {{mgmt_subnet}}

snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager

logging history debugging

Configuration Generator with Python and Jinja2 Chapter 6

[136]

logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging

""")

for device,config in yaml_data['dc1'].iteritems():
 if config['device_template'] == "vIOSL2_Template":
 device_template = switch_day0_template
 elif config['device_template'] == "vIOSL3_Template":
 device_template = router_day0_template

 print("rendering now device {0}" .format(device))
 Day0_device_config = device_template.render(config)

 print Day0_device_config
 print "=" * 30

In this example, we can see the following:

We imported the yaml and Jinja2 modules as usual
Then, we instructed the script to load the yaml file into the yaml_data variable,
which will convert it into a series of dictionaries and lists
Two templates for router and switch configuration are defined as
router_day0_template and switch_day0_template respectively
The for loop will iterate over devices of dc1 and check the device_template,
then will render configuration for each device

Configuration Generator with Python and Jinja2 Chapter 6

[137]

Script output

Following is the router configuration (output omitted):

Following is the switch 1 configuration (output omitted):

Configuration Generator with Python and Jinja2 Chapter 6

[138]

Reading templates from the filesystem
A common approach for Python developers is to move the static, hard-coded values and
templates outside the Python script and keep only the logic inside the script. This approach
keeps your program clean and scalable, while allowing other team members who don't
have much knowledge of Python to get the desired output by changing the input, and
Jinja2 is no exception to this approach. You can use the FileSystemLoader() class inside
the Jinja2 module to load the template from the operating system directories. We will
modify our code and move both the router_day0_template and
switch_day0_template contents from the script to text files, then load them into our
script.

Python code

import yaml
from jinja2 import FileSystemLoader, Environment

with
open('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chap
ter6_Configuration_generator_with_python_and_jinja2/network_dc.yml', 'r')
as yaml_file:
 yaml_data = yaml.load(yaml_file)

template_dir =
"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6_
Configuration_generator_with_python_and_jinja2"

template_env = Environment(loader=FileSystemLoader(template_dir),
 trim_blocks=True,
 lstrip_blocks= True
)

for device,config in yaml_data['dc1'].iteritems():
 if config['device_template'] == "vIOSL2_Template":
 device_template =
template_env.get_template("switch_day1_template.j2")
 elif config['device_template'] == "vIOSL3_Template":
 device_template =
template_env.get_template("router_day1_template.j2")

 print("rendering now device {0}" .format(device))
 Day0_device_config = device_template.render(config)

Configuration Generator with Python and Jinja2 Chapter 6

[139]

 print Day0_device_config
 print "=" * 30

In this example, instead of loading the Template() class from the Jinja2 module as we did
before, we will import Environment() and FileSystemLoader(), which are used to
read the Jinja2 file from the specific operating system directory by providing them
with template_dir where our templates are stored. Then, we will use the created
template_env object, along with the get_template() method, to get the template name
and render it with the configuration.

Make sure your template file has a .j2 extension at the end. This will
make PyCharm recognize the text inside the file as a Jinja2 template and
hence provide syntax highlighting and better code completion.

Using Jinja2 loops and conditions
Loops and conditions in Jinja2 are used to enhance our template and add more
functionality to it. We will start by understanding how to add the for loop inside the
template in order to iterate over passed values from YAML. For example, we may need to
add a switch configuration under each interface, such as using the switchport mode and
configure the VLAN ID which will be configured under the access port, or configure the
allowed VLANs range in the case of the trunk ports.

On the other hand, we may need to enable some interfaces in the router and add custom
configurations to it, such as MTU, speed, and duplex. So, we will use the for loop.

Notice that part of our script logic will now be moved from Python to the Jinja2 template.
The Python script will just read the template, either externally from the operating system or
through the Template() class inside the script, then render the template with the parsed
values from the YAML file.

The basic structure of for loops inside Jinja2 is as follows:

{% for key, value in var1.iteritems() %}
configuration snippets
{% endfor %}

Notice the use of {% %} to define logic inside the Jinja2 file.

Configuration Generator with Python and Jinja2 Chapter 6

[140]

Also, iteritems() has the same function as iterating over the Python dictionary, which is
iterating over the key and value pairs. The loop will return both the key and value for each
element inside the var1 dictionary.

Also, we can have an if condition that validates a specific condition and, if it's true, then
the configuration snippets will be added to the rendered file. The basic if structure will be
as shown in the following snippet:

{% if enabled_ports %}
configuration snippet goes here and added to template if the condition is
true
{% endif %}

Now, we will modify our .yaml file which describes the data center devices, and add the
interface configuration and enabled ports for each device:

dc1:
 GW:
 eve_port: 32773
 device_template: vIOSL3_Template
 hostname: R1
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.110
 mgmt_subnet: 255.255.255.0
 enabled_ports:
 - gig0/0
 - gig0/1
 - gig0/2

 switch1:
 eve_port: 32769
 device_template: vIOSL2_Template
 hostname: SW1
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.111
 mgmt_subnet: 255.255.255.0
 interfaces:
 gig0/1:
 vlan: [1,10,20,200]
 description: TO_DSW2_1
 mode: trunk
 gig0/2:
 vlan: [1,10,20,200]
 description: TO_DSW2_2
 mode: trunk
 gig0/3:

Configuration Generator with Python and Jinja2 Chapter 6

[141]

 vlan: [1,10,20,200]
 description: TO_ASW3
 mode: trunk
 gig1/0:
 vlan: [1,10,20,200]
 description: TO_ASW4
 mode: trunk
 enabled_ports:
 - gig0/0
 - gig1/1

 switch2:
 eve_port: 32770
 device_template: vIOSL2_Template
 hostname: SW2
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.112
 mgmt_subnet: 255.255.255.0
 interfaces:
 gig0/1:
 vlan: [1,10,20,200]
 description: TO_DSW1_1
 mode: trunk
 gig0/2:
 vlan: [1,10,20,200]
 description: TO_DSW1_2
 mode: trunk
 gig0/3:
 vlan: [1,10,20,200]
 description: TO_ASW3
 mode: trunk
 gig1/0:
 vlan: [1,10,20,200]
 description: TO_ASW4
 mode: trunk
 enabled_ports:
 - gig0/0
 - gig1/1

 switch3:
 eve_port: 32769
 device_template: vIOSL2_Template
 hostname: SW3
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.113
 mgmt_subnet: 255.255.255.0
 interfaces:
 gig0/1:

Configuration Generator with Python and Jinja2 Chapter 6

[142]

 vlan: [1,10,20,200]
 description: TO_DSW1
 mode: trunk
 gig0/2:
 vlan: [1,10,20,200]
 description: TO_DSW2
 mode: trunk
 gig1/0:
 vlan: 10
 description: TO_Client1
 mode: access
 gig1/1:
 vlan: 20
 description: TO_Client2
 mode: access
 enabled_ports:
 - gig0/0

 switch4:
 eve_port: 32770
 device_template: vIOSL2_Template
 hostname: SW4
 mgmt_intf: gig0/0
 mgmt_ip: 10.10.88.114
 mgmt_subnet: 255.255.255.0
 interfaces:
 gig0/1:
 vlan: [1,10,20,200]
 description: TO_DSW2
 mode: trunk
 gig0/2:
 vlan: [1,10,20,200]
 description: TO_DSW1
 mode: trunk
 gig1/0:
 vlan: 10
 description: TO_Client1
 mode: access
 gig1/1:
 vlan: 20
 description: TO_Client2
 mode: access
 enabled_ports:
 - gig0/0

Configuration Generator with Python and Jinja2 Chapter 6

[143]

Notice, that we categorized the switch ports to either trunk port or access
port, and also added the vlans for each one.

According to the yaml file, the incoming packets to the interface with switchport access
mode will be tagged with the VLAN. In case of the switchport mode trunk, the incoming
packets be allowed if it has a vlan ID belong to the configured list.

Now, we will create two additional templates for devices Day 1 (operational) configuration.
The first template will be router_day1_template and the second will be
switch_day1_template, and both of them will inherit from the corresponding day0
template that we developed before:

router_day1_template:

{% include 'router_day0_template.j2' %}

{% if enabled_ports %}
 {% for port in enabled_ports %}
interface {{ port }}
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
 {% endfor %}

{% endif %}

switch_day1_template:

{% include 'switch_day0_template.j2' %}

{% if enabled_ports %}
 {% for port in enabled_ports %}
interface {{ port }}
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto

 {% endfor %}
{% endif %}

Configuration Generator with Python and Jinja2 Chapter 6

[144]

{% if interfaces %}
 {% for intf,intf_config in interfaces.items() %}
interface {{ intf }}
 description "{{intf_config['description']}}"
 no shutdown
 duplex full
 {% if intf_config['mode'] %}
 {% if intf_config['mode'] == "access" %}
 switchport mode {{intf_config['mode']}}
 switchport access vlan {{intf_config['vlan']}}

 {% elif intf_config['mode'] == "trunk" %}
 switchport {{intf_config['mode']}} encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed vlan {{intf_config['vlan']|join(',')}}

 {% endif %}
 {% endif %}
 {% endfor %}
{% endif %}

Notice the use of the {% include <template_name.j2> %} tag, which
refers to the day0 template of the device.

This template will be rendered first and filled with passed values from YAML, then the
next parts will be filled.

The Jinja2 language inherits many writing styles and features from the
Python language. Although it's not mandatory to follow the indentation
rule when developing the template and inserting the tags, the author
prefers to have it in a readable Jinja2 template.

Script output:

rendering now device GW
hostname R1
int gig0/0
 no shutdown
 ip add 10.10.88.110 255.255.255.0
lldp run
ip domain-name EnterpriseAutomation.net
ip ssh version 2
ip scp server enable
crypto key generate rsa general-keys modulus 1024
snmp-server community public RW

Configuration Generator with Python and Jinja2 Chapter 6

[145]

snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
interface gig0/1
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
interface gig0/2
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
==============================
rendering now device switch1
hostname SW1
aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200
int gig0/0
 no switchport
 no shut
 ip address 10.10.88.111 255.255.255.0
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog

Configuration Generator with Python and Jinja2 Chapter 6

[146]

snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
interface gig1/1
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
interface gig0/2
 description "TO_DSW2_2"
 no shutdown
 duplex full
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed vlan 1,10,20,200
interface gig0/3
 description "TO_ASW3"
 no shutdown
 duplex full
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed vlan 1,10,20,200
interface gig0/1
 description "TO_DSW2_1"
 no shutdown
 duplex full
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed vlan 1,10,20,200
interface gig1/0
 description "TO_ASW4"
 no shutdown
 duplex full
 switchport trunk encapsulation dot1q

Configuration Generator with Python and Jinja2 Chapter 6

[147]

 switchport mode trunk
 switchport trunk allowed vlan 1,10,20,200
==============================

<switch2 output omitted>

==============================
rendering now device switch3
hostname SW3
aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200
int gig0/0
 no switchport
 no shut
 ip address 10.10.88.113 255.255.255.0
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0
 no switchport
 no shutdown
 mtu 1520
 duplex auto
 speed auto
interface gig0/2
 description "TO_DSW2"
 no shutdown
 duplex full
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed vlan 1,10,20,200
interface gig1/1
 description "TO_Client2"

Configuration Generator with Python and Jinja2 Chapter 6

[148]

 no shutdown
 duplex full
 switchport mode access
 switchport access vlan 20
interface gig1/0
 description "TO_Client1"
 no shutdown
 duplex full
 switchport mode access
 switchport access vlan 10
interface gig0/1
 description "TO_DSW1"
 no shutdown
 duplex full
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed vlan 1,10,20,200
==============================
<switch4 output omitted>

Summary
In this chapter, we learned about YAML and its formatting and how to work with text
editors. We also learned about Jinja2 and its configuration. Then, we explored the ways in
which we can use loops and conditions in Jinja2.

In the next chapter, we will learn how to instantiate and execute Python code in parallel
using multiprocessing.

7
Parallel Execution of Python

Script
Python has become the de facto standard for network automation. Many network engineers
already use it on a daily basis to automate networking tasks, from configuration, to
operation, to troubleshooting network problems. In this chapter, we will visit one of the
advanced topics in Python: scratching the surface of Python's multiprocessing nature and
learning how to use it to accelerate script execution time.

We will cover the following topics in this chapter:

How Python code is executed in an OS
The Python multiprocessing library

Parallel Execution of Python Script Chapter 7

[150]

How a computer executes your Python
script
This is how your computer's operating system executes Python script:

When you type python <your_awesome_automation_script>.py in the1.
shell, Python (which runs as a process) instructs your computer processor to
schedule a thread (which is the smallest unit of processing):

The allocated thread will start to execute your script, line by line. A thread can do2.
anything, including interacting with I/O devices, connecting to routers, printing
output, performing mathematical equations, and more.
Once the script hits the End of File (EOF), the thread will be terminated and3.
returned to the free pool, to be used by other processes. Then, the script is
terminated.

In Linux, you can use #strace –p <pid> to trace a specific thread
execution.

The more threads that you assign to your script (and that are permitted by your processor
or OS), the faster your script will run. Actually, threads are sometimes called workers or
slaves.

Parallel Execution of Python Script Chapter 7

[151]

I have a feeling that you have this little idea in your head: Why wouldn't we assign a lot of
threads, from all cores, to Python script, in order to get the job done quickly?

The problem with assigning a lot of threads to one process without special handling is
the race condition. The operating systems will allocate memory to your process (in this
case, it's the Python process), to be used at runtime and accessed by all threads—all of them
at the same time. Now, imagine that one of those threads reads some data before it's actually
written by another thread! You don't know the order in which the threads will attempt to
access the shared data; this is the race condition:

One available solution is to make the thread acquire a lock. In fact, Python, by default, is
optimized to run as a single-threaded process, and has something called Global Interpreter
Lock (GIL). GIL does not allow multiple threads to execute Python code at the same time,
in order to prevent conflicts between threads.

But, rather than having multiple threads, why don't we have multiple processes?

Parallel Execution of Python Script Chapter 7

[152]

The beauty of multiple processes, as compared to multiple threads, is that you don't have to
be afraid of data corruption due to shared data. Each spawned process will have its own
allocated memory, which won't be accessed by other Python processes. This allows us to
execute parallel tasks at the same time:

Also, from Python's point of view, each process has its own GIL. So, there's no resource
conflict or race condition here.

Python multiprocessing library
The multiprocessing module is Python's standard library that is shipped with Python
binaries, and it is available from Python 2.6. There's also the threading module, which
allows you to spawn multiple threads, but they all share the same memory space.
Multiprocessing comes with more advantages than threading. One of them is isolated
memory space for each process, and it can take advantage of multiple CPUs and cores.

Parallel Execution of Python Script Chapter 7

[153]

Getting started with multiprocessing
First, you need to import the module for your Python script:

import multiprocessing as mp

Then, wrap your code with a Python function; this will allow the process to target this
function and mark it as a parallel execution.

Let's suppose that we have code that connects to the router and executes commands on it
using the netmiko library, and we want to connect to all of the devices in parallel. This is a
sample serial code that will connect to each device and execute the passed command, and
then continue with the second device, and so on:

from netmiko import ConnectHandler
from devices import R1, SW1, SW2, SW3, SW4

nodes = [R1, SW1, SW2, SW3, SW4]

for device in nodes:
 net_connect = ConnectHandler(**device)
 output = net_connect.send_command("show run")
 print output

The Python file devices.py is created on the same directory as our script, and it contains
the login details and credentials for each device in a dictionary format:

R1 = {"device_type": "cisco_ios_ssh",
 "ip": "10.10.88.110",
 "port": 22,
 "username": "admin",
 "password": "access123",
 }

SW1 = {"device_type": "cisco_ios_ssh",
 "ip": "10.10.88.111",
 "port": 22,
 "username": "admin",
 "password": "access123",
 }

SW2 = {"device_type": "cisco_ios_ssh",
 "ip": "10.10.88.112",
 "port": 22,
 "username": "admin",
 "password": "access123",

Parallel Execution of Python Script Chapter 7

[154]

 }

SW3 = {"device_type": "cisco_ios_ssh",
 "ip": "10.10.88.113",
 "port": 22,
 "username": "admin",
 "password": "access123",
 }

SW4 = {"device_type": "cisco_ios_ssh",
 "ip": "10.10.88.114",
 "port": 22,
 "username": "admin",
 "password": "access123",
 }

Now, if we want to use the multiprocessing module instead, we need to redesign the script
and move the code to be under a function; then, we will assign a number of processes equal
to the number of devices (one process will connect to one device and execute the command)
and set the target of the process to execute this function:

from netmiko import ConnectHandler
from devices import R1, SW1, SW2, SW3, SW4
import multiprocessing as mp
from datetime import datetime

nodes = [R1, SW1, SW2, SW3, SW4]

def connect_to_dev(device):

 net_connect = ConnectHandler(**device)
 output = net_connect.send_command("show run")
 print output

processes = []

start_time = datetime.now()
for device in nodes:
 print("Adding Process to the list")
 processes.append(mp.Process(target=connect_to_dev, args=[device]))

print("Spawning the Process")
for p in processes:
 p.start()

print("Joining the finished process to the main truck")

Parallel Execution of Python Script Chapter 7

[155]

for p in processes:
 p.join()

end_time = datetime.now()
print("Script Execution tooks {}".format(end_time - start_time))

In the preceding example, the following applies:

We imported a multiprocess module as mp. One of the most important classes
available inside the module is Process, which takes our netmiko connect
function as a target argument. Also, it accepts passing an argument to the target
function.
Then, we iterated over our nodes and created a process for each device and
appended that process to the processes list.
The start() method, which is available in the module, is used to spawn and
then it starts the process execution.
Finally, the script execution time is calculated by subtracting the script start time
from the script end time.

Behind the scenes, the main thread that executes the main script will start to fork a number
of processes equal to the number of devices. Each of them targets one function that executes
show run on all devices at the same time and stores the output in a variable, without
affecting each other.

This is a sample view of the processes inside Python:

Parallel Execution of Python Script Chapter 7

[156]

Now, when you execute the full code, one final thing needs to be done. You need to join the
forked process to the main thread/truck, in order to smoothly finish the program's
execution:

for p in processes:
 p.join()

The join() method used in the preceding example has nothing to do
with the original join(), available as a string method; it's only used to
join the process to the main thread.

Intercommunication between processes
Sometimes, you will have a process that needs to pass or exchange information with other
processes during runtime. The multiprocessing module has a Queue class that implements
a special list, within which a process can insert and consume data. There are two methods
available inside of this class: get() and put(). The put() method is used to add data to
the Queue, whereas getting data from the queue is done via the get() method. In the next
example, we will use Queue to pass data from a subprocess to a parent process:

import multiprocessing
from netmiko import ConnectHandler
from devices import R1, SW1, SW2, SW3, SW4
from pprint import pprint

nodes = [R1, SW1, SW2, SW3, SW4]

def connect_to_dev(device, mp_queue):

Parallel Execution of Python Script Chapter 7

[157]

 dev_id = device['ip']
 return_data = {}
 net_connect = ConnectHandler(**device)
 output = net_connect.send_command("show run")
 return_data[dev_id] = output
 print("Adding the result to the multiprocess queue")
 mp_queue.put(return_data)

mp_queue = multiprocessing.Queue()
processes = []

for device in nodes:
 p = multiprocessing.Process(target=connect_to_dev, args=[device,
mp_queue])
 print("Adding Process to the list")
 processes.append(p)
 p.start()

for p in processes:
 print("Joining the finished process to the main truck")
 p.join()

results = []
for p in processes:
 print("Moving the result from the queue to the results list")
 results.append(mp_queue.get())

pprint(results)

In the preceding example, the following applies:

We imported another class, called Queue(), from the multiprocess module,
and instantiated it into the mp_queue variable.
Then, during the process creation, we appended this queue as an argument side-
by-side with the device, so every process will have access to the same queue and
be able to write data to it.
The connect_to_dev() function connects to each device and executes the show
run command on the Terminal, then writes the output to the shared queue.

Note that we formatted the output as dictionary items,
{ip:<command_output>}, before adding it to the shared queue using
mp_queue.put().

Parallel Execution of Python Script Chapter 7

[158]

After the processes finished execution and joined the main (parent) process, we
used mp_queue.get() to retrieve the queue items in a results list, then
used pprint to prettyprint the output.

Summary
In this chapter, we learned about the Python multiprocessing library and how to instantiate
and execute Python code in parallel.

In the next chapter, we will learn how to prepare a lab environment and explore
automation options to speed up server deployment.

8
Preparing a Lab Environment

In this chapter, we will set a lab up by using two popular Linux distributions: CentOS and
Ubuntu. CentOS is a community-driven Linux operating system that targets
enterprise servers, and it's known for its compatibility with Red Hat Enterprise Linux
(RHEL). Ubuntu is another Linux distribution that is based on the famous Debian operating
system; it's currently developed by Canonical Ltd., which provides it with commercial
support.

We will also learn how to install both Linux distributions with a free and open software
called Cobbler, which will automatically boot the server with a Linux image and customize
it using the kickstart for CentOS and Anaconda for Debian-based system.

The following topics will be covered in this chapter:

Getting the Linux operating system
Creating an automation machine on a hypervisor
Getting started with Cobbler

Getting the Linux operating system
In the next sections, we are going to create two Linux machines, CentOS and Ubuntu, on
different hypervisors. The machines will serve as the automation server in our
environment.

Preparing a Lab Environment Chapter 8

[160]

Downloading CentOS
CentOS binaries can be downloaded through multiple methods. You can download them
directly from multiple FTP servers around the world, or you can download them as
torrents, from people who seed them. Also, CentOS is available in two flavors:

Minimal ISO: Provides the basic server, with essential packages
Everything ISO: Provides the server and all available packages from the main
repositories

First, head to the CentOS project link (https:/ ​/​www. ​centos. ​org/ ​) and click on the Get
CentOS Now button, as shown in the following screenshot:

Then, choose the minimal ISO image, and download it from any available download site.

CentOS is available for multiple cloud providers, such as Google,
Amazon, Azure, and Oracle Cloud. You can find all of the cloud images
at https:/ ​/ ​cloud. ​centos. ​org/​centos/ ​7/​images/ ​.

https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/

Preparing a Lab Environment Chapter 8

[161]

Downloading Ubuntu
Ubuntu is widely known for providing a good desktop experience to end users. Canonical
(the Ubuntu developers) work with many server vendors to certify Ubuntu on different
hardware. Canonical also provide a server version for Ubuntu, which offers as many
features as in 16.04, such as:

Support from Canonical until 2021
Ability to run on all major architectures—x86, x86-64, ARM v7, ARM64,
POWER8, and IBM s390x (LinuxONE)
Support for ZFS, a next generation volume management filesystem ideal for
servers and containers
LXD Linux container hypervisor enhancements, including QoS and resource
controls (CPU, memory, block I/O, and storage quota)
Installation snaps, for simple application installation and release management.
First production release of DPDK—line speed kernel networking
Linux 4.4 kernel and systemd service manager
Certification as a guest on AWS, Microsoft Azure, Joyent, IBM, Google Cloud
Platform, and Rackspace
Updates for Tomcat (v8), PostgreSQL (v9.5), Docker v (1.10), Puppet (v3.8.5),
QEMU (v2.5), Libvirt (v1.3.1), LXC (v2.0), MySQL (v5.6), and more

You can download the Ubuntu LTS by browsing to https:/ ​/ ​www.​ubuntu. ​com/ ​download/
server and choosing Ubuntu 16.04 LTS:

https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server

Preparing a Lab Environment Chapter 8

[162]

Creating an automation machine on a
hypervisor
After downloading the ISO files, we will create a Linux machine over VMware ESXi and
KVM hypervisors.

Creating a Linux machine over VMware ESXi
We will use the VMware vSphere client to create a virtual machine. Log in to one of the
available ESXi servers using root credentials. First, you will need to upload either the
Ubuntu or CentOS ISO to the VMware data store. Then, follow these steps to create the
machine:

Right-click on the server name and choose New Virtual Machine:1.

Preparing a Lab Environment Chapter 8

[163]

Choose a Custom installation, so that you will have more options during the2.
installation:

Provide a name for the VM: AutomationServer.3.
Choose the machine version: 8.4.
Choose the data store on which the machine will be created.5.

Preparing a Lab Environment Chapter 8

[164]

Choose the guest operating system: either Ubuntu Linux (64-bit) or Red Hat6.
version 6/7:

The VM specification shouldn't have less than 2 vCPU and 4 GB RAM, in order7.
to have efficient performance. Select them in the CPU and Memory tabs
respectively.

Preparing a Lab Environment Chapter 8

[165]

In the Network tab, select two interfaces with E1000 adapters. One of these8.
interfaces will connect to the internet, and the second interface will manage the
clients:

Choose the default SCSI controller for the system. In my case, it will be LSI9.
logical parallel.
Select a Create a new virtual disk and provide 20 GB as the disk size for the VM.10.

Preparing a Lab Environment Chapter 8

[166]

Now the virtual machine is ready, and you can start the Linux OS installation.11.
Associate the uploaded image to the CD/DVD drive, and make sure that the
Connect at power on option is selected:

Preparing a Lab Environment Chapter 8

[167]

Once it starts running, you will be asked to choose a language:

Complete the CentOS/Ubuntu installation steps as usual.

Preparing a Lab Environment Chapter 8

[168]

Creating a Linux machine over KVM
We will use the virt-manager utility, available in KVM, to launch the desktop
administration for KVM. We will then create a new VM:

Here, we will choose the installation method as Local install media (ISO image1.
or CDROM):

Then, we will click on Browse and choose the previously downloaded image2.
(CentOS or Ubuntu). You will notice that the KVM successfully detects the OS
type and version:

Preparing a Lab Environment Chapter 8

[169]

Then, we will choose the machine specifications in terms of CPUs, memory, and3.
storage:

Choose the appropriate storage space for your machine:4.

Preparing a Lab Environment Chapter 8

[170]

The final step is to choose a name, and then click on the Customize5.
Configuration before install option, in order to add an additional network
interface to the automation server. Then, click on Finish:

Another window is open, which contains all of the specs for the machine. Click on Add
Hardware, then choose the Network:

Preparing a Lab Environment Chapter 8

[171]

We will add another network interface to communicate with the clients. The first network
interface is using NAT to connect to the internet through the physical wireless NIC:

Finally, click on Begin Installation on the main window so that the KVM will start
allocating the hard disk and attaching the ISO image to the virtual machine:

Preparing a Lab Environment Chapter 8

[172]

Once it has finished, you will see the following screen:

Complete the CentOS/Ubuntu installation steps as usual.

Getting started with Cobbler
Cobbler is a piece of open source software, used for unattended network-based installation.
It leverages multiple tools, such as DHCP, FTP, PXE, and other open source tools (we will
explain them later), so that you will have a one-stop shop for automating the OS
installation. The target machine (bare metal or a virtual machine) has to support booting
from a network on its network interface card (NIC). This function enables the machine to
send a DHCP request that hits the Cobbler server, which will take care of the rest.

You can read more about the project on its GitHub page (https:/ ​/ ​github. ​com/ ​cobbler/
cobbler).

https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler

Preparing a Lab Environment Chapter 8

[173]

Understanding how Cobbler works
Cobbler depends on multiple tools to provide the Preboot eXecution Environment (PXE)
functionality to clients. First, it depends on the DHCP service that receives the DHCP
broadcast message from the client upon powering on; then, it replies with an IP address, a
subnet mask, the next server (TFTP), and finally, the pxeLinux.0, which is the loader
filename that the client is requesting when it initially sends the DHCP message to the
server.

The second tool is the TFTP server that hosts pxeLinux.0 and different distribution
images.

The third tool is the template rendering utility. Cobbler uses cheetah, which is an open
source template engine developed in Python and has its own DSL (domain specific
language) format. We will use it to generate the kickstart files.

Kickstart files are used to automate the installation of Red Hat based distributions, like
CentOS, Red Hat, and Fedora. It also has limited support for rendering the Anaconda files
used for installing Debian-based systems.

There are also additional tools. reposync is used to mirror an online repository from the
internet to a local directory inside of Cobbler, making it available to the client.
ipmitools remotely manages powering different server hardware on and off:

Preparing a Lab Environment Chapter 8

[174]

In the following topology, Cobbler is hosted on the automation server installed previously,
and will connect to a couple of servers. We will install Ubuntu and Red Hat on them,
through Cobbler. The automation server has another interface that connects directly to the
internet, in order to download some additional packages that are required by Cobbler, as
we will see in the next section:

Server IP Address

Automation Server (with cobbler installed) 10.10.10.130

Server1 (CentOS Machine) IP from range 10.10.10.5-10.10.10.10
Server 2 (Ubuntu Machine) IP from range 10.10.10.5-10.10.10.10

Installing Cobbler on an automation server
We will start by installing some essential packages, such as vim, tcpudump , wget, and
net-tools, on our automation server (either CentOS or Ubuntu). Then, we will install the
cobbler package from the epel repository. Please note that these packages are not
required for Cobbler, but we will use them to understand how Cobbler really works.

Preparing a Lab Environment Chapter 8

[175]

For CentOS, use the following command:

yum install vim vim-enhanced tcpdump net-tools wget git -y

For Ubuntu, use the following command:

sudo apt install vim tcpdump net-tools wget git -y

Then, we need to disable the firewall. Cobbler doesn't play well with SELinux policies, and
it's recommended to disable it, especially if you are unfamiliar with them. Also, we will
disable iptables and firewalld, since we are in a lab, not production.

For CentOS, use the following command:

Disable firewalld service
systemctl disable firewalld
systemctl stop firewalld

Disable IPTables service
systemctl disable iptables.service
systemctl stop iptables.service

Set SELinux to permissive instead of enforcing
sed -i s/^SELinux=.*$/SELinux=permissive/ /etc/seLinux/config
setenforce 0

For Ubuntu, use the following command:

Disable ufw service
sudo ufw disable

Disable IPTables service
sudo iptables-save > $HOME/BeforeCobbler.txt
sudo iptables -X
sudo iptables -t nat -F
sudo iptables -t nat -X
sudo iptables -t mangle -F
sudo iptables -t mangle -X
sudo iptables -P INPUT ACCEPT
sudo iptables -P FORWARD ACCEPT
sudo iptables -P OUTPUT ACCEPT

Set SELinux to permissive instead of enforcing
sed -i s/^SELinux=.*$/SELinux=permissive/ /etc/seLinux/config
setenforce 0

Preparing a Lab Environment Chapter 8

[176]

Finally, reboot the automation server machine for the changes to take effect:

reboot

Now, we will install the cobbler package. The software is available in the epel repository
(but we need to install it first) in the case of CentOS. Ubuntu doesn't have the software
available in upstream repositories, so we will download the source code and compile it on
the platform.

