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Preface

Data structures play a vital role in storing and organizing data within an application. It is important 

to choose the right data structure to significantly improve the application’s performance, as it is 

highly desirable to be able to scale the application as the data quantity increases. This new edition 

teaches you essential Python data structures and the most common and important algorithms 

for building easy, maintainable applications. It also allows you to implement these algorithms 

with working examples and easy to follow step-by-step instructions.

In this book, you will learn the essential Python data structures and the most common algorithms. 

With this easy-to-read book, you will learn how to create complex data structures such as linked 

lists, stacks, heaps, queues, trees, and graphs as well as sorting algorithms including bubble sort, 

insertion sort, heapsort, and quicksort. We also describe various selection algorithms such as 

randomized and deterministic selection and provide a detailed discussion of various data structure 

algorithms and design paradigms such as greedy algorithms, divide-and-conquer, and dynamic 

programming. In addition, complex data structures such as trees and graphs are explained with 

easy pictorial examples to understand the concepts of these useful data structures. You will also 

learn various important string processing and pattern-matching algorithms such as KMP and 

Boyer-Moore algorithms along with their easy implementation in Python.

Who this book is for
This book is intended for Python developers who are studying data structures and algorithms at 

a beginner or intermediate level, as chapters provide practical examples and an easy approach to 

complex algorithms. It may also be useful for engineering students on a course in data structures 

and algorithms, as it covers almost all the algorithms, concepts, and designs that are studied. This 

book is also designed for software developers who want to deploy various applications using a 

specific data structures, as this book provides efficient ways to store relevant data.

It is assumed that the reader has some basic knowledge of the Python; however, it is not necessary, 

as we provide a quick overview of Python and object-oriented concepts.
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What this book covers
Chapter 1, Python Data Types and Structures, introduces the basic data types and structures in 

Python. It will provide an overview of several built-in data structures available in Python that 

are pivotal for understanding the internals of data structures.

Chapter 2, Introduction to Algorithm Design, provides details about algorithm design issues and 

techniques. This chapter will compare different analyzing algorithms via running time and 

computation complexity, which will tell us which ones perform better than others for a given 

problem.

Chapter 3, Algorithm Design Techniques and Strategies, covers various important data structure 

design paradigms such as greedy algorithms, dynamic programming, divide-and-conquer. We will 

learn to create data structures via a number of primary principles, such as robustness, adaptability 

and reusability, and learn to separate structure from a function.

Chapter 4, Linked Lists, covers linked lists, which are one of the most common data structures 

and are often used to implement other structures, such as stacks and queues. In this chapter, we 

describe linked lists, their operation, and implementation. We compare their behavior to arrays 

and discuss the relative advantages and disadvantages of each.

Chapter 5, Stacks and Queues, describes stack and queue data structures in detail. It also discusses 

the behavior and demonstrates some implementations of these linear data structures. We give 

examples of typical real-life example applications.

Chapter 6, Trees, considers how trees form the basis of many of the most important advanced data 

structures. In this chapter we look at how to implement a binary tree. We will examine how to 

traverse trees and retrieve and insert values.

Chapter 7, Heaps and Priority Queues, looks into priority queues as important data structures and 

shows how to implement them using heap.

Chapter 8, Hash Tables, describes symbol tables, gives some typical implementations, and discusses 

various applications. We will look at the process of hashing, give an implementation of a hash 

table, and discuss the various design considerations.

Chapter 9, Graphs and Algorithms, looks at some of the more specialized structures, including 

graphs and spatial structures. We will learn to represent data through nodes and vertices and 

create structures such as directed and undirected graphs. We will also learn different algorithms 

for minimum spanning trees such as Prim’s algorithm and Kruskal’s algorithm.
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Chapter 10, Searching, discusses the most common searching algorithms including, binary search 

and interpolation searching algorithms. We also give examples of their use for various data 

structures. Searching a data structure is a fundamental task and there are a number of approaches.

Chapter 11, Sorting, looks at the most common approaches to sorting. This will include bubble sort, 

insertion sort, selection sort, quick sort, and heap sort algorithms with detailed explanations, 

along with their Python implementations.

Chapter 12, Selection Algorithms, discusses how selection algorithms are commonly used to find 

the ith smallest element from the list. It is an important operation related to sorting algorithms, 

and broadly related to the data structures and algorithms. 

Chapter 13, String Matching Algorithms, covers basic concepts and definitions related to strings. In this 

chapter, various string and pattern matching algorithms are discussed in detail such as the naïve 

approach, and the Knuth-Morris-Pratt (KMP) and Boyer-Moore pattern matching algorithms.

Appendix, Answers to the Questions, provides answers to the exercises at the end of each chapter. 

Please feel free to check the appendix at the end of the book.

There is also bonus content available online related to tree algorithms at https://static.packt-

cdn.com/downloads/9781801073448_Bonus_Content.pdf.

To get the most out of this book
The code in this book needs to be run on Python 3.10 or higher. Python’s interactive environment 

can also be used to run the code snippets. It is advised to learn the algorithms and concepts by 

executing the code provided in the book to better understand the algorithms. The book is aimed 

to give practical exposure to the readers, so it is recommended to do the programming for all the 

algorithms to get maximum out of this book.

