

Hands-On Data Structures and
Algorithms with Python
Third Edition

Store, manipulate, and access data effectively and boost the
performance of your applications

Dr. Basant Agarwal

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Hands-On Data Structures and Algorithms with Python
Third Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto

Acquisition Editor – Technical Reviews: Saby Dsilva

Project Editor: Rianna Rodrigues

Content Development Editor: Rebecca Robinson

Copy Editor: Safis Editing

Technical Editor: Karan Sonawane

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Presentation Designer: Ganesh Bhadwalkar

First published: May 2017

Second edition: October 2018

Third edition: July 2022

Production reference: 1150722

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-344-8

www.packt.com

http://www.packt.com

Contributors

About the author
Dr. Basant Agarwal is working as an Assistant Professor at the Department of Computer

Science and Engineering, Indian Institute of Information Technology Kota (IIIT-Kota), India,

which is an Institute of National Importance. He holds a Ph.D. and M.Tech. from the Department

of Computer Science and Engineering, Malaviya National Institute of Technology Jaipur, India.

He has more than 9 years of experience in research and teaching. He has worked as a Postdoc

Research Fellow at the Norwegian University of Science and Technology (NTNU), Norway, under

the prestigious European Research Consortium for Informatics and Mathematics (ERCIM)

fellowship in 2016. He has also worked as a Research Scientist at Temasek Laboratories, National

University of Singapore (NUS), Singapore. His research interests are in artificial intelligence,

cyber-physical systems, text mining, natural language processing, machine learning, deep learning,

intelligent systems, expert systems, and related areas.

This book is dedicated to my family, and friends.

Thank you to Benjamin Baka for his hard work in the first edition.

– Dr. Basant Agarwal

About the reviewers
Patrick Arminio is a software engineer based in London. He’s currently the chair of Python

Italia, an association that organizes Python events in Italy.

He’s been working with Python for more than 10 years, focusing on web development using Django.

He’s also the maintainer of Strawberry GraphQL, an open source Python library for creating

GraphQL APIs.

Dong-hee Na is a software engineer and an open-source enthusiast. He works at Line Corporation

as a backend engineer. He has professional experience in machine learning projects based on

Python and C++. As for his open-source works, he focuses on the compiler and interpreter area,

especially for Python-related projects. He has been a CPython core developer since 2020.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://packt.link/MEvK4

https://packt.link/MEvK4

Table of Contents

Preface � xvii

Chapter 1: Python Data Types and Structures � 1

Introducing Python 3.10 �� 2

Installing Python ��� 2

Windows operating system • 2

Linux-based operating systems • 3

Mac operating system • 3

Setting up a Python development environment ��� 3

Setup via the command line • 3

Setup via Jupyter Notebook • 4

Overview of data types and objects �� 5

Basic data types ��� 7

Numeric • 7

Boolean • 8

Sequences • 9

Strings • 9

Range • 10

Lists • 11

Membership, identity, and logical operations • 15

Membership operators • 15

Identity operators • 16

Table of Contentsviii

Logical operators • 17

Tuples • 18

Complex data types �� 19

Dictionaries • 19

Sets • 23

Immutable sets • 26

Python’s collections module �� 27

Named tuples • 27

Deque • 28

Ordered dictionaries • 29

Default dictionary • 29

ChainMap object • 30

Counter objects • 31

UserDict • 32

UserList • 32

UserString • 33

Summary ��� 33

Chapter 2: Introduction to Algorithm Design � 35

Introducing algorithms ��� 35

Performance analysis of an algorithm �� 38

Time complexity • 38

Space complexity • 40

Asymptotic notation �� 41

Theta notation • 42

Big O notation • 44

Omega notation • 47

Amortized analysis ��� 49

Composing complexity classes ��� 50

Computing the running time complexity of an algorithm ��� 52

Summary ��� 54

Table of Contents ix

Exercises �� 55

Chapter 3: Algorithm Design Techniques and Strategies � 57

Algorithm design techniques ��� 58

Recursion ��� 59

Divide and conquer �� 60

Binary search • 61

Merge sort • 63

Dynamic programming �� 68

Calculating the Fibonacci series • 70

Greedy algorithms ��� 74

Shortest path problem • 76

Summary ��� 89

Exercises �� 90

Chapter 4: Linked Lists � 93

Arrays ��� 94

Introducing linked lists �� 95

Nodes and pointers • 95

Singly linked lists ��� 98

Creating and traversing • 98

Improving list creation and traversal • 99

Appending items • 100

Appending items to the end of a list • 100

Appending items at intermediate positions • 103

Querying a list • 106

Searching an element in a list • 107

Getting the size of the list • 107

Deleting items • 108

Deleting the node at the beginning of the singly linked list • 108

Deleting the node at the end in the singly linked list • 109

Table of Contentsx

Deleting any intermediate node in a singly linked list • 111

Clearing a list • 113

Doubly linked lists �� 114

Creating and traversing • 115

Appending items • 116

Inserting a node at beginning of the list • 116

Inserting a node at the end of the list • 119

Inserting a node at an intermediate position in the list • 121

Querying a list • 123

Deleting items • 124

Circular lists �� 129

Creating and traversing • 131

Appending items • 131

Querying a list • 134

Deleting an element in a circular list • 134

Practical applications of linked lists ��� 138

Summary �� 139

Exercise �� 140

Chapter 5: Stacks and Queues � 141

Stacks ��� 141

Stack implementation using arrays • 145

Stack implementation using linked lists • 148

Push operation • 149

Pop operation • 151

Peek operation • 154

Applications of stacks • 154

Queues �� 157

Python’s list-based queues • 159

The enqueue operation • 159

The dequeue operation • 161

Table of Contents xi

Linked list based queues • 163

The enqueue operation • 163

The dequeue operation • 165

Stack-based queues • 166

Approach 1: When the dequeue operation is costly • 166

Approach 2: When the enqueue operation is costly • 168

Enqueue operation • 170

Dequeue operation • 170

Applications of queues • 173

Summary �� 176

Exercises ��� 177

Chapter 6: Trees � 179

Terminology ��� 179

Binary trees ��� 181

Implementation of tree nodes • 184

Tree traversal • 186

In-order traversal • 186

Pre-order traversal • 188

Post-order traversal • 190

Level-order traversal • 191

Expression trees • 194

Parsing a reverse Polish expression • 196

Binary search trees ��� 201

Binary search tree operations • 202

Inserting nodes • 203

Searching the tree • 208

Deleting nodes • 209

Finding the minimum and maximum nodes • 215

Benefits of a binary search tree • 216

Summary �� 219

Exercises ��� 219

Table of Contentsxii

Chapter 7: Heaps and Priority Queues � 221

Heaps �� 221

Insert operation • 224

Delete operation • 229

Deleting an element at a specific location from a heap • 234

Heap sort • 236

Priority queues �� 237

Summary ��� 244

Exercises �� 244

Chapter 8: Hash Tables � 247

Introducing hash tables ��� 248

Hashing functions • 249

Perfect hashing functions • 251

Resolving collisions ��� 252

Open addressing • 254

Linear probing • 254

Implementing hash tables ��� 256

Storing elements in a hash table • 257

Growing a hash table • 258

Retrieving elements from the hash table • 260

Testing the hash table • 262

Implementing a hash table as a dictionary • 263

Quadratic probing • 264

Double hashing • 267

Separate chaining • 272

Symbol tables �� 278

Summary ��� 279

Exercise �� 279

Table of Contents xiii

Chapter 9: Graphs and Algorithms � 281

Graphs ��� 281

Directed and undirected graphs • 283

Directed acyclic graphs • 284

Weighted graphs • 285

Bipartite graphs • 285

Graph representations ��� 286

Adjacency lists • 287

Adjacency matrix • 288

Graph traversals �� 291

Breadth-first traversal • 291

Depth-first search • 299

Other useful graph methods �� 305

Minimum Spanning Tree • 305

Kruskal’s Minimum Spanning Tree algorithm • 306

Prim’s Minimum Spanning Tree algorithm • 309

Summary �� 312

Exercises ��� 312

Chapter 10: Searching � 313

Introduction to searching ��� 313

Linear search �� 314

Unordered linear search • 315

Ordered linear search • 317

Jump search ��� 320

Binary search ��� 325

Interpolation search ��� 331

Exponential search �� 337

Choosing a search algorithm ��� 341

Summary ��� 342

Exercise �� 342

Table of Contentsxiv

Chapter 11: Sorting � 345

Technical requirements ��� 345

Sorting algorithms ��� 345

Bubble sort algorithms �� 346

Insertion sort algorithm �� 352

Selection sort algorithm �� 356

Quicksort algorithm �� 359

Implementation of quicksort ��� 364

Timsort algorithm ��� 369

Summary ��� 374

Exercise �� 374

Chapter 12: Selection Algorithms � 377

Technical requirements �� 377

Selection by sorting ��� 378

Randomized selection �� 378

Quickselect • 379

Deterministic selection �� 383

Implementation of the deterministic selection algorithm • 386

Summary ��� 393

Exercise �� 393

Chapter 13: String Matching Algorithms � 395

Technical requirements ��� 395

String notations and concepts ��� 395

Pattern matching algorithms ��� 397

The brute force algorithm �� 397

The Rabin-Karp algorithm ��� 401

Implementing the Rabin-Karp algorithm • 403

The Knuth-Morris-Pratt algorithm �� 406

The prefix function • 408

Table of Contents xv

Understanding the KMP algorithm • 410

Implementing the KMP algorithm • 413

The Boyer-Moore algorithm ��� 415

Understanding the Boyer-Moore algorithm • 416

Bad character heuristic • 417

Good suffix heuristic • 420

Implementing the Boyer-Moore algorithm • 424

Summary ��� 427

Exercise �� 427

Appendix: Answers to the Questions � 429

Chapter 2: Introduction to Algorithm Design �� 429

Chapter 3: Algorithm Design Techniques and Strategies �� 430

Chapter 4: Linked Lists �� 432

Chapter 5: Stacks and Queues �� 435

Chapter 6: Trees ��� 436

Chapter 7: Heaps and Priority Queues �� 440

Chapter 8: Hash Tables �� 442

Chapter 9: Graphs and Algorithms ��� 444

Chapter 10: Searching �� 445

Chapter 11: Sorting ��� 447

Chapter 12: Selection Algorithm �� 451

Chapter 13: String Matching Algorithms �� 453

Other Books You May Enjoy � 461

Index � 465

Preface

Data structures play a vital role in storing and organizing data within an application. It is important

to choose the right data structure to significantly improve the application’s performance, as it is

highly desirable to be able to scale the application as the data quantity increases. This new edition

teaches you essential Python data structures and the most common and important algorithms

for building easy, maintainable applications. It also allows you to implement these algorithms

with working examples and easy to follow step-by-step instructions.

In this book, you will learn the essential Python data structures and the most common algorithms.

With this easy-to-read book, you will learn how to create complex data structures such as linked

lists, stacks, heaps, queues, trees, and graphs as well as sorting algorithms including bubble sort,

insertion sort, heapsort, and quicksort. We also describe various selection algorithms such as

randomized and deterministic selection and provide a detailed discussion of various data structure

algorithms and design paradigms such as greedy algorithms, divide-and-conquer, and dynamic

programming. In addition, complex data structures such as trees and graphs are explained with

easy pictorial examples to understand the concepts of these useful data structures. You will also

learn various important string processing and pattern-matching algorithms such as KMP and

Boyer-Moore algorithms along with their easy implementation in Python.

Who this book is for
This book is intended for Python developers who are studying data structures and algorithms at

a beginner or intermediate level, as chapters provide practical examples and an easy approach to

complex algorithms. It may also be useful for engineering students on a course in data structures

and algorithms, as it covers almost all the algorithms, concepts, and designs that are studied. This

book is also designed for software developers who want to deploy various applications using a

specific data structures, as this book provides efficient ways to store relevant data.

It is assumed that the reader has some basic knowledge of the Python; however, it is not necessary,

as we provide a quick overview of Python and object-oriented concepts.

Prefacexviii

What this book covers
Chapter 1, Python Data Types and Structures, introduces the basic data types and structures in

Python. It will provide an overview of several built-in data structures available in Python that

are pivotal for understanding the internals of data structures.

Chapter 2, Introduction to Algorithm Design, provides details about algorithm design issues and

techniques. This chapter will compare different analyzing algorithms via running time and

computation complexity, which will tell us which ones perform better than others for a given

problem.

Chapter 3, Algorithm Design Techniques and Strategies, covers various important data structure

design paradigms such as greedy algorithms, dynamic programming, divide-and-conquer. We will

learn to create data structures via a number of primary principles, such as robustness, adaptability

and reusability, and learn to separate structure from a function.

Chapter 4, Linked Lists, covers linked lists, which are one of the most common data structures

and are often used to implement other structures, such as stacks and queues. In this chapter, we

describe linked lists, their operation, and implementation. We compare their behavior to arrays

and discuss the relative advantages and disadvantages of each.

Chapter 5, Stacks and Queues, describes stack and queue data structures in detail. It also discusses

the behavior and demonstrates some implementations of these linear data structures. We give

examples of typical real-life example applications.

Chapter 6, Trees, considers how trees form the basis of many of the most important advanced data

structures. In this chapter we look at how to implement a binary tree. We will examine how to

traverse trees and retrieve and insert values.

Chapter 7, Heaps and Priority Queues, looks into priority queues as important data structures and

shows how to implement them using heap.

Chapter 8, Hash Tables, describes symbol tables, gives some typical implementations, and discusses

various applications. We will look at the process of hashing, give an implementation of a hash

table, and discuss the various design considerations.

Chapter 9, Graphs and Algorithms, looks at some of the more specialized structures, including

graphs and spatial structures. We will learn to represent data through nodes and vertices and

create structures such as directed and undirected graphs. We will also learn different algorithms

for minimum spanning trees such as Prim’s algorithm and Kruskal’s algorithm.

Preface xix

Chapter 10, Searching, discusses the most common searching algorithms including, binary search

and interpolation searching algorithms. We also give examples of their use for various data

structures. Searching a data structure is a fundamental task and there are a number of approaches.

Chapter 11, Sorting, looks at the most common approaches to sorting. This will include bubble sort,

insertion sort, selection sort, quick sort, and heap sort algorithms with detailed explanations,

along with their Python implementations.

Chapter 12, Selection Algorithms, discusses how selection algorithms are commonly used to find

the ith smallest element from the list. It is an important operation related to sorting algorithms,

and broadly related to the data structures and algorithms.

Chapter 13, String Matching Algorithms, covers basic concepts and definitions related to strings. In this

chapter, various string and pattern matching algorithms are discussed in detail such as the naïve

approach, and the Knuth-Morris-Pratt (KMP) and Boyer-Moore pattern matching algorithms.

Appendix, Answers to the Questions, provides answers to the exercises at the end of each chapter.

Please feel free to check the appendix at the end of the book.

There is also bonus content available online related to tree algorithms at https://static.packt-

cdn.com/downloads/9781801073448_Bonus_Content.pdf.

To get the most out of this book
The code in this book needs to be run on Python 3.10 or higher. Python’s interactive environment

can also be used to run the code snippets. It is advised to learn the algorithms and concepts by

executing the code provided in the book to better understand the algorithms. The book is aimed

to give practical exposure to the readers, so it is recommended to do the programming for all the

algorithms to get maximum out of this book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition. In case there’s an

update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

https://static.packt-cdn.com/downloads/9781801073448_Bonus_Content.pdf
https://static.packt-cdn.com/downloads/9781801073448_Bonus_Content.pdf
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexx

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://static.packt-cdn.com/downloads/9781801073448_

ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The

‘not in' operator returns True if it does not find a variable in the specified sequence and False

if it is found.”

A block of code is set as follows:

p = "Hello India"

q = 10

r = 10.2

print(type(p))

print(type(q))

print(type(r))

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

while self.slots[h] != None:

 if self.slots[h].key == key:

 return self.slots[h].value

 h = (h + j * (self.prime_num - (self.h2(key) % self.prime_num))) %
self.size

 j = j + 1

return None

Any command-line input or output is written as follows:

sudo apt-get install python3.10

Bold: Indicates a new term, an important word, or words that you see onscreen. For example,

words in menus or dialog boxes appear in the text like this. Here is an example: “Each position

in the hash table is often called a slot or bucket that can store an element.”

https://static.packt-cdn.com/downloads/9781801073448_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801073448_ColorImages.pdf

Preface xxi

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you would report this

to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata

Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and

you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
mailto:copyright@packtpub.com
http://authors.packtpub.com

Prefacexxii

Share Your Thoughts
Once you’ve read Hands-On Data Structures and Algorithms with Python - Third Edition, we’d love

to hear your thoughts! Please click here to go straight to the Amazon review page for this book

and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://www.packtpub.com/

1
Python Data Types and
Structures

Data structures and algorithms are important components in the development of any software

system. An algorithm can be defined as a set of step-by-step instructions to solve any given problem;

an algorithm processes the data and produces the output results based on the specific problem.

The data used by the algorithm to solve the problem has to be stored and organized efficiently in

the computer memory for the efficient implementation of the software. The performance of the

system depends upon the efficient access and retrieval of the data, and that depends upon how

well the data structures that store and organize the data in the system are chosen.

Data structures deal with how the data is stored and organized in the memory of the computer

that is going to be used in a program. Computer scientists should understand how efficient

an algorithm is and which data structure should be used in its implementation. The Python

programming language is a robust, powerful, and widely used language to develop software-based

systems. Python is a high-level, interpreted, and object-oriented language that is very convenient

to learn and understand the concepts of data structures and algorithms.

In this chapter, we briefly review the Python programming language components that we will

be using to implement the various data structures discussed in this book. For a more detailed

discussion on the Python language in broader terms, take a look at the Python documentation:

•	 https://docs.python.org/3/reference/index.html

•	 https://docs.python.org/3/tutorial/index.html

https://docs.python.org/3/reference/index.html
https://docs.python.org/3/tutorial/index.html

Python Data Types and Structures2

In this chapter, we will look at the following topics:

•	 Introducing Python 3.10

•	 Installing Python

•	 Setting up a Python development environment

•	 Overview of data types and objects

•	 Basic data types

•	 Complex data types

•	 Python’s collections module

Introducing Python 3.10
Python is an interpreted language: the statements are executed line by line. It follows the concepts

of object-oriented programming. Python is dynamically typed, which makes it an ideal candidate

among languages for scripting and fast-paced development on many platforms. Its source code is

open source, and there is a very big community that is using and developing it continuously, at a

very fast pace. Python code can be written in any text editor and saved with the .py file extension.

Python is easy to use and learn because of its compactness and elegant syntax.

Since the Python language will be used to write the algorithms, an explanation is provided of

how to set up the environment to run the examples.

Installing Python
Python is preinstalled on Linux- and Mac-based operating systems. However, you will want to

install the latest version of Python, which can be done on different operating systems as per the

following instructions.

Windows operating system
For Windows, Python can be installed through an executable .exe file.

1.	 Go to https://www.python.org/downloads/.

2.	 Choose the latest version of Python—currently, it is 3.10.0—according to your architecture.

If you have a 32-bit version of Windows, choose the 32-bit installer; otherwise, choose

the 64-bit installer.

3.	 Download the .exe file.

4.	 Open the python-3.10.0.exe file.

https://www.python.org/downloads/

Chapter 1 3

5.	 Make sure to check Add Python 3.10.0 to PATH.

6.	 Click Install Now and then wait until the installation is complete; you can now use Python.

7.	 To verify that Python is installed correctly, open the Command Prompt and type the

python -–version command. It should output Python 3.10.0.

Linux-based operating systems
To install Python on a Linux machine, take the following steps:

1.	 Check whether you have Python preinstalled by entering the python --version command

in the terminal.

2.	 If you do have not a version of Python, then install it through the following command:

sudo apt-get install python3.10

3.	 Now, verify that you have installed Python correctly by typing the python3.10 --version

command in the terminal. It should output Python 3.10.0.

Mac operating system
To install Python on a Mac, take the following steps:

1.	 Go to https://www.python.org/downloads/.

2.	 Download and open the installer file for Python 3.10.0.

3.	 Click Install Now.

4.	 To verify that Python is installed correctly, open the terminal and type python –version.

It should output Python 3.10.0.

Setting up a Python development environment
Once you have installed Python successfully for your respective OS, you can start this hands-on

approach with data structures and algorithms. There are two popular methods to set up the

development environment.

Setup via the command line
The first method to set up the Python executing environment is via the command line, after

installation of the Python package on your respective operating system. It can be set up using

the following steps.

1.	 Open the terminal on Mac/Linux OS or Command Prompt on Windows.

https://www.python.org/downloads/

Python Data Types and Structures4

2.	 Execute the Python 3 command to start Python, or simply type py to start Python in the

Windows Command Prompt.

3.	 Commands can be executed on the terminal.

Figure 1.1: Screenshot of the command-line interface for Python

The User Interface for the command-line execution environment is shown in Figure 1.1.

Setup via Jupyter Notebook
The second method to run the Python program is through Jupyter Notebook, which is a browser-

based interface where we can write the code. The User Interface of Jupyter Notebook is shown in

Figure 1.2. The place where we can write the code is called a “cell.”

Figure 1.2: Screenshot of the Jupyter Notebook interface

Chapter 1 5

Once Python is installed, on Windows, Jupyter Notebook can be easily installed and set up using

a scientific Python distribution called Anaconda by taking the following steps.

1.	 Download the Anaconda distribution from https://www.anaconda.com/products/

individual.

2.	 Install it according to the installation instructions.

3.	 Once installed, on Windows, we can run the notebook by executing the jupyter notebook

command at the Command Prompt. Alternatively, following installation, the Jupyter

Notebook app can be searched for and run from the taskbar.

4.	 On Linux/Mac operating systems, Jupyter Notebook can be installed using pip3 by running

the following code in the terminal:

pip3 install notebook

5.	 After installation of Jupyter Notebook, we can run it by executing the following command

at the Terminal:

jupyter notebook

python3 -m notebook

It is important to note that we will be using Jupyter Notebook to execute all the commands and

programs throughout the book, but the code will also function in the command line if you’d

prefer to use that.

Overview of data types and objects
Given a problem, we can plan to solve it by writing a computer program or software. The first

step is to develop an algorithm, essentially a step-by-step set of instructions to be followed by a

computer system, to solve the problem. An algorithm can be converted into computer software

using any programming language. It is always desired that the computer software or program

be as efficient and fast as possible; the performance or efficiency of the computer program also

depends highly on how the data is stored in the memory of a computer, which is then going to

be used in the algorithm.

On some systems, this command does not work, depending upon the oper-

ating system or system configuration. In that case, Jupyter Notebook should

start by executing the following command on the terminal.

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

Python Data Types and Structures6

The data to be used in an algorithm has to be stored in variables, which differ depending upon

what kind of values are going to be stored in those variables. These are called data types: an integer

variable can store only integer numbers, and a float variable can store real numbers, characters,

and so on. The variables are containers that can store the values, and the values are the contents

of different data types.

In most programming languages, variables and their data types must initially be declared, and

then only that type of data can be statically stored in those variables. However, in Python, this is

not the case. Python is a dynamically typed language; the data type of the variables is not required

to be explicitly defined. The Python interpreter implicitly binds the value of the variable with

its type at runtime. In Python, data types of the variable type can be checked using the function

type(), which returns the type of variable passed. For example, if we enter the following code:

p = "Hello India"

q = 10

r = 10.2

print(type(p))

print(type(q))

print(type(r))

print(type(12+31j))

We will get an output like the following:

<class 'str'>

<class 'int'>

<class 'float'>

<class 'complex'>

The following example, demonstrates a variable that has a var float value, which is substituted

for a string value:

var = 13.2

print(var)

print(type (var))

var = "Now the type is string"

print(type(var))

Chapter 1 7

The output of the code is:

13.2

<class 'float'>

<class 'str'>

In Python, every item of data is an object of a specific type. Consider the preceding example; here,

when a variable var is assigned a value of 13.2, the interpreter initially creates a float object having

a value of 13.2; a variable var then points to that object as shown in Figure 1.3:

Figure 1.3: Variable assignment

Python is an easy-to-learn object-oriented language, with a rich set of built-in data types. The

principal built-in types are as follows and will be discussed in more detail in the following sections:

•	 Numeric types: Integer (int), float, complex

•	 Boolean types: bool

•	 Sequence types: String (str), range, list, tuple

•	 Mapping types: dictionary (dict)

•	 Set types: set, frozenset

We will divide these into basic (numeric, Boolean, and sequence) and complex (mapping and set)

data types. In subsequent sections, we will discuss them one by one in detail.

Basic data types
The most basic data types are numeric and Boolean types. We’ll cover those first, followed by

sequence data types.

Numeric
Numeric data type variables store numeric values. Integer, float, and complex values belong to

this data type. Python supports three types of numeric types:

•	 Integer (int): In Python, the interpreter takes a sequence of decimal digits as a decimal

value, such as the integers 45, 1000, or -25.

Python Data Types and Structures8

•	 Float: Python considers a value having a floating-point value as a float type; it is specified

with a decimal point. It is used to store floating-point numbers such as 2.5 and 100.98.

It is accurate up to 15 decimal points.

•	 Complex: A complex number is represented using two floating-point values. It contains an

ordered pair, such as a + ib. Here, a and b denote real numbers and i denotes the imaginary

component. The complex numbers take the form of 3.0 + 1.3i, 4.0i, and so on.

Boolean
This provides a value of either True or False, checking whether any statement is true or false. True

can be represented by any non-zero value, whereas False can be represented by 0. For example:

print(type(bool(22)))

print(type(True))

print(type(False))

The output will be the following:

<class 'bool'>

<class 'bool'>

<class 'bool'>

In Python, the numeric values can be used as bool values using the built-in bool() function. Any

number (integer, float, complex) having a value of zero is regarded as False, and a non-zero value

is regarded as True. For example:

bool(False)

print(bool(False))

va1 = 0

print(bool(va1))

va2 = 11

print(bool(va2))

va3 = -2.3

print(bool(va3))

Chapter 1 9

The output of the above code will be as follows.

False

False

True

True

Sequence data types are also a very basic and common data type, which we’ll look at next.

Sequences
Sequence data types are used to store multiple values in a single variable in an organized and

efficient way. There are four basic sequence types: string, range, lists, and tuples.

Strings
A string is an immutable sequence of characters represented in single, double, or triple quotes.

The string type in Python is called str. A triple quote string can span into multiple lines that

include all the whitespace in the string. For example:

str1 = 'Hello how are you'

str2 = "Hello how are you"

str3 = """multiline

 String"""

print(str1)

print(str2)

print(str3)

The output will be as follows:

Hello how are you

Hello how are you

multiline

String

Immutable means that once a data type has been assigned some value, it can’t be

changed.

Python Data Types and Structures10

The + operator concatenates strings, which returns a string after concatenating the operands,

joining them together. For example:

f = 'data'

s = 'structure'

print(f + s)

print('Data ' + 'structure')

The output will be as follows:

datastructure

Data structure

The * operator can be used to create multiple copies of a string. When it is applied with an integer

(n, let’s say) and a string, the * operator returns a string consisting of n concatenated copies of

the string. For example:

st = 'data.'

print(st * 3)

print(3 * st)

The output will be as follows.

data.data.data.

data.data.data.

Range
The range data type represents an immutable sequence of numbers. It is mainly used in for and

while loops. It returns a sequence of numbers starting from a given number up to a number

specified by the function argument. It is used as in the following command:

range(start, stop, step)

Here, the start argument specifies the start of the sequence, the stop argument specifies the

end limit of the sequence, and the step argument specifies how the sequence should increase or

decrease. This example Python code demonstrates the working of the range function:

print(list(range(10)))

print(range(10))

print(list(range(10)))

Chapter 1 11

print(range(1,10,2))

print(list(range(1,10,2)))

print(list(range(20,10,-2)))

The output will be as follows.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(0, 10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(1, 10, 2)

[1, 3, 5, 7, 9]

[20, 18, 16, 14, 12]

Lists
Python lists are used to store multiple items in a single variable. Duplicate values are allowed in

a list, and elements can be of different types: for example, you can have both numeric and string

data in a Python list.

The items stored in the list are enclosed within square brackets, [], and separated with a comma,

as shown below:

a = ['food', 'bus', 'apple', 'queen']

print(a)

mylist = [10, "India", "world", 8]

accessing elements in list.

print(mylist[1])

The output of the above code will be as follows.

['food', 'bus', 'apple', 'queen']

India

The data element of the list is shown in Figure 1.4, showing the index value of each of the list items:

Figure 1.4: Data elements of a sample list

Python Data Types and Structures12

The characteristics of a list in Python are as follows. Firstly, the list elements can be accessed by

its index, as shown in Figure 1.4. The list elements are ordered and dynamic. It can contain any

arbitrary objects that are so desired. In addition, the list data structure is mutable, whereas

most of the other data types, such as integer and float are immutable.

All the properties of lists are explained in Table 1.1 below for greater clarity:

Property Description Example

Ordered The list elements are ordered

in a sequence in which they are

specified in the list at the time of

defining them. This order does

not need to change and remains

innate for its lifetime.

[10, 12, 31, 14] == [14, 10, 31,
12]

False

Dynamic The list is dynamic. It can grow

or shrink as needed by adding or

removing list items.

b = ['data', 'and', 'book',
'structure', 'hello', 'st']

b += [32]

print(b)

b[2:3] = []

print(b)

del b[0]

print(b)

['data', 'and', 'book',
'structure', 'hello', 'st',
32]

['data', 'and', 'structure',
'hello', 'st', 32]

['and', 'structure', 'hello',
'st', 32]

Seeing as a list is a mutable data type, once created, the list elements can be added,

deleted, shifted, and moved within the list.

Chapter 1 13

List elements

can be any

arbitrary set

of objects

List elements can be of the same

type or varying data types.

a = [2.2, 'python', 31, 14,
'data', False, 33.59]

print(a)

[2.2, 'python', 31, 14,
'data', False, 33.59]

List elements

can be

accessed

through an

index

Elements can be accessed using

zero-based indexing in square

brackets, similar to a string.

Accessing elements in a list is

similar to strings; negative list

indexing also works in lists. A

negative list index counts from

the end of the list.

Lists also support slicing. If abc

is a list, the expression abc[x:y]

will return the portion of

elements from index x to index y

(not including index y)

a = ['data', 'structures',
'using', 'python', 'happy',
'learning']

print(a[0])

print(a[2])

print(a[-1])

print(a[-5])

print(a[1:5])

print(a[-3:-1])

data

using

learning

structures

['structures', 'using',
'python', 'happy']

['python', 'happy']

Mutable Single list value: Elements in

a list can be updated through

indexing and simple assignment.

Modifying multiple list values is

also possible through slicing.

a = ['data', 'and', 'book',
'structure', 'hello', 'st']

print(a)

a[1] = 1

a[-1] = 120

print(a)

a = ['data', 'and', 'book',
'structure', 'hello', 'st']

print(a[2:5])

a[2:5] = [1, 2, 3, 4, 5]

print(a)

Python Data Types and Structures14

['data', 'and', 'book',
'structure', 'hello', 'st']

['data', 1, 'book',
'structure', 'hello', 120]

['book', 'structure',
'hello']

['data', 'and', 1, 2, 3, 4,
5, 'st']

Other

operators

Several operators and built-

in functions can also be

applied in lists, such as in,

not in, concatenation (+),

and replication (*) operators.

Moreover, other built-in

functions, such as len(), min(),

and max(), are also available.

a = ['data', 'structures',
'using', 'python', 'happy',
'learning']

print('data' in a)

print(a)

print(a + ['New', 'elements'])

print(a)

print(a *2)

print(len(a))

print(min(a))

['data', 'structures',
'using', 'python', 'happy',
'learning']

['data', 'structures',
'using', 'python', 'happy',
'learning', 'New',
'elements']

['data', 'structures',
'using', 'python', 'happy',
'learning']

['data', 'structures',
'using', 'python',
'happy', 'learning',
'data', 'structures',
'using', 'python', 'happy',
'learning']

6

data

Table 1.1: Characteristics of list data structures with examples

Chapter 1 15

Now, while discussing list data types, we should first understand different operators, such as

membership, identity, and logical operators, before discussing them and how they can be used

in list data types or any other data types. In the coming section, we discuss how these operators

work and are used in various data types.

Membership, identity, and logical operations
Python supports membership, identity, and logical operators. Several data types in Python support

them. In order to understand how these operators work, we’ll discuss each of these operations

in this section.

Membership operators
These operators are used to validate the membership of an item. Membership means we wish to

test if a given value is stored in the sequence variable, such as a string, list, or tuple. Membership

operators are to test for membership in a sequence; that is, a string, list, or tuple. Two common

membership operators used in Python are in and not in.

The in operator is used to check whether a value exists in a sequence. It returns True if it finds

the given variable in the specified sequence, and False if it does not:

Python program to check if an item (say second

item in the below example) of a list is present

in another list (or not) using 'in' operator

mylist1 = [100,20,30,40]

mylist2 = [10,50,60,90]

if mylist1[1] in mylist2:

 print("elements are overlapping")

else:

 print("elements are not overlapping")

The output will be as follows:

elements are not overlapping

The ‘not in' operator returns to True if it does not find a variable in the specified sequence and

False if it is found:

val = 104

mylist = [100, 210, 430, 840, 108]

if val not in mylist:

 print("Value is NOT present in mylist")

Python Data Types and Structures16

else:

 print("Value is present in mylist")

The output will be as follows.

Value is NOT present in mylist

Identity operators
Identity operators are used to compare objects. The different types of identity operators are is

and is not, which are defined as follows.

The is operator is used to check whether two variables refer to the same object. This is different

from the equality (==) operator. In the equality operator, we check whether two variables are

equal. It returns True if both side variables point to the same object; if not, then it returns False:

Firstlist = []
Secondlist = []
if Firstlist == Secondlist:
 print("Both are equal")
else:
 print("Both are not equal")

if Firstlist is Secondlist:
 print("Both variables are pointing to the same object")
else:
 print("Both variables are not pointing to the same object")

thirdList = Firstlist

if thirdList is Secondlist:
 print("Both are pointing to the same object")
else:
 print("Both are not pointing to the same object")

The output will be as follows:

Both are equal

Both variables are not pointing to the same object

Both are not pointing to the same object

Chapter 1 17

The is not operator is used to check whether two variables point to the same object or not. True

is returned if both side variables point to different objects, otherwise, it returns False:

Firstlist = []

Secondlist = []

if Firstlist is not Secondlist:

 print("Both Firstlist and Secondlist variables are the same object")

else:

 print("Both Firstlist and Secondlist variables are not the same object")

The output will be as follows:

Both Firstlist and Secondlist variables are not the same object

This section was about identity operators. Next, let us discuss logical operators.

Logical operators
These operators are used to combine conditional statements (True or False). There are three

types of logical operators: AND, OR, and NOT.

The logical AND operator returns True if both the statements are true, otherwise it returns False.

It uses the following syntax: A and B:

a = 32

b = 132

if a > 0 and b > 0:

 print("Both a and b are greater than zero")

else:

 print("At least one variable is less than 0")

The output will be as follows.

Both a and b are greater than zero

The logical OR operator returns True if any of the statements are true, otherwise it returns False.

It uses the following syntax: A or B:

a = 32

b = -32

if a > 0 or b > 0:

 print("At least one variable is greater than zero")

Python Data Types and Structures18

else:

 print("Both variables are less than 0")

The output will be as follows.

At least one variable is greater than zero

The logical NOT operator is a Boolean operator, which can be applied to any object. It returns True if

the object/operand is false, otherwise it returns False. Here, the operand is the unary expression/

statement on which the operator is applied. It uses the following syntax: not A:

a = 32

if not a:

 print("Boolean value of a is False")

else:

 print("Boolean value of a is True")

The output will be as follows.

Boolean value of a is True

In this section, we learned about different operators available in Python, and also saw how

membership and identity operators can be applied to list data types. In the next section, we will

continue discussing a final sequence data type: tuples.

Tuples
Tuples are used to store multiple items in a single variable. It is a read-only collection where

data is ordered (zero-based indexing) and unchangeable/immutable (items cannot be added,

modified, removed). Duplicate values are allowed in a tuple, and elements can be of different

types, similar to lists. Tuples are used instead of lists when we wish to store the data that should

not be changed in the program.

Tuples are written with round brackets and items are separated by a comma:

tuple_name = ("entry1", "entry2", "entry3")

For example:

my_tuple = ("Shyam", 23, True, "male")

Tuples support + (concatenation) and * (repetition) operations, similar to strings in Python. In

addition, a membership operator and iteration operation are also available in a tuple. Different

operations that tuples support are listed in Table 1.2:

Chapter 1 19

Expression Result Description

print(len((4,5, "hello"))) 3 Length

print((4,5)+(10,20)) (4,5,10,20) Concatenation

print((2,1)*3) (2,1,2,1,2,1) Repetition

print(3 in ('hi', 'xyz',3)) True Membership

for p in (6,7,8):

 print(p)

6,7,8 Iteration

Table 1.2: Example of tuple operations

Tuples in Python support zero-based indexing, negative indexing, and slicing. To understand it,

let’s take a sample tuple, as shown below:

x = ("hello", "world", " india")

We can see examples of zero-based indexing, negative indexing, and slicing operations in Table 1.3:

Expression Result Description

print(x[1]) "world" Zero-based indexing means that indexing starts from

0 rather than 1, and hence in this example, the first

index refers to the second member of the tuple.

print(x[-2]) "world" Negative: counting from the right-hand side.

print(x[1:]) ("world",
"india")

Slicing fetches a section.

Table 1.3: Example of tuple indexing and slicing

Complex data types
We have discussed basic data types. Next, we discuss complex data types, which are mapping data

types, in other words, dictionary, and set data types, namely, set and frozenset. We will discuss

these data types in detail in this section.

Dictionaries
In Python, a dictionary is another of the important data types, similar to a list, in the sense that it

is also a collection of objects. It stores the data in unordered {key-value} pairs; a key must be of a

hashable and immutable data type, and value can be any arbitrary Python object. In this context,

an object is hashable if it has a hash value that does not change during its lifetime in the program.

Python Data Types and Structures20

Items in the dictionary are enclosed in curly braces, {}, separated by a comma, and can be created

using the {key:value} syntax, as shown below:

dict = {

 <key>: <value>,

 <key>: <value>,

 .

 .

 .

 <key>: <value>

}

Keys in dictionaries are case-sensitive, they should be unique, and cannot be duplicated; however,

the values in the dictionary can be duplicated. For example, the following code can be used to

create a dictionary:

my_dict = {'1': 'data',

 '2': 'structure',

 '3': 'python',

 '4': 'programming',

 '5': 'language'

 }

Figure 1.5 shows the {key-value} pairs created by the preceding piece of code:

Figure 1.5: Example dictionary data structure

Chapter 1 21

Values in a dictionary can be fetched based on the key. For example: my_dict['1'] gives data

as the output.

The dictionary data type is mutable and dynamic. It differs from lists in the sense that dictionary

elements can be accessed using keys, whereas the list elements are accessed via indexing. Table

1.4 shows different characteristics of the dictionary data structure with examples:

Item Example

Creating a dictionary, and

accessing elements from a

dictionary

person = {}

print(type(person))

person['name'] = 'ABC'

person['lastname'] = 'XYZ'

person['age'] = 31

person['address'] = ['Jaipur']

print(person)

print(person['name'])

<class 'dict'>{'name': 'ABC', 'lastname':
'XYZ', 'age': 31, 'address': ['Jaipur']}ABC

in and not in operators print('name' in person)

print('fname' not in person)

True

True

Length of the dictionary print(len(person))

4

Table 1.4: Characteristics of dictionary data structures with examples

Python Data Types and Structures22

Python also includes the dictionary methods as shown in Table 1.5:

Function Description Example

mydict.clear() Removes all elements from a

dictionary.

mydict = {'a': 1, 'b': 2,
'c': 3}

print(mydict)

mydict.clear()

print(mydict)

{'a': 1, 'b': 2, 'c': 3}

{}

mydict.get(<key>) Searches the dictionary

for a key and returns the

corresponding value, if it is

found; otherwise, it returns

None.

mydict = {'a': 1, 'b': 2,
'c': 3}

print(mydict.get('b'))

print(mydict)

print(mydict.get('z'))

2

{'a': 1, 'b': 2, 'c': 3}

None

mydict.items() Returns a list of dictionary

items in (key, value) pairs.

print(list(mydict.items()))

[('a', 1), ('b', 2),
('c', 3)]

mydict.keys() Returns a list of dictionary

keys.

print(list(mydict.keys()))

['a', 'b', 'c']

mydict.values() Returns a list of dictionary

values.

print(list(mydict.values()))

[1, 2, 3]

Chapter 1 23

mydict.pop() If a given key is present in the

dictionary, then this function

will remove the key and

return the associated value.

print(mydict.pop('b'))

print(mydict)

{'a': 1, 'c': 3}

mydict.popitem() This method removes the

last key-value pair added in

the dictionary and returns it

as a tuple.

mydict = {'a': 1,'b': 2,'c':
3}

print(mydict.popitem())

print(mydict)

{'a': 1, 'b': 2}

mydict.update(<obj>) Merges one dictionary with

another. Firstly, it checks

whether a key of the second

dictionary is present in

the first dictionary; the

corresponding value is then

updated. If the key is not

present in the first dictionary,

then the key-value pair is

added.

d1 = {'a': 10, 'b': 20, 'c':
30}

d2 = {'b': 200, 'd': 400}

print(d1.update(d2))

print(d1)

{'a': 10, 'b': 200, 'c':
30, 'd': 400}

Table 1.5: List of methods of dictionary data structures

Sets
A set is an unordered collection of hashable objects. It is iterable, mutable, and has unique elements.

The order of the elements is also not defined. While the addition and removal of items are allowed,

the items themselves within the set must be immutable and hashable. Sets support membership

testing operators (in, not in), and operations such as intersection, union, difference, and

symmetric difference. Sets cannot contain duplicate items. They are created by using the built-in

set() function or curly braces {}. A set() returns a set object from an iterable. For example:

x1 = set(['and', 'python', 'data', 'structure'])

print(x1)

print(type(x1))

x2 = {'and', 'python', 'data', 'structure'}

print(x2)

Python Data Types and Structures24

The output will be as follows:

{'python', 'structure', 'data', 'and'}

<class 'set'>

{'python', 'structure', 'data', 'and'}

Sets are generally used to perform mathematical operations, such as intersection, union, difference,

and complement. The len() method gives the number of items in a set, and the in and not in

operators can be used in sets to test for membership:

x = {'data', 'structure', 'and', 'python'}

print(len(x))

print('structure' in x)

The output will be as follows:

4

True

The most commonly used methods and operations that can be applied to set data structures are as

follows. The union of the two sets, say, x1 and x2, is a set that consists of all elements in either set:

x1 = {'data', 'structure'}

x2 = {'python', 'java', 'c', 'data'}

Figure 1.6 shows a Venn diagram demonstrating the relationship between the two sets:

Figure 1.6: Venn diagram of sets

It is important to note that sets are unordered data structures, and the order of items

in sets is not preserved. Therefore, your outputs in this section may be slightly dif-

ferent than those displayed here. However, this does not affect the function of the

operations we will be demonstrating in this section.

Chapter 1 25

A description of the various operations that can be applied on set type variables is shown, with

examples, in Table 1.6:

Description Example sample code
Union of two sets, x1 and x2. It can

be done using two methods, (1) using

the | operator, (2) using the union

method.

x1 = {'data', 'structure'}
x2 = {'python', 'java', 'c', 'data'}
x3 = x1 | x2
print(x3)
print(x1.union(x2))

{'structure', 'data', 'java', 'c',
'python'}

{'structure', 'data', 'java', 'c',
'python'}

Intersection of sets: to compute the

intersection of two sets, an & operator

and the intersection() method can

be used, which returns a set of items

common to both sets, x1 and x2.

print(x1.intersection(x2))
print(x1 & x2)

{'data'}

{'data'}

The difference between sets can be

obtained using .difference() and

the subtraction operator, -, which

returns a set of all elements that are

in x1, but not in x2.

print(x1.difference(x2))
print(x1 - x2)

{'structure'}

{'structure'}

Symmetric difference can be obtained

using .symmetric_difference() ,

while ^ returns a set of all data items

that are present in either x1 or x2, but

not both.

print(x1.symmetric_difference(x2))
print(x1 ^ x2)

{'structure', 'python', 'c', 'java'}

{'structure', 'python', 'c', 'java'}

To test whether a set is a subset of

another, use .issubset() and the

operator <=.

print(x1.issubset(x2))
print(x1 <= x2)

False

False

Table 1.6: Description of various operations applicable to set type variables

Python Data Types and Structures26

Immutable sets
In Python, frozenset is another built-in type data structure, which is, in all respects, exactly

like a set, except that it is immutable, and so cannot be changed after creation. The order of the

elements is also undefined. A frozenset is created by using the built-in function frozenset():

x = frozenset(['data', 'structure', 'and', 'python'])

print(x)

The output is:

frozenset({'python', 'structure', 'data', 'and'})

Frozensets are useful when we want to use a set but require the use of an immutable object.

Moreover, it is not possible to use set elements in the set, since they must also be immutable.

Consider an example:

a11 = set(['data'])

a21 = set(['structure'])

a31 = set(['python'])

x1 = {a11, a21, a31}

The output will be:

TypeError: unhashable type: 'set'

Now with frozenset:

a1 = frozenset(['data'])

a2 = frozenset(['structure'])

a3 = frozenset(['python'])

x = {a1, a2, a3}

print(x)

The output is:

{frozenset({'structure'}), frozenset({'python'}), frozenset({'data'})}

In the above example, we create a set x of frozensets (a1, a2, and a3), which is possible because

the frozensets are immutable.

We have discussed the most important and popular data types available in Python. Python also

provides a collection of other important methods and modules, which we will discuss in the

next section.

Chapter 1 27

Python’s collections module
The collections module provides different types of containers, which are objects that are used

to store different objects and provide a way to access them. Before accessing these, let’s consider

briefly the role and relationships between modules, packages, and scripts.

A module is a Python script with the .py extension that contains a collection of functions, classes,

and variables. A package is a directory that contains collections of modules; it has an __init__.

py file, which lets the interpreter know that it is a package. A module can be called into a Python

script, which can in turn make use of the module’s functions and variables in its code. In Python,

we can import these to a script using the import statement. Whenever the interpreter encounters

the import statement, it imports the code of the specified module.

Table 1.7 provides the data types and operations of the collections module and their descriptions:

Container data type Description

namedtuple Creates a tuple with named fields similar to regular tuples.

deque Doubly-linked lists that provide efficient adding and removing of items

from both ends of the list.

defaultdict A dictionary subclass that returns default values for missing keys.

ChainMap A dictionary that merges multiple dictionaries.

Counter A dictionary that returns the counts corresponding to their objects/key.

UserDict UserList
UserString

These data types are used to add more functionalities to their base data

structure, such as a dictionary, list, and string. And we can create

subclasses from them for custom dict/list/string.

Table 1.7: Different container data type of the collections module

Let’s consider these types in more detail.

Named tuples
The namedtuple of collections provides an extension of the built-in tuple data type. namedtuple

objects are immutable, similar to standard tuples. Thus, we can’t add new fields or modify existing

ones after the namedtuple instance is created. They contain keys that are mapped to a particular

value, and we can iterate through named tuples either by index or key. The namedtuple function

is mainly useful when several tuples are used in an application and it is important to keep track

of each of the tuples in terms of what they represent.

Python Data Types and Structures28

In this situation, namedtuple presents a more readable and self-documenting method. The syntax

is as follows:

nt = namedtuple(typename , field_names)

Here is an example:

from collections import namedtuple

Book = namedtuple ('Book', ['name', 'ISBN', 'quantity'])

Book1 = Book('Hands on Data Structures', '9781788995573', '50')

#Accessing data items

print('Using index ISBN:' + Book1[1])

print('Using key ISBN:' + Book1.ISBN)

The output will be as follows.

Using index ISBN:9781788995573

Using key ISBN:9781788995573

Here, in the above code, we firstly imported namedtuple from the collections module. Book is

a named tuples, “class,” and then, Book1 is created, which is an instance of Book. We also see

that the data elements can be accessed using index and key methods.

Deque
A deque is a double-ended queue (deque) that supports append and pop elements from both sides

of the list. Deques are implemented as double-linked lists, which are very efficient for inserting

and deleting elements in O(1) time complexity.

Consider an example:

from collections import deque

s = deque() # Creates an empty deque

print(s)

my_queue = deque([1, 2, 'Name'])

print(my_queue)

The output will be as follows.

deque([])

deque([1, 2, 'Name'])

Chapter 1 29

You can also use some of the following predefined functions:

Function Description

my_queue.append('age') Insert 'age' at the right end of the list.

my_queue.appendleft('age') Insert 'age' at the left end of the list.

my_queue.pop() Delete the rightmost value.

my_queue.popleft() Delete the leftmost value.

Table 1.8: Description of different queue functions

In this section, we showed the use of the deque method of the collections module, and how

elements can be added and deleted from the queue.

Ordered dictionaries
An ordered dictionary is a dictionary that preserves the order of the keys that are inserted. If the

key order is important for any application, then OrderedDict can be used:

od = OrderedDict([items])

An example could look like the following:

from collections import OrderedDict

od = OrderedDict({'my': 2, 'name ': 4, 'is': 2, 'Mohan' :5})

od['hello'] = 4

print(od)

The output will be as follows.

OrderedDict([('my', 2), ('name ', 4), ('is', 2), ('Mohan', 5), ('hello',
4)])

In the above code, we create a dictionary, od, using the OrderedDict module. We can observe

that the order of the keys is the same as the order when we created the key.

Default dictionary
The default dictionary (defaultdict) is a subclass of the built-in dictionary class (dict) that

has the same methods and operations as that of the dictionary class, with the only difference

being that it never raises a KeyError, as a normal dictionary would. defaultdict is a convenient

way to initialize dictionaries:

d = defaultdict(def_value)

Python Data Types and Structures30

An example could look like the following:

from collections import defaultdict

dd = defaultdict(int)

words = str.split('data python data data structure data python')

for word in words:

 dd[word] += 1

print(dd)

The output will be as follows.

defaultdict(<class 'int'>, {'data': 4, 'python': 2, 'structure': 1})

In the above example, if an ordinary dictionary had been used, then Python would have shown

KeyError while the first key was added. int, which we supplied as an argument to defaultdict,

is really the int() function, which simply returns a zero.

ChainMap object
ChainMap is used to create a list of dictionaries. The collections.ChainMap data structure

combines several dictionaries into a single mapping. Whenever a key is searched in the chainmap,

it looks through all the dictionaries one by one, until the key is not found:

class collections.ChainMap(dict1, dict2)

An example could look like the following:

from collections import ChainMap

dict1 = {"data": 1, "structure": 2}

dict2 = {"python": 3, "language": 4}

chain = ChainMap(dict1, dict2)

print(chain)

print(list(chain.keys()))

print(list(chain.values()))

print(chain["data"])

print(chain["language"])

The output will be:

ChainMap({'data': 1, 'structure': 2}, {'python': 3, 'language': 4})

['python', 'language', 'data', 'structure']

[3, 4, 1, 2]

Chapter 1 31

1

4

In the above code, we create two dictionaries, namely, dict1 and dict2, and then we can combine

both of these dictionaries using the ChainMap method.

Counter objects
As we discussed earlier, a hashable object is one whose hash value will remain the same during

its lifetime in the program. counter is used to count the number of hashable objects. Here, the

dictionary key is a hashable object, while the corresponding value is the count of that object. In

other words, counter objects create a hash table in which the elements and their count are stored

as dictionary keys and value pairs.

Dictionary and counter objects are similar in the sense that data is stored in a {key, value}

pair, but in counter objects, the value is the count of the key whereas it can be anything in the case

of dictionary. Thus, when we only want to see how many times each unique word is occurring

in a string, we use the counter object.

An example could look like the following:

from collections import Counter

inventory = Counter('hello')

print(inventory)

print(inventory['l'])

print(inventory['e'])

print(inventory['o'])

The output will be:

Counter({'l': 2, 'h': 1, 'e': 1, 'o': 1})

2

1

1

In the above code, the inventory variable is created, which holds the counts of all the characters

using the counter module. The count values of these characters can be accessed using dictionary-

like key access ([key]).

Python Data Types and Structures32

UserDict
Python supports a container, UserDict, present in the collections module, that wraps the dictionary

objects. We can add customized functions to the dictionary. This is very useful for applications

where we want to add/update/modify the functionalities of the dictionary. Consider the example

code below where pushing/adding a new data element is not allowed in the dictionary:

we can not push to this user dictionary

from collections import UserDict

class MyDict(UserDict):

 def push(self, key, value):

 raise RuntimeError("Cannot insert")

d = MyDict({'ab':1, 'bc': 2, 'cd': 3})

d.push('b', 2)

The output is as follows:

RuntimeError: Cannot insert

In the above code, a customized push function in the MyDict class is created to add the customized

functionality, which does not allow you to insert an element into the dictionary.

UserList
A UserList is a container that wraps list objects. It can be used to extend the functionality of the

list data structure. Consider the example code below, where pushing/adding a new data element

is not allowed in the list data structure:

we can not push to this user list

from collections import UserList

class MyList(UserList):

 def push(self, key):

 raise RuntimeError("Cannot insert in the list")

d = MyList([11, 12, 13])

d.push(2)

The output is as follows:

RuntimeError: Cannot insert in the list

In the above code, a customized push function in the MyList class is created to add the functionality

to not allow you to insert an element into the list variable.

Chapter 1 33

UserString
Strings can be considered as an array of characters. In Python, a character is a string of one length

and acts as a container that wraps a string object. It can be used to create strings with customized

functionalities. An example could look like the following:

#Create a custom append function for string

from collections import UserString

class MyString(UserString):

 def append(self, value):

 self.data += value

s1 = MyString("data")

print("Original:", s1)

s1.append('h')

print("After append: ", s1)

The output is:

Original: data

After append: datah

In the above example code, a customized append function in the MyString class is created to add

the functionality to append a string.

Summary
In this chapter, we have discussed different built-in data types supported by Python. We have also

looked at a few basic Python functions, libraries, and modules, such as the collections module.

The main objective of this chapter was to give an overview of Python and make a user acquainted

with the language so that it is easy to implement the advanced algorithms of data structures.

Overall, this chapter has provided an overview of several data structures available in Python

that are pivotal for understanding the internals of data structures. In the next chapter, we will

introduce the basic concepts of algorithm design and analysis.

Python Data Types and Structures34

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://packt.link/MEvK4

https://packt.link/MEvK4

2
Introduction to Algorithm
Design

The objective of this chapter is to understand the principles of designing algorithms, and the im-

portance of analyzing algorithms in solving real-world problems. Given input data, an algorithm

is a step-by-step set of instructions that should be executed in sequence to solve a given problem.

In this chapter, we will also learn how to compare different algorithms and determine the best

algorithm for the given use-case. There can be many possible correct solutions for a given prob-

lem, for example, we can have several algorithms for the problem of sorting n numeric values. So,

there is no one algorithm to solve any real-world problem.

In this chapter, we will look at the following topics:

•	 Introducing algorithms

•	 Performance analysis of an algorithm

•	 Asymptotic notation

•	 Amortized analysis

•	 Choosing complexity classes

•	 Computing the running time complexity of an algorithm

Introducing algorithms
An algorithm is a sequence of steps that should be followed in order to complete a given task/

problem.

Introduction to Algorithm Design36

It is a well-defined procedure that takes input data, processes it, and produces the desired output.

A representation of this is shown in Figure 2.1.

Figure 2.1: Introduction to algorithms

Summarized below are some important reasons for studying algorithms:

•	 Essential for computer science and engineering

•	 Important in many other domains (such as computational biology, economics, ecology,

communications, ecology, physics, and so on)

•	 They play a role in technology innovation

•	 They improve problem-solving and analytical thinking

There are two aspects that are of prime importance in solving a given problem. Firstly, we need

an efficient mechanism to store, manage, and retrieve data, which is required to solve a problem

(this comes under data structures); secondly, we require an efficient algorithm that is a finite set

of instructions to solve that problem. Thus, the study of data structures and algorithms is key to

solving any problem using computer programs. An efficient algorithm should have the following

characteristics:

•	 It should be as specific as possible

•	 It should have each instruction properly defined

•	 There should not be any ambiguous instructions

•	 All the instructions of the algorithm should be executable in a finite amount of time and

in a finite number of steps

Chapter 2 37

•	 It should have clear input and output to solve the problem

•	 Each instruction of the algorithm should be integral in solving the given problem

Consider an example of an algorithm (an analogy) to complete a task in our daily lives; let us

take the example of preparing a cup of tea. The algorithm to prepare a cup of tea can include the

following steps:

1.	 Pour water into the pan

2.	 Put the pan on the stove and light the stove

3.	 Add crushed ginger to the warming water

4.	 Add tea leaves to the pan

5.	 Add milk

6.	 When it starts boiling, add sugar to it

7.	 After 2-3 minutes, the tea can be served

The above procedure is one of the possible ways to prepare tea. In the same way, the solution to

a real-world problem can be converted into an algorithm, which can be developed into computer

software using a programming language. Since it is possible to have several solutions for a given

problem, it should be as efficient as possible when it is to be implemented using software. Given a

problem, there may be more than one correct algorithm, defined as the one that produces exactly

the desired output for all valid input values. The costs of executing different algorithms may be

different; it may be measured in terms of the time required to run the algorithm on a computer

system and the memory space required for it.

There are primarily two things that one should keep in mind while designing an efficient algorithm:

1.	 The algorithm should be correct and should produce the results as expected for all valid

input values

2.	 The algorithm should be optimal in the sense that it should be executed on the computer

within the desired time limit, in line with an optimal memory space requirement

Performance analysis of the algorithm is very important for deciding the best solution for a given

problem. If the performance of an algorithm is within the desired time and space requirements, it

is optimal. One of the most popular and common methods of estimating the performance of an

algorithm is through analyzing its complexity. Analysis of the algorithm helps us to determine

which one is most efficient in terms of the time and space consumed.

Introduction to Algorithm Design38

Performance analysis of an algorithm
The performance of an algorithm is generally measured by the size of its input data, n, and the

time and the memory space used by the algorithm. The time required is measured by the key

operations to be performed by the algorithm (such as comparison operations), where key opera-

tions are instructions that take a significant amount of time during execution. Whereas the space

requirement of an algorithm is measured by the memory needed to store the variables, constants,

and instructions during the execution of the program.

Time complexity
The time complexity of the algorithm is the amount of time that an algorithm will take to execute

on a computer system to produce the output. The aim of analyzing the time complexity of the

algorithm is to determine, for a given problem and more than one algorithm, which one of the

algorithms is the most efficient with respect to the time required to execute. The running time

required by an algorithm depends on the input size; as the input size, n, increases, the runtime

also increases. Input size is measured as the number of items in the input, for example, the input

size for a sorting algorithm will be the number of items in the input. So, a sorting algorithm will

have an increased runtime to sort a list of input size 5,000 than that of a list of input size 50.

The runtime of an algorithm for a specific input depends on the key operations to be executed in

the algorithm. For example, the key operation for a sorting algorithm is a comparison operation

that will take up most of the runtime, compared to assignment or any other operation. Ideally,

these key operations should not depend upon the hardware, the operating system, or the pro-

gramming language being used to implement the algorithm.

A constant amount of time is required to execute each line of code; however, each line may take

a different amount of time to execute. In order to understand the running time required for an

algorithm, consider the below code as an example:

Code Time required (Cost)

if n==0 || n == 3 #constant time

 print("data")

else:

 for i in range(#loop run for n
times

 print("structure")

c1

c2

c3

c4

c5

Chapter 2 39

Here, in statement 1 of the above example, if the condition is true then "data" will be printed,

and if the condition is not true then the for loop will execute n times. The time required by the

algorithm depends on the time required for each statement, and how many times a statement

is executed. The running time of the algorithm is the sum of time required by all the statements.

For the above code, assume statement 1 takes c1 amount of time, statement 2 takes c2 amount of

time, and so on. So, if the ith statement takes a constant amount of time ci and if the ith statement

is executed n times, then it will take cin time. The total running time T(n) of the algorithm for a

given value of n (assuming the value of n is not zero or three) will be as follows.

T(n) = c1 + c3 + c4 x n + c5 x n

If the value of n is equal to zero or three, then the time required by the algorithm will be as follows.

T(n) = c1 + c2

Therefore, the running time required for an algorithm also depends upon what input is given in

addition to the size of the input given. For the given example, the best case will be when the input

is either zero or three, and in that case, the running time of the algorithm will be constant. In the

worst case, the value of n is not equal to zero or three, then, the running time of the algorithm can

be represented as a x n + b. Here, the values of a and b are constants that depend on the statement

costs, and the constant times are not considered in the final time complexity. In the worst case,

the runtime required by the algorithm is a linear function of n.

Let us consider another example, linear search:

def linear_search(input_list, element):

 for index, value in enumerate(input_list):

 if value == element:

 return index

 return -1

input_list = [3, 4, 1, 6, 14]

element = 4

print("Index position for the element x is:", linear_search(input_
list,element))

The output in this instance will be as follows:

Index position for the element x is: 1

Introduction to Algorithm Design40

The worst-case running time of the algorithm is the upper-bound complexity; it is the maximum

runtime required for an algorithm to execute for any given input. The worst-case time complexity

is very useful in that it guarantees that for any input data, the runtime required will not take more

time as compared to the worst-case running time. For example, in the linear search problem, the

worst case occurs when the element to be searched is found in the last comparison or not found

in the list. In this case, the running time required will linearly depend upon the length of the list,

whereas, in the best case, the search element will be found in the first comparison.

The average-case running time is the average running time required for an algorithm to execute.

In this analysis, we compute the average over the running time for all possible input values. Gen-

erally, probabilistic analysis is used to analyze the average-case running time of an algorithm,

which is computed by averaging the cost over the distribution of all the possible inputs. For ex-

ample, in the linear search, the number of comparisons at all positions would be 1 if the element

to be searched was found at the 0th index; and similarly, the number of comparisons would be 2,

3, and so forth, up to n, respectively, for elements found at the 1, 2, 3, … (n-1) index positions.

Thus, the average-case running time will be as follows.𝑇𝑇(𝑛𝑛) = 1 + 2 + 3…𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛 2𝑛𝑛

For average-case, the running time required is also linearly dependent upon the value of n. How-

ever, in most real-world applications, worst-case analysis is mostly used, since it gives a guarantee

that the running time will not take any longer than the worst-case running time of the algorithm

for any input value.

Best-case running time is the minimum time needed for an algorithm to run; it is the lower

bound on the running time required for an algorithm; in the example above, the input data is

organized in such a way that it takes its minimum running time to execute the given algorithm.

Space complexity
The space complexity of the algorithm estimates the memory requirement to execute it on a

computer to produce the output as a function of input data. The memory space requirement of

an algorithm is one of the criteria used to decide how efficient it is. While executing the algorithm

on the computer system, storage of the input is required, along with intermediate and tempo-

rary data in data structures, which are stored in the memory of the computer. In order to write a

programming solution for any problem, some memory is required for storing variables, program

instructions, and executing the program on the computer. The space complexity of an algorithm

is the amount of memory required for executing and producing the result.

Chapter 2 41

For computing the space complexity, consider the following example, in which, given a list of

integer values, the function returns the square value of the corresponding integer number.

def squares(n):

 square_numbers = []

 for number in n:

 square_numbers.append(number * number)

 return square_numbers

nums = [2, 3, 5, 8]

print(squares(nums))

The output of the code is:

[4, 9, 25, 64]

In the above code, the algorithm will require allocating memory for the number of items in the

input list. Say the number of elements in the input is n, then the space requirement increases with

the input size, therefore, the space complexity of the algorithm becomes O(n).

Given two algorithms to solve a given problem, with all other requirements being equal, then the

algorithm that requires less memory can be considered more efficient. For example, suppose there

are two search algorithms, one has O(n) and another algorithm has O(nlogn) space complexity.

The first algorithm is the better algorithm as compared to the second with respect to the space

requirements. Space complexity analysis is important to understand the efficiency of an algorithm,

especially for applications where the memory space requirement is high.

When the input size becomes large enough, the order of growth also becomes important. In

such situations, we study the asymptotic efficiency of algorithms. Generally, algorithms that are

asymptotically efficient are considered to be better algorithms for large-size inputs. In the next

section, we will study asymptotic notation.

Asymptotic notation
To analyze the time complexity of an algorithm, the rate of growth (order of growth) is very

important when the input size is large. When the input size becomes large, we only consider the

higher-order terms and ignore the insignificant terms. In asymptotic analysis, we analyze the

efficiency of algorithms for large input sizes considering the higher order of growth and ignoring

the multiplicative constants and lower-order terms.

Introduction to Algorithm Design42

We compare two algorithms with respect to input size rather than the actual runtime and measure

how the time taken increases with an increased input size. The algorithm which is more efficient

asymptotically is generally considered a better algorithm as compared to the other algorithm. The

following asymptotic notations are commonly used to calculate the running time complexity of

an algorithm:

•	 θ notation: It denotes the worst-case running time complexity with a tight bound.

•	 Ο notation: It denotes the worst-case running time complexity with an upper bound,

which ensures that the function never grows faster than the upper bound.

•	 Ω notation: It denotes the lower bound of an algorithm’s running time. It measures the

best amount of time to execute the algorithm.

Theta notation
The following function characterizes the worst-case running time for the first example discussed

in the Time complexity section:

T(n) = c1 + c3 x n + c5 x n

Here, for a large input size, the worst-case running time will be ϴ(n) (pronounced as theta of n).

We usually consider one algorithm to be more efficient than another if its worst-case running

time has a lower order of growth. Due to constant factors and lower-order terms, an algorithm

whose running time has a higher order of growth might take less time for small inputs than an

algorithm whose running time has a lower order of growth. For example, once the input size n

becomes large enough, the merge sort algorithm performs better as compared to insertion sort

with worst-case running times of ϴ(logn) and ϴ(n2) respectively.

Theta notation (ϴ) denotes the worst-case running time for an algorithm with a tight bound. For a

given function F(n), the asymptotic worst-case running time complexity can be defined as follows.𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
iff there exists constants n0, c1, and c2 such that:0 ≤ 𝑐𝑐1(𝐹𝐹(𝑛𝑛)) ≤ 𝑇𝑇(𝑛𝑛) ≤ 𝑐𝑐2(𝐹𝐹𝐹𝐹)) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛

The function T(n) belongs to a set of functions ϴ(F(n)) if there exists positive constants c1 and c2

such that the value of T(n) always lies in between c1F(n) and c2F(n) for all large values of n. If this

condition is true, then we say F(n) is asymptotically tight bound for T(n).

Chapter 2 43

Figure 2.2 shows the graphic example of the theta notation (ϴ). It can be observed from the fig-

ure that the value of T(n) always lies in between c1F(n) and c2F(n) for values of n greater than n0.

Figure 2.2: Graphical example of theta notation (ϴ)

Let us consider an example to understand what should be the worst case running time complexity

with the formal definition of theta notation for a given function:f(n) = n2 + n is 𝛳𝛳𝛳𝛳2

In order to determine the time complexity with the ϴ notation definition, we have to first identify

the constants c1, c2, n0 such that0 ≤ c1 ∗ n2 ≤ n2 + n ≤ c2 ∗ n2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 n ≥ n0

Dividing by n2 will produce:0 ≤ c1 ≤ 1 + 1n ≤ c2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 n ≥ n0

By choosing c1 = 1, c2 = 2, and n0 = 1, the following condition can satisfy the definition of theta

notation. 0 ≤ n2 ≤ n2 + n ≤ 2n2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 n ≥ 1

That gives: 𝑓𝑓(𝑛𝑛) = ϴ(g(n)), means f(n) = ϴ(n2)

Introduction to Algorithm Design44

Consider another example to find out the asymptotically tight bound (ϴ) for another function:𝑓𝑓(𝑛𝑛) = 𝑛𝑛22 + 𝑛𝑛2

In order to identify the constants c1, c2, and n0, such that they satisfy the condition:0 ≤ c1 ∗ 𝑛𝑛2 ≤ n22 ≤ c2 ∗ 𝑛𝑛2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛 𝑛𝑛𝑛

By choosing c1 = 1/5, c2 =1, and n0 = 1, the following condition can satisfy the definition of theta

notation: 0 ≤ n25 ≤ n22 + 𝑛𝑛2 ≤ n2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 𝑛𝑛𝑛 𝑛 𝑛

⇒ n22 + 𝑛𝑛2 = ϴ(n2) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐1 = 15 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0 = 1

So, the following is true: 𝑓𝑓(𝑛𝑛) = 𝑛𝑛22 + 𝑛𝑛2 = ϴ(n2)
It shows that the given function has the complexity of ϴ(n2) as per the definition of theta notation.

So, the theta notation provides a tight bound for the time complexity of an algorithm. In the next

section, we will discuss Big O notation.

Big O notation
We have seen that the theta notation is asymptotically bound from the upper and lower sides of
the function whereas the Big O notation characterizes the worst-case running time complexity,
which is only the asymptotic upper bound of the function. Big O notation is defined as follows.
Given a function F(n), the T(n) is a Big O of function F(n), and we define this as follows:

T(n) = O(F(n))

iff there exists constants n0 and c such that: 𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛 𝑛𝑛𝑛

In Big O notation, a constant multiple of F(n) is an asymptotic upper bound on T(n), and the
positive constants n0 and c should be in such a way that all values of n greater than n0 always lie
on or below function c*F(n).