For CentOS, use the following command:

Download and Install EPEL Repo
yum install epel-release -y

Install Cobbler
yum install cobbler -y

#Install cobbler Web UI and other dependencies
yum install cobbler-web dnsmasq fence-agents bind xinetd pykickstart -y

The current version of Cobbler, at the time of writing this book, is 2.8.2, which was released
on September 16, 2017. For Ubuntu, we will clone the latest package from the GIT
repository and build it from the source:

#install the dependencies as stated in
(http://cobbler.github.io/manuals/2.8.0/2/1_-_Prerequisites.html)

sudo apt-get install createrepo apache2 mkisofs libapache2-mod-wsgi mod_ssl
python-cheetah python-netaddr python-simplejson python-urlgrabber python-
yaml rsync sysLinux atftpd yum-utils make python-dev python-setuptools
python-django -y

#Clone the cobbler 2.8 from the github to your server (require internet)
git clone https://github.com/cobbler/cobbler.git
cd cobbler

#Checkout the release28 (latest as the developing of this book)
git checkout release28

#Build the cobbler core package
make install

#Build cobbler web
make webtest

Preparing a Lab Environment Chapter 8

[177]

After successfully installing Cobbler on our machine, we will need to customize it to
change the default settings to adapt to our network environment. We will need to change
the following:

Choose either the bind or dnsmasq module to manage DNS queries
Choose either the isc or dnsmaasq module to serve incoming DHCP requests
from clients
Configure the TFTP Cobbler IP address (it will usually be a static address in
Linux).
Provide the DHCP range that serves the clients
Restart the services to apply the configuration

Let's take a step-by-step look at the configuration:

Choose dnsmasq as the DNS server:1.

vim /etc/cobbler/modules.conf
[dns]
module = manage_dnsmasq
vim /etc/cobbler/settings
manage_dns: 1
restart_dns: 1

Choose dnsmasq for managing the DHCP service:2.

vim /etc/cobbler/modules.conf

[dhcp]
module = manage_dnsmasq
vim /etc/cobbler/settings
manage_dhcp: 1
restart_dhcp: 1

Configure the Cobbler IP address as the TFTP server:3.

vim /etc/cobbler/settings
server: 10.10.10.130
next_server: 10.10.10.130
vim /etc/xinetd.d/tftp
 disable = no

Also, enable PXE boot loop prevention by setting the pxe_just_once to 0:

pxe_just_once: 0

Preparing a Lab Environment Chapter 8

[178]

Add the client dhcp-range in the dnsmasq service template:4.

vim /etc/cobbler/dnsmasq.template
dhcp-range=10.10.10.5,10.10.10.10,255.255.255.0

Note the line that says dhcp-option=66,$next_server. This means that
Cobbler will pass next_server, previously configured in the settings as the
TFTP boot server, to any clients requesting an IP address through the DHCP
service provided by dnsmasq.

Enable and restart the services:5.

systemctl enable cobblerd
systemctl enable httpd
systemctl enable dnsmasq

systemctl start cobblerd
systemctl start httpd
systemctl start dnsmasq

Provisioning servers through Cobbler
We are now a few steps away from having our first server up and running through
Cobbler. Basically, we need to tell Cobbler our clients' MAC addresses and which operating
systems they have:

Import the Linux ISO. Cobbler will automatically analyze the image and create a1.
profile for it:

cobbler import --arch=x86_64 --path=/mnt/cobbler_images --
name=CentOS-7-x86_64-Minimal-1708

task started: 2018-03-28_132623_import
task started (id=Media import, time=Wed Mar 28 13:26:23 2018)
Found a candidate signature: breed=redhat, version=rhel6
Found a candidate signature: breed=redhat, version=rhel7
Found a matching signature: breed=redhat, version=rhel7
Adding distros from path /var/www/cobbler/ks_mirror/CentOS-7-
x86_64-Minimal-1708-x86_64:
creating new distro: CentOS-7-Minimal-1708-x86_64
trying symlink: /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64 -> /var/www/cobbler/links/CentOS-7-
Minimal-1708-x86_64
creating new profile: CentOS-7-Minimal-1708-x86_64
associating repos

Preparing a Lab Environment Chapter 8

[179]

checking for rsync repo(s)
checking for rhn repo(s)
checking for yum repo(s)
starting descent into /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64 for CentOS-7-Minimal-1708-x86_64
processing repo at : /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64
need to process repo/comps: /var/www/cobbler/ks_mirror/CentOS-7-
x86_64-Minimal-1708-x86_64
looking for /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/repodata/*comps*.xml
Keeping repodata as-is :/var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/repodata
*** TASK COMPLETE ***

You may need to mount the Linux ISO image before importing it to a
mount point, by using mount -O loop /root/<image_iso>
/mnt/cobbler_images/.

You can run the cobbler profile report command to check the created
profile:

cobbler profile report

Name : CentOS-7-Minimal-1708-x86_64
TFTP Boot Files : {}
Comment :
DHCP Tag : default
Distribution : CentOS-7-Minimal-1708-x86_64
Enable gPXE? : 0
Enable PXE Menu? : 1
Fetchable Files : {}
Kernel Options : {}
Kernel Options (Post Install) : {}
Kickstart :
/var/lib/cobbler/kickstarts/sample_end.ks
Kickstart Metadata : {}
Management Classes : []
Management Parameters : <<inherit>>
Name Servers : []
Name Servers Search Path : []
Owners : ['admin']
Parent Profile :
Internal proxy :
Red Hat Management Key : <<inherit>>
Red Hat Management Server : <<inherit>>

Preparing a Lab Environment Chapter 8

[180]

Repos : []
Server Override : <<inherit>>
Template Files : {}
Virt Auto Boot : 1
Virt Bridge : xenbr0
Virt CPUs : 1
Virt Disk Driver Type : raw
Virt File Size(GB) : 5
Virt Path :
Virt RAM (MB) : 512
Virt Type : kvm

You can see that the import command filled many fields automatically, such as
Kickstart, RAM, operating system, and the initrd/kernel file locations.

Add any additional repositories to the profile (optional):2.

cobbler repo add --
mirror=https://dl.fedoraproject.org/pub/epel/7/x86_64/ --name=epel-
local --priority=50 --arch=x86_64 --breed=yum

cobbler reposync

Now, edit the profile, and add the created repository to the list of available
repositories:

cobbler profile edit --name=CentOS-7-Minimal-1708-x86_64 --
repos="epel-local"

Add a client MAC address and link it to the created profile:3.

cobbler system add --name=centos_client --profile=CentOS-7-
Minimal-1708-x86_64 --mac=00:0c:29:4c:71:7c --ip-
address=10.10.10.5 --subnet=255.255.255.0 --static=1 --
hostname=centos-client --gateway=10.10.10.1 --name-servers=8.8.8.8
--interface=eth0

The --hostname field corresponds to the local system name and configures the client
networking using the --ip-address, --subnet, and --gateway options. This will make
Cobbler generate a kickstart file with these options.

Preparing a Lab Environment Chapter 8

[181]

If you need to customize the server and add additional packages, configure firewall, ntp,
and configure partitions and hard disk layout then you can add these settings to the
kickstart file. Cobbler provide sample file under
/var/lib/cobbler/kickstarts/sample.ks, which you can copy to another folder and
provide in the --kickstart parameter in the previous command.

You can integrate Ansible inside the kickstart file by running Ansible
in pull mode (instead the default push mode). Ansible will download the
playbook from an online GIT repository (such as GitHub or GitLab) and
will execute it after that.

Instruct Cobbler to generate the configuration files required to serve our client4.
and to update the internal database with the new information by using the
following commands:

#cobbler sync

task started: 2018-03-28_141922_sync
task started (id=Sync, time=Wed Mar 28 14:19:22 2018)
running pre-sync triggers
cleaning trees
removing: /var/www/cobbler/images/CentOS-7-Minimal-1708-x86_64
removing: /var/www/cobbler/images/Ubuntu_Server-x86_64
removing: /var/www/cobbler/images/Ubuntu_Server-hwe-x86_64
removing: /var/lib/tftpboot/pxeLinux.cfg/default
removing: /var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c
removing: /var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C
removing: /var/lib/tftpboot/grub/efidefault
removing: /var/lib/tftpboot/grub/grub-x86_64.efi
removing: /var/lib/tftpboot/grub/images
removing: /var/lib/tftpboot/grub/grub-x86.efi
removing: /var/lib/tftpboot/images/CentOS-7-Minimal-1708-x86_64
removing: /var/lib/tftpboot/images/Ubuntu_Server-x86_64
removing: /var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64
removing: /var/lib/tftpboot/s390x/profile_list
copying bootloaders
trying hardlink /var/lib/cobbler/loaders/grub-x86_64.efi ->
/var/lib/tftpboot/grub/grub-x86_64.efi
trying hardlink /var/lib/cobbler/loaders/grub-x86.efi ->
/var/lib/tftpboot/grub/grub-x86.efi
copying distros to tftpboot
copying files for distro: Ubuntu_Server-x86_64
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/Linux ->
/var/lib/tftpboot/images/Ubuntu_Server-x86_64/Linux
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-

Preparing a Lab Environment Chapter 8

[182]

x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz ->
/var/lib/tftpboot/images/Ubuntu_Server-x86_64/initrd.gz
copying files for distro: Ubuntu_Server-hwe-x86_64
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/hwe-netboot/ubuntu-installer/amd64/Linux ->
/var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64/Linux
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/hwe-netboot/ubuntu-installer/amd64/initrd.gz ->
/var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64/initrd.gz
copying files for distro: CentOS-7-Minimal-1708-x86_64
trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/vmlinuz ->
/var/lib/tftpboot/images/CentOS-7-Minimal-1708-x86_64/vmlinuz
trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/initrd.img ->
/var/lib/tftpboot/images/CentOS-7-Minimal-1708-x86_64/initrd.img
copying images
generating PXE configuration files
generating: /var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c
generating: /var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C
generating PXE menu structure
copying files for distro: Ubuntu_Server-x86_64
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/Linux ->
/var/www/cobbler/images/Ubuntu_Server-x86_64/Linux
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz ->
/var/www/cobbler/images/Ubuntu_Server-x86_64/initrd.gz
Writing template files for Ubuntu_Server-x86_64
copying files for distro: Ubuntu_Server-hwe-x86_64
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/hwe-netboot/ubuntu-installer/amd64/Linux ->
/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64/Linux
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/hwe-netboot/ubuntu-installer/amd64/initrd.gz ->
/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64/initrd.gz
Writing template files for Ubuntu_Server-hwe-x86_64
copying files for distro: CentOS-7-Minimal-1708-x86_64
trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/vmlinuz ->
/var/www/cobbler/images/CentOS-7-Minimal-1708-x86_64/vmlinuz
trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/initrd.img ->
/var/www/cobbler/images/CentOS-7-Minimal-1708-x86_64/initrd.img
Writing template files for CentOS-7-Minimal-1708-x86_64
rendering DHCP files
rendering DNS files
rendering TFTPD files

Preparing a Lab Environment Chapter 8

[183]

generating /etc/xinetd.d/tftp
processing boot_files for distro: Ubuntu_Server-x86_64
processing boot_files for distro: Ubuntu_Server-hwe-x86_64
processing boot_files for distro: CentOS-7-Minimal-1708-x86_64
cleaning link caches
running post-sync triggers
running python triggers from /var/lib/cobbler/triggers/sync/post/*
running python trigger cobbler.modules.sync_post_restart_services
running: service dnsmasq restart
received on stdout:
received on stderr: Redirecting to /bin/systemctl restart
dnsmasq.service

running shell triggers from /var/lib/cobbler/triggers/sync/post/*
running python triggers from /var/lib/cobbler/triggers/change/*
running python trigger cobbler.modules.scm_track
running shell triggers from /var/lib/cobbler/triggers/change/*
*** TASK COMPLETE ***

Once you have started the CentOS client, you will notice that it goes to the PXE process and
sends a DHCP message over PXE_Network. Cobbler will respond with an IP address,
a PXELinux0 file, and the required image assigned to that MAC address:

Preparing a Lab Environment Chapter 8

[184]

After Cobbler finishes the CentOS installation, you will see the hostname correctly
configured in the machine:

You can go through the same steps for an Ubuntu machine.

Summary
In this chapter, you learned how to prepare a lab environment by installing two Linux
machines (CentOS and Ubuntu) over a hypervisor. We then explored automation options,
and sped up server deployment by installing Cobbler.

In the next chapter, you will learn how to send commands from a Python script directly to
an operating system shell and investigate the output returned.

9
Using the Subprocess Module

Running and spawning a new system process can be useful to system administrators who
want to automate specific operating system tasks or execute a few commands within their
scripts. Python provides many libraries to call external system utilities, and it interacts with
the data produced. The first library that was created is the OS module, which provides
some useful tools to invoke external processes, such as os.system, os.spwan, and
os.popen*. It lacks some essential functions, however, so Python developers have
introduced a new library, subprocess, which can spawn new processes, send and receive
from the processes, and handle error and return codes. Currently, the official Python
documentation recommends the subprocess module for accessing system commands, and
Python actually intends to replace the older modules with it.

The following topics will be covered in this chapter:

The Popen() Subprocess
Reading stdin, stdout, and stderr
The subprocess call suite

The popen() subprocess
The subprocess module implements only one class: popen(). The primary use of this
class is to spawn a new process on the system. This class can accept additional arguments
for the running process, along with additional arguments for popen() itself:

Arguments Meaning
 args A string, or a sequence of program arguments.

 bufsize It is supplied as the buffering argument to the open() function when
creating the stdin/stdout/stderr pipe file objects.

 executable A replacement program to execute.

Using the Subprocess Module Chapter 9

[186]

 stdin, stdout, stderr These specify the executed program's standard input, standard output, and
standard error file handles, respectively.

 shell
If True, the command will be executed through the shell (the default
is False). In Linux, this means calling the /bin/sh before running the
child process.

 cwd Sets the current directory before the child is executed.
 env Defines the environmental variables for the new process.

Now, let us focus on args. The popen() command can take a Python list as an input, with
the first element treated as the command and the subsequent elements as the command
args, as shown in the following code snippet:

import subprocess
print(subprocess.Popen("ifconfig"))

Script output

The output returned from the command is printed directly to your Python Terminal.

The ifconfig is a Linux utility used to return the network interface
information. For Windows users, you can get similar output by using the
ipconfig command on cmd.

Using the Subprocess Module Chapter 9

[187]

We can rewrite the preceding code and use a list instead of a string, as seen in the following
code snippet:

print(subprocess.Popen(["ifconfig"]))

Using this approach allows you to add additional arguments to the main command as list
items:

print(subprocess.Popen(["sudo", "ifconfig", "enp60s0:0", "10.10.10.2",
"netmask", "255.255.255.0", "up"]))

enp60s0:0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
 inet 10.10.10.2 netmask 255.255.255.0 broadcast 10.10.10.255
 ether d4:81:d7:cb:b7:1e txqueuelen 1000 (Ethernet)
 device interrupt 16

Note that if you provide the previous command as a string not as a list, as
we did in the first example, the command will fail as shown in below
screenshot. The subprocess Popen() expects an executable name in each
list element and not any other arguments.

On the other hand, if you want to use the string method instead of a list, you can set the
shell argument to True. This will instruct Popen() to append /bin/sh before the
command; hence, the command will be executed with all of the arguments after it:

print(subprocess.Popen("sudo ifconfig enp60s0:0 10.10.10.2 netmask
255.255.255.0 up", shell=True))

You can think about shell=True as you spawn a shell process and pass the command
with an argument to it. This could save you a few lines of code through using split(), in
case you receive the command from an external system and want to run it directly.

Using the Subprocess Module Chapter 9

[188]

The default shell used by subprocess is /bin/sh. If you're using other
shells, like tch or csh, you can define them in the executable argument.
Also notice running the command as a shell can be a security issue and
allow security injection. A user who instructs your code to run the script
can add "; rm -rf /" and cause terrible things to happen.

Also, you can change the directory to a specific one before running the command by using
the cwd argument. This is useful when you need to list the contents of the directory before
operating on it:

import subprocess
print(subprocess.Popen(["cat", "interfaces"], cwd="/etc/network"))

Ansible has a similar flag called chdir:. This argument will be used
inside a playbook task to change a directory before the execution.

Reading stdin, stdout, and stderr
The spawned processes can communicate with the operating system in three channels:

Standard input (stdin)1.
Standard output (stdout)2.
Standard error (stderr)3.

Using the Subprocess Module Chapter 9

[189]

In subprocess, Popen() can interact with the three channels and redirect each stream to an
external file, or to a special value called PIPE. An additional method, called
communicate(), is used to read from the stdout and write on the stdin.
The communicate() method can take input from the user and return both the standard
output and the standard error, as shown in the following code snippet:

import subprocess
p = subprocess.Popen(["ping", "8.8.8.8", "-c", "3"], stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
stdout, stderr = p.communicate()
print("""==========The Standard Output is==========
{}""".format(stdout))

print("""==========The Standard Error is==========
{}""".format(stderr))

Similarly, you can send data and write to the process using the input argument
inside communicate():

import subprocess
p = subprocess.Popen(["grep", "subprocess"], stdout=subprocess.PIPE,
stdin=subprocess.PIPE)
stdout,stderr = p.communicate(input=b"welcome to subprocess module\nthis
line is a new line and doesnot contain the require string")

print("""==========The Standard Output is==========
{}""".format(stdout))

print("""==========The Standard Error is==========
{}""".format(stderr))

Using the Subprocess Module Chapter 9

[190]

In the script, we used the input argument inside communicate(),which will send the data
to the other child process, which will search for the subprocess keyword using the grep
command. The returned output will be stored inside the stdout variable:

Another approach to validate the successful execution of the process is to use the return
code. When the command has successfully executed without errors, the return code will be
0; otherwise, it will be an integer value larger than 0:

import subprocess

def ping_destination(ip):
 p = subprocess.Popen(['ping', '-c', '3'],
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 stdout, stderr = p.communicate(input=ip)
 if p.returncode == 0:
 print("Host is alive")
 return True, stdout
 else:
 print("Host is down")
 return False, stderr

while True:
 print(ping_destination(raw_input("Please enter the host:")))

Using the Subprocess Module Chapter 9

[191]

The script will ask the user to enter an IP address, and will then call the
ping_destination() function, which will execute the ping command against the IP
address. The result of the ping command (either success or failed) will return in the
standard output, and the communicate() function will populate the return code with the
result:

First, we tested the Google DNS IP address. The host is alive, and the command will be
successfully executed with the return code =0. The function will return True and print
Host is alive. Second, we tested with the HostNotExist string. The function will
return False to the main program and print Host is down. Also, it will print the
command standard output returned to subprocess which is (Name or service not
known).

You can use echo $? to check the return code (sometimes called the exit
code) of the previously executed command.

The subprocess call suite
The subprocess module provides another function that makes process spawning a safer
operation than using Popen(). The subprocess call() function waits for the called
command/program to finish reading the output. It supports the same arguments as the
Popen() constructor, such as shell, executable, and cwd, but this time, your script will
wait for the program to complete and populate the return code without the need to
communicate().

Using the Subprocess Module Chapter 9

[192]

If you inspect the call() function, you will see that it's actually a wrapper around the
Popen() class, but with a wait() function that waits until the end of the command before
returning the output:

import subprocess
subprocess.call(["ifconfig", "docker0"], stdout=subprocess.PIPE,
stderr=None, shell=False)

If you want more protection for your code, you can use the check_call() function. It's the
same as call(), but adds another check to the return code. If it is equal to 0 (meaning that
the command has successfully executed), then the output will be returned. Otherwise, it
will raise an exception with the returned exit code. This will allow you to handle the
exception in your program flow:

import subprocess

try:
 result = subprocess.check_call(["ping", "HostNotExist", "-c", "3"])
except subprocess.CalledProcessError:
 print("Host is not found")

A downside of using the call() function is that you can't
use communicate() to send the data to process, like we did
with Popen().

Summary
In this chapter, we learned how to run and spawn new processes in the system, and we
learned about how these spawned processes communicate with the operating system. We
also discussed the subprocess module and the subprocess call.

In the next chapter, we will see how to run and execute commands on remote hosts.

10
Running System Administration

Tasks with Fabric
In the previous chapter, we used the subprocess module to run and spawn a system
process inside the machine that hosted our Python script, and to return the output back to
the Terminal. However, many automation tasks require access to remote servers to execute
commands, which is not easy to do using a sub-process. This becomes a piece of cake with
the use of another Python module: Fabric. The library makes connections to remote hosts
and executes different tasks, such as uploading and downloading files, running commands
with specific user IDs, and prompting users for input. The Fabric Python module is a
robust tool for administrating dozens of Linux machines from a central point.

The following topics will be covered in this chapter:

What is Fabric?
Executing your first Fabric file
Other useful Fabric features

Technical requirements
The following tools should be installed and available in your environment:

Python 2.7.1x.
PyCharm Community or Pro Edition.
EVE-NG topology. Please refer to Chapter 8, Preparing a Lab Environment, for how
to install and configure system servers.

Running System Administration Tasks with Fabric Chapter 10

[194]

You can find the full scripts developed in this chapter at the following GitHub
URL: https:/​/​github. ​com/ ​TheNetworker/ ​EnterpriseAutomation. ​git.

What is Fabric?
Fabric (http:/​/​www. ​fabfile. ​org/ ​) is a high-level Python library that is used to connect to
remote servers (through the paramiko library) and execute predefined tasks on them. It
runs a tool called fab on the machine that hosts the fabric module. This tool will look for a
fabfile.py file, located in the same directory that you run the tool in.
The fabfile.py file contains your tasks, defined as a Python function that is called from
the command line to start the execution on the servers. The Fabric tasks themselves are just
normal Python functions, but they contain special methods that are used to execute
commands on remote servers. Also, at the beginning of fabfile.py, you need to define
some environmental variables, such as the remote hosts, username, password, and any
other variables needed during execution:

https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/

Running System Administration Tasks with Fabric Chapter 10

[195]

Installation
Fabric requires Python 2.5 to 2.7. You can install Fabric and all of its dependencies
using pip, or you can use a system package manager, such as yum or apt. In both cases,
you will have the fab utility ready and executable from your operating system.

To install fabric using pip, run the following command on your automation server:

pip install fabric

Notice that Fabric requires paramiko, which is a popular Python library that is used for
establishing SSH connections.

You can validate the Fabric installation with two steps. First, make sure that you have the
fab command available in your system:

[root@AutomationServer ~]# which fab
/usr/bin/fab

Running System Administration Tasks with Fabric Chapter 10

[196]

The second step for verification is to open Python and try to import the fabric library. If
there's no error thrown, then Fabric has successfully installed:

[root@AutomationServer ~]# python
Python 2.7.5 (default, Aug 4 2017, 00:39:18)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from fabric.api import *
>>>

Fabric operations
There are many operations available in the fabric tool. These operations act as a functions
inside the tasks in fabfile (there will be more about tasks later), but the following is a
summary of the most important operations inside the fabric library.

Using run operation
The syntax for the run operation in Fabric is as follows:

run(command, shell=True, pty=True, combine_stderr=True, quiet=False,
warn_only=False, stdout=None, stderr=None)

This will execute the command on a remote host, while the shell argument controls
whether a shell (such as /bin/sh) should be created before execution (the same parameter
also exists in the sub-process).

After the command execution, Fabric will populate .succeeded or .failed, depending
on the command output. You can check whether the command succeeded or failed by
calling the following:

def run_ops():
 output = run("hostname")

Using get operation
The syntax for the Fabric get operation is as follows:

get(remote_path, local_path)

Running System Administration Tasks with Fabric Chapter 10

[197]

This will download the files from the remote host to the machine running the fabfile,
using either rsync or scp . This is commonly used when you need to gather log files to the
server, for example:

def get_ops():
 try:
 get("/var/log/messages","/root/")
 except:
 pass

Using put operation
The syntax for the Fabric put operation is as follows:

put(local_path, remote_path, use_sudo=False, mirror_local_mode=False,
mode=None)

This operation will upload the file from the machine running the fabfile (local) to the
remote host. Using use_sudo will solve the permissions issue when you upload to the root
directory. Also, you can keep the current file permissions on both the local and remote
server, or you can set new permissions:

def put_ops():
 try:
 put("/root/VeryImportantFile.txt","/root/")
 except:
 pass

Using sudo operation
The syntax for the Fabric sudo operation is as follows:

sudo(command, shell=True, pty=True, combine_stderr=True, user=None,
quiet=False, warn_only=False, stdout=None, stderr=None, group=None)

Running System Administration Tasks with Fabric Chapter 10

[198]

This operation can be considered another wrapper around the run() command. However,
the sudo operation will run the command with the root username by default regardless of
the username used to execute the fabfile. Also it contains a user argument which could
be used to run the command with a different username. Also, the user argument executes
the command with a specific UID, while the group argument defines the GID:

def sudo_ops():
 sudo("whoami") #it should print the root even if you use another
account

Using prompt operation
The syntax for the Fabric prompt operation is as follows:

prompt(text, key=None, default='', validate=None)

The user can provide a specific value for the task by using the prompt operation, and the
input will be stored inside of a variable and used by tasks. Please note that you will be
prompted for each host inside of the fabfile:

def prompt_ops():
 prompt("please supply release name", default="7.4.1708")

Using reboot operation
The syntax for the Fabric reboot operation is as follows:

reboot(wait=120)

This is a simple operation that reboots the host by default. Fabric will wait for 120 seconds
before attempting to reconnect, but you can change this value to another one by using the
wait argument:

def reboot_ops():
 reboot(wait=60, use_sudo=True)

Running System Administration Tasks with Fabric Chapter 10

[199]

For a full list of other supported operations, please check http:/ ​/​docs. ​fabfile. ​org/ ​en/​1.
14/​api/​core/​operations. ​html. You can also check them directly from PyCharm, by
looking at all of the autocomplete functions that pop up when you type Ctrl + spacebar.
From fabric.operations import <ctrl+space> under fabric.operations:

Executing your first Fabric file
We now know how the operation works, so we will put it inside fabfile and create a full
automation script that can work with remote machines. The first step for fabfile is to
import the required classes. Most of them are located in fabric.api, so we will globally
import all of them to our Python script:

from fabric.api import *

http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html

Running System Administration Tasks with Fabric Chapter 10

[200]

The next part is to define the remote machine IP addresses, usernames, and passwords. In
the case of our environment, we have two machines (besides the automation server) that
run Ubuntu 16.04 and CentOS 7.4, respectively, with the following details:

Machine Type IP Address Username Password
Ubuntu 16.04 10.10.10.140 root access123

CentOS 7.4 10.10.10.193 root access123

We will include them inside the Python script, as shown in the following snippet:

env.hosts = [
 '10.10.10.140', # ubuntu machine
 '10.10.10.193', # CentOS machine
]

env.user = "root"
env.password = "access123"

Notice that we use the variable called env, which is inherited from the _AttributeDict
class. Inside of this variable, we can set the username and password from the SSH
connection. You can also use the SSH keys stored in your .ssh directory by
setting env.use_ssh_config=True; Fabric will use the keys to authenticate the
connection.

The last step is to define your tasks as a Python function. Tasks can use the preceding
operations to execute commands.

The following is the full script:

from fabric.api import *

env.hosts = [
 '10.10.10.140', # ubuntu machine
 '10.10.10.193', # CentOS machine
]

env.user = "root"
env.password = "access123"

def detect_host_type():
 output = run("uname -s")
 if output.failed:
 print("something wrong happen, please check the logs")
 elif output.succeeded:
 print("command executed successfully")

Running System Administration Tasks with Fabric Chapter 10

[201]

def list_all_files_in_directory():
 directory = prompt("please enter full path to the directory to list",
default="/root")
 sudo("cd {0} ; ls -htlr".format(directory))

def main_tasks():
 detect_host_type()
 list_all_files_in_directory()

In the preceding example, the following applies:

We defined two tasks. The first one will execute the uname -s command and
return the output, then verify whether the command executed successfully or
not. The task uses the run() operation to accomplish it.
The second task will use two operations: prompt() and sudo(). The first
operation will ask the user to enter the full path to the directory, while the second
operation will list all of the content in the directory.
The final task, main_tasks(), will actually group the preceding two methods
into one task, so that we can call it from the command line.

In order to run the script, we will upload the file to the automation server and use the fab
utility to run it:

fab -f </full/path/to/fabfile>.py <task_name>

The -f switch in the previous command is not mandatory if your filename
is fabfile.py. If it is not, you will need to provide the name to the fab
utility. Also, fabfile should be in the current directory; otherwise, you
will need to provide the full path.

Now we will run the fabfile by executing the following command:
fab -f fabfile_first.py main_tasks

The first task will be executed, and will return the output to the Terminal:

[10.10.10.140] Executing task 'main_tasks'
[10.10.10.140] run: uname -s
[10.10.10.140] out: Linux
[10.10.10.140] out:

command executed successfully

Running System Administration Tasks with Fabric Chapter 10

[202]

Now, we will enter /var/log/ to list the contents:

please enter full path to the directory to list [/root] /var/log/
[10.10.10.140] sudo: cd /var/log/ ; ls -htlr
[10.10.10.140] out: total 1.7M
[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Dec 7 23:54 lxd
[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Dec 11 15:47 sysstat
[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Feb 22 18:24 dist-upgrade
[10.10.10.140] out: -rw------- 1 root utmp 0 Feb 28 20:23 btmp
[10.10.10.140] out: -rw-r----- 1 root adm 31 Feb 28 20:24 dmesg
[10.10.10.140] out: -rw-r--r-- 1 root root 57K Feb 28 20:24
bootstrap.log
[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Apr 4 08:00 fsck
[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Apr 4 08:01 apt
[10.10.10.140] out: -rw-r--r-- 1 root root 32K Apr 4 08:09 faillog
[10.10.10.140] out: drwxr-xr-x 3 root root 4.0K Apr 4 08:09 installer

command executed successfully

The same applies if you need to list the configuration files under the network-scripts
directory in the CentOS machine:

please enter full path to the directory to list [/root]
/etc/sysconfig/network-scripts/
[10.10.10.193] sudo: cd /etc/sysconfig/network-scripts/ ; ls -htlr
[10.10.10.193] out: total 232K
[10.10.10.193] out: -rwxr-xr-x. 1 root root 1.9K Apr 15 2016 ifup-TeamPort
[10.10.10.193] out: -rwxr-xr-x. 1 root root 1.8K Apr 15 2016 ifup-Team
[10.10.10.193] out: -rwxr-xr-x. 1 root root 1.6K Apr 15 2016 ifdown-
TeamPort
[10.10.10.193] out: -rw-r--r--. 1 root root 31K May 3 2017 network-
functions-ipv6
[10.10.10.193] out: -rw-r--r--. 1 root root 19K May 3 2017 network-
functions
[10.10.10.193] out: -rwxr-xr-x. 1 root root 5.3K May 3 2017 init.ipv6-
global
[10.10.10.193] out: -rwxr-xr-x. 1 root root 1.8K May 3 2017 ifup-wireless
[10.10.10.193] out: -rwxr-xr-x. 1 root root 2.7K May 3 2017 ifup-tunnel
[10.10.10.193] out: -rwxr-xr-x. 1 root root 3.3K May 3 2017 ifup-sit
[10.10.10.193] out: -rwxr-xr-x. 1 root root 2.0K May 3 2017 ifup-routes
[10.10.10.193] out: -rwxr-xr-x. 1 root root 4.1K May 3 2017 ifup-ppp
[10.10.10.193] out: -rwxr-xr-x. 1 root root 3.4K May 3 2017 ifup-post
[10.10.10.193] out: -rwxr-xr-x. 1 root root 1.1K May 3 2017 ifup-plusb

<output omitted for brevity>

Running System Administration Tasks with Fabric Chapter 10

[203]

Finally, Fabric will disconnect from the two machines:

[10.10.10.193] out:

Done.
Disconnecting from 10.10.10.140... done.
Disconnecting from 10.10.10.193... done.