Chapter 2 45

Moreover, we only care what happens at higher values of n. The variable n0 represents the threshold

below which the rate of growth is not important. The plot shown in Figure 2.3 shows a graphical

representation of function T(n) with a varying value of n. We can see that T(n) = n2 + 500 = O(n2),

with c = 2 and n0 being approximately 23.

Figure 2.3: Graphical example of O notation

In O notation, O(F(n)) is really a set of functions that includes all functions with the same or

smaller rates of growth than F(n). For example, O(n2) also includes O(n), O(log n), and so on.

However, Big O notation should characterize a function as closely as possible, for example, it is

true that function F(n) = 2n3+2n2+5 is O(n4), however, it is more accurate that F(n) is O(n3).

In the following table, we list the most common growth rates in order from lowest to highest.

Time Complexity Name

O(1) Constant

O(logn) Logarithmic

O(n) Linear

O(nlogn) Linear-logarithmic

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

Table 2.1: Runtime complexity of different functions

Introduction to Algorithm Design46

Using Big O notation, the running time of an algorithm can be computed by analyzing the structure

of the algorithm. For example, a double nested loop in an algorithm will have an upper bound

on the worst-case running time of O(n2), since the values of i and j will be at most n, and both

the loops will run n2 times as shown in the below example code:

for i in range(n):

 for j in range(n):

 print("data")

Let us consider a few examples in order to compute the upper bound of a function using the

O-notation:

1.	 Find the upper bound for the function:

T(n) = 2n + 7

Solution: Using O notation, the condition for the upper bound is:

T(n) <= c * F(n)

This condition holds true for all values of n > 7 and c=3.

2n + 7 <= 3n This is true for all values of n, with c=3, n0=7

T(n) = 2n+7 = O(n)

2.	 Find F(n) for functions T(n) =2n+5 such that T(n) = O(F(n)).

Solution: Using O notation, the condition for the upper bound is T(n) <=c * F(n).

Since, 2n+5 ≤ 3n, for all n ≥ 5.

The condition is true for c=3, n0=5.

2n + 5 ≤ O(n)

F(n) = n

Chapter 2 47

3.	 Find F(n) for the function T(n) = n2 +n, such that T(n) = O(F(n)).

Solution: Using O notation, since, n2+ n ≤ 2n2, for all n ≥ 1 (with c = 2, n0=2)

n2+ n ≤ O(n2)

F(n) = n2

4.	 Prove that f(n) =2n3 - 6n ≠ O(n2).

Solution: Clearly, 2n3-6n ≥ n2, for n ≥ 2. So it cannot be true that 2n3 - 6n ≠ O(n2).

5.	 Prove that: 20n2+2n+5 = O(n2).

Solution: It is clear that:

20n2 + 2n + 5 <= 21n2 for all n > 4 (let c = 21 and n0 = 4)

n2 > 2n + 5 for all n > 4

So, the complexity is O(n2).

So, Big-O notation provides an upper bound on a function, which ensures that the function never

grows faster than the upper-bounded function. In the next section, we will discuss Omega notation.

Omega notation
Omega notation (Ω) describes an asymptotic lower bound on algorithms, similar to the way in

which Big O notation describes an upper bound. Omega notation computes the best-case runtime

complexity of the algorithm. The Ω notation (Ω(F(n)) is pronounced as omega of F of n), is a set

of functions in such a way that there are positive constants n0 and c such that for all values of n

greater than n0, T(n) always lies on or above a function to c*F(n).

T(n) = Ω (F(n))

Iff constants n0 and c are present, then: 0 ≤ 𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)) ≤ 𝑇𝑇(𝑛𝑛), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛 𝑛 𝑛𝑛0

Introduction to Algorithm Design48

Figure 2.4 shows the graphical representation of the omega (Ω) notation. It can be observed from

the figure that the value of T(n) always lies above cF(n) for values of n greater than n0.

Figure 2.4: The graphical representation of Ω notation

If the running time of an algorithm is Ω(F(n)), it means that the running time of the algorithm is

at least a constant multiplier of F(n) for sufficiently large values of input size (n). The Ω notation

gives a lower bound on the best-case running time complexity of a given algorithm. It means that

the running time for a given algorithm will be at least F(n) without depending upon the input.

In order to understand the Ω notation and how to compute the lower bound on the best-case

runtime complexity of an algorithm:

1.	 Find F(n) for the function T(n) =2n2 +3 such that T(n) = Ω(F(n)).

Solution: Using the Ω notation, the condition for the lower bound is:

c*F(n) ≤ T(n)

This condition holds true for all values of n greater than 0, and c=1.

0 ≤ cn2 ≤ 2n2 +3, for all n ≥ 0

2n2 +3 = Ω(n2)

F(n)=n2

Chapter 2 49

2.	 Find the lower bound for T(n) = 3n2.

Solution: Using the Ω notation, the condition for the lower bound is:

c*F(n) ≤ T(n)

Consider 0 ≤ cn2 ≤ 3n2. The condition for Ω notation holds true for all values of n greater

than 1, and c=2.

cn2 ≤ 3n2 (for c = 2 and n0 = 1)

3n2 = Ω(n2)

3.	 Prove that 3n = Ω(n).

Solution: Using the Ω notation, the condition for the lower bound is:

c*F(n) ≤ T(n)

Consider 0 ≤ c*n ≤ 3n. The condition for Ω notation holds true for all values of n greater

than 1, and c=1.

cn2 ≤ 3n2 (for c = 2 and n0 = 1)

3n = Ω(n)

The Ω notation is used to describe that at least a certain amount of running time will be taken

by an algorithm for a large input size. In the next section, we will discuss amortized analysis.

Amortized analysis
In the amortized analysis of an algorithm, we average the time required to execute a sequence of

operations with all the operations of the algorithm. This is called amortized analysis. Amortized

analysis is important when we are not interested in the time complexity of individual operations

but we are interested in the average runtime of sequences of operations. In an algorithm, each

operation requires a different amount of time to execute. Certain operations require significant

amounts of time and resources while some operations are not costly at all. In amortized analysis,

we analyze algorithms considering both the costly and less costly operations in order to analyze

all the sequences of operations. So, an amortized analysis is the average performance of each

operation in the worst case considering the cost of the complete sequence of all the operations.

Amortized analysis is different from average-case analysis since the distribution of the input

values is not considered. An amortized analysis gives the average performance of each operation

in the worst case.

Introduction to Algorithm Design50

There are three commonly used methods for amortized analysis:

•	 Aggregate analysis. In aggregate analysis, the amortized cost is the average cost of all

the sequences of operations. For a given sequence of n operations, the amortized cost

of each operation can be computed by dividing the upper bound on the total cost of n

operations with n.

•	 The accounting method. In the accounting method, we assign an amortized cost to each

operation, which may be different than their actual cost. In this, we impose an extra charge

on early operations in the sequence and save “credit cost,” which is used to pay expensive

operations later in the sequence.

•	 The potential method. The potential method is like the accounting method. We determine

the amortized cost of each operation and impose an extra charge to early operations that

may be used later in the sequence. Unlike the accounting method, the potential method

accumulates the overcharged credit as “potential energy” of the data structure as a whole

instead of storing credit for individual operations.

In this section, we had an overview of amortized analysis. Now we will discuss how to compute

the complexity of different functions with examples in the next section.

Composing complexity classes
Normally, we need to find the total running time of complex operations and algorithms. It turns

out that we can combine the complexity classes of simple operations to find the complexity class

of more complex, combined operations. The goal is to analyze the combined statements in a

function or method to understand the total time complexity of executing several operations. The

simplest way to combine two complexity classes is to add them. This occurs when we have two

sequential operations. For example, consider the two operations of inserting an element into a

list and then sorting that list. Assuming that inserting an item occurs in O(n) time, and sorting

in O(nlogn) time, then we can write the total time complexity as O(n + nlogn); that is, we bring

the two functions inside the O(…), as per Big O computation. Considering only the highest-order

term, the final worst-case complexity becomes O(nlogn).

If we repeat an operation, for example in a while loop, then we multiply the complexity class by

the number of times the operation is carried out. If an operation with time complexity O(f(n))

is repeated O(n) times, then we multiply the two complexities: O(f(n) * O(n)) = O(nf(n)). For

example, suppose the function f(n) has a time complexity of O(n2) and it is executed n times in

a for loop, as follows:

Chapter 2 51

for i in range(n):

 f(...)

The time complexity of the above code then becomes:

O(n2) x O(n) = O(n x n2) = O(n3)

Here, we are multiplying the time complexity of the inner function by the number of times this

function executes. The runtime of a loop is at most the runtime of the statements inside the

loop multiplied by the number of iterations. A single nested loop, that is, one loop nested inside

another loop, will run n2 times, such as in the following example:

for i in range(n):

 for j in range(n)

 #statements

If each execution of the statements takes constant time, c, i.e. O(1), executed n x n times, we can

express the running time as follows:

c x n x n = c x n2 = O(n2)

For consecutive statements within nested loops, we add the time complexities of each statement

and multiply by the number of times the statement is executed—as in the following code, for

example:

def fun(n):

 for i in range(n): #executes n times

 print(i) #c1

 for i in range(n):

 for j in range(n):

 print(j) #c2

This can be written as: c1n + c2 *n2 = O(n2).

We can define (base 2) logarithmic complexity, reducing the size of the problem by half, in con-

stant time. For example, consider the following snippet of code:

i = 1

while i <= n:

 i = i*2

 print(i)

Introduction to Algorithm Design52

Notice that i is doubling in each iteration. If we run this code with n = 10, we see that it prints

out four numbers: 2, 4, 8, and 16. If we double n, we see it prints out five numbers. With each

subsequent doubling of n, the number of iterations is only increased by 1. If we assume that the

loop has k iterations, then the value of n will be 2n. We can write this as follows:log2(2𝑘𝑘) = log2(𝑛𝑛𝑛 𝑘𝑘𝑘𝑘𝑘2(2) = log2(2) 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
From this, the worst-case runtime complexity of the above code is equal to O(log(n)).

In this section, we have seen examples to compute the running time complexity of different

functions. In the next section, we will take examples to understand how to compute the running

time complexity of an algorithm.

Computing the running time complexity of an
algorithm
To analyze an algorithm with respect to the best-, worst-, and average-case runtime of the algo-

rithm, it is not always possible to compute these for every given function or algorithm. However,

it is always important to know the upper-bound worst-case runtime complexity of an algorithm

in practical situations; therefore, we focus on computing the upper-bound Big O notation to

compute the worst-case runtime complexity of an algorithm:

1.	 Find the worst-case runtime complexity of the following Python snippet:

loop will run n times

for i in range(n):

 print("data") #constant time

Solution: The runtime for a loop, in general, takes the time taken by all statements in the

loop, multiplied by the number of iterations. Here, total runtime is defined as follows:

T(n) = constant time (c) * n = c*n = O(n)

2.	 Find the time complexity of the following Python snippet:

for i in range(n):

 for j in range(n): # This loop will also run for n times

 print("run")

Chapter 2 53

Solution: O(n2). The print statement will be executed n2 times, n times for the inner loop,

and, for each iteration of the outer loop, the inner loop will be executed.

3.	 Find the time complexity of the following Python snippet:

for i in range(n):

 for j in range(n):

 print("run fun")

 break

Solution: The worst-case complexity will be O(n) since the print statement will run n

times because the inner loop executes only once due to a break statement.

4.	 Find the time complexity of the following Python snippet:

def fun(n):

 for i in range(n):

 print("data") #constant time

 #outer loop execute for n times

 for i in range(n):

 for j in range(n): #inner loop execute n times

 print("run fun") #constant time

Solution: Here, the print statements will execute n times in the first loop and n2 times for

the second nested loop. Here, the total time required is defined as the following:

T(n) = constant time (c1) * n + c2*n*n

c1 n + c2 n2 = O(n2)

5.	 Find the time complexity of the following Python snippet:

if n == 0: #constant time

 print("data")

else:

 for i in range(n): #loop run for n times

 print("structure")

Solution: O(n). Here, the worst-case runtime complexity will be the time required for the

execution of all the statements; that is, the time required for the execution of the if-else

conditions, and the for loop. The time required is defined as the following:

T(n) = c1 + c2 n = O(n)

Introduction to Algorithm Design54

6.	 Find the time complexity of the following Python snippet:

i = 1

j = 0

while i*i < n:

 j = j +1

 i = i+1

 print("data")

Solution: O(√𝑛𝑛). The loop will terminate based on the value of i; the loop will iterate

based on the condition:𝑖𝑖2 ≤ 𝑛𝑛

T(n) = O(√𝑛𝑛)

7.	 Find the time complexity of the following Python snippet:

i = 0

for i in range(int(n/2), n):

 j = 1

 while j+n/2 <= n:

 k = 1

 while k < n:

 k *= 2

 print("data")

 j += 1

Solution: Here, the outer loop will execute n/2 times, the middle loop will also run n/2

times, and the innermost loop will run for log(n) time. So, the total running time com-

plexity will be O(n*n*logn):

O(n2logn)

Summary
In this chapter, we have looked at an overview of algorithm design. The study of algorithms is

important because it trains us to think very specifically about certain problems. It is conducive to

increasing our problem-solving abilities by isolating the components of a problem and defining

the relationships between them. In this chapter, we discussed different methods for analyzing

algorithms and comparing algorithms. We also discussed asymptotic notations, namely: Big Ο,

Chapter 2 55

Ω, and θ notation.

In the next chapter, we will discuss algorithm design techniques and strategies.

Exercises
1.	 Find the time complexity of the following Python snippets:

a.	

i=1

while(i<n):

 i*=2

 print("data")

b.	

i =n

while(i>0):

 print('complexity')

 i/ = 2

c.	

for i in range(1,n):

 j = i

 while(j<n):

 j*=2

d.	

i=1

while(i<n):

 print('python')

 i = i**2

Introduction to Algorithm Design56

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

3
Algorithm Design Techniques
and Strategies

In the field of computing, algorithm design is very important for IT professionals for improv-

ing their skills and enabling growth in the industry. The algorithm design process starts with

a substantial number of real-world computing problems, which must be clearly formulated for

efficiently building the solution using one of the possible techniques from the range of algorithm

design techniques available. The world of algorithms contains a plethora of techniques and design

principles, mastery of which is required to tackle more difficult problems in the field. Algorithm

designs are important in computer science, in general, to efficiently design the solution for a pre-

cisely formulated problem since a very sophisticated and complex problem can easily be solved

with an appropriate algorithm design technique.

In this chapter, we will discuss the ways in which different kinds of algorithms can be categorized.

Design techniques will be described and illustrated, and we will further discuss the analysis of

algorithms. Finally, we will provide detailed implementations for a few very important algorithms.

In this chapter, we will look at the following algorithm design techniques:

•	 Divide and conquer

•	 Dynamic programming

•	 Greedy algorithms

Algorithm Design Techniques and Strategies58

Algorithm design techniques
Algorithm design is a powerful tool for viewing and clearly understanding well-posed, real-world

problems. A straightforward, or brute-force, approach is available that is very simple, yet effective,

for many problems. The brute-force approach is trying all possible combinations of solutions

in order to solve any problem. For example, suppose a salesperson has to visit 10 cities across

the country. In which order should the cities be visited in order to minimize the total distance

traveled? The brute-force approach to this problem will be to calculate the total distance for all

possible combinations of routes, and then select the route that provides the smallest distance.

As you might guess, the brute-force algorithm is not efficient.

It can provide useful solutions for limited input sizes, but it becomes very inefficient when the

input size becomes large. Therefore, we will break the process down into two fundamental com-

ponents for finding the optimal solution for a computing problem:

1.	 Formulate the problem clearly

2.	 Identify the appropriate algorithm design technique based on the structure of the problem

for an efficient solution

That is why the study of algorithm design becomes very important when developing scalable

and robust systems. Design and analysis are important in the first instance because they assist in

developing algorithms that are organized and easy to understand. Design technique guidelines

also help in developing new algorithms easily for complex problems. Moreover, design techniques

can also be used to categorize the algorithms and this also helps to understand them better. There

are several algorithm paradigms as follows:

•	 Recursion

•	 Divide and conquer

•	 Dynamic programming

•	 Greedy algorithms

Since we will be using recursion many times while discussing different algorithm design tech-

niques, let us first understand the concept of recursion, and thereafter, we will discuss different

algorithm design techniques.

Chapter 3 59

Recursion
A recursive algorithm calls itself repeatedly in order to solve the problem until a certain condition

is fulfilled. Each recursive call itself spins off other recursive calls. A recursive function can be in

an infinite loop; therefore, it is required that each recursive function adheres to certain properties.

At the core of a recursive function are two types of cases:

1.	 Base cases: These tell the recursion when to terminate, meaning the recursion will be

stopped once the base condition is met

2.	 Recursive cases: The function calls itself recursively, and we progress toward achieving

the base criteria

A simple problem that naturally lends itself to a recursive solution is calculating factorials. The

recursive factorial algorithm defines two cases: the base case when n is zero (the terminating

condition) and the recursive case when n is greater than zero (the call of the function itself). A

typical implementation is as follows:

def factorial(n):

 # test for a base case

 if n == 0:

 return 1

 else:

 # make a calculation and a recursive call

 return n*factorial(n-1)

print(factorial(4))

This produces the following output:

24

To calculate the factorial of 4, we require four recursive calls, plus the initial parent call, as can be

seen in Figure 3.1. The details of how these recursive calls work is as follows. Initially, the number

4 is passed to the factorial function, which will return the value 4 multiplied by the factorial of (4-

1=3). For this, the number 3 is again passed to the factorial function, which will return the value

3 multiplied by the factorial of (3-1=2). Similarly, in the next iteration, the value 2 is multiplied

by the factorial of (2-1 =1).

Algorithm Design Techniques and Strategies60

This continues until we reach the factorial of 0, which returns 1. Now, each function returns the

value to finally compute 1*1*2*3*4=24, which is the final output of the function.

Figure 3.1: The flow of execution of the factorial 4

We discussed the concept of recursion, which will be very useful in understanding the implemen-

tation of different algorithm paradigms. So, now let us move on to the distinct algorithm design

strategies in turn, starting with the divide-and-conquer technique in the next section.

Divide and conquer
One of the important and effective techniques for solving a complex problem is divide and conquer.

The divide-and-conquer paradigm divides a problem into smaller sub-problems, and then solves

these; finally, it combines the results to obtain a global, optimal solution. More specifically, in

divide-and-conquer design, the problem is divided into two smaller sub-problems, with each of

them being solved recursively. The partial solutions are merged to obtain a final solution. This is

a very common problem-solving technique, and is, arguably, the most commonly used approach

in algorithm design.

Some examples of the divide-and-conquer design technique are as follows:

•	 Binary search

•	 Merge sort

•	 Quick sort

•	 Algorithm for fast multiplication

•	 Strassen’s matrix multiplication

•	 Closest pair of points

Chapter 3 61

Let’s have a look at two examples, the binary search and merge sort algorithms, to understand

how the divide-and-conquer design technique works.

Binary search
The binary search algorithm is based on the divide-and-conquer design technique. This algorithm

is used to find a given element from a sorted list of elements. It first compares the search element

with the middle element of the list; if the search element is smaller than the middle element, then

the half of the list of elements greater than the middle element is discarded; the process repeats

recursively until the search element is found or we reach the end of the list. It is important to note

that in each iteration, half of the search space is discarded, which improves the performance of

the overall algorithm because there are fewer elements to search through.

Take the example shown in Figure 3.2; let’s say we want to search for element 4 in the given sorted

list of elements. The list is divided in half in each iteration; with the divide-and-conquer strategy,

the element is searched O(logn) times.

Figure 3.2: The process of searching for an element using a binary search algorithm

The Python code for searching for an element in a sorted list of elements is shown here:

def binary_search(arr, start, end, key):

 while start <= end:

 mid = start + (end - start)/2

 if arr[mid] == key:

Algorithm Design Techniques and Strategies62

 return mid

 elif arr[mid] < key:

 start = mid + 1

 else:

 end = mid - 1

 return -1

arr = [4, 6, 9, 13, 14, 18, 21, 24, 38]

x = 13

result = binary_search(arr, 0, len(arr)-1, x)

print(result)

When we search for 13 in the given list of elements, the output of the preceding code is 3, which

is the position of the searched item.

In the code, initially, the start and end index give the position of the first and last index of the

input array [4, 6, 9, 13, 14, 18, 21, 24, 38]. The item to be searched that is stored in the

variable key is firstly matched with the mid element of the array, and then we discard half of the

list and search for the item in another half of the list. The process is iterated until we find the item

to be searched, or we reach the end of the list, and we don’t find the element.

When analyzing the workings of the binary search algorithm in the worst case, we can see that

for a given array of 8 elements, following the first unsuccessful attempt, the list is halved, and

then again for an unsuccessful search attempt, the list is of length 2, and finally, only 1 element

is left. So, the binary search requires 4 searches. If the size of the list is doubled, in other words,

to 16, following the first unsuccessful search, we will have a list of size 8, and that will take a

total of 4 searches. Therefore, the binary search algorithm will require 5 searches for a list of 16

items. Thus, we can observe that when we double the number of items in the list, the number

of searches required also increments by 1. We can say this as when we have a list of length n, the

total number of searches required will be the number of times we repeated halving the list until

we are left with 1 element plus 1, which is mathematically equivalent to (log2 n + 1). For example,

if n=8, the output will be 3, meaning the number of searches required will be 4. The list is divided

in half in each iteration; with the divide-and-conquer strategy, the worst-case time complexity

of the binary search algorithm is O(log n).

Merge sort is another popular algorithm that is based on the divide-and-conquer design strategy.

We will be discussing merge sort in more detail in the next section.

Chapter 3 63

Merge sort
Merge sort is an algorithm for sorting a list of n natural numbers in increasing order. Firstly, the

given list of elements is divided iteratively into equal parts until each sublist contains one element,

and then these sublist are combined to create a new list in a sorted order. This programming

approach to problem-solving is based on the divide-and-conquer methodology and emphasizes

the need to break down a problem into smaller sub-problems of the same type or form as the

original problem. These sub-problems are solved separately and then results are combined to

obtain the solution of the original problem.

In this case, given a list of unsorted elements, we split the list into two approximate halves. We

continue to divide the list into halves recursively.

After a while, the sublist created as a result of the recursive call will contain only one element. At

that point, we begin to merge the solutions in the conquer or merge step. This process is shown

in Figure 3.3:

Figure 3.3: Overview of the merge sort algorithm

Algorithm Design Techniques and Strategies64

The implementation of the merge sort algorithm is implemented using primarily two methods,

namely, the merge_sort method, which recursively divides the list. Afterward, we will introduce

the merge method to combine the results:

def merge_sort(unsorted_list):
 if len(unsorted_list) == 1:
 return unsorted_list
 mid_point = int(len(unsorted_list)/2)
 first_half = unsorted_list[:mid_point]
 second_half = unsorted_list[mid_point:]

 half_a = merge_sort(first_half)
 half_b = merge_sort(second_half)

 return merge(half_a, half_b)

The implementation starts by accepting the list of unsorted elements into the merge_sort func-

tion. The if statement is used to establish the base case, where, if there is only one element in

the unsorted_list, we simply return that list again. If there is more than one element in the list,

we find the approximate middle using mid_point = len(unsorted_list)//2.

Using this mid_point, we divide the list into two sublists, namely, first_half and second_half:

 first_half = unsorted_list[:mid_point]

 second_half = unsorted_list[mid_point:]

A recursive call is made by passing the two sublist to the merge_sort function again:

 half_a = merge_sort(first_half)

 half_b = merge_sort(second_half)

Now, for the merge step, half_a and half_b are sorted. When half_a and half_b have passed

their values, we call the merge function, which will merge or combine the two solutions stored

in half_a and half_b, which are lists:

def merge(first_sublist, second_sublist):

 i = j = 0

 merged_list = []

 while i < len(first_sublist) and j < len(second_sublist):

Chapter 3 65

 if first_sublist[i] < second_sublist[j]:

 merged_list.append(first_sublist[i])

 i += 1

 else:

 merged_list.append(second_sublist[j])

 j += 1

 while i < len(first_sublist):

 merged_list.append(first_sublist[i])

 i += 1

 while j < len(second_sublist):

 merged_list.append(second_sublist[j])

 j += 1

 return merged_list

The merge function takes the two lists we want to merge, first_sublist and second_sublist.

The i and j variables are initialized to 0 and are used as pointers to tell us where we are in the

two lists with respect to the merging process.

The final merged_list will contain the merged list.

The while loop starts comparing the elements in first_sublist and second_sublist:

 while i < len(first_sublist) and j < len(second_sublist):

 if first_sublist[i] < second_sublist[j]:

 merged_list.append(first_sublist[i])

 i += 1

 else:

 merged_list.append(second_sublist[j])

 j += 1

The if statement selects the smaller of the two, first_sublist[i] or second_sublist[j], and

appends it to merged_list. The i or j index is incremented to reflect where we are with the

merging step. The while loop stops when either sublist is empty.

Algorithm Design Techniques and Strategies66

There may be elements left behind in either first_sublist or second_sublist. The last two

while loops make sure that those elements are added to merged_list before it is returned. The

last call to merge(half_a, half_b) will return the sorted list. The following code shows how to

pass an array to sort the elements using merge sort:

a= [11, 12, 7, 41, 61, 13, 16, 14]

print(merge_sort(a))

The output will be:

[7, 11, 12, 14, 16, 41, 61]

Let’s give the algorithm a dry run by merging the two sublists [4, 6, 8] and [5, 7, 11, 40],

shown in Table 3.1. In this example, initially, the two sorted sublists are given, and then the,

first elements are matched, and since the first element of the first list is smaller, it is moved to

merge_list. Next, in step 2, again, the starting elements from both of the lists are matched, and

the smaller element, which is from the second list, is moved to merge_list. The same process is

repeated until one of the lists becomes empty.

Step first_sublist second_sublist merged_list

0 [4 6 8] [5 7 11 40] []

1 [6 8] [5 7 11 40] [4]

2 [6 8] [7 11 40] [4 5]

3 [8] [7 11 40] [4 5 6]

4 [8] [11 40] [4 5 6 7]

5 [] [11 40] [4 5 6 7 8]

6 [] [] [4 5 6 7 8 11 40]

Table 3.1: Example of merging two lists

This process can also be seen in Figure 3.4:

Chapter 3 67

Figure 3.4: The process of merging the two sublists

Algorithm Design Techniques and Strategies68

After one of the lists becomes empty, like after step 4 in this example, at this point in the execu-

tion, the third while loop in the merge function kicks in to move 11 and 40 into merged_list. The

returned merged_list will contain the fully sorted list.

The worst-case running time complexity of the merge sort will depend on the following steps:

1.	 Firstly, the divide step will take a constant time since it just computes the midpoint, which

can be done in O(1) time

2.	 Then, in each iteration, we divide the list into half recursively, which will take O(log n),

which is quite similar to what we have seen in the binary search algorithm

3.	 Further, the combine/merge step merges all the n elements into the original array, which

will take (n) time.

Hence, the merge sort algorithm has a runtime complexity of O(log n) T(n) = O(n) * O(log n) =

O(n log n).

We have discussed the divide-and-conquer algorithm design technique with the help of a few

examples. In the next section, we will discuss another algorithm design technique: dynamic

programming.

Dynamic programming
Dynamic programming is the most powerful design technique for solving optimization problems.

Such problems generally have many possible solutions. The basic idea of dynamic programming is

based on the intuition of the divide-and-conquer technique. Here, essentially, we explore the space

of all the possible solutions by decomposing the problem into a series of sub-problems and then

combining the results to compute the correct solution for the large problem. The divide-and-con-

quer algorithm is used to solve a problem by combining the solutions of the non-overlapping

(disjoint) sub-problems, whereas dynamic programming is used when the sub-problems are

overlapping, meaning that the sub-problems share sub-sub-problems. The dynamic program-

ming technique is similar to divide and conquer in that a problem is broken down into smaller

problems. However, in divide and conquer, each sub-problem has to be solved before its results

can be used to solve bigger problems. In contrast, dynamic programming-based techniques solve

each sub-sub-problems only once and do not recompute the solution to an already-encountered

sub-problem. Rather, it uses a remembering technique to avoid the re-computation.

Chapter 3 69

Dynamic programming problems have two important characteristics:

•	 Optimal substructure: Given any problem, if the solution can be obtained by combining

the solutions of its sub-problems, then the problem is said to have an optimal substructure.

In other words, an optimal substructure means that the optimal solution of the problem

can be obtained from the optimal solution of its sub-problems. For example, the ith Fibo-

nacci number from its series can be computed from (i-1)th and (i-2)th Fibonacci numbers;

for example, fib(6) can be computed from fib(5) and fib(4).

•	 Overlapping sub-problem: If an algorithm has to repeatedly solve the same sub-problem

again and again, then the problem has overlapping sub-problems. For example, fib(5) will

have multiple time computations for fib(3) and fib(2).

If a problem has these characteristics, then the dynamic programming approach is useful, since

the implementation can be improved by reusing the same solution computed before. In a dynamic

programming strategy, the problem is broken down into independent sub-problems, and the

intermediate results are cached, which can then be used in subsequent operations.

In the dynamic approach, we divide a given problem into smaller sub-problems. In recursion

also, we divide the problem into sub-problems. However, the difference between recursion and

dynamic programming is that similar sub-problems can be solved any number of times, but in

dynamic programming, we keep track of previously solved sub-problems, and care is taken not to

recompute any of the previously encountered sub-problems. One property that makes a problem

an ideal candidate for being solved with dynamic programming is that it has an overlapping

set of sub-problems. Once we realize that the form of sub-problems has repeated itself during

computation, we need not compute it again. Instead, we return a pre computed result for that

previously encountered sub-problem.

Dynamic programming takes account of the fact that each sub-problem should be solved only

once, and to ensure that we never re-evaluate a sub-problem, we need an efficient way to store

the results of each sub-problem. The following two techniques are readily available:

•	 Top-down with memoization: This technique starts from the initial problem set and di-

vides it into small sub-problems. After the solution to a sub-program has been determined,

we store the result of that particular sub-problem. In the future, when this sub-problem is

encountered, we only return its pre computed result. Therefore, if the solution to a given

problem can be formulated recursively using the solution of the sub-problems, then the

solution of the overlapping sub-problems can easily be memoized.

Algorithm Design Techniques and Strategies70

Memoization means storing the solution of the sub-problem in an array or hash table.

Whenever a solution to a sub-problem needs to be computed, it is first referred to the

saved values if it is already computed, and if it is not stored, then it is computed in the

usual manner. This procedure is called memoized, which means it “remembers” the results

of the operation that has been computed before.

•	 Bottom-up approach: This approach depends upon the “size” of the sub-problems. We

solve the smaller sub-problems first, and then while solving a particular sub-problem, we

already have a solution of the smaller sub-problems on which it depends. Each sub-prob-

lem is solved only once, and whenever we try to solve any sub-problem, solutions to all

the prerequisite smaller sub-problems are available, which can be used to solve it. In this

approach, a given problem is solved by dividing it into sub-problems recursively, with

the smallest possible sub-problems then being solved. Furthermore, the solutions to the

sub-problems are combined in a bottom-up fashion to arrive at the solution to the bigger

sub-problem in order to recursively reach the final solution.

Let’s consider an example to understand how dynamic programming works. Let us solve the

problem of the Fibonacci series using dynamic programming.

Calculating the Fibonacci series
The Fibonacci series can be demonstrated using a recurrence relation. Recurrence relations are

recursive functions that are used to define mathematical functions or sequences. For example,

the following recurrence relation defines the Fibonacci sequence [1, 1, 2, 3, 5, 8 ...]:

func(0) = 1

func(1) = 1

func(n) = func(n-1) + func(n-2) for n>1

Note that the Fibonacci sequence can be generated by putting the values of n in sequence [0, 1,

2, 3, 4, ...]. Let’s take an example to generate the Fibonacci series to the fifth term:

 1 1 2 3 5

A recursive-style program to generate the sequence would be as follows:

def fib(n):

 if n <= 1:

 return 1

 else:

 return fib(n-1) + fib(n-2)

Chapter 3 71

for i in range(5):

 print(fib(i))

This will produce output like the following:

1

1

2

3

5

In this code, we can see that the recursive calls are being called in order to solve the problem.

When the base case is met, the fib() function returns 1. If n is equal to or less than 1, the base

case is met. If the base case is not met, we call the fib() function again. The recursion tree to

solve up to the fifth term in the Fibonacci sequence is shown in Figure 3.5:

Figure 3.5: Recursion tree for fib(5)

We can observe from the overlapping sub-problems from the recursion tree as shown in Figure

3.6 that the call to fib(1) happens twice, the call to fib(2) happens three times, and the call to

fib(3) occurs twice. The return values of the same function call never change; for example, the

return value for fib(2) will always be the same whenever we call it. Likewise, it will also be the

same for fib(1) and fib(3). So, they are overlapping problems, thus, computational time will be

wasted if we compute the same function again whenever it is encountered. These repeated calls

to a function with the same parameters and output suggest that there is an overlap. Certain

computations reoccur down in the smaller sub-problem.

Algorithm Design Techniques and Strategies72

Figure 3.6: Overlapping sub-problems shown in the recursion tree for fib(5)

In dynamic programming using the memoization technique, we store the results of the computa-

tion of fib(1) the first time it is encountered. Similarly, we store return values for fib(2) and fib(3).

Later, whenever we encounter a call to fib(1), fib(2), or fib(3), we simply return their respective

results. The recursive tree diagram is shown in Figure 3.7:

Figure 3.7: Recursion tree for fib(5) showing re-use of the already computed values

Thus, in dynamic programming, we have eliminated the need to compute fib(3), fib(2), and

fib(1) if they are encountered multiple times. This is called the memoization technique, wherein

there is no recomputation of overlapping calls to functions when breaking a problem down into

its sub-problems.

Chapter 3 73

Hence, the overlapping function calls in our Fibonacci example are fib(1), fib(2), and fib(3). Below

is the code for the dynamic programming-based implementation for the Fibonacci series.

def dyna_fib(n):

 if n == 0:

 return 0

 if n == 1:

 return 1

 if lookup[n] is not None:

 return lookup[n]

 lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)

 return lookup[n]

lookup = [None]*(1000)

for i in range(6):

 print(dyna_fib(i))

This will produce an output like the following:

0

1

1

2

3

5

In the dynamic implementation of the Fibonacci series, we store the results of previously solved

sub-problems in a list (in other words, a lookup in this example code). We first check whether

the Fibonacci of any number is already computed; if it is already computed, then we return the

stored value from the lookup[n]. Otherwise, when we compute its value, it is done through the

following code:

 if lookup[n] is not None:

 return lookup[n]

Algorithm Design Techniques and Strategies74

After computing the solution of the sub-problem, it is again stored in the lookup list. The Fibonacci

number of the given value is returned as shown in the following code snippet:

lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)

Furthermore, in order to store a list of 1,000 elements, we create a list lookup using the dyna_fib

function:

 lookup = [None]*(1000)

So, in dynamic programming-based solutions, we use the precomputed solutions in order to

compute the final results.

Dynamic programming improves the running time complexity of the algorithm. In the recursive

approach, for every value, two functions are called; for example, fib(5) calls fib(4) and fib(3), and

then fib(4) calls fib(3) and fib(2), and so on. Thus, the time complexity for the recursive approach

is O(2n), whereas, in the dynamic programming approach, we do not recompute the sub-prob-

lems, so for fib(n), we have n total values to be computed, in other words, fib(0), fib(1), fib(2)…

fib(n). Thus, we only solve these values once, so the total running time complexity is O(n). Thus,

dynamic programming in general improves performance.

In this section, we have discussed the dynamic programming design technique, and in the next

section, we discuss the design techniques for greedy algorithms.

Greedy algorithms
Greedy algorithms often involve optimization and combinatorial problems. In greedy algorithms,

the objective is to obtain the optimum solution from many possible solutions in each step. We

try to get the local optimum solution, which may eventually lead us to obtain the global opti-

mum solution. The greedy strategy does not always produce the optimal solution. However, the

sequence of locally optimal solutions generally approximates the globally optimal solution.

For example, consider that you are given some random digits, say 1, 4, 2, 6, 9, and 5. Now you

have to make the biggest number by using all the digits without repeating any digit. To create the

biggest number from the given digits using the greedy strategy, we perform the following steps.

Firstly, we select the largest digit from the given digits, and then append it to the number and

remove the digit from the list until we have no digits left in the list. Once all the digits have been

used, we get the largest number that can be formed by using these digits: 965421. The stepwise

solution to this problem is shown in Figure 3.8:

Chapter 3 75

Figure 3.8: Example of a greedy algorithm

Let us consider another example to better understand the greedy approach. Say you have to give

29 Indian rupees to someone in the minimum number of notes, giving one note at a time, but

never exceeding the owed amount. Assume that we have notes in denominations of 1, 2, 5, 10, 20,

and 50. To solve this using the greedy approach, we will start by handing over the 20-rupee note,

then for the remaining 9 rupees, we will give a 5-rupee note; for the remaining 4 rupees, we will

give the 2-rupee note, and then another 2-rupee note.

In this approach, at each step, we chose the best possible solution and gave the largest available

note. Assume that, for this example, we have to use the notes of 1, 14, and 25. Then, using the

greedy approach, we will pick the 25-rupee note, and then four 1-rupee notes, which makes a

total of 5 notes. However, this is not the minimum number of notes possible . The better solution

would be to give notes of 14, 14, and 1. Thus, it is also clear that the greedy approach does not

always give the best solution, but a feasible and simple one.

Algorithm Design Techniques and Strategies76

The classic example is to apply the greedy algorithm to the traveling salesperson problem, where

a greedy approach always chooses the closest destination first. In this problem, a greedy approach

always chooses the closest unvisited city in relation to the current city; in this way, we are not

sure that we will get the best solution, but we surely get an optimal solution. This shortest-path

strategy involves finding the best solution to a local problem in the hope that this will lead to a

global solution.

Listed here are many popular standard problems where we can use greedy algorithms to obtain

the optimum solution:

•	 Kruskal’s minimum spanning tree

•	 Dijkstra’s shortest path problem

•	 The Knapsack problem

•	 Prim’s minimal spanning tree algorithm

•	 The traveling salesperson problem

Let us discuss one of the popular problems, in other words, the shortest path problem, which can

be solved using the greedy approach, in the next section.

Shortest path problem
The shortest path problem requires us to find out the shortest possible route between nodes on a

graph. Dijkstra’s algorithm is a very popular method for solving this using the greedy approach.

The algorithm is used to find the shortest distance from a source to a destination node in a graph.

Dijkstra’s algorithm works for weighted directed and undirected graphs. The algorithm produces

the output of a list of the shortest path from a given source node, A, in a weighted graph. The

algorithm works as follows:

1.	 Initially, mark all the nodes as unvisited, and set their distance from the given source

node to infinity (the source node is set to zero).

2.	 Set the source node as the current one.

3.	 For the current node, look for all the unvisited adjacent nodes, and compute the distance to

that node from the source node through the current node. Compare the newly computed

distance to the currently assigned distance, and if it is smaller, set this as the new value.

Once we have considered all the unvisited adjacent nodes of the current node, we mark it as visited.

If the destination node has been marked visited, or if the list of unvisited nodes is empty, meaning

we have considered all the unvisited nodes, then the algorithm is finished.

Chapter 3 77

We next consider the next unvisited node that has the shortest distance from the source node.

Repeat steps 2 to 6.

Consider the example in Figure 3.9 of a weighted graph with six nodes [A, B, C, D, E, and F] to

understand how Dijkstra’s algorithm works.

Figure 3.9: Example weighted graph with six nodes

By manual inspection, the shortest path between nodes A and D, at first glance, seems to be the

direct line with a distance of 9. However, the shortest route means the lowest total distance, even

if this comprises several parts. By comparison, traveling from node A to E, then from E to F, and

finally to D will incur a total distance of 7, making it a shorter route.

We would implement the shortest path algorithm with a single source. It would determine the

shortest path from the origin, which in this case is A, to any other node in the graph. In Chapter 9,

Graphs and Other Algorithms, we will discuss how to represent a graph with an adjacency list. We

use an adjacency list along with the weight/cost/distance on every edge to represent the graph,

as shown in the following Python code. The adjacency list for the diagram and table is as follows:

 graph = dict()

 graph['A'] = {'B': 5, 'D': 9, 'E': 2}

 graph['B'] = {'A': 5, 'C': 2}

 graph['C'] = {'B': 2, 'D': 3}

 graph['D'] = {'A': 9, 'F': 2, 'C': 3}

 graph['E'] = {'A': 2, 'F': 3}

 graph['F'] = {'E': 3, 'D': 2}

We will return to the rest of the code after a visual demonstration, but don’t forget to declare the

graph to ensure the code runs correctly.

Algorithm Design Techniques and Strategies78

The nested dictionary holds the distance and adjacent nodes. A table is used to keep track of the

shortest distance from the source in the graph to any other node. Table 3.2 is the starting table:

Node Shortest distance from source Previous node

A 0 None

B ∞ None

C ∞ None

D ∞ None

E ∞ None

F ∞ None

Table 3.2: Initial table showing the shortest distance from the source

When the algorithm starts, the shortest distance from the given source node (A) to any of the

nodes is unknown. Thus, we initially set the distance to all other nodes to infinity, with the ex-

ception of node A, as the distance from node A to node A is 0. No prior nodes have been visited

when the algorithm begins. Therefore, we mark the previous node column of node A as None.

In step 1 of the algorithm, we start by examining the adjacent nodes to node A. To find the shortest

distance from node A to node B, we need to find the distance from the start node to the previous

node of node B, which happens to be A, and add it to the distance from node A to node B. We do

this for the other adjacent nodes of A, these being B, E, and D. This is shown in Figure 3.10:

Figure 3.10: A sample graph for Dijkstra’s algorithm

Firstly, we take the adjacent node E as its distance from node A is the minimum; the distance from

the start node (A) to the previous node (None) is 0, and the distance from the previous node to

the current node (E) is 2.

Chapter 3 79

This sum is compared with the data in the shortest distance column of node E (refer to Table 3.3).

Since 2 is less than infinity (∞), we replace ∞ with the smaller of the two, in other words, 2.

Similarly, the distance from node A to nodes B and D is compared with the existing shortest dis-

tance to these nodes from node A. Any time the shortest distance of a node is replaced by a smaller

value, we need to update the previous node column for all the adjacent nodes of the current node.

After this, we mark node A as visited (represented in blue in Figure 3.11):

Figure 3.11: Shortest distance graph after visiting node A using Dijkstra’s algorithm

At the end of step 1, the table looks like that shown in Table 3.3, in which the shortest distance

from node A to nodes B, D,and E are updated.

Node Shortest distance from source Previous node

A* 0 None

B 5 A

C ∞ None

D 9 A

E 2 A

F ∞ None

Table 3.3: Shortest distance table after visiting node A

At this point, node A is considered visited. As such, we add node A to the list of visited nodes. In

the table, we show that node A has been visited by appending an asterisk sign to it.

Algorithm Design Techniques and Strategies80

In the second step, we find the node with the shortest distance using Table 3.3 as a guide. Node

E, with its value of 2, has the shortest distance. To reach node E, we must visit node A and cover

a distance of 2.

Now, the adjacent nodes of node E are nodes A and F. Since node A has already been visited, we will

only consider node F. To find the shortest route or distance to node F, we must find the distance

from the starting node to node E and add it to the distance between nodes E and F. We can find

the distance from the starting node to node E by looking at the shortest distance column of node

E, which has a value of 2. The distance from nodes E to F can be obtained from the adjacency list,

which is 3. These two total 5, which is less than infinity. Remember that we are examining the

adjacent node F. Since there are no more adjacent nodes to node E, we mark node E as visited. Our

updated table and the figure will have the following values, shown in Table 3.4 and Figure 3.12:

Node Shortest distance from source Previous node

A* 0 None

B 5 A

C ∞ None

D 9 A

E* 2 A

F 5 E

Table 3.4: Shortest distance table after visiting node E

Figure 3.12: Shortest distance graph after visiting node E using Dijkstra’s algorithm

Chapter 3 81

After visiting node E, we find the smallest value in the Shortest distance column of Table 3.4, which

is 5 for nodes B and F. Let us choose B instead of F for alphabetical reasons. The adjacent nodes of

B are nodes A and C since node A has already been visited. Using the rule we established earlier,

the shortest distance from A to C is 7, which is computed as the distance from the starting node

to node B, which is 5, while the distance from node B to C is 2. Since 7 is less than infinity, we

update the shortest distance to 7 and update the previous node column with node B in Table 3.4.

Now, B is also marked as visited (represented in blue in Figure 3.13).

Node Shortest distance from source Previous node

A* 0 None

B* 5 A

C 7 B

D 9 A

E* 2 A

F 5 E

Table 3.5: Shortest distance table after visiting node B

The new state of the table is as follows, in Table 3.5:

Figure 3.13: Shortest distance graph after visiting node B using Dijkstra’s algorithm

Algorithm Design Techniques and Strategies82

The node with the shortest distance yet unvisited is node F. The adjacent nodes to F are nodes D

and E. Since node E has already been visited, we will focus on node D. To find the shortest distance

from the starting node to node D, we calculate this distance by adding the distance from nodes

A to F to the distance from nodes F to D. This totals 7, which is less than 9. Thus, we update the

9 with 7 and replace A with F in node D’s previous node column of Table 3.5.

Node F is now marked as visited (represented in blue in Figure 3.14).

Figure 3.14: Shortest distance graph after visiting node F using Dijkstra’s algorithm

Here is the updated table, as shown in Table 3.6:

Node Shortest distance from source Previous node

A* 0 None

B* 5 A

C 7 B

D 7 F

E* 2 A

F* 5 E

Table 3.6: Shortest distance table after visiting node F

Now, only two unvisited nodes are left, C and D, both with a distance cost of 7. In alphabetical

order, we choose to consider node C because both nodes have the same shortest distance from

the starting node A.

Chapter 3 83

However, all the adjacent nodes to C have been visited (represented in blue in Figure 3.15). Thus,

we have nothing to do but mark node C as visited. The table remains unchanged at this point.

Figure 3.15: Shortest distance graph after visiting node C using Dijkstra’s algorithm

Lastly, we take node D and find out that all its adjacent nodes have been visited too. We only mark

it as visited (represented in blue in Figure 3.16).

Figure 3.16: Shortest distance graph after visiting node D using Dijkstra’s algorithm

Algorithm Design Techniques and Strategies84

The table remains unchanged, as shown in Table 3.7:

Node Shortest distance from source Previous node

A* 0 None

B* 5 A

C* 7 B

D* 7 F

E* 2 A

F* 5 E

Table 3.7: Shortest distance table after visiting node F

Let’s verify Table 3.7 with our initial graph. From the graph, we know that the shortest distance

from A to F is 5.

According to the table, the shortest distance from the source column for node F is 5. This is true.

It also tells us that to get to node F, we need to visit node E, and from E to node A, which is our

starting node. This is actually the shortest path from node A to node F.

Now, we will discuss the Python implementation of Dijkstra’s algorithm to find the shortest path.

We begin the program for finding the shortest distance by representing the table that enables us

to track the changes in the graph. For the initial Figure 3.8 that we used, here is a dictionary rep-

resentation of the table to accompany the graph representation we showed earlier in the section:

 table = {

 'A': [0, None],

 'B': [float("inf"), None],

 'C': [float("inf"), None],

 'D': [float("inf"), None],

 'E': [float("inf"), None],

 'F': [float("inf"), None],

}

The initial state of the table uses float("inf") to represent infinity. Each key in the dictionary

maps to a list. At the first index of the list, the shortest distance from the source, node A is stored.

At the second index, the previous node is stored:

DISTANCE = 0

PREVIOUS_NODE = 1

INFINITY = float('inf')

Chapter 3 85

Here, the shortest path’s column index is referenced by DISTANCE. The previous node column’s

index is referenced by PREVIOUS_NODE.

Firstly, we discuss the helper methods that we will be using while implementing the main func-

tion to find the shortest path, in other words, find_shortest_path. The first helper method is

get_shortest_distance, which returns the shortest distance of a node from the source node:

def get_shortest_distance(table, vertex):

 shortest_distance = table[vertex][DISTANCE]

 return shortest_distance

The get_shortest_distance function returns the value stored in index 0 of the table. At that index,

we always store the shortest distance from the starting node up to vertex. The set_shortest_

distance function only sets this value as follows:

def set_shortest_distance(table, vertex, new_distance):

 table[vertex][DISTANCE] = new_distance

When we update the shortest distance of a node, we update its previous node using the following

method:

def set_previous_node(table, vertex, previous_node):

 table[vertex][PREVIOUS_NODE] = previous_node

Remember that the PREVIOUS_NODE constant equals 1. In the table, we store the value of previous_

node at table[vertex][PREVIOUS_NODE]. To find the distance between any two nodes, we use

the get_distance function:

def get_distance(graph, first_vertex, second_vertex):

 return graph[first_vertex][second_vertex]

The last helper method is the get_next_node function:

 def get_next_node(table, visited_nodes):

 unvisited_nodes = list(set(table.keys()).difference(set(visited_
nodes)))

 assumed_min = table[unvisited_nodes[0]][DISTANCE]

 min_vertex = unvisited_nodes[0]

 for node in unvisited_nodes:

 if table[node][DISTANCE] < assumed_min:

 assumed_min = table[node][DISTANCE]

 min_vertex = node

Algorithm Design Techniques and Strategies86

 return min_vertex

The get_next_node function resembles a function to find the smallest item in a list. The function

starts off by finding the unvisited nodes in our table by using visited_nodes to obtain the differ-

ence between the two sets of lists. The very first item in the list of unvisited_nodes is assumed

to be the smallest in the shortest distance column of table.

If a lesser value is found while the for loop runs, min_vertex will be updated. The function then

returns min_vertex as the unvisited vertex or node with the smallest shortest distance from the

source.

Now all is set up for the main function of the algorithm, in other words, find_shortest_path,

as shown here:

def find_shortest_path(graph, table, origin):

 visited_nodes = []

 current_node = origin

 starting_node = origin

 while True:

 adjacent_nodes = graph[current_node]

 if set(adjacent_nodes).issubset(set(visited_nodes)):

 # Nothing here to do. All adjacent nodes have been visited.

 pass

 else:

 unvisited_nodes =

 set(adjacent_nodes).difference(set(visited_nodes))

 for vertex in unvisited_nodes:

 distance_from_starting_node =

 get_shortest_distance(table, vertex)

 if distance_from_starting_node == INFINITY and

 current_node == starting_node:

 total_distance = get_distance(graph, vertex,

 current_node)

 else:

 total_distance = get_shortest_distance (table,

Chapter 3 87

 current_node) + get_distance(graph, current_node,

 vertex)

 if total_distance < distance_from_starting_node:

 set_shortest_distance(table, vertex,

 total_distance)

 set_previous_node(table, vertex, current_node)

 visited_nodes.append(current_node)

 #print(visited_nodes)

 if len(visited_nodes) == len(table.keys()):

 break

 current_node = get_next_node(table,visited_nodes)

 return (table)

In the preceding code, the function takes the graph, represented by the adjacency list, the table,

and the starting node as input parameters. We keep the list of visited nodes in the visited_nodes

list. The current_node and starting_node variables both point to the node in the graph that

we choose to make our starting node. The origin value is the reference point for all other nodes

with respect to finding the shortest path.

The main process of the function is implemented by the while loop. Let’s break down what the

while loop is doing. In the body of the while loop, we consider the current node in the graph

that we want to investigate and initially get all the adjacent nodes of the current node with

adjacent_nodes = graph[current_node]. The if statement is used to find out whether all the

adjacent nodes of current_node have been visited.

When the while loop is executed for the first time, current_node will contain node A and adjacent_

nodes will contain nodes B, D, and E. Furthermore, visited_nodes will be empty. If all nodes

have been visited, we only move on to the statements further down the program, otherwise, we

begin a whole new step.

The set(adjacent_nodes).difference(set(visited_nodes)) statement returns the nodes that

have not been visited. The loop iterates over this list of unvisited nodes:

 distance_from_starting_node = get_shortest_distance(table, vertex)

Algorithm Design Techniques and Strategies88

The get_shortest_distance(table, vertex) helper method will return the value stored in the

shortest distance column of our table, using one of the unvisited nodes referenced by vertex:

 if distance_from_starting_node == INFINITY and current_node ==
starting_node:

 total_distance = get_distance(graph, vertex, current_node)

When we are examining the adjacent nodes of the starting node, distance_from_starting_node

== INFINITY and current_node == starting_node will evaluate to True, in which case we

only have to find the distance between the starting node and vertex by referencing the graph:

 total_distance = get_distance(graph, vertex, current_node)

The get_distance method is another helper method we use to obtain the value (distance) of the

edge between vertex and current_node. If the condition fails, then we assign to total_distance

the sum of the distance from the starting node to current_node and the distance between current_

node and vertex.

Once we have our total distance, we need to check whether total_distance is less than the

existing data in the shortest distance column of our table. If it is less, then we use the two helper

methods to update that row:

 if total_distance < distance_from_starting_node:

 set_shortest_distance(table, vertex, total_distance)

 set_previous_node(table, vertex, current_node)

At this point, we add current_node to the list of visited nodes:

 visited_nodes.append(current_node)

If all nodes have been visited, then we must exit the while loop. To check whether this is the case,

we compare the length of the visited_nodes list with the number of keys in our table. If they

have become equal, we simply exit the while loop.

The get_next_node helper method is used to fetch the next node to visit. It is this method that

helps us find the minimum value in the shortest distance column from the starting nodes using

our table. The whole method ends by returning the updated table. To print the table, we use the

following statements:

shortest_distance_table = find_shortest_path(graph, table, 'A')

for k in sorted(shortest_distance_table):

 print("{} - {}".format(k,shortest_distance_table[k]))

Chapter 3 89

This is the output for the preceding code snippet:

A - [0, None]

B - [5, 'A']

C - [7, 'B']

D - [7, 'F']

E - [2, 'A']

F - [5, 'E']

The running time complexity of Dijkstra’s algorithm depends on how the vertices are stored and

retrieved. Generally, the min-priority queue is used to store the vertices of the graph, thus, the

time complexity of Dijkstra’s algorithm depends on how the min-priority queue is implemented.

In the first case, the vertices are stored numbered from 1 to |V| in an array. Here, each operation

for searching a vertex from the entire array will take O(V) time, making the total time complexity

O(V2 V2 + E) = O(V2). Furthermore, if the min-priority queue is implemented using the Fibonacci

heap, the time taken for each iteration of the loop and extracting the minimum node will take

O(|V|) time. Further, iterating over all the vertices’ adjacent nodes and updating the shortest

distance takes O(|E|) time, and each priority value update takes O(log|V|) time, which makes

O(|E| + log|V|). Thus, the total running time complexity of the algorithm becomes O(|E| + |V|log

|V|), where |V| is the number of vertices and |E| is the number of edges.

Summary
Algorithm design techniques are very important in order to formulate, understand, and develop

an optimal solution to a complex problem. In this chapter, we have discussed algorithm design

techniques, which are very important in the field of computer science. Important categories of

algorithm design, such as dynamic programming, greedy approach, and divide and conquer, we

discussed in detail along with implementations of important algorithms.

The dynamic programming and divide-and-conquer techniques are quite similar in the sense

that both solve a bigger problem by combining the solutions of the sub-problems. Here, the

divide-and-conquer technique partitions the problem into disjointed sub-problems, solving

them recursively, and then combines the solutions of the sub-problems to obtain the solution

of the original problem, whereas, in dynamic programming, this technique is employed when

sub-problems overlap, and recomputation of the same sub-problem is avoided. Furthermore, in

the greedy approach-based algorithm design technique, at each step in the algorithm, the best

choice is taken that looks likely to attain the solution.

Algorithm Design Techniques and Strategies90

In the next chapter, we will be discussing important data structures such as Linked Lists and

Pointer Structures.

Exercises
1.	 Which of the following options will be correct when a top-down approach of dynamic pro-

gramming will be applied to solve a given problem related to the space and time complexity?

a.	 It will increase both time and space complexity. 

b.	 It will increase the time complexity, and decrease the space complexity 

c.	 It will increase the space complexity, and decrease the time complexity 

d.	 It will decrease both time and space complexities.

2.	 Dijkstra’s single shortest path algorithm is applied on edge weighted directed graph

shown in Figure 3.17. What will be the order of the nodes for the shortest path distance

path (Assume A as source) ?

Figure 3.17: An edge-weighted directed graph

3.	 Consider the weights and values of the items listed in Table 3.8. Note that there is only

one unit of each item.

Item Weight Value

A 2 10

B 10 8

C 4 5

D 7 6

Table 3.8: The weights and values of different items

We need to maximize the value; the maximum weight should be 11 kg. No item may be

split. Establish the values of the items using a greedy approach.

Chapter 3 91

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

4
Linked Lists

Python’s list implementation is quite powerful and can encompass several different use cases.

We have discussed the built-in data structures of lists in Python in Chapter 1, Python Data Types

and Structures. Most of the time, Python’s built-in implementation of a list data structure is used

to store data using a linked list. In this chapter, we will understand how linked lists work along

with their internals.

A linked list is a data structure where the data elements are stored in a linear order. Linked lists

provide efficient storage of data in linear order through pointer structures. Pointers are used to

store the memory address of data items. They store the data and location, and the location stores

the position of the next data item in the memory.

The focus of this chapter will be the following:

•	 Arrays

•	 Introducing linked lists

•	 Singly linked lists

•	 Doubly linked lists

•	 Circular lists

•	 Practical applications of linked lists

Before discussing linked lists, let us first discuss an array, which is one of the most elementary

data structures.

Linked Lists94

Arrays
An array is a collection of data items of the same type, whereas a linked list is a collection of the

same data type stored sequentially and connected through pointers. In the case of lists, the data

elements are stored in different memory locations, whereas the array elements are stored in

contiguous memory locations.

An array stores the data of the same data type and each data element in the array is stored in

contiguous memory locations. Storing multiple data values of the same type makes it easier and

faster to compute the position of any element in the array using offset and base address. The term

base address refers to the address of memory location where the first element is stored, and offset

refers to an integer indicating the displacement between the first element and a given element.

Figure 4.1 demonstrates an array holding a sequence of seven integer values that are stored

sequentially in contiguous memory locations. The first element (data value 3) is stored at index

0, the second element at index position 1, and so on.

Figure 4.1: Representation of a one-dimensional array

To store, traverse, and access array elements is very fast as compared to lists since elements can be

accessed randomly using their index positions, whereas in the case of a linked list, the elements

are accessed sequentially. Therefore, if the data to be stored in the array is large and the system

has low memory, the array data structure will not be a good choice to store the data because it is

difficult to allot a large block of memory locations. The array data structure has further limitations

in that it has a static size that has to be declared at the time of creation.

In addition, the insertion and deletion operations in array data structures are slow as compared to

linked lists. This is because it is difficult to insert an element in an array at a given location since

all data elements after that desired position must be shifted and then new elements inserted in

between. Thus, array data structures are suitable when we want to do a lot of accessing of elements

and fewer insertion and deletion operations, whereas linked lists are suitable in applications

where the size of the list is not fixed, and a lot of insertion and deletion operations will be required.

Chapter 4 95

Introducing linked lists
The linked list is an important and popular data structure with the following properties:

1.	 The data elements are stored in memory in different locations that are connected through

pointers. A pointer is an object that can store the memory address of a variable, and each

data element points to the next data element and so on until the last element, which

points to None.

2.	 The length of the list can increase or decrease during the execution of the program.

Contrary to arrays, linked lists store data items sequentially in different locations in memory,

wherein each data item is stored separately and linked to other data items using pointers. Each

of these data items is called a node. More specifically, a node stores the actual data and a pointer.

In Figure 4.2, nodes A and B store the data independently, and node A is connected to node B.

Figure 4.2: A linked list with two nodes

Moreover, the nodes can have links to other nodes based differently on how we want to store the

data, and on which basis we will learn various kinds of data structures, such as singular linked

lists, doubly linked lists, circular link lists, and trees.

Nodes and pointers
A node is a key component of several data structures such as linked lists. A node is a container of

data, together with one or more links to other nodes where a link is a pointer.

To begin with, let us consider an example of creating a linked list of two nodes that contains

data (for example, strings). For this, we first declare the variable that stores the data along with

pointers that point to the next variable. Consider the example in the following Figure 4.3, in

which there are two nodes. The first node has a pointer to the string (eggs), and another node

pointing to the ham string.

Linked Lists96

Furthermore, the first node that points to the eggs string has a link to another node. Pointers

are used to store the address of a variable, and since the string is not actually stored in the node,

rather, the address of the string is stored in the node.

Figure 4.3: A sample linked list of two nodes

Furthermore, we can also add a new third node to this existing linked list that stores spam as a

data value, while a second node points to the third node, as shown in Figure 4.4. Hence, Figure

4.3 demonstrates the structure of three nodes having data strings, in other words, eggs, ham, and

spam, which are stored sequentially in a linked list.

Figure 4.4: A sample linked list of three nodes

So, we have created three nodes—one containing eggs, one ham, and another spam. The eggs

node points to the ham node, which in turn points to the spam node. But what does the spam

node point to? Since this is the last element in the list, we need to make sure its next member has

a value that makes this clear. If we make the last element point to nothing, then we make this

fact clear. In Python, we will use the special value None to denote nothing. Consider Figure 4.5.

Node B is the last element in the list, and thus it is pointing to None.

Chapter 4 97

Figure 4.5: A linked list with two nodes

Let us first learn about the implementation of the node, as shown in the following code snippet:

class Node:

 def __init__ (self, data=None):

 self.data = data

 self.next = None

Here, the next pointer is initialized to None, meaning that unless we change the value of next,

the node is going to be an endpoint, meaning that initially, any node that is attached to the list

will be independent.

You can also add any other data items to the node class if required. If your node is going to contain

customer data, then create a Customer class and place all the data there.

There are three kinds of list—a singly linked list, a doubly linked list, and a circular linked list.

First of all, let’s discuss singly linked lists.

We need to learn the following operations in order to use any linked lists in real-time applications.

•	 Traversing the list

•	 Inserting a data item in the list:

•	 Inserting a new data item (node) at the beginning

•	 Inserting a new data item (node) at the end of the list

•	 Inserting a new data item (node) in the middle/or at any given position in the list

•	 Deleting an item from the list:

•	 Deleting the first node

•	 Deleting the last node

•	 Deleting a node in the middle/or at any given position in the list

Linked Lists98

We will be discussing these important operations on different types of linked lists in subsequent

subsections, along with their implementations, using Python. Let us start with singly linked lists.

Singly linked lists
A linked list (also called a singly linked list) contains a number of nodes in which each node

contains data and a pointer that links to the next node. The link of the last node in the list is

None, which indicates the end of the list. Refer to the following linked list in Figure 4.6, in which

a sequence of integers is stored.

Figure 4.6: An example of a singly linked list

Next, we discuss how to create a singly linked list, and how to traverse it.

Creating and traversing
In order to implement the singly linked list, we can use the node class that we created in the

previous section. For example, we create three nodes, n1, n2, and n3, that store three strings:

n1 = Node('eggs')

n2 = Node('ham')

n3 = Node('spam')

Next, we link the nodes sequentially to form the linked list. For example, in the following code,

node n1 is pointing to node n2, node n2 is pointing to node n3, and node n3 is the last node, and

is pointing to None:

n1.next = n2

n2.next = n3

Traversal of the linked lists means visiting all the nodes of the list, from the starting node to the

last node. The process of traversing the singly linked list begins with the first node, displaying the

data of the current node, following the pointers, and finally stopping when we reach the last node.

To implement the traversal of the linked list, we start by setting the current variable to the first

item (starting node) in the list, and then we traverse the complete list through a loop, traversing

each node as shown in the following code:

Chapter 4 99

current = n1

while current:

 print(current.data)

 current = current.next

In the loop, we print out the current element after which we set current to point to the next

element in the list. We keep doing this until we reach the end of the list. The output of the preceding

code for this example is:

eggs

ham

spam

There are, however, several problems with this simplistic list implementation:

•	 It requires too much manual work by the programmer

•	 Too much of the inner workings of the list is exposed to the programmer

So, let us discuss a better and more efficient way of traversing the linked list.

Improving list creation and traversal
As you will notice in the earlier example of the list traversal, we are exposing the node class to the

client/user. However, the client node should not interact with the node object. We need to use

node.data to get the contents of the node, and node.next to get the next node. We can access the

data by creating a method that returns a generator, which can be done using the yield keyword

in Python. The updated code snippet for list traversal is as follows:

def iter(self):

 current = self.head

 while current:

 val = current.data

 current = current.next

 yield val

Here, the yield keyword is used to return from a function while saving the states of its local

variables to enable the function to resume from where it left off. Whenever the function is called

again, the execution starts from the last yield statement. Any function that contains a yield

keyword is termed a generator.

Linked Lists100

Now, list traversal is much simpler. We can completely ignore the fact that there is anything

called a node outside of the list:

for word in words.iter():

 print(word)

Notice that since the iter() method yields the data member of the node, our client code doesn’t

need to worry about that at all.

A singly linked list can be created using a simple class to hold the list. We start with a constructor

that holds a reference to the very first node in the list (that is head in the following code). Since

this list is initially empty, we will start by setting this reference to None:

class SinglyLinkedList:

 def __init__ (self):

 self.head = None

In the preceding code, we start with an empty list that points to None. Now, new data elements

can be appended/added to this list.

Appending items
The first operation that we need to perform is to append items to the list. This operation is also

called an insertion operation. Here we get a chance to hide the Node class away. The user of the

list class should never have to interact with Node objects.

Appending items to the end of a list
Let’s have a look at the Python code for creating a linked list where we append new elements to

the list using the append() method, as shown here:

The first shot at an append() method may look like this:

class SinglyLinkedList:

 def __init__ (self):

 self.head = None

 self.size = 0

def append(self, data):

 # Encapsulate the data in a Node

 node = Node(data)

 if self.head is None:

 self.head = node

Chapter 4 101

 else:

 current = self.head

 while current.next:

 current = current.next

 current.next = node

Here, in this code, we encapsulate data in a node so that it has the next pointer attribute. From

here, we check if there are any existing nodes in the list (that is, whether self.head points to a

Node). If there is None, this means that initially, the list is empty and the new node will be the

first node. So, we make the new node the first node of the list; otherwise, we find the insertion

point by traversing the list to the last node and updating the next pointer of the last node to the

new node. This working is depicted in Figure 4.7.

Figure 4.7: Inserting a node at the end of the list in a singly linked list

Consider the following example code to append three nodes:

words = SinglyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

List traversal will work as we discussed before. You will get the first element of the list from the

list itself, and then traverse the list through the next pointer:

current = words.head

while current:

 print(current.data)

 current = current.next

Linked Lists102

Still, this implementation is not very efficient, and there is a drawback with the append method. In

this, we have to traverse the entire list to find the insertion point. This may not be a problem when

there are just a few items in the list, but it will be very inefficient when the list is long, as it will

have to traverse the whole list to add an item every time. Let us discuss a better implementation

of the append method.

For this, the idea is that we not only have a reference to the first node in the list but also have

one more variable in the node that references the last node of the list. That way, we can quickly

append a new node at the end of the list. The worst-case running time of the append operation

can be reduced from O(n) to O(1) using this method. We must ensure that the previous last node

points to the new node that is to be appended to the list.

Here is our updated code:

class SinglyLinkedList:

 def __init__ (self):

 self.tail = None

 self.head = None

 self.size = 0

 def append(self, data):

 node = Node(data)

 if self.tail:

 self.tail.next = node

 self.tail = node

 else:

 self.head = node

 self.tail = node

In this code, a new node can be appended in the end through a tail pointer by making a link from

the last node to the new node. Figure 4.8 shows the workings of the preceding code.

Take note of the convention being used. The point at which we append new nodes

is through self.tail. The self.head variable points to the first node in the list.

Chapter 4 103

Figure 4.8: Illustrating the insertion of a node at the end of a linked list

In Figure 4.8, step 1 shows the addition of the new node at the end, and step 2 shows when the list

is empty. In that case, head is made the new node, with tail pointing to that node.

Furthermore, the following code snippet shows the workings of the code:

words = SinglyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the above code is as follows:

eggs

ham

spam

Appending items at intermediate positions
To append or insert an element in an existing linked list at a given position, firstly, we have to

traverse the list to reach the desired position where we want to insert an element. An element can

be inserted in between two successive nodes using two pointers (prev and current).

Linked Lists104

A new node can easily be inserted in between two existing nodes by updating these links, as

shown in Figure 4.9.

Figure 4.9: Insertion of a node between two successive nodes in a linked list

When we want to insert a node in between two existing nodes, all we have to do is update two

links. The previous node points to the new node, and the new node should point to the successor

of the previous node.

Let’s look at the complete code below to add a new element at a given index position:

class SinglyLinkedList:
 def __init__ (self):
 self.tail = None
 self.head = None
 self.size = 0

 def append_at_a_location(self, data, index):
 current = self.head
 prev = self.head
 node = Node(data)
 count = 1
 while current:
 if count == 1:
 node.next = current
 self.head = node
 print(count)
 return
 elif index == index:
 node.next = current
 prev.next = node
 return

Chapter 4 105

 count += 1
 prev = current
 current = current.next
 if count < index:
 print("The list has less number of elements")

In the preceding code, we start from the first node and move the current pointer to reach the
index position where we want to add a new element, and then we update the node pointers
accordingly. In the if condition, firstly, we check whether the index position is 1. In that case,
we have to update the nodes as we are adding the new node at the start of the list. Therefore,
we have to make the new node a head node. Next, in the else part, we check whether we have
reached the required index position by comparing the value of count and index. If both values
are equal, we add a new node in between nodes indicated by prev and current and update the
pointers accordingly. Finally, we print an appropriate message if the required index position is
greater than the length of the linked list.

The following code snippet uses the append method to add a “new” data element at an index

position of 2 in the existing linked list:

words = SinglyLinkedList()
words.append('egg')
words.append('ham')
words.append('spam')
current = words.head

while current:
 print(current.data)
 current = current.next

words.append_at_a_location('new', 2)
current = words.head
while current:
 print(current.data)
 current = current.next

The output of the above code is as follows:

egg

new

ham

spam

Linked Lists106

It is important to note that the condition where we may want to insert a new element can change

depending upon the requirement, so let’s say we want to insert a new element just before an

element that has the same data value. In that case, the code to append_at_a_position will be

as follows:

def append_at_a_location(self, data):

 current = self.head

 prev = self.head

 node = Node(data)

 while current:

 if current.data == data:

 node.next = current

 prev.next = node

 prev = current

 current = current.next

We can now use the preceding code to insert a new node at an intermediate position:

words.append_at_a_location('ham')

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the above code is as follows:

egg

ham

ham

spam

The worst-case time complexity of the insert operation is O(1) when we have an additional

pointer that points to the last node. Otherwise, when we do not have the link to the last node,

the time complexity will be O(n) since we have to traverse the list to reach the desired position

and in the worst case, we may have to traverse all the n nodes in the list.

Querying a list
Once the list is created, we may require some quick information about the linked list, such as

the size of the list, and occasionally to establish whether a given data item is present in the list.

Chapter 4 107

Searching an element in a list
We may also need to check whether a list contains a given item. This can be implemented using

the iter() method, which we have already seen in the previous section while traversing the

linked list. Using that, we write the search method as follows:

def search(self, data):

 for node in self.iter():

 if data == node:

 return True

 return False

In the above code, each pass of the loop compares the data to be searched with each data item in

the list one by one. If a match is found, True is returned, otherwise False is returned.

If we run the following code for searching a given data item:

print(words.search('sspam'))

print(words.search('spam'))

The output of the preceding code is as follows:

False

True

Getting the size of the list
It is important to get the size of the list by counting the number of nodes. One way to do it is by

traversing the entire list and increasing the counter as we go along:

def size(self):

 count = 0

 current = self.head

 while current:

 count += 1

 current = current.next

 return count

The above code is very similar to what we did while traversing the linked list. Similarly, in this

code, we traverse the nodes of the list one by one and increase the count variable. However, list

traversal is potentially an expensive operation that we should avoid wherever we can.

Linked Lists108

So instead, we can opt for another method in which we can add a size member to the

SinglyLinkedList class, initializing it to 0 in the constructor, as shown in the following code

snippet:

class SinglyLinkedList:

 def __init__(self):

 self.head = data

 self.size = 0

Because we are now only reading the size attribute of the node object, and not using a loop to

count the number of nodes in the list, we reduce the worst-case running time from O(n) to O(1).

Deleting items
Another common operation on a linked list is to delete nodes. There are three possibilities that

we may encounter in order to delete a node from the singly linked list.

Deleting the node at the beginning of the singly linked list
Deleting a node from the beginning is quite easy. It involves updating the head pointer to the

second node in the list. This can be done in two steps:

1.	 A temporary pointer (current pointer) is created that points to the first node (head node),

as shown in Figure 4.10.

Figure 4.10: Illustration of the deletion of the first node from the linked list

2.	 Next, the current node pointer is moved to the next node and assigned to the head node.

Now, the second node becomes the head node that is pointed to by the head pointer, as

shown in Figure 4.11.

Chapter 4 109

Figure 4.11: After deleting the first node, the head pointer now points to the new
starting element

This can be implemented using the following Python code. In this code, initially, three data

elements are added as we have done previously, and then the first node of the list is deleted:

def delete_first_node (self):

 current = self.head

 if self.head is None:

 print("No data element to delete")

 elif current == self.head:

 self.head = current.next

In the above code, we initially check if there is no item to delete from the list, and we print the

appropriate message. Next, if there is some data item in the list, we assign the head pointer to

the temporary pointer current as per step 1, and then the head pointer is now pointing to the next

node, assuming that we already have a linked list of three data items – “eggs”, “ham”, and “spam”:

words.delete_first_node()

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the preceding code is as follows:

ham

spam

Deleting the node at the end in the singly linked list
To delete the last node from the list, we have to first traverse the list to reach the last node. At that

time, we also need an extra pointer that points to just one node before the last node, so that after

deleting the last node, the second last node can be marked as the last node. It can be implemented

in the following three steps:

Linked Lists110

1.	 Firstly, we have two pointers, in other words, a current pointer that will point to the last

node, and a prev pointer that will point to the node previous to the last node (second last

node). Initially, we will have three pointers (current, prev, and head) pointing to the first

node, as shown in Figure 4.12.

Figure 4.12: Illustration of the deletion of the end node from the linked list

2.	 To reach the last node, we move the current and prev pointers in such a way that the

current pointer should point to the last node and the prev pointer should point to the

second last node. So, we stop when the current pointer reaches the last node. This is

shown in Figure 4.13.

Figure 4.13: Traversal of the linked list to reach the end of the list

3.	 Finally, we mark the prev pointer to point to the second last node, which is rendered as

the last node of the list by pointing this node to None, as shown in Figure 4.14.

Figure 4.14: Deletion of the last node from the linked list

Chapter 4 111

The implementation in Python for deleting a node from the end of the list is as follows:

 def delete_last_node (self):

 current = self.head

 prev = self.head

 while current:

 if current.next is None:

 prev.next = current.next

 self.size -= 1

 prev = current

 current = current.next

In the preceding code, firstly, the current and prev pointers are assigned the head pointer as per

step 1. Then, in the while loop, we check whether we reached the end of the list using the current.

next is None condition. Once we reach the end of the list, we make the second last node, which

is indicated by the prev pointer, the last node. We also decrement the size of the list. If we do not

reach the end of the list, we increment the prev and current pointers in the while loop in the last

two lines of code. Next, let us discuss how to delete any intermediate node in a singly linked list.

Deleting any intermediate node in a singly linked list
We first have to decide how to select a node for deletion. Identifying the intermediate node to be

deleted can be determined by the index number or by the data the node contains. Let us understand

this concept by deleting a node depending on the data it contains.

To delete any intermediary node, we need two pointers similar to the case when we learned to

delete the last node; in other words, the current pointer and the prev pointer. Once we reach

the node that is to be deleted, the desired node can be deleted by making the previous node point

to the next node of the node that is to be deleted. The process is provided in the following steps:

1.	 Figure 4.15 shows when an intermediate node is deleted from the given linked list. In this,

we can see that the initial pointers point to the first node.

Figure 4.15: Illustration of the deletion of an intermediate node from the linked list

Linked Lists112

2.	 Once the node is identified, the prev pointer is updated to delete the node, as shown in

Figure 4.16. The node to be deleted is shown along with the link to those to be updated

in Figure 4.16.

Figure 4.16: Traversing to reach the intermediate node that is to be deleted in the
linked list

3.	 Finally, the list after deleting the node is shown in Figure 4.17.

Figure 4.17: Deletion of an intermediate node from the linked list

Let’s say we want to delete a data element that has the given value. For this given condition, we

can first search the node to be deleted and then delete the node as per the steps discussed.

Here is what the implementation of the delete() method may look like:

def delete(self, data):

 current = self.head

 prev = self.head

 while current:

 if current.data == data:

 if current == self.head:

 self.head = current.next

 else:

 prev.next = current.next

 self.size -= 1

Chapter 4 113

 return

 prev = current

 current = current.next

Assuming that we already have a linked list of three items – “eggs”, “ham”, and “spam”, the

following code is for executing the delete operation, that is, deleting a data element with the

value “ham” from the given linked list:

words.delete("ham")

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the preceding code is as follows:

egg

spam

The worst-case time complexity of the delete operation is O(n) since we have to traverse the

list to reach the desired position and, in the worst-case scenario, we may have to traverse all the

n nodes in the list.

Clearing a list
We may need to clear a list quickly, and there is a very simple way to do this. We can clear a list

by simply clearing the pointer head and tail by setting them to None:

def clear(self):

 # clear the entire list.

 self.tail = None

 self.head = None

In the above code, we can clear the list by assigning None to the tail and head pointers.

We have discussed different operations for a singly linked list, and now we will discuss the concept

of doubly linked list and learn how different operations can be implemented in a doubly linked

list in the next section.

Linked Lists114

Doubly linked lists
A doubly linked list is quite similar to the singly linked list in the sense that we use the same

fundamental concept of nodes along with how we can store data and links together, as we did in

a singly linked list. The only difference between a singly linked list and a doubly linked list is that

in a singly linked list, there is only one link between each successive node, whereas, in a doubly

linked list, we have two pointers—a pointer to the next node and a pointer to the previous node.

See the following Figure 4.18 of a node; there is a pointer to the next node and the previous node,

which are set to None as there is no node attached to this node.

Figure 4.18: Represents a doubly linked list with a single node

A node in a singly linked list can only determine the next node associated with it. However, there

is no link to go back from this referenced node. The direction of flow is only one way. In a doubly

linked list, we solve this issue and include the ability not only to reference the next node, but also

to reference the previous node. Consider the following Figure 4.19 to understand the nature of the

linkages between two successive nodes. Here, node A is referencing node B; in addition, there is

also a link back to node A.

Figure 4.19: Doubly linked list with two nodes

Doubly linked lists can be traversed in any direction. A node in a doubly linked list can be easily

referred to by its previous node whenever required without having a variable to keep track of

that node.

Chapter 4 115

However, in a singly linked list, it may be difficult to move back to the start or beginning of the

list to make some changes at the start of the list, which is very easy now in the case of a doubly

linked list.

Creating and traversing
The Python code to create a doubly linked list node includes its initializing methods, the prev

pointer, the next pointer, and the data instance variables. When a node is newly created, all

these variables default to None:

class Node:

 def __init__ (self, data=None, next=None, prev=None):

 self.data = data

 self.next = next

 self.prev = prev

The prev variable has a reference to the previous node, while the next variable keeps the reference

to the next node, and the data variable stores the data.

Next, let’s create a doubly linked list class.

The doubly linked list class has two pointers, head and tail, that will point to the start and end

of the doubly linked list, respectively. In addition, for the size of the list, we set the count instance

variable to 0. It can be used to keep track of the number of items in the linked list. Consider the

following Python code for creating a doubly linked list class:

class DoublyLinkedList:

 def __init__ (self):

 self.head = None

 self.tail = None

 self.count = 0

Doubly linked lists also require functionalities that return the size of the list, insert items into

the list, and delete nodes from the list. Next, we discuss different operations that can be applied

to the doubly linked list. Let’s start with the append operation.

Here, self.head points to the beginner node of the list, and self.tail points to

the last node. However, there are no fixed rules as to the naming of the head and

tail node pointers.

Linked Lists116

Appending items
The append operation is used to add an element at the end of a list. An element can be appended

or inserted into a doubly linked list in the following instances.

Inserting a node at beginning of the list
Firstly, it is important to check whether the head node of the list is None. If it is None, this means

that the list is empty, otherwise the list has some nodes, and a new node can be appended to the

list. If a new node is to be added to the empty list, it should have the head pointer pointing to the

newly created node, and the tail of the list should also point to this newly created node.

The following Figure 4.20 illustrates the head and tail pointers of the doubly linked list when a

new node is added to an empty list.

Figure 4.20: Illustration of inserting a node in an empty doubly linked list

Alternatively, we can insert or append a new node at the beginning of an existing doubly linked

list, as shown in Figure 4.21.

Figure 4.21: Illustration of inserting an element in a doubly linked list

The new node should be made as a new starting node of the list and that should now point to

the previous head node.

Chapter 4 117

It can be done by updating the three links, which are also shown with dotted lines in Figure 4.22

and described as follows:

1.	 Firstly, the next pointer of a new node should point to the head node of the existing list

2.	 The prev pointer of the head node of the existing list should point to the new node

3.	 Finally, mark the new node as the head node in the list

Figure 4.22: Inserting a node at the beginning of the doubly linked list

The following code is used to append/insert an item at the beginning when the list is initially

empty and with an existing doubly linked list:

def append_at_start(self, data):

 #Append an item at beginning to the list.

 new_node = Node(data, None, None)

 if self.head is None:

 self.head = new_node

 self.tail = self.head

 else:

 new_node.next = self.head

 self.head.prev = new_node

 self.head = new_node

 self.count += 1

In the above code, firstly, the self.head condition is checked irrespective of whether the list

is empty. If it is empty, then the head and tail pointers point to the newly created node. In this

case, the new node becomes the head node. Next, if the condition is not true, this means the list

is not empty, and a new node has to be added at the beginning of the list. For this, three links are

updated as shown in Figure 4.22, and also shown in the code in bold font. After updating these

three links, finally, the size of the list is increased by 1. Furthermore, let us understand how to

insert an element at the end of the doubly linked list.

Linked Lists118

Further, the following code snippet shows how we can create a double link list and append a new

node at the starting of the list:

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

print("Items in doubly linked list before append:")

current = words.head

while current:

 print(current.data)

 current = current.next

words.append_at_start('book')

print("Items in doubly linked list after append:")

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the above code is:

Items in doubly linked list before append:

egg

ham

spam

Items in doubly linked list after append:

book

egg

ham

spam

In the output, we can see that the new data item “book" is added in the starting of the list.

Chapter 4 119

Inserting a node at the end of the list
To append/insert a new element at the end of the doubly linked list, we will need to traverse

through the list to reach the end of the list if we do not have a separate pointer pointing to the

end of the list. Here, we have a tail pointer that points to the end of the list.

A visual representation of the append operation to an existing list is shown in the following

Figure 4.23.

Figure 4.23: Inserting a node at the end of the list in a doubly linked list

To add a new node at the end, we update two links as follows:

1.	 Make the prev pointer of the new node point to the previous tail node

2.	 Make the previous tail node point to the new node

3.	 Finally, update the tail pointer so that the tail pointer now points to the new node

The following code is used to append an item at the end of the doubly linked list:

def append(self, data):

 #Append an item at the end of the list.

Linked Lists120

 new_node = Node(data, None, None)

 if self.head is None:

 self.head = new_node

 self.tail = self.head

 else:

 new_node.prev = self.tail

 self.tail.next = new_node

 self.tail = new_node

 self.count += 1

In the above code, the if part of the preceding program is for adding a node to the empty list; the

else part of the preceding program will be executed if the list is not empty. If the new node is to

be added to a list, the new node’s previous variable is to be set to the tail of the list:

new_node.prev = self.tail

The tail’s next pointer (or variable) has to be set to the new node:

self.tail.next = new_node

Lastly, we update the tail pointer to point to the new node:

self.tail = new_node

Since an append operation increases the number of nodes by one, we increase the counter by one:

self.count += 1

The following code snippet can be used to append a node at the end of the list:

print("Items in doubly linked list after append")

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

words.append('book')

print("Items in doubly linked list after adding element at end.")

current = words.head

while current:

 print(current.data)

 current = current.next

Chapter 4 121

The output of the above code:

Items in doubly linked list after adding element at end.

egg

ham

spam

book

The worst-case time complexity of appending an element to the doubly linked list is O(1) since

we already have the tail pointer that points to the end of the list, and we can directly add a new

element. Next, we will discuss how to insert a node at an intermediate position of the doubly

linked list.

Inserting a node at an intermediate position in the list
Inserting a new node at any given position in a doubly linked list is similar to what we discussed

in a singly linked list. Let us take an example in which we insert a new element just before the

element that has the same data value as the given data.

Firstly, we traverse to the position where we want to insert a new element in that situation. The

current pointer points to the target node, while the prev pointer just points to the previous node

of the target node, as shown in Figure 4.24.

Figure 4.24: Illustration of pointers for inserting a node at an intermediate position in a doubly
linked list

After reaching the correct position, a few pointers have to be added in order to add a new node.

The details of these links that need to be updated (also shown in Figure 4.25) are as follows:

1.	 The next pointer of the new node points to the current node

2.	 The prev pointer of the new node should point to the previous node

3.	 The next pointer of the previous node should point to the new node

Linked Lists122

4.	 The prev pointer of the current node should point to the new node

Figure 4.25: Demonstration of links that need to be updated in order to add a new node at
any intermediate position in the list

Here is what the implementation of the append_at_a_location() method may look like:

def append_at_a_location(self, data):

 current = self.head

 prev = self.head

 new_node = Node(data, None, None)

 while current:

 if current.data == data:

 new_node.prev = prev

 new_node.next = current

 prev.next = new_node

 current.prev = new_node

 self.count += 1

 prev = current

 current = current.next

In the preceding code, firstly, the current and prev pointers are initialized by pointing to the

head node. Then, in the while loop, we first reach the desired position by checking the condition.

In this example, we check the data value of the current node against the data value provided by

the user. Once we reach the desired position, we update four links as discussed, which are also

shown in Figure 4.25.

The following code snippet can be used to insert an data element “ham" after the first occurrence

of the word “ham" in the doubly linked list:

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

Chapter 4 123

words.append('spam')

words.append_at_a_location('ham')

print("Doubly linked list after adding an element after word \"ham\" in
the list.")

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the above code:

Doubly linked list after adding an element after word "ham" in the list.

egg

ham

ham

spam

Appending at the start and end positions in a doubly linked list will have a worst-case running

time complexity of O(1) since we can directly append the new node, and the worst-case time

complexity for appending a new node at any intermediate position will be O(n) since we may

have to traverse the list of n items.

Next, let us learn how to search a given item if that is present in the doubly linked list or not.

Querying a list
The search for an item in a doubly linked list is similar to the way we did it in the singly linked

list. We use the iter() method to check the data in all the nodes. As we run a loop through all

the data in the list, each node is matched with the data passed in the contain method. If we find

the item in the list, True is returned, denoting that the item is found, otherwise False is returned,

which means the item was not found in the list. The Python code for this is as follows:

def iter(self):

 current = self.head

 while current:

 val = current.data

 current = current.next

 yield val

Linked Lists124

 def contains(self, data):

 for node_data in self.iter():

 if data == node_data:

 print("Data item is present in the list.")

 return

 print("Data item is not present in the list.")

 return

The following code can be used to search if a data item is present in the existing doubly linked list:

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

words.contains("ham")

words.contains("ham2")

The output of the above code is as follows:

Data item is present in the list.

Data item is not present in the list.

The search operation in a doubly linked list has a running time complexity of O(n) since we have

to traverse the list in order to reach the desired element and, in the worst case, we may have to

traverse the whole list of n items.

Deleting items
The deletion operation is easier in the doubly linked list compared to the singly linked list. Unlike

in a singly linked list, where we need to traverse the linked list to reach the desired position, and

we also need one more pointer to keep track of the previous node of the target node, in a doubly

linked list, we don’t have to do that because we can traverse in both directions.

The delete operation in a doubly linked list can have four scenarios, which are discussed as

follows:

1.	 The item to be deleted is located at the start of the list

2.	 The item to be deleted is found at the tail end of the list

Chapter 4 125

3.	 The item to be deleted is located anywhere at an intermediate position in the list

4.	 The item to be deleted is not found in the list

The node to be deleted is identified by matching the data instance variable with the data that is

passed to the method. If the data matches the data variable of a node, that matching node will

be deleted:

1.	 For the first scenario, when we have found the item to be deleted at the first position, we

will have to simply update the head pointer to the next node. It is shown in Figure 4.26.

Figure 4.26: Illustration of the deletion of the first node in a doubly linked list

2.	 For the second scenario, when we found the item to be deleted at the last position in the

list, we will have to simply update the tail pointer to the second last node. It is shown

in Figure 4.27.

Figure 4.27: Illustration of the deletion of the last node in a doubly linked list

Linked Lists126

3.	 For the third scenario, we found the data item to be deleted at any intermediate position.

To better understand this, consider the example shown in Figure 4.28. In this, there are

three nodes, A, B, and C. To delete node B in the middle of the list, we will essentially

make A point to node C as its next node, while making C point to A as its previous node.

Figure 4.28: Illustration of the deletion of the intermediate node B from the doubly
linked list

The complete implementation to delete a node from the doubly linked list in Python is as follows.

We’ll discuss each part of this code step by step:

 def delete(self, data):

 # Delete a node from the list.

 current = self.head

 node_deleted = False

 if current is None:

 #List is empty

 print("List is empty")

 elif current.data == data:

 #Item to be deleted is found at starting of the list

 self.head.prev = None

 node_deleted = True

 self.head = current.next

 elif self.tail.data == data:

Chapter 4 127

 #Item to be deleted is found at the end of list

 self.tail = self.tail.prev

 self.tail.next = None

 node_deleted = True

 else:

 while current:

 #search item to be deleted, and delete that node

 if current.data == data:

 current.prev.next = current.next

 current.next.prev = current.prev

 node_deleted = True

 current = current.next

 if node_deleted == False:

 # Item to be deleted is not found in the list

 print("Item not found")

 if node_deleted:

 self.count -= 1

Initially, we create a node_deleted variable to denote the deleted node in the list and this is

initialized to False. The node_deleted variable is set to True if a matching node is found and

subsequently removed.

In the delete method, the current variable is initially set to the head node of the list (that is, it

points to the self.head node of the list). This is shown in the following code fragment:

def delete(self, data):

 current = self.head

 node_deleted = False

Next, we use a set of if...else statements to search various parts of the list to ascertain the node

with the specified data that is to be deleted.

First of all, we search for the data to be deleted at the head node, and if the data is matched at

the head node, this node would be deleted. Since current is pointing at head, if current is None,

this means that the list is empty and has no nodes to find the node to be deleted. The following

is its code fragment:

if current is None:

 node_deleted = False

Linked Lists128

However, if current (which now points to head) contains the data being searched for, this means

that we found the data to be deleted at the head node, and self.head is then marked to point to

the current.next node. Since there is now no node behind head, self.head.prev is set to None.

Consider the following code snippet for this:

elif current.data == data:

 self.head.prev = None

 node_deleted = True

 self.head = current.next

Similarly, if the node that is to be deleted is found at the tail end of the list, we delete the last

node by setting its previous node pointing to None. self.tail is set to point to self.tail.prev,

and self.tail.next is set to None as there is no node afterward. Consider the following code

fragment for this:

elif self.tail.data == data:

 self.tail = self.tail.prev

 self.tail.next = None

 node_deleted = True

Lastly, we search for the node to be deleted by looping through the entire list of nodes. If the data

that is to be deleted is matched with a node, that node will be deleted.

To delete a node, we make the previous node of the current node point to the next node using

the current.prev.next = current.next code. After that step, we make the current’s next node

point to the previous node of the current node using current.next.prev = current.prev.

Furthermore, if we traverse the complete list, and the desired item is not found, we print the

appropriate message. Consider the following code snippet for this:

else:

 while current:

 if current.data == data:

 current.prev.next = current.next

 current.next.prev = current.prev

 node_deleted = True

 current = current.next

 if node_deleted == False:

Item to be deleted is not found in the list

 print("Item not found")

Chapter 4 129

Finally, the node_delete variable is then checked to ascertain whether a node is actually deleted.

If any node is deleted, then we decrease the count variable by 1, and this keeps track of the total

number of nodes in the list. See the following code fragment:

if node_deleted:

 self.count -= 1

This decrements the count variable by 1 in case any node is deleted.

Let’s take an example to see how the delete operation works with the same example of adding

three strings – “egg”, “ham”, and “spam”, and then a node with the value “ham” is deleted from

the list. The code is as follows:

#Code to create for a doubly linked list

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

words.delete('ham')

current = words.head

while current:

 print(current.data)

 current = current.next

The output of the preceding code is as follows:

egg

spam

The worst-case running time complexity of the delete operation is O(n) since we may have to

traverse the list of n items to search for the item to be deleted.

In the next section, we will learn different operations on a circular linked list.

Circular lists
A circular linked list is a special case of a linked list. In a circular linked list, the endpoints are

connected, which means that the last node in the list points back to the first node. In other words,

we can say that in circular linked lists, all the nodes point to the next node (and the previous node

in the case of a doubly linked list) and there is no end node, meaning no node will point to None.

Linked Lists130

The circular linked lists can be based on both singly and doubly linked lists. Consider Figure 4.29

for the circular linked list based on a singly linked list where the last node, C, is again connected

to the first node A, thus making a circular list.

Figure 4.29: Example of a circular list based on a singly linked list

In the case of a doubly linked circular list, the first node points to the last node, and the last

node points back to the first node. Figure 4.30 shows the concept of the circular linked list based

on a doubly linked list where the last node C is again connected to the first node A through the

next pointer. Node A is also connected to node C through the previous pointer, thus making a

circular list.

Figure 4.30: Example of a circular list based on a doubly linked list

Now, we are going to look at an implementation of a singly linked circular list. It is very

straightforward to implement a doubly linked circular list once we understand the basic concepts

of singly and doubly linked lists.

Chapter 4 131

Almost everything is similar except that we should be careful in managing the link of the last

node to the first node.

We can reuse the node class that we created in the singly linked lists subsection. We can reuse

most parts of the SinglyLinkedList class as well. So, we are going to focus on where the circular

list implementation differs from the normal singly linked list.

Creating and traversing
The circular linked list class can be created using the following code:

class CircularList:

 def __init__ (self):

 self.tail = None

 self.head = None

 self.size = 0

In the above code, initially in the circular linked list class, we have two pointers; self.tail is

used to point to the last node, and self.head is used to point to the first node of the list.

Appending items
Here, we want to add a node at the end of a circular linked list, as shown in Figure 4.31, in which

we have four nodes, wherein the head is pointing to the starting node and the tail is pointing to

the last node.

Figure 4.31: Example of a circular linked list for adding a node at the end

Linked Lists132

Figure 4.32 shows how a node is added to a circular linked list.

Figure 4.32: Inserting a node at the end of the singly circular list

To add a node at the end, we will update three links:

1.	 The next pointer of the last node to point to a new node

2.	 The next pointer of a new node to point to the head node

3.	 Update the tail pointer to point to the new node

The implementation of the circular linked list to append an element at the end of the circular list

based on a singly linked list is as follows:

 def append(self, data):

 node = Node(data)

 if self.tail:

 self.tail.next = node

 self.tail = node

 node.next = self.head

 else:

 self.head = node

 self.tail = node

 self.tail.next = self.tail

 self.size += 1

In the above code, firstly, we check whether the list is empty. If the list is empty, we go to the

else part of the above code. In this case, the new node will be the first node of the list, and both

the head and tail pointers will point to the new node, while the next pointer of the new node

will again point to the new node.

Chapter 4 133

Otherwise, if the list is not empty, we go to the if part of the preceding code. In this case, we

update the three pointers as shown in Figure 4.32. This is similar to what we did in the case of

the single linked list. Only one link is additionally added in this case, which is shown in bold font

in the preceding code.

Further, we can use iter() method traverse all the elements of the list, The iter() method

described below should be defined in CircularList class:

def iter(self):

 current = self.head

 while current:

 val = current.data

 current = current.next

 yield val

The below code can be used to create a singly circular linked list, and then print all the data

elements of the list, and then we stop when the counter becomes 3 which is the length of the list.

words = CircularList()

words.append('eggs')

words.append('ham')

words.append('spam')

counter = 0

for word in words.iter():

 print(word)

 counter += 1

 if counter > 2:

 break

The output of the preceding code is as follows:

eggs

ham

spam

Appending any element at an intermediate position in a circular list is exactly to its implementation

in a singly linked list.

Linked Lists134

Querying a list
Traversing a circular linked list is very convenient as we don’t need to look for the starting point.

We can start anywhere, and we just need to carefully stop traversing when we reach the same

node again. We can use the same iter() method, which we discussed at the start of this chapter.

This will also be the case for the circular list; the only difference is that we have to mention an

exit condition when we are iterating through the circular list, otherwise the program will get

stuck in a loop, and it will run indefinitely. We can make any exit condition dependent upon our

requirements; for example, we can use a counter variable. Consider the following example code:

words = CircularList()

words.append('eggs')

words.append('ham')

words.append('spam')

counter = 0

for word in words.iter():

 print(word)

 counter += 1

 if counter > 100:

 break

In the above code, we add three strings of data to the circular linked list, and then we print the

data values iterating through the list 100 times.

In the next section, let us understand how the delete operation works in a circular linked list.

Deleting an element in a circular list
To delete a node in a circular list, it looks like we can do it similarly to how we did in the case of

the append operation—simply make sure that the last node through the tail pointer points back

to the starting node of the list through the head pointer. We have the following three scenarios:

1.	 When the item to be deleted is the head node:

In this scenario, we have to ensure that we make the second node of the list the new head

node (shown as step 1 in Figure 4.33), and the last node should be pointing back to the

new head (shown as step 2 in Figure 4.33).

Chapter 4 135

Figure 4.33: Deletion of a starting node in a singly circular list

2.	 When the item to be deleted is the last node:

In this scenario, we have to ensure that we make the second last node the new tail node

(shown as step 1 in Figure 4.34), while the new tail node should be pointing back to the

new head (shown as step 2 in Figure 4.34).

Figure 4.34: Deletion of the last node in a singly circular list

3.	 When the item to be deleted is an intermediate node:

This is very similar to what we did in the singly linked list. We have to make a link from the

previous node of the target node to the next node of the target node, as shown in Figure 4.35.

Figure 4.35: Deletion of any intermediate node in a singly circular list

Linked Lists136

The implementation of the delete operation is as follows:

 def delete(self, data):

 current = self.head

 prev = self.head

 while prev == current or prev != self.tail:

 if current.data == data:

 if current == self.head:

 #item to be deleted is head node

 self.head = current.next

 self.tail.next = self.head

 elif current == self.tail:

 #item to be deleted is tail node

 self.tail = prev

 prev.next = self.head

 else:

 #item to be deleted is an intermediate node

 prev.next = current.next

 self.size -= 1

 return

 prev = current

 current = current.next

 if flag is False:

 print("Item not present in the list")

In the preceding code, firstly, iterate over all the elements to search the desired element to be

deleted. Here, it is important to note the stopping condition. If we simply check the current

pointer to be equal to None (which we did in the singly linked list), the program will go into an

indefinite loop since the current node will never point to None in the case of circular linked lists.

For this, we cannot check whether current has reached tail because then it will never check the

last node. So, the stopping criterion in the circular list is the fact that the prev and current pointers

point to the same node. It will work fine except on one occasion when the first loop iteration, at

that time, current and prev, will point to the same node, in other words, the head node.

Once, we enter the loop, we check the data value of the current pointer with the given data value

to get the node to be deleted. We check whether the node to be deleted is the head node, tail node,

or intermediate node, and then update the appropriate links shown in Figures 4.33, 4.34, and 4.35.

Chapter 4 137

So, we have discussed the different scenarios while deleting any node in singly circular linked list,

similarly, the doubly linked list based circular linked list can be implemented.

The following code can be used to create a circular linked list, and apply different delete operations:

words = CircularList()

words.append('eggs')

words.append('ham')

words.append('spam')

words.append('foo')

words.append('bar')

print("Let us try to delete something that isn't in the list.")

words.delete('socks')

counter = 0

for item in words.iter():

 print(item)

 counter += 1

 if counter > 4:

 break

print("Let us delete something that is there.")

words.delete('foo')

counter = 0

for item in words.iter():

 print(item)

 counter += 1

 if counter > 3:

 break

The output of the above code is as follows:

Let us try to delete something that isn't in the list.

Item not present in the list

eggs

ham

spam

foo

bar

Linked Lists138

Let us delete something that is there.

eggs

ham

spam

bar

The worst-case time complexity of inserting an element at a given location in the circular linked

list is O(n) since we have to traverse the list to the desired location. The complexity of insertion at

the first and last locations of the circular list will be O(1). Similarly, the worst-case time complexity

to delete an element at a given location is O(n).

So far, we have discussed the different scenarios while deleting any node in a singly circular linked

list. Similarly, the doubly linked list can be implemented based on a circular linked list.

In a singly linked list, the traversal of nodes can be done in one direction, whereas, in a doubly

linked list, it is possible to traverse in both directions (forward and backward). In both cases, the

complexity of the insertion and deletion operations at a given location is O(n) whenever we have

to traverse the list in order to reach the desired location where we want to insert or delete any

element. Similarly, the worst-case time complexity of the insertion or deletion of a node for a

given desired location is O(n). Whenever we need to save memory space, we should use a singly

linked list since it only needs one pointer, whereas a doubly linked list takes more memory space

to store double pointers. When a search operation is important, we should use a doubly linked

list since it is possible to search in both directions. Furthermore, the circular linked list should

be used when we have an application when we need to iterate over the nodes in the list. Let us

now see more real-world applications of linked lists.

Practical applications of linked lists
As of now, we have discussed singly linked lists, circular linked lists, and doubly linked lists.

Depending upon what kind of operations (insertion, deletion, updating, and so on) will be required

in different applications, these data structures are used accordingly. Let’s see a few real-time

applications where these data structures are being used.

Singly linked lists can be used to represent any sparse matrix. Another important application is

to represent and manipulate polynomials by accumulating constants in the node of linked lists.

It can also be used in implementing a dynamic memory management scheme that allows the

user to allocate and deallocate the memory as per requirements during the execution of programs.

Chapter 4 139

On the other hand, doubly linked lists are used by the thread schedular in the operating system to

maintain the list of processes running at that time. These lists are also used in the implementation

of MRU (most recently used) and LRU (least recently used) cache in the operating system.

Doubly linked lists can also be used by various applications to implement Undo and Redo

functionality. The browsers can use these lists to implement backward and forward navigation

of the web pages visited.

A circular linked list can be used by operating systems to implement a round-robin scheduling

mechanism. Another application of circular linked lists is to implement Undo functionality in

Photoshop or Word software and use it in implementing a browser cache that allows you to hit

the BACK button. Besides that, it is also used to implement advanced data structures such as the

Fibonacci heap. Multiplayer games also use a circular linked list to swap between players in a loop.

Summary
In this chapter, we studied the concepts that underlie lists, such as nodes and pointers to other

nodes. We have discussed singly linked lists, doubly linked lists, and circular linked lists. We have

seen various operations that can be applied to these data structures and their implementations

using Python.

These types of data structures have certain advantages over arrays. In the case of arrays, insertion

and deletion are quite time-consuming as these operations require the shifting of elements

downward and upward, respectively, due to contiguous memory allocations. On the other hand,

in the case of linked lists, these operations require only changes in pointers. Another advantage of

linked lists over arrays is the allowance of a dynamic memory management scheme that allocates

memory during the runtime as and when needed, while the array is based on a static memory

allocation scheme.

The singly linked list can traverse in a forward direction only, while traversal in doubly linked

lists is bidirectional, hence the reason why the deletion of a node in a doubly linked list is easy

compared to a singly linked list. Similarly, circular linked lists save time while accessing the first

node from the last node as compared to the singly linked list. Thus, each list has its advantages

and disadvantages. We should use them as per the requirements of the application.

In the next chapter, we are going to look at two other data structures that are usually implemented

using lists—stacks and queues.

Linked Lists140

Exercise
1.	 What will be the time complexity when inserting a data element after an element that is

being pointed to by a pointer in a linked list?

2.	 What will be the time complexity when ascertaining the length of the given linked list?

3.	 What will be the worst-case time complexity for searching a given element in a singly

linked list of length n?

4.	 For a given linked list, assuming it has only one head pointer that points to the starting

point of the list, what will be the time complexity for the following operations?

a.	 Insertion at the front of the linked list

b.	 Insertion at the end of the linked list

c.	 Deletion of the front node of the linked list

d.	 Deletion of the last node of the linked list

5.	 Find the nth node from the end of a linked list.

6.	 How can you establish whether there is a loop (or circle) in a given linked list?

7.	 How can you ascertain the middle element of the linked list?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

5
Stacks and Queues

In this chapter, we will discuss two very important data structures: stacks and queues. Stacks and

queues have many important applications, such as form operating system architecture, arithmetic

expression evaluation, load balancing, managing printing jobs, and traversing data. In stack and

queue data structures, the data is stored sequentially, like arrays and linked lists, but unlike arrays

and linked lists, the data is handled in a specific order with certain constraints, which we will

be discussing in detail in this chapter. Moreover, we will also examine how we can implement

stacks and queues using linked lists and arrays.

In this chapter, we will discuss constraints and methods to handle the data in stacks and queues.

We will also implement these data structures and learn how to apply different operations to these

data structures in Python.

In this chapter, we will cover the following:

•	 How to implement stacks and queues using various methods

•	 Some real-life example applications of stacks and queues

Stacks
A stack is a data structure that stores data, similar to a stack of plates in a kitchen. You can put

a plate on the top of the stack, and when you need a plate, you take it from the top of the stack.

Stacks and Queues142

The last plate that was added to the stack will be the first to be picked up from the stack:

Figure 5.1: Example of a stack

The preceding diagram depicts a stack of plates. Adding a plate to the pile is only possible by

leaving that plate on top of the pile. To remove a plate from the pile of plates means to remove

the plate that is on top of the pile.

A stack is a data structure that stores the data in a specific order similar to arrays and linked lists,

with several constraints:

•	 Data elements in a stack can only be inserted at the end (push operation)

•	 Data elements in a stack can only be deleted from the end (pop operation)

•	 Only the last data element can be read from the stack (peek operation)

A stack data structure allows us to store and read data from one end, and the element which is

added last is picked up first. Thus, a stack is a last in first out (LIFO) structure, or last in last

out (LILO).

There are two primary operations performed on stacks – push and pop. When an element is added

to the top of the stack, it is called a push operation, and when an element is to be picked up (that

is, removed) from the top of the stack, it is called a pop operation. Another operation is peek, in

which the top element of the stack can be viewed without removing it from the stack. All the

operations in the stack are performed through a pointer, which is generally named top. All these

operations are shown in Figure 5.2:

Chapter 5 143

Figure 5.2: Demonstration of push and pop operations in a stack

The following table demonstrates the use of two important stack operations (push and pop) in

the stack:

Stack operation Size Contents Operation results

stack() 0 [] Stack object created, which is empty.

push "egg" 1 ['egg'] One item egg is added to the stack.

push "ham" 2 ['egg', 'ham'] One more item, ham, is added to the stack.

peek() 2 ['egg', 'ham'] The top element, ham, is returned.

pop() 1 ['egg']
The ham item is popped off and returned.
(This item was added last, so it is removed
first.)

pop() 0 []
The egg item is popped off and returned.
(This is the first item added, so it is returned
last.)

Table 5.1: Illustration of different operations in a stack with examples

Stacks and Queues144

Stacks are used for a number of things. One common usage for stacks is to keep track of the return

address during function calls. Let’s imagine that we have the following program:

def b():

 print('b')

def a():

 b()

a()

print("done")

When the program execution gets to the call to a(), a sequence of events will be followed in order

to complete the execution of this program. A visualization of all these steps is shown in Figure 5.3:

Figure 5.3: Steps for a sequence of events during function calls in our sample program

The sequence of events is as follows:

1.	 First, the address of the current instruction is pushed onto the stack, and then execution

jumps to the definition of a

2.	 Inside function a(), function b() is called

3.	 The return address of function b() is pushed onto the stack. Once the execution of the

instructions and functions in b() are complete, the return address is popped off the stack,

which takes us back to function a()

4.	 When all the instructions in function a() are completed, the return address is again popped

off the stack, which takes us back to the main program and the print statement

The output of the above program is as follows:

b

done

Chapter 5 145

We have now discussed the concept of the stack data structure. Now, let us understand its

implementation in Python using array and linked list data structures.

Stack implementation using arrays
Stacks store data in sequential order like arrays and linked lists, with a specific constraint that

the data can only be stored and read from one end of the stack following the last in first out

(LIFO) principle. In general, stacks can be implemented using arrays and linked lists. Array-based

implementations will have fixed lengths for the stack, whereas linked list-based implementations

can have stacks of variable lengths.

In the case of the array-based implementation of a stack (where the stack has a fixed size), it is

important to check whether the stack is full or not, since trying to push an element into a full

stack will generate an error, called an overflow. Likewise, trying to apply a pop operation to an

empty stack causes an error known as an underflow.

Let us understand the implementation of a stack using an array with an example in which we

wish to push three data elements, “egg”, “ham”, and “spam”, into the stack. Firstly, to insert new

elements into a stack using the push operation, we check the overflow condition, which is when

the top pointer is pointing to the end index of the array. The top pointer is the index position

of the top element in the stack. If the top element is equal to the overflow condition, the new

element cannot be added. This is a stack overflow condition. If there is free space in the array to

insert new elements, new data is pushed into the stack. An overview of the push operation on a

stack using an array is shown in Figure 5.4:

Figure 5.4: Sequence of push operations in a stack implementation using an array

The Python code for the push operation is as follows:

size = 3

data = [0]*(size) #Initialize the stack

Stacks and Queues146

top = -1

def push(x):

 global top

 if top >= size - 1:

 print("Stack Overflow")

 else:

 top = top + 1

 data[top] = x

In the above code, we initialize the stack with a fixed size (say, 3 in this example), and also the

top pointer to –1, which indicates that the stack is empty. Further, in the push method, the top

pointer is compared with the size of the stack to check the overflow condition and, if the stack is

full, the stack overflow message is printed. If the stack is not full, the top pointer is incremented

by 1, and the new data element is added to the top of the stack. The following code is used to

insert data elements into the stack:

push('egg')

push('ham')

push('spam')

print(data[0 : top + 1])

push('new')

push('new2')

In the above code, when we try to insert the first three elements, they are added since there was

enough space, but when we try to add the data elements new and new2, the stack is already full,

hence these two elements cannot be added to the stack. The output of this code is as follows:

['egg', 'ham', 'spam']

Stack Overflow

Stack Overflow

Next, the pop operation returns the value of the top element of the stack and removes it from the

stack. Firstly, we check if the stack is empty or not. If the stack is already empty, a stack underflow

message is printed. Otherwise, the top is removed from the stack. An overview of the pop operation

is shown in Figure 5.5:

Chapter 5 147

Figure 5.5: Sequence of the pop operation in a stack implementation using an array

The Python code for the pop operation is as follows:

def pop():

 global top

 if top == -1:

 print("Stack Underflow")

 else:

 top = top – 1

 data[top] = 0

 return data[top+1]

In the above code, we first check the underflow condition by checking whether the stack is empty

or not. If the top pointer has a value of –1, it means the stack is empty. Otherwise, the data

elements in the stack are removed by decrementing the top pointer by 1, and the top data element

is returned to the main function.

Let’s assume we already added three data elements to the stack, and then we call the pop function

four times. Since there are only three elements in the stack, the initial three data elements are

removed, and when we try to call the pop operation a fourth time, the stack underflow message

is printed. This is shown in the following code snippet:

print(data[0 : top + 1])

pop()

pop()

pop()

pop()

print(data[0 : top + 1])

Stacks and Queues148

The output of the above code is as follows:

['egg', 'ham', 'spam']

Stack Underflow

[]

Next, let us see an implementation of the peek operation in which we return the value of the top

element of the stack. The Python code for this is as follows:

def peek():

 global top

 if top == -1:

 print("Stack is empty")

 else:

 print(data[top])

In the above code, firstly, we check the position of the top pointer in the stack. If the value of

the top pointer is –1, it means that the stack is empty, otherwise, we print the value of the top

element of the stack.

We have discussed the Python implementation of a stack using an array, so next let us discuss

stack implementation using linked lists.

Stack implementation using linked lists
In order to implement the stacks using linked lists, we will write the Stack class in which all the

methods will be declared; however, we will also use the node class similar to what we discussed

in the previous chapter:

class Node:

 def __init__(self, data=None):

 self.data = data

 self.next = None

As we know, a node in a linked list holds data and a reference to the next item in the linked list.

Implementing the stack data structure using a linked list can be treated as a standard linked list

with some constraints, including that elements can be added or removed from the end of the list

(push and pop operations) through the top pointer. This is shown in Figure 5.6:

Chapter 5 149

Figure 5.6: Representation of the stack using a linked list

Now let us look at the stack class. Its implementation is quite similar to a singly linked list. In

addition, we need two things to implement a stack:

1.	 We first need to know which node is at the top of the stack so that we can apply the push

and pop operations through this node

2.	 We would also like to keep track of the number of nodes in the stack, so we add a size

variable to the Stack class

Consider the following code snippet for the Stack class:

class Stack:

 def __init__(self):

 self.top = None

 self.size = 0

In the above code, we have declared the top and size variables, which are initialized to None and

0. Once we have initialized the Stack class, next, we will implement different operations in the

Stack class. First, let us start with a discussion of the push operation.

Push operation
The push operation is an important operation on a stack; it is used to add an element at the top of

the stack. In order to add a new node to the stack, firstly, we check if the stack already has some

items in it or if it is empty. We are not required here to check the overflow condition because

we are not required to fix the length of the stack, unlike the stack implementation using arrays.

If the stack already has some elements, then we have to do two things:

1.	 The new node must have its next pointer pointing to the node that was at the top earlier

2.	 We put this new node at the top of the stack by pointing self.top to the newly added node

Stacks and Queues150

See the two instructions in the following Figure 5.7:

Figure 5.7: Workings of the push operation on the stack

If the existing stack is empty, and the new node to be added is the first element, we need to

make this node the top node of the element. Thus, self.top will point to this new node. See the

following Figure 5.8:

Figure 5.8: Insertion of the data element “egg” into an empty stack

The following is the complete implementation of the push operation, which should be defined

in the Stack class:

 def push(self, data):

 # create a new node

 node = Node(data)

 if self.top:

Chapter 5 151

 node.next = self.top

 self.top = node

 else:

 self.top = node

 self.size += 1

In the above code, we create a new node and store the data in that. Then we check the position

of the top pointer. If it is not null, that means the stack is not empty, and we add the new node,

updating two pointers as shown in Figure 5.7. In the else part, we make the top pointer point to

the new node. Finally, we increase the size of the stack by incrementing the self.size variable.

To create a stack of three data elements, we use the following code:

words = Stack()

words.push('egg')

words.push('ham')

words.push('spam')

#print the stack elements.

current = words.top

while current:

 print(current.data)

 current = current.next

The output of the above code is as follows:

spam

ham

egg

In the above code, we created a stack of three elements – egg, ham, and spam. Next, we will discuss

the pop operation in stack data structures.

Pop operation
Another important operation that is applied to the stack is the pop operation. In this operation, the

topmost element of the stack is read, and then removed from the stack. The pop method returns

the topmost element of the stack and returns None if the stack is empty.

To implement the pop operation on a stack, we do following:

1.	 First, check if the stack is empty. The pop operation is not allowed on an empty stack.

Stacks and Queues152

2.	 If the stack is not empty, check whether the top node has its next attribute pointing to

some other node. If so, it means the stack contains elements, and the topmost node is

pointing to the next node in the stack. To apply the pop operation, we have to change the

top pointer. The next node should be at the top. We do this by pointing self.top to self.

top.next. See the following Figure 5.9 to understand this:

Figure 5.9: Workings of the pop operation on the stack

3.	 When there is only one node in the stack, the stack will be empty after the pop operation.

We have to change the top pointer to None. See the following Figure 5.10:

Figure 5.10: The pop operation on a stack with one element

4.	 Removing this node results in self.top pointing to None, as shown in Figure 5.10.

5.	 We also decrement the size of the stack by 1 if the stack is not empty.

Chapter 5 153

Here is the code for the pop operation for the stack in Python, which should be defined in the

Stack class:

 def pop(self):

 if self.top:

 data = self.top.data

 self.size -= 1

 if self.top.next: #check if there is more than one node.

 self.top = self.top.next

 else:

 self.top = None

 return data

 else:

 print("Stack is empty")

In the above code, firstly, we check the position of the top pointer. If it is not null, it means the

stack is not empty, and we can apply the pop operation such that if there is more than one data

element in the stack, we move the top pointer to point to the next node (see Figure 5.9), and if

that is the last node, we make the top pointer point to None (see Figure 5.10). We also decrease

the size of the stack by decrementing the self.size variable.

Let’s say we have three data elements in a stack. We can use the following code to apply the pop

operation to the stack:

words.pop()

current = words.top

while current:

 print(current.data)

 current = current.next

The output of the above code is as follows:

ham

egg

In the above code, we popped off the top element from the stack of three elements – egg, ham, spam.

Next, we will discuss the peek operation used on stack data structures.

Stacks and Queues154

Peek operation
There is another important operation that can be applied to stacks—the peek method. This

method returns the top element from the stack without deleting it from the stack. The only

difference between peek and pop is that the peek method just returns the topmost element;

however, in the case of a pop method, the topmost element is returned, and that element is also

deleted from the stack.

The peek operation allows us to look at the top element without changing the stack. This operation

is very straightforward. If there is a top element, return its data; otherwise, return None (thus, the

behavior of peek matches that of pop). The implementation of the peek method is as follows (this

should be defined in the Stack class):

 def peek(self):

 if self.top:

 return self.top.data

 else:

 print("Stack is empty")

In the above code, we first check the position of the top pointer using self.top. If it is not null,

this means the stack is not empty, and we return the data value of the topmost node, otherwise,

we print the message that the stack is empty. We can use the peek method to get the top element

of the stack through the following code:

words.peek()

The output of the above code is:

spam

As per our original example of the three data elements being added to the stack, if we use the

peek method, we get the top element, spam, as an output.

Stacks are an important data structure with several real-world applications. To better understand

the concept of the stack, we will discuss one of these applications: bracket matching utilizing

stacks.

Applications of stacks
As we know, array and linked list data structures can do whatever the stack or queue data structures

(that we will discuss shortly) can do.

Chapter 5 155

Despite this, these data structures are important because of their many applications. For example,

in any application, it may be required to add or delete any element in a particular order. stack and

queues can be used for this to avoid any potential bug in the program, perhaps accessing/deleting

an element from the middle of the list (which can happen in the cases of arrays and linked lists).

Now let us look at an example bracket-matching application and see how we can use our stack

to implement it.

Let us write a function check_brackets that will verify whether a given expression containing

brackets—(), [], or { }— is balanced or not, that is, whether the number of closing brackets

matches the number of opening brackets. Stacks can be used for traversing a list of items in

reverse order since they follow the LILO rule, which makes them a good choice for this problem.

The following code is for a separate check_brackets method defined outside the Stack class.

This method will use the Stack class that we discussed in the previous section. The method takes

an expression consisting of alphabetical characters and brackets as input and produces True or

False as output for whether the given expression is valid or not, respectively. The code for the

check_brackets method is as follows:

def check_brackets(expression):
 brackets_stack = Stack() #The stack class, we defined in previous
section.
 last = ' '
 for ch in expression:
 if ch in ('{', '[', '('):
 brackets_stack.push(ch)
 if ch in ('}', ']', ')'):
 last = brackets_stack.pop()
 if last == '{' and ch == '}':
 continue
 elif last == '[' and ch == ']':
 continue
 elif last == '(' and ch == ')':
 continue
 else:
 return False
 if brackets_stack.size > 0:
 return False
 else:
 return True

Stacks and Queues156

The above function parses each character in the expression passed to it. If it gets an open bracket,

it pushes it onto the stack. If it gets a closing bracket, it pops the top element off the stack and

compares the two brackets to make sure their types match-(should match), [should match],

and { should match }. If they don’t, we return False; otherwise, we continue parsing.

Once we reach the end of the expression, we need to do one last check. If the stack is empty, then

it is fine and we can return True. But if the stack is not empty, then we have an opening bracket

that does not have a matching closing bracket and we will return False.

We can test the bracket-matcher with the following code:

sl = (

 "{(foo)(bar)}[hello](((this)is)a)test",

 "{(foo)(bar)}[hello](((this)is)atest",

 "{(foo)(bar)}[hello](((this)is)a)test))"

)

for s in sl:

 m = check_brackets(s)

 print("{}: {}".format(s, m))

Only the first of the three statements should match. When we run the code, we get the following

output:

{(foo)(bar)}[hello](((this)is)a)test: True

{(foo)(bar)}[hello](((this)is)atest: False

{(foo)(bar)}[hello](((this)is)a)test)): False

In the above sample three expressions, we can see that the first expression is valid, while the other

two are not valid expressions. Hence, the output of the preceding code is True, False, and False.

In summary, the push, pop, and peek operations of the stack data structure have a time complexity

of O(1) since the addition and deletion operations can be directly performed in constant time

through the top pointer. The stack data structure is simple; however, it is used to implement

many functionalities in real-world applications. For example, the back and forward buttons in

web browsers are implemented using stacks. Stacks are also used to implement the undo and

redo functionalities in word processors.

We have discussed the stack data structure and its implementations using arrays and linked lists.

In the next section, we will discuss the queue data structure and the different operations that

can be applied to queues.

Chapter 5 157

Queues
Another important data structure is the queue, which is used to store data similarly to stacks and

linked lists, with some constraints and in a specific order. The queue data structure is very similar

to the regular queue you are accustomed to in real life. It is just like a line of people waiting to

be served in sequential order at a shop. Queues are a fundamentally important concept to grasp

since many other data structures are built on them.

A queue works as follows. The first person to join the queue usually gets served first, and everyone

will be served in the order in which they joined the queue. The acronym FIFO best explains the

concept of a queue. FIFO stands for first in, first out. When people are standing in a queue waiting

for their turn to be served, service is only rendered at the front of the queue. Therefore, people are

dequeued from the front of the queue and enqueued from the back where they wait their turn.

The only time people exit the queue is when they have been served, which only occurs at the very

front of the queue. Refer to the following diagram, where people are standing in the queue, and

the person at the front will be served first:

Figure 5.11: Illustration of a queue

To join the queue, participants must stand behind the last person in the queue. This is the only

legal or permitted way the queue accepts new entrants. The length of the queue does not matter.

A queue is a list of elements stored in sequence with the following constraints:

1.	 Data elements can only be inserted from one end, the rear end/tail of the queue.

2.	 Data elements can only be deleted from the other end, the front/head of the queue.

3.	 Only data elements from the front of the queue can be read.

The operation to add an element to the queue is known as enqueue. Deleting an element from the

queue uses the dequeue operation. Whenever an element is enqueued, the length or size of the

queue increments by 1, and dequeuing an item reduces the number of elements in the queue by 1.

Stacks and Queues158

We can see this concept in the doubly linked list shown in Figure 5.12, in which we can add new

elements to the tail/rear end and elements can only be deleted from the head/front end of the

queue:

Figure 5.12: Queue implementation using the stack data structure

The reader is advised to not confuse the notation: the enqueue operation will be performed only

at the tail/rear end and the dequeue operation will be performed from the head/front end. It

should be fixed that one end will be used for enqueue operations and the other end will be used

for dequeue operations; however, either end can be used for each of these operations. It is good

in general practice to fix that we perform enqueue operations from the rear end and dequeue

operations from the front end. To demonstrate these two operations, the following table shows

the effects of adding and removing elements from a queue:

Queue operation Size Contents Operation results

queue() 0 [] Queue object created, which is empty.

enqueue- "packt" 1 ['packt'] One item, packt, is added to the queue.

enqueue
"publishing"

2 ['packt',
'publishing']

One more item, publishing, is added to the

queue.

Size() 2 ['packt',
'publishing']

Return the number of items in the queue,

which is 2 in this example.

dequeue() 1 ['publishing'] The packt item is dequeued and returned.

(This item was added first, so it is removed

first.)

Chapter 5 159

dequeue() 0 [] The publishing item is dequeued and

returned. (This is the last item added, so it is

returned last.)

Table 5.2: Illustration of different operations on an example queue

Queue data structures in Python have a built-in implementation, queue.Queue, and can also be

implemented using the deque class from the collections module. Queue data structures can be

implemented using various methods in Python, namely, (1) Python’s built-in list, (2) stacks, and

(3) node-based linked lists. We will discuss them one by one in detail.

Python’s list-based queues
Firstly, in order to implement a queue based on Python’s list data structure, we create a ListQueue

class, in which we declare and define the different functionalities of queue. In this method, we

store the actual data in Python’s list data structure. The ListQueue class is defined as follows:

class ListQueue:

 def __init__(self):

 self.items = []

 self.front = self.rear = 0

 self.size = 3 # maximum capacity of the queue

In the __init__ initialization method, the items instance variable is set to [], which means the

queue is empty when created. The size of the queue is also set to 4 (as an example in this code),

which is the maximum capacity for the number of elements that can be stored in the queue.

Moreover, the initial position of the rear and front indices are also set to 0. enqueue and dequeue

are important methods in queues, and we will discuss them next.

The enqueue operation
The enqueue operation adds an item at the end of the queue. Consider the example of adding

elements to the queue to understand the concept shown in Figure 5.13. We start with an empty

list. Initially, we add an item 3 at index 0.

Stacks and Queues160

Next, we add an item 11 at index 1, and move the rear pointer every time we add an element:

Figure 5.13: Example of an enqueue operation on the queue

In order to implement the enqueue operation, we use the append method of the List class to

append items (or data) to the end of the queue. See the following code for the implementation

of the enqueue method. This should be defined in the ListQueue class:

 def enqueue(self, data):

 if self.size == self.rear:

 print("\n Queue is full")

 else:

 self.items.append(data)

 self.rear += 1

Here, we first check whether the queue is full by comparing the maximum capacity of the queue

with the position of the rear index. Further, if there is space in the queue, we use the append

method of the List class to add the data at the end of the queue and increase the rear pointer by 1.

To create a queue using the ListQueue class, we use the following code:

q= ListQueue()

q.enqueue(20)

q.enqueue(30)

q.enqueue(40)

Chapter 5 161

q.enqueue(50)

print(q.items)

The output of the above code is as follows:

Queue is full

[20, 30, 40]

In the above code, we add can a maximum of three data elements since we have set the maximum

capacity of the queue to be 3. After adding three elements, when we try to add another new

element, we get a message that the queue is full.

The dequeue operation
The dequeue operation is used to read and delete items from the queue. This method returns the

front item from the queue and deletes it. Consider the example of dequeuing elements from the

queue shown in Figure 5.14. Here, we have a queue containing elements {3, 11, 7, 1, 4, 2}.

In order to dequeue any element from this queue, the element inserted first will be removed first,

so the item 3 is removed. When we dequeue any element from the queue, we also decrease the

rear pointer by 1:

Figure 5.14. Example of a dequeue operation on a queue

Stacks and Queues162

The following is the implementation of the dequeue method, which should be defined in the

ListQueue class:

 def dequeue(self):

 if self.front == self.rear:

 print("Queue is empty")

 else:

 data = self.items.pop(0) # delete the item from front end
of the queue

 self.rear -= 1

 return data

In the above code, we firstly check whether the queue is already empty by comparing the front

and rear pointers. If both rear and front pointers are same, it means the queue is empty. If there

are some elements in the queue, we use the pop method to dequeue an element. The Python List

class has a method called pop(). The pop method does the following:

1.	 Deletes the last item from the list

2.	 Returns the deleted item from the list back to the user or code that called it

The item at the first position pointed to by the front variable is popped and saved in the data

variable. We also decrease the rear variable by 1, since one data item has been deleted from the

queue. Finally, in the last line of the method, the data is returned.

To dequeue any element from an existing queue (say items {20, 30, 40}), we use the following

code:

data = q.dequeue()

print(data)

print(q.items)

The output of the above code is as follows:

20

[30, 40]

In the above code, when we dequeue an element from the queue, we get the element 20, which

was the first added.

The limitation of this approach to queue implementation is that the length of the queue is fixed,

which may be not desirable for an efficient implementation of a queue. Now, let’s discuss the

linked list-based implementation of queues.

Chapter 5 163

Linked list based queues
A queue data structure can also be implemented using any linked list, such as singly-linked or

doubly-linked lists. We already discussed the implementation of singly or doubly linked lists in

the previous Chapter 4, Linked Lists. We implement queues using linked lists that follow the FIFO

property of the queue data structure.

Let us discuss the implementation of a queue using a doubly-linked list. For this, we start with

the implementation of the node class the same as the node we defined when we discussed doubly-

linked lists in the previous Chapter 4, Linked Lists. Moreover, the Queue class is very similar to that

of the doubly-linked list class. Here, we have head and tail pointers, where tail points to the

end of the queue (the rear end) that will be used for adding new elements, and the head pointer

points to the start of the queue (the front end) that will be used for dequeuing the elements from

the queue. The implementation of the Queue class is shown in the following code:

class Node(object):

 def __init__(self, data=None, next=None, prev=None):

 self.data = data

 self.next = next

 self.prev = prev

class Queue:

 def __init__(self):

 self.head = None

 self.tail = None

 self.count = 0

Initially, the self.head and self.tail pointers are set to None upon creation of an instance of

the Queue class. To keep a count of the number of nodes in Queue, the count instance variable is

also maintained here and initially set to 0.

The enqueue operation
Elements are added to a Queue object via the enqueue method. The data elements are added

through nodes. The enqueue method code is very similar to the append operation of the doubly-

linked list that we discussed in Chapter 4, Linked Lists.

The enqueue operation creates a node from the data passed to it and appends it to the tail of

the queue.

Stacks and Queues164

Firstly, we check if the new node to be enqueued is the first node, and whether the queue is empty

or not. If it is empty, the new node becomes the first node of the queue, as shown in Figure 5.15:

Figure 5.15: Illustration of enqueuing a new node in an empty queue

If the queue is not empty, the new node is appended to the rear end of the queue. In order to do

this and enqueue an element to an existing queue, we append the node by updating three links:

(1) the previous pointer of the new node should point to the tail of the queue, (2) the next pointer

of the tail node should point to the new node, and (3) the tail pointer should be updated to the

new node. All these links are shown in Figure 5.16:

Figure 5.16: Illustration of links to be updated for an enqueue operation in a queue

The enqueue operation is implemented in the Queue class, as shown in the following code:

 def enqueue(self, data):

 new_node = Node(data, None, None)

 if self.head == None:

Chapter 5 165

 self.head = new_node

 self.tail = self.head

 else:

 new_node.prev = self.tail

 self.tail.next = new_node

 self.tail = new_node

 self.count += 1

In the above code, we first check whether the queue is empty or not. If head points to None, this

means the queue is empty. If it is empty, the new node is made the first node of the queue, and we

make both self.head and self.tail point to the newly created node. If the queue is not empty,

we append the new node to the rear of the queue by updating the three links shown in Figure

5.16. Finally, the total count of elements in the queue is increased by the line self.count += 1.

The worst-case time complexity of an enqueue operation on the queue is O(1), since any item can

be appended directly through the tail pointer in constant time.

The dequeue operation
The other operation that makes a doubly-linked list behave like a queue is the dequeue method.

This method removes the node at the front of the queue, as shown in Figure 5.17. Here, we first

check whether the dequeuing element is the last node in the queue, and if so, we will make the

queue empty after the dequeue operation. If this is not the case, we dequeue the first element by

updating the front/head pointer to the next node and the previous pointer of the new head to

None, as shown in Figure 5.17:

Figure 5.17: Illustration of the dequeue operation on a queue

Stacks and Queues166

The implementation of the dequeue operation on a queue is very similar to deleting the first

element from the given doubly-linked list, as the following code for the dequeue operation shows:

 def dequeue(self):
 if self.count == 1:
 self.count -= 1
 self.head = None
 self.tail = None
 elif self.count > 1:
 self.head = self.head.next
 self.head.prev = None
 elif self.count <1:
 print("Queue is empty")
 self.count -= 1

In order to dequeue any element from the queue, we firstly check the number of items in the queue

using the self.count variable. If the self.count variable is equal to 1, it means the dequeuing

element is the last element, and we update the head and tail pointers to None.

If the queue has many nodes, then the head pointer is shifted to point to the next node after self.

head by updating the two links shown in Figure 5.17. We also check whether there is an item left in

the queue, and if not, then a message is printed that the queue is empty. Finally, the self.count

variable is decremented by 1.

The worst-case time complexity of a dequeue operation in the queue is O(1), since any item can

be directly removed via the head pointer in constant time.

Stack-based queues
A queue is a linear data structure in which enqueue operations are performed from one end and

deletion (dequeue) operations are performed from the other end following the FIFO principle.

There are two methods to implement queues using stacks:

•	 When the dequeue operation is costly

•	 When the enqueue operation is costly

Approach 1: When the dequeue operation is costly
We use two stacks for the implementation of the queue. In this approach, the enqueue operation

is straightforward. A new element can be enqueued in the queue using the push operation on

the first of the two stacks (in other words, Stack-1) used for the implementation of the queue.

Chapter 5 167

The enqueue operation is depicted in Figure 5.18, showing an example of enqueuing elements

{23, 13, 11} to the queue:

Figure 5.18: Illustration of an enqueue operation in the queue using approach 1

Further more, the dequeue operation can be implemented with two stacks (Stack-1 and Stack-2)

using the following steps:

1.	 Firstly, the elements are removed (popped off) from Stack-1, and then one by one all the

elements are added (pushed) to Stack-2.

2.	 The topmost data element will be popped off Stack-2 and will be returned as the desired

element.

3.	 Finally, the remaining elements are popped off Stack-2 one by one and then pushed again

to Stack-1.

Let’s look at an example to help understand this concept. Let’s say we have three elements stored

in the queue {23, 13, 11}, and now we want to dequeue an element from this queue. The

complete process is shown in Figure 5.19 following the above three steps. As you might notice, this

implementation follows the FIFO property of queues and hence 23 is returned, as it was added first:

Figure 5.19: Illustration of a dequeue operation in the queue using approach 1

Stacks and Queues168

The worst-case time complexity of enqueue operations is O(1), since any element can be added

directly to the first stack, and the time complexity of the dequeue operation is O(n), since all

elements are accessed and transferred from Stack-1 to Stack-2.

Approach 2: When the enqueue operation is costly
In this method, the enqueue operation is quite similar to the dequeue operation of the previous approach

we just discussed, and the dequeue operation is likewise similar to the previous enqueue operation.

In order to implement the enqueue operation, we follow the steps:

1.	 Move all the elements from Stack-1 to Stack-2.

2.	 Push the element we want to enqueue to Stack-2.

Move all the elements from Stack-2 to Stack-1 one by one. Pop the elements from Stack-2

and push them to Stack-1.

Let’s take an example to understand this concept. Let’s say we want to enqueue three elements

{23, 13, 11} in the queue one by one. We do this by following the above three steps, as shown

in Figure 5.20, Figure 5.21, and Figure 5.22:

Figure 5.20: Enqueueing element 23 to an empty queue using approach 2

Figure 5.21: Enqueueing element 13 to the existing queue using approach 2

Chapter 5 169

Figure 5.22: Enqueueing element 11 to the queue using approach 2

The dequeue operation can be directly implemented by applying a pop operation to Stack-1. Let’s

take an example to understand this. Assuming we have already enqueued three elements, and

we want to apply the dequeue operation, we can simply pop the top element off the stack, as

shown in Figure 5.23:

Figure 5.23: Illustration of a dequeue operation on a queue using approach 2

In this second approach, the time complexity for the enqueue operation is O(n), and for the

dequeue operation, it is O(1).

Next, we discuss the implementation of a queue using two stacks using approach-1, in which the
dequeue operation is costly. In order to implement queues using two stacks, we initially set two
stack instance variables to create an empty queue upon initialization. The stacks, in this case, are
simply Python lists that allow us to call the push and pop methods on them, which allow us to get
the functionality of the enqueue and dequeue operations. Here is the Queue class:

class Queue:
 def __init__(self):
 self.Stack1 = []
 self.Stack2 = []

Stacks and Queues170

Stack1 is only used to store elements that are added to the queue. No other operation can be

performed on this stack.

Enqueue operation
The enqueue method is used to add items to the queue. This method only receives the data that

is to be appended to the queue. This data is then passed to the append method of Stack1 in the

Queue class. Further, the append method is used to mimic the push operation, which pushes

elements to the top of the stack. The following code is the implementation of enqueue using the

stack in Python, which should be defined in the Queue class:

def enqueue(self, data):

 self.Stack1.append(data)

To enqueue data onto Stack1, the following code does the job:

queue = Queue()

queue.enqueue(23)

queue.enqueue(13)

queue.enqueue(11)

print(queue.Stack1)

The output of Stack1 on the queue is as follows:

[23, 13, 11]

Next, we will examine the implementation of the dequeue operation.

Dequeue operation
The dequeue operation is used to delete the elements from the queue in the same order in which

the items were added, according to the FIFO principle. New elements are added to the queue in

Stack1. Further, we use another stack, that is, Stack2, to delete the elements from the queue. The

delete (dequeue) operation will only be performed through Stack2. To better understand how

Stack2 can be used to delete the items from the queue, let us consider the following example.

Initially, assume that Stack2 was filled with the elements 5, 6, and 7, as shown in Figure 5.24:

Chapter 5 171

Figure 5.24. Example of Stack1 in a queue

Next, we check if the Stack2 is empty or not. As it is empty at the start, we move all the elements

delete from Stack1 to Stack2 using the pop operation on Stack1 for all the element and then

push them to Stack2. Now, Stack1 becomes empty and Stack2 has all the elements. We show

this in Figure 5.25 for more clarity:

Figure 5.25. Demonstration of Stack1 and Stack2 in a queue

Now, if the Stack is not empty, in order to pop an element from this queue, we apply the pop

operation to Stack2, and we get the element 5, which is correct as it was added first and should

be the first element to be popped off from the queue.

Stacks and Queues172

Here is the implementation of the dequeue method for the queue, which should be defined in

the Queue class:

 def dequeue(self):

 if not self.Stack2:

 while self.Stack1:

 self.Stack2.append(self.Stack1.pop())

 if not self.Stack2:

 print("No element to dequeue")

 return

 return self.Stack2.pop()

The if statement first checks whether Stack2 is empty. If it is not empty, we proceed to remove

the element at the front of the queue using the pop method, as follows:

return self.Stack2.pop()

If Stack2 is empty, all the elements of Stack1 are moved to Stack2:

while self.Stack1:

 self.Stack2.append(self.Stack1.pop())

The while loop will continue to be executed as long as there are elements in Stack1.