More about the fab tool
The fab tool itself supports many operations. It can be used to list the different tasks inside
fabfile. It can also set the fab environment during execution. For example, you can
define the host that will run the commands on it by using the -H or --hosts switches,
without the need to specify it inside fabfile. This actually sets the env.hosts variable
inside fabfile during execution:

fab -H srv1,srv2

On the other hand, you can define the command that you want to run by using the fab
tool. This is something like Ansible ad hoc mode (we will discuss this in detail in Chapter
13, Ansible for System Administration):

fab -H srv1,srv2 -- ifconfig -a

If you don't want to store the password in clear text inside of the fabfile script, then you
have two options. The first one is to use the SSH identity file (private-key) with the -i
option, which loads the file during connection.

The other option is to force Fabric to prompt you for the session password before
connecting to the remote machine by using the -I option.

Note that this option will overwrite the env.password parameter, if
specified inside fabfile.

The -D switch will disable the known hosts and force Fabric not to load the known_hosts
file from the .ssh directory. You can make Fabric reject connections to the hosts not
defined in the known_hosts file with the -r or --reject-unknown-hosts options.

Running System Administration Tasks with Fabric Chapter 10

[204]

Also, you can list all of the supported tasks inside of the fabfile by using -l or --list,
providing the fabfile name to the fab tool. For example, applying that to the previous script
will generate the following output:

fab -f fabfile_first.py -l
Available commands:

 detect_host_type
 list_all_files_in_directory
 main_tasks

You can see all of the available options and arguments for the fab
command line with the -h switch, or at http:/ ​/​docs. ​fabfile. ​org/ ​en/​1.
14/​usage/ ​fab. ​html.

Discover system health using Fabric
In this use case, we will utilize Fabric to develop a script that executes multiple commands
on remote machines. The goal of the script is to gather two types of output: the discovery
command and the health command. The discovery command gathers the uptime,
hostname, kernel release, and both private and public IP addresses, while the health
command gathers the used memory, CPU utilization, number of spawned processes, and
disk usage. We will design fabfile so that we can scale our script and add more
commands to it:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *
from fabric.context_managers import *
from pprint import pprint

env.hosts = [
 '10.10.10.140', # Ubuntu Machine
 '10.10.10.193', # CentOS Machine
]

env.user = "root"
env.password = "access123"

def get_system_health():

http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html

Running System Administration Tasks with Fabric Chapter 10

[205]

 discovery_commands = {
 "uptime": "uptime | awk '{print $3,$4}'",
 "hostname": "hostname",
 "kernel_release": "uname -r",
 "architecture": "uname -m",
 "internal_ip": "hostname -I",
 "external_ip": "curl -s ipecho.net/plain;echo",

 }
 health_commands = {
 "used_memory": "free | awk '{print $3}' | grep -v free | head -
n1",
 "free_memory": "free | awk '{print $4}' | grep -v shared | head -
n1",
 "cpu_usr_percentage": "mpstat | grep -A 1 '%usr' | tail -n1 | awk
'{print $4}'",
 "number_of_process": "ps -A --no-headers | wc -l",
 "logged_users": "who",
 "top_load_average": "top -n 1 -b | grep 'load average:' | awk
'{print $10 $11 $12}'",
 "disk_usage": "df -h| egrep 'Filesystem|/dev/sda*|nvme*'"

 }

 tasks = [discovery_commands,health_commands]

 for task in tasks:
 for operation,command in task.iteritems():
print("============================={0}=============================".forma
t(operation))
 output = run(command)

Notice that we created two dictionaries: discover_commands and health_commands.
Each one of them contains the Linux commands as a key-value pair. The key represents the
operation, while the value represents the actual Linux command. Then, we created a
tasks list to group both dictionaries.

Finally, we created a nested for loop. The outer loop is used to iterate over the list items.
The inner for loop is to iterate over the key-value pairs. Use the Fabric run() operation to
send the command to the remote hosts:

fab -f fabfile_discoveryAndHealth.py get_system_health
[10.10.10.140] Executing task 'get_system_health'
=============================uptime=============================
[10.10.10.140] run: uptime | awk '{print $3,$4}'
[10.10.10.140] out: 3:26, 2

Running System Administration Tasks with Fabric Chapter 10

[206]

[10.10.10.140] out:

=============================kernel_release=============================
[10.10.10.140] run: uname -r
[10.10.10.140] out: 4.4.0-116-generic
[10.10.10.140] out:

=============================external_ip=============================
[10.10.10.140] run: curl -s ipecho.net/plain;echo
[10.10.10.140] out: <Author_Masked_The_Output_For_Privacy>
[10.10.10.140] out:

=============================hostname=============================
[10.10.10.140] run: hostname
[10.10.10.140] out: ubuntu-machine
[10.10.10.140] out:

=============================internal_ip=============================
[10.10.10.140] run: hostname -I
[10.10.10.140] out: 10.10.10.140
[10.10.10.140] out:

=============================architecture=============================
[10.10.10.140] run: uname -m
[10.10.10.140] out: x86_64
[10.10.10.140] out:

=============================disk_usage=============================
[10.10.10.140] run: df -h| egrep 'Filesystem|/dev/sda*|nvme*'
[10.10.10.140] out: Filesystem Size Used Avail
Use% Mounted on
[10.10.10.140] out: /dev/sda1 472M 58M 390M
13% /boot
[10.10.10.140] out:

=============================used_memory=============================
[10.10.10.140] run: free | awk '{print $3}' | grep -v free | head -n1
[10.10.10.140] out: 75416
[10.10.10.140] out:

=============================logged_users=============================
[10.10.10.140] run: who
[10.10.10.140] out: root pts/0 2018-04-08 23:36 (10.10.10.130)
[10.10.10.140] out: root pts/1 2018-04-08 21:23 (10.10.10.1)
[10.10.10.140] out:

=============================top_load_average=============================
[10.10.10.140] run: top -n 1 -b | grep 'load average:' | awk '{print $10

Running System Administration Tasks with Fabric Chapter 10

[207]

$11 $12}'
[10.10.10.140] out: 0.16,0.03,0.01
[10.10.10.140] out:

=============================cpu_usr_percentage============================
=
[10.10.10.140] run: mpstat | grep -A 1 '%usr' | tail -n1 | awk '{print $4}'
[10.10.10.140] out: 0.02
[10.10.10.140] out:

=============================number_of_process=============================
[10.10.10.140] run: ps -A --no-headers | wc -l
[10.10.10.140] out: 131
[10.10.10.140] out:

=============================free_memory=============================
[10.10.10.140] run: free | awk '{print $4}' | grep -v shared | head -n1
[10.10.10.140] out: 5869268
[10.10.10.140] out:

The same task (get_system_health) will also be executed on the second server, and will
return the output to the Terminal:

[10.10.10.193] Executing task 'get_system_health'
=============================uptime=============================
[10.10.10.193] run: uptime | awk '{print $3,$4}'
[10.10.10.193] out: 3:26, 2
[10.10.10.193] out:

=============================kernel_release=============================
[10.10.10.193] run: uname -r
[10.10.10.193] out: 3.10.0-693.el7.x86_64
[10.10.10.193] out:

=============================external_ip=============================
[10.10.10.193] run: curl -s ipecho.net/plain;echo
[10.10.10.193] out: <Author_Masked_The_Output_For_Privacy>
[10.10.10.193] out:

=============================hostname=============================
[10.10.10.193] run: hostname
[10.10.10.193] out: controller329
[10.10.10.193] out:

=============================internal_ip=============================
[10.10.10.193] run: hostname -I

Running System Administration Tasks with Fabric Chapter 10

[208]

[10.10.10.193] out: 10.10.10.193
[10.10.10.193] out:

=============================architecture=============================
[10.10.10.193] run: uname -m
[10.10.10.193] out: x86_64
[10.10.10.193] out:

=============================disk_usage=============================
[10.10.10.193] run: df -h| egrep 'Filesystem|/dev/sda*|nvme*'
[10.10.10.193] out: Filesystem Size Used Avail Use% Mounted
on
[10.10.10.193] out: /dev/sda1 488M 93M 360M 21% /boot
[10.10.10.193] out:

=============================used_memory=============================
[10.10.10.193] run: free | awk '{print $3}' | grep -v free | head -n1
[10.10.10.193] out: 287048
[10.10.10.193] out:

=============================logged_users=============================
[10.10.10.193] run: who
[10.10.10.193] out: root pts/0 2018-04-08 23:36 (10.10.10.130)
[10.10.10.193] out: root pts/1 2018-04-08 21:23 (10.10.10.1)
[10.10.10.193] out:

=============================top_load_average=============================
[10.10.10.193] run: top -n 1 -b | grep 'load average:' | awk '{print $10
$11 $12}'
[10.10.10.193] out: 0.00,0.01,0.02
[10.10.10.193] out:

=============================cpu_usr_percentage============================
=
[10.10.10.193] run: mpstat | grep -A 1 '%usr' | tail -n1 | awk '{print $4}'
[10.10.10.193] out: 0.00
[10.10.10.193] out:

=============================number_of_process=============================
[10.10.10.193] run: ps -A --no-headers | wc -l
[10.10.10.193] out: 190
[10.10.10.193] out:

=============================free_memory=============================
[10.10.10.193] run: free | awk '{print $4}' | grep -v shared | head -n1
[10.10.10.193] out: 32524912
[10.10.10.193] out:

Running System Administration Tasks with Fabric Chapter 10

[209]

Finally, the fabric module will terminate the established SSH session and disconnect from
the two machines after executing all of the tasks:

Disconnecting from 10.10.10.140... done.
Disconnecting from 10.10.10.193... done.

Note that we could redesign the previous script and make the discovery_commands and
health_commands a Fabric task, then include them within get_system_health(). When
we execute the fab command, we will call get_system_health(), which will execute the
other two functions; we will get the same output as before. The following is a modified
sample script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *
from fabric.context_managers import *
from pprint import pprint

env.hosts = [
 '10.10.10.140', # Ubuntu Machine
 '10.10.10.193', # CentOS Machine
]

env.user = "root"
env.password = "access123"

def discovery_commands():
 discovery_commands = {
 "uptime": "uptime | awk '{print $3,$4}'",
 "hostname": "hostname",
 "kernel_release": "uname -r",
 "architecture": "uname -m",
 "internal_ip": "hostname -I",
 "external_ip": "curl -s ipecho.net/plain;echo",

 }
 for operation, command in discovery_commands.iteritems():
print("============================={0}=============================".forma
t(operation))
 output = run(command)

def health_commands():
 health_commands = {

Running System Administration Tasks with Fabric Chapter 10

[210]

 "used_memory": "free | awk '{print $3}' | grep -v free | head -
n1",
 "free_memory": "free | awk '{print $4}' | grep -v shared | head -
n1",
 "cpu_usr_percentage": "mpstat | grep -A 1 '%usr' | tail -n1 | awk
'{print $4}'",
 "number_of_process": "ps -A --no-headers | wc -l",
 "logged_users": "who",
 "top_load_average": "top -n 1 -b | grep 'load average:' | awk
'{print $10 $11 $12}'",
 "disk_usage": "df -h| egrep 'Filesystem|/dev/sda*|nvme*'"

 }
 for operation, command in health_commands.iteritems():
print("============================={0}=============================".forma
t(operation))
 output = run(command)

def get_system_health():
 discovery_commands()
 health_commands()

Other useful features in Fabric
Fabric has other useful features, such as roles and context managers.

Fabric roles
Fabric can define roles for hosts, and run only the tasks to role members. For example, we
might have a bunch of database servers on which we need to validate whether the MySql
service is up, and other web servers on which we need to validate whether the Apache
service is up. We can group these hosts into roles, and execute functions based on those
roles:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *

env.hosts = [
 '10.10.10.140', # ubuntu machine
 '10.10.10.193', # CentOS machine

Running System Administration Tasks with Fabric Chapter 10

[211]

 '10.10.10.130',
]

env.roledefs = {
 'webapps': ['10.10.10.140','10.10.10.193'],
 'databases': ['10.10.10.130'],
}

env.user = "root"
env.password = "access123"

@roles('databases')
def validate_mysql():
 output = run("systemctl status mariadb")

@roles('webapps')
def validate_apache():
 output = run("systemctl status httpd")

In the preceding example, we used the Fabric decorator roles (imported
from fabric.api) when setting env.roledef. Then, we will assign either webapp or
databases roles to each server (think of the role assignment as tagging a server). This will
give us flexibility to execute the validate_mysql function on servers with database role
only:

fab -f fabfile_roles.py validate_mysql:roles=databases
[10.10.10.130] Executing task 'validate_mysql'
[10.10.10.130] run: systemctl status mariadb
[10.10.10.130] out: ● mariadb.service - MariaDB database server
[10.10.10.130] out: Loaded: loaded
(/usr/lib/systemd/system/mariadb.service; enabled; vendor preset: disabled)
[10.10.10.130] out: Active: active (running) since Sat 2018-04-07
19:47:35 EET; 1 day 2h ago
<output omitted>

Fabric context managers
In our first Fabric script, fabfile_first.py, we have a task that prompts the user for the
directory, then switches to it and prints its content. This is done by using ;, which appends
two Linux commands together. However, running the same won't always work on other
operating systems. That's where the Fabric context manager comes into the picture.

Running System Administration Tasks with Fabric Chapter 10

[212]

The context manager maintains the directory state when executing commands. It usually
runs with Python by using with-statement, and, inside the block, you can write any of
the previous Fabric operations. Let's look at an example to explain the idea:

from fabric.api import *
from fabric.context_managers import *

env.hosts = [
 '10.10.10.140', # ubuntu machine
 '10.10.10.193', # CentOS machine
]

env.user = "root"
env.password = "access123"

def list_directory():
 with cd("/var/log"):
 run("ls")

In the preceding example, first, we globally imported everything inside
fabric.context_managers; then, we used the cd context manager to switch to the
specific directory. We used the Fabric run() operation to execute the ls on that directory.
This is the same as writing cd /var/log ; ls on the SSH session, but it provides a more
Pythonic way to develop your code.

The with statement can be nested. For example, we can rewrite the preceding code with the
following:

def list_directory_nested():
 with cd("/var/"):
 with cd("log"):
 run("ls")

Another useful context manager is the local change directory (LCD). This is the same as the
cd context manager in the previous example, but it works on the local machine that runs
fabfile. We can use it to change the context to a specific directory (for example, to upload
or download a file to/from the remote machine, then change back to the execution directory
automatically):

def uploading_file():
 with lcd("/root/"):
 put("VeryImportantFile.txt")

Running System Administration Tasks with Fabric Chapter 10

[213]

The prefix context manager will accept a command as input and execute it before any
other commands, inside the with block. For example, you can source a file or a Python
virtual env wrapper script before running each command to set up your virtual
environment:

def prefixing_commands():
 with prefix("source ~/env/bin/activate"):
 sudo('pip install wheel')
 sudo("pip install -r requirements.txt")
 sudo("python manage.py migrate")

This is actually equivalent to writing the following command in the Linux shell:

source ~/env/bin/activate && pip install wheel
source ~/env/bin/activate && pip install -r requirements.txt
source ~/env/bin/activate && python manage.py migrate

The final context manager is shell_env(new_path, behavior='append'), which can
alter the shell environmental variables for wrapped commands; so, any calls inside of that
block will take the modified path into consideration:

def change_shell_env():
 with shell_env(test1='val1', test2='val2', test3='val3'):
 run("echo $test1") #This command run on remote host
 run("echo $test2")
 run("echo $test3")
 local("echo $test1") #This command run on local host

Note that after the operation is done, Fabric will restore the old
environments back to the original one.

Summary
Fabric is a fantastic and powerful tool that automates tasks, usually in remote machines. It
integrates well with Python scripts, providing easy access to the SSH suite. You can
develop many fab files for different tasks and integrate them together to create an
automation workflow that includes deploying, restarting, and stopping servers or
processes.

In the next chapter, we will learn about collecting data and generating recurring reports for
system monitoring.

11
Generating System Reports

and System Monitoring
Collecting data and generating recurring system reports are essential tasks for any system
administrator, and automating these tasks can help us to discover issues early on, in order
to provide solutions for them. In this chapter, we will see some proven methods for
automating data collection from servers and generating that data into formal reports. We
will learn how to manage new and existing users, using Python and Ansible. Also, we will
dive into log analysis and monitoring the system Key Performance Indicators (KPIs). You
can schedule the monitoring scripts to run on a regular basis.

The following topics will be covered in this chapter:

Collecting data from Linux
Managing users in Ansible

Collecting data from Linux
Native Linux commands provide useful data about the current system status and health.
However, each one of those Linux commands and utilities are focused on getting data from
only one aspect of the system. We need to leverage Python modules to get those details
back to the administrator and generate useful system reports.

We will divide the reports into two parts. The first one is getting general information about
the system by using the platform module, while the second part is exploring the hardware
resources in terms of the CPU and memory.

Generating System Reports and System Monitoring Chapter 11

[215]

We will start by leveraging the platform module, which is a built-in library inside of
Python. The platform module contains many methods that can be used to get details
about the system that Python operates on:

import platform
system = platform.system()
print(system)

Running the same script on a Windows machine will result in different outputs, reflecting
the current system. So, when we run it on a Windows PC, we will get Windows as the
output from the script:

Another useful function is uname(), which does the same job as the Linux command
(uname -a): retrieving the machine's hostname, architecture, and kernel, but in a
structured format, so that you can match any value by referring to its index:

import platform
from pprint import pprint
uname = platform.uname()
pprint(uname)

Generating System Reports and System Monitoring Chapter 11

[216]

The first value is the system type, which we get using the system() method, and the
second value is the hostname of the current machine.

You can explore and list all of the available functions inside the platform module by using
autocomplete in PyCharm; you can check the documentation for each function by
pressing CTRL + Q:

The second part of designing our script is using the information made available by the
Linux files to explore the hardware configuration in the Linux machine. Remember that the
CPU, memory, and network information could be accessible from under /proc/; we will
read this information and access it using standard open() function in Python. You can get
more information about the available resources by reading and exploring /proc/.

Script:

This is the first step for importing the platform module. It's needed only for this task:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import platform

This snippet contains the functions used in this exercise; we will design two functions -
 check_feature() and get_value_from_string():

def check_feature(feature,string):
 if feature in string.lower():
 return True
 else:
 return False

Generating System Reports and System Monitoring Chapter 11

[217]

def get_value_from_string(key,string):
 value = "NONE"
 for line in string.split("\n"):
 if key in line:
 value = line.split(":")[1].strip()
 return value

Finally, the following is the main body of the Python script, which contains the Python
logic to get the required information:

cpu_features = []
with open('/proc/cpuinfo') as cpus:
 cpu_data = cpus.read()
 num_of_cpus = cpu_data.count("processor")
 cpu_features.append("Number of Processors: {0}".format(num_of_cpus))
 one_processor_data = cpu_data.split("processor")[1]
 print one_processor_data
 if check_feature("vmx",one_processor_data):
 cpu_features.append("CPU Virtualization: enabled")
 if check_feature("cpu_meltdown",one_processor_data):
 cpu_features.append("Known Bugs: CPU Metldown ")
 model_name = get_value_from_string("model name ",one_processor_data)
 cpu_features.append("Model Name: {0}".format(model_name))

 cpu_mhz = get_value_from_string("cpu MHz",one_processor_data)
 cpu_features.append("CPU MHz: {0}".format((cpu_mhz)))

memory_features = []
with open('/proc/meminfo') as memory:
 memory_data = memory.read()
 total_memory = get_value_from_string("MemTotal",memory_data).replace("
kB","")
 free_memory = get_value_from_string("MemFree",memory_data).replace("
kB","")
 swap_memory = get_value_from_string("SwapTotal",memory_data).replace("
kB","")
 total_memory_in_gb = "Total Memory in GB:
{0}".format(int(total_memory)/1024)
 free_memory_in_gb = "Free Memory in GB:
{0}".format(int(free_memory)/1024)
 swap_memory_in_gb = "SWAP Memory in GB:
{0}".format(int(swap_memory)/1024)
 memory_features =
[total_memory_in_gb,free_memory_in_gb,swap_memory_in_gb]

Generating System Reports and System Monitoring Chapter 11

[218]

 This part is used to print the information obtained from the previous section:

print("============System Information============")

print("""
System Type: {0}
Hostname: {1}
Kernel Version: {2}
System Version: {3}
Machine Architecture: {4}
Python version: {5}
""".format(platform.system(),
 platform.uname()[1],
 platform.uname()[2],
 platform.version(),
 platform.machine(),
 platform.python_version()))

print("============CPU Information============")
print("\n".join(cpu_features))

print("============Memory Information============")
print("\n".join(memory_features))

In the preceding example, the following steps were performed:

First, we opened /proc/cpuinfo and read its contents, then stored the result in1.
cpu_data.
The number of processors inside the file could be found by counting the keyword2.
processor using the count() String function.
Then, we needed to get the options and features available for each processor. For3.
that, we got only one processor entry (since they're usually identical to each
other) and passed it the check_feature() function. This method accepts the
feature that we want to search in one argument, and the other is the processor
data, which will return True if the feature is available in the processor data.
The processor data is available in key-value pairs. So, we designed4.
the get_value_from_string() method, which accepts the key name and will
search for its corresponding value by iterating over the processor data; then, we
will split on the : delimiter for every returned key value pair to get the value
only.

Generating System Reports and System Monitoring Chapter 11

[219]

All of these values are added to the cpu_feature list using the append()5.
method.
We then repeated the same operation with the memory information to get the6.
total, free, and swap memory.
Next, we used the platform's built-in methods, such as system(), uname(), and7.
python_version(), to get information about the system.
At the end, we printed the report that contains the preceding information.8.

The script output can be seen in the following screenshot:

Another way to represent the generated data is to leverage the
matplotlib library that we used in Chapter 5, Extracting Useful Data for
Network Devices, to visualize data over time.

Generating System Reports and System Monitoring Chapter 11

[220]

Sending generated data through email
The report generated in the previous section provides a good overview of the resources
currently on the system. However, we can tweak the script and extend its functionality to
send us an email with all of the details. This is very useful for a Network Operation Center
(NoC) team, which can receive emails from a monitored system based on specific incidents
(HDD failure, high CPU, or dropped packets). Python has a built-in library called smtplib,
where it leverages the Simple Mail Transfer Protocol (SMTP) that is responsible for
sending and receiving emails from mail servers.

This requires that you have local email servers on your machine, or that you use one of the
free online email services, such as Gmail or Outlook. For this example, we will log in to
http:/​/​www.​gmail. ​com using the SMTP and send email with our data.

Without further ado, we will modify our script and add the SMTP support to it.

We will import the required modules into Python. Again, smtplib and platform are
needed for this task:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import smtplib
imp ort platform

 This is the part of the function that contains both the check_feature() and
get_value_from_string() functions:

def check_feature(feature,string):
 if feature in string.lower():
 return True
 else:
 return False

def get_value_from_string(key,string):
 value = "NONE"
 for line in string.split("\n"):
 if key in line:
 value = line.split(":")[1].strip()
 return value

http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com

Generating System Reports and System Monitoring Chapter 11

[221]

Finally, the main body of the Python script is as follows, containing the Python logic to get
the required information:

cpu_features = []
with open('/proc/cpuinfo') as cpus:
 cpu_data = cpus.read()
 num_of_cpus = cpu_data.count("processor")
 cpu_features.append("Number of Processors: {0}".format(num_of_cpus))
 one_processor_data = cpu_data.split("processor")[1]
 if check_feature("vmx",one_processor_data):
 cpu_features.append("CPU Virtualization: enabled")
 if check_feature("cpu_meltdown",one_processor_data):
 cpu_features.append("Known Bugs: CPU Metldown ")
 model_name = get_value_from_string("model name ",one_processor_data)
 cpu_features.append("Model Name: {0}".format(model_name))

 cpu_mhz = get_value_from_string("cpu MHz",one_processor_data)
 cpu_features.append("CPU MHz: {0}".format((cpu_mhz)))

memory_features = []
with open('/proc/meminfo') as memory:
 memory_data = memory.read()
 total_memory = get_value_from_string("MemTotal",memory_data).replace("
kB","")
 free_memory = get_value_from_string("MemFree",memory_data).replace("
kB","")
 swap_memory = get_value_from_string("SwapTotal",memory_data).replace("
kB","")
 total_memory_in_gb = "Total Memory in GB:
{0}".format(int(total_memory)/1024)
 free_memory_in_gb = "Free Memory in GB:
{0}".format(int(free_memory)/1024)
 swap_memory_in_gb = "SWAP Memory in GB:
{0}".format(int(swap_memory)/1024)
 memory_features =
[total_memory_in_gb,free_memory_in_gb,swap_memory_in_gb]

Data_Sent_in_Email = ""
Header = """From: PythonEnterpriseAutomationBot <basim.alyy@gmail.com>
To: To Administrator <basim.alyy@gmail.com>
Subject: Monitoring System Report

"""
Data_Sent_in_Email += Header
Data_Sent_in_Email +="============System Information============"

Data_Sent_in_Email +="""

Generating System Reports and System Monitoring Chapter 11

[222]

System Type: {0}
Hostname: {1}
Kernel Version: {2}
System Version: {3}
Machine Architecture: {4}
Python version: {5}
""".format(platform.system(),
 platform.uname()[1],
 platform.uname()[2],
 platform.version(),
 platform.machine(),
 platform.python_version())

Data_Sent_in_Email +="============CPU Information============\n"
Data_Sent_in_Email +="\n".join(cpu_features)

Data_Sent_in_Email +="\n============Memory Information============\n"
Data_Sent_in_Email +="\n".join(memory_features)

At the end, we need to populate the variables with some values to properly connect to the
gmail server:

fromaddr = 'yyyyyyyyyyy@gmail.com'
toaddrs = 'basim.alyy@gmail.com'
username = 'yyyyyyyyyyy@gmail.com'
password = 'xxxxxxxxxx'
server = smtplib.SMTP('smtp.gmail.com:587')
server.ehlo()
server.starttls()
server.login(username,password)

server.sendmail(fromaddr, toaddrs, Data_Sent_in_Email)
server.quit()

In the preceding example, the following applies:

The first part is the same as the original example, but instead of printing the data1.
to the terminal, we add it to the Data_Sent_in_Email variable.
The Header variable represents the email header containing the sender's address,2.
the recipient's address, and the email's subject.
We use the SMTP() class inside of the smtplib module to connect to the public3.
Gmail SMTP server and negotiate the TTLS connection. This is the default
method when connecting to Gmail servers. We hold the SMTP connection in
the server variable.

Generating System Reports and System Monitoring Chapter 11

[223]

Now, we log in to the server by using the login() method, and finally, we use4.
the sendmail() function to send the email. sendmail() accepts three
arguments: the sender, the recipient, and the email body.
Finally, we close the connection with the server:5.

Script output

Using the time and date modules
Great; so far, we have been able to send custom data generated from our servers through
email. However, there might be a difference in time between the generated data and the
email's delivery time, due to network congestion or a failure in the mail system, or any
other reason. So, we can't depend on the email to correlate the delivery time with the actual
event time.

For that reason, we will use the Python datetime module to follow the current time on the
monitored system. This module can format the time in many attributes, such as year,
month, day, hour, and minute.

Aside from that, the datetime instance from the datetime module is actually a
standalone object in Python (like int, string, boolean, and so on); hence, it has its own
attributes inside of Python.

Generating System Reports and System Monitoring Chapter 11

[224]

To convert the datetime object to a string, you can use the strftime() method, which is
available as an attribute inside of the created object. Also, it provides a method for
formatting the time by using the following directives:

Directive Meaning
%Y Returns the year, from 0001 to 9999
%m Returns the month number
%d Returns the day of the month
%H Returns the hour number, 0-23
%M Returns the minutes, 0-59
%S Returns the seconds,0-59

So, we will tweak our script and add the following snippet to the code:

from datetime import datetime
time_now = datetime.now()
time_now_string = time_now.strftime("%Y-%m-%d %H:%M:%S")
Data_Sent_in_Email += "====Time Now is {0}====\n".format(time_now_string)

First, we imported the datetime class from the datetime module. Then, we created the
time_now object using the datetime class and the now() function, which returns the
current time on the running system. Finally, we used strftime(), with a directive, to
format the time in a specific format and convert it to a string for printing (remember, the
object has a datetime object).

The script's output is as follows:

Generating System Reports and System Monitoring Chapter 11

[225]

Running the script on a regular basis
A final step in the script is to schedule the script to run at a time interval. This can be daily,
weekly, hourly, or at a specific time. This can be done using the cron job on Linux systems.
cron is used to schedule a repeated event, such as cleaning up directories, backing up
databases, rotating logs, or anything else you can think of.

To view the current jobs scheduled, use the following command:

crontab -l

To edit crontab, use the -e switch. If this is the first time you are running cron, you will
be prompted to use your favorite editor (nano or vi).

A typical crontab consists of five stars, each one representing a time entry:

Field Values
Minutes 0-59
Hours 0-23
Day of the month 1-31
Month 1-12
Day of the week 0-6 (Sunday - Saturday)

For example, if you need to schedule a job to run every Friday at 9:00 P.M. you will use the
following entry:

0 21 * * 5 /path/to/command

If you need to have a command every day at 12:00 A.M. (a backup, for example), use the
following cron job:

0 0 * * * /path/to/command

Also, you can schedule the cron to run at every specific interval. For example, if you need
to run a job every 5 minutes, use this cron job:

*/5 * * * * /path/to/command

Back to our script; we can schedule it to run every day at 7:30 AM:

30 7 * * * /usr/bin/python /root/Send_Email.py

Finally, remember to save the cron job before exiting.

Generating System Reports and System Monitoring Chapter 11

[226]

It's better to provide a full command path to Linux, rather than a relative
path, to avoid any potential issues.

Managing users in Ansible
Now, we will discuss how to manage users in different systems.

Linux systems
Ansible provides powerful user management modules to manage different tasks on a
system. We have a chapter dedicated to discussing Ansible (Chapter 13, Ansible for System
Administration), but in this chapter, we will explore its power for managing user accounts
across a company's infrastructure.

Sometimes, companies allow root access to all users, to get rid of the headache of user
management; this is not a good solution in terms of security and auditing. It's the best
practice to give the right permissions to the right users, and to revoke them once users
leave the company.

Ansible provides an unmatched way to manage users across multiple servers, through
either password or password-less (SSH key) access.

There are a few other things that need to be taken into consideration when creating users in
a Linux system. The user must have a shell (such as Bash, CSH, ZSH, and so on) in order to
log in to the server. Also, the user should have a home directory (usually under /home).
Finally, the user must be in a group that determines its privileges and permissions.

Our first example will be creating a user with an SSH key in the remote server, using the ad
hoc command. The key source is at the ansible tower, while we execute the command on
all servers:

ansible all -m copy -a "src=~/id_rsa dest=~/.ssh/id_rsa mode=0600"

The second example is creating a user using the Playbook:

- hosts: localhost
 tasks:
 - name: create a username

Generating System Reports and System Monitoring Chapter 11

[227]

 user:
 name: bassem
 password: "$crypted_value$"
 groups:
 - root
 state: present
 shell: /bin/bash
 createhome: yes
 home: /home/bassem

Let's look at the task's parameters:

In our tasks, we use a user module that contains several parameters, such as
name, that set the username for the user.
The second parameter is password, where we set the user's password, but in a
crypted format. You need to use the mkpasswd command, which prompts you
for the password and will generate the hash value.
groups is a list of groups that the user belongs to; hence, the user will inherit the
permissions. You can use comma-separated values in this field.
state is used to tell Ansible whether the user will be created or deleted.
You can define the user shell used for remote access in the shell parameter.
createhome and home are parameters used to specify the user's home location.