The self.Stack1.pop() statement will remove the last element added to Stack1 and immediately

pass the popped data to the self.Stack2.append() method.

Let us consider some example code to understand the operations on the queue. We firstly use the

Queue implementation to add three items to the queue, that is, 5, 6, and 7. Next, we apply dequeue

operations to remove items from the queue using the following code:

queue = Queue()

queue.enqueue(23)

queue.enqueue(13)

queue.enqueue(11)

print(queue.Stack1)

queue.dequeue()

print(queue.Stack2)

Chapter 5 173

The output for the preceding code is as follows:

 [23, 13, 11]

 [13, 11]

The preceding code snippet firstly adds elements to a queue and prints out the elements within

the queue. Next, the dequeue method is called, after which a change in the number of elements

is observed when the queue is printed out again.

The enqueue and dequeue operations on the queue data structure using a stack with approach

1 have time complexities of O(1), and O(n) respectively. The reason for this is that the enqueue

operation is straightforward as a new element can be appended directly, whereas in the dequeue

operation, all the n elements need to be accessed and moved to the other stack.

Overall, the linked list-based implementation is the most efficient since both the enqueue and

dequeue operations can be performed in O(1) time and there is no constraint on the size of the

queue. In the stack-based implementation of queues, one of the operations is costly, be it enqueue

or dequeue.

Applications of queues
Queues can be used to implement a variety of functionalities in many real computer-based

applications. For instance, instead of providing each computer on a network with its own printer,

a network of computers can be made to share one printer by queuing what each computer wants

to print. When the printer is ready to print, it will pick one of the items (usually called jobs) in the

queue to print out. It will print the command from the computer that has given the command

first and will choose the following jobs in the order in which they were submitted by the different

computers.

Operating systems also queue processes to be executed by the CPU. Let’s create an application

that makes use of a queue to create a bare-bones media player.

Most music player software allows users to add songs to a playlist. Upon hitting the play button,

all the songs in the main playlist are played one after the other. Sequential playing of the songs

can be implemented with queues because the first song to be queued is the first song that is to

be played. This aligns with the FIFO acronym. We will implement our own playlist queue to play

songs in the FIFO manner.

Stacks and Queues174

Our media player queue will only allow for the addition of tracks and a way to play all the tracks

in the queue. In a full-blown music player, threads would be used to improve how the queue is

interacted with, while the music player continues to be used to select the next song to be played,

paused, or even stopped.

The track class will simulate a musical track:

from random import randint

class Track:

 def __init__(self, title=None):

 self.title = title

 self.length = randint(5, 10)

Each track holds a reference to the title of the song and also the length of the song. The length

of the song is a random number between 5 and 10. The random module in Python provides the

randint function to enable us to generate random numbers. The class represents any MP3 track or

file that contains music. The random length of a track is used to simulate the number of seconds

it takes to play a track.

To create a few tracks and print out their lengths, we do the following:

track1 = Track("white whistle")

track2 = Track("butter butter")

print(track1.length)

print(track2.length)

The output of the preceding code is as follows:

6

7

Your output may be different depending on the random length generated for the two tracks.

Now, let’s create our queue using inheritance. We simply inherit from the Queue class:

import time

class MediaPlayerQueue(Queue):

To add tracks to the queue, an add_track method is created in the MediaPlayerQueue class:

 def add_track(self, track):

 self.enqueue(track)

Chapter 5 175

The method passes a track object to the enqueue method of the queue super class. This will, in

effect, create a Node using the track object (as the node’s data) and point either the tail if the

queue is not empty, or both the head and tail if the queue is empty, to this new node.

Assuming the tracks in the queue are played sequentially, from the first track added to the last

(FIFO), then the play function has to loop through the elements in the queue:

def play(self):

 while self.count > 0:

 current_track_node = self.dequeue()

 print("Now playing {}".format(current_track_node.data.title))

 time.sleep(current_track_node.data.length)

self.count keeps count of when a track is added to our queue and when tracks have been

dequeued. If the queue is not empty, a call to the dequeue method will return the node (which

houses the track object) at the front of the queue. The print statement then accesses the title of

the track through the data attribute of the node. To further simulate the playing of a track, the

time.sleep() method halts program execution till the number of seconds for the track has elapsed:

time.sleep(current_track_node.data.length)

The media player queue is made up of nodes. When a track is added to the queue, the track is

hidden in a newly created node and associated with the data attribute of the node. That explains

why we access a node’s track object through the data property of the node returned by the call

to dequeue.

You can see that, instead of our node object just storing any data, it stores tracks in this case.

Let’s take our music player for a spin:

track1 = Track("white whistle")

track2 = Track("butter butter")

track3 = Track("Oh black star")

track4 = Track("Watch that chicken")

track5 = Track("Don't go")

We create five track objects with random words as titles, as follows:

print(track1.length)

print(track2.length)

Stacks and Queues176

The output is as follows:

 8

 9

The output may be different from what you get on your machine due to the random length.

Next, an instance of the MediaPlayerQueue class is created using the following code snippet:

media_player = MediaPlayerQueue()

The tracks will be added, and the output of the play function should print out the tracks being

played in the same order in which we queued them:

media_player.add_track(track1)

media_player.add_track(track2)

media_player.add_track(track3)

media_player.add_track(track4)

media_player.add_track(track5)

media_player.play()

The output of the preceding code is as follows:

 Now playing white whistle

 Now playing butter butter

 Now playing Oh black star

 Now playing Watch that chicken

 Now playing Don't go

Upon execution of the program, it can be seen that the tracks are played in the order in which

they were queued. When playing each track, the system also pauses for the number of seconds

equal to the length of the track.

Summary
In this chapter, we discussed two important data structures, namely, stacks and queues. We

have seen how these data structures closely mimic stacks and queues in the real world. Concrete

implementations, together with their varying types, were explored. We later applied the concepts

of stacks and queues to write real-life programs.

We will consider trees in the next chapter. The major operations on trees will be discussed, along

with the different spheres of application of this data structure.

Chapter 5 177

Exercises
1.	 Which of the following options is a true queue implementation using linked lists?

a.	 If, in the enqueue operation, new data elements are added at the start of the list,

then the dequeue operation must be performed from the end.

b.	 If, in the enqueue operation, new data elements are added to the end of the list,

then the enqueue operation must be performed from the start of the list.

c.	 Both of the above.

d.	 None of the above.

2.	 Assume a queue is implemented using a singly-linked list that has head and tail pointers.

The enqueue operation is implemented at the head, and the dequeue operation is

implemented at the tail of the queue. What will be the time complexity of the enqueue

and dequeue operations?

3.	 What is the minimum number of stacks required to implement a queue?

4.	 The enqueue and dequeue operations in a queue are implemented efficiently using an

array. What will be the time complexity for both of these operations?

5.	 How can we print the data elements of a queue data structure in reverse order?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

6
Trees

A tree is a hierarchical form of data structure. Data structures such as lists, queues, and stacks

are linear in that the items are stored in a sequential way. However, a tree is a non-linear data

structure, as there is a parent-child relationship between the items. The top of the tree’s data

structure is known as a root node. This is the ancestor of all other nodes in the tree.

Tree data structures are very important, owing to their use in various applications, such as pars-

ing expressions, efficient searches, and priority queues. Certain document types, such as XML and

HTML, can also be represented in a tree.

In this chapter, we will cover the following topics:

•	 Terms and definitions of trees

•	 Binary trees and binary search trees

•	 Tree traversal

•	 Binary search trees

Terminology
Let’s consider some of the terminology associated with tree data structures.

To understand trees, we need to first understand the basic concepts related to them. A tree is a

data structure in which data is organized in a hierarchical form.

Trees180

Figure 6.1 contains a typical tree consisting of character nodes lettered A through to M:

Figure 6.1: Example tree data structure

Here is a list of terms associated with a tree:

•	 Node: Each circled letter in the preceding diagram represents a node. A node is any data

structure that stores data.

•	 Root node: The root node is the first node from which all other nodes in the tree descend

from. In other words, a root node is a node that does not have a parent node. In every tree,

there is always one unique root node. The root node is node A in the above example tree.

•	 Subtree: A subtree is a tree whose nodes descend from some other tree. For example, nodes

F, K, and L form a subtree of the original tree.

•	 Degree: The total number of children of a given node is called the degree of the node. A

tree consisting of only one node has a degree of 0. The degree of node A in the preceding

diagram is 2, the degree of node B is 3, the degree of node C is 3, and, the degree of node G is 1.

•	 Leaf node: The leaf node does not have any children and is the terminal node of the given

tree. The degree of the leaf node is always 0. In the preceding diagram, the nodes J, E, K,

L, H, M, and I are all leaf nodes.

Chapter 6 181

•	 Edge: The connection among any given two nodes in the tree is called an edge. The total

number of edges in a given tree will be a maximum of one less than the total nodes in the

tree. An example edge is shown in Figure 6.1.

•	 Parent: A node that has a subtree is the parent node of that subtree. For example, node B

is the parent of nodes D, E, and F, and node F is the parent of nodes K and L.

•	 Child: This is a node that is descendant from a parent node. For example, nodes B and C

are children of parent node A, while nodes H, G, and I are the children of parent node C.

•	 Sibling: All nodes with the same parent node are siblings. For example, node B is the

sibling of node C, and, similarly, nodes D, E, and F are also siblings.

•	 Level: The root node of the tree is considered to be at level 0. The children of the root node

are considered to be at level 1, and the children of the nodes at level 1 are considered to be

at level 2, and so on. For example, in Figure 6.1, root node A is at level 0, nodes B and C are

at level 1, and nodes D, E, F, H, G, and I are at level 2.

•	 Height of a tree: The total number of nodes in the longest path of the tree is the height of

the tree. For example, in Figure 6.1, the height of the tree is 4, as the longest paths, A-B-D-J,

A-C-G-M, and A-B-F-K, all have a total number of four nodes each.

•	 Depth: The depth of a node is the number of edges from the root of the tree to that node.

In the preceding tree example, the depth of node H is 2.

In linear data structures, data items are stored in sequential order, whereas non-linear data

structures store data items in a non-linear order, where a data item can be connected to more

than one other data item. All of the data items in linear data structures, such as arrays, lists, stacks,

and queues, can be traversed in one pass, whereas this is not possible in the case of non-linear

data structures such as trees; they store the data differently from other linear data structures.

In a tree data structure, the nodes are arranged in a parent-child relationship. There should not

be any cycle among the nodes in trees. The tree structure has nodes to form a hierarchy, and a

tree that has no nodes is called an empty tree.

First, we’ll discuss one of the most important kind of trees, that is, the binary tree.

Binary trees
A binary tree is a collection of nodes, where the nodes in the tree can have zero, one, or two child

nodes. A simple binary tree has a maximum of two children, that is, the left child and the right child.

Trees182

For example, in the binary tree shown in Figure 6.2, there is a root node that has two children (a

left child, a right child):

Figure 6.2: Example of a binary tree

The nodes in the binary tree are organized in the form of the left subtree and right subtree. For

example, a tree of five nodes is shown in Figure 6.3 that has a root node, R, and two subtrees, i.e.

left subtree, T1, and right subtree, T2:

Figure 6.3: An example binary tree of five nodes

A regular binary tree has no other rules as to how elements are arranged in the tree. It should only

satisfy the condition that each node should have a maximum of two children.

A tree is called a full binary tree if all the nodes of a binary tree have either zero or two children,

and if there is no node that has one child. An example of a full binary tree is shown in Figure 6.4:

Chapter 6 183

Figure 6.4: An example of a full binary tree

A perfect binary tree has all the nodes in the binary tree filled, and it doesn’t have space vacant

for any new nodes; if we add new nodes, they can only be added by increasing the tree’s height.

A sample perfect binary tree is shown in Figure 6.5:

Figure 6.5: An example of a perfect binary tree

A complete binary tree is filled with all possible nodes except with a possible exception at the

lowest level of the tree. All nodes are also filled on the left side. A complete binary tree is shown

in Figure 6.6:

Figure 6.6: An example of a complete binary tree

Trees184

A binary tree can be balanced or unbalanced. In a balanced binary tree, the difference in height of

the left and right subtrees for every node in the tree is no more than 1. A balanced tree is shown

in Figure 6.7:

Figure 6.7: An example of a balanced tree

An unbalanced binary tree is a binary tree that has a difference of more than 1 between the right

subtree and left subtree. An example of an unbalanced tree is shown in Figure 6.8:

Figure 6.8: An example of an unbalanced tree

Next, we’ll discuss the details of the implementation of a simple binary tree.

Implementation of tree nodes
As we have already discussed in previous chapters, a node consists of data items and references

to other nodes.

Chapter 6 185

In a binary tree node, each node will contain data items and two references that will point to

their left and right children, respectively. Let’s look at the following code for building a binary

tree Node class in Python:

class Node:

 def __init__(self, data):

 self.data = data

 self.right_child = None

 self.left_child = None

To better understand the working of this class, let’s first create a binary tree of four nodes—n1,

n2, n3, and n4—as shown in Figure 6.9:

Figure 6.9: An example binary tree of four nodes

For this, we firstly create four nodes—n1, n2, n3, and n4:

n1 = Node("root node")

n2 = Node("left child node")

n3 = Node("right child node")

n4 = Node("left grandchild node")

Next, we connect the nodes to each other according to the previously discussed properties of a
binary tree. n1 will be the root node, with n2 and n3 as its children. Furthermore, n4 will be the
left child of n2. The next code snippet shows the connections among different nodes of the tree
according to the desired tree, as shown in Figure 6.9:

n1.left_child = n2

n1.right_child = n3

n2.left_child = n4

Trees186

Here, we have created a very simple tree structure of four nodes. After creating a tree, one of the

most important operations that is to be applied to trees is traversal. Next, we’ll understand how

we can traverse the tree.

Tree traversal
The method to visit all the nodes in a tree is called tree traversal. In the case of a linear data struc-

ture, data element traversal is straightforward since all the items are stored in a sequential manner,

so each data item is visited only once. However, in the case of non-linear data structures, such

as trees and graphs, traversal algorithms are important. To understand traversing, let’s traverse

the left subtree of the binary tree we created in the previous section. For this, we start from the

root node, print out the node, and move down the tree to the next left node. We keep doing this

until we have reached the end of the left subtree, like so:

current = n1

while current:

 print(current.data)

 current = current.left_child

The output of traversing the preceding code block is as follows:

root node

left child node

left grandchild node

There are multiple ways to process and traverse the tree that depend upon the sequence of visit-

ing the root node, left subtree, or right subtree. Mainly, there are two kinds of approaches, firstly,

one in which we start from a node and traverse every available child node, and then continue to

traverse to the next sibling. There are three possible variations of this method, namely, in-order,

pre-order, and post-order. Another approach to traverse the tree is to start from the root node

and then visit all the nodes on each level, and process the nodes level by level. We will discuss

each approach in the following sections.

In-order traversal
In-order tree traversal works as follows: we start traversing the left subtree recursively, and once

the left subtree is visited, the root node is visited, and then finally the right subtree is visited

recursively. It has the following three steps:

•	 We start traversing the left subtree and call an ordering function recursively

Chapter 6 187

•	 Next, we visit the root node

•	 Finally, we traverse the right subtree and call an ordering function recursively

So, in a nutshell, for in-order tree traversal, we visit the nodes in the tree in the order of left sub-

tree, root, then the right subtree.

Let’s consider an example tree shown in Figure 6.10 to understand in-order tree traversal:

Figure 6.10: An example binary tree for in-order tree traversal

In the binary tree shown in Figure 6.10, the working of the in-order traversal is as follows: first,

we recursively visit the left subtree of the root node A. The left subtree of node A has node B as

the root node, so we again go to the left subtree of root node B, that is, node D. We recursively go

to the left subtree of root node D so that we get the left child of root node D. We visit the left child,

G, then visit the root node, D, and then visit the right child, H.

Next, we visit node B and then visit node E. In this manner, we have visited the left subtree of root

node A. Next, we visit root node A. After that, we visit the right subtree of root node A. Here, we

first go to the left subtree of root node C, which is null, so next, we visit node C, and then we visit

the right child of node C, that is, node F.

Therefore, the in-order traversal for this example tree is G-D-H-B-E-A-C-F.

The Python implementation of a recursive function to return an in-order listing of nodes in a

tree is as follows:

def inorder(root_node):

 current = root_node

 if current is None:

Trees188

 return

 inorder(current.left_child)

 print(current.data)

 inorder(current.right_child)

inorder(n1)

Firstly, we check if the current node is null or empty. If it is not empty, we traverse the tree. We

visit the node by printing the visited node. In this case, we first recursively call the inorder func-

tion with current.left_child, then we visit the root node, and finally, we recursively call the

inorder function with current.right_child.

Finally, when we apply the above in-order traversal algorithm on the above sample tree of four

nodes. With n1 as the root node, we get the following output:

left grandchild node

left child node

root node

right child node

Next, we will discuss pre-order traversal.

Pre-order traversal
Pre-order tree traversal traverses the tree in the order of the root node, the left subtree, and then

the right subtree. It works as follows:

1.	 We start traversing with the root node

2.	 Next, we traverse the left subtree and call an ordering function with the left subtree re-

cursively

3.	 Next, we visit the right subtree and call an ordering function with the right subtree re-

cursively

Consider the example tree shown in Figure 6.11 to understand pre-order traversal:

Chapter 6 189

Figure 6.11: An example tree to understand pre-order traversal

The pre-order traversal for the example binary tree shown in Figure 6.11 works as follows: first,

we visit root node A. Next, we go to the left subtree of root node A. The left subtree of node A has

node B as the root, so we visit this root node, and then go to the left subtree of root node B, node D.

We visit node D and then the left subtree of root node D, and then we visit the left child, G, which

is the subtree of root node D. Since there is no child of node G, we visit the right subtree. We visit

the right child of the subtree of root node D, node H. Next, we visit the right child of the subtree

of root node B, node E.

In this manner, we have visited root node A and the left subtree of root node A. Next, we visit the

right subtree of root node A. Here, we visit root node C, and then we go to the left subtree of root

node C, which is null, so we visit the right child of node C, node F.

The pre-order traversal for this example tree would be A-B-D-G-H-E-C-F.

The recursive function for the pre-order tree traversal is as follows:

def preorder(root_node):

 current = root_node

 if current is None:

 return

 print(current.data)

 preorder(current.left_child)

 preorder(current.right_child)

preorder(n1)

Trees190

First, we check if the current node is null or empty. If it is empty, it means the tree is an empty

tree, and if the current node is not empty, then we traverse the tree using the pre-order algorithm.

The pre-order traversal algorithm traverses the tree in the order of root, left subtree, and right

subtree recursively, as shown in the above code. Finally, when we apply the above pre-order

traversal algorithm on the above sample tree of four nodes with n1 node as the root node, we get

the following output:

root node

left child node

left grandchild node

right child node

Next, we will discuss post-order traversal.

Post-order traversal
Post-order tree traversal works as follows:

1.	 We start traversing the left subtree and call an ordering function recursively

2.	 Next, we traverse the right subtree and call an ordering function recursively

3.	 Finally, we visit the root node

So, in a nutshell, for post-order tree traversal, we visit the nodes in the tree in the order of the left

subtree, the right subtree, and finally the root node.

Consider the following example tree shown in Figure 6.12 to understand post-order tree traversal:

Figure 6.12: An example tree to understand pre-order traversal

Chapter 6 191

In the preceding figure, Figure 6.12, we first visit the left subtree of root node A recursively. We

get to the last left subtree, that is, root node D, and then we visit the node to the left of it, which

is node G. We visit the right child, H, after this, and then we visit root node D. Following the same

rule, we next visit the right child of node B, node E. Then, we visit node B. Following on from this,

we traverse the right subtree of node A. Here, we first reach the last right subtree and visit node

F, and then we visit node C. Finally, we visit root node A.

The post-order traversal for this example tree would be G-H-D-E-B-F-C-A.

The implementation of the post-order method for tree traversal is as follows:

def postorder(root_node):

 current = root_node

 if current is None:

 return

 postorder(current.left_child)

 postorder(current.right_child)

 print(current.data)

postorder(n1)

First, we check if the current node is null or empty. If it is not empty, we traverse the tree using

the post-order algorithm as discussed, and finally, when we apply the above post-order traversal

algorithm on the above sample tree of four nodes with n1 as the root node. We get the following

output:

left grandchild node

left child node

right child node

root node

Next, we will discuss level-order traversal.

Level-order traversal
In this traversal method, we start by visiting the root of the tree before visiting every node on the

next level of the tree. Then, we move on to the next level in the tree, and so on. This kind of tree

traversal is how breadth-first traversal in a graph works, as it broadens the tree by traversing all

the nodes in a level before going deeper into the tree.

Trees192

Let’s consider the following example tree and traverse it:

Figure 6.13: An example tree to understand level-order traversal

In Figure 6.13, we start by visiting the root node at level 0, which is the node with a value of 4. We

visit this node by printing out its value. Next, we move to level 1 and visit all the nodes at this level,

which are the nodes with the values 2 and 8. Finally, we move to the next level in the tree, that is,

level 3, and we visit all the nodes at this level, which are 1, 3, 5, and 10. Thus, the level-order tree

traversal for this tree is as follows: 4, 2, 8, 1, 3, 5, and 10.

This level-order tree traversal is implemented using a queue data structure. We start by visiting

the root node, and we push it into a queue. The node at the front of the queue is accessed (de-

queued), which can then be either printed or stored for later use. After adding the root node, the

left child node is added to the queue, followed by the right node. Thus, when traversing at any

given level of the tree, all the data items of that level are firstly inserted in the queue from left to

right. After that, all the nodes are visited from the queue one by one. This process is repeated for

all the levels of the tree.

The traversal of the preceeding tree using this algorithm will enqueue root node 4, dequeue it, and

visit the node. Next, nodes 2 and 8 are enqueued, as they are the left and right nodes at the next

level. Node 2 is dequeued so that it can be visited. Next, its left and right nodes, nodes 1 and 3, are

enqueued. At this point, the node at the front of the queue is node 8. We dequeue and visit node 8,

after which we enqueue its left and right nodes. This process continues until the queue is empty.

The Python implementation of breadth-first traversal is as follows. We enqueue the root node

and keep a list of the visited nodes in the list_of_nodes list. The dequeue class is used to main-

tain a queue:

Chapter 6 193

from collections import deque

class Node:

 def __init__(self, data):

 self.data = data

 self.right_child = None

 self.left_child = None

n1 = Node("root node")

n2 = Node("left child node")

n3 = Node("right child node")

n4 = Node("left grandchild node")

n1.left_child = n2

n1.right_child = n3

n2.left_child = n4

def level_order_traversal(root_node):

 list_of_nodes = []

 traversal_queue = deque([root_node])

 while len(traversal_queue) > 0:

 node = traversal_queue.popleft()

 list_of_nodes.append(node.data)

 if node.left_child:

 traversal_queue.append(node.left_child)

 if node.right_child:

 traversal_queue.append(node.right_child)

 return list_of_nodes

print(level_order_traversal(n1))

If the number of elements in traversal_queue is greater than zero, the body of the loop is exe-

cuted. The node at the front of the queue is popped off and added to the list_of_nodes list. The

first if statement will enqueue the left child node if the node provided with a left node exists. The

second if statement does the same for the right child node. Further, the list_of_nodes list is

returned in the last statement.

Trees194

The output of the above code is as follows:

['root node', 'left child node', 'right child node', 'left grandchild
node']

We have discussed different tree traversal algorithms; we can use any of these algorithms depend-

ing upon the application. In-order traversal is very useful when we need sorted contents from

a tree. This also applies if we need items in descending order, which we can do by reversing the

order, such as right subtree, root, and then left subtree. This is known as reverse in-order traversal.

And, if we need to inspect the root before any leaves, we use pre-order traversal. Likewise, if we

need to inspect the leaf nodes before the root nodes.

The following are some important applications of binary trees:

1.	 Binary trees as expression trees are used in compilers

2.	 It is also used in Huffman coding in data compression

3.	 Binary search trees are used for efficient searching, insertion, and deletion of a list of items

4.	 Priority Queue (PQ), which is used for finding and deleting minimum or maximum items

in a collection of elements in logarithm time in the worst case

Next, let us discuss expression trees.

Expression trees
An expression tree is a special kind of binary tree that can be used to represent arithmetic ex-

pressions. An arithmetic expression is represented by a combination of operators and operands,

where the operators can be unary or binary. Here, the operator shows which operation we want

to perform, and the operator tells us what data items we want to apply those operations to. If the

operator is applied to one operand, then it is called a unary operator, and if it is applied to two

operands, it is called a binary operator.

An arithmetic expression can also be represented using a binary tree, which is also known as an

expression tree. The infix notation is a commonly used notation to express arithmetic expres-

sions where the operators are placed in between the operands. It is a commonly used method of

representing an arithmetic expression. In an expression tree, all the leaf nodes contain operands

and non-leaf nodes contain the operators. It is also worth noting that an expression tree will have

one of its subtrees (right or left) empty in the case of a unary operator.

The arithmetic expression is shown using three notations: infix, postfix, or prefix. The in-order

traversal of an expression tree produces the infix notation. For example, the expression tree for

3 + 4 would look as shown in Figure 6.14:

Chapter 6 195

Figure 6.14: An expression tree for the expression 3 + 4

In this example, the operator is inserted (infixed) between the operands, as 3 + 4. When nec-

essary, parentheses can be used to build a more complex expression. For example, for (4 + 5) *

(5 - 3), we would get the following:

Figure 6.15: An expression tree for the expression (4 + 5) * (5-3)

Prefix notation is commonly referred to as Polish notation. In this notation, the operator comes

before its operands. For example, the arithmetic expression to add two numbers, 3 and 4, would

be shown as + 3 4. Let’s consider another example, (3 + 4) * 5. This can also be represented

as * (+ 3 4) 5 in prefix notation. The pre-order traversal of an expression tree results in the

prefix notation of the arithmetic expression. For example, consider the expression tree shown

in Figure 6.16:

Figure 6.16: An example expression tree to understand pre-order traversal

Trees196

The pre-order traversal of the expression tree shown in Figure 6.16 will give the expression in

prefix notation as +- 8 3 3.

Postfix, or reverse Polish notation (RPN), places the operator after its operands, such as 3 4 +.

The post-order traversal of the expression tree shown in Figure 6.17 gives the postfix notation of

the arithmetic expression.

Figure 6.17: An example expression tree to understand post-order traversal

The postfix notation for the preceding expression tree is 8 3 -3 +. We have now discussed ex-

pression trees. It is easy to evaluate an expression tree for the given arithmetic expression using

the reverse Polish notation since it provides faster calculations.

Parsing a reverse Polish expression
To create an expression tree from the postfix notation, a stack is used. In this, we process one

symbol at a time; if the symbol is an operand, then its references are pushed in to the stack, and

if the symbol is an operator, then we pop two pointers from the stack and form a new subtree,

whose root is the operator. The first reference popped from the stack is the right child of the sub-

tree, and the second reference becomes the left child of the subtree. Further, a reference to this

new subtree is pushed into the stack. In this manner, all the symbols of the postfix notation are

processed to create the expression tree.

Let’s take an example of 4 5 + 5 3 - *.

Chapter 6 197

Firstly, we push symbols 4 and 5 onto the stack, and then we process the next symbol + as shown

in Figure 6.18:

Figure 6.18: Operands 4 and 5 are pushed onto the stack

When the new symbol + is read, it is made into a root node of a new subtree, and then two refer-

ences are popped from the stack, and the topmost reference is added as the right of the root node,

and the next popped reference is added as the left child of the subtree, as shown in Figure 6.19:

Figure 6.19: Operator + is processed in creating an expression tree

Trees198

The next symbols are 5 and 3, and they are pushed into the stack. Next, when a new symbol is

an operator (-), it is created as the root of the new subtree, and two top references are popped

and added to the right and left child of this root respectively, as shown in Figure 6.20. Then, the

reference to this subtree is pushed to the stack:

Figure 6.20: Operator (-) is processed in creating an expression tree

The next symbol is the operator *; as we have done so far, this will be created as the root, and

then two references will be popped from the stack, as shown in Figure 6.21. The final tree is then

shown in Figure 6.21:

Figure 6.21: Operator (*) is processed in creating an expression tree

To learn how to implement this algorithm in Python, we will look at building a tree for an expres-

sion written in postfix notation. For this, we need a tree node implementation; it can be defined

as follows:

Chapter 6 199

class TreeNode:

 def __init__(self, data=None):

 self.data = data

 self.right = None

 self.left = None

The following is the code for the implementation of the stack class that we will be using:

class Stack:

 def __init__(self):

 self.elements = []

 def push(self, item):

 self.elements.append(item)

 def pop(self):

 return self.elements.pop()

In order to build the tree, we are going to enlist the items with the help of a stack. Let’s take an

example of an arithmetic expression and set up our stack:

expr = "4 5 + 5 3 - *".split()

stack = Stack()

In the first statement, the split() method splits on whitespace by default. The expr is a list with

the values 4, 5, +, 5, 3, -, and *.

Each element of the expr list is going to be either an operator or an operand. If we get an operand,

then we embed it in a tree node and push it onto the stack. If we get an operator, we embed the

operator into a tree node and pop its two operands into the node’s right and left children. Here,

we have to take care to ensure that the first pop reference goes into the right child.

In continuation of the previous code snippet, the below code is a loop to build the tree:

for term in expr:

 if term in "+-*/":

 node = TreeNode(term)

 node.right = stack.pop()

 node.left = stack.pop()

 else:

 node = TreeNode(int(term))

 stack.push(node)

Trees200

Notice that we perform a conversion from string to int in the case of an operand. You could use

float() instead, if you wish to support floating-point operands.

At the end of this operation, we should have one single element in the stack, and that holds the

full tree.

If we want to evaluate the expression, we can use the following function:

def calc(node):

 if node.data == "+":

 return calc(node.left) + calc(node.right)

 elif node.data == "-":

 return calc(node.left) - calc(node.right)

 elif node.data == "*":

 return calc(node.left) * calc(node.right)

 elif node.data == "/":

 return calc(node.left) / calc(node.right)

 else:

 return node.data

In the preceding code, we pass a node to the function. If the node contains an operand, then we

simply return that value. If we get an operator, then we perform the operation that the operator

represents on the node’s two children. However, since one or more of the children could also

contain either operators or operands, we call the calc() function recursively on the two child

nodes (bearing in mind that all the children of every node are also nodes).

Now, we just need to pop the root node off the stack and pass it onto the calc() function. Then,

we should have the result of the calculation:

root = stack.pop()

result = calc(root)

print(result)

Running this program should yield the result 18, which is the result of (4 + 5) * (5 - 3).

Expression trees are very useful in representing and evaluating complex expressions easily. It

is also useful to evaluate the postfix, prefix, and infix expression. It can be used to find out the

associativity of the operators in the given expression.

In the next section, we will discuss the binary search tree, which is a special kind of binary tree.

Chapter 6 201

Binary search trees
A binary search tree (BST) is a special kind of binary tree. It is one of the most important and

commonly used data structures in computer science applications. A binary search tree is a tree

that is structurally a binary tree, and stores data in its nodes very efficiently. It provides very fast

search, insertion, and deletion operations.

A binary tree is called a binary search tree if the value at any node in the tree is greater than the

values in all the nodes of its left subtree, and less than (or equal to) the values of all the nodes of

the right subtree. For example, if K1, K2, and K3 are key values in a tree of three nodes (as shown

in Figure 6.22), then it should satisfy the following conditions:

•	 The key values K2<=K1

•	 The key values K3>K1

The following figure depicts the above condition of the binary search tree:

Figure 6.22: An example of a binary search tree

Let’s consider another example so that we have a better understanding of binary search trees.

Consider the binary search tree shown in Figure 6.23:

Figure 6.23: Binary search tree of six nodes

Trees202

In this tree, all the nodes in the left subtree are less than (or equal to) the value of the parent

node. All the nodes in the right subtree of this node are also greater than that of the parent node.

To see if the above example tree fulfills the properties of a binary search tree, we see that all the

nodes in the left subtree of the root node have a value less than 5. Likewise, all the nodes in the

right subtree have a value that is greater than 5. This property applies to all the nodes in the tree

with no exceptions. For example, if we take another node with the value 3, we can see that the

values for all the left subtree nodes are less than the value 3 and the values for all the right subtree

nodes are greater than 3.

Considering another example of a binary tree. Let’s check to see if it is a binary search tree. De-

spite the fact that the following diagram, Figure 6.24, looks similar to the previous diagram, it

does not qualify as a binary search tree, as node 7 is greater than the root node 5; even though

it is located in the left subtree of the root node. Node 4 is to the right subtree of its parent node

7, which is also violating a rule of binary search trees. Thus, the following figure, Figure 6.24, is

not a binary search tree:

Figure 6.24: An example of a binary tree that is not a binary search tree

Let’s begin the implementation of a binary search tree in Python. Since we need to keep track of

the root node of the tree, we start by creating a Tree class that holds a reference to the root node:

class Tree:

 def __init__(self):

 self.root_node = None

That’s all it takes to maintain the state of a tree. Now, let’s examine the main operations used

within the binary seach tree.

Binary search tree operations
The operations that can be performed on a binary search tree are insert, delete, finding min,

finding max, and searching. We discuss them in detail one by one in the following sections.

Chapter 6 203

Inserting nodes
One of the most important operations to implement on a binary search tree is to insert data items

in the tree. In order to insert a new element into a binary search tree, we have to ensure that the

properties of the binary search tree are not violated after adding the new element.

In order to insert a new element, we start by comparing the value of the new node with the root

node: if the value is less than the root value, then the new element will be inserted into the left

subtree; otherwise, it will be inserted into the right subtree. In this manner, we go to the end of

the tree to insert the new element.

Let’s create a binary search tree by inserting data items 5, 3, 7, and 1 in the tree. Consider the

following:

1.	 Insert 5: We start with the first data item, 5. To do this, we will create a node with its data

attribute set to 5, since it is the first node.

2.	 Insert 3: Now, we want to add the second node with a value of 3 so that the data value of

3 is compared with the existing node value, 5, of the root node. Since the node value 3 is

less than 5, it will be placed in the left subtree of node 5. The binary search tree will look

as shown in Figure 6.25:

Figure 6.25: Step 2 of the insertion operation in an example binary search tree

Here, the tree satisfies the binary search tree rule, where all the nodes in the left subtree

are less than the parent.

3.	 Insert 7: To add another node with a value of 7 to the tree, we start from the root node

with value 5 and make a comparison, as shown in Figure 6.26. Since 7 is greater than 5,

the node with a value of 7 is placed to the right of this root:

Figure 6.26: Step 3 of the insertion operation in an example binary search tree

Trees204

4.	 Insert 1: Next, we add another node with the value 1. Starting from the root of the tree,

we make a comparison between 1 and 5, as shown in Figure 6.27:

Figure 6.27: Step 4 of the insertion operation in an example binary search tree

This comparison shows that 1 is less than 5, so we go to the left subtree of 5, which has a node

with a value of 3, as shown in Figure 6.28:

Figure 6.28: Comparison of node 1 and node 3 in an example binary search tree

When we compare 1 against 3, 1 is less than 3, so we move a level below node 3 and to its left, as

shown in Figure 6.28. However, there is no node there. Therefore, we create a node with a value

of 1 and associate it with the left pointer of node 3 to obtain the final tree. Here, we have the final

binary search tree of 4 nodes, as shown in Figure 6.29:

Figure 6.29: Final step of the insertion operation in an example binary search tree

We can see that this example contains only integers or numbers. So, if we need to store string

data in a binary search tree, the strings would be compared alphabetically.

Chapter 6 205

If we wanted to store any custom data types inside a binary search tree, we would have to make

sure that the binary search tree class supports ordering.

The Python implementation of the insert method to add the nodes in the binary search tree is

given as follows:

class Node:

 def __init__(self, data):

 self.data = data

 self.right_child = None

 self.left_child = None

class Tree:

 def __init__(self):

 self.root_node = None

 def insert(self, data):

 node = Node(data)

 if self.root_node is None:

 self.root_node = node

 return self.root_node

 else:

 current = self.root_node

 parent = None

 while True:

 parent = current

 if node.data < parent.data:

 current = current.left_child

 if current is None:

 parent.left_child = node

 return self.root_node

 else:

 current = current.right_child

 if current is None:

 parent.right_child = node

 return self.root_node

Trees206

In the above code, we first declare the Node class with the Tree class. All the operations that can be

applied to the tree are defined in the Tree class. Let’s understand the steps of the insert method.

We begin with a function declaration:

 def insert(self, data):

Next, we encapsulate the data in a node using the Node class. We check whether we have a root

node or not. If we don’t have a root node in the tree, the new node becomes the root node and

then root node is returned:

 node = Node(data)
 if self.root_node is None:
 self.root_node = node
 return self.root_node
 else:

Further, in order to insert a new element, we have to traverse the tree and reach the correct posi-

tion where we can insert the new element in a way that the properties of the binary search tree

are not violated. For this, we keep track of the current node while traversing the tree as well as its

parent. The current variable is always used to track where a new node will be inserted:

 current = self.root_node
 parent = None
 while True:
 parent = current

Here, we must perform a comparison. If the data held in the new node is less than the data held

in the current node, then we check whether the current node has a left child node. If it doesn’t,

this is where we insert the new node. Otherwise, we keep traversing:

 if node.data < parent.data:

 current = current.left_child

 if current is None:

 parent.left_child = node

 return self.root_node

After this, we need to take care of the greater than (or equal to) case. If the current node doesn’t

have a right child node, then the new node is inserted as the right child node. Otherwise, we move

down and continue looking for an insertion point:

 else:

 current = current.right_child

Chapter 6 207

 if current is None:

 parent.right_child = node

 return self.root_node

Now, in order to see what we have inserted in the binary search tree, we can use any of the existing

tree traversal algorithms. Let’s implement the in-order traversal, which should be defined in the

Tree class. The code is as follows:

 def inorder(self, root_node):

 current = root_node

 if current is None:

 return

 self.inorder(current.left_child)

 print(current.data)

 self.inorder(current.right_child)

Now, let us take an example to insert a few elements (e.g. elements 5, 2, 7, 9, and 1) in a binary

search tree, as shown in Figure 6.24, and then we can use the in-order traversal algorithm to see

what we have inserted in the tree:

tree = Tree()

r = tree.insert(5)

r = tree.insert(2)

r = tree.insert(7)

r = tree.insert(9)

r = tree.insert(1)

tree.inorder(r)

The output of the above code is as follows:

1

2

5

7

9

Insertion of a node in a binary search tree takes O(h), where h is the height of the tree.

Trees208

Searching the tree
A binary search tree is a tree data structure in which all the nodes in the left subtree of a node

have lower key values and the right subtree has greater key values. Thus, searching for an element

with a given key value is quite easy. Let’s consider an example binary search tree that has nodes

1, 2, 3, 4, 8, 5, and 10, as shown in Figure 6.30:

Figure 6.30: An example binary search tree with seven nodes

In the preceding tree shown in Figure 6.30, if we wish to search for a node with a value of 5, for

example, then we start from the root node and compare the root with our desired value. As node

5 is a greater value than the root node’s value of 4, we move to the right subtree. In the right

subtree, we have node 8 as the root node, so we compare node 5 with node 8. As the node to be

searched has a smaller value than node 8, we move it to the left subtree. When we move to the

left subtree, we compare the left subtree node 5 with the required node value of 5. This is a match,

so we return "item found".

Here is the implementation of the searching method in a binary search tree, which is being de-

fined in the Tree class:

 def search(self, data):

 current = self.root_node

 while True:

 if current is None:

 print("Item not found")

 return None

 elif current.data is data:

 print("Item found", data)

 return data

Chapter 6 209

 elif current.data > data:

 current = current.left_child

 else:

 current = current.right_child

In the preceding code, we return the data if it was found, or None if the data wasn’t found. We

start searching from the root node. Next, if the data item to be searched for doesn’t exist in the

tree, we return None. If we find the data, it is returned.

If the data that we are searching for is less than that of the current node, we go down the tree

to the left. Furthermore, in the else part of the code, we check if the data we are looking for is

greater than the data held in the current node, which means that we go down the tree to the right.

Finally, the below code can be used to create an example binary search tree with some values

between 1 and 10. Then, we search for a data item with the value 9, and also all the numbers in

that range. The ones that exist in the tree get printed:

tree = Tree()

tree.insert(5)

tree.insert(2)

tree.insert(7)

tree.insert(9)

tree.insert(1)

tree.search(9)

The output of the above code is as follows:

Item found 9

In the above code, we see the items that were present in the tree have been correctly found; the

rest of the items could not be found in the range 1 to 10. In the next section, we discuss the dele-

tion of a node in binary search tree.

Deleting nodes
Another important operation on a binary search tree is the deletion or removal of nodes. There

are three possible scenarios that we need to take care of during this process. The node that we

want to remove might have the following:

•	 No children: If there is no leaf node, directly remove the node

Trees210

•	 One child: In this case, we swap the value of that node with its child, and then delete

the node

•	 Two children: In this case, we first find the in-order successor or predecessor, swap their

values, and then delete that node

The first scenario is the easiest to handle. If the node about to be removed has no children, we

can simply remove it from its parent. In Figure 6.31, suppose we want to delete node A, which has

no children. In this case, we can simply delete it from its parent (node Z):

Figure 6.31: Deletion operation when deleting a node with no children

In the second scenario, when the node we want to remove has one child, the parent of that node

is made to point to the child of that particular node. Let’s take a look at the following diagram,

where we want to delete node 6, which has one child, node 5, as shown in Figure 6.32:

Figure 6.32: Deletion operation when deleting a node with one child

In order to delete node 6, which has node 5 as its only child, we point the left pointer of node 9

to node 5. Here, we need to ensure that the child and parent relationship follows the properties

of a binary search tree.

Chapter 6 211

In the third scenario, when the node we want to delete has two children, in order to delete it,

we first find a successor node, then move the content of the successor node into the node to be

deleted. The successor node is the node that has the minimum value in the right subtree of the

node to be deleted; it will be the first element when we apply the in-order traversal on the right

subtree of the node to be deleted.

Let’s understand it with the example tree shown in Figure 6.33, where we want to delete node 9,

which has two children:

Figure 6.33: Deletion operation when deleting a node with two children

In the example tree shown in Figure 6.33, we find the smallest element in the right subtree of the

node (i.e. the first element in the in-order traversal in the right subtree) which is node 12. After

that, we replace the value of node 9 with the value 12 and remove node 12. Node 12 has no chil-

dren, so we apply the rule for removing nodes without children accordingly.

To implement the above algorithm using Python, we need to write a helper method to get the node

that we want to delete along with the reference to its parent node. We have to write a separate

method because we do not have any reference to the parent in the Node class. This helper method

get_node_with_parent is similar to the search method, which finds the node to be deleted, and

returns that node with its parent node:

 def get_node_with_parent(self, data):

 parent = None

 current = self.root_node

 if current is None:

Trees212

 return (parent, None)

 while True:

 if current.data == data:

 return (parent, current)

 elif current.data > data:

 parent = current

 current = current.left_child

 else:

 parent = current

 current = current.right_child

 return (parent, current)

The only difference is that before we update the current variable inside the loop, we store its parent

with parent = current. The method to do the actual removal of a node begins with this search:

 def remove(self, data):

 parent, node = self.get_node_with_parent(data)

 if parent is None and node is None:

 return False

 # Get children count

 children_count = 0

 if node.left_child and node.right_child:

 children_count = 2

 elif (node.left_child is None) and (node.right_child is None):

 children_count = 0

 else:

 children_count = 1

We pass the parent and the found nodes to parent and node, respectively, with the parent, node

= self.get_node_with_parent(data) line. It is important to know the number of children that

the node has that we want to delete, and we do so in the if statement.

Once we know the number of children a node has that we want to delete, we need to handle

various conditions in which a node can be deleted. The first part of the if statement handles the

case where the node has no children:

Chapter 6 213

 if children_count == 0:

 if parent:

 if parent.right_child is node:

 parent.right_child = None

 else:

 parent.left_child = None

 else:

 self.root_node = None

In cases where the node to be deleted has only one child, the elif part of the if statement does

the following:

 elif children_count == 1:

 next_node = None

 if node.left_child:

 next_node = node.left_child

 else:

 next_node = node.right_child

 if parent:

 if parent.left_child is node:

 parent.left_child = next_node

 else:

 parent.right_child = next_node

 else:

 self.root_node = next_node

next_node is used to keep track of that single node, which is the child of the node that is to be

deleted. We then connect parent.left_child or parent.right_child to next_node.

Lastly, we handle the condition where the node we want to delete has two children:

 else:

 parent_of_leftmost_node = node

 leftmost_node = node.right_child

 while leftmost_node.left_child:

 parent_of_leftmost_node = leftmost_node

 leftmost_node = leftmost_node.left_child

 node.data = leftmost_node.data

Trees214

In finding the in-order successor, we move to the right node with leftmost_node = node.right_

child. As long as a left node exists, leftmost_node.left_child will be True and the while loop

will run. When we get to the leftmost node, it will either be a leaf node (meaning that it will have

no child node) or have a right child.

We update the node that’s about to be removed with the value of the in-order successor with

node.data = leftmost_node.data:

 if parent_of_leftmost_node.left_child == leftmost_node:

 parent_of_leftmost_node.left_child = leftmost_node.right_
child

 else:

 parent_of_leftmost_node.right_child = leftmost_node.right_
child

The preceding statement allows us to properly attach the parent of the leftmost node with any

child node. Observe how the right-hand side of the equals sign stays unchanged. This is because

the in-order successor can only have a right child as its only child.

The following code demonstrates how to use the remove method in the Tree class:

tree = Tree()

tree.insert(5)

tree.insert(2)

tree.insert(7)

tree.insert(9)

tree.insert(1)

tree.search(9)

tree.remove(9)

tree.search(9)

The output of the above code is:

Item found 9

Item not found

In the above code, when we search for item 9, it is available in the tree, and after the remove

method, item 9 is not present in the tree. In the worst-case scenario, the remove operation takes

O(h), where h is the height of the tree.

Chapter 6 215

Finding the minimum and maximum nodes
The structure of the binary search tree makes searching a node that has a maximum or a minimum

value very easy. To find a node that has the smallest value in the tree, we start traversal from the

root of the tree and visit the left node each time until we reach the end of the tree. Similarly, we

traverse the right subtree recursively until we reach the end to find the node with the biggest

value in the tree.

For example, consider Figure 6.34, in order to search for the minimum and maximum elements.

Figure 6.34: Finding the minimum and maximum nodes in a binary search tree

Here, we start by moving down the tree from root node 6 to 3, and then from node 3 to 1 to find

the node with the smallest value. Similarly, to find the maximum value node from the tree, we

go down from the root along the right-hand side of the tree, so we go from node 6 to node 8 and

then node 8 to node 10 to find the node with the largest value.

The Python implementation of the method that returns the minimum value of any node is as

follows:

 def find_min(self):

 current = self.root_node

 while current.left_child:

 current = current.left_child

 return current.data

The while loop continues to get the left node and visits it until the last left node points to None.

It is a very simple method.

Trees216

Similarly, the following is the code of the method that returns the maximum node:

 def find_max(self):

 current = self.root_node

 while current.right_child:

 current = current.right_child

 return current.data

The following code demonstrates how to use the find_min and find_max methods in the Tree class:

tree = Tree()

tree.insert(5)

tree.insert(2)

tree.insert(7)

tree.insert(9)

tree.insert(1)

print(tree.find_min())

print(tree.find_max())

The output of the above code is as shown below:

1

9

The output of the above code, 1 and 9, are the minimum and maximum values. The minimum

value in the tree is 1 and the maximum is 9. The running time complexity to find the minimum

or maximum value in a binary search tree is O(h), where h is the height of the tree.

Benefits of a binary search tree
A binary search tree is, in general, a better choice compared to arrays and linked lists when we are
mostly interested in accessing the elements frequently in any application. A binary search tree is
fast for most operations, such as searching, insertion, and deletion, whereas arrays provide fast
searching, but are comparatively slow regarding insertion and deletion operations. In a similar
fashion, linked lists are efficient in performing insertion and deletion operations, but are slower
when performing the search operation. The best-case running time complexity for searching
an element from a binary search tree is O(log n), and the worst-case time complexity is O(n),
whereas both best-case and worst-case time complexity for searching in lists is O(n).

The following table provides a comparison of the array, linked list, and binary search tree data

structures:

Chapter 6 217

Properties Array Linked list BST

Data structure Linear. Linear. Non-linear.

Ease of use

Easy to create and

use. Average-case

complexity for search,

insert, and delete is

O(n).

Insertion and deletion

are fast, especially with

the doubly linked list.

Access of elements,

insertion, and deletion is

fast with the average-case

complexity of O(log n).

Access

complexity

Easy to access elements.

Complexity is O(1).

Only sequential access

is possible, so slow.

Average- and worst-

case complexity are

O(n).

Access is fast, but

slow when the tree is

unbalanced, with a worst-

case complexity of O(n).

Search

complexity

Average- and worst-

case complexity are

O(n).

It is slow due to

sequential searching.

Average- and worst-

case complexity are

O(n).

Worst-case complexity for

searching is O(n).

Insertion

complexity

Insertion is slow.

Average- and worst-

case complexity are

O(n).

Average- and worst-

case complexity are

O(1).

The worst-case complexity

for insertion is O(n).

Deletion

complexity

Deletion is slow.

Average- and worst-

case complexity are

O(n).

Average- and worst-

case complexity are

O(1).

The worst-case complexity

for deletion is O(n).

Let’s consider an example to understand when the binary search tree is a good choice to store

the data. Let’s assume that we have the following data nodes—5, 3, 7, 1, 4, 6, and 9, as shown

in Figure 6.35. If we use a list to store this data, the worst-case scenario will require us to search

through the entire list of seven elements to find the item. So, it will require six comparisons to

search for item 9 in this data node, as shown in Figure 6.35:

Figure 6.35: An example list of seven elements requires six comparisons if stored in a list

Trees218

However, if we use a binary search tree to store these values, as shown in the following diagram,

in the worst-case scenario, we will require two comparisons to search for item 9, as shown in

Figure 6.36:

Figure 6.36: An example list of seven elements requires three comparisons if stored in a binary
search tree

However, it is important to note that the efficiency of searching also depends on how we built

the binary search tree. If the tree hasn’t been constructed properly, it can be slow. For example,

if we had inserted the elements into the tree in the order 1, 3, 4, 5, 6, 7, 9, as shown in Figure 6.37,

then the tree would not be more efficient than the list:

Figure 6.37: A binary search tree constructed with elements in the order 1, 3, 4, 5, 6, 7,9

Chapter 6 219

Depending upon the sequence of the nodes added to the tree, it is possible that we may have a
binary tree that is unbalanced. Thus, it is important to use a method that can make the tree a
self-balancing tree, which in turn will improve the search operation. Therefore, we should note
that a binary search tree is a good choice if the binary tree is balanced.

Summary
In this chapter, we discussed an important data structure, i.e. tree data structures. Tree data
structures in general provide better performance compared to linear data structures in search,
insert, and deletion operations. We have also discussed how to apply various operations to tree
data structures. We studied binary trees, which can have a maximum of two children for each
node. Further, we learned about binary search trees and discussed how we can apply different
operations to them. Binary search trees are very useful when we want to develop a real-world
application in which the retrieval or searching of data elements is an important operation. We
need to ensure that the tree is balanced for the good performance of binary search tree. We will
discuss priority queues and heaps in the next chapter.

Exercises
1.	 Which of the following is a true about binary trees:

a.	 Every binary tree is either complete or full

b.	 Every complete binary tree is also a full binary tree

c.	 Every full binary tree is also a complete binary tree

d.	 No binary tree is both complete and full

e.	 None of the above

2.	 Which of the tree traversal algorithms visit the root node last?

Consider this binary search tree:

Figure 6.38: Sample binary search tree

Trees220

3.	 Suppose we remove the root node 8, and we wish to replace it with any node from the left

subtree, then what will be the new root?

4.	 What will be the inorder, postorder and preorder traversal of the following tree?

Figure 6.39: Example tree

5.	 How do you find out if two trees are identical?

6.	 How many leaves are there in the tree mentioned in question number 4?

7.	 What is the relation between a perfect binary tree’s height and the number of nodes in

that tree?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

7
Heaps and Priority Queues

A heap data structure is a tree-based data structure in which each node of the tree has a specific

relationship with other nodes, and they are stored in a specific order. Depending upon the specific

order of the nodes in the tree, heaps can be of different types, such as a min heap and a max heap.

A priority queue is an important data structure that is similar to the queue and stack data structures

that stores data along with the priority associated with them. In this, the data is served according

to the priority. Priority queues can be implemented using an array, linked list, and trees; however,

they are often implemented using a heap as it is very efficient.

In this chapter, we will learn the following:

•	 The concept of the heap data structure and different operations on it

•	 Understanding the concept of the priority queue and its implementation using Python

Heaps
A heap data structure is a specialization of a tree in which the nodes are ordered in a specific

way. A heap is a data structure where each data elements satisfies a heap property, and the heap

property states that there must be a certain relationship between a parent node and its child

nodes. According to this certain relationship in the tree, the heaps can be of two types, in other

words, max heaps and min heaps. In a max heap, each parent node value must always be greater

than or equal to all its children. In this kind of tree, the root node must be the greatest value in

the tree. For example, see Figure 7.1 showing the max heap in which all the nodes have greater

values compared to their children:

Heaps and Priority Queues222

Figure 7.1: An example of a max heap

In a min heap, the relationship between parent and children is that the value of the parent node

must always be less than or equal to its children. This rule should be followed by all the nodes

in the tree. In the min heap, the root node holds the lowest value. For example, see Figure 7.2

showing the min heap in which all the nodes have smaller values compared to their children:

Figure 7.2: An example of a min heap

The heap is an important data structure due to its several applications and uses in implementing

heap sort algorithms and priority queues. We will be discussing these in detail later in the chap-

ter. The heap can be any kind of tree; however the most common type of heap is a binary heap in

which each node has at most two children.

If the binary heap is a complete binary tree with n nodes, then it will have a minimum height

of log2n.

Chapter 7 223

A complete binary tree is one in which each row must be fully filled before starting to fill the next

row, as shown in the following Figure 7.3:

Figure 7.3: An example of a complete binary tree

In order to implement the heap, we can derive a relationship between parent and child nodes

in index values. The relationship is that the children of any node at the n index can be retrieved

easily, in other words, the left child will be located at 2n, and the right child will be located at 2n

+ 1. For example, the node C would be at the index of 3, since node C is a right child of the node A,

which is at index 1, so it becomes 2n+1 = 2*1 + 1 = 3. This relationship always holds true. Let’s

say we have a list of elements {A, B, C, D, E} as shown in Figure 7.4. If we store any element

at an index of i, then its parent can be stored at index i/2, for example, if the index of the node

D is 4, then its parent would be at 4/2 = 2, index 2. The index of root has to be starting from 1 in

the array. See Figure 7.4 to understand the concept:

Figure 7.4: Binary tree and index positions of all the nodes

Heaps and Priority Queues224

This relation between parent and child is a complete binary tree. In respect of indexing values, it

is very important in order to efficiently retrieve, search, and store the data elements in the heap.

Due to this property, it is very easy to implement the heap. The only constraint is that we should

have indexing starting from 1, and if we implement the heap using an array, then we have to add

one dummy element at index 0 in the array. Next, let’s understand the implementation of the

heap. It is important to note that we will be discussing all the concepts with respect to the min

heap, and the implementation for the max heap will be very similar to it, with the only difference

being the heap property.

Let’s discuss the implementation of the min heap using Python. We start with the heap class, as

follows:

 class MinHeap:

 def __init__(self):

 self.heap = [0]

 self.size = 0

We initialize the heap list with a zero to represent the dummy first element, and we are adding

a dummy element just to start the indexing of data items from 1 since if we start indexing from

1, accessing of the elements becomes very easy due to the parent-child relationship. We also

create a variable to hold the size of the heap. We will further discuss different operations, such

as insert, delete, and delete at a specific location in the heap. Let’s start with the insertion

operation in the heap.

Insert operation
The insertion of an item into a min heap works in two steps. First, we add the new element to the

end of the list (which we understand to be the bottom of the tree), and we increment the size of

the heap by one. Secondly, after each insertion operation, we need to arrange the new element up

in the heap tree, to organize all the nodes in such a way that satisfies the heap property, which in

this case is that each node must be larger than its parent. In other words, the value of the parent

node must always be less than or equal to its children, and the lowest element in the min-heap

needs to be the root element. Therefore, we first insert an element into the last heap of the tree;

however, after inserting an element into the heap, it is possible that the heap property is violated.

In that case, the nodes have to be rearranged so that all the nodes satisfy the heap property. This

process is called heapifying. To heapify the min heap, we need to find the minimum of its children

and swap it with the current element, and this process has to be repeated until the heap property

is satisfied for all the nodes.

Chapter 7 225

Let’s consider an example of adding an element in the min heap, such as inserting a new node

with a value of 2 in Figure 7.5:

Figure 7.5: Insertion of a new node 2 in the existing heap

The new element will be added to the last position in the third row or level. Its index value is 7. We

compare that value with its parent. The parent is at index 7/2 = 3 (integer division). The parent

node holds value 6, which is higher than the new node value (in other words, 2), so according to

the property of the min heap, we swap these values, as shown in Figure 7.6:

Figure 7.6: Swapping nodes 2 and 6 to maintain the heap property

The new data element has been swapped and moved up to index 3. Since, we have to check all

the nodes up to the root, we check the index of its parent node which is 3/2 = 1 (integer division),

so we continue the process to heapify.

So, we compare both of these elements, and swap again, as shown in Figure 7.7:

Figure 7.7: Swapping nodes 2 and 3 to maintain the heap property

Heaps and Priority Queues226

After the final swap, we reach the root. Here, we can notice that this heap adheres to the definition

of the min heap, as shown in Figure 7.8:

Figure 7.8: Final heap after insertion of a new node 2

Now, let’s take another example to see how to create and insert elements in a heap. We start with

the construction of a heap by inserting 10 elements, one by one. The elements are {4, 8, 7, 2, 9,

10, 5, 1, 3, 6}. We can see a step-by-step process to insert elements into the heap in Figure 7.9:

Figure 7.9: The step-by-step procedure to create a heap

Chapter 7 227

We can see, in the preceding diagram, a step-by-step process to insert elements into the heap.

Here, we continue adding elements, as shown in Figure 7.10:

Figure 7.10: Steps 7 to 9 in creating the heap

Finally, we insert an element, 6, into the heap, as shown in Figure 7.11:

Figure 7.11: Last step and construction of the final heap

Heaps and Priority Queues228

The implementation of the insertion operation in the heap is discussed as follows. Firstly, we

create a helper method, called the arrange, that takes care of arrangements of all the nodes after

insertion of a new node. Here is the implementation of the arrange() method, which should be

defined in the MinHeap class:

 def arrange(self, k):

 while k // 2 > 0:

 if self.heap[k] < self.heap[k//2]:

 self.heap[k], self.heap[k//2] = self.heap[k//2], self.
heap[k]

 k //= 2

We execute the loop until we reach up to the root node; until then, we can keep arranging the

element. Here, we are using integer division. The loop will break out after the following condition:

 while k // 2 > 0:

After that, we compare the values between the parent and child node. If the parent is greater than

the child, swap the two values:

 if self.heap[k] < self.heap[k//2]:

 self.heap[k], self.heap[k//2] = self.heap[k//2], self.heap[k]

Finally, after each iteration, we move up in the tree:

 k //= 2

This method ensures that the elements are ordered properly.

Now, for adding new elements in the heap, we need to use the following insert method, which

should be defined in the MinHeap class:

 def insert(self, item):

 self.heap.append(item)

 self.size += 1

 self.arrange(self.size)

In the above code, we can insert an element using the append method; then we increase the size of

the heap. Then, in the last line of the insert method, we call the arrange() method to reorganize

the heap (heapify it) to ensure that all the nodes in the heap satisfy the heap property.

Chapter 7 229

Now, let’s create the heap and insert that data {4, 8, 7, 2, 9, 10, 5, 1, 3, 6} using the

insert() method, which is defined in the MinHeap class, as shown in the following code:

 h = MinHeap()

 for i in (4, 8, 7, 2, 9, 10, 5, 1, 3, 6):

 h.insert(i)

We can print the heap list, just to inspect how the elements are ordered. If you redraw this as a

tree structure, you will notice that it meets the required properties of a heap, similar to what we

created manually:

 print(h.heap)

The output of the above code is as follows:

[0, 1, 2, 5, 3, 6, 10, 7, 8, 4, 9]

We can see in the output that all the data items of the heap in the array are as in the index position

as per Figure 7.11. Next, we will discuss the delete operation in the heap.

Delete operation
The delete operation removes an element from the heap. To delete any element from the heap,

let’s first discuss how we can delete the root element since it is mostly used for several use cases,

such as finding the minimum or maximum element in a heap. Remember, in a min-heap, the root

element denotes the minimum value of the list, and the root of the max-heap gives the maximum

value of the list of elements.

Once we delete the root element from the heap, we make the last element of the heap the new

root of the heap. In that case, the heap property will not be satisfied by the tree. So, we have to

reorganize the nodes of the tree such that all the nodes of the tree satisfy the heap property. The

delete operation in min-heap works as follows.

1.	 Once we delete the root node, we need a new root node. For this, we take the last item

from the list and make it the new root.

2.	 Since the selected last node might not be the lowest element of the heap, we have to

reorganize the nodes of the heap.

3.	 We reorganize the nodes from the root node to the last node (which is made into a new

root); this process is called heapify. Since we move from top to bottom (which means from

the root node down to the last element) of the heap, this process is called percolate down.

Heaps and Priority Queues230

Let’s consider an example to help us understand this concept in the following heap. First, we

delete the root node that has value 2, as shown in Figure 7.12:

Figure 7.12: Deletion of a node with value 2 at the root in the existing heap

Once we delete the root, next we need to choose a node that can be the new root; commonly, we

choose to take the last node, in other words, node 6 at index 7. So, the last element, 6, is placed

at the root position, as shown in Figure 7.13:

Figure 7.13: Moving the last element, in other words, node 6 to the root position

After moving the last element to the new root, clearly this tree is now not satisfying the min-heap

property. So, we have to reorganize the nodes of the heap, hence we move down from the root to

the nodes in the heap, that is, heapify the tree. So, we compare the value of the newly replaced

node with all its children nodes in the tree. In this example, we compare the two children of the

root, that is, 5 and 3. Since the right child is smaller, its index is 3, which is represented as (root

index * 2 + 1). We will go ahead with this node and compare the new root node with the value at

this index, as shown in Figure 7.14:

Chapter 7 231

Figure 7.14: Swapping of the root node with the node 3

Now, the node with value 6 should be moved down to index 3 as per the min heap property. Next,

we need to compare it to its children down to the heap. Here, we only have one child, so we don’t

need to worry about which child to compare it against (for a min heap, it is always the lesser

child), as shown in Figure 7.15:

Figure 7.15: Swapping of node 6 and node 10

There is no need to swap here since it is following the min-heap property. After reaching the last

one, the final heap adheres to the min-heap property.

In order to implement the deletion of the root node from the heap using Python, firstly, we im-

plement the percolate-down process, in other words, the sink() method. Before we implement

the sink() method, we implement a helper method for finding out which of the children to

compare against the parent node. This helper method is minchild(), which should be defined

in the MinHeap class:

 def minchild(self, k):

 if k * 2 + 1 > self.size:

 return k * 2

 elif self.heap[k*2] < self.heap[k*2+1]:

 return k * 2

 else:

 return k * 2 + 1

Heaps and Priority Queues232

In this method, firstly, we check if we get beyond the end of the list—if we do, then we return

the index of the left child:

 if k * 2 + 1 > self.size:

 return k * 2

Otherwise, we simply return the index of the lesser of the two children:

 elif self.heap[k*2] < self.heap[k*2+1]:

 return k * 2

 else:

 return k * 2 + 1

Now we can create the sink() method. The sink() method should be defined in the MinHeap class:

def sink(self, k):

 while k * 2 <= self.size:

 mc = self.minchild(k)

 if self.heap[k] > self.heap[mc]:

 self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]

 k = mc

In the above code, we first run the loop until the end of the tree so that we can sink (move down)

our element down as far as is needed; this is shown in the following code snippet:

 def sink(self, k):

 while k*2 <= self.size:

Next, we need to know which of the left or right children to compare against. This is where we

make use of the minindex() function, as shown in the following code snippet:

 mi = self.minchild(k)

Next, we compare parent and child to see whether we need to make the swap, as we did in the

arrange() method during the insertion operation:

 if self.heap[k] > self.heap[mc]:

 self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]

Finally, we need to make sure that we move down the tree in each iteration so that we don’t get

stuck in a loop, as follows:

 k = mc

Chapter 7 233

Now, we can implement the main delete_at_root() method itself, which should be defined in

the MinHeap class:

 def delete_at_root(self):

 item = self.heap[1]

 self.heap[1] = self.heap[self.size]

 self.size -= 1

 self.heap.pop()

 self.sink(1)

 return item

In the above code for deletion of the root node, we first copy the root element in a variable item,

and then the last element is moved to the root node in the following statement:

self.heap[1] = self.heap[self.size]

Further, we reduce the size of the heap, and remove the element from the heap, and then we use

the sink() method to reorganize the heap element so that all the elements of the heap follow

the heap property.

We can now use the following code to delete the root node from the heap. Let’s first insert some

data items {2, 3, 5, 7, 9, 10, 6} in the heap and then remove the root node:

h = MinHeap()

for i in (2, 3, 5, 7, 9, 10, 6):

 h.insert(i)

print(h.heap)

n = h.delete_at_root()

print(n)

print(h.heap)

The output of the above code is as follows:

[0, 2, 3, 5, 7, 9, 10, 6]

2

[0, 3, 6, 5, 7, 9, 10]

We can see in the output that the root element 2 is returned in the new heap, and that the data

elements are rearranged so that all the nodes of the heap are following the heap property (indexes

of the nodes can checked as shown in Figure 7.16). Next, we will discuss if we want to delete any

node with the given index position.

Heaps and Priority Queues234

Deleting an element at a specific location from a heap
Generally, we delete an element at the root, however, an element can be deleted at a specific

location from the heap. Let us understand it with an example. Given the following heap, let’s

assume that we want to delete a node with value 3 at index 2. After deleting the node with value

3, we move the last node to the deleted node, in other words, the node with value 15, as shown

in Figure 7.16:

Figure 7.16: The deletion of node 3 from the heap

After shifting the last element to the deleted node, we compare this with its root element since it

is already greater than the root element, so we do not swap. Next, we compare this element with

all of its children, and since the left child is smaller, it is swapped with the left child, as shown

in Figure 7.17:

Figure 7.17: A comparison of node 15 with 5 and 11, and swapping node 15 and node 5

After swapping node 15 with node 5, we move down in the heap. Next, we compare node 15 with

its child, node 8. Finally, node 8 and node 15 are swapped. Now, the final tree follows the heap

property, as shown in Figure 7.18:

Chapter 7 235

Figure 7.18: The final heap after swapping node 8 and node 15

The implementation of the delete operation for removing a data item at any given index location

is given below, which should be defined in the MinHeap class:

 def delete_at_location(self, location):
 item = self.heap[location]
 self.heap[location] = self.heap[self.size]
 self.size -= 1
 self.heap.pop()
 self.sink(location)
 return item

This implementation is very similar to what we have seen in the previous section for deleting the

root element. The only difference is that in this code, we have specified the index location that

has to be deleted. The following code snippet demonstrates the deletion of a node at a specific

location 2 from the heap created from data elements {4, 8, 7, 2, 9, 10, 5, 1, 3, 6}:

h = MinHeap()
for i in (4, 8, 7, 2, 9, 10, 5, 1, 3, 6):
 h.insert(i)
print(h.heap)

n = h.delete_at_location(2)
print(n)
print(h.heap)

The output of the preceding code is as follows:

[0, 1, 2, 5, 3, 6, 10, 7, 8, 4, 9]

2

[0, 1, 3, 5, 4, 6, 10, 7, 8, 9]

Heaps and Priority Queues236

In the above output, we see that, before and after, the heap nodes are placed according to their
index positions. We have discussed the concepts and implementation using examples of min-
heap; all these operations and concepts can be easily implemented for a max-heap by simply
reversing the logic in conditions where we ensured that the parent node should have smaller
values compared to the children in min-heap. Now in the case of max-heap, we have to make the
larger value in the parent. Heaps are used in various applications such as to implement heap sort
and priority queues, which we will discuss in subsequent sections.

Heap sort
Heap is an important data structure for sorting a list of elements since it is very suitable for a

large number of elements. If we want to sort a list of elements, say in ascending order, we can use

min-heap for this purpose; we first create a min-heap of all the given data elements, and as per

the heap property, the smallest data value will be stored at the root of the heap. With the help of

the heap property, it is straightforward to sort the elements. The process is as follows:

1.	 Create a min-heap using all the given data elements.

2.	 Read and delete the root element, which is the minimum value. After that, copy the last

element of the tree to the new root, and further reorganize the tree to maintain the heap

property.

3.	 Now, we repeat step 2 until we get all the elements.

4.	 Finally, we get the sorted list of elements.

The data elements are stored in the heap adhering to the heap property; whenever a new element

is added or deleted, the heap property is maintained using the arrange() and sink() helper

methods, respectively, as discussed in previous sections.