Another parameter is ssh_key_file, which specifies the SSH filename. Also, the
ssh_key_passphrase will specify the passphrase for the SSH key.

Microsoft Windows
Ansible provides the win_user module to manage local Windows user accounts. This is
very useful when creating users on active directory domains or Microsoft SQL databases
(mssql), or when creating default accounts on normal PCs. The following example will
create a user called bassem and give it the password access123. The difference here is that
the password is given in plain text and not in the crypted value, as in the Unix-based
system:

- hosts: localhost
 tasks:
 - name: create user on windows machine
 win_user:
 name: bassem
 password: 'access123'
 password_never_expires: true

Generating System Reports and System Monitoring Chapter 11

[228]

 account_disabled: no
 account_locked: no
 password_expired: no
 state: present
 groups:
 - Administrators
 - Users

The password_never_expires parameter will prevent Windows from expiring the
password after a specific time; this is useful when creating admin and default accounts. On
the other hand, password_expired, if set to yes, will require the user to enter a new
password and change it upon first login.

The groups parameter will add the user from a listed value or comma-separated list of
groups. This will depend on the groups_action parameter, and could be add, replace,
or remove.

Finally, the state will tell Ansible what should be done to the user. This parameter could be
present, absent, or query.

Summary
In this chapter, we learned about collecting data and reports from Linux machines and
alerting through email using time and date modules. We also learned how to manage users
in Ansible.

In the next chapter, we will learn how to interact with DBMS using Python connectors.

12
Interacting with the Database

In previous chapters, we generated several different reports, using many Python utilities
and tools. In this chapter, we will utilize Python libraries to connect to external databases
and submit the data we have generated. This data can then be accessed by external
applications to get information.

Python provides a wide range of libraries and modules that cover managing and working
on popular Database Management Systems (DBMSes), such as MySQL, PostgreSQL, and
Oracle. In this chapter, we will learn how to interact with a DBMS and fill it with our own
data.

 The following topics will be covered in this chapter:

Installing MySQL on an automation server
Accessing the MySQL database from Python

Installing MySQL on an automation server
The first thing that we need to do is set up a database. In the following steps, we will cover
how to install the MySQL database on our automation server, which we created in Chapter
8, Preparing a Lab Environment. Basically, you will need a Linux-based machine (CentOS or
Ubuntu) with an internet connection to download the SQL packages. MySQL is an open
source DBMS that uses a relational database and the SQL language to interact with data. In
CentOS 7, MySQL is replaced with another, forked version, called MariaDB; both have the
same source code, with some enhancements in MariaDB.

Interacting with the Database Chapter 12

[230]

Follow these steps to install MariaDB:

Use the yum package manager (or apt, in the case of Debian-based systems) to1.
download the mariadb-server package, as shown in the following snippet:

yum install mariadb-server -y

Once the installation has completed successfully, start the mariadb daemon.2.
Also, we need to enable it at the operating system startup using the systemd
command:

systemctl enable mariadb ; systemctl start mariadb

Created symlink from /etc/systemd/system/multi-
user.target.wants/mariadb.service to
/usr/lib/systemd/system/mariadb.service.

Validate the database status by running the following command, and make sure3.
that the output contains Active:active (running):

systemctl status mariadb

● mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service;
enabled; vendor preset: disabled)
 Active: active (running) since Sat 2018-04-07 19:47:35 EET; 1min
34s ago

Securing the installation
The next, logical step after installation is securing it. MariaDB includes a security script that
changes the options inside the MySQL configuration files, like creating the root password
for accessing the database and allowing remote access. Run the following commands to
launch the script:

mysql_secure_installation

The first prompt asks you to provide the root password. This root password is not the
Linux root username, but the root password for the MySQL database; since this is a fresh
installation, we have not set it yet, so we will simply press Enter to go to the next step:

Enter current password for root (enter for none): <PRESS_ENTER>

Interacting with the Database Chapter 12

[231]

The script will suggest setting the password for the root. We will accept the suggestion by
pressing Y and entering the new password:

Set root password? [Y/n] Y
New password:EnterpriseAutomation
Re-enter new password:EnterpriseAutomation
Password updated successfully!
Reloading privilege tables..
 ... Success!

The following prompts will suggest removing the anonymous users from administrating
and accessing the database, which is highly recommended:

Remove anonymous users? [Y/n] y
 ... Success!

You can run SQL commands from a remote machine to the database hosted in your
automation servers; this requires you to give a special privilege to root users, so they can
access the database remotely:

Disallow root login remotely? [Y/n] n
 ... skipping.

Finally, we will remove the testing database, which anyone can access, and reload the
privileges tables to ensure that all changes will take effect immediately:

Remove test database and access to it? [Y/n] y
 - Dropping test database...
 ... Success!
 - Removing privileges on test database...
 ... Success!

Reload privilege tables now? [Y/n] y
 ... Success!

Cleaning up...

All done! If you've completed all of the above steps, your MariaDB
installation should now be secure.

Thanks for using MariaDB!

We have finished securing the installation; now, let's validate it.

Interacting with the Database Chapter 12

[232]

Verifying the database installation
The first step after MySQL installation is to validate it. We need to verify that the mysqld
daemon has started and is listening to port 3306. We will do that by running the netstat
command and grep on the listening port:

netstat -antup | grep -i 3306
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 3094/mysqld

This means that the mysqld service can accept incoming connections from any IP over the
port 3306.

If you have iptables running on your machine, you need to add a rule
to INPUT a chain, in order to allow remote hosts to connect to the MySQL
database. Also, validate that SELINUX has the proper policies.

The second verification is through connecting to the database using the mysqladmin utility.
This tool is included in MySQL clients and allows you to execute commands remotely (or
locally) on the MySQL database:

mysqladmin -u root -p ping
Enter password:EnterpriseAutomation

mysqld is alive

Switch Name Meaning
-u Specifies the username.
-p Makes MySQL prompt you with the username's password.

ping Operation name to validate whether the MySQL database is alive or
not.

The output indicates that the MySQL installation has completed successfully, and we're
ready to move to the next step.

Accessing the MySQL database from Python
The Python developer creates the MySQLdb module, which provides a utility to interact and
manage the database from a Python script. This module can be installed using Python's
pip, or with an operating system package manager, such as yum or apt.

Interacting with the Database Chapter 12

[233]

To install the package, use the following command:

yum install MySQL-python

Verify the installation as follows:

[root@AutomationServer ~]# python
Python 2.7.5 (default, Aug 4 2017, 00:39:18)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>

Since the module has imported without any errors, we know that the Python module has
successfully installed.

We will now access the database through the console and create a simple database called
TestingPython, with one table inside it. We will then connect to it from Python:

[root@AutomationServer ~]# mysql -u root -p
Enter password: EnterpriseAutomation
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 12
Server version: 5.5.56-MariaDB MariaDB Server

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]> CREATE DATABASE TestingPython;
Query OK, 1 row affected (0.00 sec)

In the preceding statements, we connected to the database using the MySQL utility, then
used the SQL CREATE command to create a blank, new database.

You can verify the newly created database by using the following commands:

MariaDB [(none)]> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| TestingPython |
| mysql |

Interacting with the Database Chapter 12

[234]

| performance_schema |
+--------------------+
4 rows in set (0.00 sec)

It's not mandatory to write SQL commands in uppercase; however, it's a
best practice, in order to differentiate them from variables and other
operations.

We need to switch to the new database:

MariaDB [(none)]> use TestingPython;
Database changed

Now, execute the following command to create a new table inside the database:

MariaDB [TestingPython]> CREATE TABLE TestTable (id INT PRIMARY KEY, fName
VARCHAR(30), lname VARCHAR(20), Title VARCHAR(10));
Query OK, 0 rows affected (0.00 sec)

When you're creating a table, you should specify the column type. For example, fname is a
string with a maximum of 30 characters, while id is an integer.

Verify the table creation as follows:

MariaDB [TestingPython]> SHOW TABLES;
+-------------------------+
| Tables_in_TestingPython |
+-------------------------+
| TestTable |
+-------------------------+
1 row in set (0.00 sec)

MariaDB [TestingPython]> describe TestTable;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
id	int(11)	NO	PRI	NULL	
fName	varchar(30)	YES		NULL	
lname	varchar(20)	YES		NULL	
Title	varchar(10)	YES		NULL	
+-------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

Interacting with the Database Chapter 12

[235]

Querying the database
At this point, our database is ready for some Python script. Let's create a new Python file
and provide database parameters:

import MySQLdb
SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sql_connection = MySQLdb.connect(SQL_IP,SQL_USERNAME,SQL_PASSWORD,SQL_DB)
print sql_connection

The parameters provided (SQL_IP, SQL_USERNAME, SQL_PASSWORD, and SQL_DB) are
needed to establish the connection and authenticate against the database on port 3306.

The following table mentions the parameters and their meaning:

Parameter Meaning
host The server IP address that has the mysql installation.

user The username with administrative privileges over the connected
database.

passwd
The password created using the mysql_secure_installation
script.

db The database name.

The output will be as follows:

<_mysql.connection open to '10.10.10.130' at 1cfd430>

The returned object indicates that the connection has successfully opened to the database.
Let's use this object to create the SQL cursor that is used to execute the actual commands:

cursor = sql_connection.cursor()
cursor.execute("show tables")

You can have many cursors associated with a single connection, and any change in one
cursor will be immediately reported to other ones, as you have the same connection
opened.

The cursor has two main methods: execute() and fetch*().

Interacting with the Database Chapter 12

[236]

The execute() method is used to send commands to the database and return the query
results, while the fetch*() method has three flavors:

Method Name Description

fetchone() Fetches only one record from the output, regardless of the
number of returned rows.

fetchmany(num) Returns the number of records specified inside the method.
fetchall() Returns all records.

Since fetchall() is a generic method that fetches either one record or all records, we will
use it:

output = cursor.fetchall()
print(output)

python mysql_simple.py
(('TestTable',),)

Inserting records into the database
The MySQLdb module allows us to insert records into the database using the same cursor
operation. Remember that the execute() method can be used for both insertion and
query. Without further ado, we will change our script a bit and provide the following
insert commands:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sql_connection = MySQLdb.connect(SQL_IP,SQL_USERNAME,SQL_PASSWORD,SQL_DB)

employee1 = {
 "id": 1,
 "fname": "Bassim",
 "lname": "Aly",
 "Title": "NW_ENG"
}

Interacting with the Database Chapter 12

[237]

employee2 = {
 "id": 2,
 "fname": "Ahmed",
 "lname": "Hany",
 "Title": "DEVELOPER"
}

employee3 = {
 "id": 3,
 "fname": "Sara",
 "lname": "Mosaad",
 "Title": "QA_ENG"
}

employee4 = {
 "id": 4,
 "fname": "Aly",
 "lname": "Mohamed",
 "Title": "PILOT"
}

employees = [employee1,employee2,employee3,employee4]

cursor = sql_connection.cursor()

for record in employees:
 SQL_COMMAND = """INSERT INTO TestTable(id,fname,lname,Title) VALUES
({0},'{1}','{2}','{3}')""".format(record['id'],record['fname'],record['lnam
e'],record['Title'])

 print SQL_COMMAND
 try:
 cursor.execute(SQL_COMMAND)
 sql_connection.commit()
 except:
 sql_connection.rollback()

sql_connection.close()

In the preceding example, the following applies:

We defined four employee records as a dictionary. Each one has an id, fname,
lname, and title, in keys, with different values for each.
Then, we grouped them using employees, which is a variable of the list type.

Interacting with the Database Chapter 12

[238]

A for loop was created to iterate over the employees list and, inside the loop,
we formatted the insert SQL command and used the execute() method to
push the data to the SQL database. Notice that it's not required to add a
semicolon (;) after the command inside the execute function, as it will be added
automatically.
After each successful execution of the SQL command, the commit() operation
will be used to force the database engine to commit the data; otherwise, the
connection will be rolled back.
Finally, use the close() function to terminate the established SQL connection.

Closing the database connection means that all the cursors are sent to
Python garbage collectors and will be unusable. Also, note that when you
close the connection without committing the changes, it will make the
database engine immediately roll back all transactions.

The script's output is as follows:

python mysql_insert.py
INSERT INTO TestTable(id,fname,lname,Title) VALUES
(1,'Bassim','Aly','NW_ENG')
INSERT INTO TestTable(id,fname,lname,Title) VALUES
(2,'Ahmed','Hany','DEVELOPER')
INSERT INTO TestTable(id,fname,lname,Title) VALUES
(3,'Sara','Mosad','QA_ENG')
INSERT INTO TestTable(id,fname,lname,Title) VALUES
(4,'Aly','Mohamed','PILOT')

You can query the database through the MySQL console to verify that the data has been
submitted to the database:

MariaDB [TestingPython]> select * from TestTable;
+----+--------+---------+-----------+
| id | fName | lname | Title |
+----+--------+---------+-----------+
1	Bassim	Aly	NW_ENG
2	Ahmed	Hany	DEVELOPER
3	Sara	Mosaad	QA_ENG
4	Aly	Mohamed	PILOT
+----+--------+---------+-----------+

Interacting with the Database Chapter 12

[239]

Now, returning to our Python code, we can use the execute() function again; this time,
we use it to select all the data that we inserted inside the TestTable:

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sql_connection = MySQLdb.connect(SQL_IP,SQL_USERNAME,SQL_PASSWORD,SQL_DB)
print sql_connection

cursor = sql_connection.cursor()
cursor.execute("select * from TestTable")

output = cursor.fetchall()
print(output)

The script's output is as follows:

python mysql_show_all.py
((1L, 'Bassim', 'Aly', 'NW_ENG'), (2L, 'Ahmed', 'Hany', 'DEVELOPER'), (3L,
'Sara', 'Mosaa d', 'QA_ENG'), (4L, 'Aly', 'Mohamed', 'PILOT'))

The L character after the id value in the previous example can be resolved
by converting the data to integer again (in Python), using the int()
function.

Another useful attribute inside of the cursor is .rowcount. This attribute will indicate how
many rows are returned as a result of the last .execute() method.

Summary
In this chapter, we learned how to interact with a DBMS using Python connectors. We
installed a MySQL database on our automation server, and then verified it. Then, we
accessed the MySQL DB using a Python script, and performed operations on it.

In the next chapter, we will learn how to use Ansible for system administration.

13
Ansible for System

Administration
In this chapter, we will explore one of the popular automation frameworks used by
thousands of network and system engineers called Ansible, Ansible is used to administrate
servers and network devices over multiple transport protocols such as SSH, Netconf, and
API in order to deliver a reliable infrastructure.

We will start first by learning the terminologies used in ansible, how to construct an
inventory file that contains the infrastructure access details, Building a robust Ansible
playbook using features like conditions, loops, and template rendering.

Ansible belongs to the configuration management class of software; it is used to manage the
configuration life cycle on multiple different devices and servers, making sure that the
same steps are applied on all of them and help to create Infrastructure as a code (IaaC)
environment.

The following topics will be covered in this chapter:

Ansible and its terminology
Installing Ansible on Linux
Using Ansible in ad hoc mode
Create your first playbook
Understanding Ansible conditions, handlers, and loops
Working with Ansible facts
Working with the Ansible template

Ansible for System Administration Chapter 13

[241]

Ansible terminology
Ansible is an automation tool and a complete framework that provides an abstraction layer
based on Python tools. Originally, it was designed to handle task automation. This task
might be executed on a single server or on thousands of servers and ansible will handle
them without any problem; later, Ansible's scope extended to network devices and cloud
providers. Ansible follows the concept of idempotency, wherein Ansible instructions can
run the same task multiple times and always give the same configuration on all devices at
the end, reaching a desired state with minimal changes. For example, if we run Ansible to
upload a file to a specific group of servers, then run it again, Ansible will first validate if the
file already exist in the remote destination as a result a previous execution or not. if it exist,
then the ansible won't upload it

again. This feature called idempotency.

Another aspect of Ansible is that it is agentless. Ansible doesn't require any agents to be
installed in the servers before it runs tasks. It leverages the SSH connection and Python
standard libraries to execute tasks on remote servers and return the output to the Ansible
server. Also, it doesn't create a database to store remote machine information, but depends
on a flat text file called inventory to store all required server information, such as IP
addresses, credentials, and infrastructure categorization. The following is an example of a
simple inventory file:

[all:children]
web-servers
db-servers

[web-servers]
web01 Ansible_ssh_host=192.168.10.10

[db-servers]
db01 Ansible_ssh_host=192.168.10.11
db02 Ansible_ssh_host=192.168.10.12

[all:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[db-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

Ansible for System Administration Chapter 13

[242]

[local]
127.0.0.1 Ansible_connection=local
Ansible_python_interpreter="/usr/bin/python"

Notice that we group together servers that perform the same functions in our infrastructure
(such as database servers, in a group called [db-servers]; the same goes for [web-
servers]). Then, we define a special group, called [all], that combines both groups, in
case we have a task targeted to all of our servers.

The keyword children, in [all:children], means that the entries inside the group are
also groups that contain hosts.

Ansible's ad hoc mode allows users to execute tasks directly from the Terminal, towards
the remote servers. Let's suppose that you want to update specific packages on specific
types of servers, such as databases or web backend servers, to resolve a new bug. At the
same time, you don't want to go all the way to developing a complex playbook to execute a
simple task. By leveraging the ad hoc mode in Ansible, you can execute any command on
the remote servers by typing it on the Ansible host Terminal. Even some modules can be
executed in the Terminal; we will see that in the Using Ansible in ad hoc mode section.

Installing Ansible on Linux
The Ansible package is available on all major Linux distributions. In this section, we will
install it onto both Ubuntu and CentOS machines. The Ansible 2.5 release was used at the
time of developing this book, and it provides support for both Python 2.6 and Python 2.7.
Also, starting from version 2.2, Ansible provides a tech preview for Python 3.5+.

On RHEL and CentOS
You will need to have the EPEL repository installed and enabled before installing Ansible.
To do so, use the following command:

sudo yum install epel-release

Then, proceed with the Ansible package installation, as shown in the following command:

sudo yum install Ansible

Ansible for System Administration Chapter 13

[243]

Ubuntu
First, make sure that your system is up to date, and add the Ansible channel. Finally, install
the Ansible package itself, as shown in the following snippet:

$ sudo apt-get update
$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:Ansible/Ansible
$ sudo apt-get update
$ sudo apt-get install Ansible

For more installation flavors, you can check the official Ansible website (http:/ ​/​docs.
Ansible.​com/​Ansible/ ​latest/ ​installation_ ​guide/ ​intro_ ​installation. ​html?
#installing-​the- ​control- ​machine).

You can validate your installation by running Ansible --version to check the installed
version:

The Ansible configuration files are usually stored in /etc/Ansible, with
the filename Ansible.cfg.

Using Ansible in ad hoc mode
Ansible ad hoc mode is used when you need to execute simple operations on remote
machines, without creating complex and persistent tasks. This is where a user usually starts
when they first work on Ansible, before performing advanced tasks in a playbook.

http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine

Ansible for System Administration Chapter 13

[244]

Executing the ad-hoc command requires two things. First, you will need the host or group
from the inventory file; secondly, you will need the Ansible module that you want to
execute towards the target machine:

First, let's define our hosts and add the CentOS and Ubuntu machines in a1.
separate group:

[all:children]
centos-servers
ubuntu-servers

[centos-servers]
centos-machine01 Ansible_ssh_host=10.10.10.193

[ubuntu-servers]
ubuntu-machine01 Ansible_ssh_host=10.10.10.140

[all:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[centos-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[ubuntu-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[routers]
gateway ansible_ssh_host = 10.10.88.110 ansible_ssh_user=cisco
ansible_ssh_pass=cisco

[local]
127.0.0.1 Ansible_connection=local
Ansible_python_interpreter="/usr/bin/python"

Save this file as hosts, under /root/ or your home directory in the2.
AutomationServer.
Then, run the Ansible command with the ping module:3.

Ansible -i hosts all -m ping

The -i argument will accept the inventory file that we added, while the -m argument will
specify the name of the Ansible module.

Ansible for System Administration Chapter 13

[245]

After running the command, you will get the following output, indicating a failure in
connecting to the remote machine:

ubuntu-machine01 | FAILED! => {
 "msg": "Using a SSH password instead of a key is not possible because
Host Key checking is enabled and sshpass does not support this. Please add
this host's fingerprint to your known_hosts file to manage this host."
}
centos-machine01 | FAILED! => {
 "msg": "Using a SSH password instead of a key is not possible because
Host Key checking is enabled and sshpass does not support this. Please add
this host's fingerprint to your known_hosts file to manage this host."
}

This happened because the remote machines are not inside of the known_hosts of the
Ansible server; it can be solved through two methods.

The first method is SSHing to them manually, which will add the host fingerprint to the
server. Or, you can completely disable host key checking in the Ansible configuration, as
shown in the following snippet:

sed -i -e 's/#host_key_checking = False/host_key_checking = False/g'
/etc/Ansible/Ansible.cfg

sed -i -e 's/# StrictHostKeyChecking ask/ StrictHostKeyChecking no/g'
/etc/ssh/ssh_config

Rerun the Ansible command, and you should get successful output from the three
machines:

127.0.0.1 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
ubuntu-machine01 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
centos-machine01 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

Ansible for System Administration Chapter 13

[246]

The ping module in Ansible does not perform the ICMP operation against
the device. It actually tries to log in to the device by using the SSH with
provided credentials; if the login succeeds, it will return the pong
keyword to the Ansible host.

Another useful module is apt, or yum, which is used to manage the package on either an
Ubuntu or CentOS server. The following example will install the apache2 package on the
Ubuntu machines:

Ansible -i hosts ubuntu-servers -m apt -a "name=apache2 state=present"

The state in the apt module can have the following values:

State Action
absent Removes the package from the system.
present Makes sure that the package is installed on the system.
latest Ensures that the package is in the latest version.

You can access the Ansible module documentation by running Ansible-doc
<module_name>; you will see the full options, with examples, for the module.

The service module is used to manage operation and current status of the service. You
can change the service status to either started, restarted or stopped in the state
option and ansible will run the appropriate command to change the status. In the
meantime, you can configure whether service is enabled at boot time or disabled by
configuring the enabled .

#Ansible -i hosts centos-servers -m service -a "name=httpd state=stopped,
enabled=no"

Also, you can restart the service by providing the service name, with the state set
as restarted:

#Ansible -i hosts centos-servers -m service -a "name=mariadb
state=restarted"

The other way to run Ansible in ad hoc mode is to pass the command directly to Ansible,
using not the built-in modules but the -a argument:

#Ansible -i hosts all -a "ifconfig"

Ansible for System Administration Chapter 13

[247]

You can even reboot the servers by running the reboot command; but this time, we will
only run it against the CentOS servers:

#Ansible -i hosts centos-servers -a "reboot"

Sometimes, you will need to run the command (or the module) using a different user. This
will be useful when you run a script on a remote server with specific permissions assigned
to a user different than the SSH user. In that case, we will add the -u, --become, and --
ask-become-pass (-K) switches. This will make Ansible run the command with the
provided username and prompt you for the user's password:

#Ansible -i hosts ubuntu-servers --become-user bassim --ask-become-pass -a
"cat /etc/sudoers"

How Ansible actually works
Ansible is basically written in Python, However it use it's own DSL (Domain Specific
Language). You can write using this DSL and ansible will convert it to Python on remote
machines to execute tasks. So, it first validates the task syntax and copies the module from
the Ansible host to the remote server, and then executes it on the machine itself over SSH.

The result from the execution is returned back to the Ansible host in a json format, so you
can match any returned values by knowing its key:

Ansible for System Administration Chapter 13

[248]

In the case of network devices where Python is installed on the Network Operating
System (NOS), Ansible uses either an API or netconf, if the network device supports it
(such as Juniper and Cisco Nexus); or, it just executes commands using the paramiko
exec_command() function, and returns the output to the Ansible host. This can be done by
using the raw module, as shown in the following snippet:

Ansible -i hosts routers -m raw -a "show arp"
gateway | SUCCESS | rc=0 >>

Sat Apr 21 01:33:58.391 CAIRO

Address Age Hardware Addr State Type Interface
85.54.41.9 - 45ea.2258.d0a9 Interface ARPA
TenGigE0/2/0/0
10.88.18.1 - d0b7.428b.2814 Satellite ARPA TenGigE0/2/0/0
192.168.100.1 - 00a7.5a3b.4193 Interface ARPA
GigabitEthernet100/0/0/9
192.168.100.2 02:08:03 fc5b.3937.0b00 Dynamic ARPA \

Creating your first playbook
Now the magic party can begin. An Ansible playbook is a set of commands (called tasks)
that need to be executed in order, and it describes the desired state of the hosts after
execution finishes. Think of a playbook as a manual that contains a set of instructions for
how to change the state of an infrastructure; each instruction depends on many built-in
Ansible modules to perform the tasks. For example, you may have a playbook that is used
to build web applications that consist of SQL servers, to act as backend databases and nginx
web servers. The playbook will have a list of tasks to perform against each group of servers,
to change their states from No-Exist to Present, or to Restarted or Absent, if you want
to delete the web app.

Ansible for System Administration Chapter 13

[249]

The power of having the playbook, over the ad hoc commands is that you can use it to
configure and set up your infrastructure everywhere. The same procedure used to create
the dev environment will be used in the production environment. A playbook is used to
create the automation workflow that runs on your infrastructure:

Playbooks are written with YAML, which we discussed in Chapter 6, Configuration
Generator with Python and Jinja2. A playbook consists of multiple plays, executed against a
set of hosts that are defined in the inventory file. The hosts will be converted to a Python
list, and each item inside the list will be called a play. In the preceding example, the db-
servers tasks are some of the plays, and are executed against the db-servers only.
During playbook execution, you can decide to run all of the plays in the file, only a specific
play, or tasks with specific tags, regardless of which play they belong to.

Now, let's look at our first playbook, to get the look and feel of it:

- hosts: centos-servers
 remote_user: root

 tasks:
 - name: Install openssh
 yum: pkg=openssh-server state=installed

 - name: Start the openssh
 service: name=sshd state=started enabled=yes

Ansible for System Administration Chapter 13

[250]

This is a simple playbook, with a single play that contains two tasks:

Install openssh-server.1.
Start the sshd service after installation, and make sure that it's available at the2.
boot time.

Now, we need to apply this to a specific host (or a group of hosts). So, we set the hosts to
be CentOS-servers, defined previously in the inventory file, and we also set the
remote_user to be the root, to ensure that the tasks after it will be executed with root
permissions.

The tasks will consist of the names and the Ansible modules. The name is used to describe
the task. It's not mandatory to provide names for your tasks, but it's recommended, in case
you need to start the execution from a specific task.

The second part is the Ansible module, which is mandatory. In our example, we used the
core module yum to install the openssh-server package onto the target servers. The
second task has the same structure, but this time, we will use another core module, called
service, to start and enable the sshd daemon.

A final note is to watch the indentation for different components inside of Ansible. For
example, the names of the tasks should be on the same level, while the tasks should align
with the hosts on the same line.

Let's run the playbook in our automation server and check the output:

#Ansible-playbook -i hosts first_playbook.yaml

PLAY [centos-servers]
**

TASK [Gathering Facts]

ok: [centos-machine01]

TASK [Install openssh]

ok: [centos-machine01]

TASK [Start the openssh]

ok: [centos-machine01]

Ansible for System Administration Chapter 13

[251]

PLAY RECAP

centos-machine01 : ok=3 changed=0 unreachable=0 failed=0

You can see that the playbook is executed on centos-machine01, and the tasks are
executed sequentially, as defined in the playbook.

YAML requires that you preserve the indentation level and don't mix
between the tabs and spaces; otherwise, it will give an error. Many text
editors and IDEs will convert the tab to a set of white spaces. An example
of that option is shown in the following screenshot, in the notepad++
editor preferences:

Understanding Ansible conditions, handlers,
and loops
In this part of the chapter, we will look at some of the advanced features in the Ansible
playbook.

Ansible for System Administration Chapter 13

[252]

Designing conditions
An Ansible playbook can execute tasks (or skip them) based on the results of specific
conditions inside the task—for example, when you want to install packages on a specific
family of operating systems (Debian or CentOS), or when the operating system is a
particular version, or even when the remote hosts are virtual, not bare metal. This can be
done by using the when clause inside of the task.

Let's enhance the previous playbook and limit the openssh-server installation to only
CentOS based systems, so that it does not give an error when it hits an Ubuntu server that
uses the apt module, not yum.

First, we will add the following two sections to our inventory file, to group the CentOS
and Ubuntu machines in the infra section:

[infra:children]
centos-servers
ubuntu-servers

[infra:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

Then, we will redesign the tasks inside of the playbook to have the when clause, which
limits task execution to only CentOS based machines. This should read as if the remote
machine is CentOS based, then I will execute the task; otherwise, skip:

- hosts: infra
 remote_user: root

 tasks:
 - name: Install openssh
 yum: pkg=openssh-server state=installed
 when: Ansible_distribution == "CentOS"

 - name: Start the openssh
 service: name=sshd state=started enabled=yes
 when: Ansible_distribution == "CentOS"

Ansible for System Administration Chapter 13

[253]

Let's run the playbook:

Ansible-playbook -i hosts using_when.yaml

PLAY [infra]

TASK [Gathering Facts]

ok: [centos-machine01]
ok: [ubuntu-machine01]

TASK [Install openssh]

skipping: [ubuntu-machine01]
ok: [centos-machine01]

TASK [Start the openssh]

skipping: [ubuntu-machine01]
ok: [centos-machine01]

PLAY RECAP

centos-machine01 : ok=3 changed=0 unreachable=0 failed=0
ubuntu-machine01 : ok=1 changed=0 unreachable=0 failed=0

Notice that the playbook first gathers the facts about the remote machines (we will discuss
that later in this chapter), and then checks the operating system. The task will be skipped
when it hits an ubuntu-machine01, and it will run normally on the CentOS.

You can also have multiple conditions that need to be true in order to run the task. For
example, you can have the following playbook, which validates two things—first, that the
machine is based on Debian, and second, that it is a virtual machine, not a baremetal:

- hosts: infra
 remote_user: root

 tasks:
 - name: Install openssh
 apt: pkg=open-vm-tools state=installed
 when:
 - Ansible_distribution == "Debian"
 - Ansible_system_vendor == "VMware, Inc."

Ansible for System Administration Chapter 13

[254]

Running this playbook will result in the following output:

Ansible-playbook -i hosts using_when_1.yaml

PLAY [infra]

TASK [Gathering Facts]

ok: [centos-machine01]
ok: [ubuntu-machine01]

TASK [Install openssh]

skipping: [centos-machine01]
ok: [ubuntu-machine01]

PLAY RECAP

centos-machine01 : ok=1 changed=0 unreachable=0 failed=0
ubuntu-machine01 : ok=2 changed=0 unreachable=0 failed=0

The Ansible when clause also accepts expressions. For example, you can check whether a
specific keyword exists in the returned output (that you saved using the register flag), and,
based on that, execute the task.