In order to implement heap sort using the heap data structure, first we create a heap with the

data items {4, 8, 7, 2, 9, 10, 5, 1, 3, 6} using the below code (details of the creation of

the heap are given in previous sections):

 h = MinHeap()

 unsorted_list = [4, 8, 7, 2, 9, 10, 5, 1, 3, 6]

 for i in unsorted_list:

 h.insert(i)

 print("Unsorted list: {}".format(unsorted_list))

In the above code, the min-heap, h, is created and the elements in unsorted_list are inserted.

After each call to the insert() method, the heap order property is restored by the subsequent

call to the sink method.

Chapter 7 237

After creation of the heap, next, we read and delete the root element. In each iteration, we get

the minimum value, and thus the data items in ascending order. The implementation of the

heap_sort() method should be defined in the minHeap class (it uses the delete_at_root()

method discussed in previous sections):

 def heap_sort(self):

 sorted_list = []

 for node in range(self.size):

 n = self.delete_at_root()

 sorted_list.append(n)

 return sorted_list

In the above code, we create an empty array, sorted_list, which stores all the data elements in

sorted order. Then we run the loop for the number of items in the list. In each iteration, we call

the delete_at_root() method to get the minimum value, which is appended to sorted_list.

Now we can use the heap sort algorithm using the following code:

print("Unsorted list: {}".format(unsorted_list))

print("Sorted list: {}".format(h.heap_sort()))

The output of the above code is as follows:

Unsorted list: [4, 8, 7, 2, 9, 10, 5, 1, 3, 6]

Sorted list: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The time complexity to build the heap using the insert method takes O(n) times. Further, to reor-

ganize the tree after deleting the root element takes O(log n) since we go from top to bottom in

the heap tree, and the height of the heap is log2(n), hence the complexity of rearranging the tree

is O(log n). So, overall, the worst-case time complexity of the heap sort is O(n logn). Heapsort is

very efficient in general, giving a worst-case, average-case and best-case complexity of O(nlogn).

Priority queues
A priority queue is a data structure that is similar to a queue in which data is retrieved based on

the First In, First Out (FIFO) policy, but in the priority queue, priority is attached with the data.

In the priority queue, the data is retrieved based on the priority associated with the data elements,

the data elements with the highest priority are retrieved before the lower priority data elements,

and if two data elements have the same priority, they are retrieved according to the FIFO policy.

Heaps and Priority Queues238

We can assign the priority of the data depending upon the application. It is used in many ap-

plications, such as CPU scheduling, and many algorithms also rely on priority queues, such as

Dijkstra’s shortest-path, A* search, and Huffman codes for data compression.

So, in the priority queue, the item with the highest priority is served first. The priority queue stores

the data according to the priority associated with the data, so insertion of an element will be at

a specific position in the priority queue. Priority queues can be considered as modified queues

that return the items in the order of highest priority instead of returning the items in the FIFO

order. A priority queue can be implemented by modifying an enqueue position by inserting the

item according to the priority. It is demonstrated in Figure 7.19, in which given the queue, a new

item 5 is added to the queue at a specific index (here assuming that the data items having higher

values have higher priority):

Figure 7.19: A demonstration of a priority queue

Let’s understand the priority queue with an example. When we receive data elements in an order,

the elements are enqueued in the priority queue in the order of priority (assuming that the higher

data value is of higher importance). Firstly, the priority queue is empty, so 3 is added initially in

the queue; the next data element is 8, which will be enqueued at the start since it is greater than

3. Next, the data item is 2, then 6, and finally, 10, which are enqueued in the priority queue as per

their priority, and when the dequeue operation is applied, the high priority item will be dequeued

first. All the steps are represented in Figure 7.20:

Chapter 7 239

Figure 7.20: A step-by-step procedure to create a priority queue

Let us discuss the implementation of a priority queue in Python. We first define the node class.

A node class will have the data elements along with the priority associated with the data in the

priority queue:

class for Node with data and priority

class Node:

 def __init__(self, info, priority):

 self.info = info

 self.priority = priority

Next, we define the PriorityQueue class and initialize the queue:

class for Priority queue

class PriorityQueue:

 def __init__(self):

 self.queue = []

Heaps and Priority Queues240

Next, let us discuss the implementation of the insertion operation for adding a new data element

to the priority queue. In the implementation, we assume that the data element has high priority

if it has a smaller priority value (for example, a data element with the priority value 1 has higher

priority compared to the data element that has a priority value 4). The following are cases of

insertion of elements in a priority queue:

1.	 Insertion of a data element to the priority queue when the queue is initially empty.

2.	 If the queue is not empty, we perform the traversal of the queue and reach the appropri-

ate index position in the queue according to the associated priorities by comparing the

priorities of the existing node with the new node. We add the new node before the node

that has a priority greater than the new node.

3.	 If the new node has a lower priority than the high priority value, then the node will be

added to the start of the queue.

The implementation of the insert() method is as follows, which should be defined in the

PriorityQueue class:

 def insert(self, node):

 if len(self.queue) == 0:

 # add the new node

 self.queue.append(node)

 else:

 # traverse the queue to find the right place for new node

 for x in range(0, len(self.queue)):

 # if the priority of new node is greater

 if node.priority >= self.queue[x].priority:

 # if we have traversed the complete queue

 if x == (len(self.queue)-1):

 # add new node at the end

 self.queue.insert(x+1, node)

 else:

 continue

 else:

 self.queue.insert(x, node)

 return True

In the above code, we first append a new data element when the queue is empty, and then we itera-

tively reach the appropriate position by comparing the priorities associated with the data elements.

Chapter 7 241

Next, when we apply the delete operation in the priority queue, the highest priority data element is

returned and removed from the queue. It should be defined in the PriorityQueue class as follows:

 def delete(self):

 # remove the first node from the queue

 x = self.queue.pop(0)

 print("Deleted data with the given priority-", x.info, x.priority)

 return x

In the preceding code, we get the top element with the highest priority value. Further, the im-

plementation of the show() method that prints all the data elements of the priority queue in the

order of the priorities should be defined in the PriorityQueue class:

 def show(self):

 for x in self.queue:

 print(str(x.info)+ " - "+ str(x.priority))

Now, let’s consider an example to see how to use the priority queue in which we firstly add data

elements ("Cat", “Bat", "Rat", "Ant", and "Lion") with associated priorities 13, 2, 1, 26, and 25,

respectively:

p = PriorityQueue()

p.insert(Node("Cat", 13))

p.insert(Node("Bat", 2))

p.insert(Node("Rat", 1))

p.insert(Node("Ant", 26))

p.insert(Node("Lion", 25))

p.show()

p.delete()

The output of the above code is as follows:

Rat – 1

Bat – 2

Cat – 13

Lion – 25

Ant – 26

Deleted data with the given priority- Rat 1

Heaps and Priority Queues242

Priority queues can be implemented using several data structures; in the above example, we

saw its implementation using a list of tuples where the tuple contains the priority as the first

element and the value data item as the next element. However, the priority queues are mostly

implemented using a heap, since it is efficient with the worst-case time complexity of O(log n)

in insertion and deletion operations.

The implementation of the priority queue using heap is very similar to what we have discussed in

the min-heap implementation. The only difference is that now we store the priorities associated

with the data elements, and we create a min-heap tree considering the priority values using a list

of tuples in Python. For completeness, the code for the priority queue using heaps is as follows:

class PriorityQueueHeap:

 def __init__(self):

 self.heap = [()]

 self.size = 0

 def arrange(self, k):

 while k // 2 > 0:

 if self.heap[k][0] < self.heap[k//2][0]:

 self.heap[k], self.heap[k//2] = self.heap[k//2], self.heap[k]

 k //= 2

 def insert(self,priority, item):

 self.heap.append((priority, item))

 self.size += 1

 self.arrange(self.size)

 def sink(self, k):

 while k * 2 <= self.size:

 mc = self.minchild(k)

 if self.heap[k][0] > self.heap[mc][0]:

 self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]

 k = mc

 def minchild(self, k):

 if k * 2 + 1 > self.size:

 return k * 2

 elif self.heap[k*2][0] < self.heap[k*2+1][0]:

Chapter 7 243

 return k * 2

 else:

 return k * 2 + 1

 def delete_at_root(self):

 item = self.heap[1][1]

 self.heap[1] = self.heap[self.size]

 self.size -= 1

 self.heap.pop()

 self.sink(1)

 return item

We use the code below to create a priority queue with data elements "Bat", "Cat", "Rat", "Ant",

"Lion", and "Bear" with the associated priority values 2, 13, 18, 26, 3, and 4, respectively:

h = PriorityQueueHeap()

h.insert(2, "Bat")

h.insert(13,"Cat")

h.insert(18, "Rat")

h.insert(26, "Ant")

h.insert(3, "Lion")

h.insert(4, "Bear")

h.heap

The output of the above code is as follows:

[(), (2, 'Bat'), (3, 'Lion'), (4, 'Bear'), (26, 'Ant'), (13, 'Cat'),
(18, 'Rat')]

In the above output, we can see that it shows a min-heap tree that adheres to the min-heap prop-

erty. Now we can use the code below to remove the data elements:

for i in range(h.size):

 n = h.delete_at_root()

 print(n)

 print(h.heap)

The output of the preceding code is as follows:

'Bat

[(), (3, 'Lion'), (13, 'Cat'), (4, 'Bear'), (26, 'Ant'), (18, 'Rat')]

Heaps and Priority Queues244

Lion

[(), (4, 'Bear'), (13, 'Cat'), (18, 'Rat'), (26, 'Ant')]

Bear

[(), (13, 'Cat'), (26, 'Ant'), (18, 'Rat')]

Cat

[(), (18, 'Rat'), (26, 'Ant')]

Rat

[(), (26, 'Ant')]

Ant

[()]

In the above output, we can see that the data items are produced according to the priorities as-

sociated with the data elements.

Summary
In this chapter, we have discussed an important data structure, in other words, the heap data

structure. We also discussed heap properties for min-heap and max-heap. We have seen the im-

plementation of several operations that can be applied to the heap data structure, such as heapi-

fying, and the insertion and deletion of a data element from the heap. We have also discussed

two of the important applications of the heap—heap sort and a priority queue. The heap is an

important data structure since it has many applications, such as sorting, selecting minimum and

maximum values in a list, graph algorithms, and priority queues. Moreover, the heap can also be

useful when we have to repeatedly remove a data object with the highest or lowest priority values.

In the next chapter, we will discuss the concepts of Hashing and Symbol Tables.

Exercises
1.	 What will be the time complexity for deleting an arbitrary element from the min-heap?

2.	 What will be the time complexity for finding the kth smallest element from the min-heap?

3.	 What will be the worst-case time complexity for ascertaining the smallest element from

a binary max-heap and binary min-heap?

4.	 What will be the time complexity to make a max-heap that combines two max-heap each

of size n?

Chapter 7 245

5.	 The level order traversal of max-heap is 12, 9, 7, 4, and 2. After inserting new elements 1

and 8, what will be the final max-heap and the level order traversal of the final max-heap?

6.	 Which of the following is a binary max-heap?

Figure 7.21: Example trees

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

8
Hash Tables

A hash table is a data structure that implements an associative array in which the data is stored

by mapping the keys to the values as key-value pairs. In many applications, we mostly require

different operations such as insert, search, and delete in a dictionary data structure. For example,

a symbol table is a data structure based on a hash table that is used by the compiler. A compiler

that translates a programming language maintains a symbol table in which keys are character

strings that are mapped to the identifiers. In such situations, a hash table is an effective data struc-

ture since we can directly compute the index of the required record by applying a hash function

to the key. So, instead of using the key as an array index directly, the array index is computed by

applying the hash function to the key. It makes it very fast to access an element from any index

from the hash table. The hash table uses the hashing function to compute the index of where the

data item should be stored in the hash table.

While looking up an element in the hash table, hashing of the key gives the index of the corre-

sponding record in the table. Ideally, the hash function assigns a unique value to each of the keys;

however, in practice, we may get hash collisions where the hash function generates the same

index for more than one key. In this chapter, we will be discussing different techniques that deal

with such collisions.

In this chapter, we will discuss all the concepts related to these, including:

•	 Hashing methods and hash table techniques

•	 Different collision resolution techniques in hash tables

Hash Tables248

Introducing hash tables
As we know, arrays and lists store the data elements in sequence. As in an array, the data items

are accessed by an index number. Accessing array elements using index numbers is fast. How-

ever, they are very inconvenient to use when it is required to access any element when we can’t

remember the index number. For example, if we wish to extract the phone number for a person

from the address book at index 56, there is nothing to link a particular contact with number 56.

It is difficult to retrieve an entry from the list using the index value.

Hash tables are a data structure better suited to this kind of problem. A hash table is a data struc-

ture where elements are accessed by a keyword rather than an index number, unlike in lists and

arrays. In this data structure, the data items are stored in key-value pairs similar to dictionaries.

A hash table uses a hashing function in order to find an index position where an element should

be stored and retrieved. This gives us fast lookups since we are using an index number that cor-

responds to the hash value of the key.

An overview of how the hash table stores the data is shown in Figure 8.1, in which key values

are hashed using any hash function to obtain the index position of the record in the hash table.

Figure 8.1: An example of a hash table

Dictionaries are a widely used data structure, often built using hash tables. A dictionary uses a

keyword instead of an index number, and it stores data in (key, value) pairs. That is, instead of

accessing the contact with the index value, we use the key value in the dictionary data structure.

The following code demonstrate the working of dictionaries that store the data in (key, value)

pairs:

my_dict={"Basant" : "9829012345", "Ram": "9829012346", "Shyam":
"9829012347", "Sita": "9829012348"}

Chapter 8 249

print("All keys and values")

for x,y in my_dict.items():

 print(x, ":" , y) #prints keys and values

my_dict["Ram"]

The output of the preceding code is as follows:

Basant : 9829012345

Ram : 9829012346

Shyam : 9829012347

Sita : 9829012348

'9829012346'

Hash tables stores the data in a very efficient way so that retrieval can be very fast. Hash tables

are based on a concept called hashing.

Hashing functions
Hashing is a technique in which, when we provide data of arbitrary size to a function, we get a

small, simplified value. This function is called a hash function. Hashing uses a hash function to

map the keys to another range of data in a way that a new range of keys can be used as an index in

the hash table; in other words, hashing is used to convert the key values to integer values, which

can be used as an index in the hash table.

In our discussions in this chapter, we are using hashing to convert strings into integers. We could

have used any other data type in place of strings that can be converted into integers. Let’s take

an example. Say, we want to hash the expression hello world, that is, we want to get a numeric

value corresponding to this string that can be used as an index in the hash table.

In Python, the ord() function returns a unique integer value (known as ordinal values) that is

mapped to a character in the Unicode encoding system. The ordinal values map the Unicode

character to a unique numerical representation provided the character is Unicode-compatible,

for example, numbers 0-127 are mapped to ASCII characters, which also correspond to the ordi-

nal values within Unicode systems. However, the range of Unicode encoding may be larger. So,

Unicode encoding is a superset of ASCII. For example, in Python, we get a unique ordinal value

102 for character ‘f' by using ord('f'). Further, to get the hash of the whole string, we could just

sum the ordinal numbers of each character in the string. See the following code snippet:

sum(map(ord, 'hello world'))

Hash Tables250

The output of the above is as follows:

1116

In the above output, we obtain a numeric value, 1116, for the hello world string, which is the
hash of the given string. Consider the following Figure 8.2 to see the ordinal values of each char-
acter in the string that results in the hash value 1116:

Figure 8.2: Ordinal values of each character for the hello world string

The preceding approach used to obtain the hash value for a given string has the problem that
more than one string can have the same hash value; for example, when we change the order of
the characters in the string and we have the same hash value. See the following code snippet

where we get the same hash value for the 'world hello' string:

sum(map(ord, 'world hello'))

The output of the above is as follows:

1116

Again, there would be the same hash value for the 'gello xorld' string, as the sum of the ordinal

values of the characters for this string would be the same since g has an ordinal value that is one

less than that of h, and x has an ordinal value that is one greater than that of w. See the following

code snippet:

sum(map(ord, 'gello xorld'))

The output of the above is as follows:

1116

Look at the following Figure 8.3, where we can see that the hash value for this 'gello xorld'

string is again 1116:

Figure 8.3: Ordinal values of each character for the gello xorld string

Chapter 8 251

In practice, most of the hashing functions are imperfect and face collisions. This means that a

hash function gives the same hash value to more than one string. Such collisions are undesirable

for implementing the hash table.

Perfect hashing functions
A perfect hashing function is one by which we get a unique hash value for a given string (it can

be any data type; here, we are using a string data type as an example). Our aim is to create a hash

function that minimizes the number of collisions, is fast, easy to compute, and distributes the

data items equally in the hash table. But, normally, creating an efficient hash function that is fast

as well as providing a unique hash value for each string is very difficult. If we try to develop a

hash function that avoids collisions, this becomes very slow, and a slow hash function does not

serve the purpose of the hash table. So, we use a fast hash function and try to find a strategy to

resolve the collisions rather than trying to find a perfect hash function.

To avoid the collisions in the hash function discussed in the previous section, we can add a multi-

plier to the ordinal value of each character that continuously increases as we progress in the string.

Furthermore, the hash value of the string can be obtained by adding the multiplied ordinal value

of each character. To better understand the concept, refer to the following Figure 8.4:

Figure 8.4: Ordinal values multiplied by numeric values for each character of the hello world
string

In the preceding Figure 8.4, the ordinal value of each character is progressively multiplied by a

number. Note that row two has the ordinal values of each character; row three shows the mul-

tiplier value; and, in row four, we get values by multiplying the values of rows two and three so

that 104 x 1 equals 104. Finally, we add all of these multiplied values to get the hash value of

the hello world string, that is, 6736.

The implementation of this concept is shown in the following function:

def myhash(s):

 mult = 1

 hv = 0

Hash Tables252

 for ch in s:

 hv += mult * ord(ch)

 mult += 1

 return hv

We can test this function on the strings that we used earlier, shown as follows:

for item in ('hello world', 'world hello', 'gello xorld'):

 print("{}: {}".format(item, myhash(item)))

When we execute the preceding code, we get the following output:

hello world: 6736

world hello: 6616

gello xorld: 6742

We can see that this time, we get different hash values for these three strings. Still, this is not a

perfect hash. Let’s now try the strings ad and ga:

for item in ('ad', 'ga'):

 print("{}: {}".format(item, myhash(item)))

The output of the preceding code snippet is as follows:

ad: 297

ga: 297

So, we still do not have a perfect hash function since we get the same hash values for these two

different strings. Therefore, we need to devise a strategy for resolving such collisions. We will

discuss more strategies to resolve collisions in the next sections.

Resolving collisions
Each position in the hash table is often called a slot or bucket that can store an element. Each

data item in the form of a (key, value) pair is stored in the hash table at a position that is decided

by the hash value of the key. Let’s take an example in which firstly we use the hashing function

that computes the hash value by summing up the ordinal values of all the characters. Then, we

compute the final hash value (in other words, the index position) by computing the total ordinal

values of module 256. Here, we use 256 slots/buckets as an example. We can use any number of

slots depending upon how many records we require in the hash table. We show a sample hash in

Figure 8.5, which has key strings corresponding to data values, for example, the eggs key string

has the corresponding data value 123456789.

Chapter 8 253

This hash table uses a hashing function that maps the input string hello world to a hash value

of 92, which finds a slot position in the hash table:

Figure 8.5: A sample hash table

Once we know the hash value of the key, it will be used to find the position where the element

should be stored in the hash table. So, we need to find an empty slot. We start at the slot that

corresponds to the hash value of the key. If that slot is empty, we insert the data item there. And,

if the slot is not empty, that means we have a collision. It means that we have a hash value for

the item that is the same as a previously stored item in the table. We need to ascertain a strategy

to avoid such collisions or conflicts.

For example, in the following diagram, the key string hello world is already stored in the table

at index position 92, and with a new key string, for example, world hello, we get the same hash

value of 92. This means that there is a collision. Refer to the following Figure 8.6 depicting this

concept:

Figure 8.6: Hash values of two strings are the same

Hash Tables254

One way of resolving this kind of collision is to find another free slot from the position of the

collision. This collision resolution process is called open addressing.

Open addressing
In open addressing, the key values are stored in the hash table, and collisions are resolved using

the probing technique. Open addressing a collision resolution technique used in hash tables.

The collision is resolved by searching (also called probing) an alternate position until we get an

unused slot in the hash table to store the data item.

There are three popular approaches for an open addressing-based collision resolution technique:

1.	 Linear probing

2.	 Quadratic probing

3.	 Double hashing

Linear probing
The systematic way of visiting each slot is a linear way of resolving collisions, in which we linearly

look for the next available slot by adding 1 to the previous hash value where we get the collision.

This is known as linear probing. We can resolve the conflict by adding 1 to the sum of the ordinal

values of each character in the key string, which is further used to compute the final hash value

by taking its modulo according to the size of the hash table.

Let’s consider an example. First, compute the hash value of the key. If the position is occupied,

we check the hash table sequentially for the next free slot. Let’s use this to resolve a collision, as

shown in the following Figure 8.7, wherein, for the key string egg, the sum of ordinal values comes

to 307, and then we compute the hash value by taking the module 256, which gives the hash val-

ue for the egg key string as 51. However, data is already stored at this position, so this means a

collision. Therefore, we add 1 to the hash value that is computed by the sum of the ordinal values

of each character of the string. In this way, we obtain a new hash value, 52, for this key string to

store the data. Refer to the following Figure 8.7, which depicts the above process:

Chapter 8 255

Figure 8.7: An example of collision resolution

In order to find the next free slot in the hash table, we increment the hashing value, and this incre-

ment is fixed in the case of linear probing. Due to a fixed increment in the hashing value when we

get collisions, the new data element is always stored at the next available index position given by

the hash function. This creates a continuous cluster of occupied index positions, with this cluster

growing whenever we get another data element that has a hash value anywhere within the cluster.

So, one major drawback of this approach is that the hash table can have consecutive occupied

positions that are called clusters of items. In this case, one portion of the hash table may become

dense, with the other part of the table remaining empty. Because of these limitations, we may

prefer to use a different strategy to resolve collisions such as quadrant probing or double hashing,

which we will discuss in forthcoming sections. Let us first discuss the implementation of the hash

table with linear probing as a collision resolution technique, and after understanding the concept

of linear probing, we will discuss other collision resolution techniques.

Hash Tables256

Implementing hash tables
To implement the hash table, we start by creating a class to hold hash table items. These need to

have a key and a value since the hash table is a {key-value} store:

class HashItem:

 def __init__(self, key, value):

 self.key = key

 self.value = value

Next, we start working on the hash table class itself. As usual, we start with a constructor:

class HashTable:

 def __init__(self):

 self.size = 256

 self.slots = [None for i in range(self.size)]

 self.count = 0

Standard Python lists can be used to store data elements in a hash table. Let’s set the size of the

hash table to 256 elements to start with. Later, we will look at strategies for how to grow the hash

table as we begin filling it up. We will now initialize a list containing 256 elements in the code.

These are the positions where the elements are to be stored—the slots or buckets. So, we have

256 slots to store elements in the hash table. It is important to note the difference between the

size and count of a table. The size of a table refers to the total number of slots in the table (used or

unused). The count of the table refers to the number of slots that are filled, meaning the number

of actual (key-value) pairs that have been added to the table.

Now, we have to decide on a hashing function for the table. We can use any hash function. Let’s

take the same hash function that returns the sum of ordinal values for each character in the strings

with a slight modification. Since this hash table has 256 slots, that means we need a hashing

function that returns a value in the range of 0 to 255 (the size of the table). A good way of doing

it is to return the remainder of dividing the hash value by the size of the table since the remainder

would surely be an integer value between 0 and 255.

Since the hashing function is only meant to be used internally by the class, we put an underscore

(_) at the beginning of the name to indicate this. This is a Python convention for indicating that

something is intended for internal use. Here is the implementation of the hash function, which

should be defined in the HashTable class:

def _hash(self, key):

Chapter 8 257

 mult = 1

 hv = 0

 for ch in key:

 hv += mult * ord(ch)

 mult += 1

 return hv % self.size

For the time being, we are assuming that keys are strings. We will discuss how non-string keys

can be used later. For now, the _hash() function is going to generate the hash value for a string.

Storing elements in a hash table
To store the elements in the hash table, we add them to the table with the put() function and

retrieve them with the get() function. First, we will look at the implementation of the put()

function. We start by adding the key and the value to the HashItem class and then compute the

hash value of the key. The put() method should be defined in the HashTable class:

def put(self, key, value):

 item = HashItem(key, value)

 h = self._hash(key)

 while self.slots[h] != None:

 if self.slots[h].key == key:

 break

 h = (h + 1) % self.size

 if self.slots[h] == None:

 self.count += 1

 self.slots[h] = item

 self.check_growth()

After obtaining the hash value of the key and if the slot is not empty, the next free slot is checked

by adding 1 to the previous hash value by applying the linear probing technique. Consider the

following code:

while self.slots[h] != None:

 if self.slots[h].key == key:

 break

 h = (h + 1) % self.size

If the slot is empty, then we increase the count by one and store the new element (meaning the

slot contained None previously) in the list at the required position. Refer to the following code:

Hash Tables258

if self.slots[h] is None:

 self.count += 1

self.slots[h] = item

self.check_growth()

In the above code, we have created a hash table and discussed the put() method for storing the

data element in the hash table with the linear probing technique at the time of the collision.

In the last line of the preceding code, we call a check_growth() method, which is used to expand

the size of the hash table when we have a very limited number of empty slots remaining in the

hash table. We will discuss this in more detail in the next section.

Growing a hash table
In the example that we have discussed, we have fixed the hash table size at 256. It is obvious that,

when we add the elements to the hash table, the hash table starts filling up, and at some point,

all of the slots would be filled up and the hash table will be full. To avoid such a situation, we can

grow the size of the table when it is starting to get full.

To grow the size of the hash table, we compare the size and the count in the table. size is the

total number of slots, and count denotes the number of slots that contain elements. So, if count is

equal to size, this means we have filled up the table. The load factor of the hash table is generally

used to expand the size of the table; that gives us an indication of how many available slots of

the table have been used. The load factor of the hash table is computed by dividing the number

of used slots by the total number of slots in the table. It is defined as follows:

Load factor = n/k

Here, n is the number of used slots, and k is the total number of slots. As the load factor value

approaches 1, this means that the table is going to be filled, and we need to grow the size of the

table. It is better to grow the size of the table before it gets almost full, as the retrieval of elements

from the table becomes slow when the table fills up. A value of 0.75 for the load factor may be a

good value to grow the size of the table. Another question is how much we should increase the

size of the table. One strategy would be to simply double its size.

The problem of linear probing is that as the load factor increases, it takes a long time to find the

insertion point for the new element. Moreover, in the case of the open addressing collision res-

olution technique, we should grow the size of the hash table depending upon the load factor to

reduce the number of collisions.

Chapter 8 259

The implementation of growing the hash table when the load factor increases more than the

threshold is as follows. First, we redefine the HashTable class that includes one more variable,

MAXLOADFACTOR, that is used to ensure that the load factor of the hash table is always below the

predefined maximum load factor. The HashTable class is defined as follows:

class HashTable:
 def __init__(self):
 self.size = 256
 self.slots = [None for i in range(self.size)]
 self.count = 0
 self.MAXLOADFACTOR = 0.65

Next, we check the load factor of the hash table after adding any record to the hash table using

the following check_growth() method, which should be defined in the HashTable class:

 def check_growth(self):
 loadfactor = self.count / self.size
 if loadfactor > self.MAXLOADFACTOR:
 print("Load factor before growing the hash table", self.count
/ self.size)
 self.growth()
 print("Load factor after growing the hash table", self.count /
self.size)

In the preceding code, we compute the load factor of the table, and then we check if it is more

than the set threshold (in other words, MAXLOADFACTOR is a variable that we initialize at the time

of creating a hash table). In that case, we call the growth() method that increases the hash table

size (in this example, we are doubling the hash table size). The growth() method, which should

be defined in the HashTable class, is implemented as follows:

 def growth(self):
 New_Hash_Table = HashTable()
 New_Hash_Table.size = 2 * self.size
 New_Hash_Table.slots = [None for i in range(New_Hash_Table.size)]

 for i in range(self.size):
 if self.slots[i] != None:
 New_Hash_Table.put(self.slots[i].key, self.slots[i].value)

 self.size = New_Hash_Table.size
 self.slots = New_Hash_Table.slots

Hash Tables260

In the preceding code, we firstly create a new hash table double the size of the original hash table

and then we initialize all of its slots to be None. Next, we check all the filled slots in the original

hash table where we have the data, since we have to insert all these existing records into the new

hash table, hence, we call the put() method with all the key-value pairs of the existing hash table.

Once we copy all the records to the new hash table, we replace the size and slots of the existing

table with the new hash table.

Let’s create a hash table with a maximum capacity of 10 records and a threshold load factor of 65%

by defining self.size = 10 in the __init__ method in the HashTable class, meaning whenever

a seventh record is added to the hash table, we call a check_growth() method:

ht = HashTable()

ht.put("good", "eggs")

ht.put("better", "ham")

ht.put("best", "spam")

ht.put("ad", "do not")

ht.put("ga", "collide")

ht.put("awd", "do not")

ht.put("add", "do not")

ht.checkGrow()

In the above code, we add seven records using the put() method. The output of the preceding

code is as follows:

Load factor before growing the hash table 0.7

Load factor after growing the hash table 0.35

In the above output, we can see that the load factor before and after adding the seventh record

became half of the load factor before growing the hash table.

In the next section, we will discuss the get() method for retrieving the data element that we

have stored in the hash table.

Retrieving elements from the hash table
To retrieve the elements from the hash table, the value stored corresponding to the key would be

returned. Here, we discuss the implementation of the retrieval method—the get() method. This

method returns the value stored in the table corresponding to the given key.

Chapter 8 261

Firstly, we compute the hash of the given key corresponding to the value that is to be retrieved.

Once we have the hash value of the key, we look up the hash table at the position of the hash

value. If the key item is matched with the stored key value at that location, the corresponding

value is retrieved.

If that does not match, then we add 1 to the sum of the ordinal values of all the characters in the

string, similar to what we did at the time of storing the data, and we look at the newly obtained hash

value. We keep searching until we get the key element, or we check all the slots in the hash table.

Here, we used the linear probing technique to resolve the collision, and hence we use the same

technique when retrieving the data element from the hash table. Hence, if we were to use a dif-

ferent technique, let’s say double hashing or quadratic probing at the time of storing the data

element, we should use the same method to retrieve the data element. Consider an example to

understand the concept in Figure 8.8, and in the following four steps:

1.	 We compute the hash value for the given key string, egg, which turns out to be 51. Then,

we compare this key with the stored key value at location 51, but it does not match.

2.	 As the key does not match, we compute a new hash value.

3.	 We look up the key at the location of the newly created hash value, which is 52; we compare

the key string with the stored key value and, here, it matches, as shown in the following

diagram.

4.	 The stored value is returned corresponding to this key value in the hash table. See the

following Figure 8.8:

Figure 8.8: Four steps are demonstrated for retrieving an element from the hash table

Hash Tables262

To implement this retrieval method, that is, the get() method, we start by calculating the hash

of the key. Next, we look up the computed hash value in the table. If there is a match, we return

the corresponding stored value. Otherwise, we keep looking at the new hash value location com-

puted as described. Here is the implementation of the get() method, which should be defined

in the HashTable class:

def get(self, key):

 h = self._hash(key) # computed hash for the given key

 while self.slots[h] != None:

 if self.slots[h].key == key:

 return self.slots[h].value

 h = (h+ 1) % self.size

 return None

Finally, we return None if the key was not found in the table; we could have printed the message

that the key is not found in the hash table.

Testing the hash table
To test the hash table, we create HashTable and store a few elements in it, and then try to retrieve

them. We can use get() method to find out if a record exists for a given key. We also use the two

strings, ad and ga, that had the collision and returned the same hash value with our hashing

function. To evaluate the work of the hash table, we throw this collision as well, just to see that

the collision is properly resolved. Refer to the example code, as follows:

ht = HashTable()

ht.put("good", "eggs")

ht.put("better", "ham")

ht.put("best", "spam")

ht.put("ad", "do not")

ht.put("ga", "collide")

for key in ("good", "better", "best", "worst", "ad", "ga"):

 v = ht.get(key)

 print(v)

After executing the above code, we get the following output:

eggs

ham

Chapter 8 263

spam

none

do not

collide

As you can see, looking up the worst key returns None, since the key does not exist. The ad and ga

keys also return their corresponding values, showing that the collision between them is handled

properly.

Implementing a hash table as a dictionary
Using the put() and get() methods to store and retrieve elements in the hash table may look

slightly inconvenient. However, we can also use the hash table as a dictionary, as it would be

easier to use. For example, we would like to use ht["good"] instead of ht.get("good") to retrieve

elements from the table.

This can easily be done with the special methods, __setitem__() and __getitem__(), which

should be defined in the HashTable class.

See the following code for this:

def __setitem__(self, key, value):

 self.put(key, value)

def __getitem__(self, key):

 return self.get(key)

Now, our test code would be like the following:

ht = HashTable()

ht["good"] = "eggs"

ht["better"] = "ham"

ht["best"] = "spam"

ht["ad"] = "do not"

ht["ga"] = "collide"

for key in ("good", "better", "best", "worst", "ad", "ga"):

 v = ht[key]

 print(v)

print("The number of elements is: {}".format(ht.count))

Hash Tables264

The output of the preceding code is as follows:

eggs

ham

spam

none

do not

collide

The number of elements is: 5

Notice that we also print the number of elements already stored in the hash table using the count

variable. The above code does the same thing as we did in the previous section, but it is just more

convenient to use.

In the next section, we discuss the quadratic probing technique for collision resolution.

Quadratic probing
This is also an open addressing scheme for resolving collisions in hash tables. It resolves the

collision by computing the hash value of the key and adding successive values of a quadratic

polynomial; the new hash is iteratively computed until an empty slot is found. If a collision occurs,

the next free slots are checked at the locations h + 12, h + 22, h + 32, h + 42, and so on. Hence, the

new hash value is computed as follows:

new-hash(key) = (old-hash-value + i2)

Here, hash-value = key mod table_size

When we have a key as strings, we compute the hash value using the sum of the ordinal values

multiplied by numeric values for each character, and then we pass it the hash function to finally

obtain the hash of the key string. However, in the case of non-string key elements, we can use

the hash function directly to compute the hash of the key.

Let us take a simple example of a hash table in which we have seven slots and assume that the

hash function is h(key) = key mod 7. To understand the concept of quadratic probing, let’s

assume that we have key element values that are the hash of the given key strings.

So, whenever we use the quadratic probing technique to ascertain the next index positions to

store a data element when we have a collision, we should perform the following steps to resolve

the collision:

Chapter 8 265

1.	 Initially, since we have an empty table, when we get a key element of 15 (assuming it is

a hash of the given string), we compute the hash value using our given hash function, in

other words, 15 mod 7= 1. So, the data element is stored at index position 1.

2.	 Then, let’s say we get a key element of 22 (assuming it is a hash of the next given string),

we use the hash function to compute the hash value, in other words, 22 mod 7 = 1, it

gives the index position 1. Since index position 1 is already occupied, there is a collision,

so we compute a new hash value using quadratic probing, which is (1+ 12 = 2). The new

index position is 2. Therefore, the data element is stored at index position 2.

3.	 Next, assuming that we get a data element of 29 (assuming it is a hash of the given string),

we compute the hash value 29 mod 7 = 1. Since we have a collision here, we compute the

hash value again as in step 2, but we get another collision here, so we have to recompute

the hash value once more, in other words (1+22 = 5), so the data is stored at that location.

The above example of resolving the process using the quadratic probing technique is shown in

Figure 8.9:

Figure 8.9: Example of collision resolution using quadratic probing

The quadratic probing technique for collision avoidance does not suffer from the formation of

clusters of items in the same way as linear probing; however, it does suffer from secondary clus-

tering. Secondary clustering creates a long run of filled slots since the data elements that have

the same hash value will also have the same probe sequence.

Hash Tables266

We discussed the implementation of a hash table in the previous section with the addition and

retrieval of data elements, and we used the linear probing technique to resolve the collision. Now,

we can update the implementation of the hash table if we want to use any other collision resolu-

tion technique, such as the quadratic probing technique. All the methods will be the same in the

HashTable class except the following two methods, which should be defined in the HashTable class:

 def get_quadratic(self, key):

 h = self._hash(key)

 j = 1

 while self.slots[h] != None:

 if self.slots[h].key == key:

 return self.slots[h].value

 h = (h+ j*j) % self.size

 j = j + 1

 return None

 def put_quadratic(self, key, value):

 item = HashItem(key, value)

 h = self._hash(key)

 j = 1

 while self.slots[h] != None:

 if self.slots[h].key == key:

 break

 h = (h + j*j) % self.size

 j = j+1

 if self.slots[h] == None:

 self.count += 1

 self.slots[h] = item

 self.check_growth()

The above code of the get_quadratic() and put_quadratic() methods are similar to the im-

plementation of the get() and put() methods that we discussed earlier, except for the fact that

the code statements are in bold in the preceding codes. The bold statements are indicating that

at the time of the collision, we check the next empty slot using the quadratic probing formula:

ht = HashTable()

ht.put_quadratic("good", "eggs")

Chapter 8 267

ht.put_quadratic("ad", "packt")

ht.put_quadratic("ga", "books")

v = ht.get_quadratic("ga")

print(v)

In the above code, we first add three data elements along with their associated values, and then

we search for a data item with the key "ga" in the hash table. The output of the preceding code

is as follows:

books

The above output corresponds to the key string "ga", which is correct as per the input data stored

in the hash table. Next, we will discuss another collision resolution technique – double hashing.

Double hashing
In the double hashing collision resolution technique, we use two hashing functions. This tech-

nique works as follows. Firstly, the primary hash function is used to compute the index position

in the hash table, and whenever we get a collision, we use another hash function to decide the

next free slot to store the data by incrementing the hashing value.

In order to find the next free slot in the hash table, we increment the hashing value, and this in-

crement is fixed in the case of linear probing and quadratic probing. Due to a fixed increment in

the hashing value when we get collisions, the record is always moved to the next available index

position given by the hash function. It creates a continuous cluster of occupied index positions.

This cluster grows whenever we get another record that has a hash value anywhere within the

cluster.

However, in the case of the double hashing technique, the probing interval depends on the key

data itself, meaning that we always map to the different index positions in the hash table when-

ever we get a collision, which, in turn, helps in avoiding the formation of clusters.

The probing sequence for this collision resolving technique is as follows:

(h1(key)+i*h2(key))mod table_size

h1(key) = key mod table_size

It is important to note here that the second hash function should be fast, easy to compute, should

not evaluate to 0, and should be different from the first hash function.

Hash Tables268

One choice for the second hash function can be defined as follows:

h2(key) = prime_number - (key mod prime_number)

In the above hash function, the prime number should be less than the table size.

For example, let’s say we have a hash table that can have a maximum of seven slots when we add

data elements {15, 22, 29} to this table in sequence. The following steps are performed to store

these data elements in the hash table using the double hashing technique when we get a collision:

1.	 Firstly, we have data element 15, and we compute the hash value using the primary hash

function, in other words, (15 mod 7 = 1). Since the table is empty initially, we store the

data at index position 1.

2.	 Next, the data element is 22, and we compute the hash value using the primary hash

function, in other words, (22 mod 7 = 1). Since the index position 1 is already filled, this

means there is a collision. Next, we use the secondary hashing function defined above as

h2(key) = prime_number - (key mod prime_number) to ascertain the next index posi-

tions in the hash table. Here, we assume that the prime number less than the table size is

5. This means that the next index position in the hash table will be (1 + 1*(5 - (22 mod

5))) mod 7, which is equivalent to 4. So, we store this data element at index position 4.

3.	 Next, we have data element 29, so we compute the hash value using the primary hashing

function, in other words, (29 mod 7 =1). We get a collision, and now we use the secondary

hash function to establish the next index position for storing the data element, in other

words, (1 + 1*(5 - (29 mod 5))) mod 7, which turns out to be 2, so we store this data

element at location 2.

Chapter 8 269

The above example of the process of resolving the collision using double hashing is shown in

Figure 8.10:

Figure 8.10: Example of collision resolution using double hashing

Let us now see how we can implement the hash table with the double hashing technique to resolve

the collision. The put_double_hashing() and get_ double_hashing () methods are given as

follows, which should be defined in the HashTable class.

The following h2() method is used to compute the sum of the ordinal values since, in our exam-

ples, we have strings as a key element:

 def h2(self, key):

 mult = 1

 hv = 0

 for ch in key:

 hv += mult * ord(ch)

 mult += 1

 return hv

Hash Tables270

Furthermore, we should redefine the hash table to include a prime number as a variable that will

be used in computing the secondary hash function:

class HashTable:

 def __init__(self):

 self.size = 256

 self.slots = [None for i in range(self.size)]

 self.count = 0

 self.MAXLOADFACTOR = 0.65

 self.prime_num = 5

The following code is designed to insert a data element and associated value in the hash table

and use the double hashing technique at the time of collision:

 def put_double_hashing(self, key, value):

 item = HashItem(key, value)

 h = self._hash(key)

 j = 1

 while self.slots[h] != None:

 if self.slots[h].key == key:

 break

 h = (h + j * (self.prime_num - (self.h2(key) % self.prime_
num))) % self.size

 j = j+1

 if self.slots[h] == None:

 self.count += 1

 self.slots[h] = item

 self.check_growth()

 def get_double_hashing(self, key):

 h = self._hash(key)

 j = 1

 while self.slots[h] != None:

 if self.slots[h].key == key:

 return self.slots[h].value

 h = (h + j * (self.prime_num - (self.h2(key) % self.prime_
num))) % self.size

 j = j + 1

 return None

Chapter 8 271

The above code of the get_doubleHashing() and put_doubleHashing() methods are very sim-

ilar to the implementation of the get() and put() methods that we discussed earlier, except for

the statements that are in bold in the preceding codes. The statements in bold are showing that

at the time of the collision, we use the double hashing technique formula to get the next empty

slot in the hash table:

ht = HashTable()

ht.put_doubleHashing("good", "eggs")

ht.put_doubleHashing("better", "spam")

ht.put_doubleHashing("best", "cool")

ht.put_doubleHashing("ad", "donot")

ht.put_doubleHashing("ga", "collide")

ht.put_doubleHashing("awd", "hello")

ht.put_doubleHashing("addition", "ok")

for key in ("good", "better", "best", "worst", "ad", "ga"):

 v = ht.get_doubleHashing(key)

 print(v)

print("The number of elements is: {}".format(ht.count))

In the above code, we first insert seven different data elements along with their associated val-

ues, and then we search and check a few random data items in the hash table. The output of the

preceding code is as follows:

eggs

spam

cool

none

donot

collide

The number of elements is: 7

In the above output, we can observe that the key string worst is not present in the hash table,

meaning the output corresponding to this is None.

Linear probing leads to primary clustering, while quadratic probing may lead to secondary clus-

tering, whereas the double hashing technique is one of the most effective methods for collision

resolution since it does not yield any clusters. The advantage of this technique is that it produces

a uniform distribution of records in the hash table.

Hash Tables272

In open addressing collision resolution techniques, we search for another empty slot within

the hash table, as we did in linear probing, quadratic probing, and double hashing. “closed” in

“closed hashing” refers to the fact that we do not leave the hash table, and every record is stored

at an index position given by the hash function, hence “closed hashing” and “open addressing”

are synonyms.

On the other hand, when a record is always stored at an index position given by the hash function,

this is known as the “closed addressing,” or “open hashing,” technique. Here, “open” in “open

hashing” refers to the fact that we are open to leaving the hash table through a separate list where

the data elements can be stored; for example, separate chaining is a closed addressing technique.

In the next section, we will discuss another collision resolution technique – the chaining technique.

Separate chaining
Separate chaining is another method to handle the problem of collision in hash tables. It solves this

problem by allowing each slot in the hash table to store a reference to many items at the position

of a collision. So, at the index of a collision, we are allowed to store multiple items in the hash table.

In chaining, the slots in the hash table are initialized with empty lists. When a data element is

inserted, it is appended to the list that corresponds to that element’s hash value. For example,

in the following Figure 8.11, there is a collision for the key strings hello world and world hello.

In the case of chaining, both data elements are stored using a list at the index position given by

the hash function, in other words, 92 in the example shown in Figure 8.11. Here is an example to

show collision resolution using chaining:

Figure 8.11: Example of collision resolution using chaining

Chapter 8 273

One more example is shown in Figure 8.12, wherein if we have many data elements that have a

hash value of 51, all of these elements would be added to the list that exists in the same slot of

the hash table:

Figure 8.12: More than one element having the same hash value stored in a list

Chaining then avoids conflict by allowing multiple elements to have the same hash value. Hence,

there is no limit in terms of the number of elements that can be stored in a hash table, whereas,

in the case of open addressing collision resolution techniques, we had to fix the size of the table,

which we need to later grow when the table is filled up. Moreover, the hash table can hold more

values than the number of available slots, since each slot holds a list that can grow.

However, there is a problem with chaining—it becomes inefficient when a list grows at a particular

hash value location. As a particular slot has many items, searching them can become very slow

since we have to do a linear search through the list until we find the element that has the key we

want. This can slow down retrieval, which is not good since hash tables are meant to be efficient.

Hence, the worst-case time complexity for searching in a separate chaining algorithm using linked

lists is O(n), because in the worst case, all the items will be added to only one index position in

the hash table, and searching an item will work just similar to a linked list. The following Figure

8.13 demonstrates a linear search through list items until we find a match:

Figure 8.13: Demonstration of a linear search for the hash value of 51

So, there is a problem with the slow retrieval of items when a particular position in a hash table

has many entries. This problem can be resolved using another data structure in place of using a

list that can perform fast searching and retrieval. There is a nice choice of using binary search

trees (BSTs), which provide fast retrieval, as we discussed in the previous chapter.

Hash Tables274

We could simply insert an (initially empty) BST into each slot, as shown in the following Figure 8.14:

Figure 8.14: BST for a bucket for the hash value of 51

In the preceding diagram, the 51 slot holds a BST, which we use to store and retrieve the data

items. However, we would still have a potential problem—depending on the order in which the

items were added to the BST, we could end up with a search tree that is as inefficient as a list.

That is, each node in the tree has exactly one child. To avoid this, we would need to ensure that

our BST is self-balancing.

Here is the implementation of the hash table with separate chaining. Firstly, we create a Node

class to store the key-value pairs and one pointer for pointing to the next node in the linked list:

class Node:

 def __init__(self, key=None, value=None):

 self.key = key

 self.value = value

 self.next = None

Next, we define the singly linked list, the details of which are provided in Chapter 4, Linked Lists.

Here, we have defined the append() method for adding a new data record to the linked list:

class SinglyLinkedList:
 def __init__ (self):
 self.tail = None
 self.head = None

 def append(self, key, value):
 node = Node(key, value)
 if self.tail:
 self.tail.next = node
 self.tail = node else:

Chapter 8 275

 self.head = node
 self.tail = node

Next, we define the traverse() method, which prints all the data records with key-value pairs.

The traverse() method should be defined in the SinglyLinkedList class. We start from the

head node, and move the next nodes while iterating through the while loop:

 def traverse(self):
 current = self.head
 while current:
 print("\"", current.key, "--", current.value, "\"")
 current = current.next

Next, we define a search() method that matches the key that we want to search in the linked list.

If the key matches any of the nodes, the corresponding key-value pair is printed. The search()

method should be defined in the SinglyLinkedList class:

 def search(self, key):
 current = self.head
 while current:
 if current.key == key:
 print("\"Record found:", current.key, "-", current.value,
"\"")
 return True
 current = current.next
 return False

Once, we have defined the linked list and all the required methods, we define the HashTableChaining

class, in which we initialize the hash table with its size and all the slots with an empty linked list:

class HashTableChaining:

 def __init__(self):

 self.size = 6

 self.slots = [None for i in range(self.size)]

 for x in range(self.size) :

 self.slots[x] = SinglyLinkedList()

Hash Tables276

Next, we define the hash function, in other words, _hash(), similar to what we have discussed

in previous sections:

 def _hash(self, key):

 mult = 1

 hv = 0

 for ch in key:

 hv += mult * ord(ch)

 mult += 1

 return hv % self.size

Then, we define the put() method to insert a new data record in the hash table. Firstly, we create

a node with key-pair pairs and then compute the index position based on the hash function. Then,

we append the node at the end of the linked list associated with the given index position. The

put() method should be defined in the HashTableChaining class:

 def put(self, key, value):

 node = Node(key, value)

 h = self._hash(key)

 self.slots[h].append(key, value)

Next, we define the get() method to retrieve the data elements given the key value from the

hash table. Firstly, we compute the index position using the same hash function that we used at

the time of adding the records to the hash table, and then we search the required data record in

the linked list associated with the given index position computed. The get() method should be

defined in the HashTableChaining class:

 def get(self, key):

 h = self._hash(key)

 v = self.slots[h].search(key)

Finally, we can define the printHashTable() method, which prints the complete hash table

showing all the records of the hash table:

 def printHashTable(self) :

 print("Hash table is :- \n")

 print("Index \t\tValues\n")

 for x in range(self.size) :

 print(x,end="\t\n")

 self.slots[x].traverse()

Chapter 8 277

We can use the following code to insert a few sample data records in the hash table and we use

the chaining technique to store the data. Then, we search a data record with the key string best,

and we also print the complete hash table:

ht = HashTableChaining()

ht.put("good", "eggs")

ht.put("better", "ham")

ht.put("best", "spam")

ht.put("ad", "do not")

ht.put("ga", "collide")

ht.put("awd", "do not")

ht.printHashTable()

The output of the preceding code is as follows:

Hash table is :-

Index Values

0

1

2

" good - eggs "

3

" better - ham "

" ad - do not "

" ga - collide "

4

5

" best - spam "

" awd - do not "

The above output shows how all the data records are stored at each index position in the hash

table. We can observe that multiple data records are stored at the same index position given by

the hash function.

Hash tables are important data structures for storing data in key-value pairs, and we can use

any of the collision resolution techniques, in other words, open addressing or separate chaining.

Open addressing techniques are very fast when the keys are uniformly distributed in the hash

table, but there is a possible complication of cluster formation.

Hash Tables278

The separate chaining technique does not have the problem of clustering, but it may become

slower when all the data records are hashed to a very few index positions in the hash table.

Symbol tables
Symbol tables are used by compilers and interpreters to keep track of the symbols and different

entities, such as objects, classes, variables, and function names, that have been declared in a pro-

gram. Symbol tables are often built using hash tables since it is important to efficiently retrieve

a symbol from the table.

Let’s look at an example. Suppose we have the following Python code in the symb.py file:

 name = "Joe"

 age = 27

Here, we have two symbols, name and age. Each symbol has a value; for example, the name symbol

has the value Joe, and the age symbol has the value 27. A symbol table allows the compiler or the

interpreter to look up these values. So, the name and age symbols become keys in the hash table.

All of the other information associated with them becomes the value of the symbol table entry.

In compilers, symbol tables can have other symbols as well, such as functions and class names.

For example, the greet() function and two variables, in other words, name and age, are stored

in the symbol table as shown in Figure 8.15:

Figure 8.15: Example of a symbol table

Chapter 8 279

The compiler creates a symbol table for each of its modules that are loaded in memory at the

time of its execution. Symbol tables are one of the important applications of hash tables, which

are mostly used in the compilers and interpreters to efficiently store and retrieve the symbols

and associated values.

Summary
In this chapter, we discussed hashing techniques and the data structure of hash tables. We learned

about the implementation and concepts of different operations performed on hash tables. We also

discussed several collision resolution techniques, including open addressing techniques, namely,

linear probing, quadratic probing, and double hashing. Furthermore, we discussed another kind

of collision resolution method – separate chaining. Finally, we looked at symbol tables, which are

often built using hash tables. Symbol tables allow a compiler or an interpreter to look up a symbol

(such as a variable, function, or class) that has been defined and retrieve all the information about

it. In the next chapter, we will discuss graph algorithms in detail.

Exercise
1.	 There is a hash table with 40 slots and there are 200 elements stored in the table. What

will be the load factor of the hash table?

2.	 What is the worst-case search time of hashing using a separate chaining algorithm?

3.	 Assume a uniform distribution of keys in the hash table. What will be the time complex-

ities for the Search/Insert/Delete operations?

4.	 What will be the worst-case complexity for removing duplicate characters from an array

of characters?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

9
Graphs and Algorithms

Graphs are a non-linear data structure, in which the problem is represented as a network by con-

necting a set of nodes with edges, like a telephone network or social network. For example, in a

graph, nodes can represent different cities while the links between them represent edges. Graphs

are one of the most important data structures; they are used to solve many computing problems,

especially when the problem is represented in the form of objects and their connection, e.g. to find

out the shortest path from one city to another city. Graphs are useful data structures for solving

real-world problems in which the problem can be represented as a network-like structure. In

this chapter, we will be discussing the most important and popular concepts related to graphs.

In this chapter, we will learn about the following concepts:

•	 The concept of the graph data structure

•	 How to represent a graph and traverse it

•	 Different operations and their implementation on graphs

First, we will be looking into the different types of graphs.

Graphs
A graph is a set of a finite number of vertices (also known as nodes) and edges, in which the edges

are the links between vertices, and each edge in a graph joins two distinct nodes. Moreover, a

graph is a formal mathematical representation of a network, i.e. a graph G is an ordered pair of

a set V of vertices and a set E of edges, given as G = (V, E) in formal mathematical notation.

Graphs and Algorithms282

An example of a graph is shown in Figure 9.1:

Figure 9.1: An example of a graph

The graph G = (V, E) in Figure 9.1 can be described as below:

•	 V = {A, B, C, D, E}

•	 E = {{A, B}, {A, C}, {B, C}, {B, D}, {C, D}, {D, D}, {B, E}, {D, E}}

•	 G = (V, E)

Let’s discuss some of the important definitions of a graph:

•	 Node or vertex: A point or node in a graph is called a vertex. In the preceding diagram,

the vertices or nodes are A, B, C, D, and E and are denoted by a dot.

•	 Edge: This is a connection between two vertices. The line connecting A and B is an ex-

ample of an edge.

•	 Loop: When an edge from a node is returned to itself , that edge forms a loop, e.g. D node.

•	 Degree of a vertex/node: The total number of edges that are incidental on a given vertex

is called the degree of that vertex. For example, the degree of the B vertex in the previous

diagram is 4.

•	 Adjacency: This refers to the connection(s) between any two nodes; thus, if there is a con-

nection between any two vertices or nodes, then they are said to be adjacent to each other.

For example, the C node is adjacent to the A node because there is an edge between them.

•	 Path: A sequence of vertices and edges between any two nodes represents a path. For

example, CABE represents a path from the C node to the E node.

•	 Leaf vertex (also called pendant vertex): A vertex or node is called a leaf vertex or pendant

vertex if it has exactly one degree.

Now, we shall take a look at the different types of graphs.

Chapter 9 283

Directed and undirected graphs
Graphs are represented by the edges between the nodes. The connecting edges can be considered

directed or undirected. If the connecting edges in a graph are undirected, then the graph is called

an undirected graph, and if the connecting edges in a graph are directed, then it is called a direct-

ed graph. An undirected graph simply represents edges as lines between the nodes. There is no

additional information about the relationship between the nodes, other than the fact that they

are connected. For example, in Figure 9.2, we demonstrate an undirected graph of four nodes, A,

B, C, and D, which are connected using edges:

Figure 9.2: An example of an undirected graph

In a directed graph, the edges provide information on the direction of connection between any

two nodes in a graph. If an edge from A node to B is said to be directed, then the edge (A, B) would

not be equal to the edge (B, A). The directed edges are drawn as lines with arrows, which will

point in whichever direction the edge connects the two nodes.

For example, in Figure 9.3, we show a directed graph where many nodes are connected using

directed edges:

Figure 9.3: An example of a directed graph

Graphs and Algorithms284

The arrow of an edge determines the flow of direction. One can only move from A to B, as shown

in the preceding diagram—not B to A. In a directed graph, each node (or vertex) has an indegree

and an outdegree. Let’s have a look at what these are:

•	 Indegree: The total number of edges that come into a vertex in the graph is called the

indegree of that vertex. For example, in the previous diagram, the E node has 1 indegree,

due to edge CE coming into the E node.

•	 Outdegree: The total number of edges that go out from a vertex in the graph is called the

outdegree of that vertex. For example, the E node in the previous diagram has an outde-

gree of 2, as it has two edges, EF and ED, going out of that node.

•	 Isolated vertex: A node or vertex is called an isolated vertex when it has a degree of zero,

as shown as G node in Figure 9.3.

•	 Source vertex: A vertex is called a source vertex if it has an indegree of zero. For example,

in the previous diagram, the A node is the source vertex.

•	 Sink vertex: A vertex is a sink vertex if it has an outdegree of zero. For example, in the

previous diagram, the F node is the sink vertex.

Now that we understand how directed graphs work, we can look into directed acyclic graphs.

Directed acyclic graphs
A directed acyclic graph (DAG) is a directed graph with no cycles; in a DAG all the edges are

directed from one node to another node so that the sequence of edges never forms a closed loop.

A cycle in a graph is formed when the starting node of the first edge is equal to the ending node

of the last edge in a sequence.

A DAG is shown in Figure 9.4 in which all the edges in the graph are directed and the graph does

not have any cycles:

Figure 9.4: An example of a directed acyclic graph

Chapter 9 285

So, in a directed acyclic graph, if we start on any path from a given node, we never find a path

that ends on the same node. A DAG has many applications, such as in job scheduling, citation

graphs, and data compression.

Next, we will discuss weighted graphs.

Weighted graphs
A weighted graph is a graph that has a numeric weight associated with the edges in the graph. A

weighted graph can be either a directed or an undirected graph. The numeric weight can be used

to indicate distance or cost, depending on the purpose of the graph:

Figure 9.5: An example of a weighted graph

Let’s consider an example – Figure 9.5 indicates different ways to reach from A node to D node.

There are two possible paths, such as from A node to D node, or it can be nodes A-B-C-D through

B node and C node. Now, depending on the weights associated with the edges, any one of the

paths can be considered better than the others for the journey – e.g. assume the weights in this

graph represent the distance between two nodes, and we want to find out the shortest path be-

tween A-D nodes; then one possible path A-D has an associated cost of 40, and another possible

path A-B-C-D has an associated cost of 25. In this case, the better path is A-B-C-D, which has a

lower distance.

Next, we will discuss bipartite graphs.

Bipartite graphs
A bipartite graph (also known as a bigraph) is a special graph in which all the nodes of the graph

can be divided into two sets in such a way that edges connect the nodes from one set to the nodes

of another set. See Figure 9.6 for a sample bipartite graph; all the nodes of the graphs are divided

into two independent sets, i.e., set U and set V, so that each edge in the graph has one end in set

U and another end in set V (e.g. in edge (A, B), one end or one vertex is from set U, and another

end or another vertex is from set V).

Graphs and Algorithms286

In bipartite graphs, no edge will connect to the nodes of the same set:

Figure 9.6: An example of a bipartite graph

Bipartite graphs are useful when we need to model a relationship between two different classes

of objects, for example, a graph of applicants and jobs, in which we may need to model the rela-

tionship between these two different groups; another example may be a bipartite graph of football

players and clubs in which we may need to model if a player has played for a particular club or not.

Next, we will discuss different graph representation techniques.

Graph representations
A graph representation technique means how we store the graph in memory, i.e., how we store
the vertices, edges, and weights (if the graph is a weighted graph). Graphs can be represented
with two methods, i.e. (1) an adjacency list, and (2) an adjacency matrix.

An adjacency list representation is based on a linked list. In this, we represent the graph by main-
taining a list of neighbors (also called an adjacent node) for every vertex (or node) of the graph.
In an adjacency matrix representation of a graph, we maintain a matrix that represents which
node is adjacent to which other node in the graph; i.e., the adjacency matrix has the information
of every edge in the graph, which is represented by cells of the matrix.

Either of these two representations can be used; however, our choice depends on the application
where we will be using the graph representation. An adjacency list is preferable when we expect
that the graph is going to be sparse and we will have a smaller number of edges; e.g. if a graph of
200 nodes has say 100 edges, it is better to store this kind of graph in an adjacency list, because if
we use an adjacency matrix, the size of the matrix will be 200x200 with a lot of zero values. The
adjacency matrix is preferable when we expect the graph to have a lot of edges, and the matrix
will be dense. In the adjacency matrix, the lookup and check for the presence or absence of an
edge are very easy compared to adjacency list representation.

Chapter 9 287

We will be discussing adjacency matrices in detail in subsequent sections. First, we will take a

look at adjacency lists.

Adjacency lists
In this representation, all the nodes directly connected to a node x are listed in its adjacent list

of nodes. The graph is represented by displaying the adjacent list for all the nodes of the graph.

Two nodes, A and B, in the graph shown in Figure 9.7, are said to be adjacent if there is a direct

connection between them:

Figure 9.7: A sample graph of five nodes

A linked list can be used to implement the adjacency list. In order to represent the graph, we

need the number of linked lists equal to the total number of nodes in the graph. At each index,

the adjacent nodes to that vertex are stored. For example, consider the adjacency list shown in

Figure 9.8 corresponding to the sample graph shown in Figure 9.7:

Figure 9.8: Adjacency list for the graph shown in Figure 9.7

Graphs and Algorithms288

Here, the first node represents the A vertex of the graph, with its adjacent nodes being B and C. The

second node represents the B vertex of the graph, with its adjacent nodes of E, C, and A. Similarly,

the other vertices, C, E, and F, of the graph are represented with their adjacent nodes, as shown

in the previous Figure 9.8.

Using a list for the representation is quite restrictive, because we lack the ability to directly use

the vertex labels. So, to implement a graph efficiently using Python, a dictionary data structure

is used since it is more suitable to represent the graph. To implement the same graph using a

dictionary data structure, we can use the following code snippet:

graph = dict()

graph['A'] = ['B', 'C']

graph['B'] = ['E','C', 'A']

graph['C'] = ['A', 'B', 'E','F']

graph['E'] = ['B', 'C']

graph['F'] = ['C']

Now we can easily establish that the A vertex has the adjacent vertices of B and C. The F vertex

has the C vertex as its only neighbor. Similarly, the B vertex has adjacent vertices of E, C, and A.

The adjacency list is a preferable graph representation technique when the graph is going to be

sparse and we may need to add or delete the nodes in the graph frequently. However, it is very

difficult to check whether a given edge is present in the graph or not using this technique.

Next, we will discuss another method of graph representation, i.e., the adjacency matrix.

Adjacency matrix
Another approach to representing a graph is to use an adjacency matrix. In this, the graph is

represented by showing the nodes and their interconnections through edges. Using this method,

the dimensions (V x V) of a matrix are used to represent the graph, where each cell denotes an

edge in the graph. A matrix is a two-dimensional array. So, the idea here is to represent the cells

of the matrix with a 1 or a 0, depending on whether two nodes are connected by an edge or not.

We show an example graph, along with its corresponding adjacency matrix, in Figure 9.9:

Chapter 9 289

Figure 9.9: Adjacency matrix for a given graph

An adjacency matrix can be implemented using the given adjacency list. To implement the adja-

cency matrix, let’s take the previous dictionary-based implementation of the graph. Firstly, we

have to obtain the key elements of the adjacency matrix. It is important to note that these matrix

elements are the vertices of the graph. We can get the key elements by sorting the keys of the

graph. The code snippet for this is as follows:

matrix_elements = sorted(graph.keys())

cols = rows = len(matrix_elements)

Next, the length of the keys of the graph will be the dimensions of the adjacency matrix, which

are stored in cols and rows. The values of the cols and rows are equal.

So, now, we create an empty adjacency matrix of the dimensions cols by rows, initially filling

all the values with zeros. The code snippet to initialize an empty adjacency matrix is as follows:

adjacency_matrix = [[0 for x in range(rows)] for y in range(cols)]

edges_list = []

The edges_list variable will store the tuples that form the edges in the graph. For example, an

edge between the A and B nodes will be stored as (A, B). The multidimensional array is filled using

a nested for loop:

for key in matrix_elements:

 for neighbor in graph[key]:

 edges_list.append((key, neighbor))

print(edges_list)

Graphs and Algorithms290

The neighbors of a vertex are obtained by graph[key]. The key, in combination with the neighbor,

is then used to create the tuple stored in edges_list.

The output of the preceding Python code for storing the edges of the graph is as follows:

[('A', 'B'), ('A', 'C'), ('B', 'E'), ('B', 'C'), ('B', 'A'), ('C', 'A'),
('C', 'B'), ('C', 'E'), ('C', 'F'), ('E', 'B'), ('E', 'C'), ('F', 'C')]

The next step in implementing the adjacency matrix is to fill it, using 1 to denote the presence of

an edge in the graph. This can be done with the adjacency_matrix[index_of_first_vertex]

[index_of_second_vertex] = 1 statement. The full code snippet that marks the presence of

edges of the graph is as follows:

for edge in edges_list:

 index_of_first_vertex = matrix_elements.index(edge[0])

 index_of_second_vertex = matrix_elements.index(edge[1])

 adjacency_matrix[index_of_first_vertex][index_of_second_vertex] = 1

print(adjacency_matrix)

The matrix_elements array has its rows and cols, starting from A to all other vertices with indices

of 0 to 5. The for loop iterates through the list of tuples and uses the index method to get the

corresponding index where an edge is to be stored.

The output of the preceding code is the adjacency matrix for the sample graph shown previously

in Figure 9.9. The adjacency matrix produced looks like the following:

[0, 1, 1, 0, 0]

[1, 0, 0, 1, 0]

[1, 1, 0, 1, 1]

[0, 1, 1, 0, 0]

[0, 0, 1, 0, 0]

At row 1 and column 1, 0 represents the absence of an edge between A and A. Similarly, at row 3

and column 2 there is a value of 1 that denotes the edge between the C and B vertices in the graph.

The use of the adjacency matrix for graph representation is suitable when we have to frequently
look up and check the presence or absence of an edge between two nodes in the graph, e.g. in cre-
ating routing tables in networks, searching routes in public transport applications and navigation
systems, etc. Adjacency matrices are not suitable when nodes are frequently added or deleted
within a graph, in those situations, the adjacency list is a better technique.

Chapter 9 291

Next, let us discuss different graph traversal methods in which we visit all the nodes of the given

graph.

Graph traversals
A graph traversal means to visit all the vertices of the graph while keeping track of which nodes

or vertices have already been visited and which ones have not. A graph traversal algorithm is effi-

cient if it traverses all the nodes of the graph in the minimum possible time. Graph traversal, also

known as a graph search algorithm, is quite similar to the tree traversal algorithms like preorder,

inorder, postorder, and level order algorithms; similar to them, in a graph search algorithm we

start with a node and traverse through edges to all other nodes in the graph.

A common strategy of graph traversal is to follow a path until a dead end is reached, then tra-

verse back up until there is a point where we meet an alternative path. We can also iteratively

move from one node to another in order to traverse the full graph or part of it. Graph traversal

algorithms are very important in answering many fundamental problems—they can be useful

to determine how to get from one vertex to another in a graph, and which path from A node to B

node in a graph is better than other paths. For example, graph traversal algorithms can be useful

in finding out the shortest route from one city to another in a network of cities.

In the next section, we will discuss two important graph traversal algorithms: breadth-first

search (BFS) and depth-first search (DFS).

Breadth-first traversal
Breadth-first search (BFS) works very similarly to how a level order traversal algorithm works in

a tree data structure. The BFS algorithm also works level by level; it starts by visiting the root node

at level 0, and then all the nodes at the first level directly connected to the root node are visited at

level 1. The level 1 node has a distance of 1 from the root node. After visiting all the nodes at level 1,

the level 2 nodes are visited next. Likewise, all the nodes in the graph are traversed level by level

until all the nodes are visited. So, breadth-first traversal algorithms work breadthwise in the graph.

A queue data structure is used to store the information of vertices that are to be visited in a graph.

We begin with the starting node. Firstly, we visit that node, and then we look up all of its neigh-

boring, or adjacent, vertices. We first visit these adjacent vertices one by one, while adding their

neighbors to the list of vertices that are to be visited. We follow this process until we have visited

all the vertices of the graph, ensuring that no vertex is visited twice.

Graphs and Algorithms292

Let’s consider an example to better understand the working of the breadth-first traversal for

graphs, using the sample shown in Figure 9.10:

Figure 9.10: A sample graph

In Figure 9.10, we have a graph of five nodes on the left, and on the right, a queue data structure

to store the vertices to be visited. We start visiting the first node, i.e., A node, and then we add all

its adjacent vertices, B, C, and E, to the queue. Here, it is important to note that there are multi-

ple ways of adding the adjacent nodes to the queue since there are three nodes, B, C, and E, that

can be added to the queue as either BCE, CEB, CBE, BEC, or ECB, each of which would give us

different tree traversal results.

All of these possible solutions to the graph traversal are correct, but in this example, we add the

nodes in alphabetical order just to keep things simple in the queue, i.e., BCE. The A node is visited

as shown in Figure 9.11:

Figure 9.11: Node A is visited in breadth-first traversal

Once we have visited the A vertex, next, we visit its first adjacent vertex, B, and add those adjacent

vertices of vertex B that are not already added in the queue or not visited. In this case, we have

to add the D vertex (since it has two vertices, A and D nodes, out of which A is already visited) to

the queue, as shown in Figure 9.12:

Chapter 9 293

Figure 9.12: Node B is visited in breadth-first traversal

Now, after visiting the B vertex, we visit the next vertex from the queue—the C vertex. And again,

add those adjacent vertices that have not already been added to the queue. In this case, there are

no unrecorded vertices left, as shown in Figure 9.13:

Figure 9.13: Node C is visited in breadth-first traversal

After visiting the C vertex, we visit the next vertex from the queue, the E vertex, as shown in

Figure 9.14:

Figure 9.14: Node E is visited in breadth-first traversal

Graphs and Algorithms294

Similarly, after visiting the E vertex, we visit the D vertex in the last step, as shown in Figure 9.15:

Figure 9.15: D node is visited in breadth-first traversal

Therefore, the BFS algorithm for traversing the preceding graph visits the vertices in the order of

A-B-C-E-D. This is one of the possible solutions to the BFS traversal for the preceding graph, but

we can get many possible solutions, depending on how we add the adjacent nodes to the queue.