The following playbook will validate the OSPF neighbor status. The first task will execute
show ip ospf neighbor on the routers and register the output in a variable called
neighbors. The next task will check for EXSTART or EXCHANGE in the returned output; if
found, it will print a message back to the console:

hosts: routers

tasks:
 - name: "show the ospf neighbor status"
 raw: show ip ospf neighbor
 register: neighbors

 - name: "Validate the Neighbors"
 debug:
 msg: "OSPF neighbors stuck"
 when: ('EXSTART' in neighbors.stdout) or ('EXCHANGE' in
neigbnors.stdout)

Ansible for System Administration Chapter 13

[255]

You can check the facts commonly used in the when clause at http:/ ​/ ​docs. ​Ansible. ​com/
Ansible/​latest/​user_ ​guide/ ​playbooks_ ​conditionals. ​html#commonly- ​used- ​facts.

Creating loops in ansible
Ansible provides many ways to repeat the same task inside a play, but with a different
value each time. For example, when you want to install multiple packages on a server, you
don't need to create a task for each package. Rather, you can create a task that installs a
package and provides a list of package names to the task, and Ansible will iterate over them
until it finishes the installation. To accomplish this, we will need the with_items flag
inside of the task that contains a list, and the variable {{ item }}, which serves as a
placeholder for the items in the list. The playbook will leverage the with_items flag to
iterate over a set of packages and provide them to the yum module, which requires the
name and state of the package:

- hosts: infra
 remote_user: root

 tasks:
 - name: "Modifying Packages"
 yum: name={{ item.name }} state={{ item.state }}
 with_items:
 - { name: python-keyring-5.0-1.el7.noarch, state: absent }
 - { name: python-django, state: absent }
 - { name: python-django-bash-completion, state: absent }
 - { name: httpd, state: present }
 - { name: httpd-tools, state: present }
 - { name: python-qpid, state: present }
 when: Ansible_distribution == "CentOS"

You can hardcode the value of the state to be present; in that case, all of the packages will
be installed. However, in the previous case, with_items will provide the two elements to
the yum module.

http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts

Ansible for System Administration Chapter 13

[256]

The playbook's output is as follows:

Trigger tasks with handlers
Okay; you have installed and removed a series of packages in your system. You have
copied files to/from your server. And you have changed many things in the server by using
an Ansible playbook. Now, you need to restart a few other services, or add some lines to
the files, to complete the configuration of the service. So, you should add a new task, right?
Yes, that's correct. However, Ansible provides another great option, called handlers, which
will not automatically execute when it hits (unlike tasks), but will rather be executed only
when it is called. This provides you with the flexibility to call them upon the execution of
tasks inside the play.

Handlers have the same alignment as the hosts and tasks, and are located at the bottom of
each play. When you need to call a handler, you use the notify flag inside of the original
task, to determine which handler will be executed; Ansible will link them together.

Ansible for System Administration Chapter 13

[257]

Let's look at an example. We will write a playbook that installs and configures the KVM on
the CentOS servers. The KVM requires a few changes after installation, such as loading the
sysctl, enabling the kvm and 802.1q modules, and loading the kvm at boot:

- hosts: centos-servers
 remote_user: root

 tasks:
 - name: "Install KVM"
 yum: name={{ item.name }} state={{ item.state }}
 with_items:
 - { name: qemu-kvm, state: installed }
 - { name: libvirt, state: installed }
 - { name: virt-install, state: installed }
 - { name: bridge-utils, state: installed }

 notify:
 - load sysctl
 - load kvm at boot
 - enable kvm

 handlers:
 - name: load sysctl
 command: sysctl -p

 - name: enable kvm
 command: "{{ item.name }}"
 with_items:
 - {name: modprobe -a kvm}
 - {name: modprobe 8021q}
 - {name: udevadm trigger}

 - name: load kvm at boot
 lineinfile: dest=/etc/modules state=present create=True line={{
item.name }}
 with_items:
 - {name: kvm}

Notice the usage of notify after the installation task. When the task runs, it will notify
three handlers in sequence, so that they will execute. The handlers will run after the task
has successfully executed. That means that if the task has failed to run (for example, the kvm
package was not found, or there's no internet connection to download it), there will be no
changes to your system, and kvm will not be enabled.

Ansible for System Administration Chapter 13

[258]

Another awesome feature of the handler is that it's only run when there's a change in the
task. For example, if you rerun the task, Ansible won't install the kvm package since it's
already installed; it won't call any handlers, as it doesn't detect any changes in the system.

We will add a final note about two modules: lineinfile and command. The first module
is actually inserting or deleting lines from configuration files by using regular expressions;
we used it in order to insert the kvm into /etc/modules, to automatically boot the KVM
when the machine starts. The second module, command, is used to execute a shell command
directly on the device and return the output to the Ansible host.

Working with Ansible facts
Ansible is not only used to deploy and configure remote hosts. It can be used to gather all
kinds of information and facts about them. The facts collection can take significant amount
of time to collect everything from a busy system, but will provide a full view of the target
machine.

The facts that are gathered can be used inside the playbook later, to design a task condition.
For example, we used the when clause to limit the openssh installation to only CentOS-
based systems:

when: Ansible_distribution == "CentOS"

You can enable/disable fact gathering in the Ansible plays by configuring gather_facts
on the same level as hosts and tasks:

- hosts: centos-servers
 gather_facts: yes
 tasks:
 <your tasks go here>

Ansible for System Administration Chapter 13

[259]

Another way to gather facts and print them in Ansible is to use the setup module in the ad
hoc mode. The returned results are in the form of nested dictionaries and lists, to describe
the remote target facts, such as the server architecture, memory, networking settings, OS
version, and so on:

#Ansible -i hosts ubuntu-servers -m setup | less

You can get to a specific value from the facts by using either a dot notation or square
brackets. For example, to get the IPv4 address for eth0, you can use either
Ansible_eth0["ipv4"]["address"] or Ansible_eth0.ipv4.address.

Working with the Ansible template
The last piece of working with Ansible is understanding how it handles the template.
Ansible uses the Jinja2 template, which we discussed in Chapter 6, Configuration Generator
with Python and Jinja2. It fills the parameters with either Ansible facts or the static values
provided in the vars section, or even with the result of a task stored using the register
flag.

Ansible for System Administration Chapter 13

[260]

In the following example, we will build an Ansible playbook that gathers the previous three
cases. First, we define a variable called Header in the vars section, holding a welcome
message as a static value. Then, we enable the gather_facts flag, to get all possible
information from the target machine. Finally, we execute the date command, to get the
current date in the server and store the output in the date_now variable:

- hosts: centos-servers
 vars:
 - Header: "Welcome to Server facts page generated from Ansible
playbook"
 gather_facts: yes
 tasks:
 - name: Getting the current date
 command: date
 register: date_now
 - name: Setup webserver
 yum: pkg=nginx state=installed
 when: Ansible_distribution == "CentOS"

 notify:
 - enable the service
 - start the service

 - name: Copying the index page
 template: src=index.j2 dest=/usr/share/nginx/html/index.html

 handlers:
 - name: enable the service
 service: name=nginx enabled=yes

 - name: start the service
 service: name=nginx state=started

The template module that was used in the preceding playbook will accept a Jinja2 file
named index.j2, located in the same directory of the playbook; it will then provide all of
the values for the jinj2 variables from the three sources we discussed previously. Then, the
rendered file will be stored in a path provided by the dest option, inside the template
module.

The content of index.j2 will be as follows. It will be a simple HTML page that leverages
the jinja2 language to generate a final HTML page:

<html>
<head><title>Hello world</title></head>
<body>

Ansible for System Administration Chapter 13

[261]

{{ Header }}

Facts about the server

Date Now is: {{ date_now.stdout }}

 IPv4 Address: {{ Ansible_default_ipv4['address'] }}
 IPv4 gateway: {{ Ansible_default_ipv4['gateway'] }}
 Hostname: {{ Ansible_hostname }}
 Total Memory: {{ Ansible_memtotal_mb }}
 Operating System Family: {{ Ansible_os_family }}
 System Vendor: {{ Ansible_system_vendor }}

</body>
</html>

Running this playbook will result in installing the nginx web server on the CentOS
machine, and adding an index.html page to it. You can access the page by using the
browser:

You can also utilize the template module to generate network device configurations. The
jinja2 templates used in Chapter 6, Configuration Generator with Python and Jinja2, which
generated the day0 and day1 configurations for the router, can be reused inside of the
Ansible playbook.

https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=322&action=edit#post_33

Ansible for System Administration Chapter 13

[262]

Summary
Ansible is a very powerful tool, used to automate IT infrastructure. It contains many
modules and libraries that cover almost everything in system and network automation,
making software deployment, package management, and configuration management very
easy. While Ansible can execute a single module in ad hoc mode, the real power of Ansible
is in writing and developing playbooks.

14
Creating and Managing

VMware Virtual Machines
For a long long time, virtualization has been an important technology in the IT industry as
it provides an efficient way for hardware resources and allows us to easily manage
application life cycle inside the Virtual Machine (VM). In 2001, VMware released the first
version of the ESXi that could run directly over the commodity off the shelf (COTS)
server while converting it to a resource that could be consumed by multiple separate
virtual machines. In this chapter, we will explore many options available to automate the
building of virtual machine thanks to Python and Ansible.

The following topics will be covered in this chapter:

Setting up the lab environment
Generating a VMX file using Jinja2
VMware Python clients
Using Ansible playbooks to manage instances

Setting up the environment
For this chapter, we will have VMware ESXi version 5.5 installed over a Cisco UCS server
and host a few virtual machines. We need to enable a few things in our ESXi server in order
to expose some external ports to the outside world:

The first thing is to enable both Shell and SSH access to the ESXi console.1.
Basically, ESXi allows you to manage it using the vSphere client (based on C# for
the versions before 5.5.x and based on HTML for version 6 and up). Once we
enable the Shell and SSH access, this will give us the ability to use the CLI to
manage virtual infrastructure and to perform tasks such as creating, deleting,
and customizing the virtual machine.

Creating and Managing VMware Virtual Machines Chapter 14

[264]

Access the ESXi vSphere client and go to Configuration, then choose Security2.
Profiles from the left tab, and finally click on Properties:

A pop-up window will be opened that contains a list of services, statuses, and
various options that can be applied:

Select SSH service and then click on Option. Another pop-up window will be3.
opened.
Choose the first option that reads Start automatically if any ports are open, and4.
stop when all ports are closed under the Startup Policy.
Also, click on Start under Service Commands and hit OK:5.

Creating and Managing VMware Virtual Machines Chapter 14

[265]

Creating and Managing VMware Virtual Machines Chapter 14

[266]

Repeat the same steps again for the ESXi Shell service. This will ensure that both services
will be started once the ESXi server has started and will be opened and ready to accept the
connection. You can test both services, SSH to the ESXi IP address and provide the root
credentials as with SSH connection:

Generating a VMX file using Jinja2
The basic unit for a virtual machine (sometimes called a guest machine) is the VMX file.
This file contains all the settings needed to build the virtual machine in terms of compute
resources, allocated memory, HDD, and networking. Also, it defines the operating system
that runs over the machine so the VMware can install some tools to manage the VM
powering.

An additional file is needed: VMDK. This file stores the actual contents of the VM and acts
as the hard disk for the VM partitions:

Creating and Managing VMware Virtual Machines Chapter 14

[267]

These files (VMX and VMDK) should be stored under the /vmfs/volumes/datastore1
directory in the ESXi Shell and should be inside a directory with the name of the virtual
machine.

Building the VMX template
We are now going to create the template file that we will use to build our virtual machine
in Python. Here's an example of the final running VMX file that we need to generate with
the help of Python and Jinja2:

.encoding = "UTF-8"
vhv.enable = "TRUE"
config.version = "8"
virtualHW.version = "8"

vmci0.present = "TRUE"
hpet0.present = "TRUE"
displayName = "test_jinja2"

Specs
memSize = "4096"
numvcpus = "1"
cpuid.coresPerSocket = "1"

HDD
scsi0.present = "TRUE"
scsi0.virtualDev = "lsilogic"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "test_jinja2.vmdk"
scsi0:0.present = "TRUE"

Floppy
floppy0.present = "false"

CDRom
ide1:0.present = "TRUE"
ide1:0.deviceType = "cdrom-image"
ide1:0.fileName = "/vmfs/volumes/datastore1/ISO Room/CentOS-7-x86_64-
Minimal-1708.iso"

Networking
ethernet0.virtualDev = "e1000"
ethernet0.networkName = "network1"
ethernet0.addressType = "generated"

Creating and Managing VMware Virtual Machines Chapter 14

[268]

ethernet0.present = "TRUE"

VM Type
guestOS = "ubuntu-64"

VMware Tools
toolScripts.afterPowerOn = "TRUE"
toolScripts.afterResume = "TRUE"
toolScripts.beforeSuspend = "TRUE"
toolScripts.beforePowerOff = "TRUE"
tools.remindInstall = "TRUE"
tools.syncTime = "FALSE"

I added some comments inside the file to illustrate the functionality of
each block. However, in the actual file, you won't see these comments.

Let's analyze the file and understand the meaning of some fields:

vhv.enable: When set to True, the ESXi server will expose the CPU host flags to
the guest CPU that allows the running of the VM inside the guest machine
(called nested virtualization).
displayName: The name that will be registered in the ESXi and shown in the
vSphere client.
memsize: This defines the allocated RAM to the VM and should be provided in
megabytes.
numvcpus: This defines the number of physical CPUs allocated to the VM. This
flag is used with cpuid.coresPerSocket so it can define the total number of
vCPU allocated.
scsi0.virtualDev: The type of SCSI controller for the virtual hard drive. It can
be one of four values: BusLogic, LSI Logic parallel, LSI Logic SAS, or VMware
paravirtual.
scsi0:0.fileName: This defines the name of the vmdk (in the same directory)
that will store the actual virtual machine settings.
ide1:0.fileName: The image path that contains the installation binaries
packaged in ISO format. This will make the ESXi connect the ISO image in the
image CD-ROM (IDE device).
ethernet0.networkName: This is the name of the virtual switch in ESXi that
should connect to VM NIC. You can add additional instances of this parameter to
reflect additional network interfaces.

Creating and Managing VMware Virtual Machines Chapter 14

[269]

Now we will build the Jinja2 template; you can review Chapter 6, Configuration Generator
with Python and Jinja2, for the basics of templating using the Jinja2 language:

.encoding = "UTF-8"
vhv.enable = "TRUE"
config.version = "8"
virtualHW.version = "8"

vmci0.present = "TRUE"
hpet0.present = "TRUE"
displayName = "{{vm_name}}"

Specs
memSize = "{{ vm_memory_size }}"
numvcpus = "{{ vm_cpu }}"
cpuid.coresPerSocket = "{{cpu_per_socket}}"

HDD
scsi0.present = "TRUE"
scsi0.virtualDev = "lsilogic"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "{{vm_name}}.vmdk"
scsi0:0.present = "TRUE"

Floppy
floppy0.present = "false"

CDRom
ide1:0.present = "TRUE"
ide1:0.deviceType = "cdrom-image"
ide1:0.fileName = "/vmfs/volumes/datastore1/ISO Room/{{vm_image}}"

Networking
ethernet0.virtualDev = "e1000"
ethernet0.networkName = "{{vm_network1}}"
ethernet0.addressType = "generated"
ethernet0.present = "TRUE"

VM Type
guestOS = "{{vm_guest_os}}" #centos-64 or ubuntu-64

VMware Tools
toolScripts.afterPowerOn = "TRUE"
toolScripts.afterResume = "TRUE"

Creating and Managing VMware Virtual Machines Chapter 14

[270]

toolScripts.beforeSuspend = "TRUE"
toolScripts.beforePowerOff = "TRUE"
tools.remindInstall = "TRUE"
tools.syncTime = "FALSE"

Notice that we removed the static values for the relevant fields, such as diplayName,
memsize, and so on, and replaced them with double curly braces with variable names
inside them. During template rendering from Python, these fields will be replaced with
actual values to construct a valid VMX file.

Now, let's build the Python script that will render the file. Usually, we use the YAML data
serialization in conjunction with Jinja2 to fill in the data of the template. But since we
already explain the YAML concept in Chapter 6, Configuration Generator with Python and
Jinja2, we will get our data from another data source, Microsoft Excel:

Handling Microsoft Excel data
Python has some excellent libraries that can handle the data written in an Excel sheet. We
already used the Excel sheet in Chapter 4, Using Python to Manage Network Devices, when
we needed to automate the netmiko configuration and read the data that described the
infrastructure of the Excel file. Now, we will start by installing the Python xlrd library
inside the Automation Server.

https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=295&action=edit#post_33

Creating and Managing VMware Virtual Machines Chapter 14

[271]

Use the following command to install xlrd:

pip install xlrd

Follow the steps given below:

The XLRD module can open the Microsoft workbook and parse the contents1.
using the open_workbook() method.
Then you can select the sheet that contains your data either by providing the2.
sheet index or the sheet name to the sheet_by_index() or sheet_by_name()
methods respectively.
Finally, you can access the row data by providing the row number to the row()3.
function which converts the row data into a Python list:

Creating and Managing VMware Virtual Machines Chapter 14

[272]

Notice that nrows and ncols are special variables which will be populated once you open
the sheet that counts the number of rows and number of columns inside the sheet. You can
iterate over with the for loop. The number always start from

Back to the virtual machine example. We will have the following data in the Excel sheet,
which reflects the virtual machine settings:

To read the data into Python, we will use the following script:

import xlrd
workbook =
xlrd.open_workbook(r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomat
ionProject/Chapter14_Creating_and_managing_VMware_virtual_machines/vm_inven
tory.xlsx")
sheet = workbook.sheet_by_index(0)
print(sheet.nrows)
print(sheet.ncols)

print(int(sheet.row(1)[1].value))

for row in range(1,sheet.nrows):
 vm_name = sheet.row(row)[0].value
 vm_memory_size = int(sheet.row(row)[1].value)
 vm_cpu = int(sheet.row(row)[2].value)
 cpu_per_socket = int(sheet.row(row)[3].value)
 vm_hdd_size = int(sheet.row(row)[4].value)
 vm_guest_os = sheet.row(row)[5].value
 vm_network1 = sheet.row(row)[6].value

In the previous script, we did the following:

We imported the xlrd module and provided the Excel file to the1.
open_workbook() method to read the Excel sheet and save that to
the workbook variable.
Then, we accessed the first sheet using the sheet_by_index() method and2.
saved the reference to the sheet variable.

Creating and Managing VMware Virtual Machines Chapter 14

[273]

Now we will iterate over the opened sheet and get each field using the row()3.
method. This will allow us to convert the row to a Python list. Since we need
only one value inside the row, we will use the list slice to access the index.
Remember that the list index always starts with zero. We will store that value
into the variable and we will use this variable to populate the Jinja2 template in
the next section.

Generating VMX files
The last part is to generate the VMX files from the Jinja2 template. We will read the data
from the Excel sheet and add it to the empty dictionary, vmx_data. This dictionary will be
passed later to the render() function inside the Jinja2 template. The Python dictionary key
will be the template variable name while the value will be the substituted values that
should be in the file. The final part in the script is to open a file in writing mode inside
the vmx_files directory and write the data into it for each VMX file:

from jinja2 import FileSystemLoader, Environment
import os
import xlrd

print("The script working directory is {}"
.format(os.path.dirname(__file__)))
script_dir = os.path.dirname(__file__)

vmx_env = Environment(
 loader=FileSystemLoader(script_dir),
 trim_blocks=True,
 lstrip_blocks= True
)

workbook = xlrd.open_workbook(os.path.join(script_dir,"vm_inventory.xlsx"))
sheet = workbook.sheet_by_index(0)
print("The number of rows inside the Excel sheet is {}"
.format(sheet.nrows))
print("The number of columns inside the Excel sheet is {}"
.format(sheet.ncols))

vmx_data = {}

for row in range(1,sheet.nrows):
 vm_name = sheet.row(row)[0].value

Creating and Managing VMware Virtual Machines Chapter 14

[274]

 vm_memory_size = int(sheet.row(row)[1].value)
 vm_cpu = int(sheet.row(row)[2].value)
 cpu_per_socket = int(sheet.row(row)[3].value)
 vm_hdd_size = int(sheet.row(row)[4].value)
 vm_guest_os = sheet.row(row)[5].value
 vm_network1 = sheet.row(row)[6].value

 vmx_data["vm_name"] = vm_name
 vmx_data["vm_memory_size"] = vm_memory_size
 vmx_data["vm_cpu"] = vm_cpu
 vmx_data["cpu_per_socket"] = cpu_per_socket
 vmx_data["vm_hdd_size"] = vm_hdd_size
 vmx_data["vm_guest_os"] = vm_guest_os
 if vm_guest_os == "ubuntu-64":
 vmx_data["vm_image"] = "ubuntu-16.04.4-server-amd64.iso"

 elif vm_guest_os == "centos-64":
 vmx_data["vm_image"] = "CentOS-7-x86_64-Minimal-1708.iso"

 elif vm_guest_os == "windows7-64":
 vmx_data["vm_image"] = "windows_7_ultimate_sp1_ x86-x64_bg-en_IE10_
April_2013.iso"

 vmx_data["vm_network1"] = vm_network1

 vmx_data = vmx_env.get_template("vmx_template.j2").render(vmx_data)
 with open(os.path.join(script_dir,"vmx_files/{}.vmx".format(vm_name)),
"w") as f:
 print("Writing Data of {} into directory".format(vm_name))
 f.write(vmx_data)
 vmx_data = {}

The script output is as follows:

Creating and Managing VMware Virtual Machines Chapter 14

[275]

The files are stored under vmx_files and each one contains specific information for the
virtual machine as configured in the excel sheet:

Now, we will use both paramiko and scp libraries to connect to the ESXi Shell and upload
these files under /vmfs/volumes/datastore1. To achieve that, we will first create a
function named upload_and_create_directory() that accepts vm name, hard disk
size, and VMX source file. paramiko will connect to the ESXi server and execute the
required commands which will create both the directory and VMDK under
/vmfs/volumes/datastore1. Finally, we will use SCPClient from the scp module to
upload the source files to the previously created directory and run the registry command to
add the machine to the vSphere client:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import paramiko
from scp import SCPClient
import time

def upload_and_create_directory(vm_name, hdd_size, source_file):

 commands = ["mkdir /vmfs/volumes/datastore1/{0}".format(vm_name),
 "vmkfstools -c {0}g -a lsilogic -d zeroedthick
/vmfs/volumes/datastore1/{1}/{1}.vmdk".format(hdd_size,
vm_name),]
 register_command = "vim-cmd solo/registervm
/vmfs/volumes/datastore1/{0}/{0}.vmx".format(vm_name)
 ipaddr = "10.10.10.115"
 username = "root"
 password = "access123"

Creating and Managing VMware Virtual Machines Chapter 14

[276]

 ssh = paramiko.SSHClient()
 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 ssh.connect(ipaddr, username=username, password=password,
look_for_keys=False, allow_agent=False)

 for cmd in commands:
 try:
 stdin, stdout, stderr = ssh.exec_command(cmd)
 print " DEBUG: ... Executing the command on ESXi
server".format(str(stdout.readlines()))

 except Exception as e:
 print e
 pass
 print " DEBUG: **ERR....unable to execute command"
 time.sleep(2)
 with SCPClient(ssh.get_transport()) as scp:
 scp.put(source_file,
remote_path='/vmfs/volumes/datastore1/{0}'.format(vm_name))
 ssh.exec_command(register_command)
 ssh.close()

We need to define this function before we run theJinja2 template and generate the VMX and
call the function after we save the file to the vmx_files directory and pass the required
arguments to it.

The final code should be as follows:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import paramiko
from scp import SCPClient
import time
from jinja2 import FileSystemLoader, Environment
import os
import xlrd

def upload_and_create_directory(vm_name, hdd_size, source_file):

 commands = ["mkdir /vmfs/volumes/datastore1/{0}".format(vm_name),
 "vmkfstools -c {0}g -a lsilogic -d zeroedthick
/vmfs/volumes/datastore1/{1}/{1}.vmdk".format(hdd_size,
vm_name),]
 register_command = "vim-cmd solo/registervm

Creating and Managing VMware Virtual Machines Chapter 14

[277]

/vmfs/volumes/datastore1/{0}/{0}.vmx".format(vm_name)

 ipaddr = "10.10.10.115"
 username = "root"
 password = "access123"

 ssh = paramiko.SSHClient()
 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 ssh.connect(ipaddr, username=username, password=password,
look_for_keys=False, allow_agent=False)

 for cmd in commands:
 try:
 stdin, stdout, stderr = ssh.exec_command(cmd)
 print " DEBUG: ... Executing the command on ESXi
server".format(str(stdout.readlines()))

 except Exception as e:
 print e
 pass
 print " DEBUG: **ERR....unable to execute command"
 time.sleep(2)
 with SCPClient(ssh.get_transport()) as scp:
 print(" DEBUG: ... Uploading file to the datastore")
 scp.put(source_file,
remote_path='/vmfs/volumes/datastore1/{0}'.format(vm_name))
 print(" DEBUG: ... Register the virtual machine
{}".format(vm_name))
 ssh.exec_command(register_command)

 ssh.close()

print("The script working directory is {}"
.format(os.path.dirname(__file__)))
script_dir = os.path.dirname(__file__)

vmx_env = Environment(
 loader=FileSystemLoader(script_dir),
 trim_blocks=True,
 lstrip_blocks= True
)

workbook = xlrd.open_workbook(os.path.join(script_dir,"vm_inventory.xlsx"))
sheet = workbook.sheet_by_index(0)
print("The number of rows inside the Excel sheet is {}"
.format(sheet.nrows))
print("The number of columns inside the Excel sheet is {}"

Creating and Managing VMware Virtual Machines Chapter 14

[278]

.format(sheet.ncols))

vmx_data = {}

for row in range(1,sheet.nrows):
 vm_name = sheet.row(row)[0].value
 vm_memory_size = int(sheet.row(row)[1].value)
 vm_cpu = int(sheet.row(row)[2].value)
 cpu_per_socket = int(sheet.row(row)[3].value)
 vm_hdd_size = int(sheet.row(row)[4].value)
 vm_guest_os = sheet.row(row)[5].value
 vm_network1 = sheet.row(row)[6].value

 vmx_data["vm_name"] = vm_name
 vmx_data["vm_memory_size"] = vm_memory_size
 vmx_data["vm_cpu"] = vm_cpu
 vmx_data["cpu_per_socket"] = cpu_per_socket
 vmx_data["vm_hdd_size"] = vm_hdd_size
 vmx_data["vm_guest_os"] = vm_guest_os
 if vm_guest_os == "ubuntu-64":
 vmx_data["vm_image"] = "ubuntu-16.04.4-server-amd64.iso"

 elif vm_guest_os == "centos-64":
 vmx_data["vm_image"] = "CentOS-7-x86_64-Minimal-1708.iso"

 elif vm_guest_os == "windows7-64":
 vmx_data["vm_image"] = "windows_7_ultimate_sp1_ x86-x64_bg-en_IE10_
April_2013.iso"

 vmx_data["vm_network1"] = vm_network1

 vmx_data = vmx_env.get_template("vmx_template.j2").render(vmx_data)
 with open(os.path.join(script_dir,"vmx_files/{}.vmx".format(vm_name)),
"w") as f:
 print("Writing Data of {} into directory".format(vm_name))
 f.write(vmx_data)
 print(" DEBUG:Communicating with ESXi server to upload and register
the VM")
 upload_and_create_directory(vm_name,
 vm_hdd_size,
os.path.join(script_dir,"vmx_files","{}.vmx".format(vm_name)))
 vmx_data = {}

Creating and Managing VMware Virtual Machines Chapter 14

[279]

The script output is as follows:

If you check the vSphere client after you run the script, you will find four machines have
been created with the name provided in the Excel sheet:

Creating and Managing VMware Virtual Machines Chapter 14

[280]

Also, you will find the virtual machine customized with settings such as CPUs, Memory,
and connected ISO room:

You can complete your automation workflow in VMware by connecting
the created virtual machine to Cobbler. We covered it in Chapter 8,
Preparing the System Lab Environment. Cobbler will automate the operating
system installation and customization either Windows, CentOS, or
Ubuntu. After that, you can use Ansible, which we covered in Chapter 13,
Ansible for System Administration, to prepare the system in terms of
security, configuration, and installed packages, then deploy your
application after that. This is a full-stack automation that covers things
such as virtual machine creation and getting your application up and
running.

Creating and Managing VMware Virtual Machines Chapter 14

[281]

VMware Python clients
VMware products (ESXi and vCenter, which used to manage ESXi) support receiving
external API requests through the web service. You can execute the same administration
tasks you do on the vSphere client, such as creating a new virtual machine, creating a new
vSwitch, or even controlling the vm status, but this time through the supported API that has
bindings for many languages, such as Python, Ruby, and Go.

vSphere has a special model for the inventory and everything inside it is an object with
specific values. You can access this model and see the actual values for your infrastructure
through the Managed Object Browser (MoB) which gives you access to all object details.
We will use the official Python bindings from VMware (pyvmomi) to interact with this
model and alter the values (or create them) inside the inventory.

It's worth noting that the MoB can be accessed through the web browser by going to
http://<ESXi_server_ip_or_domain>/mob,which will ask you to provide the root
username and password:

Creating and Managing VMware Virtual Machines Chapter 14

[282]

You can click on any of the hyperlinks to see more details and access each leaf inside each
tree or context. For example, click on Content.about to see full details about your server
such as the exact version, build, and full name:

Notice how the table is structured. The first column contains the property name, the second
column is the data type of that property, and, finally, the third column is the actual running
value.

Installing PyVmomi
PyVmomi is available to download either though Python pip or as a system package from
different repos.

For Python installation, use the following command:

pip install -U pyvmomi

Creating and Managing VMware Virtual Machines Chapter 14

[283]

Notice the version downloaded from pip is 6.5.2017.5-1, which correlates with the
vSphere release VMware vSphere 6.5, but this doesn't mean it won't work with older
releases of ESXi. For example, I have VMware vSphere 5.5, which works flawlessly with the
latest pyvmomi version.

For system installation:

yum install pyvmomi -y

The Pyvmomi library uses dynamic types which means features such as
Intelli-Sense and autocomplete features in IDE do not work with it. You
have to rely on documentation and MoB to discover what classes or
methods are needed to get the job done but, once you discover the way it
works, it will be pretty easy to work with.

First steps with pyvmomi
The first thing is you need to do is connect to ESXi MoB by providing the username,
password, and host IP, and start to navigate to the MoB to get the required data. This can
be done by using the SmartConnectNoSSL() method:

from pyVim.connect import SmartConnect, Disconnect,SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root",
pwd='access123')

Creating and Managing VMware Virtual Machines Chapter 14

[284]

Note that there's another method called SmartConnect() and you must provide the SSL
context to it when establishing a connection, otherwise the connection will fail. However,
you can use the following code snippet to request that the SSL does not verify the certificate
and to pass this context to SmartConnect() in the sslCContext argument:

import ssl
import requests
certificate = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
certificate.verify_mode = ssl.CERT_NONE
requests.packages.urllib3.disable_warnings()

For the sake of beverity and to keep our code short, we will use the built-in
SmartConnectNoSSL().

Next, we will start exploring the MoB and get the full name and version of our server in the
about object. Remember, it's located under the content object, so we need to access that
too:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect,SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root",
pwd='access123')

full_name = ESXi_connection.content.about.fullName
version = ESXi_connection.content.about.version
print("Server Full name is {}".format(full_name))
print("ESXi version is {}".format(version))
Disconnect(ESXi_connection)

The output is as follows:

Creating and Managing VMware Virtual Machines Chapter 14

[285]

Great. Now we understand how the API works. Let's get into some serious scripts and
retrieve some details about the deployed virtual machine in our ESXi.

The script is as follows:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect,SmartConnectNoSSL

ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root",
pwd='access123')

datacenter = ESXi_connection.content.rootFolder.childEntity[0] #First
Datacenter in the ESXi\

virtual_machines = datacenter.vmFolder.childEntity #Access the child inside
the vmFolder

print virtual_machines

for machine in virtual_machines:
 print(machine.name)
 try:
 guest_vcpu = machine.summary.config.numCpu
 print(" The Guest vCPU is {}" .format(guest_vcpu))

 guest_os = machine.summary.config.guestFullName
 print(" The Guest Operating System is {}" .format(guest_os))

 guest_mem = machine.summary.config.memorySizeMB
 print(" The Guest Memory is {}" .format(guest_mem))

 ipadd = machine.summary.guest.ipAddress
 print(" The Guest IP Address is {}" .format(ipadd))
 print "================================="
 except:
 print(" Can't get the summary")

Creating and Managing VMware Virtual Machines Chapter 14

[286]

In the previous example, we did the following:

We established the API connection again to MoB by providing the ESXi/vCenter1.
credentials to the SmartConnectNoSSL method.
Then, we accessed the data center object by accessing the content then2.
rootFolder objects and finally childEntity. The returned object was an
iterable so we accessed the first element (the first data center) since we had only
one ESXi in the lab. You could iterate over all data centers to get a list of all
virtual machines in all registered data centers.
The virtual machines can be accessed via the vmFolder and the childEntity.3.
Again, remember the returned output is iteratable and represents the virtual
machine list stored inside the virtual_machines variable:

Creating and Managing VMware Virtual Machines Chapter 14

[287]

We iterated over the virtual_machines object and we query the CPU,4.
Memory, Full name, and IP address of each element (for each virtual machine).
These elements are located under each virtual machine tree in the summary
and config leafs. Here is an example of our AutomationServer settings:

Creating and Managing VMware Virtual Machines Chapter 14

[288]

The script output is as follows:

Note that the python-vm machines that we created early at the beginning
of the chapter are printed in the last screenshot. You can use PyVmomi as
a validation tool that integrates with your automation workflow to
validate whether machines are up and running and to make decisions
based on the returned output.

Changing the virtual machine state
This time we will use the pyvmomi bindings to change the virtual machine state. This will
be done by checking the virtual machine name as we did before; then, we will navigate to
another tree in MoB and get the runtime status. Finally, we will apply either
the PowerOn() or PowerOff() function on the machine depending on its current status.
This will switch the machine state from On to Off and vice versa.

Creating and Managing VMware Virtual Machines Chapter 14

[289]

The script is as follows:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect,SmartConnectNoSSL

ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root",
pwd='access123')

datacenter = ESXi_connection.content.rootFolder.childEntity[0] #First
Datacenter in the ESXi\

virtual_machines = datacenter.vmFolder.childEntity #Access the child inside
the vmFolder

for machine in virtual_machines:
 try:
 powerstate = machine.summary.runtime.powerState
 if "python-vm" in machine.name and powerstate == "poweredOff":
 print(machine.name)
 print(" The Guest Power state is {}".format(powerstate))
 machine.PowerOn()
 print("**Powered On the virtual machine**")

 elif "python-vm" in machine.name and powerstate == "poweredOn":
 print(machine.name)
 print(" The Guest Power state is {}".format(powerstate))
 machine.PowerOff()
 print("**Powered Off the virtual machine**")
 except:
 print(" Can't execute the task")

Disconnect(ESXi_connection)

Creating and Managing VMware Virtual Machines Chapter 14

[290]

The script output is as follows:

Also, you can validate the virtual machine statue from the vSphere client and check the
hosts that start with python-vm*, changing their power state from poweredOff to
poweredOn:

There's more
You can find many useful scripts based on the pyvmomi bindings (in different languages) in
the official VMware repository at GitHub (https:/ ​/​github. ​com/ ​vmware/ ​pyvmomi-
community-​samples/ ​tree/ ​master/ ​samples). The scripts are provided by numerous
contributors who use the tools and test them on a daily basis. Most of the scripts provide
room to enter your configuration (such as ESXi IP address and credentials) without
modifying the script source code by providing it as arguments.

https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples

Creating and Managing VMware Virtual Machines Chapter 14

[291]

Using Ansible playbook to manage
instances
In the last part of VMware automation, we will utilize the Ansible tool to administrate the
VMware infrastructure. Ansible ships with more than 20 VMware modules (http:/ ​/​docs.
ansible.​com/​ansible/ ​latest/ ​modules/ ​list_ ​of_ ​cloud_ ​modules. ​html#vmware), which can
execute many tasks such as managing data centers, clusters, and virtual machines. In older
Ansible versions, Ansible used the pysphere module (which is not official; the author of
the module has not maintained it since 2013) to automate the tasks. However, the newer
version now supports the pyvmomi bindings.

Ansible also supports the VMware SDN product (NSX). Ansible Tower
can be accessed from VMware vRealize Automation (vRA), which allows
for complete workflow integration between different tools.

The following is the Ansible Playbook:

- name: Provision New VM
 hosts: localhost
 connection: local
 vars:
 - VM_NAME: DevOps
 - ESXi_HOST: 10.10.10.115
 - USERNAME: root
 - PASSWORD: access123
 tasks:
 - name: current time
 command: date +%D
 register: current_time
 - name: Check for vSphere access parameters
 fail: msg="Must set vsphere_login and vsphere_password in a Vault"
 when: (USERNAME is not defined) or (PASSWORD is not defined)
 - name: debug vCenter hostname
 debug: msg="vcenter_hostname = '{{ ESXi_HOST }}'"
 - name: debug the time
 debug: msg="Time is = '{{ current_time }}'"

 - name: "Provision the VM"
 vmware_guest:
 hostname: "{{ ESXi_HOST }}"
 username: "{{ USERNAME }}"
 password: "{{ PASSWORD }}"
 datacenter: ha-datacenter

http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware

Creating and Managing VMware Virtual Machines Chapter 14

[292]

 validate_certs: False
 name: "{{ VM_NAME }}"
 folder: /
 guest_id: centos64Guest
 state: poweredon
 force: yes
 disk:
 - size_gb: 100
 type: thin
 datastore: datastore1

 networks:
 - name: network1
 device_type: e1000
mac: ba:ba:ba:ba:01:02
wake_on_lan: True

 - name: network2
 device_type: e1000

 hardware:
 memory_mb: 4096
 num_cpus: 4
 num_cpu_cores_per_socket: 2
 hotadd_cpu: True
 hotremove_cpu: True
 hotadd_memory: True
 scsi: lsilogic
 cdrom:
 type: "iso"
 iso_path: "[datastore1] ISO Room/CentOS-7-x86_64-
Minimal-1708.iso"
 register: result

In the previous playbook, we can see the following:

The first part of the playbook was to define the ESXi host IP and credentials in
the vars section and to use them later in tasks.
Then we wrote a simple validation to fail the playbook if the username or
password was not provided.

Creating and Managing VMware Virtual Machines Chapter 14

[293]

Then, we used the vmware_guest module provided by ansible (https:/ ​/​docs.
ansible. ​com/ ​ansible/ ​2. ​4/ ​vmware_ ​guest_ ​module. ​html) to provision the virtual
machine. Inside this task, we provided the required information, such as disk
size and hardware in term of CPU and memory. Notice that we defined the state
of the virtual machine as poweredon so ansible will power on the virtual
machine after creating it.
Disks, networks, hardware, and CD-ROMs are all keys inside the vmware_guest
module used to describe the virtualized hardware specs needed for spawning the
new VM over the VMware ESXi.

Run the playbook using the following command:

ansible-playbook esxi_create_vm.yml -vv

The following is the screenshot of the Playbook output:

https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html

Creating and Managing VMware Virtual Machines Chapter 14

[294]

You can validate the virtual machine creation and binding with the CentOS ISO file in the
vSphere client:

Creating and Managing VMware Virtual Machines Chapter 14

[295]

You can also change the state of the existing virtual machine and choose from poweredon,
poweredoff, restarted, absent, suspended, shutdownguest, and rebootguest by
changing the value in state inside the playbook.

Summary
VMware products are used widely inside IT infrastructure to provide virtualized
environments for running applications and workloads. At the same time, VMware also
provides API bindings in many languages that can be used to automate administration
tasks. In the next chapter, we will explore another virtualization framework called
OpenStack that relies on the KVM hypervisor from Red Hat.

15
Interacting with the OpenStack

API
For a long time, IT infrastructure depended on commercial software (from vendors such as
VMWare, Microsoft, and Citrix) to provide virtual environments for running workloads
and managing resources (such as computing, storage, and networking). However, IT
industry is moving to cloud era and engineers are migrating workloads and applications to
the cloud (either public or private), and that requires a new framework that is able to
manage all application resources, providing an open and robust API interface to interact
with external calls from other applications.

OpenStack provides an open access and integration to manage all of your computing,
storage, and networking resources, avoiding a vendor lock-in when you're building your
cloud. It can control a large pool of compute nodes, storage arrays, and networking devices,
regardless of the vendor for each resource and provide a seamless integration between all
resources. The core idea of OpenStack is to abstract all configuration applied on the
underlay infrastructure into a project which is responsible for managing the resource. so
you will find a project that manage the compute resources (called Nova) , another project
that provide networking to the instances (neutron) and a projects to interact with different
storage type (Swift and Cinder).

You can find a full list of the current OpenStack projects in this link

https:/​/​www.​OpenStack. ​org/ ​software/ ​project- ​navigator/ ​

Also OpenStack provide unified API access to the application developer and system
administrators to orchestrate the resource creation.

https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/

Interacting with the OpenStack API Chapter 15

[297]

In this chapter, we will explore the new and open world of OpenStack, and will learn how
we can leverage Python and Ansible to interact with it.

The following topics will be covered in this chapter:

Understanding RESTful web services
Setting up the environment
Sending requests to OpenStack
Creating workloads from Python
Managing OpenStack instances using Ansible

Understanding RESTful web services
Representational State Transfer (REST) depends on HTTP protocol to transfer messages
between the client and server. HTTP was originally designed to deliver HTML pages from
web servers (servers) to browsers (clients), when requested. The pages represent a set of
resources that the user wants to access, and are requested by Universal Resource
Identifiers (URIs).

An HTTP request typically contains a method that indicates the type of operation that
needs to be executed on the resource. For example, when visiting a website from your
browser, you can see (in the following screenshot) that the method is GET:

Interacting with the OpenStack API Chapter 15

[298]

The following are the most common HTTP methods, and their usage:

HTTP Method Action
GET The client will ask the server to retrieve the resource.
POST The client will instruct the server to create a new resource.
PUT The client will ask the server to modify/update the resource.
DELETE The client will ask the server to delete the resource.

The application developer can expose certain resources of his application, to be consumed
by the clients in the outside world. The transport protocol that carries the requests from the
clients to servers and returns the responses back is HTTP. It is responsible for securing the
communication and encoding the packet with the appropriate data encoding mechanism
that is accepted by the server, and it is a stateless communication across both of them.

On the other hand, the packet payloads are usually encoded in either XML or JSON, to
represent the structure of the request handled by the server and how the client prefers the
response back.

There are many companies around the world that provide public access to their data for
developers, in real time. For example, the Twitter API (https:/ ​/​developer. ​twitter. ​com/ ​)
provides a data fetch in real time, allowing other developers to consume the data in third-
party applications like ads, searches, and marketing. The same goes for big names like
Google (https:/​/​developers. ​google. ​com/​apis- ​explorer/ ​#p/ ​discovery/ ​v1/​), LinkedIn
(https:/​/​developer. ​linkedin. ​com/ ​), and Facebook (https:/ ​/​developers. ​facebook. ​com/
).

Public access to APIs is usually limited to a specific number of requests,
either per hour of per day, for a single application, in order to not
overwhelm the public resources.

Python provides a large set of tools and libraries to consume the APIs, encode the
messages, and parse the responses. For example, Python has a requests package that can
format and send HTTP requests to external resources. Also, it has tools to parse the
responses in a JSON format and convert them to the standard dictionary in Python.

Python also has many frameworks that can expose your resources to the external world.
Django and Flask are among the best, serving as full stack frameworks.

https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Interacting with the OpenStack API Chapter 15

[299]

Setting up the environment
OpenStack is a free and open source project, used with Infrastructure as a Service (IaaS),
that can control your hardware resources in terms of CPU, memory, and storage and
provide an open framework for many vendors to build and integrate plugins.

To set up our lab, I will use the latest OpenStack-rdo release (at the time of writing),
Queens, and install it onto CentOS 7.4.1708. The installation steps are pretty
straightforward, and can be found at https:/ ​/​www. ​rdoproject. ​org/ ​install/ ​packstack/ ​.

Our environment consists of a machine that has 100 GB storage, 12 vCPU, and 32 GB of
RAM, This server will contains the OpenStack controller, the compute and neutron roles on
the same server. The OpenStack server is connected to the same switch that has our
automation server and in same subnet. Note that this is not always the case in a production
environment, but you need to make sure that your server that runs Python code can reach
the OpenStack.

The lab topology is as follows:

https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/

Interacting with the OpenStack API Chapter 15

[300]

Installing rdo-OpenStack package
The steps for installing rdo-OpenStack on RHEL 7.4 and CentOS are as follows:

On RHEL 7.4
First, make sure that your system is up to date, and then install the rdo-release.rpm
from the website to get the latest version. Finally, install the OpenStack-packstack
package that will automate the OpenStack installation, as shown in the following snippet:

$ sudo yum install -y https://www.rdoproject.org/repos/rdo-release.rpm
$ sudo yum update -y
$ sudo yum install -y OpenStack-packstack

On CentOS 7.4
First, make sure that your system is up to date, and then install the rdoproject to get the
latest version. Finally, install the centos-release-OpenStack-queens package that will
automate the OpenStack installation, as shown in the following snippet:

$ sudo yum install -y centos-release-OpenStack-queens
$ sudo yum update -y
$ sudo yum install -y OpenStack-packstack

Generating answer file
Now, you will need to generate the answer file that contains the deployment parameters.
Most of these parameters are fine on their defaults, but we will change a few things:

packstack --gen-answer-file=/root/EnterpriseAutomation

Editing answer file
Edit the EnterpriseAutomtion file with your favorite editor, and change the following:

CONFIG_DEFAULT_PASSWORD=access123
CONFIG_CEILOMETER_INSTALL=n
CONFIG_AODH_INSTALL=n
CONFIG_KEYSTONE_ADMIN_PW=access123
CONFIG_PROVISION_DEMO=n

Interacting with the OpenStack API Chapter 15

[301]

The CELIOMETER and AODH are an optional projects within OpenStack ecosystem and could
be ignored in lab environment.

Also we setup a KEYSTONE password that used to generate temp token for accessing the
resource using API and used also to access the OpenStack GUI

Run the packstack
Save the file and run the installation through the packstack:

packstack answer-file=EnterpriseAutomation

This command will download the packages from the Queens repository and install the
OpenStack services, then start them. After the installation has completed successfully, the
following message will be printed on the console:

 **** Installation completed successfully ******

Additional information:
 * Time synchronization installation was skipped. Please note that
unsynchronized time on server instances might be problem for some OpenStack
components.
 * File /root/keystonerc_admin has been created on OpenStack client host
10.10.10.150. To use the command line tools you need to source the file.
 * To access the OpenStack Dashboard browse to
http://10.10.10.150/dashboard .
Please, find your login credentials stored in the keystonerc_admin in your
home directory.
 * The installation log file is available at:
/var/tmp/packstack/20180410-155124-CMpsKR/OpenStack-setup.log
 * The generated manifests are available at:
/var/tmp/packstack/20180410-155124-CMpsKR/manifests

Access the OpenStack GUI
You can now access the OpenStack GUI using
http://<server_ip_address>/dashboard. The credentials will be admin and
access123 (depending on what you wrote in CONFIG_KEYSTONE_ADMIN_PW in the previous
steps):

Interacting with the OpenStack API Chapter 15

[302]

Our cloud is now up and running, ready to receive requests.

Sending requests to the OpenStack
keystone
OpenStack contains collections of services that work together to manage the virtual
machine create, read, update, and delete (CRUD) operations. Each service can expose its
resources to be consumed by external requests. For example, the nova service is responsible
for spawning the virtual machine and acts as a hypervisor layer (though it's not a
hypervisor itself, it can control other hypervisors, like KVM and vSphere). Another service
is glance, responsible for hosting the instance images in either an ISO or qcow2 format.
The neutron service is responsible for providing networking services to spawned instances
and ensures that the instances located on different tenants (projects) are isolated from each
other, while instances on the same tenants can reach each others through an overlays
network (VxLAN or GRE).

Interacting with the OpenStack API Chapter 15

[303]

In order to access the APIs of each of the preceding services, you will need to have an
authenticated token that is used for a specific period of time. That's the role of the
keystone, which provides an identity service and manages the roles and permissions of
each user.

First, we need to install the Python bindings on our automation server. These bindings
contain python code used to access each service and authenticate the request with the token
generated from KEYSTONE. Also bindings contains supported operation for each project
(like create/delete/update/list):

yum install -y gcc openssl-devel python-pip python-wheel
pip install python-novaclient
pip install python-neutronclient
pip install python-keystoneclient
pip install python-glanceclient
pip install python-cinderclient
pip install python-heatclient
pip install python-OpenStackclient

Note that the Python client name is python-<service_name>client

You can download into your site's global packages or the Python virtualenv
environment. Then, you will need OpenStack admin privileges, which can be found in the
following path, inside the OpenStack server:

cat /root/keystonerc_admin
unset OS_SERVICE_TOKEN
export OS_USERNAME=admin
export OS_PASSWORD='access123'
export OS_AUTH_URL=http://10.10.10.150:5000/v3
export PS1='[\u@\h \W(keystone_admin)]\$ '
export OS_PROJECT_NAME=admin
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_DOMAIN_NAME=Default
export OS_IDENTITY_API_VERSION=3

Interacting with the OpenStack API Chapter 15

[304]

Notice that we will use the keystone version 3 in both the OS_AUTH_URL and
OS_IDENTITY_API_VERSION parameters when we communicate with the OpenStack
keystone service. Most of the Python clients are compatible with older versions, but require
you to change your script a little bit. Other parameters are also required during token
generation, so make sure that you have access to the keystonerc_admin file. Also the
access credentials can be found in OS_USERNAME and OS_PASSWORD in the same file

our Python script will be as follows:

from keystoneauth1.identity import v3
from keystoneauth1 import session

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
 username="admin",
 password="access123",
 project_name="admin",
 user_domain_name="Default",
 project_domain_name="Default")
sess = session.Session(auth=auth, verify=False)
print(sess)

In the preceding example, the following applies:

python-keystoneclient made a request to the keystone API using the v3 class
(which reflects the keystone API version). This class is available inside
of keystoneayth1.identity.
Then, we supplied the full credentials taken from the keystonerc_admin file to
the auth variable.
Finally, we established the session, using the session manager inside of the
keystone client. Notice that we set verify to False, since we don't use the
certificate to generate the token. Otherwise, you can supply the certificate path.
The token generated can be used with any service, and it will last for one hour,
then expire. Also, if you change the user role, the token will expire immediately,
without waiting for an hour.

OpenStack administrators can configure the admin_token field inside
the /etc/keystone/keystone.conf file, which never expires.
However, this is not recommended in a production environment, for
security reasons.

Interacting with the OpenStack API Chapter 15

[305]

If you don't want to store the credentials inside the Python script, you can store them in
the ini file and load them using the configparser module. First, create a creds.ini file
in the automation server, and give it appropriate Linux permissions, so it can only be
opened with your own account:

#vim /root/creds.ini

[os_creds]
auth_url="http://10.10.10.150:5000/v3"
username="admin"
password="access123"
project_name="admin"
user_domain_name="Default"
project_domain_name="Default"

The modified script is as follows:

from keystoneauth1.identity import v3
from keystoneauth1 import session
import ConfigParser
config = ConfigParser.ConfigParser()
config.read("/root/creds.ini")
auth = v3.Password(auth_url=config.get("os_creds","auth_url"),
 username=config.get("os_creds","username"),
 password=config.get("os_creds","password"),
 project_name=config.get("os_creds","project_name"),
user_domain_name=config.get("os_creds","user_domain_name"),
project_domain_name=config.get("os_creds","project_domain_name"))
sess = session.Session(auth=auth, verify=False)
print(sess)

The configparser module will parse the creds.ini file and look at the os_creds
section inside the file. Then, it will get the value in front of each parameter by using the
get() method.

The config.get() method will accept two arguments. The first argument is the section
name inside the .ini file, and the second is the parameter name. The method will return
the value associated with the parameter.

This method should provide additional security to your cloud credentials. Another valid
method to secure your file is to load the keystonerc_admin file into the environmental
variables using the Linux source command, and read the credentials using the environ()
method inside of the os module.

Interacting with the OpenStack API Chapter 15

[306]

Creating instances from Python
To get instance up and running, OpenStack instances require three components. The boot
image, which is provided by glance, the network ports, which provided by neutron, and
finally, the compute flavor that defines the number of CPUs, amount of RAM that will be
allocated to the instance and disk size. The flavor is provided by nova project.

Creating the image
We will start by downloading a cirros image to the automation server. cirros is a
lightweight, Linux-based image, used by many OpenStack developers and testers around
the world to validate the functionality of OpenStack services:

#cd /root/ ; wget
http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

Then, we will upload the image to the OpenStack image repository using glanceclient.
Notice that we need to have the keystone token and the session parameter first, in order to
communicate with glance, otherwise, glance won't accept any API requests from us.

The script will be as follows:

from keystoneauth1.identity import v3
from keystoneauth1 import session
from glanceclient import client as gclient
from pprint import pprint

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
 username="admin",
 password="access123",
 project_name="admin",
 user_domain_name="Default",
 project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)

#Upload the image to the Glance
glance = gclient.Client('2', session=sess)

image = glance.images.create(name="CirrosImage",
 container_format='bare',
 disk_format='qcow2',

Interacting with the OpenStack API Chapter 15

[307]

)

glance.images.upload(image.id, open('/root/cirros-0.4.0-x86_64-disk.img',
'rb'))

In the preceding example, the following applies:

Since we are communicating with glance (the image hosting project), we will
import the client from the installed glanceclient module.
The same keystone scripts used to generate the sess that holds the keystone
token.
We created the glance parameter that initializes the client manager with glance
and provide the version (version 2) and the generated token.
You can see all supported API versions by accessing the OpenStack GUI | API
Access tab as in below screenshot. notice also the supported version for each
project.

The glance client manager is designed to operate on the glance OpenStack
service. the manager is instructed to create an image with a name CirrosImage
and disk type is in qcow2 format.

Interacting with the OpenStack API Chapter 15

[308]

Finally, we will open the downloaded image as a binary, using the 'rb' flag, and
will upload it to the created image. Now, glance will import the image to the
newly created file in the image repository.

You can validate that the operation was successful in two ways:

If no error is printed back after executing glance.images.upload(), it means1.
that the request is correctly formatted and has been accepted by the OpenStack
glance API.
Run the glance.images.list() . The returned output will be a generate which2.
you can iterate over it to see more details about the uploaded image:

print("==========================Image
Details==========================")
for image in glance.images.list(name="CirrosImage"):
 pprint(image)

{u'checksum': u'443b7623e27ecf03dc9e01ee93f67afe',
 u'container_format': u'bare',
 u'created_at': u'2018-04-11T03:11:58Z',
 u'disk_format': u'qcow2',
 u'file': u'/v2/images/3c2614b0-e53c-4be1-b99d-bbd9ce14b287/file',
 u'id': u'3c2614b0-e53c-4be1-b99d-bbd9ce14b287',
 u'min_disk': 0,
 u'min_ram': 0,
 u'name': u'CirrosImage',
 u'owner': u'8922dc52984041af8fe22061aaedcd13',
 u'protected': False,
 u'schema': u'/v2/schemas/image',
 u'size': 12716032,
 u'status': u'active',
 u'tags': [],
 u'updated_at': u'2018-04-11T03:11:58Z',
 u'virtual_size': None,
 u'visibility': u'shared'}

Assigning a flavor
Flavors are used to determine the CPU, memory, and storage size of the instance.
OpenStack comes with a predefined set of flavors, with different sizes that range from tiny
to extra large. For the cirros image, we will use the small flavor, which has 2 GB RAM, 1
vCPU, and 20 GB storage. Access to flavors doesn't have a standalone API client; rather, it's
a part of the nova client.

Interacting with the OpenStack API Chapter 15

[309]

You can see all available built-in flavors at OpenStack GUI | Admin | Flavors:

The script will be as follows:

from keystoneauth1.identity import v3
from keystoneauth1 import session
from novaclient import client as nclient
from pprint import pprint

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
 username="admin",
 password="access123",
 project_name="admin",
 user_domain_name="Default",
 project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)

nova = nclient.Client(2.1, session=sess)
instance_flavor = nova.flavors.find(name="m1.small")
print("==========================Flavor Details==========================")
pprint(instance_flavor)

In the preceding script, the following applies:

Since we will communicate with nova (the compute service) to retrieve the
flavor, we will import the novaclient module as nclient.
The same keystone script is used to generate the sess that holds the keystone
token.

Interacting with the OpenStack API Chapter 15

[310]

We created the nova parameter that initialized the client manager with the nova
and provide the version to the client (version 2.1) and the generated token.
Finally, we used the nova.flavors.find() method to locate the desired flavor,
which is m1.small. The name has to match the name in OpenStack exactly,
otherwise it will throw an error.

Creating the network and subnet
Creating the network for the instance requires two things: the network itself, and
associating subnet with it. First, we need to supply the network properties, such as the ML2
driver (Flat, VLAN, VxLAN, and so on), the segmentation ID that differentiates between
the networks running on the same interface, the MTU, and the physical interface, if the
instance traffic needs to traverse external networks. Second, we need to provide the subnet
properties, such as the network CIDR, the gateway IP, The IPAM parameters (DHCP/DNS
server if defined), and which network ID is associated with the subnet as in below
screenshot:

Interacting with the OpenStack API Chapter 15

[311]

Now we will develop a Python script to interact with the neutron project and create a
network with a subnet

from keystoneauth1.identity import v3
from keystoneauth1 import session
import neutronclient.neutron.client as neuclient

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
 username="admin",
 password="access123",
 project_name="admin",
 user_domain_name="Default",
 project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)

neutron = neuclient.Client(2, session=sess)

Create Network

body_network = {'name': 'python_network',
 'admin_state_up': True,
 #'port_security_enabled': False,
 'shared': True,
 # 'provider:network_type': 'vlan|vxlan',
 # 'provider:segmentation_id': 29
 # 'provider:physical_network': None,
 # 'mtu': 1450,
 }
neutron.create_network({'network':body_network})
network_id =
neutron.list_networks(name="python_network")["networks"][0]["id"]

Create Subnet

body_subnet = {
 "subnets":[
 {
 "name":"python_network_subnet",
 "network_id":network_id,
 "enable_dhcp":True,
 "cidr": "172.16.128.0/24",
 "gateway_ip": "172.16.128.1",
 "allocation_pools":[
 {
 "start": "172.16.128.10",

Interacting with the OpenStack API Chapter 15

[312]

 "end": "172.16.128.100"
 }
],
 "ip_version": 4,
 }
]
 }
neutron.create_subnet(body=body_subnet)

In the preceding script, the following applies:

Since we will communicate with neutron (the network service) to create both
the network and associated subnet, we will import the neutronclient module
as the neuclient.
The same keystone script is used to generate the sess that holds the keystone
token used later to access neutron resource.
We will create the neutron parameter that initializes the client manager with
neutron and provide the version to it (version 2) and the generated token.
Then, we created two Python dictionaries, body_network and body_subnet
which hold the message bodies for the network and subnet respectively. Note
that the dictionary keys are static and can't be changed, while the values could be
changed and usually provided from external portal system or Excel sheet,
depending on your deployment. Also, I commented on the parts that are not
necessary during network creation, such as provider:physical_network and
provider:network_type, since our cirros image won't communicate with the
provider network (networks defined outside OpenStack domains) but provided
here for reference.
Finally the subnet and the network associated together by getting first the
network_id through the list_networks() method and access the id and
providing it as a value to network_id key inside the body_subnet variable.

Launching the instance
The final part is to glue everything together. We have the boot image, the instance flavor,
and the network that connects the machine with the other instances. We're ready to launch
the instance using the nova client (remember that nova is responsible for the virtual
machine life cycle and the CRUD operations on the VM):

print("=================Launch The Instance=================")

image_name = glance.images.get(image.id)

Interacting with the OpenStack API Chapter 15

[313]

network1 = neutron.list_networks(name="python_network")
instance_nics = [{'net-id': network1["networks"][0]["id"]}]

server = nova.servers.create(name = "python-instance",
 image = image_name.id,
 flavor = instance_flavor.id,
 nics = instance_nics,)
status = server.status
while status == 'BUILD':
 print("Sleeping 5 seconds till the server status is changed")
 time.sleep(5)
 instance = nova.servers.get(server.id)
 status = instance.status
 print(status)
print("Current Status is: {0}".format(status))

In the preceding script, we used the nova.servers.create() method and passed all of
the information required to spawn the instance(instance name, operating system, flavor
and networks). Additionally, we implemented a polling mechanism that polls the nova
service for the server current status. If the server is still in BUILD phase, then the script will
sleeps for five seconds then poll again. The loop will exit when the server status is changes
to either ACTIVE or FAILURE and will prints the server status at the end.

The script's output is as follows:

Sleeping 5 seconds till the server status is changed
Sleeping 5 seconds till the server status is changed
Sleeping 5 seconds till the server status is changed
Current Status is: ACTIVE

Interacting with the OpenStack API Chapter 15

[314]

Also, you can check the instance from the OpenStack GUI | Compute | Instances:

Managing OpenStack instances from
Ansible
Ansible provides modules that can manage the OpenStack instance life cycle, just like we
did using APIs. You can find the full list of supported modules at http:/ ​/​docs. ​ansible.
com/​ansible/​latest/ ​modules/ ​list_ ​of_ ​cloud_ ​modules. ​html#OpenStack.

All OpenStack modules rely on the Python library called shade (https:/ ​/​pypi. ​python.
org/​pypi/​shade), which provides a wrapper around OpenStack clients.

Once you have installed shade on the automation server, you will have access to the os-*
modules that can manipulate the OpenStack configuration, such as os_image (to handle
OpenStack images), os_network (to create the network), os_subnet (to create and
associate the subnet with the created network), os_nova_flavor (to create flavors, given
the RAM, CPU, and disk), and finally, the os_server module (to bring up the OpenStack
instance).

http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade

Interacting with the OpenStack API Chapter 15

[315]

Shade and Ansible installation
In the automation server, use the Python pip to download and install shade, with all
dependencies:

pip install shade

After installation, you will have shade under the normal site-packages in Python, but
we will use Ansible instead.

Also, you will need to install Ansible in the automation server, if you haven't done it in
previous chapters:

yum install ansible -y

Verify that Ansible has installed successfully by querying the Ansible version from the
command line:

[root@AutomationServer ~]# ansible --version
ansible 2.5.0
 config file = /etc/ansible/ansible.cfg
 configured module search path = [u'/root/.ansible/plugins/modules',
u'/usr/share/ansible/plugins/modules']
 ansible python module location = /usr/lib/python2.7/site-packages/ansible
 executable location = /usr/bin/ansible
 python version = 2.7.5 (default, Aug 4 2017, 00:39:18) [GCC 4.8.5
20150623 (Red Hat 4.8.5-16)]

Building the Ansible playbook
As we saw in Chapter 13, Ansible for Administration, depends on a YAML file to contain
everything you will need to execute against hosts in the inventory. In this case, we will
instruct the playbook to establish a local connection to the shade library on the automation
server, and provide the playbook with the keystonerc_admin credentials that help shade
to send requests to our OpenStack server.