To understand the implementation of this algorithm in Python, we will use another example of

an undirected graph, as shown in Figure 9.16:

Figure 9.16: An undirected sample graph

The adjacency list for the graph shown in Figure 9.16 is as follows:

graph = dict()

graph['A'] = ['B', 'G', 'D']

Chapter 9 295

graph['B'] = ['A', 'F', 'E']

graph['C'] = ['F', 'H']

graph['D'] = ['F', 'A']

graph['E'] = ['B', 'G']

graph['F'] = ['B', 'D', 'C']

graph['G'] = ['A', 'E']

graph['H'] = ['C']

After storing the graph using the adjacency list, the implementation of the BFS algorithm is as

follows, which we will discuss with an example in detail:

from collections import deque

def breadth_first_search(graph, root):

 visited_vertices = list()

 graph_queue = deque([root])

 visited_vertices.append(root)

 node = root

 while len(graph_queue) > 0:

 node = graph_queue.popleft()

 adj_nodes = graph[node]

 remaining_elements = set(adj_nodes).difference(set(visited_
vertices))

 if len(remaining_elements) > 0:

 for elem in sorted(remaining_elements):

 visited_vertices.append(elem)

 graph_queue.append(elem)

 return visited_vertices

To traverse this graph using the breadth-first algorithm, we first initialize the queue and the source

node. We start traversal from A node. Firstly, A node is queued and added to the list of visited

nodes. Afterward, we use a while loop to affect the traversal of the graph. In the first iteration of

the while loop, node A is dequeued.

Graphs and Algorithms296

Next, all the unvisited adjacent nodes of A node, which are B, D, and G, are sorted in alphabetical

order and queued up. The queue now contains nodes B, D, and G. This is shown in Figure 9.17:

Figure 9.17: Node A is visited using the BFS algorithm

For implementation, we add all these nodes (B, D, G) to the list of visited nodes, and then we add

the adjacent/neighboring nodes of these nodes. At this point, we start another iteration of the

while loop. After visiting A node, B node is dequeued. Out of its adjacent nodes (A, E, and F), A

node has already been visited. Therefore, we only queue the E and F nodes in alphabetical order,

as shown in Figure 9.18.

When we want to find out whether a set of nodes is in the list of visited nodes, we use the

remaining_elements = set(adj_nodes).difference(set(visited_vertices)) statement.

This uses the set object’s difference method to find the nodes that are in adj_nodes, but not

in visited_vertices:

Figure 9.18: Node B is visited using the BFS algorithm

Chapter 9 297

The queue now holds the following nodes at this point—D, G, E, and F. The D node is dequeued,

but all of its adjacent nodes have been visited, so we simply dequeue it. The next node at the front

of the queue is G. We dequeue the G node, but we also find out that all its adjacent nodes have

been visited because they are in the list of visited nodes. So, the G node is also dequeued. We

dequeue the E node too because all of its adjacent nodes have also been visited. The only node

in the queue now is the F node; this is shown in Figure 9.19:

Figure 9.19: Node E is visited using the BFS algorithm

The F node is dequeued, and we see that out of its adjacent nodes, B, D, and C, only C has not been

visited. We then enqueue the C node and add it to the list of visited nodes, as shown in Figure 9.20:

Figure 9.20: Node E is visited using the BFS algorithm

Then, the C node is dequeued. C has the adjacent nodes of F and H, but F has already been visited,

leaving the H node. The H node is enqueued and added to the list of visited nodes. Finally, the

last iteration of the while loop will lead to the H node being dequeued.

Graphs and Algorithms298

Its only adjacent node, C, has already been visited. Once the queue is empty, the loop breaks. This

is shown in Figure 9.21:

Figure 9.21: Final node H is visited using the BFS algorithm

The output of the traversal of the given graph using the BFS algorithm is A, B, D, G, E, F, C, and H.

When we run the above BFS code on the graph shown in Figure 9.16 using the following code:

print(breadth_first_search(graph, 'A'))

We get the following sequence of nodes when we traverse the graph shown in Figure 9.16:

['A', 'B', 'D', 'G', 'E', 'F', 'C', 'H']

In the worst-case scenario, each node and the edge will need to be traversed, and hence each

node will be enqueued and dequeued at least once. The time taken for each enqueue and dequeue

operation is O(1), so the total time for this is O(V). Further, the time spent scanning the adjacency

list for every vertex is O(E). So, the total time complexity of the BFS algorithm is O(|V| + |E|),

where |V| is the number of vertices or nodes, while |E| is the number of edges in the graph.

The BFS algorithm is very useful for constructing the shortest path traversal in a graph with

minimal iterations. As for some of the real-world applications of BFS, it can be used to create an

efficient web crawler in which multiple levels of indexes can be maintained for search engines,

and it can maintain a list of closed web pages from a source web page. BFS can also be useful

for navigation systems in which neighboring locations can be easily retrieved from a graph of

different locations.

Chapter 9 299

Next, we will discuss another graph traversal algorithm, i.e., the depth-first search algorithm.

Depth-first search
As the name suggests, the depth-first search (DFS) or traversal algorithm traverses the graph

similar to how the preorder traversal algorithm works in trees. In the DFS algorithm, we traverse

the tree in the depth of any particular path in the graph. As such, child nodes are visited first

before sibling nodes.

In this, we start with the root node; firstly we visit it, and then we see all the adjacent vertices of

the current node. We start visiting one of the adjacent nodes. If the edge leads to a visited node,

we backtrack to the current node. And, if the edge leads to an unvisited node, then we go to that

node and continue processing from that node. We continue the same process until we reach a

dead end when there is no unvisited node; in that case, we backtrack to previous nodes, and we

stop when we reach the root node while backtracking.

Let’s take an example to understand the working of the DFS algorithm using the graph shown

in Figure 9.22:

Figure 9.22: An example graph for understanding the DFS algorithm

Graphs and Algorithms300

We start by visiting the A node, and then we look at the neighbors of the A vertex, then a neigh-

bor of that neighbor, and so on. After visiting the A vertex, we visit one of its neighbors, B (in our

example, we sort alphabetically; however, any neighbor can be added), as shown in Figure 9.23:

Figure 9.23: Nodes A and B are visited in depth-first traversal

After visiting the B vertex, we look at another neighbor of A, that is, S, as there is no vertex con-

nected to B that can be visited. Next, we look for the neighbors of the S vertex, which are the C

and G vertices. We visit C as shown in Figure 9.24:

Figure 9.24: Node C is visited in depth-first traversal

Chapter 9 301

After visiting the C node, we visit its neighboring vertices, D and E, as shown in Figure 9.25:

Figure 9.25: D and E nodes are visited in depth-first traversal

Similarly, after visiting the E vertex, we visit the H and G vertices, as shown in Figure 9.26:

Figure 9.26: H and F nodes are visited in depth-first traversal

Graphs and Algorithms302

Finally, we visit the F node, as shown in Figure 9.27:

Figure 9.27: F node is visited in depth-first traversal

The output of the DFS traversal is A-B-S-C-D-E-H-G-F.

To implement DFS, we start with the adjacency list of the given graph. Here is the adjacency list

of the preceding graph:

graph = dict()

graph['A'] = ['B', 'S']

graph['B'] = ['A']

graph['S'] = ['A','G','C']

graph['D'] = ['C']

graph['G'] = ['S','F','H']

graph['H'] = ['G','E']

graph['E'] = ['C','H']

graph['F'] = ['C','G']

graph['C'] = ['D','S','E','F']

The implementation of the DFS algorithm begins with creating a list to store the visited nodes. The

graph_stack stack variable is used to aid the traversal process. We are using a Python list as a stack.

Chapter 9 303

The starting node, called root, is passed with the graph’s adjacency matrix, graph. Firstly, the root

is pushed onto the stack. The statement node = root is for holding the first node in the stack:

def depth_first_search(graph, root):

 visited_vertices = list()

 graph_stack = list()

 graph_stack.append(root)

 node = root

 while graph_stack:

 if node not in visited_vertices:

 visited_vertices.append(node)

 adj_nodes = graph[node]

 if set(adj_nodes).issubset(set(visited_vertices)):

 graph_stack.pop()

 if len(graph_stack) > 0:

 node = graph_stack[-1]

 continue

 else:

 remaining_elements = set(adj_nodes).
difference(set(visited_vertices))

 first_adj_node = sorted(remaining_elements)[0]

 graph_stack.append(first_adj_node)

 node = first_adj_node

 return visited_vertices

The body of the while loop will be executed, provided the stack is not empty. If the node under

consideration is not in the list of visited nodes, we add it. All adjacent nodes of node are collected

by adj_nodes = graph[node]. If all the adjacent nodes have been visited, we pop the top node

from the stack and set node to graph_stack[-1]. Here, graph_stack[-1] is the top node on the

stack. The continue statement jumps back to the beginning of the while loop’s test condition.

If, on the other hand, not all the adjacent nodes have been visited, then the nodes that are yet to be

visited are obtained by finding the difference between the adj_nodes and visited_vertices with

the remaining_elements = set(adj_nodes).difference(set(visited_vertices)) statement.

Graphs and Algorithms304

The first item within sorted(remaining_elements) is assigned to first_adj_node, and pushed

onto the stack. We then point the top of the stack to this node.

When the while loop exits, we will return visited_vertices.

We will now explain the working of the source code by relating it to the previous example. The A

node is chosen as our starting node. A is pushed onto the stack and added to the visited_vertices

list. In doing so, we mark it as having been visited. The graph_stack stack is implemented with

a simple Python list. Our stack now has A as its only element. We examine the A node’s adja-

cent nodes, B and S. To test whether all the adjacent nodes of A have been visited, we use the if

statement:

 if set(adj_nodes).issubset(set(visited_vertices)):

 graph_stack.pop()

 if len(graph_stack) > 0:

 node = graph_stack[-1]

 continue

If all the nodes have been visited, we pop the top of the stack. If the graph_stack stack is not

empty, we assign the node on top of the stack to node, and start the beginning of another exe-

cution of the body of the while loop. The set(adj_nodes).issubset(set(visited_vertices))

statement will evaluate to True if all the nodes in adj_nodes are a subset of visited_vertices.

If the if statement fails, it means that some nodes remain to be visited. We obtain that list of

nodes with remaining_elements = set(adj_nodes).difference(set(visited_vertices)).

Referring to the diagram, the B and S nodes will be stored in remaining_elements. We will access

the list in alphabetical order as follows:

 first_adj_node = sorted(remaining_elements)[0]

 graph_stack.append(first_adj_node)

 node = first_adj_node

We sort remaining_elements and return the first node to first_adj_node. This will return B.

We push the B node onto the stack by appending it to the graph_stack. We prepare the B node

for access by assigning it to node.

On the next iteration of the while loop, we add the B node to the list of visited nodes. We discover

that the only adjacent node to B, which is A, has already been visited. Because all the adjacent

nodes of B have been visited, we pop it off the stack, leaving A as the only element on the stack.

We return to A and examine whether all of its adjacent nodes have been visited. The A node now

has S as the only unvisited node. We push S to the stack and begin the whole process again.

Chapter 9 305

The output of the traversal is A-B-S-C-D-E-H-G-F.

The time complexity of DFS is O(V+E) when we use an adjacency list, and O(V2) when we use an

adjacency matrix for graph representation. The time complexity of DFS with the adjacency list is

lower because getting the adjacent nodes is easier, whereas it is not efficient with the adjacency

matrix.

DFS can be applied to solving maze problems, finding connected components, cycle detection in

graphs, and finding the bridges of a graph, among other use cases.

We have discussed very important graph traversal algorithms; now let us discuss some more useful

graph-related algorithms for finding the spanning tree from the given graph. Spanning trees are

useful for several real-world problems such as the traveling salesman problem.

Other useful graph methods
It is very often that we need to use graphs for finding a path between two nodes. Sometimes, it

is necessary to find all the paths between nodes, and in some situations, we might need to find

the shortest path between nodes. For example, in routing applications, we generally use various

algorithms to determine the shortest path from the source node to the destination node. For

an unweighted graph, we would simply determine the path with the lowest number of edges

between them. If a weighted graph is given, we have to calculate the total weight of passing

through a set of edges.

Thus, in a different situation, we may have to find the longest or shortest path using different

algorithms, such as a Minimum Spanning Tree, which we look into in the next section.

Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subset of the edges of the connected graph with an

edge-weighted graph that connects all the nodes of the graph, with the lowest possible total

edge weights and no cycle. More formally, given a connected graph G, where G = (V, E) with re-

al-valued edge weights, an MST is a subgraph with a subset of the edges 𝑇𝑇 𝑇 𝑇𝑇 so that the sum

of edge weights is minimum and there is no cycle. There are many possible spanning trees that

can connect all the nodes of the graph without any cycle, but the the minimum weight spanning

tree is a spanning tree that has the lowest total edge weight (also called cost) among all other

possible spanning trees. An example graph is shown in Figure 9.28 along with its corresponding

MST (on the right) in which we can observe that all the nodes are connected and have a subset

of edges taken from the original graph (on the left).

Graphs and Algorithms306

The MST has the lowest total weight of all the edges, i.e. (1+4+2+4+5 = 16) among all the other

possible spanning trees:

Figure 9.28: A sample graph with the corresponding Minimum Spanning Tree

The MST has diverse real-world applications. They are mainly used in network design for road

congestion, hydraulic cables, electric cable networks, and even cluster analysis.

First, let us discuss Kruskal’s minimum spanning tree algorithm.

Kruskal’s Minimum Spanning Tree algorithm
Kruskal’s algorithm is a widely used algorithm for finding the spanning tree from a given weighted,

connected, and undirected graph. It is based on the greedy approach, as we firstly find the edge

with the lowest weight and add it to the tree, and then in each iteration, we add the edge with the

lowest weight to the spanning tree so that we do not form a cycle. In this algorithm, initially, we

treat all the vertices of the graph as a separate tree, and then in each iteration we select edge with

the lowest weight in such a way that it does not form a cycle. These separate trees are combined,

and it grows to form a spanning tree. We repeat this process until all the nodes are processed.

The algorithm works as follows:

1.	 Initialize an empty MST (M) with zero edges

2.	 Sort all the edges according to their weights

3.	 For each edge from the sorted list, we add them one by one to the MST (M) in such a way

that it does not form a cycle

Let’s consider an example.

We start by selecting the edge with the lowest weight (weight 1), as represented by the dotted

line shown in Figure 9.29:

Chapter 9 307

Figure 9.29: Selecting the first edge with the lowest weight in the spanning tree

After selecting the edge with weight 1, we select the edge with weight 2 and then the edge with

weight 3, since these are the next lowest weights, as shown in Figure 9.30:

Figure 9.30: Selecting edges with wieghts 2 and 3 in the spanning tree

Similarly, we select the next edges with weights 4 and 5 respectively as shown in Figure 9.31:

Figure 9.31: Selecting edges with weights 4 and 5 in the spanning tree

Graphs and Algorithms308

Next, we select the next edge with weight 6 and make it a dotted line. After that, we see that the

lowest weight is 7 but if we select it, it makes a cycle, so we ignore it. Next, we check the edge

with weight 8, and then 9, which are also ignored because they will also form a cycle. So, the next

edge with the lowest weight, 10, is selected. This is shown in Figure 9.32:

Figure 9.32: Selecting edges with weights 6 and 10 in the spanning tree

Finally, we see the following spanning tree using Kruskal’s algorithm, as shown in Figure 9.33:

Figure 9.33: The final spanning tree created using Kruskal’s algorithm

Kruskal’s algorithm has many real-world applications, such as solving the traveling salesman

problem (TSP), in which starting from one city, we have to visit all the different cities in a network

with the minimum total cost and without visiting the same city twice. There are many other

applications, such as TV networks, tour operations, LAN networks, and electric grids.

Chapter 9 309

The time complexity of Kruskal’s algorithm is O (E log (E)) or O (E log(V)), where E is the number

of edges and V is the number of vertices.

Now, let us discuss one more popular MST algorithm in the next section.

Prim’s Minimum Spanning Tree algorithm
Prim’s algorithm is also based on a greedy approach to find the minimum cost spanning tree.

Prim’s algorithm is very similar to the Dijkstra algorithm for finding the shortest path in a graph.

In this algorithm, we start with an arbitrary node as a starting point, and then we check the out-

going edges from the selected nodes and traverse through the edge that has the lowest cost (or

weights). The terms cost and weight are used interchangeably in this algorithm. So, after starting

from the selected node, we grow the tree by selecting the edges, one by one, that have the lowest

weight and do not form a cycle. The algorithm works as follows:

1.	 Create a dictionary that holds all the edges and their weights

2.	 Get the edges, one by one, that have the lowest cost from the dictionary and grow the tree

in such a way that the cycle is not formed

3.	 Repeat step 2 until all the vertices are visited

Let us consider an example to understand the working of Prim’s algorithm. Assuming that we

arbitrarily select A node, we then check all the outgoing edges from A. Here, we have two options,

AB and AC; we select edge AC since it has less cost/weight (weight 1), as shown in Figure 9.34:

Figure 9.34: Selecting edge AC in constructing the spanning tree using Prim’s algorithm

Graphs and Algorithms310

Next, we check the lowest outgoing edges from edge AC. We have options AB, CD, CE, CF, out of

which we select edge CF, which has the lowest weight of 2. Likewise, we grow the tree, and next

we select the lowest weighted edge, i.e., AB, as shown in Figure 9.35:

Figure 9.35: Selecting edge AB in constructing the spanning tree using Prim’s algorithm

Afterward, we select edge BD, which has a weight of 3, and similarly, next, we select edge DG,

which has the lowest weight of 4. This is shown in Figure 9.36:

Figure 9.36: Selecting edges BD and DG in constructing the spanning
tree using Prim’s algorithm

Next, we select edges FE and GH, which have weights of 6 and 10 respectively, as shown in Figure

9.37:

Chapter 9 311

Figure 9.37: Selecting edges FE and GH in constructing the spanning tree using Prim’s algorithm

Next, whenever we try to include any more edges, a cycle is formed, so we ignore those edges.

Finally, we obtain the spanning tree, which is shown below in Figure 9.38:

Figure 9.38: The final spanning tree using Prim’s algorithm

Prim’s algorithm also has many real-world applications. For all the applications where we can

use Kruskal’s algorithm, we can also use Prim’s algorithm. Other applications include road net-

works, game development, etc.

Since both Kruskal’s and Prim’s MST algorithms are used for the same purpose, which one should

be used? In general, it depends on the structure of the graph. For a graph with C vertices and E

edges, Kruskal’s algorithm’s worst-case time complexity is O(E logV), and Prim’s algorithm has

a time complexity of O(E + V logV). So, we can observe that Prim’s algorithm works better when

we have a dense graph, whereas Kruskal’s algorithm is better when we have a sparse graph.

Graphs and Algorithms312

Summary
A graph is a non-linear data structure, which is very important due to the large number of re-
al-world applications it has. In this chapter, we have discussed different ways to represent a
graph in Python, using lists and dictionaries. Further, we learned two very important graph
traversal algorithms, i.e., depth-first search (DFS) and breadth-first search (BFS). Moreover, we
also discussed two very important algorithms for finding an MST, i.e. Kruskal’s algorithm and
Prim’s algorithm.

In the next chapter, we will discuss searching algorithms and the various methods using which
we can efficiently search for items in lists.

Exercises
1.	 What is the maximum number of edges (without self-loops) possible in an undirected

simple graph with five nodes?

2.	 What do we call a graph in which all the nodes have equal degrees?

3.	 Explain what cut vertices are and identify the cut vertices in the given graph:

Figure 9.39: A sample graph

4.	 Assuming a graph G of order n, what will be the maximum number of cut vertices possible

in graph G?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

10
Searching

An important operation for all data structures is searching for elements from a collection of data.

There are various methods to search for an element in data structures; in this chapter, we shall

explore the different strategies that can be used to find elements in a collection of items.

Data elements can be stored in any kind of data structure, such as an array, link list, tree, or graph;

the search operation is very important for many applications, mostly whenever we want to know

if a particular data element is present in an existing list of data items. In order to retrieve the

information efficiently, we require an efficient search algorithm.

In this chapter, we will learn about the following:

•	 Various search algorithms

•	 Linear search algorithm

•	 Jump search algorithm

•	 Binary search algorithm

•	 Interpolation search algorithm

•	 Exponential search algorithm

Let us start with an introduction to searching and a definition and then look at the linear search

algorithm.

Introduction to searching
A search operation is carried out to find the location of the desired data item from a collection of

data items. The search algorithm returns the location of the searched value where it is present

in the list of items and if the data item is not present, it returns None.

Searching314

Efficient searching is important to efficiently retrieve the location of the desired data item from

a list of stored data items. For example, we have a long list of data values, such as {1, 45, 65,

23, 65, 75, 23}, and we want to see if 75 is present in the list or not. It becomes important to

have an efficient search algorithm when the list of data items becomes large.

There are two different ways in which data can be organized, which can affect how a search

algorithm works:

•	 First, the search algorithm is applied to a list of items that is already sorted; that is, it is

applied to an ordered set of items. For example, [1, 3, 5, 7, 9, 11, 13, 15, 17].

•	 The search algorithm is applied to an unordered set of items, which is not sorted. For

example, [11, 3, 45, 76, 99, 11, 13, 35, 37].

We will first take a look at linear searching.

Linear search
The search operation is used to find out the index position of a given data item in a list of data

items. If the searched item is available in the given list of data items, then the search algorithm

returns the index position where it is located; otherwise, it returns that the item is not found.

Here, the index position is the location of the desired item in the given list.

The simplest approach to search for an item in a list is to search linearly, in which we look for

items one by one in the whole list. Let’s take an example of six list items {60, 1, 88, 10, 11,

100} to understand the linear search algorithm, as shown in Figure 10.1:

Figure 10.1: An example of linear search

The preceding list has elements that can be accessed through the index. To find an element in

the list, we can search for the given element linearly one by one. This technique traverses the list

of elements by using the index to move from the beginning of the list to the end. Each element

is checked, and if it does not match the search item, the next item is examined. By hopping from

one item to the next, the list is traversed sequentially. We use list items with integer values in

this chapter to help you understand the concept, since integers can be compared easily; however,

a list item can hold any other data type as well.

Chapter 10 315

The linear search approach depends on how the list items are stored in memory—whether they

are already sorted in order or they are not sorted. Let’s first see how the linear search algorithm

works if the given list of items is not sorted.

Unordered linear search
The unordered linear search is a linear search algorithm in which the given list of date items is

not sorted. We linearly match the desired data item with the data items of the list one by one till

the end of the list or until the desired data item is found. Consider an example list that contains

the elements 60, 1, 88, 10, and 100—an unordered list. To perform a search operation on such a

list, one proceeds with the first item and compares that with the search item. If the search item

is not matched, then the next element in the list is checked. This continues till we reach the last

element in the list or until a match is found.

In an unordered list of items, the search for the term 10 starts from the first element and moves

to the next element in the list. Thus, firstly 60 is compared with 10, and since it is not equal, we

compare 66 with the next element 1, then 88, and so on till we find the search term in the list.

Once the item is found, we return the index position of where we have found the desired item.

This process is shown in Figure 10.2:

Figure 10.2: Unordered linear search

Searching316

Here is the implementation in Python for the linear search on an unordered list of items:

def search(unordered_list, term):

 for i, item in enumerate(unordered_list):

 if term == unordered_list[i]:

 return i

 return None

The search function takes two parameters; the first is the list that holds the data, and the second

parameter is the item that we are looking for, called the search term. On every pass of the for

loop, we check if the search term is equal to the indexed item. If this is true, then there is a match,

and there is no need to proceed further with the search. We return the index position where the

searched item is found in the list. If the loops run to the end of the list with no match found, then

None is returned to signify that there is no such item in the list.

We can use the following code snippet to check if a desired data element is present in the given

list of data items:

list1 = [60, 1, 88, 10, 11, 600]

search_term = 10

index_position = search(list1, search_term)

print(index_position)

list2 = ['packt', 'publish', 'data']

search_term2 = 'data'

Index_position2 = search(list2, search_term2)

print(Index_position2)

Chapter 10 317

The output of the above code is as follows:

3

2

In the output of the above code, firstly, the index position 3 is returned when we search for data

element 10 in list1. And secondly, index position 2 is returned when data item 'data' is searched

for in list2. We can use the same algorithm for searching a non-numeric data item from a list

of non-numeric data items in Python, since string elements can also be compared similarly to

numeric data in Python.

When searching for any element from an unordered list of items, in the worst case the desired

item may be in the last position or may not be present in the list. In this situation we will have to

compare the search item with all the elements of the list, i.e. n times if the total number of data

items in the list is n. Thus, the unordered linear search has a worst-case running time of O(n). All

the elements may need to be visited before finding the search term. The worst-case scenario will

be when the search term is located at the last position of the list.

Next, we discuss how the linear search algorithm works if the given list of data items is already

sorted.

Ordered linear search
If the data elements are already arranged in a sorted order, then the linear search algorithm can

be improved. The linear search algorithm in a sorted list of elements has the following steps:

1.	 Move through the list sequentially

2.	 If the value of a search item is greater than the object or item currently under inspection

in the loop, then quit and return None

Searching318

In the process of iterating through the list, if the value of the search term is less than the current

item in the list, then there is no need to continue with the search. Let’s consider an example to

see how this works. Let’s say we have a list of items {2, 3, 4, 6, 7} as shown in Figure 10.3,

and we want to search for term 5:

Figure 10.3: Example of ordered linear search

We start the search operation by comparing the desired search element 5 with the first element;

no match is found. We continue on to compare the search element with the next element, i.e. 3, in

the list. Since it also does not match, we move on to examine the next element, i.e. 4, and since it

also does not match, we continue searching in the list, and we compare the search element with

the fourth element, i.e. 6. This also does not match the search term. Since the given list is already

sorted in ascending order and the value of the search item is less than the fourth element, the

search item cannot be found in any later position in the list. In other words, if the current item

in the list is greater than the search term, then it means there is no need to further search the list,

and we stop searching for the element in the list.

Chapter 10 319

Here is the implementation of the linear search when the list is already sorted:

def search_ordered(ordered_list, term):

 ordered_list_size = len(ordered_list)

 for i in range(ordered_list_size):

 if term == ordered_list[i]:

 return i

 elif ordered_list[i] > term:

 return None

 return None

In the preceding code, the if statement now caters to checking if the search item is found in the

list or not. Then, elif tests the condition where ordered_list[i] > term. We stop searching

if the comparison evaluates to True, which means the current item in the list is greater than the

search element. The last line in the method returns None because the loop may go through the

list and still the search item is not matched in the list.

We use the following code snippet to use the search algorithm:

list1 = [2, 3, 4, 6, 7]

search_term = 5

index_position1 = search_ordered(list1, search_term)

if index_position1 is None:

 print("{} not found".format(search_term))

else:

 print("{} found at position {}".format(search_term, index_position1))

list2 = ['book','data','packt', 'structure']

search_term2 = 'structure'

index_position2 = search_ordered(list2, search_term2)

if index_position2 is None:

 print("{} not found".format(search_term2))

else:

 print("{} found at position {}".format(search_term2, index_position2))

Searching320

The output of the above code is as follows:

5 not found

structure found at position 3

In the output of the above code, firstly, the search item 5 is not matched in the given list. And for

the second list of non-numeric data elements, the string structure is matched at index position

3. Hence, we can use the same linear search algorithm for searching a non-numeric data item

from an ordered list of data items, so the given list of data items should be sorted similarly to a

contact list on a phone.

In the worst-case scenario, the desired search item will be present in the last position of the list or

will not be present at all. In this situation, we will have to trace the complete list (say n elements).

Thus, the worst-case time complexity of an ordered linear search is O(n).

Next, we will discuss the jump search algorithm.

Jump search
The jump search algorithm is an improvement over linear search for searching for a given element

from an ordered (or sorted) list of elements. This uses the divide-and-conquer strategy in order to

search for the required element. In linear search, we compare the search value with each element

of the list, whereas in jump search, we compare the search value at different intervals in the list,

which reduces the number of comparisons.

In this algorithm, firstly, we divide the sorted list of data into subsets of data elements called

blocks. Within each block, the highest value will lie within the last element, as the array is sorted.

Next, in this algorithm, we start comparing the search value with the last element of each block.

There can be three conditions:

1.	 If the search value is less than the last element of the block, we compare it with the next

block.

2.	 If the search value is greater than the last element of the block, it means the desired search

value must be present in the current block. So, we apply linear search in this block and

return the index position.

3.	 If the search value is the same as the compared element of the block, we return the index

position of the element and we return the candidate.

Generally, the size of the block is taken as √𝑛𝑛 , since it gives the best performance for a given

array of length n.

Chapter 10 321

In the worst-case situation, we will have to make n/m number of jumps (here, n is the total number

of elements, and m is the block size) if the last element of the last block is greater than the item

to be searched, and we will need m - 1 comparisons for linear search in the last block. Therefore,

the total number of comparisons will be ((n/m) + m - 1), which will minimize when m = √n . So

the size of the block is taken as √n since it gives the best performance.

Let’s take an example list {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} to search for a given element

(say 10):

Figure 10.4: Illustration of the jump search algorithm

In the above example, we find the desired element 10 in 5 comparisons. Firstly, we compare the

first value of the array with the desired item A[0] <= item; if it is true, then we increase the index

by the block size (this is shown in step 1 in Figure 10.4). Next, we compare the desired item with

the last element of each block. If it is greater, then we move to the next block, such as from block

1 to block 3 (this is shown in steps 2, 3, and 4 in Figure 10.4).

Further, when the desired search element becomes smaller than the last element of a block, we

stop incrementing the index position and then we do the linear search in the current block. Now,

let us discuss the implementation of the jump searching algorithms. Firstly, we implement the

linear search algorithm, which is similar to what we discussed in the previous section.

Searching322

It is given again here for the sake of completeness as follows:

def search_ordered(ordered_list, term):

 print("Entering Linear Search")

 ordered_list_size = len(ordered_list)

 for i in range(ordered_list_size):

 if term == ordered_list[i]:

 return i

 elif ordered_list[i] > term:

 return -1

 return -1

In the above code, given an ordered list of elements, it returns the index of the location where a

given data element is found in the list. It returns –1 if the desired element is not found in the list.

Next, we implement the jump_search() method as follows:

def jump_search(ordered_list, item):

 import math

 print("Entering Jump Search")

 list_size = len(ordered_list)

 block_size = int(math.sqrt(list_size))

 i = 0

 while i != len(ordered_list)-1 and ordered_list[i] <= item:

 print("Block under consideration - {}".format(ordered_list[i:
i+block_size]))

 if i+ block_size > len(ordered_list):

 block_size = len(ordered_list) - i

 block_list = ordered_list[i: i+block_size]

 j = search_ordered(block_list, item)

 if j == -1:

 print("Element not found")

 return

 return i + j

 if ordered_list[i + block_size -1] == item:

 return i+block_size-1

Chapter 10 323

 elif ordered_list[i + block_size - 1] > item:

 block_array = ordered_list[i: i + block_size - 1]

 j = search_ordered(block_array, item)

 if j == -1:

 print("Element not found")

 return

 return i + j

 i += block_size

In the above code, firstly we assign the length of the list to the variable n, and then we compute

the block size as √𝑛𝑛 . Next, we start with the first element, index 0, and then continue searching

until we reach the end of the list.

We start with the starting index i = 0 with a block of size m, and we continue incrementing until

the window reaches the end of the list. We compare whether ordered_list [I + block_size

-1] == item. If they match, it returns the index position (i+ block_size -1). The code snippet

for this is as follows:

 if ordered_list[i+ block_size -1] == item:

 return i+ block_size -1

If ordered_list [i+ block_size -1] > item, we proceed to carry out the linear search algorithm

inside the current block block_array = ordered_list [i : i+ block_size-1], as follows:

 elif ordered_list[i+ block_size -1] > item:

 block_array = ordered_list[i: i+ block_size -1]

 j = search_ordered(block_array, item)

 if j == -1:

 print("Element not found")

 return

 return i + j

In the above code, we use the linear search algorithm in the subarray. It returns –1 if the desired

element is not found in the list; otherwise, the index position of (i + j) is returned. Here, i is

the index position until the previous block where we may find the desired element and j is the

position of the data element within the block where the desired element is matched. This process

is also depicted in Figure 10.5.

Searching324

In this figure, we can see that i is in index position 5, and then j is the number of elements within

the final block where we find the desired element, i.e. 2, so the final returned index will be 5 +

2 = 7:

Figure 10.5: Demonstration of index position i and j for the search value 8

Further, we need to check for the length of the last block since it may have a number of elements

less than the block size. For example, if the total number of elements is 11, then in the last block

we will have 2 elements. So, we check if the desired search element is present in the last block,

and if so we should update the starting and ending index as follows:

 if i+ block_size > len(ordered_list):

 block_size = len(ordered_list) - i

 block_list = ordered_list[i: i+block_size]

 j = search_ordered(block_list, item)

 if j == -1:

 print("Element not found")

 return

 return i + j

In the above code, we search for the desired element using the linear search algorithm.

Finally, if ordered_list[i+m-1] < item, then we move to the next iteration, and update the

index by adding the block size to the index as i += block_size.

print(jump_search([1,2,3,4,5,6,7,8,9, 10, 11], 8))

The output of the above code snippet is:

Entering Jump Search

Block under consideration - [1, 2, 3]

Chapter 10 325

Block under consideration - [4, 5, 6]

Block under consideration - [7, 8, 9]

Entering Linear Search

7

In the above output, we can see the steps for how we searched for element 10 in the given list of

elements.

Thus, jump search performs linear search on a block, so first it finds the block in which the element

is present and then applies linear search within that block. The size of the block depends on the

size of the array. If the size of the array is n, then the block size may be √𝑛𝑛 . If it does not find the

element in that block, it moves to the next block. The jump search first finds out in which block

the desired element may be present. For a list of n elements, and a block size of m, the total number

of jumps possible will be n/m jumps. Let’s say the size of the block is √𝑛𝑛 ; thus, the worst-case

time complexity will be 𝑂𝑂𝑂𝑂𝑂𝑂𝑂 .
Next, we will discuss the binary search algorithm.

Binary search
The binary search algorithm finds a given item from the given sorted list of items. It is a fast and

efficient algorithm to search for an element; however, one drawback of this algorithm is that

we need a sorted list. The worst-case running time complexity of a binary search algorithm is

O(logn) whereas for linear search it is O(n).

The binary search algorithm works as follows. It starts searching for the item by dividing the given

list in half. If the search item is smaller than the middle value then it will look for the searched

item only in the first half of the list, and if the search item is greater than the middle value it will

only look at the second half of the list. We repeat the same process every time until we find the

search item, or we have checked the whole list. In the case of a non-numeric list of data items, for

example, if we have string data items, then we should sort the data items in alphabetical order

(similar to how a contact list is stored on a phone).

Let’s understand the binary search algorithm with an example. Suppose we have a book with 1,000

pages, and we want to reach page number 250. We know that every book has its pages numbered

sequentially from 1 upward. So, according to the binary search analogy, we first check forsearch

item 250, which is less than the midpoint, which is 500. Thus, we search for the required page

only in the first half of the book.

Searching326

We again find the midpoint of the first half of the book, using page 500 as a reference we find the

midpoint, 250. That brings us closer to finding the 250th page. Then we find the required page

in the book.

Let’s take another example to understand the workings of binary search. We want to search for

item 43 from a list of 12 items, as shown in Figure 10.6:

Figure 10.6: Working of binary search

We start searching for the item by comparing it to the middle item of the list, which is 37 in the

example. If the value of the search item is less than the middle value, we only look at the first half

of the list; otherwise, we will look at the other half. So, we only need to search for the item in the

second half. We follow the same procedure until we find search item 43 in the list. This process

is shown in the Figure 10.6.

The following is an implementation of the binary search algorithm on an ordered list of items:

def binary_search_iterative(ordered_list, term):

 size_of_list = len(ordered_list) – 1

 index_of_first_element = 0

Chapter 10 327

 index_of_last_element = size_of_list

 while index_of_first_element <= index_of_last_element:

 mid_point = (index_of_first_element + index_of_last_element)/2

 if ordered_list[mid_point] == term:

 return mid_point

 if term > ordered_list[mid_point]:

 index_of_first_element = mid_point + 1

 else:

 index_of_last_element = mid_point – 1

 if index_of_first_element > index_of_last_element:

 return None

We’ll explain the above code using a list of sorted elements {10, 30, 100, 120, 500}. Now

let’s assume we have to find the position where item 10 is located in the list shown in Figure 10.7:

Figure 10.7: Sample list of five items

Firstly, we declare two variables, i.e. index_of_first_element and index_of_last_element,

which denote the starting and ending index positions in the given list. Next, the algorithm uses

a while loop to iteratively adjust the limits in the list within which we have to find a search item.

The terminating condition to stop the while loop is that the difference between the starting index,

index_of_first_element, and the index_of_last_element index should be positive.

The algorithm first finds the midpoint of the list by adding the index of the first element (i.e. 0

in this case) to the index of the last element (which is 4 in this example) and dividing it by 2. We

get the middle index, mid_point:

mid_point = (index_of_first_element + index_of_last_element)/2

In this case, the index of the midpoint is 2, and the data item stored at this position is 100. We

compare the midpoint element with the search item 10.

Searching328

Since these do not match, and the search item 10 is less than the midpoint, the desired search item

should lie in the first half of the list, thus, we adjust the index range of index_of_first_element

to mid_point-1, which means the new search range becomes 0 to 1, as shown in Figure 10.8:

Figure 10.8: Index of first and last elements for the first half of the list

However, if we had been searching for 120, as 120 would have been greater than the middle value

(100), we would have searched for the item in the second half of the list, and as a result, we would

have needed to change the list index range to be mid_point +1 to index_of_last_element. In

that case the new range would have been (3, 4).

So, with the new indexes of the first and last elements, i.e. index_of_first_element and index_

of_last_element, now being 0 and 1 respectively, we compute the midpoint (0 + 1)/2, which

equals 0. The new midpoint is 0, so we find the middle item and compare it with the search item,

which yields the value 10. Now, our search item is found, and the index position is returned.

Finally, we check if index_of_first_element is less than index_of_last_element or not. If this

condition fails, it means that the search term is not in the list.

We can use the below code snippet to search for a term/item in the given list:

list1 = [10, 30, 100, 120, 500]

search_term = 10

index_position1 = binary_search_iterative(list1, search_term)

if index_position1 is None:

 print("The data item {} is not found".format(search_term))

else:

 print("The data item {} is found at position {}".format(search_term,
index_position1))

list2 = ['book','data','packt', 'structure']

Chapter 10 329

search_term2 = 'structure'

index_position2 = binary_search_iterative(list2, search_term2)

if index_position2 is None:

 print("The data item {} is not found".format(search_term2))

else:

 print("The data item {} is found at position {}".format(search_term2,
index_position2))

The output of the above code is as follows:

The data item 10 is found at position 0

The data item structure is found at position 3

In the above code, firstly we check the search term 10 in the list, and we get the correct location, i.e.

index position 0. Further, we check the index position of the string structure in the given sorted

list of data items, and we get the index position 3.

The implementation that we have discussed is based on an iterative process. However, we can also

implement it using the recursive method, in which we recursively shift the pointers that point to

the beginning (or starting) and end of the search list. See the following code for an example of a

recursive implementation of the binary search algorithm:

def binary_search_recursive(ordered_list, first_element_index, last_
element_index, term):

 if (last_element_index < first_element_index):

 return None

 else:

 mid_point = first_element_index + ((last_element_index - first_
element_index) // 2)

 if ordered_list[mid_point] > term:

 return binary_search_recursive (ordered_list, first_element_
index, mid_point-1, term)

 elif ordered_list[mid_point] < term:

 return binary_search_recursive (ordered_list, mid_point+1,
last_element_index, term)

 else:

 return mid_point

Searching330

A call to this recursive implementation of the binary search algorithm and its output is as follows:

list1 = [10, 30, 100, 120, 500]

search_term = 10

index_position1 = binary_search_recursive(list1, 0, len(list1)-1, search_
term)

if index_position1 is None:

 print("The data item {} is not found".format(search_term))

else:

 print("The data item {} is found at position {}".format(search_term,
index_position1))

list2 = ['book','data','packt', 'structure']

search_term2 = 'data'

index_position2 = binary_search_recursive(list2, 0, len(list1)-1, search_
term2)

if index_position2 is None:

 print("The data item {} is not found".format(search_term2))

else:

 print("The data item {} is found at position {}".format(search_term2,
index_position2))

The output of the above code is as follows:

The data item 10 is found at position 0

The data item data is found at position 1

Here, the only distinction between the recursive binary search and the iterative binary search is

the function definition and also the way in which mid_point is calculated. The calculation for

mid_point after the ((last_element_index - first_element_index)//2) operation must add

its result to first_element_index. That way, we define the portion of the list to attempt the search.

Chapter 10 331

In binary search, we repeatedly divide the search space (i.e. the list in which the desired item may

lie) in half. We start with the complete list, and in each iteration, we compute the middle point;

we only consider half the list to search for the item and the other half of the list is ignored. We

repeatedly check until the value is found, or the interval is empty. Therefore, at each iteration, the

size of the array reduces by half; for example, at iteration 1, the size of the list is n, in iteration 2, the

size of the list becomes n/2, in iteration 3 the size of the list becomes n/22, and after k iterations

the size of the list becomes n/2k. At that time the size of the list will be equal to 1. That means:

=> n/2k = 1

Applying the log function on both sides:

=> log2(n) = log2(2k)

=> log2(n) = k log2(2)

=> k = log2(n)

Hence, the binary search algorithm has the worst-case time complexity of O(log n).

Next, we will discuss the interpolation search algorithm.

Interpolation search
The binary search algorithm is an efficient algorithm for searching. It always reduces the search

space by half by discarding one half of the search space depending on the value of the search item.

If the search item is smaller than the value in the middle of the list, the second half of the list is

discarded from the search space. In the case of binary search, we always reduce the search space

by a fixed value of half, whereas the interpolation search algorithm is an improved version of the

binary search algorithm in which we use a more efficient method that reduces the search space

by more than half after each iteration.

The interpolation search algorithm works efficiently when there are uniformly distributed

elements in the sorted list. In a binary search, we always start searching from the middle of the

list, whereas in the interpolation search we compute the starting search position depending on

the item to be searched. In the interpolation search algorithm, the starting search position is most

likely to be close to the start or end of the list; if the search item is near the first element in the

list, then the starting search position is likely to be near the start of the list and if the search item

is near the end of the list, then the starting search position is likely to be near the end of the list.

Searching332

It is quite similar to how humans perform a search on any list of items. It is based on trying to make

a good guess of the index position where a search item is likely to be found in a sorted list of items.

It works in a similar way to the binary search algorithm except for the method to determine the

splitting criteria to divide the data in order to reduce the number of comparisons. In the case of

a binary search, we divide the data into equal halves and in the case of an interpolation search,

we divide the data using the following formula:

In the preceding formula, low_index is the lower-bound index of the list, which is the index of

the smallest value, and upper_index denotes the index position of the highest value in the list.

The list[low_index] and list[upper_index] are the lowest and highest values respectively in

the list. The search_value variable contains the value of the item that is to be searched.

Let’s consider an example to understand how the interpolation search algorithm works using

the following list of seven items:

Figure 10.9: Example of interpolation search

Given the list of seven items, 44, 60, 75, 100, 120, 230, and 250, the mid point can be computed

using the above mentioned formula with the following values:

list1 = [4,60,75,100,120,230,250]

low_index = 0

upper_index = 6

list1[upper_index] = 250

list1[low_index] = 44

search_value = 230

Chapter 10 333

Putting the values of all the variables in the formula, we get:

mid = low_index + ((upper_index - low_index)/ (list1[upper_index] -
list1[low_index])) * (search_value - list1[low_index])

=> 0 + [(6-0)/(250-44)] * (230-44)

=> 5.41

=> 5

The mid index is 5, in the case of an interpolation search, so the algorithm starts searching from

the index position 5. So, this is how we compute the midpoint from which we start searching for

the given element.

The interpolation search algorithm works as follows:

1.	 We start searching for the given search value from the midpoint (we have just seen how

to compute it).

2.	 If the search value matches the value stored at the index of the midpoint, we return this

index position.

3.	 If the search value does not match the value stored at the midpoint, we divide the list into

two sublists, i.e. a higher sublist and lower sublist. The higher sublist has all the elements

with higher index values than the midpoint, and the lower sublist has all the elements

with lower index values.

4.	 If the search value is greater than the value of the midpoint, we search the given search

value in the higher sublist and ignore the lower sublist.

5.	 If the search value is lower than the value of the midpoint, we search the given search

value in the lower sublist and ignore the higher sublist.

6.	 We repeat the process until the size of the sublists is reduced to zero.

Let us understand the implementation of the interpolation search algorithm. Firstly, we define

the nearest_mid() method, which computes the midpoint as follows:

def nearest_mid(input_list, low_index, upper_index, search_value):

 mid = low_index + ((upper_index - low_index)/(input_list[upper_
index] - input_list[low_index])) * (search_value - input_list[low_index])

 return int(mid)

Searching334

The nearest_mid function takes, as arguments, the lists on which to perform the search. The

low_index and upper_index parameters represent the bounds in the list within which we are

hoping to find the search term. Furthermore, search_value represents the value being searched for.

In an interpolation search, the midpoint is generally more to the left or right. This is caused by

the effect of the multiplier being used when dividing to obtain the midpoint. The implementation

of the interpolation algorithm remains the same as that of the binary search except for the way

we compute the midpoint.

In the following code, we provide the implementation of the interpolation search algorithm:

def interpolation_search(ordered_list, search_value):

 low_index = 0

 upper_index = len(ordered_list) - 1

 while low_index <= upper_index:

 mid_point = nearest_mid(ordered_list, low_index, upper_index,
search_value)

 if mid_point > upper_index or mid_point < low_index:

 return None

 if ordered_list[mid_point] == search_value:

 return mid_point

 if search_value > ordered_list[mid_point]:

 low_index = mid_point + 1

 else:

 upper_index = mid_point – 1

 if low_index > upper_index:

 return None

In the above code, we initialize the low_index and upper_index variables for the given sorted

list. We firstly compute the midpoint using the nearest_mid() method.

The computed midpoint using the nearest_mid function may produce values that are greater than

upper_bound_index or lower than lower_bound_index. When this occurs, it means the search

term, term, is not in the list. None is, therefore, returned to represent this.

Chapter 10 335

Next, we match the search value with the value stored at the midpoint, i.e. ordered_list[mid_

point]. If that matches, the index of the midpoint is returned; if it does not match, then we divide

the lists into higher and lower sublists, and we readjust low_index and upper_index so that the

algorithm will focus on the sublist that is likely to contain the search term similar to what we

did in the binary search:

 if search_value > ordered_list[mid_point]:

 low_index = mid_point + 1

 else:

 upper_index = mid_point - 1

In the above code, we check if the search value is greater than the value stored at ordered_

list[mid_point], then we only adjust the low_index variable to point to the mid_point + 1 index.

Let’s see how this adjustment occurs. Suppose we want to search for 190 in the given list in Figure

10.10, then the midpoint will be 4 as per the above formula. Then we compare the search value (i.e.

190) with the value stored at the midpoint (i.e. 120). Since the search value is greater, we search for

the element in the higher sublist, and readjust the low_index value. This is shown in Figure 10.10:

Figure 10.10: Readjustment of the low_index when the value of the search item is greater
than the value at the midpoint

On the other hand, if the value of the search term is less than the value stored at ordered_list[mid_

point], then we only adjust the upper_index variable to point to the index mid_point - 1. For

example, if we have the list shown in Figure 10.11, and we want to search for 185, then the midpoint

will be 4 as per the formula.

Searching336

Next, we compare the search value (i.e. 185) with the value stored at the midpoint (i.e. 190). Since

the search value is less as compared to ordered_list[mid_point], we search for the element in

the lower sublist, and readjust the upper_index value. This is shown in Figure 10.11:

Figure 10.11: Readjustment of the upper_index when the search item is less than the value
at the midpoint

The following code snippet can be used to create a list of elements {44, 60, 75, 100, 120, 230,

250}, in which we want to search for 120 using the interpolation search algorithm.

list1 = [44, 60, 75, 100, 120, 230, 250]

a = interpolation_search(list1, 120)

print("Index position of value 2 is ", a)

The output of the above code is as follows:

Index position of value 2 is 4

Let’s use a more practical example to understand the inner workings of both the binary search

and interpolation algorithms.

Consider for example the following list of elements:

[2, 4, 5, 12, 43, 54, 60, 77]

At index 0, the value 2 is stored, and at index 7, the value 77 is stored. Now, assume that we want

to find element 2 in the list. How will the two different algorithms go about it?

If we pass this list to the interpolation search function, then the nearest_mid function will

return a value equal to 0 using the formula of mid_point computation, which is as follows:

mid_point = 0 + [(7-0)/(77-2)] * (2-2)

 = 0

Chapter 10 337

As we get the mid_point value 0, we start the interpolation search with the value at index 0. Just

with one comparison, we have found the search term.

On the other hand, the binary search algorithm needs three comparisons to arrive at the search

term, as illustrated in Figure 10.12:

Figure 10.12: Three comparisons are required to search for the item using the binary search
algorithm

The first mid_point value calculated is 3. The second mid_point value is 1 and the last mid_point

value where the search term is found is 0. So, we reach the desired search item in three comparisons

whereas in interpolation search we find the desired item on the first attempt.

The interpolation search algorithm works well when the data set is sorted, and uniformly

distributed. In this case, the average case time complexity is O(log(log n)) in which n is the

length of the array. Moreover, if the dataset is randomized, in that case, the worst-case time

complexity of the interpolation search algorithm will be O(n). So, interpolation search may work

better than binary search if the given data is uniformly distributed.

Exponential search
Exponential search is another search algorithm that is mostly used when we have large numbers

of elements in a list. Exponential search is also known as galloping search and doubling search.

The exponential search algorithm works in the following two steps:

1.	 Given a sorted array of n data elements, we first determine the subrange in the original

list where the desired search item may be present

2.	 Next, we use the binary search algorithm to find out the search value within the subrange

of data elements identified in step 1

Searching338

Firstly, in order to find out the subrange of data elements, we start searching for the desired item

in the given sorted array by jumping 2i elements every iteration. Here, i is the value of the index

of the array. After each jump, we check if the search item is present between the last jump and

the current jump. If the search item is present then we use the binary search algorithm within

this subarray, and if it is not present, we move the index to the next location. Therefore, we first

find the first occurrence of an exponent i such that the value at index 2i is greater than the search

value. Then, the 2i becomes the lower bound and 2i-1 becomes the upper bound for this range

of data elements in which the search value will be present. The exponential search algorithm is

defined as follows:

1.	 First, we check the first element A[0] with the search element.

2.	 Initialize the index position i=1.

3.	 We check two conditions: (1) if it is the end of the array or not (i.e. 2i < len(A)), and (2) if

A[i] <= search_value). In the first condition, we check if we have searched the complete

list, and we stop if we have reached the end of the list. In the second condition, we stop

searching when we reach an element whose value is greater than the search value, because

it means the desired element will be present before this index position (since the list is

sorted).

4.	 If either of the above two conditions is true, we move to the next index position by

incrementing i in powers of 2.

5.	 We stop when either of the two conditions of step 3 is satisfied.

6.	 We apply the binary search algorithm on the range 2i//2 to min (2i, len(A)).

Let’s take an example of a sorted array of elements A = {3, 5, 8, 10, 15, 26, 35, 45, 56,

80, 120, 125, 138} in which we want to search for the element 125.

We start with comparing the first element at index i = 0, i.e. A[0] with the search

element. Since A[0] < search_value, we jump to the next location 2i with i = 0, since

A[20] < search_value, the condition is true, hence we jump to the next location with

i = 1 i.e. A[221] < search_value. We again jump to the next location 2i with i = 2, since

A[22] < search_value, the condition is true. We iteratively jump to the next location until we

complete searching the list or the search value is greater than the value at that location, i.e.

A[2i] < len(A) or A[2i] <= search_value. Then we apply the binary search algorithm on the range

of the subarray. The complete process for searching a given element in the sorted array using the

exponential search algorithm is depicted in Figure 10.13:

Chapter 10 339

Figure 10.13: Illustration of the exponential search algorithm

Searching340

Now, let us discuss the implementation of the exponential search algorithm. Firstly, we implement

the binary search algorithm, which we have already discussed in the previous section, but for the

completeness of this algorithm it is given again as follows:

def binary_search_recursive(ordered_list, first_element_index, last_
element_index, term):

 if (last_element_index < first_element_index):

 return None

 else:

 mid_point = first_element_index + ((last_element_index - first_
element_index) // 2)

 if ordered_list[mid_point] > term:

 return binary_search_recursive (ordered_list, first_element_
index, mid_point-1, term)

 elif ordered_list[mid_point] < term:

 return binary_search_recursive (ordered_list, mid_point+1,
last_element_index, term)

 else:

 return mid_point

In the above code, given the ordered list of elements, it returns the index of the location where

the given data element is found in the list. It returns None if the desired element is not found in

the list. Next, we implement the exponential_search() method as follows:

def exponential_search(A, search_value):

 if (A[0] == search_value):

 return 0

 index = 1

 while index < len(A) and A[index] < search_value:

 index *= 2

 return binary_search_recursive(A, index // 2, min(index, len(A) - 1),
search_value)

In the above code, firstly, we compare the first element A[0] with the search value. If it matches

then the index position 0 is returned. If that does not match, we increase the index position to 20,

i.e. 1. We check A[1] < search_value. Since the condition is true, we jump to the next location 21,

i.e. we compare A[2] < search_value. Since the condition is true, we move to the next location.

Chapter 10 341

We iteratively increase the index position in the power of 2 until the stop condition is satisfied:

 while index < len(A) and A[index] < search_value:

 index *= 2

Finally, when the stopping criteria are met, we use the binary search algorithm to search for the

desired search value within the subrange as follows:

 return binary_search_recursive(A, index // 2, min(index, len(A) - 1),
search_value)

Finally, the exponential_search() method returns the index position if the search value is found

in the given array; otherwise, None is returned.

print(exponential_search([1,2,3,4,5,6,7,8,9, 10, 11, 12, 34, 40], 34))

The output of the above code snippet is:

12

In the above output, we get index position 12 for the search item 34 in the given array.

The exponential search is useful for very large-sized arrays. This is better than binary search
because instead of performing a binary search on the complete array, we find a subarray in which
the element may be present and then apply binary search, so it reduces the number of comparisons.

The worst-case time complexity of exponential search is O(log2i), where i is the index where
the element to be searched is present. The exponential search algorithm can outperform binary
search when the desired search element is present at the beginning of the array.

We can also use exponential search to search in bounded arrays. It can even out-perform binary
search when the target is near the beginning of the array, since exponential search takes O(log(i))
time whereas the binary search takes O(log n) time, where n is the total number of elements.
The best-case complexity of exponential search is O(1), when the element is present at the first
location of the array.

Next, let us discuss how to decide which search algorithm we should choose for a given situation.

Choosing a search algorithm
Now that we’ve covered the different types of search algorithms, we can look into which ones

work better and in what situations. The binary search and interpolation search algorithms are

better in performance compared to both ordered and unordered linear search functions. The

linear search algorithm is slower because of the sequential probing of elements in the list to find

the search term.

Searching342

Linear search has a time complexity of O(n). The linear search algorithm does not perform well

when the given list of data elements is large.

The binary search operation, on the other hand, slices the list in two anytime a search is attempted.

On each iteration, we approach the search term much faster than in a linear strategy. The time

complexity yields O(log n). The binary search algorithm performs well but the drawback of it

is that it requires a sorted list of elements. So, if the given data elements are short and unsorted

then it is better to use the linear search algorithm.

Interpolation search discards more than half of the list of items from the search space, and this

gives it the ability to get to the portion of the list that holds a search term more efficiently. In the

interpolation search algorithm, the midpoint is computed in such a way that it gives a higher

probability of obtaining the search term faster. The average-case time complexity of interpolation

search is O(log(log n)), whereas the worst-case time complexity of the interpolation search

algorithm is O(n). This shows that interpolation search is better than binary search and provides

faster searching in most cases.

Therefore, if the list is short and unsorted, then the linear search algorithm is suitable, and if the list

is sorted and not very big then the binary search algorithm can be used. Further, the interpolation

search algorithm is good to use if the data elements in the list are uniformly distributed. If the

list is very large, then the exponential search algorithm and jump search algorithm can be used.

Summary
In this chapter, we discussed the concept of searching for a given element from a list of data

elements. We discussed several important search algorithms, such as linear search, binary

search, jump search, interpolation search, and exponential search. The implementations of these

algorithms were discussed using Python in detail. We will be discussing sorting algorithms in

the next chapter.

Exercise
1.	 On average, how many comparisons are required in a linear search of n elements?

2.	 Assume there are eight elements in a sorted array. What is the average number of

comparisons that will be required if all the searches are successful and if the binary search

algorithm is used?

3.	 What is the worst-case time complexity of the binary search algorithm?

4.	 When should the interpolation search algorithm perform better than the binary search

algorithm?

Chapter 10 343

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

11
Sorting

Sorting means reorganizing data in such a way that it is in ascending or descending order. Sorting

is one of the most important algorithms in computer science and is widely used in database-

related algorithms. For several applications, if the data is sorted, it can efficiently be retrieved,

for example, if it is a collection of names, telephone numbers, or items on a simple to-do list.

In this chapter, we’ll study some of the most important and popular sorting techniques, including

the following:

•	 Bubble sort

•	 Insertion sort

•	 Selection sort

•	 Quicksort

•	 Timsort

Technical requirements
All source code used to explain the concepts of this chapter is provided in the GitHub repository

at the following link:

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-

Python-Third-Edition/tree/main/Chapter11

Sorting algorithms
Sorting means arranging all the items in a list in ascending or descending order. We can compare

different sorting algorithms by how much time and memory space is required to use them.

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter11

Sorting346

The time taken by an algorithm changes depending on the input size. Moreover, some algorithms

are relatively easy to implement, but may perform poorly with respect to time and space complexity,

whereas other algorithms are slightly more complex to implement, but can perform well when

sorting longer lists of data. One of the sorting algorithm, merge sort, we have already discussed

in Chapter 3, Algorithm Design Techniques and Strategies. We will discuss several more sorting

algorithms one by one in detail along with their implementation details, starting with the bubble

sort algorithm.

Bubble sort algorithms
The idea behind the bubble sort algorithm is very simple. Given an unordered list, we compare

adjacent elements in the list, and after each comparison, we place them in the right order according

to their values. So, we swap the adjacent items if they are not in the correct order. This process is

repeated n-1 times for a list of n items.

In each iteration, the largest element of the list is moved to the end of the list. After the second

iteration, the second largest element will be placed at the second-to-last position in the list. The

same process is repeated until the list is sorted.

Let’s take a list with only two elements, {5, 2}, to understand the concept of bubble sort, as shown

in Figure 11.1:

Figure 11.1: Example of bubble sort

To sort this list of two elements, first, we compare 5 and 2; since 5 is greater than 2, it means they

are not in the correct order, so we swap these values to put them in the correct order. To swap

these two numbers, first, we move the element stored at index 0 in a temporary variable (step 1

of Figure 11.2), then the element stored at index 1 is copied to index 0 (step 2 of Figure 11.2), and

finally the first element stored in the temporary variable is stored back at index 1 (step 3 of Figure

11.2). So, first, element 5 is copied to a temporary variable, temp. Then, element 2 is moved to

index 0. Finally, 5 is moved from temp to index 1. The list will now contain the elements as [2, 5]:

Chapter 11 347

Figure 11.2: Swapping of two elements in bubble sort

The following code will swap the elements of unordered_list[0] with unordered_list[1] if

they are not in the right order:

unordered_list = [5, 2]

temp = unordered_list[0]

unordered_list[0] = unordered_list[1]

unordered_list[1] = temp

print(unordered_list)

The output of the above code is:

[2, 5]

Now that we have been able to swap a two-element array, it should be simple to use this same

idea to sort a whole list using bubble sort.

Let’s consider another example to understand the working of the bubble sort algorithm and

sort an unordered list of six elements, such as {45, 23, 87, 12, 32, 4}. In the first iteration, we start

comparing the first two elements, 45 and 23, and we swap them, as 45 should be placed after

23. Then, we compare the next adjacent values, 45 and 87, to see whether they are in the correct

order. As 87 is a higher value than 45, we do not need to swap them. We swap two elements if

they are not in the correct order.

Sorting348

We can see, in Figure 11.3, that after the first iteration of the bubble sort, the largest element, 87,

is placed in the last position of the list:

Figure 11.3: Steps of the first iteration to sort an example array using bubble sort

After the first iteration, we just need to arrange the remaining (n-1) elements; we repeat the

same process by comparing the adjacent elements for the remaining five elements. After the

second iteration, the second largest element, 45, is placed at the second-to-last position in the

list, as shown in Figure 11.4:

Figure 11.4: Steps of the second iteration to sort an example array using bubble sort

Next, we have to compare the remaining (n-2) elements to arrange them as shown in Figure 11.5:

Chapter 11 349

Figure 11.5: Steps of the third iteration to sort an example array using bubble sort

Similarly, we compare the remaining elements to sort them, as well, as shown in Figure 11.6:

Figure 11.6: Steps of the fourth iteration to sort an example array using bubble sort

Finally, for the last two remaining elements, we place them in the correct order to obtain the final

sorted list, as shown in Figure 11.7:

Figure 11.7: Steps of the fifth iteration to sort an example array using bubble sort

The complete Python code of the bubble sort algorithm is shown below, and afterward, each step

is explained in detail:

def bubble_sort(unordered_list):

 iteration_number = len(unordered_list)-1

 for i in range(iteration_number,0,-1):

 for j in range(i):

 if unordered_list[j] > unordered_list[j+1]:

 temp = unordered_list[j]

 unordered_list[j] = unordered_list[j+1]

 unordered_list[j+1] = temp

Sorting350

Bubble sort is implemented using a double-nested loop, wherein one loop is inside another loop.

In bubble sort, the inner loop repeatedly compares and swaps the adjacent elements in each

iteration for a given list, and the outer loop keeps track of how many times the inner loop should

be repeated.

Firstly, in the above code, we compute how many times the loop should run to complete all

swaps; this is equal to the length of the list minus 1 and could be written as iteration_number

= len(unordered_list)-1. Here, the len function will give the length of the list. We subtract 1

because it gives us exactly the maximum number of iterations to run. The outer loop ensures this

and executes for one minus the size of the list.

Further, in the above code, for each iteration, in the inner loop, we compare the adjacent elements

using the if statement, and we check if the adjacent elements are in the correct order or not. For

the first iteration, the inner loop should run for n times, for the second iteration, the inner loop

should run n-1 times, and so on. For example, to sort a list of three numbers say [3, 2, 1], the

inner loop runs two times, and we need to swap the elements a maximum of two times as shown

in Figure 11.8:

Figure 11.8: Number of swaps in iteration 1 for an example list [3, 2, 1]

Further, after the first iteration, in the second iteration, we execute the inner loop once as shown

in Figure 11.9:

Chapter 11 351

Figure 11.9: Number of swaps in iteration 2 for an example list [3, 2, 1]

The following code snippet can be used to deploy the bubble sort algorithm:

my_list = [4,3,2,1]

bubble_sort(my_list)

print(my_list)

my_list = [1,12,3,4]

bubble_sort(my_list)

print(my_list)

The output is as follows:

[1, 2, 3, 4]

[1, 3, 4, 12]

In the worst case, the number of comparisons required in the first iteration will be (n-1), in the

second, the number of comparisons will be (n-2), and in the third iteration it will be (n-3), and

so on. Therefore, the total number of comparisons required in the bubble sort will be as follows:

(n-1) + (n-2) + (n-3) +.....+ 1 = n(n-1)/2

n(n+1)/2

O(n2)

Sorting352

The bubble sort algorithm is not an efficient sorting algorithm, as it provides a worst-case runtime

complexity of O(n2), and a best-case complexity of O(n). The worst-case situation occurs when

we want to sort the given list in ascending order and the given list is in descending order, and

the best case occurs when the given list is already sorted; in that case, there will not be any need

for swapping.

Generally, the bubble sort algorithm should not be used to sort large lists. The bubble sort

algorithm is suitable for applications where performance is not important or the length of the

given list is short, and moreover, short and simple code is preferred. The bubble sort algorithm

performs well on relatively small lists.

Now we shall look into the insertion sort algorithm.

Insertion sort algorithm
The idea of insertion sort is that we maintain two sublists (a sublist is a part of the original larger

list), one that is sorted and one that is not sorted, in which elements are added one by one from the

unsorted sublist to the sorted sublist. So, we take elements from the unsorted sublist and insert

them in the correct position in the sorted sublist, in such a way that this sublist remains sorted.

In the insertion sort algorithm, we always start with one element, taking it to be sorted, and then

take elements one by one from the unsorted sublist and place them at the correct positions (in

relation to the first element) in the sorted sublist. So, after taking one element from the unsorted

sublist and adding it to the sorted sublist, now we have two elements in the sorted sublist. Then,

we again take another element from the unsorted sublist, and place it in the correct position (in

relation to the two already sorted elements) in the sorted sublist. We repeatedly follow this process

to insert all the elements one by one from the unsorted sublist into the sorted sublist. The shaded

elements denote the ordered sublists in Figure 11.10, and in each iteration, an element from the

unordered sublist is inserted at the correct position in the sorted sublist.

Let’s consider an example to understand the working of the insertion sorting algorithm. Let’s

say; we have to sort a list of six elements: {45, 23, 87, 12, 32, 4}. Firstly, we start with one element,

assuming it to be sorted, then take the next element, 23, from the unsorted sublist and insert it

at the correct position in the sorted sublist. In the next iteration, we take the third element, 87,

from the unsorted sublist, and again insert it into the sorted sublist at the correct position. We

follow the same process until all elements are in the sorted sub-list. This whole process is shown

in Figure 11.10:

Chapter 11 353

Figure 11.10: Steps to sort example array elements using the insertion sort algorithm

The complete Python code for insertion sort is given below; each statement of the algorithm is

further explained in detail with an example:

def insertion_sort(unsorted_list):

 for index in range(1, len(unsorted_list)):

 search_index = index

 insert_value = unsorted_list[index]

 while search_index > 0 and unsorted_list[search_index-1] > insert_
value :

 unsorted_list[search_index] = unsorted_list[search_index-1]

 search_index -= 1

 unsorted_list[search_index] = insert_value

Sorting354

To understand the implementation of the insertion sort algorithm, let’s take another example of

five elements, {5, 1, 100, 2, 10}, and examine the process with a detailed explanation. Let’s

consider the following array, as shown in Figure 11.11:

Figure 11.11: An example array with index positions

The algorithm starts by using a for loop to run between the 1 and 4 indices. We start from index 1

because we take the element stored at index 0 to be in the sorted subarray and elements between

index 1 to 4 are of the unsorted sublist, as shown in Figure 11.12:

Figure 11.12: Demonstration of sorted and unsorted sublists in insertion sorting

At the start of the execution of the loop, we have the following code snippet:

 for index in range(1, len(unsorted_list)):

 search_index = index

 insert_value = unsorted_list[index]

At the beginning of the execution of each run of the for loop, the element at unsorted_list[index]

is stored in the insert_value variable. Later, when we find the appropriate position in the sorted

portion of the sublist, insert_value will be stored at that index in the sorted sublist. The next

code snippet is shown below:

 while search_index > 0 and unsorted_list[search_index-1] > insert_
value :

 unsorted_list[search_index] = unsorted_list[search_index-1]

 search_index -= 1

 unsorted_list[search_index] = insert_value

Chapter 11 355

search_index is used to provide information to the while loop, that is, exactly where to find the

next element that needs to be inserted into the sorted sublist.

The while loop traverses the list backward, guided by two conditions. First, if search_index > 0,

then it means that there are more elements in the sorted portion of the list; second, for the while

loop to run, unsorted_list[search_index-1] must be greater than the insert_value variable.

The unsorted_list[search_index-1] array will do either of the following things:

•	 Point to the element, just before unsorted_list[search_index], before the while loop

is executed the first time

•	 Point to one element before unsorted_list[search_index-1], after the while loop has

been run the first time

In the example list, the while loop will be executed because 5 > 1. In the body of the while loop,

the element at unsorted_list[search_index-1] is stored at unsorted_list[search_index].

And, search_index -= 1 moves the list traversal backward until it holds a value of 0.

After the while loop exits, the last known position of search_index (which, in this case, is 0)

now helps us to know where to insert insert_value. Figure 11.13 shows the position of elements

after the first iteration:

Figure 11.13: Example list position after 1st iteration

On the second iteration of the for loop, search_index will have a value of 2, which is the index

of the third element in the array. At this point, we start our comparison in the leftward direction

(toward index 0). 100 will be compared with 5, but because 100 is greater than 5, the while loop

will not be executed. 100 will be replaced by itself, because the search_index variable never got

decremented. As such, unsorted_list[search_index] = insert_value will have no effect.