Interacting with the OpenStack API Chapter 15

[316]

The playbook script is as follows:

- hosts: localhost
 vars:
 os_server: '10.10.10.150'
 gather_facts: yes
 connection: local
 environment:
 OS_USERNAME: admin
 OS_PASSWORD: access123
 OS_AUTH_URL: http://{{ os_server }}:5000/v3
 OS_TENANT_NAME: admin
 OS_REGION_NAME: RegionOne
 OS_USER_DOMAIN_NAME: Default
 OS_PROJECT_DOMAIN_NAME: Default

 tasks:
 - name: "Upload the Cirros Image"
 os_image:
 name: Cirros_Image
 container_format: bare
 disk_format: qcow2
 state: present
 filename: /root/cirros-0.4.0-x86_64-disk.img
 ignore_errors: yes

 - name: "CREATE CIRROS_FLAVOR"
 os_nova_flavor:
 state: present
 name: CIRROS_FLAVOR
 ram: 2048
 vcpus: 4
 disk: 35
 ignore_errors: yes

 - name: "Create the Cirros Network"
 os_network:
 state: present
 name: Cirros_network
 external: True
 shared: True
 register: Cirros_network
 ignore_errors: yes

 - name: "Create Subnet for The network Cirros_network"
 os_subnet:

Interacting with the OpenStack API Chapter 15

[317]

 state: present
 network_name: "{{ Cirros_network.id }}"
 name: Cirros_network_subnet
 ip_version: 4
 cidr: 10.10.128.0/18
 gateway_ip: 10.10.128.1
 enable_dhcp: yes
 dns_nameservers:
 - 8.8.8.8
 register: Cirros_network_subnet
 ignore_errors: yes

 - name: "Create Cirros Machine on Compute"
 os_server:
 state: present
 name: ansible_instance
 image: Cirros_Image
 flavor: CIRROS_FLAVOR
 security_groups: default
 nics:
 - net-name: Cirros_network
 ignore_errors: yes

In the playbook, we make use of the os_* modules to upload the image to the OpenStack
glance server, create a new flavor (and not using this built-in), and create the network
with the subnet associated; then, we glue everything together in os_server, which
communicates with the nova server to spawn the machine.

Please note that the hosts will be the localhost (or the machine name that hosts the shade
library), while we added the OpenStack keystone credentials in the environmental
variables.

Running the playbook
Upload the playbook to the automation server and execute the following command to run
it:

ansible-playbook os_playbook.yml

Interacting with the OpenStack API Chapter 15

[318]

The playbook's output will be as follows:

 [WARNING]: No inventory was parsed, only implicit localhost is available

 [WARNING]: provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [localhost]

*

TASK [Gathering Facts]
**
ok: [localhost]

TASK [Upload the Cirros Image]
**
changed: [localhost]

TASK [CREATE CIRROS_FLAVOR]

ok: [localhost]

TASK [Create the Cirros Network]
**
changed: [localhost]

TASK [Create Subnet for The network Cirros_network]

changed: [localhost]

TASK [Create Cirros Machine on Compute]

changed: [localhost]

PLAY RECAP

localhost : ok=6 changed=4 unreachable=0 failed=0

Interacting with the OpenStack API Chapter 15

[319]

You can access the OpenStack GUI to validate that the instance was created from the
Ansible playbook:

Summary
Nowadays, the IT industry is trying to avoid vendor lock-in by moving to the open source
world whenever possible. OpenStack provides a window into this world; many large
organizations and telecom operators are considering moving their workloads to OpenStack,
to build their private clouds in its data center. They can then build their own tools to
interact with the open source APIs provided by OpenStack.

In the next chapter, we will explore another (paid) public Amazon cloud, and will learn
how we can leverage Python to automate instance creation.

16
Automating AWS with Boto3

In previous chapters, we explored how to automate the OpenStack and VMware private
clouds using Python. We will continue on our cloud automation journey by automating one
of the most popular public clouds: Amazon Web Services (AWS). In this chapter, we will
explore how to create Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage
Systems (S3) using Python script.

We will cover the following topics in this chapter:

AWS Python modules
Managing AWS instances
Automating AWS S3 services

AWS Python modules
Amazon EC2 is a scalable computing system that is used to provide virtualization layers for
hosting different virtual machines (such as the nova-compute project in the OpenStack
ecosystem). It can communicate with other services, such as S3, Route 53, and AMI, in order
to instantiate instances. Basically, you can think of EC2 as an abstraction layer above other
hypervisors that are set over the virtual infrastructure manager (such as KVM and
VMware). EC2 will receive the incoming API calls then will translate them into suitable
calls for each hypervisor.

Automating AWS with Boto3 Chapter 16

[321]

The Amazon Machine Image (AMI) is a packaged image system that contains the
operating system and packages needed to start a virtual machine (like Glance in
OpenStack). You can create your own AMI from existing virtual machines and use it when
you need to replicate those machines on other infrastructures, or you can simply choose
from publicly available AMIs on the internet or on the Amazon Marketplace. We will need
to get the AMI ID from the Amazon web console and add it to our Python script.

AWS designed an SDK called Boto3 (https:/ ​/ ​github. ​com/ ​boto/ ​boto3) that allows Python
developers to have scripts and software that interact and consume the APIs of different
services, like Amazon EC2 and Amazon S3. The library was written to provide native
support for Python 2.6.5, 2.7+, and 3.3.

The major Boto3 features are described in the official documentation at https:/ ​/​boto3.
readthedocs.​io/​en/ ​latest/ ​guide/ ​new. ​html, and below are some important features:

Resources: A high-level, object-oriented interface.
Collections: A tool to iterate and manipulate groups of resources.
Clients: A low-level service connection.
Paginators: Automatic paging of responses.
Waiters: A way to suspend execution until a certain state has been reached or a
failure occurs. Each AWS resource has a waiter name that could be accessed
using <resource_name>.waiter_names.

Boto3 installation
A few things are needed before connecting to AWS:

First, you will need an Amazon admin account that has privileges to create,1.
modify, and delete from the infrastructure.
Secondly, install the boto3 Python modules that are used to interact with AWS.2.
You can create a user dedicated to sending API requests by going to the AWS
Identity and Access Management (IAM) console and adding a new user. You
should see the Programmatic access option, available under the Access Type
section.

https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html

Automating AWS with Boto3 Chapter 16

[322]

Now, you will need to assign a policy that allows full access across the Amazon3.
services, such as EC2 and S3. Do that by clicking on Attach existing policy to
user and attaching AmazonEC2FullAccess and AmazonS3FullAccess policies to
the username.
At the end, click on Create user to add the user with the configured options and4.
policies.

You can sign up for a free tier account on AWS, which will give you
access to many services offered by Amazon for up to 12 months. Free
access can be acquired at https:/ ​/​aws. ​amazon. ​com/ ​free/ ​.

When using Python script to manage AWS, the access key ID is used to send API requests
and get the responses back from the API server. We won't use the username or the
password for sending requests, as they're easily captured by others. This information is
obtained by downloading the text file that appears after creating the username. It's
important to keep this file in a safe place and provide a proper Linux permission for it, for
opening and reading file content.

Another method is to create a .aws directory under your home user directory and place
two files under it: credentials and config. The first file will have both the access key ID
and the secret access ID.

~/.aws/credentials appears as follows:

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

The second file will hold user-specific configurations, such as the preferred data center
(zone) that will host the created virtual machines. (This is like the availability zone option
in OpenStack.) In the following example, we are specifying that we want to host our
machines in the us-west-2 data center.

The config file, ~/.aws/config, looks like the following:

[default]
region=us-west-2

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/

Automating AWS with Boto3 Chapter 16

[323]

Now, installing boto3 requires using the usual pip command to get the latest boto3
version:

pip install boto3

To verify that the module has successfully installed, import boto3 in the Python console,
and you shouldn't see any import errors reported:

Managing AWS instances
Now, we're ready to create our first virtual machine using boto3. As we have discussed,
we need the AMI that we will instantiate an instance from. Think of an AMI as a Python
class; creating an instance will create an object from it. We will use the Amazon Linux AMI,
which is a special Linux operating system maintained by Amazon and used for deploying
Linux machines without any extra charges. You can find a full AMI ID, per region, at
https:/​/​aws.​amazon. ​com/ ​amazon- ​linux- ​ami/​:

https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/

Automating AWS with Boto3 Chapter 16

[324]

import boto3
ec2 = boto3.resource('ec2')
instance = ec2.create_instances(ImageId='ami-824c4ee2', MinCount=1,
MaxCount=1, InstanceType='m5.xlarge',
 Placement={'AvailabilityZone': 'us-
west-2'},
)
print(instance[0])

In the preceding example, the following applies:

We imported the boto3 module that we installed previously.1.
Then, we specified a resource type that we wanted to interact with, which is EC2,2.
and assigned that to the ec2 object.

Automating AWS with Boto3 Chapter 16

[325]

Now, we are eligible to use the create_instance() method and provide it3.
with instance parameters, such as ImageID and InstanceType (like flavor in
OpenStack, which determines the instance specs in terms of computing and
memory), and where we should create this instance in the AvailabilityZone.
MinCount and MaxCount determine how far EC2 can go when scaling our4.
instances. For example, when a high CPU has occurred on one of the instances,
EC2 will deploy another instance automatically, to share the loads and keep the
service in a healthy state.
Finally, we printed the instance ID to be used in the next script.5.

The output is as follows:

You can check all valid Amazon EC2 instance types at the following link;
please read them carefully, in order to not be overcharged from choosing
the wrong type: https:/ ​/ ​aws. ​amazon. ​com/ ​ec2/ ​instance- ​types/ ​

Instance termination
The printed ID is used in CRUD operations to manage or terminate the instance later. For
example, we can terminate the instance by using the terminate() method also provided
to the ec2 resource created earlier:

import boto3
ec2 = boto3.resource('ec2')
instance_id = "i-0a81k3ndl29175220"
instance = ec2.Instance(instance_id)
instance.terminate()

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Automating AWS with Boto3 Chapter 16

[326]

Notice that we hardcoded instance_id in the preceding code (which is not always the
case when you need to create a dynamic Python script that can be used in different
environments). We can use other input methods that are available in Python, such as
raw_input(), to take the input from the user or query the available instances in our
accounts and make Python prompt us on which instances need to be terminated. Another
use case is to create a Python script that checks the last login time or the resource
consumption in our instance; if they exceed a specific value, we will terminate the instance.
This is useful in a lab environment, where you don't want to be charged for consuming
additional resources with a malicious or a poorly designed software.

Automating AWS S3 services
The AWS Simple Storage Systems (S3) provides a safe and highly scalable object storage
service. You can use this service to store any amount of data and restore it from anywhere.
The system provides you with a versioning option, so you can roll back to any previous
version of the files. Additionally, it provides the REST web services API, so you can access
it from external applications.

When data comes to S3, S3 will create an object for it, and these objects will be stored
inside Buckets (think of them like folders). You can provide a sophisticated user
permission for each created bucket, and can also control its visibility (public, shared, or
private). The bucket access can be either a policy or an Access Control List (ACL).

The bucket is also stored with metadata that describes the object in key-value pairs, which
you can create and set by HTTP POST methods. Metadata can include the object's name,
size, and date, or any other customized key-values that you want. The user account has a
limit of 100 buckets, but there's no limit on the size of the object hosted inside each bucket.

Creating buckets
The first logical thing to do, when interacting with an AWS S3 service, is create a bucket
that can be used to store files. In that case, we will provide the S3 to the
boto3.resource() . That will tell the boto3 to start the initialization process and will
load required commands to interact with the S3 API system:

import boto3
s3_resource = boto3.resource("s3")

bucket = s3_resource.create_bucket(Bucket="my_first_bucket",
CreateBucketConfiguration={

Automating AWS with Boto3 Chapter 16

[327]

 'LocationConstraint': 'us-west-2'})
print(bucket)

In the preceding example, the following applies:

We imported the boto3 module that we installed previously.1.
Then, we specified a resource type that we wanted to interact with, which is s3,2.
and assigned that to the s3_resource object.
Now, we can use the create_bucket() method inside the resource and provide3.
it with the required parameter to create buckets, such as Bucket, where we can
specify its name. Remember, the bucket name must be unique and cannot have
been used previously. The second parameter is
the CreateBucketConfiguration dictionary, where we set the data center
location for the created bucket.

Uploading a file to a bucket
Now, we need to make use of the created bucket and upload a file to it. Remember, the file
representation inside the bucket is an object. So, boto3 provides some methods that contain
the object as a part of it. We will start by using put_object(). This method will upload a
file to the created bucket and store it as an object:

import boto3
s3_resource = boto3.resource("s3")
bucket = s3_resource.Bucket("my_first_bucket")

with open('~/test_file.txt', 'rb') as uploaded_data:
 bucket.put_object(Body=uploaded_data)

In the preceding example, the following applies:

We imported the boto3 module that we installed previously.1.
Then, we specified a resource type that we wanted to interact with, which is s3,2.
and assigned that to the s3_resource object.
We accessed my_first_bucket through the Bucket() method and assigned the3.
returned value to the bucket variable.
Then, we opened a file using the with clause and named it uploaded_data.4.
Notice that we opened the file as a binary data, using the rb flag.
Finally, we uploaded the binary data to our bucket using the put_object()5.
method provided within the bucket space.

Automating AWS with Boto3 Chapter 16

[328]

Deleting a bucket
To complete the CRUD operation for the bucket, the last thing we need to do is remove the
bucket. This happens through calling the delete() method on our bucket variable, given
that it already exists and we are referencing it by name, in the same manner that we created
it and uploaded data to it. However, delete() may fail when the bucket is not empty. So,
we will use the bucket_objects.all().delete() method to get all of the objects inside
the bucket, then apply the delete() operation on them, and finally, delete the bucket:

import boto3
s3_resource = boto3.resource("s3")
bucket = s3_resource.Bucket("my_first_bucket")
bucket.objects.all().delete()
bucket.delete()

Summary
In this chapter, we learned how to install the Amazon Elastic Compute Cloud (EC2), and
we learned about Boto3 and its installation. We also learned how to automate AWS S3
services.

In the next chapter, we will learn about the SCAPY framework, which is a powerful Python
tool used to build and craft packets and send them on the wire.

17
Using the Scapy Framework

Scapy is powerful Python tool used to build and craft the packets then send them on the
wire. You can build any type of network stream and send it on the wire. It can help you to
test your network using different packet streams and manipulate the response returned
from the source.

We will cover the following topics in this chapter:

Understanding the Scapy framework
Installing Scapy
Generating packets and network streams using Scapy
Capturing and replaying packets

Understanding Scapy
Scapy (https:/​/ ​scapy. ​net) is one of the powerful Python tools that is used to capture,
sniff, analyze, and manipulate network packets. It can also build a packet structure of
layered protocols and inject a wiuthib stream into the network. You can use it to build a
wide number of protocols on top of each other and set the details of each field inside the
protocol, or, better, let Scapy do its magic and choose the appropriate values so that each
one can have a valid frame. Scapy will try to use the default values for packets if not
overridden by users. The following values will be set automatically for each stream:

The IP source is chosen according to the destination and routing table
The checksum is automatically computed
The source Mac is chosen according to the output interface
The Ethernet type and IP protocol are determined by the upper layer

https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net

Using the Scapy Framework Chapter 17

[330]

Scapy can be programmed to inject a frame into a stream and to resend it. You can, for
example, inject a 802.1q VLAN ID into a stream and resend it to execute attacks or analysis
on the network. Also, you can visualize the conversation between two endpoints and graph
it using Graphviz and ImageMagick modules.

Scapy has its own Domain-Specific Language (DSL) that enables the user to describe the
packet that he wants to build or manipulate and to receive the answer in the same
structure. This works and integrates very well with Python built-in data types, such as lists
and dictionaries. We will see in examples that the received packets from the network are
actually a Python list, and we can iterate the normal list functions over them.

Installing Scapy
Scapy supports both Python 2.7.x and 3.4+, starting from Scapy version 2.x. However, for
versions lower than 2.3.3, Scapy needs Python 2.5 and 2.7, or 3.4+ for versions after that.
Since we already installed that latest Python version, it should be fine to run the latest
version of Scapy without a problem.

Also, Scapy has an older version (1.x), which is deprecated and doesn't provide support for
Python 3 and works only on Python 2.4.

Unix-based systems
To get the latest and greatest version, you need to use python pip:

pip install scapy

The output should look something like the following screenshot:

Using the Scapy Framework Chapter 17

[331]

To verify that Scapy is installed successfully, access the Python console and try to import
the scapy module into it. If no import error is reported back to the console then the
installation completed successfully:

Some additional packages are required to visualize the conversation and to capture the
packets. Use the following commands depending on your platform to install the additional
packages:

Installing in Debian and Ubuntu
Run the following command to install additional packages:

sudo apt-get install tcpdump graphviz imagemagick python-gnuplot
python-cryptography python-pyx

Installing in Red Hat/CentOS
Run the following command to install additional packages:

yum install tcpdump graphviz imagemagick python-gnuplot python-
crypto python-pyx -y

You may need to install epel repository on a CentOS-based system and
update the system if you don't find any of the preceding packages
available in the main repository.

Windows and macOS X Support
Scapy is built and design to run on linux-based system. However it also can run on other
operating systems. You can install and port it on both windows ported on both Windows
and macOS, with some limitations on each platform. For a Windows-based system, you
basically need to remove the WinPcap driver and use the Npcap driver instead (don't
install both versions at the same time to avoid any conflict issues). You can read more about
Windows installation at http:/ ​/​scapy. ​readthedocs. ​io/ ​en/ ​latest/ ​installation.
html#windows.

http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows

Using the Scapy Framework Chapter 17

[332]

For macOS X, you will need to install some python bindings and use the libdnet and
libpcap libraries. Full installation steps are available at http:/ ​/​scapy. ​readthedocs. ​io/​en/
latest/​installation. ​html#mac- ​os- ​x.

Generating packets and network streams
using Scapy
As we mentioned before, Scapy has its own DSL language, which is integrated with
python. Also, you can access the Scapy console directly and start to send and receive
packets directly from the Linux shell:

sudo scapy

The output of the preceding command is as follows:

Notice there are a couple of warning messages about some missing optional packages, such
as matplotlib and PyX, but this should be fine and won't affect the Scapy core functions.

We can start first by checking the supported protocols inside scapy. Run the ls() function
to list all supported protocols:

>>> ls()

http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x

Using the Scapy Framework Chapter 17

[333]

The output is quite lengthy and will span multiple pages if posted here, so you can take a
quick look on the Terminal instead to check it.

Now let's develop hello world application and run it using SCAPY. The program will send
a simple ICMP packet to server's gateway. I installed a Wireshark and configured it to
listen to a network interface that will receive a stream from the automation server (which
hosts Scapy).

Now, on the Scapy terminal, execute the following code:

>>> send(IP(dst="10.10.10.1")/ICMP()/"Welcome to Enterprise Automation
Course")

Return to Wireshark, and you should see the communication:

Let's analyze the command that Scapy executes:

Send: This is a built-in function in Scapy Domain Specific Language (DSL) that
instructs Scapy to send a single packet (and doesn't listen for any response back;
it just sends one packet and exits).
IP: Now, inside this class, we will start building packet layers. Starting with the
IP layer, we need to specify the destination host that will receive the packet (in
that case, we use the dst argument to specify the destination). Note also that we
can specify the source IP in the src argument; however, Scapy will consult the
host routing table and find the suitable source IP and put it in the packet. You
can provide additional parameters, such as time to live (TTL), and Scapy will
override the default one.

Using the Scapy Framework Chapter 17

[334]

/ : Although it looks like the normal division operator used in Python, it's used in
Scapy DSL to differentiate between packet layers and stack them over each other.
ICMP(): A built-in class used to create an ICMP packet with a default value. One
of the values that could be provided to the function is the ICMP type, which
determines the message type: echo, echo reply, unreachable, and so on.
Welcome to Enterprise Automation Course: If a string is injected into the ICMP
payload. Scapy will automatically convert it to a suitable format.

Note that we didn't specify the Ethernet layer in the stack and didn't provide any mac
addresses (either source or destination). This is again filled by default in scapy to create a
valid frame. It will automatically check the host ARP table and find the mac address for the
source interface (and destination also, if it exists), them format then into an Ethernet frame.

A final thing to note before moving on to the next example is that you can use the same
ls() function we used before to list all supported protocols to get the default values for
each protocol, then set it to any other value when we call the protocol:

Let's now do something more complex (and evil!). Assume we have two routers that form
VRRP relationships between each other, and we need to to break this relationship to
become the new master, or at least create a flapping issue in the network, as in the
following topology:

Using the Scapy Framework Chapter 17

[335]

Recall that routers configured to run VRRP join to multicast address (255.0.0.18) in order
to receive the advertisements from other routers. The destination MAC address for the
VRRP packet should contain the VRRP group number in last two numbers. Also it contains
the router priority used in election process between routers. We will build a Scapy script
that sends a VRRP announcement with a higher priority than is configured in the network.
This will cause our Scapy server to be elected as the new master:

from scapy.layers.inet import *
from scapy.layers.vrrp import VRRP

vrrp_packet =
Ether(src="00:00:5e:00:01:01",dst="01:00:5e:00:00:30")/IP(src="10.10.10.130
", dst="224.0.0.18")/VRRP(priority=254, addrlist=["10.10.10.1"])
sendp(vrrp_packet, inter=2, loop=1)

In this example:

First we imported some needed layers that we stacked over each other from
the scapy.layers module. For example, the inet module contains the
layers IP() , Ether(), ARP(), ICMP(), and so on.
Also, we will need the VRRP layers, which could be imported from
scapy.layers.vrrp.

Using the Scapy Framework Chapter 17

[336]

Second, we will build a VRRP packet and store it in the vrrp_packet variable.
This packet contains the VRRP group number in the mac address inside ethernet
frame . The multicast address will be inside the IP layer. Also we will configure a
higher priority number inside the VRRP layer. That way we will have a valid
VRRP announcement and router will accept it. We provided each layer
with information such as the destination mac address (VRRP MAC + Group
number) and the multicast IP (225.0.0.18).
Finally, we used the sendp() function and provided it with a crafted
vrrp_packet. The sendp() function will send a packet at layer 2, unlike the
send() function, which we used in the previous example to send packets, but at
layer 3. The sendp() function won't try to resolve the hostname like the send()
function and will only operate at layer 2. Also, since we need to send this
announcement continuously, we configured both loop and inter arguments to
send announcements every 2 seconds.

The script output is:

You can combine this attack with ARP poisoning and VLAN hopping
attacks so you can change the mac address in the layer 2, switch to the
Scapy server MAC address, and perform a man in the middle (MITM)
attack.

Using the Scapy Framework Chapter 17

[337]

Scapy also contains some classes that perform scan. For example, you can execute an ARP
scan on the network range by using arping() and specifying the IP address in regex
format inside it. Scapy will send an ARP request to all hosts on these subnets and inspect
the reply:

from scapy.layers.inet import *
arping("10.10.10.*")

The script output is:

According to received packets, only one host is responding back to SCAPY meaning it's
only host on the scanned subnet. The host mac and IP addresses are listed in the reply also

Capturing and replaying packets
Scapy has the ability to listen to the network interface and capture all incoming packets on
it. It can write it on a pcap file in the same way that tcpdump works, but Scapy provides
additional functions that can read and replay a pcap file, in the network again.

Using the Scapy Framework Chapter 17

[338]

Starting with a simple packet replay, we will instruct Scapy to read a normal pcap file
captured from the network (either using tcpdump or Scapy itself) and send it again to the
network. This is very useful if we need to test the behavior of the network if a specific
traffic pattern travels through it. For example, we may have a network firewall configured
to block FTP communication. We can test the functionality of the firewall by hitting it with
FTP data replayed from Scapy.

In this example, we have the FTP captured pcap file and we need to replay it to the
network:

from scapy.layers.inet import *
from pprint import pprint
pkts = PcapReader("/root/ftp_data.pcap") #should be in wireshark-tcpdump
format

for pkt in pkts:
 pprint(pkt.show())

The PcapReader() will take the pcap file as an input and analyze it to get each packet
alone and add it as an item inside the pkts list. Now we can iterate over the list and show
each packet content.

The script output is:

Also, you can get specific layer information via the get_layer() function that accesses
packet layers. For example, if we were interested in getting the raw data without the header
so we can build the transmitted file, we could use the following script to get the required
data in hex then convert it to ASCII later:

Using the Scapy Framework Chapter 17

[339]

from scapy.layers.inet import *
from pprint import pprint
pkts = PcapReader("/root/ftp_data.pcap") #should be in wireshark-tcpdump
format

ftp_data = b""
for pkt in pkts:
 try:
 ftp_data += pkt.get_layer(Raw).load
 except:
 pass

Notice that we have to surround the get_layer() method with a try-except clause as
some layers don't contain the raw data (such as FTP control messages). Scapy will throw
the error and the script will exit. Also, we can rewrite the script as an if clause that will
add content to ftp_data only if the packet has the raw layer in it.

To avoid any errors while reading the pcap file, make sure you save (or
export) your pcap file as Wireshark/tcpdump format, as shown here, and
not the default format:

Using the Scapy Framework Chapter 17

[340]

Injecting data inside packets
We can manipulate the packet and change its contents before replaying it back to the
network. Since our packets are actually stored as items inside the list, we can iterate over
those items and replace specific information. For example, we can change mac addresses, IP
addresses, or add additional layers to each packet or for specific packets matching a
condition. However, we should note that manipulating packets in specific layers such as
the IP and TCP and changing the content will result in an invalid checksum for the whole
layer and the receiver may drop the packet for that reason.

Scapy has an amazing feature (yes I know, I keep saying amazing many times but Scapy
really is an awesome tool). It will automatically calculate the checksum for us based on the
new content if we delete the original one in the pcap file.

So, we will modify the previous script and change a few packet parameters, then rebuild
the checksum before sending the packets to the network:

from scapy.layers.inet import *
from pprint import pprint
pkts = PcapReader("/root/ftp_data.pcap") #should be in wireshark-tcpdump
format

p_out = []

for pkt in pkts:
 new_pkt = pkt.payload

 try:
 new_pkt[IP].src = "10.10.88.100"
 new_pkt[IP].dst = "10.10.88.1"
 del (new_pkt[IP].chksum)
 del (new_pkt[TCP].chksum)
 except:
 pass

 pprint(new_pkt.show())
 p_out.append(new_pkt)
send(PacketList(p_out), iface="eth0")

Using the Scapy Framework Chapter 17

[341]

In the previous script:

We used the PcapReader() class to read the content of the FTP pcap file and
store the packets in a pkts variable.
Then we iterated over the packet and assigned the payload tonew_pkt so we
could manipulate the content.
Remember, the packet itself is considered as an object from the class. We can
access the src and dst members and set them to any desired values. Here, we
set the destination to the gateway and the source to a different value than the
original packet.
Setting a new IP value will invalidate the checksum, so we deleted both the IP
and TCP checksum using the del keyword. Scapy will recalculate them again
based on the new packet contents.
Finally, we appended the new_pkt to the empty p_out list and sent it using
the send() function. Notice that we can specify the exit interface in the send
function or just leave it and Scapy will consult the host routing table; it will get
the correct exit interface per packet.

The script output is:

Using the Scapy Framework Chapter 17

[342]

Also, if we still run the Wireshark in the gateway, we will notice that Wireshark captures
the ftp packet stream with the checksum value set after recalculation:

Packet sniffing
Scapy has a built-in packet capture function called sniff(). By default, it will monitor all
interfaces and capture all packets if you don't specify any filters or a certain interface:

from scapy.all import *
from pprint import pprint

print("Begin capturing all packets from all interfaces. send ctrl+c to
terminate and print summary")
pkts = sniff()

pprint(pkts.summary())

Using the Scapy Framework Chapter 17

[343]

The script output is:

You can of course provide filters and specific interfaces to monitor whether the condition is
matched. For example, in the preceding output we can see a mix of ICMP, TCP, SSH, and
DHCP traffic hitting all interfaces. If we're interested only in getting ICMP traffic on eth0,
then we can provide the filter and iface arguments to sniff the function, and it will only
filter all traffic and record only the ICMP:

from scapy.all import *
from pprint import pprint

print("Begin capturing all packets from all interfaces. send ctrl+c to
terminate and print summary")
pkts = sniff(iface="eth0", filter="icmp")

pprint(pkts.summary())

The script output is:

Using the Scapy Framework Chapter 17

[344]

Notice how we capture only the ICMP communications on eth0 interfaces, and all other
packets are discarded due to the filter applied on them. The iface value accepts a single
interface that we used in the script or a list of interfaces to monitor them.

One of the advanced features of sniff is stop_filter, which is a Python function applied
to each packet to determine if we have to stop the capture after that packet. For example, if
we set stop_filter = lambda x: x.haslayer(TCP) then we will stop the capture
once we hit a packet with a TCP layer. Also, the store option allows us to store the packets
in the memory (which is by default enabled) or discard them after applying a specific
function on each packet. This is a great feature if you're getting real-time traffic from the
wire to SCAPY and don't want to write them to memory, if you set the store argument to
false inside the sniff function, then SCAPY will apply any custom function you developed
before (to get some information from packet for example or re-send them to different
destination..etc) then won't store the original packet in the memory and will discard it. This
will save some memory resources during sniffing.

Writing the packets to pcap
Finally, we can write our sniffed packets to a standard pcap file and open it with Wireshark
as usual. This happens via a simple wrpcap() function that writes the list of packets to a
pcap file. The wrpcap() function accepts two arguments—the first one is the full path to a
file location, and the second is the packet list captured before using the sniff() function:

from scapy.all import *

print("Begin capturing all packets from all interfaces. send ctrl+c to
terminate and print summary")
pkts = sniff(iface="eth0", filter="icmp")

wrpcap("/root/icmp_packets_eth0.pcap",pkts)

Summary
In this chapter, we learned how to leverage the Scapy framework to build any type of
packet containing any network layer and populated it with our values. Also, we saw how
to capture packets on the interface and replay them.

18
Building a Network Scanner

Using Python
In this chapter, we will build a network scanner that can identify the live hosts on the
network and we will also expand it to include guessing the running operating system on
each host and opened/closed ports. Usually, gathering this information requires multiple
tools and some Linux ninja skills to get the required information but, using Python, we can
build our own network scanner code that includes any tools and we can get a customized
output.

The following topics will be covered in this chapter:

Understanding the network scanner
Building a network scanner with Python
Sharing your code on GitHub

Understanding the network scanner
A network scanner is used to scan a provided range of network IDs in both layer 2 and
layer 3. It can send requests and analyze responses for hundreds of thousands of
computers. Also, you can expand its functionality to show some shared resources, via
Samba and NetBIOS protocols, and the content of unprotected data on servers running
sharing protocols. Another usage for the network scanner in penetration testing is when a
white hat hacker tries to simulate an attack on network resources to find vulnerabilities and
to evaluate company security. The final goal of the penetration test is to generate a report
with all of the weaknesses in the target system so the origin point can reinforce and
enhance security policies against the potential real attack.

Building a Network Scanner Using Python Chapter 18

[346]

Building a network scanner with Python
Python tools provide many native modules and support for working with sockets and
TCP/IP in general. Additionally, Python can use the existing third-party commands
available on the system to initiate the required scan and return the result. This can be done
using the subprocess module that we discussed before, in Chapter 9, Using the Subprocess
Module. A simple example is using Nmap to scan a subnet, as in the following code:

import subprocess
from netaddr import IPNetwork
network = "192.168.1.0/24"
p = subprocess.Popen(["sudo", "nmap", "-sP", network],
stdout=subprocess.PIPE)

for line in p.stdout:
 print(line)

In this example, we can see the following:

At the beginning, we imported the subprocess module to be used in our script.
Then, we defined the network that we want to scan with the network parameter.
Notice that we used the CIDR notation, but we could use the subnet mask
instead and convert that to CIDR notation using the Python netaddr module.
The Popen() class inside subprocess is used to create an object that will send a
regular Nmap command and scan the network. Notice that we added some
flags, -sP, to tweak the Nmap operation and redirected the output to a special
pipe created by subprocess.PIPE.
Finally, we iterated over the created pipe and printed each line.

Building a Network Scanner Using Python Chapter 18

[347]

The script output is as follows:

Access to network ports on Linux requires root access, or your account
must belong to a sudoers group in order to avoid any problems in the
script. Also, the nmap package should be installed on the system prior to
running the Python code.

This is a simple Python script and we can use the Nmap tool directly instead of using it
inside Python. However, wrapping the Nmap (or any other system command) with Python
code gives us the flexibility of tailoring the output and customizing it in any way. In the
next section, we will enhance our script and add more functionality to it.

Enhancing the code
Although the output of Nmap gives us an overview of the live hosts on the scanned
network, we can enhance it and have a better output view. For example, I need to know the
total number of hosts at the beginning of the output, then the IP address, MAC address,
and MAC vendor for each one, but in tabular form, so I can easily locate any host and all of
the information associated with it.

Building a Network Scanner Using Python Chapter 18

[348]

For that reason, I will design a function and name it nmap_report(). This function will
take the standard output generated from the subprocess pipe and will extract the
required information and format it in table format:

def nmap_report(data):
 mac_flag = ""
 ip_flag = ""
 Host_Table = PrettyTable(["IP", "MAC", "Vendor"])
 number_of_hosts = data.count("Host is up ")

 for line in data.split("\n"):
 if "MAC Address:" in line:
 mac = line.split("(")[0].replace("MAC Address: ", "")
 vendor = line.split("(")[1].replace(")", "")
 mac_flag = "ready"
 elif "Nmap scan report for" in line:
 ip = re.search(r"Nmap scan report for (.*)", line).groups()[0]
 ip_flag = "ready"

 if mac_flag == "ready" and ip_flag == "ready":
 Host_Table.add_row([ip, mac, vendor])
 mac_flag = ""
 ip_flag = ""

 print("Number of Live Hosts is {}".format(number_of_hosts))
 print Host_Table

Starting with the easiest part, we can get the number of live hosts by counting the Host is
up occurrences in the passed output and assigning this to the number_of_hosts
parameter.

Secondly, Python has a nice module called PrettyTable which can create a text table and
handle the cell sizing according to data inside it. The module accepts the table headers as a
list and uses the add_row() function to add rows to the created table. So, the first thing is
to import this module (after installing it, if it's not already installed). In our example, we
will pass a list of three items (IP, MAC, Vendor) to the PrettyTable class (imported from
the PrettyTable module) to create the table headers.

Building a Network Scanner Using Python Chapter 18

[349]

Now, to fill up this table, we will split the output on \n (carriage return). The split result
will be a list, that we can iterate over to grab specific information such as MAC address and
IP address. We used a few splitting and replace hacks to extract the MAC address alone.
Also, we used the regular expression search function to get the IP address portion (or the
hostname if DNS is enabled) from the output.

Finally, we added this information to the created Host_Table and continued to iterate over
the next line.

Following is the full script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import subprocess
from netaddr import IPNetwork, AddrFormatError
from prettytable import PrettyTable
import re

def nmap_report(data):
 mac_flag = ""
 ip_flag = ""
 Host_Table = PrettyTable(["IP", "MAC", "Vendor"])
 number_of_hosts = data.count("Host is up ")

 for line in data.split("\n"):
 if "MAC Address:" in line:
 mac = line.split("(")[0].replace("MAC Address: ", "")
 vendor = line.split("(")[1].replace(")", "")
 mac_flag = "ready"
 elif "Nmap scan report for" in line:
 ip = re.search(r"Nmap scan report for (.*)", line).groups()[0]
 ip_flag = "ready"

 if mac_flag == "ready" and ip_flag == "ready":
 Host_Table.add_row([ip, mac, vendor])
 mac_flag = ""
 ip_flag = ""

 print("Number of Live Hosts is {}".format(number_of_hosts))
 print Host_Table

network = "192.168.1.0/24"

Building a Network Scanner Using Python Chapter 18

[350]

try:
 IPNetwork(network)
 p = subprocess.Popen(["sudo", "nmap", "-sP", network],
stdout=subprocess.PIPE)
 nmap_report(p.stdout.read())
except AddrFormatError:
 print("Please Enter a valid network IP address in x.x.x.x/y format")

Notice we also added a pre-check to the subprocess command using the
netaddr.IPNetwork() class. This class will validate whether the network is correctly
formatted before executing the subprocess command, otherwise the class will raise an
exception which should be handled by the AddrFormatError exception class and will
print a customized error message to user.

The script output is:

Building a Network Scanner Using Python Chapter 18

[351]

Now, if we change the network to an incorrect value (either the subnet mask is wrong or
the network ID is not valid), the IPNetwork() class will throw an exception and this error
message will be printed:

network = "192.168.300.0/24"

Scanning the services
Running services on a host machine typically open a port in the operating system and start
listening to it in order to accept incoming TCP communication and start the three-way
handshake. In Nmap, you can send an SYN packet on a specific port and, if the host
responds with SYN-ACK, then the service is running and listening to the port.

Let's test the HTTP port, for example in google.com, using nmap:

nmap -p 80 www.google.com

https://www.google.com/

Building a Network Scanner Using Python Chapter 18

[352]

We can use the same concept to discover the running services on the router. For example,
the router that runs the BGP daemon will listen to port 179 for open/update/keep
alive/notification messages. If you want to monitor the router, then the SNMP service
should be enabled and should listen to incoming SNMP get/set messages. The MPLS LDP
will usually listen to 646 for establishing a relationship with other neighbors. Here is a list
of common services running on the router and their listening ports:

Service Listening port
FTP 21

SSH 22

TELNET 23

SMTP 25

HTTP 80

HTTPS 443

SNMP 161

BGP 179

LDP 646

RPCBIND 111

NETCONF 830

XNM-CLEAR-TEXT 3221

We can create a dictionary with all of these ports and scan them using subprocess and
Nmap. Then we use the returned output to create our table, which lists the open and closed
ports for each scan. Also, with some additional logic, we can try to correlate information to
guess the operating system type of the device function. For example, if the device is
listening to port 179 (BGP port), then the device is most likely a network gateway and, if it
listens to 389 or 636, then the device is running an LDAP application and could be the
company active directory. This will help us to create the proper attack against the device
during the pen testing.

Without further ado, let's quickly put our idea and notes in the following script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from prettytable import PrettyTable
import subprocess
import re

Building a Network Scanner Using Python Chapter 18

[353]

def get_port_status(port, data):
 port_status = re.findall(r"{0}/tcp (\S+) .*".format(port), data)[0]
 return port_status

Router_Table = PrettyTable(["IP Address", "Opened Services"])
router_ports = {"FTP": 21,
 "SSH": 22,
 "TELNET": 23,
 "SMTP": 25,
 "HTTP": 80,
 "HTTPS": 443,
 "SNMP": 161,
 "BGP": 179,
 "LDP": 646,
 "RPCBIND": 111,
 "NETCONF": 830,
 "XNM-CLEAR-TEXT": 3221}

live_hosts = ["10.10.10.1", "10.10.10.2", "10.10.10.65"]

services_status = {}
for ip in live_hosts:
 for service, port in router_ports.iteritems():
 p = subprocess.Popen(["sudo", "nmap", "-p", str(port), ip],
stdout=subprocess.PIPE)
 port_status = get_port_status(port, p.stdout.read())
 services_status[service] = port_status

 services_status_joined = "\n".join("{} : {}".format(key, value) for
key, value in services_status.iteritems())

 Router_Table.add_row([ip, services_status_joined])

print Router_Table

In this example, we can see the following:

We developed a function named get_port_status() to take the Nmap port
scanning result and to search for the port status (open, closed, filtered, and so on)
using the regular expression inside the findall() function. It returns the port
status result.

Building a Network Scanner Using Python Chapter 18

[354]

Then, we added services ports mapped to the service name inside the
router_ports dictionary, so we could access any port value using the
corresponding service name (dictionary key). Also, we defined the router hosts'
IP addresses inside the live_hosts list. Note that we can use the nmap with the
-sP flag to get the live hosts, as we did before in a previous script.
Now, we can iterate over each IP address in the live_hosts list and execute the
Nmap to scan each port in the router_ports dictionary. This requires a nested
for loop, so for each device we iterate over a list of ports and so on. The result
will be added to the services_status dictionary—the service name is a
dictionary key while the port status is the dictionary value.
Finally, we will add the result to Router_Table created using the prettytable
module to get a nice-looking table.

The script output is as follows:

Building a Network Scanner Using Python Chapter 18

[355]

Sharing your code on GitHub
GitHub is a place where you can share your code and collaborate with others on a common
project using Git. Git is a source version control platform invented and created by Linus
Trovalds, who started Linux but had a problem maintaining Linux development with a
large number of developers contributing to it. He created a de-centralized version control
where anyone could get the entire code (called cloning or forking), make changes, then
push them back to the central repository to be merged with other developers' code. Git
became the preferred method for many developers to work together on projects. You can
learn how to code in Git interactively with this 15-minute course offered by GitHub:
https:/​/​try.​github. ​io.

GitHub is the website that hosts those projects, which is versioned using Git. It's like a
developer social media platform, where you can track the code development, write a wiki,
or raise an issue/bug report and get developer feedback on it. People on the same project
can discuss the project progress and share code together to build a better and faster
software. Also, some companies consider your code and repositories—shared in your
account at GitHub—as an online resume that measures your skills and how you code in
languages of interest.

Creating an account on GitHub
The first thing to do before sharing your code or downloading other codes is to create your
account.

Head to https:/​/​github. ​com/ ​join? ​source= ​header- ​home and choose a username,
password, and email address, then click on the green Create an account button.

The second thing to do is to choose your plan. By default, the free plan is fine as it gives you
unlimited public repositories and you can push any code developed in any languages you
like. However, the free plan doesn't make your repository private and allows others to
search for and download it. It's not a deal breaker if you're not working on secret or
commercial projects in your company, however you need to make sure that you don't share
any sensitive information, such as passwords, tokens, or public IP addresses in the code.

https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home

Building a Network Scanner Using Python Chapter 18

[356]

Creating and pushing your code
Now we're ready to share the code with others. The first thing after creating your GitHub
account is to create a repository to host your files. Usually, you create one repository per
project (not per file) and it contains project assets and files related to each other.

Click on the + icon in the top-right, just beside your profile picture, to create a new
repository:

You will be redirected to a new page where you can enter your repository name. Notice
that you can choose any you like, but it shouldn't conflict with other repository in your
profile. Also, you will be give a unique URL for this repo so anyone can access it. You can
set the repo settings, such as whether it is public or private (only for paid plans), and if you
want to initialize it with a README file. This file is written using markdown text
formatting that includes information about your project, and steps for other developers to
follow if they use your project.

Finally, you will have an option to add a .gitignore file where you tell Git to ignore
tracking a certain type of file in your directory, such as logs, pyc, compiled files, video, and
so on:

Building a Network Scanner Using Python Chapter 18

[357]

In the end, your repo is created and you will be given a unique URL for it. Note this URL
down as we will use it later when pushing files to it:

Building a Network Scanner Using Python Chapter 18

[358]

Now it's time to share your code. I will use the integrated Git functionality inside PyCharm
to do the job although you can do the same steps in CLI. Also, there are many other GUI
tools available (including one from GitHub itself) that can manage your GIT repo. I highly
recommend that you do the Git training provided by GitHub (https:/ ​/ ​try.​github. ​io)
before following these steps:

Go to VCS | Import into Version Control | Create Git Repository:1.

Choose the folder where your project files are stored locally:2.

https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/

Building a Network Scanner Using Python Chapter 18

[359]

This will create a local Git repo in the folder.

Highlight all files that need to be tracked in the sidebar and right-click on them,3.
then choose Git | Add:

PyCharm uses file color code to indicate the type of file tracked in Git.
When the files are not tracked, it will color them red and when the files
are added to Git, it will color them green. This allows you to easily know
file status without running commands.

Building a Network Scanner Using Python Chapter 18

[360]

Define the remote repository in GitHub that will be mapped to the local4.
repository by going to VCS | Git | Remotes:

Enter the repo name and the URL you noted down when we created the repo;5.
click OK twice to exit the window:

Building a Network Scanner Using Python Chapter 18

[361]

The final step is to commit your code. Go to VCS | Git | Commit and from the6.
opened popup window, select your tracked files, enter a descriptive message in
the Commit Message section, and instead of hitting Commit, click on the small
arrow beside it and choose Commit and Push. A dialog box might be opened
telling you that your Git user Name Is Not Defined. Just enter your name and
email and make sure the Set properties globally box is ticked and hit Set and
Commit:

The PyCharm gives you an option to push to Gerrit for code review. If you have
one, you can also share your files in it. Otherwise, click on Push.

A notification message will appear telling you the push completed successfully:

Building a Network Scanner Using Python Chapter 18

[362]

You can refresh your GitHub repo URL from the browser and you will see all
your files stored in it:

Now, whenever you make any change in the code inside the tracked files and commit, the
changes will be tracked and added to the versioning system and will be available in GitHub
for other users to download and comment on.

Summary
In this chapter, we built our network scanner, which can be used during authorized
penetration testing, and learned how to scan different services and applications running on
the device to detect their type. Also, we shared our code to GitHub so that we could keep
different versions of our code and also allow other developers to use our shared code and
enhance it, then share it again with others.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Python Networking
Eric Chou

ISBN: 978-1-784397-00-5

Review all the fundamentals of Python and the TCP/IP suite
Use Python to execute commands when the device does not support the API or
programmatic interaction with the device
Implement automation techniques by integrating Python with Cisco, Juniper,
and Arista eAPI
Integrate Ansible using Python to control Cisco, Juniper, and Arista networks
Achieve network security with Python
Build Flask-based web-service APIs with Python
Construct a Python-based migration plan from a legacy to scalable SDN-based
network.

https://www.packtpub.com/networking-and-servers/mastering-python-networking

Other Books You May Enjoy

[364]

Practical Network Automation
Abhishek Ratan

ISBN: 978-1-78829-946-6

Get the detailed analysis of Network automation
Trigger automations through available data factors
Improve data center robustness and security through specific access and data
digging
Get an Access to APIs from Excel for dynamic reporting
Set up a communication with SSH-based devices using netmiko
Make full use of practical use cases and best practices to get accustomed with the
various aspects of network automation

https://www.packtpub.com/networking-and-servers/practical-network-automation

Other Books You May Enjoy

[365]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Access Control List (ACL) 326
ad hoc mode 242
Amazon Machine Image (AMI) 320
Amazon Web Services (AWS) 34, 320
AMI ID
 reference link 323
Ansible facts
 working with 258, 259
Ansible playbook
 building 315
 creating 248, 249, 250, 251
 executing 317
 used, to manage instances 291, 293, 294, 295
Ansible template
 working with 259, 260
Ansible terminology 241, 242
Ansible
 conditions 251
 designing conditions 252, 253, 254
 handlers 251
 installing, on CentOS 242
 installing, on Linux 242
 installing, on RHEL 242
 installing, on Ubuntu 243
 loops 251
 loops, creating 255, 256
 tasks, triggering with handlers 256, 257, 258
 used, in ad hoc mode 243, 244, 245, 246, 247
 users, managing 226
 working 247, 248
Application Programmable Interface (API) 46
automation machine
 creating, on hypervisor 162
AWS instances
 managing 323

 termination 325
AWS Python modules
 about 320
 Boto3, installing 321, 323
AWS S3 services
 automating 326
 bucket, deleting 328
 buckets, creating 326
 file, uploading to bucket 327

B
Boto3 features
 clients 321
 collections 321
 paginators 321
 reference link 321
 resources 321
 waiters 321
Boto3
 about 321
 installing 321, 323
 reference link 321

C
CentOS
 downloading 160
 URL 160
CiscoConfParse
 installing 112
 supported vendors 112
 used, for configuration auditing 110
 working 111
 working with 113, 114, 115
Cobbler
 about 159, 172
 installing, on automation server 174, 177

[367]

 servers, provisioning 178, 181, 183
 working 173
commodity off the shelf (COTS) server 263
create, read, update, and delete (CRUD) 302

D
data serialization language 124
data
 collecting, from Linux 214, 216, 217, 219
 generated data, sending through email 220, 222
 script, executing 225
 time and date modules, using 223
Database Management Systems (DBMSs) 229
device configuration
 backup 88
 python script, building 88, 90
Domain Specific Language (DSL) 33, 330, 333

E
Elastic Compute Cloud (EC2) 320
End of File (EOF) 150
enterprise network topology
 building 61
 nodes, adding 61, 63
 nodes, connecting 63, 64
EVE-NG version
 URL, for downloading 50
EVE-NG
 about 49
 accessing 56, 57, 58
 client pack, installing 59
 installing 49
 network images, loading into 61
 RedHat KVM, installation 55
 reference link 59
 VMWare ESXI, installation 53
 VMWare Workstation, installation 50

F
fab tool 194, 203
fabric file
 executing 199, 201
 fab tool 203
 used, for discovering system health 204, 207,

209

fabric operations
 about 196
 get operation, using 197
 prompt operation, using 198
 put operation, using 197
 reboot operation, using 198
 run operation, using 196
 sudo operation, using 198
fabric
 about 194
 context managers 211, 213
 features 210
 installing 195
 roles 210
 URL 194

G
GitHub
 account, creating 355
 code, creating 356, 358, 359, 360, 361, 362
 code, pushing 356, 358, 359, 360, 361, 362
 code, sharing on 355
Global Interpreter Lock (GIL) 151

H
handlers 256

I
idempotency 241
Identity and Access Management (IAM) 321
Infrastructure as a Service (IaaS) 299
Integrated Development Editors (IDEs) 8
IP addresses
 handling, with netaddr 84

J
Jinja2 template language
 reference link 129
Jinja2
 conditions, used 139, 143, 144
 loops, used 139, 143, 144
 templates, reading from filesystem 138
 used, for building golden configuration 129, 131,

[368]

133, 137
 used, for generating VMX file 266

K
Key Performance Indicator (KPI) 214

L
Linux machine
 creating, over KVM 168, 169, 170, 171
 creating, over VMware ESXi 162, 165, 167
Linux operating system
 about 159
 Ubuntu, downloading 161
Linux
 data, collecting from 214, 216, 217, 219
local change directory (LCD) 212

M
man in the middle (MITM) 337
Managed Object Browser (MoB) 281
matplotlib
 hands-on with 117, 119
 installing 117
 URL 116
 used, for visualizing returned data 116
 used, for visualizing SNMP 121
Microsoft Excel data
 handling 270, 271, 272, 273
Model, View, and Template (MVT) 35
module source code
 accessing 36
 Python code, visualizing 37, 40, 42
MySQL DB
 accessing, from Python 232
 database, querying 235
 records, inserting into database 236, 237
MySQL
 database installation, verifying 232
 installation, securing 230
 installing, on automation server 229

N
netaddr
 installing 85

 IP addresses, handling 84
 methods, exploring 85, 86
 networks, handling 84
Netmiko module
 about 70
 device auto detect 77
 devices, configuring 75
 exception handling in 76
 installing 72
 used, for SSH 73, 74
 vendor support 71
 verifying 72
network automation
 about 45
 business agility 45
 business continuity 45
 correlation 45
 future 48
 High-level orchestration 49
 lower costs 45
 need for 45
 policy-based networking 49
 software-defined network automation 48
network interface card (NIC) 172
network lab
 setting up 49
Network Operating System (NOS) 248
Network Operation Center (NoC) 220
network Python Libraries 32
network scanner
 about 345
 building, with Python 346, 347
 code, enhancing 347, 348, 349, 351
 services, scanning 351, 352, 354
network streams
 generating, Scapy used 332, 334
networks
 generating, Scapy used 336
 handling, with netaddr 84

O
OpenStack instances
 Ansible playbook, building 315
 Ansible, installing 315
 managing, from Ansible 314

[369]

 shade, installing 315
OpenStack keystone
 request, sending 302, 304, 305
OpenStack
 answer file, editing 300
 answer file, generating 300
 environment, setting up 299
 GUI, accessing 301
 packstack, executing 301
 rdo-OpenStack package, installing 300

P
package 30
packets
 capturing 337, 339
 data, injecting 340, 342
 generating, Scapy used 332, 334, 336
 replaying 337, 339
 sniffing 342, 343
 writing, to pcap 344
Paramiko 67
Paramiko module
 about 67
 installing 67
 reference link 67
 SSH, to network device 68
parsers 100
Preboot eXecution Environment (PXE) 173
PyCharm features
 code debugging 22, 23
 code refactoring 24
 exploring 22
 packages, installing from GUI 26
Pycharm IDE
 installing 15, 16, 17
Pycharm
 URL 15
Python code
 visualizing 37, 40, 42
Python libraries
 about 32
 cloud Python libraries 34, 35
 network Python Libraries 32
 system Python libraries 34, 35
Python multiprocessing library

 about 152
 initiating 153, 154, 156
 intercommunication, between processes 156
Python packages
 about 29
 package search paths 30, 31
Python project
 setting up, in Pycharm 18, 19, 21
Python script
 executed 150
Python
 about 9, 67
 flavor, assigning 308
 image, creating 306, 308
 installing 12, 13
 instance, launching 312
 instances, creating from 306
 libraries 47
 MySQL DB, accessing 232
 network and subnet, creating 310, 312
 powerful 48
 readability 46
 telnet protocol, used 78, 79
 used, for network automation 46
 versions 9, 10, 11

R
race condition 151
rdo-OpenStack package
 installing 300
 on CentOS 7.4 300
 on RHEL 7.4 300
Red Hat Enterprise Linux (RHEL) 159
regular expression
 about 100
 creating, in Python 102
 in Python 103, 105, 107, 109
Representational State Transfer (REST) 297
RESTful web services 297
returned data
 visualizing, with matplotlib 116

S
Scapy, on macOS X

[370]

 URL, for installing 332
Scapy, on Windows
 URL, for installing 331
Scapy
 about 329
 installing 330
 installing, on macOS X 331
 installing, on Unix-based systems 330
 installing, on Windows 331
 URL 329
 used, for generating network streams 332, 334,

336

 used, for generating packets 332, 334, 336
screen scraping
 about 46
 versus API automation 46
script-driven network automation 48
SDN controller 48
Simple Mail Transfer Protocol (SMTP) 220
Simple Storage Systems (S3) 320, 326
slaves 151
SSH 67
Standard error (stderr)
 reading 188, 190
Standard input (stdin)
 reading 188
Standard output (stdout)
 reading 188, 190
subprocess call suite 191
subprocess module 185
subprocess popen() 185, 187

T
telnet protocol
 used, in Python 78, 79
telnetlib
 used, for push configuration 82
time to live (TTL) 333
Time To Market (TTM) 45

U
Ubuntu LTS
 URL, for downloading 161
Ubuntu

 downloading 161
Universal Resource Identifiers (URIs) 297
Unix-based systems
 about 330
 installing, in Debian 331
 installing, in Red Hat/CentOS 331
 installing, in Ubuntu 331
use cases
 about 87, 97
 access terminal, creating 91, 93
 data, reading from Excel sheet 94
 device configuration, backup 88
 reference link 97
users
 managing, in Ansible 226
 managing, in Linux systems 226
 managing, in Microsoft Windows 227

V
Virtual Infrastructure Manager (VIM) 49
Virtual Machine (VM) 263
VMWare ESXI
 installation 53
VMware Python clients
 about 281, 282, 290
 PyVmomi, installing 282, 283
 PyVmomi, steps 283, 284, 285, 286, 287, 288
 virtual machine state, changing 288, 289, 290
VMware vRealize Automation (vRA) 291
VMWare Workstation
 installation 50
VMware
 environment, setting up 263, 264, 266
VMX file
 generating 273, 275, 279, 280
 generating, Jinja2 used 266
 Microsoft Excel data, handling 270, 271, 272,

273

VMX template
 building 267, 269

W
workers 150

Y
YAML Ain’t Markup Language (YAML)

 about 124
 file formatting 125, 126, 128
 text editor tips 128

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up Our Python Environment
	An introduction to Python
	Python versions
	Why are there two active versions?
	Should you only learn Python 3?
	Does this mean I can't write code that runs on both Python 2 and Python 3?

	Python installation

	Installing the PyCharm IDE
	Setting up a Python project inside PyCharm

	Exploring some nifty PyCharm features
	Code debugging
	Code refactoring
	Installing packages from the GUI

	Summary

	Chapter 2: Common Libraries Used in Automation
	Understanding Python packages
	Package search paths

	Common Python libraries
	Network Python Libraries
	System and cloud Python libraries

	Accessing module source code
	Visualizing Python code

	Summary

	Chapter 3: Setting Up the Network Lab Environment
	Technical requirements
	When and why to automate the network
	Why do we need automation?

	Screen scraping versus API automation
	Why use Python for network automation?
	The future of network automation
	Network lab setup
	Getting ready – installing EVE-NG
	Installation on VMware Workstation
	Installation over VMware ESXi
	Installation over Red Hat KVM
	Accessing EVE-NG
	Installing EVE-NG client pack
	Loading network images into EVE-NG

	Building an enterprise network topology
	Adding new nodes
	Connecting nodes together

	Summary

	Chapter 4: Using Python to Manage Network Devices
	Technical requirements
	Python and SSH
	Paramiko module
	Module installation
	SSH to the network device

	Netmiko module
	Vendor support
	Installation and verification
	Using netmiko for SSH
	Configuring devices using netmiko
	Exception handling in netmiko
	Device auto detect

	Using the telnet protocol in Python
	Push configuration using telnetlib

	Handling IP addresses and networks with netaddr
	Netaddr installation
	Exploring netaddr methods

	Sample use cases
	Backup device configuration
	Building the python script

	Creating your own access terminal
	Reading data from an Excel sheet
	More use cases

	Summary

	Chapter 5: Extracting Useful Data from Network Devices
	Technical requirements
	Understanding parsers
	Introduction to regular expressions
	Creating a regular expression in Python

	Configuration auditing using CiscoConfParse
	CiscoConfParse library
	Supported vendors
	CiscoConfParse installation
	Working with CiscoConfParse

	Visualizing returned data with matplotLib
	Matplotlib installation
	Hands-on with matplotlib
	Visualizing SNMP using matplotlib

	Summary

	Chapter 6: Configuration Generator with Python and Jinja2
	What is YAML?
	YAML file formatting
	Text editor tips

	Building a golden configuration with Jinja2
	Reading templates from the filesystem
	Using Jinja2 loops and conditions

	Summary

	Chapter 7: Parallel Execution of Python Script
	How a computer executes your Python script
	Python multiprocessing library
	Getting started with multiprocessing
	Intercommunication between processes

	Summary

	Chapter 8: Preparing a Lab Environment
	Getting the Linux operating system
	Downloading CentOS
	Downloading Ubuntu

	Creating an automation machine on a hypervisor
	Creating a Linux machine over VMware ESXi
	Creating a Linux machine over KVM

	Getting started with Cobbler
	Understanding how Cobbler works
	Installing Cobbler on an automation server
	Provisioning servers through Cobbler

	Summary

	Chapter 9: Using the Subprocess Module
	The popen() subprocess
	Reading stdin, stdout, and stderr
	The subprocess call suite
	Summary

	Chapter 10: Running System Administration Tasks with Fabric
	Technical requirements
	What is Fabric?
	Installation
	Fabric operations
	Using run operation
	Using get operation
	Using put operation
	Using sudo operation
	Using prompt operation
	Using reboot operation

	Executing your first Fabric file
	More about the fab tool
	Discover system health using Fabric

	Other useful features in Fabric
	Fabric roles
	Fabric context managers

	Summary

	Chapter 11: Generating System Reports and System Monitoring
	Collecting data from Linux
	Sending generated data through email
	Using the time and date modules
	Running the script on a regular basis

	Managing users in Ansible
	Linux systems
	Microsoft Windows

	Summary

	Chapter 12: Interacting with the Database
	Installing MySQL on an automation server
	Securing the installation
	Verifying the database installation

	Accessing the MySQL database from Python
	Querying the database
	Inserting records into the database

	Summary

	Chapter 13: Ansible for System Administration
	Ansible terminology
	Installing Ansible on Linux
	On RHEL and CentOS
	Ubuntu

	Using Ansible in ad hoc mode
	How Ansible actually works

	Creating your first playbook
	Understanding Ansible conditions, handlers, and loops
	Designing conditions
	Creating loops in ansible
	Trigger tasks with handlers

	Working with Ansible facts
	Working with the Ansible template
	Summary

	Chapter 14: Creating and Managing VMware Virtual Machines
	Setting up the environment
	Generating a VMX file using Jinja2
	Building the VMX template
	Handling Microsoft Excel data
	Generating VMX files

	VMware Python clients
	Installing PyVmomi
	First steps with pyvmomi
	Changing the virtual machine state
	There's more

	Using Ansible playbook to manage instances
	Summary

	Chapter 15: Interacting with the OpenStack API
	Understanding RESTful web services
	Setting up the environment
	Installing rdo-OpenStack package
	On RHEL 7.4
	On CentOS 7.4

	Generating answer file
	Editing answer file
	Run the packstack
	Access the OpenStack GUI

	Sending requests to the OpenStack keystone
	Creating instances from Python
	Creating the image
	Assigning a flavor
	Creating the network and subnet
	Launching the instance

	Managing OpenStack instances from Ansible
	Shade and Ansible installation
	Building the Ansible playbook
	Running the playbook

	Summary

	Chapter 16: Automating AWS with Boto3
	AWS Python modules
	Boto3 installation

	Managing AWS instances
	Instance termination

	Automating AWS S3 services
	Creating buckets
	Uploading a file to a bucket
	Deleting a bucket

	Summary

	Chapter 17: Using the Scapy Framework
	Understanding Scapy
	Installing Scapy
	Unix-based systems
	Installing in Debian and Ubuntu
	Installing in Red Hat/CentOS

	Windows and macOS X Support

	Generating packets and network streams using Scapy
	Capturing and replaying packets
	Injecting data inside packets
	Packet sniffing
	Writing the packets to pcap

	Summary

	Chapter 18: Building a Network Scanner Using Python
	Understanding the network scanner
	Building a network scanner with Python
	Enhancing the code
	Scanning the services

	Sharing your code on GitHub
	Creating an account on GitHub
	Creating and pushing your code

	Summary

	Other Books You May Enjoy
	Index