Sorting356

When search_index is pointing at index 3, we compare 2 with 100, and move 100 to where 2 is

stored. We then compare 2 with 5 and move 5 to where 100 was initially stored. At this point, the

while loop will break and 2 will be stored in index 1. The array will be partially sorted with the

values [1, 2, 5, 100, 10]. The preceding step will occur one last time for the list to be sorted.

The following code can be used to create a list of elements, which we can sort using the defined

insertion_sort() method:

my_list = [5, 1, 100, 2, 10]

print("Original list", my_list)

insertion_sort(my_list)

print("Sorted list", my_list)

The output of the above code is as follows:

Original list [5, 1, 100, 2, 10]

Sorted list [1, 2, 5, 10, 100]

The worst-case time complexity of insertion sort is when the given list of elements is sorted in

reverse order. In that case, each element will have to be compared with each of the other elements.

So, we will need one comparison in the first iteration, two comparisons in the second iteration,

and three comparisons in the third iteration, and (n-1) comparisons in the (n-1)th iteration. Thus,

the total number of comparisons are:

1 + 2 + 3 .. (n-1)

n(n-1)/2

Hence, the insertion sort algorithm gives a worst-case runtime complexity of O(n2). Furthermore,

the best-case complexity of the insertion sort algorithm is O(n), in the situation when the given

input list is already sorted in which each element from the unsorted sublist is compared to only

the right-most element of the sorted sublist in each iteration. The insertion sort algorithm is good

to use when the given list has a small number of elements, and it is best suited when the input

data arrives one by one, and we need to keep the list sorted. Now we are going to take a look at

the selection sort algorithm.

Selection sort algorithm
Another popular sorting algorithm is selection sort. The selection sort algorithm begins by finding

the smallest element in the list and interchanges it with the data stored at the first position in

the list. Thus, it sorts the sublist sorted up to the first element. This process is repeated for (n-1)

times to sort n items.

Chapter 11 357

Next, the second smallest element, which is the smallest element in the remaining list, is identified

and interchanged with the second position in the list. This makes the initial two elements sorted.

The process is repeated, and the smallest element remaining in the list is swapped with the

element in the third index on the list. This means that the first three elements are now sorted.

Let’s look at an example to understand how the algorithm works. We’ll sort the following list of

four elements {15, 12, 65, 10, 7}, as shown in Figure 11.14, along with their index positions

using the selection sort algorithm:

Figure 11.14: Demonstration of the first iteration of the selection sort

In the first iteration of the selection sort, we start at index 0, we search for the smallest item in

the list, and when the smallest element is found, it is exchanged with the first data element of the

list at index 0. We simply repeat this process until the list is fully sorted. After the first iteration,

the smallest element will be placed in the first position in the list.

Sorting358

Next, we start from the second element of the list at index position 1 and search the smallest

element in the data list from index position 1 to the length of the list. Once we find the smallest

element from this remaining list of elements, we swap this element with the second element of the

list. The step-by-step process of the second iteration of the selection sort is shown in Figure 11.15:

Figure 11.15: Demonstration of the second iteration of the selection sort

In the next iteration, we find out the smallest element in the remaining list in index position 2 to

4 and swap the smallest data element with the data element at index 2 in the second iteration.

We follow the same process until we sort the complete list.

The following is an implementation of the selection sort algorithm. The argument to the function

is the unsorted list of items we want to put in ascending order of their values:

def selection_sort(unsorted_list):

 size_of_list = len(unsorted_list)

 for i in range(size_of_list):

 small = i

 for j in range(i+1, size_of_list):

 if unsorted_list[j] < unsorted_list[small]:

 small = j

 temp = unsorted_list[i]

 unsorted_list[i] = unsorted_list[small]

 unsorted_list[small] = temp

Chapter 11 359

In the above code of selection sort, the algorithm begins with the outer for loop to go through the

list, starting from index 0 to size_of_list. Because we pass size_of_list to the range method,

it’ll produce a sequence from 0 through to size_of_list-1.

Next, we declare a variable small, which stores the index of the smallest element. Further, the

inner loop is responsible for going through the list and we keep track of the index of the smallest

value of the list. Once the index of the smallest element is found, then we swap this element with

the correct position in the list.

The following code can be used to create a list of elements and we use the selection sort algorithm

to sort the list:

a_list = [3, 2, 35, 4, 32, 94, 5, 7]

print("List before sorting", a_list)

selection_sort(a_list)

print("List after sorting", a_list)

The output of the above code is as follows:

List before sorting [3, 2, 35, 4, 32, 94, 5, 7]

List after sorting [2, 3, 4, 5, 7, 32, 35, 94]

In the selection sort, (n-1) comparisons are required in the first iteration, and (n-2) comparisons

are required in the second iteration, and (n-3) comparisons are required in the third iteration,

and so on. So, the total number of comparisons required is: (n-1) + (n-2) + (n-3) + +

1 = n(n-1) / 2 , which nearly equals to n2. Thus, the worst-case time complexity of the selection

sort is O(n2). The worst-case situation is when the given list of elements is reverse ordered. The

selection sorting algorithm gives the best-case runtime complexity of O(n2). The selection sorting

algorithm can be used when we have a small list of elements.

Next, we will discuss the quicksort algorithm.

Quicksort algorithm
Quicksort is an efficient sorting algorithm. The quicksort algorithm is based on the divide-and-

conquer class of algorithms, similar to the merge sort algorithm, where we break (divide) a

problem into smaller chunks that are much simpler to solve, and further, the final results are

obtained by combining the outputs of smaller problems (conquer).

The concept behind quicksorting is partitioning a given list or array. To partition the list, we first

select a data element from the given list, which is called a pivot element.

Sorting360

We can choose any element as a pivot element in the list. However, for the sake of simplicity,

we’ll take the first element in the array as the pivot element. Next, all the elements in the list

are compared with this pivot element. At the end of first iteration, all the elements of the list are

arranged in such a way that the elements which are less than the pivot element are arranged to

the left of the pivot, that the elements that are greater than the pivot element are arranged to

the right of the pivot.

Now, let’s understand the working of the quicksort algorithm with an example.

In this algorithm, firstly we partition the given list of unsorted data elements into two sublists

in such a way that all the elements on the left side of that partition point (also called a pivot)

should be smaller than the pivot, and all the elements on the right side of the pivot should be

greater. This means that elements of the left sublist and the right sublist will be unsorted, but

the pivot element will be at its correct position in the complete list. This is shown in Figure 11.16.

Therefore, after the first iteration of the quicksort algorithm, the chosen pivot point is placed in

the list at its correct position, and after the first iteration, we obtain two unordered sublists and

follow the same process again on these two sublists. Thus, the quicksort algorithm partitions

the list into two parts and recursively applies the quicksort algorithm to these two sublists to

sort the whole list:

Figure 11.16: Illustration of sublists in quicksort

Chapter 11 361

The quicksort algorithm works as follows:

1.	 We start by choosing a pivot element with which all the data elements are to be compared,

and at the end of the first iteration, this pivot element will be placed in its correct position

in the list. In order to place the pivot element in its correct position, we use two pointers,

a left pointer, and a right pointer. This process is as follows:

a.	 The left pointer initially points to the value at index 1, and the right pointer points

to the value at the last index. The main idea here is to move the data items that are

on the wrong side of the pivot element. So, we start with the left pointer, moving

in a left-to-right direction until we reach a position where the data item in the

list has a greater value than the pivot element.

b.	 Similarly, we move the right pointer toward the left until we find a data item less

than the pivot element.

c.	 Next, we swap these two values indicated by the left and right pointers.

d.	 We repeat the same process until both pointers cross each other, in other words,

until the right pointer index indicates a value less than that of the left pointer index.

2.	 After each iteration described in step 1, the pivot element will be placed at its correct

position in the list, and the original list will be divided into two unordered sublists, left

and right. We follow the same process (as described in step 1) for both these left and right

sublists until each of the sublists contains a single element.

3.	 Finally, all the elements will be placed at their correct positions, which will give the sorted

list as an output.

Sorting362

Let’s take an example of a list of numbers, {45, 23, 87, 12, 72, 4, 54, 32, 52}, to understand how

the quicksort algorithm works. Let’s assume that the pivot element (also called the pivot point)

in our list is the first element, 45. We move the left pointer from index 1 in a rightward direction,

and stop when we reach the value 87, because (87>45). Next, we move the right pointer toward

the left and stop when we find the value 32, because (32<45). Now, we swap these two values.

This process is shown in Figure 11.17:

Figure 11.17: An illustrative example of the quicksort algorithm

Chapter 11 363

After that, we repeat the same process and move the left pointer toward the right, and stop when

we find the value 72, because (72 > 45). Next, we move the right pointer toward the left and stop

when we reach the value 4, because (4 < 45). Now, we swap these two values, because they are

on the wrong sides of the pivot value. We repeat the same process and stop once the right pointer

index value becomes less than the left pointer index. Here, we find 4 as the splitting point, and

swap it with the pivot value. This is shown in Figure 11.18:

Figure 11.18: An example of the quicksort algorithm (continued)

Sorting364

It can be observed that after the first iteration of the quicksort algorithm, the pivot value 45 is

placed at its correct position in the list.

Now we have two sublists:

1.	 The sublist to the left of the pivot value, 45, has values less than 45.

2.	 Another sublist to the right of the pivot value contains values greater than 45. We will

apply the quicksort algorithm recursively on these two sublists, and repeat it until the

whole list is sorted, as shown in Figure 11.19:

Figure 11.19: After the first iteration of the quicksort algorithm on an example list
of elements

We will take a look at the implementation of the quicksort algorithm in the next section.

Implementation of quicksort
The main task of the quicksort algorithm is to first place the pivot element in its correct position

so that we divide the given unsorted list into two sublists (left and right sublists); this process

is called the partitioning step. The partitioning step is very important in understanding the

implementation of the quicksort algorithm, so we will understand the implementation of the

partitioning step first with an example. In this, given a list of elements, all the elements will be

arranged in such a way that elements smaller than the pivot element will be on the left side of it,

and elements greater than the pivot will be arranged to the right of the pivot element.

Let’s look at an example to understand the implementation. Consider the following list of integers.

[43, 3, 20, 89, 4, 77]. We shall partition this list using the partition function:

[43, 3, 20, 89, 4, 77]

Chapter 11 365

Consider the code of the partition function below; we will discuss each line of this in detail:

def partition(unsorted_array, first_index, last_index):

 pivot = unsorted_array[first_index]

 pivot_index = first_index

 index_of_last_element = last_index

 less_than_pivot_index = index_of_last_element

 greater_than_pivot_index = first_index + 1

 while True:

 while unsorted_array[greater_than_pivot_index] < pivot and
greater_than_pivot_index < last_index:

 greater_than_pivot_index += 1

 while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

 less_than_pivot_index -= 1

 if greater_than_pivot_index < less_than_pivot_index:

 temp = unsorted_array[greater_than_pivot_index]

 unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = temp

 else:

 break

 unsorted_array[pivot_index] = unsorted_array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = pivot

 return less_than_pivot_index

The partition function receives, as its parameters, the indices of the first and last elements of the

array that we need to partition.

The value of the pivot is stored in the pivot variable, while its index is stored in pivot_index.

We are not using unsorted_array[0], because when the unsorted array parameter is called

with a segment of an array, index 0 will not necessarily point to the first element in that array.

The index of the element next to the pivot, that is, the left pointer, first_index + 1, marks the

position where we begin to look for an element in the array. This array is greater than the pivot

as greater_than_pivot_index = first_index + 1 suggests. The right pointer less_than_

pivot_index variable points to the position of the last element in the less_than_pivot_index =

index_of_last_element list, where we begin the search for the element that is less than the pivot.

Sorting366

Further, at the beginning of the execution of the main while loop, the array looks as shown in

Figure 11.20:

Figure 11.20: Illustration 1 of an example array for the quicksort algorithm

The first inner while loop moves one index to the right until it lands on index 2 because the value
at that index is greater than 43. At this point, the first while loop breaks and does not continue. At
each test of the condition in the first while loop, greater_than_pivot_index += 1 is evaluated
only if the while loop’s test condition evaluates to True. This makes the search for an element,
greater than the pivot, progress to the next element on the right.

The second inner while loop moves one index at a time to the left, until it lands on index 5, whose

value, 20, is less than 43, as shown in Figure 11.21:

Figure 11.21 Illustration 2 of example array for quicksort algorithm

Next, at this point, neither of the inner while loops can be executed any further, and the next

code snippet is as shown below:

 if greater_than_pivot_index < less_than_pivot_index:

 temp = unsorted_array[greater_than_pivot_index]

 unsorted_array[greater_than_pivot_index] =

 unsorted_array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = temp

 else:

 break

Chapter 11 367

Here, since greater_than_pivot_index < less_than_pivot_index, the body of the if statement

swaps the element at those indexes. The else condition breaks the infinite loop any time that

greater_than_pivot_index becomes greater than less_than_pivot_index. In such a condition,

it means that greater_than_pivot_index and less_than_pivot_index have crossed over each

other.

The array now looks as shown in Figure 11.22:

Figure 11.22: Illustration 3 of an example array for the quicksort algorithm

The break statement is executed when less_than_pivot_index is equal to 3 and greater_than_

pivot_index is equal to 4.

As soon as we exit the while loop, we interchange the element at unsorted_array[less_than_

pivot_index] with that of less_than_pivot_index, which is returned as the index of the pivot:

 unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index]=pivot

 return less_than_pivot_index

Figure 11.23 shows how the code interchanges 4 with 43 as the last step in the partitioning process:

Figure 11.23: Illustration 4 of an example array for the quicksort algorithm

To recap, the first time the quick_sort function was called, it was partitioned at the element at

index 0. After the return of the partitioning function, we obtain the array in the order of [4, 3,

20, 43, 89, 77].

Sorting368

As you can see, all elements to the right of element 43 are greater than 43, while those to the left

are smaller. Thus, the partitioning is complete.

Using the split point 43 with index 3, we will recursively sort the two subarrays, [4, 30, 20] and

[89, 77], using the same process we just went through.

The body of the main quick_sort function is as follows:

def quick_sort(unsorted_array, first, last):

 if last - first <= 0:

 return

 else:

 partition_point = partition(unsorted_array, first, last)

 quick_sort(unsorted_array, first, partition_point-1)

 quick_sort(unsorted_array, partition_point+1, last)

The quick_sort function is quite simple; initially, the partition method is called, which returns

the partition point. This partition point is in the unsorted_array array where all elements to

the left are less than the pivot value, and all elements to the right are greater. We print the state

of unsorted_array immediately after the partition progress to see the status of the array after

every call.

After the first partition, the first subarray[4, 3, 20] will be done; the partition of this subarray

will stop when greater_than_pivot_index is at index 2 and less_than_pivot_index is at index

1. At that point, the two markers are said to have crossed. Because greater_than_pivot_index

is greater than less_than_pivot_index, further execution of the while loop will cease. Pivot 4

will be exchanged with 3, while index 1 is returned as the partition point.

We can use the below code snippet to create a list of elements, and use the quicksort algorithm

to sort it:

my_array = [43, 3, 77, 89, 4, 20]

print(my_array)

quick_sort(my_array, 0, 5)

print(my_array)

The output of the above code is as follows:

[43, 3, 77, 89, 4, 20]

[3, 4, 20, 43, 77, 89]

Chapter 11 369

In the quicksort algorithm, the partition algorithm takes O(n) time. As the quicksort algorithm

follows the divide and conquer paradigm, it takes O(logn) time; therefore, the overall average-

case runtime complexity of the quicksort algorithm is O(n) * O(logn) = O(nlogn). The quicksort

algorithm gives a worst-case runtime complexity of O(n2). The worst-case complexity for the

quicksort algorithm would be when it selects the worst pivot point every time, and one of the

partitions always has a single element. For example, if the list is already sorted, the worst-case

complexity would occur if the partition picks the smallest element as a pivot point. When worst-

case complexity does occur, the quicksort algorithm can be improved by using the randomized

quicksort. The quicksort algorithm is efficient when the given list of elements is very long; it

works better compared to the other aforementioned algorithms for sorting in such situations.

Timsort algorithm
Timsort is used as the default standard sorting algorithm in all Python versions >=2.3. The Timsort

algorithm is an optimal algorithm for real-world long lists that is based on a combination of

the merge sort and insertion sort algorithms. The Timsort algorithm utilizes the best of both

algorithms; insertion sort works best when the array is sorted partially and its size is small, and the

merge method of the merge sort algorithm works fast when we have to combine small, sorted lists.

The main concept of the Timsort algorithm is that it uses the insertion sort algorithm to sort

small blocks (also known as chunks) of data elements, and then it uses the merge sort algorithm

to merge all the sorted chunks. The main characteristic of the Timsort algorithm is that it takes

advantage of already-sorted data elements known as “natural runs,” which occur very frequently

in real-world data.

The Timsort algorithm works as follows:

1.	 Firstly, we divide the given array of data elements into a number of blocks which are also

known as a run.

2.	 We generally use 32 or 64 as the size of the run as it is suitable for Timsort; however, we

can use any other size that can be computed from the length of the given array (say N).

The minrun is the minimum length of each run. The size of the minrun can be computed

by following the given principles:

a.	 The minrun size should not be too long as we use the insertion sort algorithm to

sort these small blocks, which performs well for short lists of elements.

Sorting370

b.	 The length of the run should not be very short; in that case, it will result in a greater

number of runs, which will make the merging algorithm slow.

c.	 Since merge sort works best when we have the number of runs as a power of 2, it

would be good if the number of runs that compute as N/minrun are a power of 2.

3.	 For example, if we take a run size of 32, then the number of runs will be (size_of_

array/32); if this is a power of 2, then the merge process will be very efficient.

4.	 Sort each of the runs one by one using the insertion sort algorithm.

5.	 Merge all the sorted runs one by one using the merge method of the merge sort algorithm.

6.	 After each iteration, we double the size of the merged subarray.

Let’s take an example to understand the working of the Timsort algorithm. Let’s say we have the

array [4, 6, 3, 9, 2, 8, 7, 5]. We sort it using the Timsort algorithm; here, for simplicity,

we take the size of the run as 4. So, we divide the given array into two runs, run 1 and run 2. Next,

we sort run 1 using the insertion sort algorithm, and then we sort run 2 using the insertion sort

algorithm. Once we have all the runs sorted, we use the merge method of the merge sort algorithm

to obtain the final complete sorted list. The complete process is shown in Figure 11.24:

Figure 11.24: Illustration of an example array for the Timsort algorithm

Chapter 11 371

Next, let’s discuss the implementation of the Timsort algorithm. Firstly, we implement the

insertion sort algorithm and the merge method of the merge sort algorithm. The insertion sort

algorithm has already been discussed in detail in previous sections. For completeness, it is given

below again:

def Insertion_Sort(unsorted_list):

 for index in range(1, len(unsorted_list)):

 search_index = index

 insert_value = unsorted_list[index]

 while search_index > 0 and unsorted_list[search_index-1] > insert_
value :

 unsorted_list[search_index] = unsorted_list[search_index-1]

 search_index -= 1

 unsorted_list[search_index] = insert_value

 return unsorted_list

In the above, the insertion sort method is responsible in sorting the run. Next, we present the

merge method of the merge sort algorithm; this has been discussed in detail in Chapter 3, Algorithm

Design Techniques and Strategies. This Merge() function is used to merge the sorted runs, and it

is defined as follows:

def Merge(first_sublist, second_sublist):

 i = j = 0

 merged_list = []

 while i < len(first_sublist) and j < len(second_sublist):

 if first_sublist[i] < second_sublist[j]:

 merged_list.append(first_sublist[i])

 i += 1

 else:

 merged_list.append(second_sublist[j])

 j += 1

 while i < len(first_sublist):

 merged_list.append(first_sublist[i])

 i += 1

 while j < len(second_sublist):

 merged_list.append(second_sublist[j])

 j += 1

 return merged_list

Sorting372

Next, let’s discuss the Timsort algorithm. Its implementation is given below. Let’s understand

it bit by bit:

def Tim_Sort(arr, run):

 for x in range(0, len(arr), run):

 arr[x : x + run] = Insertion_Sort(arr[x : x + run])

 runSize = run

 while runSize < len(arr):

 for x in range(0, len(arr), 2 * runSize):

 arr[x : x + 2 * runSize] = Merge(arr[x : x + runSize], arr[x +
runSize: x + 2 * runSize])

 runSize = runSize * 2

In the above implementation, we firstly pass two parameters, the array that is to be sorted and

the size of the run. Next, we use insertion sort to sort the individual subarrays by run size in the

below code snippet:

for x in range(0, len(arr), run):

 arr[x : x + run] = Insertion_Sort(arr[x : x + run])

In the above code for the example list [4, 6, 3, 9, 2, 8, 7, 5], let’s say run size is 2, so we

will have a total of four blocks/chunks/runs, and after exiting this loop, the array will be like this:

[4, 6, 3, 9, 2, 8, 5, 7], indicating that all runs of size 2 are sorted. After that we initialize

runSize and we iterate until runSize becomes equal to the array length. So, we use the merge

method for combining the sorted small lists:

 runSize = run

 while runSize < len(arr):

 for x in range(0, len(arr), 2 * runSize):

 arr[x : x + 2 * runSize] = Merge(arr[x : x + runSize], arr[x +
runSize: x + 2 * runSize])

 runSize = runSize * 2

In the above code, the for loop is using the Merge function for merging the runs of size runSize.

For the example above, the runSize is 2. In the first iteration, it will merge the left run from index

(0 to 1) and right run from index (2 to 3) to form a sorted array from index (0 to 3), and the

array will become [3, 4, 6, 9, 2, 8, 5, 7].

Chapter 11 373

Further, in the second iteration, it will merge the left run from index (4 to 5) and the right run

from index (6 to 7) to form a sorted run from index (4 to 7). After the second iteration the

for loop will terminate and the array will become [3, 4, 6, 9, 2, 5, 7, 8], which indicates

the array has been sorted from index (0 to 3) and (4 to 7).

Now we update the size of the run as 2*runSize and we repeat the same process for the updated

runSize. So now, runSize is 4. Now, in the first iteration, it will merge the left run (index 0 to 3)

and right run (index 4 to 7) to form a sorted array from index (0 to 7) and after this the for loop

will terminate and the array will become [2, 3, 4, 5, 6, 7, 8, 9], which indicates the array

has been sorted.

Now, runSize will become equal to the array length so the while loop will terminate, and at last,

we will be left with the sorted array.

We can use the below code snippet to create a list, and then sort the list using the Timsort algorithm:

arr = [4, 6, 3, 9, 2, 8, 7, 5]

run = 2

Tim_Sort(arr, run)

print(arr)

The output of the above code is as follows:

[2,3,4,5,6,7,8,9]

Timsort is very efficient for real-world applications since it has a worst-case complexity of O(n

logn). Timsort is the best choice for sorting, even if the length of the given list is short. In that

case, it uses the insertion sort algorithm, which is very fast for smaller lists, and the Timsort

algorithm works fast for long lists due to the merge method; hence, the Timsort algorithm is a

good choice for sorting due to its adaptability for sorting arrays of any length in real-world usage.

A comparison of the complexities of different sorting algorithms is given in the following table:

Algorithm worst-case average-case best-case

Bubble sort O(n2) O(n2) O(n)

Insertion sort O(n2) O(n2) O(n)

Selection sort O(n2) O(n2) O(n2)

Quicksort O(n2) O(n log n) O(n log n)

Timsort O(n log n) O(n log n) O(n)

Table 11.1: Comparing the complexity of different sorting algorithms

Sorting374

Summary
In this chapter, we have explored important and popular sorting algorithms that are very useful

for many real-world applications. We have discussed the bubble sort, insertion sort, selection

sort, quicksort, and Timsort algorithms, along with explaining their implementation in Python.

In general, the quicksort algorithm performs better than the other sorting algorithms, and the

Timsort algorithm is the best choice to use in real-world applications.

In the next chapter, we will discuss selection algorithms.

Exercise
1.	 If an array arr = {55, 42, 4, 31} is given and bubble sort is used to sort the array

elements, then how many iterations will be required to sort the array?

a.	 3

b.	 2

c.	 1

d.	 0

2.	 What is the worst-case complexity of bubble sort?

a.	 O(n log n)

b.	 O(log n)

c.	 O(n)

d.	 O(n2)

3.	 Apply quicksort to the sequence (56, 89, 23, 99, 45, 12, 66, 78, 34). What is the

sequence after the first phase, and what pivot is the first element?

a.	 45, 23, 12, 34, 56, 99, 66, 78, 89

b.	 34, 12, 23, 45, 56, 99, 66, 78, 89

c.	 12, 45, 23, 34, 56, 89, 78, 66, 99

d.	 34, 12, 23, 45, 99, 66, 89, 78, 56

4.	 Quicksort is a ___________

a.	 Greedy algorithm

b.	 Divide and conquer algorithm

c.	 Dynamic programming algorithm

Chapter 11 375

d.	 Backtracking algorithm

5.	 Consider a situation where a swap operation is very costly. Which of the following sorting

algorithms should be used so that the number of swap operations is minimized?

a.	 Heap sort

b.	 Selection sort

c.	 Insertion sort

d.	 Merge sort

6.	 If the input array A = {15, 9, 33, 35, 100, 95, 13, 11, 2, 13} is given, using selection sort, what

would the order of the array be after the fifth swap? (Note: it counts regardless of whether

they exchange places or remain in the same position.)

a.	 2, 9, 11, 13, 13, 95, 35, 33, 15, 100

b.	 2, 9, 11, 13, 13, 15, 35, 33, 95, 100

c.	 35, 100, 95, 2, 9, 11, 13, 33, 15, 13

d.	 11, 13, 9, 2, 100, 95, 35, 33, 13, 13

7.	 What will be the number of iterations to sort the elements {44, 21, 61, 6, 13, 1}

using insertion sort?

a.	 6

b.	 5

c.	 7

d.	 1

8.	 How will the array elements A= [35, 7, 64, 52, 32, 22] look after the second iteration,

if the elements are sorted using insertion sort?

a.	 7, 22, 32, 35, 52, 64

b.	 7, 32, 35, 52, 64, 22

c.	 7, 35, 52, 64, 32, 22

d.	 7, 35, 64, 52, 32, 22

Sorting376

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

12
Selection Algorithms

One interesting set of algorithms related to finding elements in an unordered list of items is

selection algorithms. Given a list of elements, selection algorithms are used to find the kth smallest

or largest element from the list. So given a list of data elements and a number (k), the aim is to

find the kth smallest or largest element. The simplest case of selection algorithms is to find the

minimum or maximum data element from the list. However, sometimes, we may need to find

the kth smallest or largest element in the list. The simplest way is to first sort the list using any

sorting algorithm, and then we can easily obtain the kth smallest (or largest) element. However,

when the list is very large, then it is not efficient to sort the list to get the kth smallest or largest

element. In that case, we can use different selection algorithms that can efficiently produce the

kth smallest or largest element.

In this chapter, we will cover the following topics:

•	 Selection by sorting

•	 Randomized selection

•	 Deterministic selection

We will start with the technical requirements, and then we will discuss selection by sorting.

Technical requirements
All of the source code that’s used in this chapter is provided in the given GitHub link: https://
github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-

Third-Edition/tree/main/Chapter12.

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter12

Selection Algorithms378

Selection by sorting
Items in a list may undergo statistical inquiries such as finding the mean, median, and mode

values. Finding the mean and mode values does not require the list to be ordered. However, to find

the median in a list of numbers, the list must first be ordered. Finding the median requires you

to find the element in the middle position of the ordered list. In addition, this can be used when

we want to find the kth smallest item in the list. To find the kth smallest number in an unordered

list of items, an obvious method is to first sort the list, and after sorting, you can rest assured that

the element at index 0 will hold the smallest element in the list. Likewise, the last element in the

list will hold the largest element in the list.

For more information on how to order data items within a list, see Chapter 11, Sorting. However,

in order to obtain a kth smallest element from the list, it is not a good solution to apply a sorting

algorithm to a long list of elements to obtain the minimum or maximum or kth smallest or largest

value from the list since sorting is quite an expensive operation. Thus, if we need to find out the

kth smallest or largest element from a given list, there is no need to sort the complete list as we

have other methods that we can use for this purpose. Let’s discuss better techniques to find the

kth smallest element without having to sort the list in the first place, starting with randomized

selection.

Randomized selection
The randomized selection algorithm is used to obtain the kth smallest number that is based on the

quicksort algorithm; the randomized selection algorithm is also known as quickselect. In Chapter

11, Sorting, we discussed the quicksort algorithm. The quicksort algorithm is an efficient algorithm

to sort an unordered list of items. To summarize, the quicksort algorithm works as follows:

1.	 It selects a pivot.

2.	 It partitions the unsorted list around the pivot.

3.	 It recursively sorts the two halves of the partitioned list using steps 1 and 2.

One important fact about quicksort is that after every partitioning step, the index of the pivot

does not change, even after the list becomes sorted. This means that after each iteration, the

selected pivot value will be placed in its correct position in the list. This property of quicksort

enables us to obtain the kth smallest number without sorting the complete list. Let’s discuss the

randomized selection method, which is also known as the quickselect algorithm, to obtain the

kth smallest element from a list of n data items.

Chapter 12 379

Quickselect
The quickselect algorithm is used to obtain the kth smallest element in an unordered list of items.

It is based on the quicksort algorithm, in which we recursively sort the elements of both the

sublists from the pivot point. In each iteration, the pivot value reaches the correct position in

the list, which divides the list into two unordered sublists (left and right sublists), where the left

sublist has smaller values as compared to the pivot value, and the right sublist has greater values

compared to the pivot value. Now, in the case of the quickselect algorithm, we recursively call

the function only for the sublist that has the kth smallest element.

In the quickselect algorithm, we compare the index of the pivot point with the k value to obtain

the kth smallest element from the given unordered list. There will be three cases in the quickselect

algorithm, as follows:

1.	 If the index of the pivot point is smaller than k, then we are sure that the kth smallest value

will be present on the right-hand sublist of the pivot point. So we only recursively call the

quickselect function for the right sublist.

2.	 If the index of the pivot point is greater than k, then it is obvious that the kth smallest

element will be present on the left-hand side of the pivot point. So we only recursively

look for the ith element in the left sublist.

3.	 If the index of the pivot point is equal to k, then it means that we have found out the kth

smallest value, and we return it.

Let’s understand the working of the quickselect algorithm with an example. Consider a list of

elements, {45, 23, 87, 12, 72, 4, 54, 32, 52}. We can use the quickselect algorithm to

find the third smallest element in this list.

We start the algorithm by selecting a pivot value, that is, 45. Here we are choosing the first

element as the pivot element for simplicity; however, any other element can be chosen as a pivot

element. After the first iteration of the algorithm, the pivot value moves to its correct position

in the list, which in this example is at index 4 (the index is starting from 0). Next, we check the

condition k<pivot point (that is, 2<4). Case- 2 is applicable, so we only consider the left sublist,

and recursively call the function. Here, we compare the index of the pivot value (that is, 4) with

the value of k (that is, the 3rd position or at index 2).

Next, we take the left sublist and select the pivot point (that is, 4). After the run, the 4 is placed

in its correct position (that is, the 0th index). As the index of the pivot is less than the value of k,

we consider the right sublist.

Selection Algorithms380

Similarly, we take 23 as the pivot point, which is also placed in its correct position. Now, when

we compare the index of the pivot point and the value of k, they are equal, which means we have

found the 3rd smallest element, and it will be returned. The complete step-by-step process to find

the 3rd smallest element is shown in Figure 12.1:

Figure 12.1: Step-by-step demonstration of the quickselect algorithm

Chapter 12 381

Let’s discuss the implementation of the quick_select method. It is defined as follows:

def quick_select(array_list, start, end, k):

 split = partition(array_list, start, end)

 if split == k:

 return array_list[split]

 elif split < k:

 return quick_select(array_list, split + 1, end, k)

 else:

 return quick_select(array_list, start, split-1, k)

In the above code, the quick_select function takes the complete array, the index of the first

element of the list, the index of the last element, and the kth element specified by value k as

parameters. The value of k maps with the index that the user is searching for, meaning the kth

smallest number in the list.

Initially, we use the partition() method (which is defined and discussed in detail in Chapter 11,

Sorting) to place the selected pivot point in such a way that it divides the given list of elements in

the left sublist and the right sublist, in which the left sublist has data elements that are smaller

than the pivot value, and right subtree has data elements that are greater than the pivot value.

The partition() method is called split = partition(array_list, start, end) and returns

the split index. Here, the split index is the position where the pivot element is placed in the

array, and (start, end) is the starting and ending indices of the list. Once we get the split point,

we compare the split index with the required value of k to find out whether we have reached

the position of the kth smallest data item or whether the required kth smallest element will be on

the left sublist or the right sublist. These three conditions are as follows:

1.	 If the split is equal to the value of k, then it means that we have reached the kth smallest

data item in the list.

2.	 If the split is less than k, then it means that the kth smallest item should exist or be found

between split+1 and right.

3.	 If the split is greater than k, then it means that the kth smallest item should exist or be

found between left and split-1.

In the preceding example, a split point occurs at index 4 (index starting from 0). If we are searching

for the 3rd smallest number, then since 4 < 2 yields false, a recursive call to the right sublist is

made using quick_select(array_list, left, split-1, k).

Selection Algorithms382

Here, for the completeness of this algorithm, the partition() method is given as follows:

def partition(unsorted_array, first_index, last_index):

 pivot = unsorted_array[first_index]

 pivot_index = first_index

 index_of_last_element = last_index

 less_than_pivot_index = index_of_last_element

 greater_than_pivot_index = first_index + 1

 while True:

 while unsorted_array[greater_than_pivot_index] < pivot and
greater_than_pivot_index < last_index:

 greater_than_pivot_index += 1

 while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

 less_than_pivot_index -= 1

 if greater_than_pivot_index < less_than_pivot_index:

 temp = unsorted_array[greater_than_pivot_index]

 unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = temp

 else:

 break

 unsorted_array[pivot_index] = unsorted_array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = pivot

 return less_than_pivot_index

We can use the below code snippet to find out the kth smallest element using the quickselect

algorithm for a given array.

list1 = [3,1,10, 4, 6, 5]

print("The 2nd smallest element is", quick_select(list1, 0, 5, 1))

print("The 3rd smallest element is", quick_select(list1, 0, 5, 2))

The output of the above code is as follows:

The 2nd smallest element is 3

The 3rd smallest element is 4

In the above code, we get the 2nd and 3rd smallest elements from the given list of elements. The

worst-case performance of a randomized selection-based quick-select algorithm is O(n2).

Chapter 12 383

In the above implementation of the partition() method, we use the first element of the list

as the pivot element for simplicity, but any element can be chosen from the list as the pivot

element. A good pivot element is one that divides the list into almost equal halves. Therefore, it

is possible to improve the performance of the quickselect algorithm by selecting the split point

more efficiently in linear time with the worst-case complexity of O(n). We discuss how to do this

in the next section using deterministic selection.

Deterministic selection
Deterministic selection is an algorithm for finding out the kth item in an unordered list of elements.

As we have seen in the quickselect algorithm, we select a random “pivot” element that partitions

the list into two sublists and calls itself recursively for one of the two sublists. In a deterministic

selection algorithm, we choose a pivot element more efficiently instead of taking any random

pivot element.

The main concept of the deterministic algorithm is to select a pivot element that produces a good

split of the list, and a good split is one that divides the list into two halves. For instance, a good

way to select a pivot element would be to choose the median of all the values. But we will need to

sort the elements in order to find out the median element, which is not efficient, so instead, we

try to find a way to select a pivot element that divides the list roughly in the middle.

The median of medians is a method that provides us with the approximate median value, that is,

a value close to the actual median for a given unsorted list of elements. It divides the given list of

elements in such a way that in the worst case, at least 3 out of 10 (3/10) of the list will be below

the pivot element, and at least 3 out of 10 of the elements will be above the list.

Let’s take an example to understand this. Let’s say we have a list of 15 elements: {11, 13, 12,

111, 110, 15, 14, 16, 113, 112, 19, 18, 17, 114, 115}.

Next, we divide it into groups of 5 elements and sort them as follows: {{11, 12, 13, 110, 111},

{14, 15, 16, 112, 113}, {17, 18, 19, 114, 115}}.

Next, we compute the median of each of these groups, and they are 13, 16, and 19, respectively.

Further, the median of these median values {13, 16, 19} is 16. This is the median of medians

for the given list. Here, we can see that 5 elements are smaller, and 9 elements are greater than

the pivot element. When we select this median of the median as a pivot element, the list of n

elements is divided in such a way that at least 3n/10 elements are smaller than the pivot element.

Selection Algorithms384

The deterministic algorithm to select the kth smallest element works as follows:

1.	 Split the list of unordered items into groups of five elements each (the number 5 is not

mandatory; it can be changed to any other number, for example, 8)

2.	 Sort these groups (in general, we use insertion sort for this purpose) and find the median

of all these groups

3.	 Recursively, find the median of the medians obtained from these groups; let’s say that

is point p

4.	 Using this point p as the pivot element, recursively call the partition algorithm similar to

quickselect to find out the kth smallest element

Let’s consider an example list of 15 elements to understand the working of the deterministic

algorithm to find out the 3rd smallest element from the list, as shown in Figure 12.2. First, we

divide the list into groups of 5 elements each, and then we sort these groups/sublists. Once we

have sorted the lists, we find out the median of the sublists. For this example, items 23, 52, and

34 are the medians of these three sublists, as shown in Figure 12.2.

Next, we sort the list of medians for all the sublists. Further, we find out the median of this list, that

is, the median of the median, which is 34. This median of medians is used to select the partition/

pivot point for the whole list. Further, we divide the given list using this pivot element to partition

the list into 2 sublists, placing the given pivot element at its correct position in the list. For this

example, the index of the pivot element is 7 (index starting from 0; this is shown in Figure 12.2.).

Chapter 12 385

Figure 12.2: Step-by-step procedure for the deterministic selection algorithm

The index of the pivot element is greater than the kth value, and hence, we recursively call the

algorithm on the left sublist to obtain the required kth smallest element.

Selection Algorithms386

Next, we will discuss the implementation of the deterministic selection algorithm.

Implementation of the deterministic selection algorithm
To implement the deterministic algorithm for determining the kth smallest value from the list,

we start implementing the updated partition() method, which divides the list where we select

the pivot element using the median of medians method. Let’s now understand the code for the

partition function:

def partition(unsorted_array, first_index, last_index):

 if first_index == last_index:

 return first_index

 else:

 nearest_median = median_of_medians(unsorted_array[first_
index:last_index])

 index_of_nearest_median = get_index_of_nearest_median(unsorted_array,
first_index, last_index, nearest_median)

 swap(unsorted_array, first_index, index_of_nearest_median)

 pivot = unsorted_array[first_index]

 pivot_index = first_index

 index_of_last_element = last_index

 less_than_pivot_index = index_of_last_element

 greater_than_pivot_index = first_index + 1

 ## This while loop is used to correctly place pivot element at its
correct position

 while 1:

 while unsorted_array[greater_than_pivot_index] < pivot and
greater_than_pivot_index < last_index:

 greater_than_pivot_index += 1

 while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

 less_than_pivot_index -= 1

 if greater_than_pivot_index < less_than_pivot_index:

 temp = unsorted_array[greater_than_pivot_index]

Chapter 12 387

 unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = temp

 else:

 break

 unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index]=pivot

 return less_than_pivot_index

In the above code, we implement the partition method, which is very similar to what we did in

the quickselect algorithm. In the quickselect algorithm, we used a random pivot element (for

simplicity, the first element of the list), but in the deterministic selection algorithm, we select

the pivot element using the median of medians. The partition method divides the list into two

sublists – the left and right sublists, in which the left sublist has elements that are smaller than

the pivot element, and the right sublist has elements that are greater than the pivot element. The

main benefit of using the pivot element with the median of medians is that it, in general, divides

the list into almost two halves.

At the start of the code, firstly, in the if-else condition, we check the length of the given list of

elements. If the length of the list is 1, then we return the index of that element, so if the unsorted_

array has only one element, first_index and last_index will be equal. Therefore, first_index

is returned. And, if the length is greater than 1, then we call the median_of_medians() method to

compute the median of medians of the list passed to this method with the starting and ending

indices as first_index and last_index. The return median of medians value is stored in the

nearest_median variable.

Now, let’s understand the code of the median_of_medians() method. It is given as follows:

def median_of_medians(elems):

 sublists = [elems[j:j+5] for j in range(0, len(elems), 5)]

 medians = []

 for sublist in sublists:

 medians.append(sorted(sublist)[int(len(sublist)/2)])

 if len(medians) <= 5:

 return sorted(medians)[int(len(medians)/2)]

 else:

 return median_of_medians(medians)

Selection Algorithms388

In the above code of the median_of_medians function, recursion is used to compute the median

of medians for the given list. The function begins by splitting the given list, elems, into groups of

five elements each. As discussed earlier in the deterministic algorithm, we divide the given list into

groups of 5 elements. Here, we choose 5 elements since it mostly performs well. However, we could

have used any other number as well. This means that if elems contains 100 items, there will be

20 groups that are created by the sublists = [elems[j:j+5] for j in range(0, len(elems),

5)] statement, with each containing a maximum of five elements.

After creating sublists of five elements each, we create an empty array, medians, that stores the

medians of each of the five-element arrays (i.e., sublists). Further, the for loop iterates over

the list of lists inside sublists. Each sublist is sorted, the median is found, and it is stored in the

medians list. The medians.append(sorted(sublist)[len(sublist)//2]) statement will sort the

list and obtain the element stored in its middle index. The medians variable becomes the median

list of all the sublists of which there are five elements in each sublist. In this implementation, we

use an existing sorting function of Python; it will not impact the performance of the algorithm

due to the list’s small size.

Thereafter, the next step is to recursively compute the median of medians, which we will use as

a pivot element. It is important to note here that the length of the median array can itself be a

large array because if the original length of the array is n, then the length of the median array

will be n/5, and sorting this may be time-consuming in itself. Hence, we check the length of the

medians array, and if it is less than 5, we sort the medians list and return the element located in its

middle index. If, on the other hand, the size of the list is greater than five, we recursively call the

median_of_medians function again, supplying it with the list of the medians stored in medians.

Finally, the function returns the median of medians of the given list of elements.

Let’s take another example to better understand the concept of the median of medians with the

following list of numbers:

[2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23,
21, 22, 25, 24, 14]

We can break this list down into groups of five elements, each with the sublists = [elems[j:j+5]

for j in range(0, len(elems), 5)] code statement, in order to obtain the following list:

[[2, 3, 5, 4, 1], [12, 11, 13, 16, 7], [8, 6, 10, 9, 17], [15, 19, 20, 18,
23], [21, 22, 25, 24, 14]]

Chapter 12 389

Each of the five-element lists will be sorted as follows:

[[1, 2, 3, 5, 5], [7, 11, 12, 13, 16], [6, 8, 9, 10, 17], [15, 18, 19, 20,
23], [14, 21, 22, 24, 25]]

Next, we obtain their medians to produce the following list:

[3, 12, 9, 19, 22]

We sort the above list:

[3, 9, 12, 19, 22]

Since the list is five elements in size, we only return the median of the sorted list, which is 12 in

this case. Otherwise, if the length of this array had been greater than 5, we would have made

another call to the median_of_median function.

Once we have the median of the median value, we need to find out its index in the given list.

We write the get_index_of_nearest_median function for this purpose. This function takes the

starting and ending indices of the list indicated by the first and last parameters:

def get_index_of_nearest_median(array_list, first, last, median):

 if first == last:

 return first

 else:

 return array_list.index(median)

Next in the partition method, we swap the median of medians value with the first element of

the list, that is, we swap index_of_nearest_median with first_index of the unsorted_array

using the swap function:

swap(unsorted_array, first_index, index_of_nearest_median)

The utility function to swap two array elements is shown here:

def swap(array_list, first, index_of_nearest_median):

 temp = array_list[first]

 array_list[first] = array_list[index_of_nearest_median]

 array_list[index_of_nearest_median] = temp

We swap these two elements. The rest of the implementation is quite similar to what we discussed

in the quick_select algorithm. Now, we have the median of the median for the given list, which

is stored in first_index of the unsorted list.

Selection Algorithms390

Now, the rest of the implementation is similar to the partition method of the quick_select

algorithm and also the quicksort algorithm, which is discussed in detail in Chapter 11, Sorting. For

the completeness of the algorithm here, we discuss this again.

We consider the first element as a pivot element, and we take two pointers, that is, left and right.

The left pointer moves from the left to the right direction in the list to keep elements that are

smaller than the pivot element on the left hand side of the pivot element. It is initialized with

the second element of the list, that is, first_index+1, whereas the right pointer moved from the

right to the left direction, which maintains the list in a way that elements greater than the pivot

element are on the right-hand side of the pivot element in the list. It is initialized with the last

element of the list. So we have two variables less_than_pivot_index (the right pointer) and

greater_than_pivot_index (the left pointer) in which less_than_pivot_index is initialized

with index_of_last_element and greater_than_pivot_index with first_index + 1:

 less_than_pivot_index = index_of_last_element

 greater_than_pivot_index = first_index + 1

Next, we move the left and right pointers in such a way that after one iteration, the pivot element

is placed in its correct position in the list. That means it divides the list into two sublists such that

the left sublist has all the elements that are smaller than the pivot element, and the right sublist

has elements greater than the pivot element. We do this with these three steps given below:

 ## This while loop is used to correctly place pivot element at its
correct position

 while 1:

 while unsorted_array[greater_than_pivot_index] < pivot and
greater_than_pivot_index < last_index:

 greater_than_pivot_index += 1

 while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

 less_than_pivot_index -= 1

 if greater_than_pivot_index < less_than_pivot_index:

 temp = unsorted_array[greater_than_pivot_index]

 unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index] = temp

 else:

 break

Chapter 12 391

1.	 The first while loop will move greater_than_pivot_index to the right side of the array

until the element pointed out by greater_than_pivot_index is less than the pivot element

and greater_than_pivot_index is less than last_index:

while unsorted_array[greater_than_pivot_index] < pivot and greater_
than_pivot_index < last_index: greater_than_pivot_index += 1

2.	 In the second while loop, we’ll be doing the same thing but for the less_than_pivot_

index in the array. We’ll move less_than_pivot_index to the left direction until the

element pointed out by less_than_pivot_index is greater than the pivot element and

less_than_pivot_index is greater than or equal to first_index:

while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index: less_than_pivot_index -= 1

3.	 Now, we check if greater_than_pivot_index and less_than_pivot_index have crossed
each other or not. If greater_than_pivot_index is still less than less_than_pivot_index
(that is, we have not found the correct position for the pivot element yet), we swap the
elements indicated by greater_than_pivot_index and less_than_pivot_index, and then
we will repeat the same three steps again. If they have crossed each other, that means we
have found the correct position for the pivot element, and we will break from the loop:

if greater_than_pivot_index < less_than_pivot_index:

 temp = unsorted_array[greater_than_pivot_index]

 unsorted_array[greater_than_pivot_index] = unsorted_array[less_
than_pivot_index]

 unsorted_array[less_than_pivot_index] = temp

else:

 break

After exiting the loop, the variable less_than_pivot_index will point to the correct index of the

pivot, so we will just swap the values that are present at less_than_pivot_index and pivot_index:

 unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]

 unsorted_array[less_than_pivot_index]=pivot

Finally, we will simply return the pivot index, which is stored in the variable less_than_pivot_

index.

After the partition method, the pivot element reaches its correct position in the list. Thereafter,

we recursively call the partition method to one of the sublists (the left sublist or the right sublist)

depending on the required value of k and the pivot element position to find out the kth smallest

element. This process is the same as the quickselect algorithm.

Selection Algorithms392

The implementation of the deterministic select algorithm is given as follows:

def deterministic_select(array_list, start, end, k):

 split = partition(array_list, start, end)

 if split == k:

 return array_list[split]

 elif split < k:

 return deterministic_select(array_list, split + 1, end, k)

 else:

 return deterministic_select(array_list, start, split-1, k)

As you may have observed, the implementation of the deterministic selection algorithm looks

exactly the same as the quickselect algorithm. The only difference between the two is how we

select the pivot element; apart from that, everything is the same.

After the initial array_list has been partitioned by the selected pivot element, which is the

median of medians of the list, a comparison with the kth element is made:

1.	 If the index of the split point, that is, split, is equal to the required value of k, it means

that we have found the required kth smallest element.

2.	 If the index of the split point, the, split is less than the required value of k, then a recursive

call to the right sublist is made as deterministic_select(array_list, split + 1,

right, k). This will look for the kth element on the right-hand side of the array.

3.	 Otherwise, if the split index is greater than the value of k, then the function call to the left

sublist is made as deterministic_select(array_list, left, split-1, k).

The following code snippet can be used to create a list and further use the deterministic algorithm

to find out the kth smallest element from the list:

list1= [2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18,
23, 21, 22, 25, 24, 14]

print("The 6th smallest element is", deterministic_select(list1, 0,
len(list1)-1, 5))

The output of the above code is as follows.

The 6th smallest element is 6

Chapter 12 393

In the output of the above code, we have the 6th smallest element from a given list of 25 elements.

The deterministic selection algorithm improves the quickselect algorithm by using the median

of medians element as a pivot point for selecting the kth smallest element from a list. It improves

performance because the median of medians method finds out the estimated median in linear

time, and when this estimated median is used as a pivot point in the quickselect algorithm, the

worst-case running time’s complexity improves from O(n2) to the linear O(n).

The median of medians algorithm can also be used to choose a pivot point in the quicksort

algorithm for sorting a list of elements. This significantly improves the worst-case performance

of the quicksort algorithm from O(n2) to a complexity of O(nlogn).

Summary
In this chapter, we discussed two important methods to find the kth smallest element in a list,

randomized selection and deterministic selection algorithms. The simple solution of merely

sorting a list to perform the operation of finding the kth smallest element is not optimal as we

can use better methods to determine the kth smallest element. The quickselect algorithm, which

is the random selection algorithm, divides the list into two sublists. One list has smaller values,

and the other list has greater values as compared to the selected pivot element. We reclusively use

one of the sublists to find the location of the kth smallest element, which can be further improved

by selecting the pivot point using the median of medians method in the deterministic selection

algorithm.

In the next chapter, we will discuss several important string matching algorithms.

Exercise
1.	 What will be the output if the quickselect algorithm is applied to the given array

arr = [3, 1, 10, 4, 6, 5] with k given as 2?

2.	 Can quickselect find the smallest element in an array with duplicate values?

3.	 What is the difference between the quicksort algorithm and the quickselect algorithm?

4.	 What is the main difference between the deterministic selection algorithm and the

quickselect algorithm?

5.	 What triggers the worst-case behavior of the selection algorithm?

Selection Algorithms394

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

13
String Matching Algorithms

There are many popular string matching algorithms. String matching algorithms have very im-

portant applications, such as searching for an element in a text document, plagiarism detection,

text editing programs, and so on. In this chapter, we will study the pattern matching algorithms

that find the locations of a given pattern or substring in any given text. We will discuss the brute

force algorithm, along with the Rabin-Karp, Knuth-Morris-Pratt (KMP), and Boyer-Moore

pattern matching algorithms. This chapter aims to discuss algorithms that are related to strings.

The following topics will be covered in this chapter:

•	 Learning pattern matching algorithms and their implementation

•	 Understanding and implementing the Rabin-Karp pattern matching algorithm

•	 Understanding and implementing the Knuth-Morris-Pratt (KMP) algorithm

•	 Understanding and implementing the Boyer-Moore pattern matching algorithm

Technical requirements
All of the programs based on the concepts and algorithms discussed in this chapter are provid-

ed in the book as well as in the GitHub repository at the following link: https://github.com/
PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/

tree/main/Chapter13.

String notations and concepts
Strings are sequences of characters. Python provides a rich set of operations and functions that

can be applied to the string data type. Strings are textual data and are handled very efficiently in

Python. The following is an example of a string (s)—"packt publishing".

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter13

String Matching Algorithms396

A substring is a sequence of characters that’s part of the given string, i.e., specified indices in the

string in a continuous order. For example, “packt" is a substring of the string “packt publishing".

On the other hand, a subsequence is also a sequence of characters that can be obtained from the

given string by removing some of the characters from the string by keeping the order of occurrence

of the characters. For example, “pct pblishing" is a valid subsequence for the string “packt

publishing" that is obtained by removing the characters a, k, and u. However, this is not a sub-

string since “pct pblishing" is not a continuous sequence of characters. Hence, a subsequence

is different from a substring, and it can be considered a generalization of substrings.

The prefix (p) is a substring of the string (s) in that it is present at the start of the string. There

is also another string (u) that exists in the string (s) after the prefix. For example, the substring

“pack" is a prefix for the string (s) = "packt publishing" as it is the starting substring and there

is another substring u = "publishing" after it. Thus, the prefix plus string (u) makes “packt

publishing", which is the whole string.

The suffix (d) is a substring that is present at the end of the string (s). For example, the sub-

string “shing" is one of the many possible suffixes for the string “packt publishing". Python

has built-in functions to check whether a string starts or ends with a specific string, as shown in

the following code snippet:

string = "this is data structures book by packt publisher"

suffix = "publisher"

prefix = "this"

print(string.endswith(suffix)) #Check if string contains given suffix.

print(string.startswith(prefix)) #Check if string starts with given
prefix.

The output of the above code is as follows:

True

True

In the above example of the given string, we can see that the given text string ends with another

substring “publisher", which is a valid suffix, and that also has another substring “this", which

is a substring of the string start and is also a valid prefix.

Note that the pattern matching algorithms discussed here are not to be confused with the match-

ing statements of Python 3.10.

Chapter 13 397

Pattern matching algorithms are the most important string processing algorithms and we will

discuss them in the subsequent sections, starting with pattern matching algorithms.

Pattern matching algorithms
A pattern matching algorithm is used to determine the index positions where a given pattern

string (P) is matched in a text string (T). Thus, the pattern matching algorithm finds and returns

the index where a given string pattern appears in a text string. It returns "pattern not found"

if the pattern does not have a match in the text string.

For example, for the given text string (s) = "packt publisher" and the pattern string (p) =

"publisher", the pattern-matching algorithm returns the index position where the pattern string

is matched in the text string. An example of a string matching problem is shown in Figure 13.1:

Figure 13.1: An example of a string matching problem

We will discuss four pattern matching algorithms, that is, the brute force method, Rabin-Karp

algorithm, and the Knuth-Morris-Pratt (KMP) and Boyer-Moore pattern-matching algorithms.

We start with the brute force pattern matching algorithm.

The brute force algorithm
The brute force algorithm is also called the naive approach to pattern matching algorithms. Na-

ive approach means that it is a very basic and simple algorithm. In this approach, we match all

the possible combinations of the input pattern in the given text string to find the position of the

occurrence of the pattern. This algorithm is very naive and is not suitable if the text is very long.

In this algorithm, we start by comparing the characters of the pattern string and the text string

one by one, and if all the characters of the pattern are matched with the text, we return the in-

dex position of the text where the first character of the pattern is located. If any character of the

pattern is mismatched with the text string, we shift the pattern by one position to check if the

pattern appears at the next index position. We continue comparing the pattern and text string

by shifting the pattern by one index position.

String Matching Algorithms398

To better understand how the brute force algorithm works, let’s look at an example. Suppose we

have a text string (T) = “acbcabccababcaacbcac”, and the pattern string (P) is “acbcac”. Now,

the objective of the pattern matching algorithm is to determine the index position of the pattern

string in the given text, T, as shown in Figure 13.2:

Figure 13.2: An example of the brute force algorithm for string matching

We start by comparing the first character of the text, that is, a, and the first character of the pattern.

Here, the initial five characters of the pattern are matched, and then there is a mismatch in the

last character of the pattern. This is a mismatch, so we shift the pattern by one place. We again

start comparing the first character of the pattern and the second character of the text string one

by one. Here, character c of the text string does not match with the character a of the pattern.

So, this is also a mismatch, and we shift the pattern by one space, as shown in Figure 13.2. We

continue comparing the characters of the pattern and the text string until we traverse the whole

text string. In this example, we find a match at index position 14, which is shown in Figure 13.2.

Let’s consider the Python implementation of the brute force algorithm for pattern matching:

def brute_force(text, pattern):

 l1 = len(text) # The length of the text string

Chapter 13 399

 l2 = len(pattern) # The length of the pattern

 i = 0

 j = 0 # looping variables are set to 0

 flag = False # If the pattern doesn't appear at all, then set
this to false and execute the last if statement

 while i < l1: # iterating from the 0th index of text

 j = 0

 count = 0

 # Count stores the length upto which the pattern and the text have
matched

 while j < l2:

 if i+j < l1 and text[i+j] == pattern[j]:

 # statement to check if a match has occurred or not

 count += 1 # Count is incremented if a character is
matched

 j += 1

 if count == l2: # it shows a matching of pattern in the text

 print("\nPattern occurs at index", i)

 # print the starting index of the successful match

 flag = True

 # flag is True as we wish to continue looking for more
matching of pattern in the text.

 i += 1

 if not flag:

 # If the pattern doesn't occur at all, means no match of pattern
in the text string

 print('\nPattern is not at all present in the array')

The following code snippet can be used to call the function to search the pattern 'acbcac' in

the given string:

brute_force('acbcabccababcaacbcac','acbcac') # function call

The output of the above function call is as follows:

Pattern occurs at index 14

In the preceding code for the brute force approach, we start by computing the length of the given

text strings and pattern. We also initialize the looping variables with 0 and set the flag to False.

String Matching Algorithms400

This variable is used to continue searching for a match of the pattern in the string. If the flag

variable is False by the end of the text string, it means that there is no match for the pattern at

all in the text string.

Next, we start the searching loop from the 0th index to the end of the text string. In this loop, we

have a count variable that is used to keep track of the length up to which the pattern and the

text have been matched. Next, we have another nested loop that runs from the 0th index to the

length of the pattern. Here, the variable i keeps track of the index position in the text string and

the variable j keeps track of the characters in the pattern. Next, we compare the characters of the

patterns and the text string using the following code fragment:

if i+j<l1 and text[i+j] == pattern[j]:

Furthermore, we increment the count variable after every match of the character of the pattern

in the text string. Then, we continue matching the characters of the pattern and text string. If the

length of the pattern becomes equal to the count variable, it means there is a match.

We print the index position of the text string if there is a match for the pattern string in the text

string and keep the flag variable as to True as we wish to continue searching for more matches

of the patterns in the text string. Finally, if the value of the variable flag is False, it means that

there was not a match for the pattern in the text string at all.

The best-case and worst-case time complexities for the naive string matching algorithms are O(n)

and O(m*(n-m+1)), respectively. The best-case scenario occurs when the pattern is not found in

the text and the first character of the pattern is not present in the text at all, for example, if the

text string is ABAACEBCCDAAEE, and the pattern is FAA. Here, as the first character of the pattern will

not find a match anywhere in the text, it will have comparisons equal to the length of the text (n).

The worst-case scenario occurs when all characters of the text string and the pattern are the same

and we want to find out all the occurrences of the given pattern string in the text string, for example,

if the text string is AAAAAAAAAAAAAAAA, and the pattern string is AAAA. Another worst-case scenario

occurs when only the last character is different, for example, if the text string is AAAAAAAAAAAAAAAF

and the pattern is AAAAF. Thus, the total number of comparisons will be m*(n-m+1) and the worst-

case time complexity will be O(m*(n-m+1)).

Next, we discuss the Rabin-Karp pattern matching algorithm.

Chapter 13 401

The Rabin-Karp algorithm
The Rabin-Karp pattern matching algorithm is an improved version of the brute force approach

to find the location of the given pattern in the text string. The performance of the Rabin-Karp

algorithm is improved by reducing the number of comparisons with the help of hashing. We

discussed the concept of hashing in Chapter 8, Hash Tables. The hashing function returns a unique

numeric value for a given string.

This algorithm is faster than the brute force approach as it avoids unnecessary comparisons. In

this algorithm, we compare the hash value of the pattern with the hash value of the substring of

the text string. If the hash values are not matched, the pattern is shifted forward one position. This

is a better algorithm as compared to the brute-force algorithm since there is no need to compare

all the characters of the pattern one by one.

This algorithm is based on the concept that if the hash values of the two strings are equal, then

it is assumed that both the strings are also equal. However, it is also possible that there can be

two different strings whose hash values are equal. In that case, the algorithm will not work; this

situation is known as a spurious hit and happens due to a collision in hashing. To avoid this

with the Rabin-Karp algorithm, after matching the hash values of the pattern and the substring,

we ensure that the pattern is actually matched in the string by comparing the pattern and the

substring character by character.

The Rabin-Karp pattern matching algorithm works as follows:

1.	 First, we preprocess the pattern before starting the search, that is, we compute the hash

value of the pattern of length m and the hash values of all the possible substrings of the

text of length m. The total number of possible substrings would be (n-m+1). Here, n is the

length of the text.

2.	 We compare the hash value of the pattern with the hash value of the substrings of the

text one by one.

3.	 If the hash values are not matched, then we shift the pattern by one position.

4.	 If the hash value of the pattern and the hash value of the substring of the text match, then

we compare the pattern and substring character by character to ensure that the pattern

is actually matched in the text.

5.	 We continue the process of steps 2-5 until we reach the end of the given text string.

String Matching Algorithms402

In this algorithm, we compute the numerical hash values using Horner’s rule (any other hashing

function can also be used) that returns a unique value for the given string. We also compute the

hash value using the sum of the ordinal values of all the characters of the string.

Let’s consider an example to understand the Rabin-Karp algorithm. Let’s say we have a text

string (T) = "publisher paakt packt", and the pattern (P) = "packt". First, we compute the

hash values of the pattern (length m) and all the substrings (of length m) of the text string. The

functionality of the Rabin-Karp algorithm is shown in Figure 13.3:

Figure 13.3: An example of the Rabin-Karp algorithm for string matching

We start comparing the hash value of the pattern "packt" with the first substring "publi". Since

the hash values do not match, we shift the pattern by one position, and then we compare the

hash value of pattern with the hash value of the next substring of the text, i.e. "ublis". As these

hash values also do not match, we again shift the pattern by one position. We shift the pattern

by one position at a time if the hash values do not match. And, if the hash value of the pattern

and the hash value of the substring match, we compare the pattern and substring character by

character and we return the location of the text string if they match.

In the example shown in Figure 13.3, hash values of the pattern and the substring of the text are

matched at location 17.

Chapter 13 403

It is important to note that there can be a different string whose hash value can match with the

hash of the pattern, i.e. a spurious hit.

Next, let us discuss the implementation of the Rabin-Karp pattern matching algorithm.

Implementing the Rabin-Karp algorithm
The implementation of the Rabin-Karp algorithm is done in two steps:

1.	 We implement the generate_hash() method, which is used to compute the hash value

of the pattern and all the possible combinations of the substrings of length equal to the

length of the pattern.

2.	 We implement the Rabin-Karp algorithm, which uses the generate_hash() method to

identify the substring whose hash value matches the hash value of the pattern. Finally,

we match them character by character to ensure we have correctly found the pattern.

Let us first discuss the implementation of generating hash values for the patterns and substrings

of the text. For this, we need to first decide on the hash function. Here, we use the sum of all the

ordinal values of all the characters of the string as the hashing function.

The complete Python implementation to compute the hashing values is given below:

def generate_hash(text, pattern):
 ord_text = [ord(i) for i in text] # stores unicode value of each
character in text
 ord_pattern = [ord(j) for j in pattern] # stores unicode value of each
character in pattern
 len_text = len(text) # stores length of the text
 len_pattern = len(pattern) # stores length of the pattern
 len_hash_array = len_text - len_pattern + 1 # stores the length of new
array that will contain the hash values of text
 hash_text = [0]*(len_hash_array) # Initialize all the values in
the array to 0.
 hash_pattern = sum(ord_pattern)
 for i in range(0,len_hash_array): # step size of the loop will
be the size of the pattern
 if i == 0: # Base condition
 hash_text[i] = sum(ord_text[:len_pattern]) # initial value
of hash function
 else:
 hash_text[i] = ((hash_text[i-1] - ord_text[i-1]) + ord

String Matching Algorithms404

[i+len_pattern-1]) # calculating next hash value using previous value

 return [hash_text, hash_pattern] # return the hash
values

In the above code, we start by storing the ordinal values of all the characters of the text and the

pattern in the ord_text and ord_pattern variables. Next, we store the length of the text and the

pattern in the len_text and len_pattern variables.

Next, we create a variable called len_hash_array that stores the number of all the possible sub-

strings of length (equal to the length of the pattern) using len_text - len_pattern + 1, and

we create an array called hash_text that stores the hash value for all the possible substrings. This

is shown in the following code snippet:

 len_hash_array = len_text - len_pattern + 1

 hash_text = [0]*(len_hash_array)

Next, we compute the hash value for the pattern by summing up the ordinal values of all the

characters in the pattern using the following code snippet:

 hash_pattern = sum(ord_pattern)

Next, we start a loop that executes for all the possible substrings of the text. For this, initially, we

compute the hash value for the first substring by summing the ordinal values of all of its charac-

ters using sum(ord_text[:len_pattern]). Further, the hash values for all of the substrings are

computed using the hash value of the previous substrings as shown in the following code snippet:

 hash_text[i] = ((hash_text[i-1] - ord_text[i-1]) + ord_text[i+len_
pattern-1])

So, we have precomputed the hash values for the pattern and all the substrings of the text that

we will use for comparing the pattern and the text in the implementation of the Rabin-Karp

algorithm. The Rabin-Karp algorithm works as follows. Firstly, we compare the hash values of

the pattern and substrings of the text. Next, we take the substring for which the hash matches

with the hash of the pattern and compare them both character by character.

The complete Python implementation of the Rabin-Karp algorithm is as follows:

def Rabin_Karp_Matcher(text, pattern):

 text = str(text) # convert text into string
format

 pattern = str(pattern) # convert pattern into string
format

Chapter 13 405

 hash_text, hash_pattern = generate_hash(text, pattern) # generate hash
values using generate_hash function

 len_text = len(text) # length of text

 len_pattern = len(pattern) # length of pattern

 flag = False # checks if pattern is present atleast
once or not at all

 for i in range(len(hash_text)):

 if hash_text[i] == hash_pattern: # if the hash value matches

 count = 0 # count the total characters
upto which both are similar

 for j in range(len_pattern):

 if pattern[j] == text[i+j]: # checking equality for each
character

 count += 1 # if value is equal, then
update the count value

 else:

 break

 if count == len_pattern: # if count is equal to length
of pattern, it means there is a match

 flag = True # update flag accordingly

 print('Pattern occurs at index',i)

 if not flag: # if pattern doesn't match
even once, then this if statement is executed

 print('Pattern is not at all present in the text')

In the above code, firstly, we convert the given text and pattern into string format as the ordinal

values can only be computed for strings. Next, we use the generate_hash function to compute

the hash values of patterns and texts. We store the length of the text and patterns in the len_text

and len_pattern variables. We also initialize the flag variable to False so that it keeps track of

whether the pattern is present in the text at least once.

Next, we start a loop that implements the main concept of the algorithm. This loop executes for

the length of hash_text, which is the total number of possible substrings. Initially, we compare

the hash value of the first substring with the hash of the pattern by using if hash_text[i] ==

hash_pattern. If they do not match; we move one index position and look for another substring.

We iteratively move further until we get a match.

If we find a match, we compare the substring and the pattern character by character through a

loop by using if pattern[j] == text[i+j].

String Matching Algorithms406

We then create a count variable to keep track of how many characters match in the pattern and

the substring. If the length of the count and the length of the pattern are equal, this means that all

of the characters match, and the index location where the pattern was found is returned. Finally,

if the flag variable remains False, this means that the pattern does not match at all with the

text. The following code snippets can be used to execute the Rabin-Karp matching algorithm:

 Rabin_Karp_Matcher("101110000011010010101101","1011")

 Rabin_Karp_Matcher("ABBACCADABBACCEDF","ACCE")

The output of the above code is as follows:

 Pattern occurs at index 0

 Pattern occurs at index 18

 Pattern occurs at index 11

In the above code, we first check whether the pattern “1011" appears in the given text string

“101110000011010010101101". The output shows that the given pattern occurs at index position 0

and 18. Next, the pattern “ACCE" occurs at index position 11 in the text string “ABBACCADABBACCEDF".

The Rabin-Karp pattern matching algorithm preprocesses the pattern before the searching; that

is, it computes the hash value for the pattern that has the complexity of O(m). Also, the worst-

case running time complexity of the Rabin-Karp algorithm is O(m *(n-m+1)). The worst-case

scenario is when the pattern does not occur in the text at all. The average-case scenario is when

the pattern occurs at least once.

Next, we will discuss the KMP string matching algorithm.

The Knuth-Morris-Pratt algorithm
The KMP algorithm is a pattern matching algorithm based on the idea that the overlapping text

in the pattern itself can be used to immediately know at the time of any mismatch how much the

pattern should be shifted to skip unnecessary comparisons. In this algorithm, we will precompute

the prefix function that indicates the required number of shifts of the pattern whenever we get

a mismatch. The KMP algorithm preprocesses the pattern to avoid unnecessary comparisons

using the prefix function. So, the algorithm utilizes the prefix function to estimate how much

the pattern should be shifted to search the pattern in the text string whenever we get a mismatch.

The KMP algorithm is efficient as it minimizes the number of comparisons of the given patterns

with respect to the text string.

Chapter 13 407

The motivation behind the KMP algorithm can be observed in Figure 13.4. In this example, it can

be seen that the mismatch occurred at the 6th position with the last character “d” after matching

the initial 5 characters. It is also known from the prefix function that the character “d” did not

appear before in the pattern, and utilizing this information, the pattern can be shifted by six places:

Figure 13.4: Example of the KMP algorithm

So, in this example, the pattern has shifted six positions instead of one. Let us discuss another

example to understand the concept of the KMP algorithm, as shown in Figure 13.5:

Figure 13.5: Second example of the KMP algorithm

In the above example, the mismatch occurs at the last character of the pattern. Since the pattern

at the location of the mismatch has a partial match of the prefix bc, this information is given by

the prefix function. Here, the pattern can be shifted to align with the other occurrence of the

matched prefix bc in the pattern.

We will look into the prefix function next for a better understanding of how we use it to know

by how much we should shift the pattern.

String Matching Algorithms408

The prefix function
The prefix function (also known as the failure function) finds the pattern within the pattern.

It finds out how much the previous comparisons can be reused due to repetition in the pattern

itself when there is a mismatch. The prefix function returns a value for each position wherever

we get a mismatch, which tells us by how much the pattern should be shifted.

Let us understand how we use the prefix function to find the required shift amount with the

following examples. Consider the first example: if we had a prefix function for a pattern where

all of the characters are different, the prefix function would have a value of 0. This means that

if we find any mismatch, the pattern will be shifted by the number of characters compared up to

that position in the pattern.

Consider an example with the pattern abcde, which contains all different characters. We start

comparing the first character of the pattern with the first character of the text string, as shown

in Figure 13.6. As shown in the figure, the mismatch occurs at the 4th character in the pattern.

Since the prefix function has the value 0, it means that there is no overlap in the pattern and no

previous comparisons would be reused, so the pattern will be shifted to the number of characters

compared up until that point:

Figure 13.6: Prefix function in the KMP algorithm

Chapter 13 409

Let’s consider another example to better understand how the prefix function works for the

pattern (P) abcabbcab as shown in Figure 13.7:

Figure 13.7: Example of the prefix function in the KMP algorithm

In Figure 13.7, we start calculating the values of the prefix function starting from index 1. We

assign the value 0 if there is no repetition of the characters in the pattern. So, in this example, we

assign 0 to the prefix function for index positions 1 to 3. Next, at index position 4, we can see

that there is a character, a, which is a repetition of the first character of the pattern itself, so we

assign the value 1 here, as shown in Figure 13.8:

Figure 13.8: Value of the prefix function at index 4 in the KMP algorithm

Next, we look at the next character at position 5. It has the longest suffix pattern, ab, and so it

would have a value of 2, as shown in Figure 13.9:

Figure 13.9: Value of the prefix function at index 5 in the KMP algorithm

Similarly, we look at the next index position of 6. Here, the character is b. This character does

not have the longest suffix in the pattern, so it has the value 0. Next, we assign value 0 at index

position 7. Then, we look at the index position 8, and we assign the value 1 as it has the longest

suffix of length 1.

String Matching Algorithms410

Finally, at the index position of 9, we have the longest suffix of 2. This is shown in Figure 13.10:

Figure 13.10: Value of the prefix function at index 6 to 9 in the KMP algorithm

The value of the prefix function shows how much of the start of the string can be reused if there

is a mismatch. For example, if the comparison fails at index position 5, the prefix function value

is 2, which means that the two starting characters don’t need to be compared, and the pattern

can be shifted accordingly.

Next, we discuss the details of the KMP algorithm.

Understanding the KMP algorithm
The KMP pattern matching algorithm detects overlaps in the pattern itself so that it avoids

unnecessary comparisons. The main idea behind the KMP algorithm is to detect how much the

pattern should be shifted, based on the overlaps in the patterns. The algorithm works as follows:

1.	 First, we precompute the prefix function for the given pattern and initialize a counter q

that represents the number of characters that matched.

2.	 We start by comparing the first character of the pattern with the first character of the

text string, and if this matches, then we increment the counter q for the pattern and the

counter for the text string, and we compare the next character.

3.	 If there is a mismatch, then we assign the value of the precomputed prefix function for

q to the index value of q.

4.	 We continue searching the pattern in the text string until we reach the end of the text, that

is, if we do not find any matches. If all of the characters in the pattern are matched in the

text string, we return the position where the pattern is matched in the text and continue

to search for another match.

Let’s consider the following example to understand the working of the KMP algorithm. We

have a pattern acacac along with index positions from 1 to 6 (just for simplicity, we have index

positions starting from 1 instead of 0), shown in Figure 13.11. The prefix function for the given

pattern is constructed as shown in Figure 13.11:

Chapter 13 411

Figure 13.11: The prefix function for pattern “acacac”

Let us take an example to understand how we use the prefix function to shift the pattern accord-

ing to the KMP algorithm for the text string and pattern given in Figure 13.12. We start comparing

the pattern and the text character by character. When we mismatch at index position 6, we see

the prefix value for this position is 2. Then we shift the pattern according to the return value of

the prefix function. Next, we start comparing the pattern and text string from the index position

of 2 on the pattern (character c), and the character b of the text string. Since this is a mismatch,

the pattern will be shifted according to the value of the prefix function at this position. This

description is depicted in Figure 13.12:

Figure 13.12: The pattern is shifted according to the return value of the prefix function

Now let’s take another example shown in Figure 13.13 where the position of the pattern over the

text is shown. When we start comparing the characters b and a, these do not match, and we see

the prefix function for index position 1 shows a value of 0, meaning no overlapping of text in

the pattern has occurred. Therefore, we shift the pattern by 1 place as shown in Figure 13.12. Next,

we compare the pattern and text string character by character, and we find a mismatch at index

String Matching Algorithms412

position 10 in the text between characters b and c.

Here, we use the precomputed prefix function to shift the pattern – as the prefix_function(4)

is 2, we shift the pattern to align over the text at index position 2 of the pattern. After that, we

compare characters b and c at index position 10, and since they do not match, we shift the pattern

by one place. This process is shown in Figure 13.13:

Figure 13.13: Shifting of the pattern according to the return value of the prefix function

Let us continue our searching from index position 11, as shown in Figure 13.14. Next, we compare

the characters at index 11 in the text and continue until a mismatch is found. We find a mismatch

between characters b and c at index position 12, as shown in Figure 13.14. We shift the pattern

and move it next to the mismatched character since the prefix_function(2) is 0. We repeat the

same process until we reach the end of the string. We find a match of the pattern in the text string

at index location 13 in the text string, as in Figure 13.14:

Chapter 13 413

Figure 13.14: Shifting of the pattern for index positions of 11 to 18

The KMP algorithm has two phases: first, the preprocessing phase, which is where we compute

the prefix function, which has the space and time complexity of O(m). Further, the second phase

involves searching, for which the KMP algorithm has a time complexity of O(n). So, the worst-

case time complexity of the KMP algorithm is O(m +n).

Now, we will discuss the implementation of the KMP algorithm using Python.

Implementing the KMP algorithm
The Python implementation of the KMP algorithm is explained here. We start by implementing

the prefix function for the given pattern. The code for the prefix function is as follows:

def pfun(pattern): # function to generate prefix function for
the given pattern,

 n = len(pattern) # length of the pattern

 prefix_fun = [0]*(n) # initialize all elements of the list to 0

 k = 0

String Matching Algorithms414

 for q in range(2,n):
 while k>0 and pattern[k+1] != pattern[q]:
 k = prefix_fun[k]
 if pattern[k+1] == pattern[q]: # If the kth element of the
pattern is equal to the qth element
 k += 1 # update k accordingly
 prefix_fun[q] = k
 return prefix_fun # return the prefix function

In the above code, we first compute the length of the pattern using the len() function, and then

we initialize a list to store the values computed by the prefix function.

Next, we start the loop that executes from 2 to the length of the pattern. Then, we have a nested

loop that is executed until we have processed the whole pattern. The variable k is initialized to

0, which is the prefix function for the first element of the pattern. If the kth element of the pat-

tern is equal to the qth element, then we increment the value of k by 1. The value of k is the value

computed by the prefix function, and so we assign it at the index position of q in the pattern.

Finally, we return the list of the prefix function that has the computed value for each character

of the pattern.

Once we have created the prefix function, we implement the main KMP matching algorithm.

The following code shows this in detail:

def KMP_Matcher(text,pattern): # KMP matcher function
 m = len(text)
 n = len(pattern)
 flag = False
 text = '-' + text # append dummy character to make it 1-based
indexing
 pattern = '-' + pattern # append dummy character to the pattern also
 prefix_fun = pfun(pattern) # generate prefix function for the pattern
 q = 0
 for i in range(1,m+1):
 while q>0 and pattern[q+1] != text[i]: # while pattern and text
are not equal, decrement the value of q if it is > 0
 q = prefix_fun[q]
 if pattern[q+1] == text[i]: # if pattern and text
are equal, update value of q
 q += 1
 if q == n: # if q is equal to
the length of the pattern, it means that the pattern has been found.

Chapter 13 415

 print("Pattern occurs at positions ",i-n) # print the
index, where first match occurs.
 flag = True
 q = prefix_fun[q]
 if not flag:
 print('\nNo match found')

In the above code, we start by computing the length of the text string and the pattern, which are

stored in the variables m and n, respectively. Next, we define a variable flag to indicate whether the

pattern has found a match or not. Further, we add a dummy character - in the text and pattern to

make the indexing start from index 1 instead of index 0. Next, we call the pfun() method to con-

struct the array containing the prefix values for all the positions of the pattern using prefix_fun

= pfun(pattern). Next, we execute a loop starting from 1 to m+1, where m is the length of the

pattern. Further, for each iteration of the for loop, we compare the pattern and text in a while

loop until we finish searching the pattern.

If we get a mismatch, we use the value of the prefix function at index q (here, q is the index

where the mismatch occurs) to find out by how much we have to shift the pattern. If the pattern

and text are equal, then the value of 1 and n will be equal, and we can return the index where the

pattern was matched in the text. Further, we update the flag variable to True when the pattern

is found in the text. If we finished searching the whole text string and still the variable flag was

False, it would mean the pattern was not present in the given text.

The following code snippet can be used to execute the KMP algorithm for string matching:

 KMP_Matcher('aabaacaadaabaaba','aabaa') # function call, with two
parameters, text and pattern

The output of the above code is as follows:

 Pattern occurs at positions 0

 Pattern occurs at positions 9

In the above output, we see that the pattern is present at index positions 0 and 9 in the given

text string.

Next, we will discuss another pattern matching algorithm, the Boyer-Moore algorithm.

The Boyer-Moore algorithm
As we have already discussed, the main objective of the string pattern matching algorithm is to

find ways of skipping comparisons as much as possible by avoiding unnecessary comparisons.

String Matching Algorithms416

The Boyer-Moore pattern matching algorithm is another such algorithm (along with the KMP

algorithm) that further improves the performance of pattern matching by skipping comparisons

using different methods. We have to understand the following concepts in order to understand

the Boyer-Moore algorithm:

1.	 In this algorithm, we shift the pattern in the direction from left to right, similar to the

KMP algorithm.

2.	 We compare the characters of the pattern and the text string from right to left, which is

the opposite of what we do in the case of the KMP algorithm.

3.	 The algorithm skips the unnecessary comparisons by using the good suffix and bad char-

acter shift heuristics. These heuristics themselves find the possible number of comparisons

that can be skipped. We slide the pattern over the given text with the greatest offsets

suggested by both of these heuristics.

Let us understand all about these heuristics and the details of how the Boyer-Moore pattern

matching algorithm works.

Understanding the Boyer-Moore algorithm
The Boyer-Moore algorithm compares the pattern with the text from right to left, meaning that

in this algorithm if the end of the pattern does not match with the text, the pattern can be shifted

rather than checking every character of the text. The key idea is that the pattern is aligned with

the text and the last character of the pattern is compared with the text, and if they do not match,

then it is not required to continue comparing each character and we can rather shift the pattern.

Here, how much we shift the pattern depends upon the mismatched character. If the mismatched

character of the text does not appear in the pattern, it means we can shift the pattern by the whole

length of the pattern, whereas if the mismatched character appears in the pattern somewhere,

then we partially shift the pattern in such a way that the mismatched character is aligned with

the other occurrence of that character in the pattern.

In addition, in this algorithm, we can also see what portion of the pattern has matched (with

the matched suffix), so we utilize this information and align the text and pattern by skipping

any unnecessary comparisons. Making the pattern jump along the text to reduce the number of

comparisons rather than checking every character of the pattern with the text is the main idea

of an efficient string matching algorithm.

Chapter 13 417

The concept behind the Boyer-Moore algorithm is demonstrated in Figure 13.15:

Figure 13.15: A example to demonstrate the concept of the Boyer-Moore algorithm

In the example shown in Figure 13.15, where character b of the pattern mismatches with character

d of the text, we can shift the entire pattern since the mismatched character d is not present in the

pattern anywhere. In the second mismatch, we can see that the mismatched character a in the

text is present in the pattern, so we shift the pattern to align with that character. This example

shows how we can skip unnecessary comparisons. Next, we will discuss further the details of

the algorithm.

The Boyer-Moore algorithm has two heuristics to determine the maximum shift possible for the

pattern when we find a mismatch:

•	 Bad character heuristic

•	 Good suffix heuristic

At the time of a mismatch, each of these heuristics suggests possible shifts, and the Boyer-Moore

algorithm shifts the pattern over the text string by a longer distance considering the maximum

shift given by bad character and good suffix heuristics. The details of the bad character and good

suffix heuristics are explained in detail with examples in the following subsections.

Bad character heuristic
The Boyer-Moore algorithm compares the pattern and the text string in the direction of right to

left. It uses the bad character heuristic to shift the pattern, where we start comparing character

by character from the end of the pattern, and if they match then we compare the second to-last

character, and if that also matches, then the process is repeated until the entire pattern is matched

or we get a mismatch.

String Matching Algorithms418

The mismatched character of the text is also known as a bad character. If we get any mismatch

in this process, we shift the pattern according to one of the following conditions:

1.	 If the mismatched character of the text does not occur in the pattern, then we shift the

pattern next to the mismatched character.

2.	 If the mismatched character has one occurrence in the pattern, then we shift the pattern

in such a way that we align with the mismatched character.

3.	 If the mismatched character has more than one occurrence in the pattern, then we make

the most minimal shift possible to align the pattern with that character.

Let us understand these three cases with examples. Consider a text string (T) and the pattern

= {acacac}. We start by comparing the characters from right to left, that is, character c of the

pattern and character b of the text string. Since they do not match, we look for the mismatched

character of the text string (that is b) in the pattern. Since the bad character b does not appear

in the pattern, we shift the pattern next to the mismatched character, as shown in Figure 13.16:

Figure 13.16: Example of the bad character heuristic in the Boyer-Moore algorithm

Chapter 13 419

Let’s take another example with a given text string and the pattern = {acacac} as shown in Figure

13.17. For the given example, we compare the characters of the text string and the pattern from

right to left, and we get a mismatch for the character d of the text. Here, the suffix ac is matched,

but the characters d and c do not match, and the mismatched character d does not appear in the

pattern. Therefore, we shift the pattern next to the mismatched character, as shown in Figure 13.17:

Figure 13.17: Second example of the bad character heuristic in the Boyer-Moore algorithm

Let’s consider an example to understand the second and third cases of the bad character heuristic

for the given text string and the pattern as shown in Figure 13.18. Here, the suffix ac is matched,

but the next characters, a and c, do not match, so we search for the occurrences of the mismatched

character a in the pattern. Since it has two occurrences in the pattern, we have two options for

shifting the pattern to align it with the mismatched character. Both of these options are shown

in Figure 13.18:

String Matching Algorithms420

In such situations where we have more than one option to shift the pattern, we apply the least

possible number of shifts to prevent missing any possible match. If on the other hand we have

only one occurrence of the mismatched character in the pattern, we can easily shift the pattern in

such a way that the mismatched character is aligned. So, in this example, we would prefer option

1 to shift the pattern as shown in Figure 13.18:

Figure 13.18: Third example of the bad character heuristic in the Boyer-Moore algorithm

We have discussed the bad character heuristic so far, and we consider the good suffix heuristic

in the next section.

Good suffix heuristic
The bad character heuristic does not always provide good suggestions for shifting the pattern.

The Boyer-Moore algorithm also uses the good suffix heuristic to shift the pattern over the text

string, which is based on the matched suffix. In this method, we shift the pattern to the right in

such a way that the matched suffix of the pattern is aligned with another occurrence of the same

suffix in the pattern.

It works like this: we start by comparing the pattern and the text string from right to left, and if

we find any mismatch, then we check the occurrence of the suffix in the pattern that has been

matched so far, which is known as a good suffix.

Chapter 13 421

In such situations, we shift the pattern in such a way that we align another occurrence of the

good suffix to the text. The good suffix heuristic has two main cases:

1.	 The matching suffix has one or more occurrences in the pattern

2.	 Some part of the matching suffix is present at the start of the pattern (this means that

the suffix of the matched suffix exists as the prefix of the pattern)

Let’s understand these cases with the following examples. Suppose we have a given text string

and the pattern acabac as shown in Figure 13.19. We start comparing the characters from right

to left, and we get a mismatch with the character a of the text string and b of the pattern. By the

point of this mismatch, we have already matched the suffix ac, which is called the “good suffix.”

Now, we search for another occurrence of the good suffix ac in the pattern (which is present at

the starting position of the pattern in this example) and we shift the pattern to align it with that

suffix, as shown in Figure 13.19:

Figure 13.19: Example of the good suffix heuristic in the Boyer-Moore algorithm

Let’s take another example to understand the good suffix heuristic. Consider the text string and

pattern given in Figure 13.18. Here, we get a mismatch between characters a and c, and we get a

good suffix ac. Here, we have two options for shifting the pattern to align it with the good suffix

string.

String Matching Algorithms422

In a situation where we have more than one option to shift the pattern, we take the option with the

lower number of shifts. For this reason, we take option 1 in this example, as shown in Figure 13.20:

Figure 13.20: Second example of the good suffix heuristic in the Boyer-Moore algorithm

Let’s take a look at another example of the text string and pattern shown in Figure 13.19. In this

example, we get a good suffix string aac, and we get a mismatch for the characters b of the text

string and a of the pattern. Now, we search for the good suffix aac in the pattern, but we do not

find another occurrence of it. When this happens, we check whether the prefix of the pattern

matches the suffix of the good suffix, and if so, we shift the pattern to align with it.

For this example, we find that the prefix ac at the start of the pattern does not match with the full

good suffix, but does match the suffix ac of the good suffix aac. In such a situation, we shift the

pattern by aligning with the suffix of aac that is also a prefix of the pattern as shown in Figure 13.21:

Chapter 13 423

Figure 13.21: Third example of the good suffix heuristic in the Boyer-Moore algorithm

Another case for the good suffix heuristic for the given text string and pattern is shown in Figure

13.22. In this example, we compare the text and pattern and find the good suffix aac, and we get

a mismatch with character b of the text and a of the pattern.

Next, we search for the matched good suffix in the pattern, but there is no occurrence of the suffix

in the pattern, nor does any prefix of the pattern match the suffix of the good suffix. So, in this

kind of situation, we shift the pattern after the matched good suffix as shown in Figure 13.22:

Figure 13.22: Fourth example of the good suffix heuristic in the Boyer-Moore algorithm

String Matching Algorithms424

In the Boyer-Moore algorithm, we compute the shifts given by the bad character and good suffix

heuristics. Further, we shift the pattern by the longer of the distances given by the bad character

and good suffix heuristics.

The Boyer-Moore algorithm has a time complexity of O(m) for the preprocessing of the pattern,

and the searching has a time complexity of O(mn), where m is the length of the pattern and n is

the length of the text.

Next, let us discuss the implementation of the Boyer-Moore algorithm.

Implementing the Boyer-Moore algorithm
Let’s understand the implementation of the Boyer-Moore algorithm. The complete implemen-

tation of the Boyer-Moore algorithm is as follows:

text = "acbaacacababacacac"

pattern = "acacac"

matched_indexes = []

i=0

flag = True

while i<=len(text)-len(pattern):

 for j in range(len(pattern)-1, -1, -1): #reverse searching

 if pattern[j] != text[i+j]:

 flag = False #indicates there is a mismatch

 if j == len(pattern)-1: #if good-suffix is not present, we
test bad character

 if text[i+j] in pattern[0:j]:

 i=i+j-pattern[0:j].rfind(text[i+j])

 #i+j is index of bad character, this line is used for
jumping pattern to match bad character of text with same character in
pattern

 else:

 i=i+j+1 #if bad character is not present, jump
pattern next to it

 else:

Chapter 13 425

 k=1

 while text[i+j+k:i+len(pattern)] not in
pattern[0:len(pattern)-1]:

 #used for finding sub part of a good-suffix

 k=k+1

 if len(text[i+j+k:i+len(pattern)]) != 1: #good-suffix
should not be of one character

 gsshift=i+j+k-pattern[0:len(pattern)-1].
rfind(text[i+j+k:i+len(pattern)])

 #jumps pattern to a position where good-suffix of
pattern matches with good-suffix of text

 else:

 #gsshift=i+len(pattern)

 gsshift=0 #when good-suffix heuristic is not
applicable,

 #we prefer bad character heuristic

 if text[i+j] in pattern[0:j]:

 bcshift=i+j-pattern[0:j].rfind(text[i+j])

 #i+j is index of bad character, this line is used for
jumping pattern to match bad character of text with same character in
pattern

 else:

 bcshift=i+j+1

 i=max((bcshift, gsshift))

 break

 if flag: #if pattern is found then normal iteration

 matched_indexes.append(i)

 i = i+1

 else: #again set flag to True so new string in text can be examined

 flag = True

print ("Pattern found at", matched_indexes)

An explanation of each of the statements of the preceding code is presented here. Initially, we have

the text string and the pattern. After initializing the variables, we start with a while loop that

starts by comparing the last character of the pattern with the corresponding character of the text.

Then, the characters are compared from right to left by the use of the nested loop from the last index

of the pattern to the first character of the pattern. This uses range(len(pattern)-1, -1, -1).

String Matching Algorithms426

The outer while loop keeps track of the index in the text string while the inner for loop keeps

track of the index position in the pattern.

Next, we start comparing the characters by using pattern[j] != text[i+j]. If they are mis-

matched, we make the flag variable False, denoting that there is a mismatch.

Now, we check whether the good suffix is present using the condition j == len(pattern)-1. If this

condition is true, it means that there is no good suffix possible, so we check for the bad character

heuristics, that is, whether a mismatched character is present in the pattern using the condition

text[i+j] in pattern[0:j], and if the condition is true, then it means that the bad character

is present in the pattern. In this case, we move the pattern to align this bad character to the other

occurrence of this character in the pattern by using i=i+j-pattern[0:j].rfind(text[i+j]).

Here, (i+j) is the index of the bad character.

If the bad character is not present in the pattern (it isn’t in the else part of it), we move the whole

pattern next to the mismatched character by using the index i=i+j+1.

Next, we go into the else part of the condition to check the good suffix. When we find the mis-

match, we further test to see whether we have any subpart of a good suffix present in the prefix

of the pattern. We do this using the following condition:

text[i+j+k:i+len(pattern)] not in pattern[0:len(pattern)-1]

Furthermore, we check whether the length of the good suffix is 1 or not. If the length of the good

suffix is 1, we do not consider this shift. If the good suffix is more than 1, we find out the number

of shifts by using the good suffix heuristics and store this in the gsshift variable. This is the

pattern, which leads to a position where the good suffix of the pattern matches the good suffix

in the text using the instruction gsshift=i+j+k-pattern[0:len(pattern)-1].rfind(text[i

+j+k:i+len(pattern)]). Furthermore, we computed the number of shifts possible due to the

bad character heuristic and stored this in the bcshift variable. The number of shifts possible

is i+j-pattern[0:j].rfind(text[i+j]) when the bad character is present in the pattern, and

the number of shifts possible would be i+j+1 in the case of the bad character not being present

in the pattern.

Next, we shift the pattern on the text string by the maximum number of moves given by the bad

character and good suffix heuristics by using the instruction i=max((bcshift, gsshift)). Fi-

nally, we check whether the flag variable is True or not. If it is True, this means that the pattern

has been found and that the matched index has been stored in the matched_indexes variable.

Chapter 13 427

We have discussed the concept of the Boyer-Moore pattern matching algorithm, which is an

efficient algorithm that skips unnecessary comparisons using the bad character and good suffix

heuristics.

Summary
In this chapter, we have discussed the most popular and important string matching algorithms

that have a wide range of applications in real-time scenarios. We discussed the brute force, Rabin-

Karp, KMP, and Boyer-Moore pattern matching algorithms. In string matching algorithms, we

try to uncover ways to skip unnecessary comparisons and move the pattern over the text as fast

as possible. The KMP algorithm detects unnecessary comparisons by looking at the overlapping

substrings in the pattern itself to avoid redundant comparisons. Furthermore, we discussed the

Boyer-Moore algorithm, which is very efficient when the text and pattern are long. It is the most

popular algorithm used for string matching in practice.

Exercise
1.	 Show the KMP prefix function for the pattern "aabaabcab".

2.	 If the expected number of valid shifts is small and the modulus is larger than the length

of the pattern, then what is the matching time of the Rabin-Karp algorithm?

a.	 Theta (m)

b.	 Big O (n+m)

c.	 Theta (n-m)

d.	 Big O (n)

3.	 How many spurious hits does the Rabin-Karp string matching algorithm encounter in the

text T = "3141512653849792" when looking for all occurrences of the pattern P = "26",

working modulo q = 11, and over the alphabet set Σ = {0, 1, 2,..., 9}?

4.	 What is the basic formula applied in the Rabin-Karp algorithm to get the computation

time as Theta (m)?

a.	 Halving rule

b.	 Horner’s rule

c.	 Summation lemma

d.	 Cancellation lemma

String Matching Algorithms428

5.	 The Rabin-Karp algorithm can be used for discovering plagiarism in text documents.

a.	 True

b.	 False

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

Appendix
Answers to the Questions

Chapter 2: Introduction to Algorithm Design
Question 1
Find the time complexity of the following Python snippets:

a.	

i=1

while(i<n):

 i*=2

 print("data")

b.	

i =n

while(i>0):

 print("complexity")

 i/ = 2

c.	

for i in range(1,n):

 j = i

 while(j<n):

 j*=2

d.	

i=1

while(i<n):

 print("python")

 i = i**2

Appendix: Answers to the Questions430

Solution
a.	 The complexity will be O(log(n)).

As we are multiplying the integer i by 2 in each step there will be exactly log(n) steps.

(1, 2, 4, …… till n).

b.	 The complexity will be O(log(n)).

As we are dividing the integer i by 2 in each step there will be exactly log(n) steps.

(n, n/2, n/4, …… till 1).

c.	 The outer loop will run n times for each i in the outer loop, while the inner while loop

will run log(i) times because we are multiplying each of the j values by 2 until it is less

than n. Hence, there will be a maximum of log(n) steps in the inner loop. Therefore, the

overall complexity will be O(nlog(n)).

In this code snippet, the while loop will execute based on the value of i until the condition

becomes false. The value of i is incrementing in the following series:

 2, 4, 16, 256, ... n

We can see that the number of times the loop is executing is log2(log2(n)) for a given value

of n. So, for this series there will be exactly log2(log2(n)) executions of the loop. Hence the

time complexity will be O(log2(log2(n)).

Chapter 3: Algorithm Design Techniques and
Strategies
Question 1
Which of the following options will be correct when a top-down approach of dynamic program-

ming is applied to solve a given problem related to the space and time complexity?

a.	 It will increase both time and space complexity

b.	 It will increase the time complexity, and decrease the space complexity

c.	 It will increase the space complexity, and decrease the time complexity

d.	 It will decrease both time and space complexities

Solution
Option c is correct.

Appendix: Answers to the Questions 431

Since the top-down approach of dynamic programming uses the memoization technique, which

stores the pre-calculated solution of a subproblem. It avoids recalculation of the same subprob-

lem that decreases the time complexity, but at the same time, the space complexity will increase

because of storing the extra solutions of the subproblems.

Question 2
What will be the sequence of nodes in the following edge-weighted directed graph using the

greedy approach (assume node A as the source)?

Figure A.1: A weighted directed graph

Solution
A, B, C, F, E, D

In Dijkstra’s algorithm, at each, point we choose the smallest weight edge, which starts from any

one of the vertices in the shortest path found so far, and add it to the shortest path.

Question 3
Consider the weights and values of the items in Table 3.8. Note that there is only one unit of each item.

Item Weight Value

A 2 10

B 10 8

C 4 5

D 7 6

Table A.1: The weights and values of different items

Appendix: Answers to the Questions432

We need to maximize the value; the maximum weight should be 11 kg. No item may be split. Es-

tablish the values of the items using a greedy approach.

Solution
Firstly, we picked item A (weight 2 kg) as the value is the maximum (10). The second highest

value is for item B, but as the total weight becomes 12 kg, this violates the given condition, so we

cannot pick it. The next highest value is item D, and now the total weight becomes 2+7 = 9 kg

(item A + item D). The next remaining item, C, cannot be picked because after adding it, the total

weight condition will be violated.

So, the total value of the items picked up using the greedy approach = 10 + 6 = 16

Chapter 4: Linked Lists
Question 1
What will be the time complexity when inserting a data element after an element that is being

pointed to by a pointer in a linked list?

Solution
It will be O(1), since there is no need to traverse the list to reach the desired location where a new

element is to be added. A pointer is pointing to the current location, and a new element can be

directly added by linking it.

Question 2
What will be the time complexity when ascertaining the length of the given linked list?

Solution
O(n).

In order to find out the length, each node of the list has to be traversed, which will take O(n).

Question 3
What will be the worst-case time complexity for searching a given element in a singly linked list

of length n?

Solution
O(n).

Appendix: Answers to the Questions 433

In the worst case, the data element to be searched will be at the end of the list, or will not be

present in the list. In that case, there will be a total n number of comparisons, thus making the

worst-case time complexity O(n).

Question 4
For a given linked list, assuming it has only one head pointer that points to the starting point of

the list, what will be the time complexity for the following operations?

a.	 Insertion at the front of the linked list

b.	 Insertion at the end of the linked list

c.	 Deletion of the front node of the linked list

d.	 Deletion of the last node of the linked list

Solution
a.	 O(1). This operation can be performed directly through the head node.

b.	 O(n). It will require traversing the list to reach the end of the list.

c.	 O(1). This operation can be performed directly through the head node.

d.	 O(n). It will require traversing the list to reach the end of the list.

Question 5
Find the nth node from the end of a linked list.

Solution
In order to find out the nth node from the end of the linked list, we can use two pointers – first

and second. Firstly, move the second pointer to n nodes from the starting point. Then, move both

the pointers one step at a time until the second pointer reaches the end of the list. At that time,

the first pointer will point to the nth node from the end of the list.

Question 6
How can you establish whether there is a loop (or circle) in a given linked list?

Solution
To find out the loop in a linked list, it is most efficient to use Floyd’s cycle-finding algorithm. In

this approach, two pointers are used to detect the loop – let’s say the first and second pointers.

We start moving both the pointers from the starting point of the list.

Appendix: Answers to the Questions434

We move the first and second pointers by one and two nodes at a time. If these two pointers meet at

the same node, that indicates that there is a loop, otherwise, there is no loop in the given linked list.

The process is shown in the below figure with an example:

Figure A.2: Loop in a singly linked list

Question 7
How can you ascertain the middle element of the linked list?

Solution
It can be done with two pointers, say, the first and second pointers. Start moving these two

pointers from the starting node. The first and second pointers should move one and two nodes

at a time, respectively. When the second node reaches the end of the list, the first node will point

to the middle element of the singly linked list.

Appendix: Answers to the Questions 435

Chapter 5: Stacks and Queues
Question 1
Which of the following options is a true queue implementation using linked lists?

a.	 If, in the enqueue operation, new data elements are added at the start of the list, then the

dequeue operation must be performed from the end.

b.	 If, in the enqueue operation, new data elements are added to the end of the list, then the

enqueue operation must be performed from the start of the list.

c.	 Both of the above.

d.	 None of the above.

Solution
B is correct. The queue data structure follows a FIFO order, hence data elements must be added

to the end of the list, and then removed from the front.

Question 2
Assume a queue is implemented using a singly linked list that has head and tail pointers. The

enqueue operation is implemented at head, and the dequeue operation is implemented at the

tail of the queue. What will be the time complexity of the enqueue and dequeue operations?

Solution
The time complexity of the enqueue operation will be O(1) and O(n) for the dequeue operation.

As for the enqueue operation, we only need to delete the head node, which can be achieved in

O(1) for a singly linked list. For the dequeue operation, to delete the tail, we need to traverse the

whole list first to the tail, and then we can delete it. For this we need linear, O(n), time.

Question 3
What is the minimum number of stacks required to implement a queue?

Solution
Two stacks.

Using two stacks and the enqueue operation, the new element is entered at the top of stack1. In

the dequeue process, if stack2 is empty, all the elements are moved to stack2, and finally, the

top of stack2 is returned.

Appendix: Answers to the Questions436

Question 4
The enqueue and dequeue operations in a queue are implemented efficiently using an array. What

will be the time complexity for both of these operations?

Solution
O(1) for both operations.

If we use a circular array for the implementation of a queue, then we do not need to shift the

elements, just the pointers, so we can implement both the enqueue and dequeue operations in

O(1) time.

Question 5
How can we print the data elements of a queue data structure in reverse order?

Solution
Make an empty stack, then enqueue each of the elements from the queue and push them into the

stack. After the queue is empty, start popping out the elements from the stack and then printing

them one by one.

Chapter 6: Trees
Question 1
Which of the following is true about binary trees:

a.	 Every binary tree is either complete or full

b.	 Every complete binary tree is also a full binary tree

c.	 Every full binary tree is also a complete binary tree

d.	 No binary tree is both complete and full

e.	 None of the above

Solution
Option A is incorrect since it is not compulsory that a binary tree should be complete or full.

Option B is incorrect since a complete binary tree can have some nodes that are not filled in the

last level, so a complete binary tree will not always be a full binary tree.

Appendix: Answers to the Questions 437

Option C is incorrect, as it is not always true, the following figure is a full binary tree, but not a

complete binary tree:

Figure A.3: A binary tree that is full, but not complete

Option D is incorrect, as it is not always true. The following tree is both a complete and full bi-

nary tree:

Figure A.4: A binary tree, that is full and complete

Question 2
Which of the tree traversal algorithms visit the root node last?

Solution
postorder traversal.

Using postorder traversal, we first visit the left subtree, then the right subtree, and finally we

visit the root node.

Appendix: Answers to the Questions438

Question 3
Consider this binary search tree:

Figure A.5: Sample binary search tree

Suppose we remove the root node 8, and we wish to replace it with any node from the left subtree

then what will be the new root?

Solution
The new node will be node 6. To maintain the properties of the binary search tree, the maximum

value from the left subtree should be the new root.

Question 4
What will be the inorder, postorder, and preorder traversal of the following tree?

Figure A.6: Example tree

Solution
The preorder traversal will be 7-5-1-6-8-9.

The inorder traversal will be 1-5-6-7-8-9.

Appendix: Answers to the Questions 439

The postorder traversal will be 1-6-5-9-8-7.

Question 5
How do you find out if two trees are identical?

Solution
In order to find out if two binary trees are identical or not, both of the trees should have exactly

the same data and element arrangement. This can be done by traversing both of the trees with any

of the traversal algorithms (it should be the same for both trees) and matching them element by

element. If all the elements are the same in traversing both of the trees, then the trees are identical.

Question 6
How many leaves are there in the tree mentioned in question 4?

Solution
Three, nodes 1, 6, and 9.

Question 7
What is the relation between a perfect binary tree’s height and the number of nodes in that tree?

Solution
log2 (n+1) = h.

The number of nodes in each level:

Level 0: 20 = 1 nodes

Level 1: 21 = 2 nodes

Level 2: 22 = 4 nodes

Level 3: 23 = 8 nodes

The total nodes at level h can be computed by adding all nodes in each level:

n = 20 + 21 + 22 + 23 + ……. 2h-1 = 2h - 1

So, the relationship between n and h is: n = 2h - 1

 = log (n+1) = log2h

 = log2 (n+1) = h

Appendix: Answers to the Questions440

Chapter 7: Heaps and Priority Queues
Question 1
What will be the time complexity for deleting an arbitrary element from the min-heap?

Solution
To delete any element from the heap, we first have to search the element that is to be deleted, and

then we delete the element.

Total time complexity = Time for searching the element + Deleting the element

= O(n) + O(log n)

= O(n)

Question 2
What will be the time complexity for finding the kth smallest element from the min-heap?

Solution
The kth element can be found out from the min-heap by performing delete operations k times. For

each delete operation, the time complexity is O(logn). So, the total time complexity for finding

out the kth smallest element will be O(klogn).

Question 3
What will be the time complexity to make a max-heap that combines two max-heap each of size n?

Solution
O(n).

Since the time complexity of creating a heap from n elements is O(n), creating a heap of 2n ele-

ments will also be O(n).

Question 4
What will be the worst-case time complexity for ascertaining the smallest element from a binary

max-heap and binary min-heap?

Appendix: Answers to the Questions 441

Solution
In a max-heap, the smallest element will always be present at a leaf node. So, in order to find out the

smallest element, we have to search all the leaf nodes. So, the worst-case complexity will be O(n).

The worst-case time complexity to find out the smallest element in the min-heap will be O(1)

since it will always be present at the root node.

Question 5
The level order traversal of max-heap is 12, 9, 7, 4, 2. After inserting new elements 1 and 8, what

will be the final max-heap and level order traversal of the final max-heap?

Solution
The max-heap after the insertion of element 1 is shown in the below figure:

Figure A.7: The max-heap before insertion of element 8

The final max-heap after the insertion of element 8 is shown in the below figure:

Figure A.8: The max-heap after the insertion of elements 1 and 8

Appendix: Answers to the Questions442

The level order traversal of the final max-heap will be 12, 9, 8, 4, 2, 1, 7.

Question 6
Which of the following is a binary max-heap?

Figure A.9: Example trees

Solution
B.

A binary max-heap should be a complete binary tree and all the levels should be filled, except the

last level. The value of the parent should be greater or equal to the values of its children.

Option A is not correct because it is not a complete binary tree. Options C and D are not correct

because they are not fulfilling the heap property. Option B is correct because it is complete and

fulfills the heap property.

Appendix: Answers to the Questions 443

Chapter 8: Hash Tables
Question 1
There is a hash table with 40 slots and there are 200 elements stored in the table. What will be

the load factor of the hash table?

Solution
The load factor of the hash table = (no. of elements) / (no. of table slots) = 200/40 = 5.

Question 2
What is the worst-case search time of hashing using a separate chaining algorithm?

Solution
The worst-case time complexity for searching in a separate chaining algorithm using linked lists

is O(n), because in the worst case, all the items will be added to index 1 in a linked list, searching

an item will work similarly to a linked list.

Question 3
Assume a uniform distribution of keys in the hash table. What will be the time complexities for

the search/insert/delete operations?

Solution
The index of the hash table is computed from the key in O(1) time when the keys are uniformly

distributed in the hash table. The creation of the table will take O(n) time, and other operations

such as search, insert, and delete operations will take O(1) time because all the elements are

uniformly distributed, hence, we directly get the required element.

Question 4
What will be the worst-case complexity for removing the duplicate characters from an array of

characters?

Solution
The brute force algorithm starts with the first character and searches linearly with all the char-

acters of the array. If a duplicate character is found, then that character should be swapped with

the last character and then the length of the string should be decremented by one. The same

process is repeated until all characters are processed. The time complexity of this process is O(n2).

Appendix: Answers to the Questions444

It can be implemented more efficiently using a hash table in O(n) time.

Using this method, we start with the first character of the array and store it in the hash table

according to the hash value. We do it for all the characters. If there is any collision, then that

character can be ignored, otherwise, the character is stored in the hash table.

Chapter 9: Graphs and Algorithms
Question 1
What is the maximum number of edges (without self-loops) possible in an undirected simple

graph with five nodes?

Solution
Each node can be connected to every other node in the graph. So, the first node can be connected

to n-1 nodes, the second node can be connected to n-2 nodes, the third node can be connected

to n-3 nodes, and so on. The total number of nodes will be:

[(n-1)+(n-2)+ … +3+2+1] = n(n-1)/2.

Question 2
What do we call a graph in which all the nodes have an equal degree?

Solution
A complete graph.

Question 3
Explain what cut vertices are and identify the cut vertices in the given graph?

Appendix: Answers to the Questions 445

Figure A.10: Sample graph

Solution
Cut vertices also known as articulation points. These are the vertices in the graph, after removal

of which, the graph splits in two disconnected components. In the given graph, the vertices B,

and C are cut vertices since after removal of node B, the graph will split into {A, D}, {C,E} vertices.

And, after removal of node C, the graph will split into {A,B, D}, {E} vertices.

Question 4
Assuming a graph G of order n, what will be the maximum number of cut vertices possible in

graph G?

Solution
It will be n-2, since the first and last vertices will not be cut vertices, except those two nodes, all

nodes can split the graph into two disconnected graphs. See the below graph:

Figure A.11: A graph G

Appendix: Answers to the Questions446

Chapter 10: Searching
Question 1
On average, how many comparisons are required in a linear search of n elements?

Solution
The average number of comparisons in linear search will be as follows. When a search element is

found at the 1st position, 2nd position, 3rd position, and similarly at the nth position, correspondingly,

it will require 1, 2, 3… n number of comparisons.

Total average number of comparisons

=
(1 + 2 + 3 +⋯𝑛𝑛𝑛𝑛𝑛

= [𝑛𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛2]𝑛𝑛

=
(𝑛𝑛 𝑛 𝑛𝑛2

Question 2
Assume there are eight elements in a sorted array. What is the average number of comparisons

that will be required if all the searches are successful and if the binary search algorithm is used?

Solution
Average number of comparisons = (1+2+2+3+3+3+3+4)/8

= 21/8

= 2.625

Appendix: Answers to the Questions 447

Figure A.12: Demonstration of number of the comparisons in the given array

Question 3
What is the worst-case time complexity of the binary search algorithm?

Solution
O(logn).

The worst-case scenario of the binary search algorithm will occur when the desired element

is present in the first position or at the last position. In that case, log(n) comparisons will be

required. Hence the worst-case complexity will be O(logn).

Appendix: Answers to the Questions448

Question 4
When should the interpolation search algorithm perform better than the binary search algorithm?

Solution
The interpolation search algorithm performs better than the binary search algorithm when the

data items in the array are uniformly distributed.

Chapter 11: Sorting
Question 1
If an array arr = {55, 42, 4, 31} is given and bubble sort is used to sort the array elements,

then how many passes will be required to sort the array?

a.	 3

b.	 2

c.	 1

d.	 0

Solution
The answer is a. To sort n elements, the bubble sort algorithm requires (n-1) iterations (passes),

where n is the number of elements in the given array. Here in the question, the value of n = 4, so

4-1 = 3 iterations will be required to sort the given array.

Appendix: Answers to the Questions 449

Question 2
What is the worst-case complexity of bubble sort?

a.	 O(nlogn)

b.	 O(logn)

c.	 O(n)

d.	 O(n2)

Solution
The answer is d. The worst case appears when the given array is in reverse order. In that case, the

time complexity of bubble sort would be O(n2).

Question 3
Apply quicksort to the sequence (56, 89, 23, 99, 45, 12, 66, 78, 34). What is the sequence after the

first phase, and what pivot is the first element?

a.	 45, 23, 12, 34, 56, 99, 66, 78, 89

b.	 34, 12, 23, 45, 56, 99, 66, 78, 89

c.	 12, 45, 23, 34, 56, 89, 78, 66, 99

d.	 34, 12, 23, 45, 99, 66, 89, 78, 56

Appendix: Answers to the Questions450

Solution
b.

After the first phase, 56 would be in the right position so that all the elements smaller than 56

will be on the left side of it, and elements bigger than 56 will be on the right side of it. Further,

quicksort is applied recursively to the left subarray and right subarray. The process of the quicksort

for the given sequence, as shown in the below figure.

Figure A.13: Demonstration of the quicksort algorithm

Appendix: Answers to the Questions 451

Question 4
Quicksort is a ___________

a.	 Greedy algorithm

b.	 Divide-and-conquer algorithm

c.	 Dynamic programming algorithm

d.	 Backtracking algorithm

Solution
The answer is b. Quicksort is a divide-and-conquer algorithm. Quick sort first partitions a large

array into two smaller sub arrays and then recursively sorts the sub-arrays. Here, we find the

pivot element such that all elements to the left side of the pivot element would be smaller than

the pivot element and create the first subarray. The elements to the right side of the pivot element

are greater than the pivot element and create the second subarray. Thus, the given problem is

reduced into two smaller sets. Now, sort these two subarrays again, finding the pivot element in

each subarray, i.e. apply quicksort on each subarray.

Question 5
Consider a situation where a swap operation is very costly. Which of the following sorting algo-

rithms should be used so that the number of swap operations is minimized?

a.	 Heap sort

b.	 Selection sort

c.	 Insertion sort

d.	 Merge sort

Solution
b. In the selection sort algorithm, in general, we identify the largest element, and then swap it

with the last element so that in each iteration, only one swap is required. For n elements, the total

(n-1) swaps will be required, which is the lowest in comparison to all other algorithms.

Question 6
If the input array A = {15, 9, 33, 35, 100, 95, 13, 11, 2, 13} is given, using selection sort,

what would be the order of the array after the fifth swap? (Note: it counts regardless of whether

they exchange or remain in the same position.)

Appendix: Answers to the Questions452

a.	 2, 9, 11, 13, 13, 95, 35, 33, 15, 100

b.	 2, 9, 11, 13, 13, 15, 35, 33, 95, 100

c.	 35, 100, 95, 2, 9, 11, 13, 33, 15, 13

d.	 11, 13, 9, 2, 100, 95, 35, 33, 13, 13

Solution
The answer is a. In selection sort, select the smallest element. Start the comparison from the be-

ginning of the array and swap the smallest element with the first greatest element. Now, exclude

the previous element that was chosen as the smallest element, as it has been put in the right place.

Figure A.14: Demonstration of insertion sort on the given sequence

Appendix: Answers to the Questions 453

Question 7
What will be the number of iterations to sort the elements {44, 21, 61, 6, 13, 1} using

insertion sort?

a.	 6

b.	 5

c.	 7

d.	 1

Solution
The answer is a. Suppose there are N keys in an input list, then it requires N iterations to sort the

entire list using insertion sort.

Question 8
How will the array elements A= [35, 7, 64, 52, 32, 22] look after the second iteration, if the

elements are sorted using insertion sort?

a.	 7, 22, 32, 35, 52, 64

b.	 7, 32, 35, 52, 64, 22

c.	 7, 35, 52, 64, 32, 22

d.	 7, 35, 64, 52, 32, 22

Solutions
d. Here N = 6. In the first iteration, the first element, that is, A[1] = 35, is inserted into array B, which

is initially empty. In the second iteration, A[2] = 7 is compared with the elements in B starting

from the rightmost element of B to find its place. So, after the second iteration, the input array

would be A = [7, 35, 64, 52, 32, 22].

Chapter 12: Selection Algorithm
Question 1
What will be the output if the quickselect algorithm is applied to the given array arr=[3, 1, 10,

4, 6, 5] with k given as 2?

Appendix: Answers to the Questions454

Solution
1.	 Given the initial array: [3, 1, 10, 4, 6, 5], we can find the median of medians: 4

(index = 3).

2.	 We swap the pivot element with the first element: [4, 1, 3, 10, 6, 5].

3.	 We will move the pivot element to its correct position: [1, 3, 4, 10, 6, 5].

4.	 Now we get a split index equal to 2 but the value of k is also equal to 2, hence the value at

index 2 will be our output. Hence the output will be 4.

Question 2
Can quickselect find the smallest element in an array with duplicate values?

Solution
Yes, it works. By the end of every iteration, we have all elements less than the current pivot stored

to the left of the pivot. Let’s consider when all elements are the same. In this case, every iteration

ends up putting a pivot element to the left of the array. And the next iteration will continue with

one element shorter in the array.

Question 3
What is the difference between the quicksort algorithm and the quickselect algorithm?

Solution
In quickselect, we do not sort the array, and it is specifically for finding the kth smallest element

in the array. The algorithm repeatedly divides the array into two sections based on the value of

the pivot element. As we know, the pivot element will be placed such that all the elements to its

left are smaller than the pivot element, and all the elements to the right are larger than the pivot

element. Thus, we can select any one of the segments of the array based on the target value. This

way, the size of the operable range of our array keeps on reducing. This reduces the complexity

from O(nlog2(n)) to O(n).

Question 4
What is the main difference between the deterministic selection algorithm and the quickselect

algorithm?

Appendix: Answers to the Questions 455

Solution
In the quickselect algorithm, we find the kth smallest element in an unordered list based on

picking up the pivot element randomly. Whereas, in the deterministic selection algorithm, which

is also used for finding the kth smallest element from an unordered list, but in this algorithm, we

choose a pivot element by using median of medians, instead of taking any random pivot element.

Question 5
What triggers the worst-case behavior of the selection algorithm?

Solution
Continuously picking the largest or smallest element on each iteration triggers the worst-case

behavior of the selection algorithm.

Chapter 13: String Matching Algorithms
Question 1
Show the KMP prefix function for the pattern "aabaabcab".

Solution
The prefix function values are given below:

pattern a a b a a b c a b

prefix_

function 𝜋𝜋
0 1 0 1 2 3 0 1 0

Table A.2: Prefix function for the given patten

Question 2
If the expected number of valid shifts is small and the modulus is larger than the length of the

pattern, then what is the matching time of the Rabin-Karp algorithm?

a.	 Theta (m)

b.	 Big O (n+m)

c.	 Theta (n-m)

d.	 Big O (n)

Appendix: Answers to the Questions456

Solution
Big O (n+m)

Question 3
How many spurious hits does the Rabin-Karp string matching algorithm encounter in the text

T = "3141512653849792" when looking for all occurrences of the pattern P = "26", working

modulo q = 11 and over the alphabet set Σ = {0, 1, 2,..., 9}?

Solution
2.

Question 4
What is the basic formula applied in the Rabin-Karp algorithm to get the computation time as

Theta (m)?

a.	 Halving rule

b.	 Horner’s rule

c.	 Summation lemma

d.	 Cancellation lemma

Solution
Horner’s rule.

Question 5
The Rabin-Karp algorithm can be used for discovering plagiarism in text documents.

a.	 True

b.	 False

Solution
True, the Rabin-Karp algorithm is a string matching algorithm, and it can be used for detecting

plagiarism in text documents.

Appendix: Answers to the Questions 457

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/MEvK4

https://packt.link/MEvK4

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Python 2E

Rick van Hattem

ISBN: 978-1-80020-772-1

•	 Write beautiful Pythonic code and avoid common Python coding mistakes

•	 Apply the power of decorators, generators, coroutines, and metaclasses

•	 Use different testing systems like pytest, unittest, and doctest

•	 Track and optimize application performance for both memory and CPU usage

•	 Debug your applications with PDB, Werkzeug, and faulthandler

•	 Improve your performance through asyncio, multiprocessing, and distributed computing

https://www.packtpub.com/product/mastering-python/9781800207721?_ga=2.180753447.1254177782.1657860637-1283992011.1633000128

Other Books You May Enjoy462

•	 Explore popular libraries like Dask, NumPy, SciPy, pandas, TensorFlow, and scikit-learn

•	 Extend Python’s capabilities with C/C++ libraries and system calls

Other Books You May Enjoy 463

Python for Geeks 2E

Muhammad Asif

ISBN: 978-1-80107-011-9

•	 Understand how to design and manage complex Python projects

•	 Strategize test-driven development (TDD) in Python

•	 Explore multithreading and multiprogramming in Python

•	 Use Python for data processing with Apache Spark and Google Cloud Platform (GCP)

•	 Deploy serverless programs on public clouds such as GCP

•	 Use Python to build web applications and application programming interfaces

•	 Apply Python for network automation and serverless functions

•	 Get to grips with Python for data analysis and machine learning

https://www.packtpub.com/product/python-for-geeks/9781801070119?_ga=2.71728787.1254177782.1657860637-1283992011.1633000128

Other Books You May Enjoy464

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to help

them share their insight with the global tech community. You can make a general application,

apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Hands-On Data Structures and Algorithms with Python - Third Edition, we’d

love to hear your thoughts! If you purchased the book from Amazon, please click here to go

straight to the Amazon review page for this book and share your feedback or leave a review

on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-801-07344-9
https://packt.link/r/1-801-07344-9

Index

A
adjacency 282
adjacency lists 287, 288
adjacency matrix 288-290
algorithm design techniques 57, 58

divide-and-conquer 60, 61
dynamic programming 68, 69
greedy algorithms 74-76
recursion 59, 60

algorithms 1, 35
benefits 36
criteria 36, 37
example 37
performance analysis 37, 38
running time complexity, computing 52-54

amortized analysis 49
accounting method 50
aggregate analysis 50
potential method 50

Anaconda distribution
download link 5

AND operator 17
arithmetic expression 194

infix notation 194
postfix notation 194, 196
prefix notation 194, 195

arrays 94, 248
used, for implementing stacks 145-147

asymptotic notation 41
Big O notation 44-47

omega notation 47-49
theta notation 42-44

B
balanced binary tree 184
base address 94
base cases 59
basic data types 7

Boolean 8
numeric 7, 8
sequences 9
tuples 18

Big O notation 44-47
binary heap 222

implementing 223
binary search 61, 62
binary search algorithm 325-331
binary search tree (BST) 201, 273

benefits 216-219
example 201, 202
maximum node 215, 216
minimum node 215, 216
nodes, deleting 209-214
nodes, inserting 203-207
operations 202
tree, searching 208, 209

binary tree 181
applications 194
balanced binary tree 184
complete binary tree 183

Index466

example 182
expression trees 194
full binary tree 182
nodes, implementing 184-186
perfect binary tree 183
regular binary tree 182
simple binary tree 181
unbalanced binary tree 184

bipartite graph 285
Boolean 8
Boyer-Moore algorithm 415

bad character heuristic 417-420
good character heuristic 420-424
implementing 424-426
working 416, 417

breadth-first search (BFS) 291-298
brute force algorithm 397-400
brute-force approach 58
bubble sort algorithms 346-352
bucket 252

C
ChainMap object 30
child node 181
circular linked lists 129, 130

creating 131
element, deleting 134-138
items, appending 131-133
querying 134
traversing 131

collections module 27
data types 27
operations 27

collisions
resolving 252, 253

command line
Python development environment, setting

up via 3, 4
complete binary tree 183, 222
complex data types 19

dictionary 19, 20
set 23, 24

complexity classes
composing 50-52

complex number 8
container datatypes, collections module

ChainMap object 30
counter objects 31
default dictionary 29, 30
deque 28, 29
named tuples 27, 28
ordered dictionary 29
UserDict 32
UserList 32
UserString 33

counter objects 31

D
data structures 1
data types 6
default dictionary 29, 30
degree

of vertex/node 282
delete operation

implementing, in heap 229-233
depth-first search (DFS) 299-305
deque 28

functions 29
deterministic selection 383

implementation 386-393
working 384, 385

Index 467

dictionary 19, 20, 248
characteristics 21
hash table, implementing as 263, 264
methods 22, 23

directed acyclic graph (DAG) 284, 285
directed graph 283

indegree 284
isolated vertex 284
outdegree 284
sink vertex 284
source vertex 284

divide-and-conquer design technique 60, 61
binary search 61, 62
merge sort 63-68

double hashing technique 267-271
doubly linked lists 114

creating 115
items, appending 116
items, deleting 124-129
node, inserting at beginning 116, 117
node, inserting at end 119, 120
node, inserting at

intermediate position 121-123
querying 123, 124
traversing 115

dynamic programming 68
bottom-up approach 70
top-down with memoization 69

dynamic programming problems
characteristics 69

E
edge 181, 282
elements

retrieving, from hash table 260-262
storing, in hash tables 257, 258

empty tree 181
exponential search algorithm 337-341
expression trees 194

reverse Polish expression, parsing 196-200

F
factorial 59
Fibonacci series

calculating 70-74
first in first out (FIFO) 157, 237
float type 8
frozenset 26
full binary tree 182

G
generator 99
graph methods 305

Kruskal's Minimum Spanning Tree 306-309
Minimum Spanning Tree (MST) 305, 306
Prim's Minimum Spanning Tree 309-311

graph representations 286
adjacency lists 287, 288
adjacency matrix 288-290

graphs 281
adjacency 282
bipartite graphs 285
degree of vertex/node 282
directed acyclic graph (DAG) 284, 285
directed graphs 283
edge 282
example 282
leaf vertex 282
loop 282
node 282
path 282

Index468

undirected graphs 283
vertex 282
weighted graphs 285

graph traversals 291
breadth-first search (BFS) 291-298
depth-first search (DFS) 299-305

greedy algorithms 74
examples 75, 76
shortest path problem 76-89

H
hashing functions 249, 250

perfect hashing functions 251, 252
hash tables 247, 248

elements, retrieving from 260-262
elements, storing 257, 258
example 248
growing 258-260
implementing 256, 257
implementing, as dictionary 263, 264
testing 262, 263

heap data structure 221
binary heap 222
binary heap example 223
delete operation 229-233
element, deleting at specific

location 234, 235
heap sort 236, 237
insert operation 224-228
max heap 221
max heap example 222
min heap 222
min heap example 222

I
identity operators 16, 17
immutable sets 26

indegree 284
infix notation 194
in operator 15
in-order tree traversal 186-188
insertion sort algorithm 352-354
insert operation

implementing, in heap 224-228
integer data type 7
interpolation search algorithm 331-337
is not operator 17
isolated vertex 284
is operator 16

J
jump search algorithm 320-325
Jupyter Notebook

Python development environment, setting
up via 4, 5

K
Knuth-Morris-Pratt (KMP)

algorithm 406, 407
implementing 413-415
prefix function 408-410
working 410-413

Kruskal's Minimum Spanning Tree 306-309

L
last in first out (LIFO) 142, 145
last in last out (LILO) 142
leaf node 180
leaf vertex 282
level-order tree traversal 191-193
linear probing 254, 255

Index 469

linear search 314, 315
ordered linear search 317-320
unordered linear search 315-317

linked list 287
linked list-based queues 163

dequeue operation 165, 166
enqueue operation 163-165

linked lists 95
circular linked lists 129, 130
doubly linked lists 114
nodes 95-98
pointers 95-98
practical applications 138, 139
properties 95
singly linked lists 98
used, for implementing stacks 148, 149

Linux-based operating system
Python, installing for 3

list-based queues 159
dequeue operation 161, 162
enqueue operation 159-161

lists 11, 12, 248
properties 12-14

logical operators 17, 18
loop 282

M
Mac operating system

Python, installing for 3
matrix 288
max heap 221, 222
membership operators 15
merge sort 63-68
min heap 222

example 222
implementing 224

Minimum Spanning Tree (MST) 305, 306
module 27

N
named tuples 27
negative indexing 19
nodes 95-98, 180, 282
not in operator 15
NOT operator 18
numeric types 7

complex 8
float 8
integer 7

O
objects 7
offset address 94
omega notation 47-49
open addressing 254
ordered dictionary 29
ordered linear search 317, 318

implementation 319, 320
OR operator 17
outdegree 284

P
parent-child relationship 179
parent node 181
path 282
pattern matching algorithms 397

Boyer-Moore algorithm 415
brute force algorithm 397-400
Knuth-Morris-Pratt (KMP)

algorithm 406, 407
Rabin-Karp algorithm 401, 402

Index470

peek operation 154
pendant vertex 282
perfect binary tree 183
perfect hashing functions 251, 252
performance analysis, algorithm

space complexity 40, 41
time complexity 38, 39

pointers 95-98
pop operation 151

implementing, on stack 151-153
postfix notation 194, 196
post-order tree traversal 190, 191
prefix notation 194, 195
pre-order tree traversal 188-190
Prim's Minimum Spanning Tree 309-311
priority queue 221, 237

delete operation, implementing 241
demonstration 238
implementation 242-244
implementation, in Python 239
insertion operation, implementing 240
usage example 241

Priority Queue (PQ) 194
push operation 149-151
Python 1, 2

installing 2
installing, for Linux-based

operating system 3
installing, for Mac operating system 3
installing, for Windows

operating system 2, 3
references 1

Python 3.10 2

Python development environment
setting up 3
setting up, via command line 3, 4
setting up, via Jupyter Notebook 4, 5

Q
quadratic probing technique

for collision resolution 264-266
queues 157

applications 173-176
linked list-based queues 163
operations 158, 159
list-based queues 159
stack-based queues 166

quickselect algorithm 379
working 379-382

quicksort algorithm 359-369
working 378

R
Rabin-Karp algorithm 401

implementing 403-406
working 401, 402

randomized selection algorithm 378
range data type 10, 11
recursion 59, 60
recursive cases 59
regular binary tree 182
reverse Polish expression

parsing 196-200
reverse Polish notation (RPN) 196
root node 179, 180
running time complexity, algorithm

computing 52-54

Index 471

S
searching algorithms 313, 314

binary search 325-331
exponential search 337-341
interpolation search 331-337
jump search 320-325
linear search 314, 315
selecting 341

search term 316
selection algorithms 377
selection by sorting 378
selection sort algorithm 356-359
separate chaining 272-277
sequence data types 9

lists 11, 12
range 10, 11
string 9, 10

set 23, 24
immutable sets 26
operations 25
Venn diagram 24

shortest path problem 76-89
siblings 181
simple binary tree 181
singly linked lists 98

clearing 113
creating 98
creation, improving 99
element, searching in 107
intermediate node, deleting 111-113
items, appending 100
items, appending at

intermediate positions 103-106
items, appending to end of list 100-103
items, deleting 108

node, deleting at end 109-111
node, deleting from beginning 108, 109
querying 106
size, obtaining 107, 108
traversal, improving 99
traversing 98

sink vertex 284
slicing operations 19
slot 252
sorting algorithms 345

bubble sort algorithms 346-352
insertion sort algorithm 352-356
quicksort algorithm 359-364
selection sort algorithm 356-359
Timsort algorithm 369-373

source vertex 284
space complexity, algorithm 40, 41
stack-based queues 166

approaches 166-169
dequeue operation 170-173
enqueue operation 170

stacks 141
applications 155, 156
example 142, 144
implementing, with arrays 145-147
implementing, with linked lists 148, 149
operations 143
peek operation 154
pop operation 142, 143, 151, 153
push operation 142, 143, 149-151

string matching algorithms 395
strings 9, 395

+ operator 10
* operator 10
prefix 396
suffix 396

Index472

sublist 352
substring 396
subtree 180
symbol tables 247, 278

example 278

T
theta notation 42-44
time complexity, algorithm 38

average-case running time 40
best-case running time 40
constant amount of time 38
running time 38, 39
worst-case running time 40

Timsort algorithm 369-373
trees 179

binary search tree (BST) 201, 202
binary tree 181
child node 181
degree of node 180
depth of node 181
edge 181
height 181
leaf node 180
level of root node 181
node 180
parent node 181
root node 180
siblings 181
subtree 180

tree traversal 186
in-order tree traversal 186-188
level-order traversal 191-193
post-order tree traversal 190, 191
pre-order tree traversal 188-190

tuples 18
operations 18

U
unbalanced binary tree 184
undirected graph 283
unordered linear search 315

implementation 316, 317
UserDict 32
UserList 32
UserString 33

V
vertex 282

W
weighted graph 285
Windows operating system

Python, installing for 2, 3

Z
zero-based indexing 19

	Cover
	CopyRight
	Contributors
	Table of Contents
	Preface
	Chapter 1: Python Data Types and Structures
	Introducing Python 3.10
	Installing Python
	Windows operating system
	Linux-based operating systems
	Mac operating system

	Setting up a Python development environment
	Setup via the command line
	Setup via Jupyter Notebook

	Overview of data types and objects
	Basic data types
	Numeric
	Boolean
	Sequences
	Strings
	Range
	Lists

	Membership, identity, and logical operations
	Membership operators
	Identity operators
	Logical operators

	Tuples

	Complex data types
	Dictionaries
	Sets
	Immutable sets

	Python’s collections module
	Named tuples
	Deque
	Ordered dictionaries
	Default dictionary
	ChainMap object
	Counter objects
	UserDict
	UserList
	UserString

	Summary

	Chapter 2: Introduction to Algorithm Design
	Introducing algorithms
	Performance analysis of an algorithm
	Time complexity
	Space complexity

	Asymptotic notation
	Theta notation
	Big O notation
	Omega notation

	Amortized analysis
	Composing complexity classes
	Computing the running time complexity of an algorithm
	Summary
	Exercises

	Chapter 3: Algorithm Design Techniques and Strategies
	Algorithm design techniques
	Recursion
	Divide and conquer
	Binary search
	Merge sort

	Dynamic programming
	Calculating the Fibonacci series

	Greedy algorithms
	Shortest path problem

	Summary
	Exercises

	Chapter 4: Linked Lists
	Arrays
	Introducing linked lists
	Nodes and pointers

	Singly linked lists
	Creating and traversing
	Improving list creation and traversal

	Appending items
	Appending items to the end of a list
	Appending items at intermediate positions

	Querying a list
	Searching an element in a list
	Getting the size of the list

	Deleting items
	Deleting the node at the beginning of the singly linked list
	Deleting the node at the end in the singly linked list
	Deleting any intermediate node in a singly linked list
	Clearing a list

	Doubly linked lists
	Creating and traversing
	Appending items
	Inserting a node at beginning of the list
	Inserting a node at the end of the list
	Inserting a node at an intermediate position in the list

	Querying a list
	Deleting items

	Circular lists
	Creating and traversing
	Appending items
	Querying a list
	Deleting an element in a circular list

	Practical applications of linked lists
	Summary
	Exercise

	Chapter 5: Stacks and Queues
	Stacks
	Stack implementation using arrays
	Stack implementation using linked lists
	Push operation
	Pop operation
	Peek operation
	Applications of stacks

	Queues
	Python’s list-based queues
	The enqueue operation
	The dequeue operation

	Linked list based queues
	The enqueue operation
	The dequeue operation

	Stack-based queues
	Approach 1: When the dequeue operation is costly
	Approach 2: When the enqueue operation is costly
	Enqueue operation
	Dequeue operation

	Applications of queues

	Summary
	Exercises

	Chapter 6: Trees
	Terminology
	Binary trees
	Implementation of tree nodes
	Tree traversal
	In-order traversal
	Pre-order traversal
	Post-order traversal
	Level-order traversal

	Expression trees
	Parsing a reverse Polish expression

	Binary search trees
	Binary search tree operations
	Inserting nodes
	Searching the tree
	Deleting nodes
	Finding the minimum and maximum nodes

	Benefits of a binary search tree

	Summary
	Exercises

	Chapter 7: Heaps and Priority Queues
	Heaps
	Insert operation
	Delete operation
	Deleting an element at a specific location from a heap
	Heap sort

	Priority queues
	Summary
	Exercises

	Chapter 8: Hash Tables
	Introducing hash tables
	Hashing functions
	Perfect hashing functions

	Resolving collisions
	Open addressing
	Linear probing

	Implementing hash tables
	Storing elements in a hash table
	Growing a hash table
	Retrieving elements from the hash table
	Testing the hash table
	Implementing a hash table as a dictionary
	Quadratic probing
	Double hashing

	Separate chaining

	Symbol tables
	Summary
	Exercise

	Chapter 9: Graphs and Algorithms
	Graphs
	Directed and undirected graphs
	Directed acyclic graphs
	Weighted graphs
	Bipartite graphs

	Graph representations
	Adjacency lists
	Adjacency matrix

	Graph traversals
	Breadth-first traversal
	Depth-first search

	Other useful graph methods
	Minimum Spanning Tree
	Kruskal’s Minimum Spanning Tree algorithm
	Prim’s Minimum Spanning Tree algorithm

	Summary
	Exercises

	Chapter 10: Searching
	Introduction to searching
	Linear search
	Unordered linear search
	Ordered linear search

	Jump search
	Binary search
	Interpolation search
	Exponential search
	Choosing a search algorithm
	Summary
	Exercise

	Chapter 11: Sorting
	Technical requirements
	Sorting algorithms
	Bubble sort algorithms
	Insertion sort algorithm
	Selection sort algorithm
	Quicksort algorithm
	Implementation of quicksort
	Timsort algorithm
	Summary
	Exercise

	Chapter 12: Selection Algorithms
	Technical requirements
	Selection by sorting
	Randomized selection
	Quickselect

	Deterministic selection
	Implementation of the deterministic selection algorithm

	Summary
	Exercise

	Chapter 13: String Matching Algorithms
	Technical requirements
	String notations and concepts
	Pattern matching algorithms
	The brute force algorithm
	The Rabin-Karp algorithm
	Implementing the Rabin-Karp algorithm

	The Knuth-Morris-Pratt algorithm
	The prefix function
	Understanding the KMP algorithm
	Implementing the KMP algorithm

	The Boyer-Moore algorithm
	Understanding the Boyer-Moore algorithm
	Bad character heuristic
	Good suffix heuristic
	Implementing the Boyer-Moore algorithm

	Summary
	Exercise

	Appendix
	Chapter 2: Introduction to Algorithm Design
	Chapter 3: Algorithm Design Techniques and Strategies
	Chapter 4: Linked Lists
	Chapter 5: Stacks and Queues
	Chapter 6: Trees
	Chapter 7: Heaps and Priority Queues
	Chapter 8: Hash Tables
	Chapter 9: Graphs and Algorithms
	Chapter 10: Searching
	Chapter 11: Sorting
	Chapter 12: Selection Algorithm
	Chapter 13: String Matching Algorithms

	PacktPage
	Other Books You May Enjoy
	Index