Download the example code files 
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition. In case there’s an 

update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

https://static.packt-cdn.com/downloads/9781801073448_Bonus_Content.pdf
https://static.packt-cdn.com/downloads/9781801073448_Bonus_Content.pdf
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://static.packt-cdn.com/downloads/9781801073448_

ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The 

‘not in' operator returns True if it does not find a variable in the specified sequence and False 

if it is found.”

A block of code is set as follows:

p = "Hello India"

q = 10

r = 10.2

print(type(p))

print(type(q))

print(type(r))

When we wish to draw your attention to a particular part of a code block, the relevant lines or 

items are set in bold:

while self.slots[h] != None:

    if self.slots[h].key == key:

        return self.slots[h].value

    h = (h + j * (self.prime_num - (self.h2(key) % self.prime_num))) % 
self.size

    j = j + 1

return None

Any command-line input or output is written as follows:

sudo apt-get install python3.10

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, 

words in menus or dialog boxes appear in the text like this. Here is an example: “Each position 

in the hash table is often called a slot or bucket that can store an element.”

https://static.packt-cdn.com/downloads/9781801073448_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801073448_ColorImages.pdf
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you would report this 

to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata 

Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and 

you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Hands-On Data Structures and Algorithms with Python - Third Edition, we’d love 

to hear your thoughts! Please click here to go straight to the Amazon review page for this book 

and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 

excellent quality content.

https://www.packtpub.com/


1
Python Data Types and 
Structures

Data structures and algorithms are important components in the development of any software 

system. An algorithm can be defined as a set of step-by-step instructions to solve any given problem; 

an algorithm processes the data and produces the output results based on the specific problem. 

The data used by the algorithm to solve the problem has to be stored and organized efficiently in 

the computer memory for the efficient implementation of the software. The performance of the 

system depends upon the efficient access and retrieval of the data, and that depends upon how 

well the data structures that store and organize the data in the system are chosen.

Data structures deal with how the data is stored and organized in the memory of the computer 

that is going to be used in a program. Computer scientists should understand how efficient 

an algorithm is and which data structure should be used in its implementation. The Python 

programming language is a robust, powerful, and widely used language to develop software-based 

systems. Python is a high-level, interpreted, and object-oriented language that is very convenient 

to learn and understand the concepts of data structures and algorithms.

In this chapter, we briefly review the Python programming language components that we will 

be using to implement the various data structures discussed in this book. For a more detailed 

discussion on the Python language in broader terms, take a look at the Python documentation:

•	 https://docs.python.org/3/reference/index.html

•	 https://docs.python.org/3/tutorial/index.html

https://docs.python.org/3/reference/index.html
https://docs.python.org/3/tutorial/index.html
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In this chapter, we will look at the following topics:

•	 Introducing Python 3.10

•	  Installing Python

•	  Setting up a Python development environment

•	  Overview of data types and objects

•	  Basic data types

•	  Complex data types

•	  Python’s collections module

Introducing Python 3.10
Python is an interpreted language: the statements are executed line by line. It follows the concepts 

of object-oriented programming. Python is dynamically typed, which makes it an ideal candidate 

among languages for scripting and fast-paced development on many platforms. Its source code is 

open source, and there is a very big community that is using and developing it continuously, at a 

very fast pace. Python code can be written in any text editor and saved with the .py file extension. 

Python is easy to use and learn because of its compactness and elegant syntax.

Since the Python language will be used to write the algorithms, an explanation is provided of 

how to set up the environment to run the examples.

Installing Python
Python is preinstalled on Linux- and Mac-based operating systems. However, you will want to 

install the latest version of Python, which can be done on different operating systems as per the 

following instructions.

Windows operating system
For Windows, Python can be installed through an executable .exe file.

1.	 Go to https://www.python.org/downloads/.

2.	 Choose the latest version of Python—currently, it is 3.10.0—according to your architecture. 

If you have a 32-bit version of Windows, choose the 32-bit installer; otherwise, choose 

the 64-bit installer.

3.	 Download the .exe file.

4.	 Open the python-3.10.0.exe file.

https://www.python.org/downloads/
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5.	 Make sure to check Add Python 3.10.0 to PATH.

6.	 Click Install Now and then wait until the installation is complete; you can now use Python.

7.	 To verify that Python is installed correctly, open the Command Prompt and type the 

python -–version command. It should output Python 3.10.0.

Linux-based operating systems
To install Python on a Linux machine, take the following steps:

1.	 Check whether you have Python preinstalled by entering the python --version command 

in the terminal.

2.	 If you do have not a version of Python, then install it through the following command:

sudo apt-get install python3.10

3.	 Now, verify that you have installed Python correctly by typing the python3.10 --version 

command in the terminal. It should output Python 3.10.0.

Mac operating system
To install Python on a Mac, take the following steps:

1.	 Go to https://www.python.org/downloads/.

2.	 Download and open the installer file for Python 3.10.0.

3.	 Click Install Now.

4.	 To verify that Python is installed correctly, open the terminal and type python –version. 

It should output Python 3.10.0.

Setting up a Python development environment
Once you have installed Python successfully for your respective OS, you can start this hands-on 

approach with data structures and algorithms. There are two popular methods to set up the 

development environment.

Setup via the command line
The first method to set up the Python executing environment is via the command line, after 

installation of the Python package on your respective operating system. It can be set up using 

the following steps.

1.	 Open the terminal on Mac/Linux OS or Command Prompt on Windows.

https://www.python.org/downloads/
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2.	 Execute the Python 3 command to start Python, or simply type py to start Python in the 

Windows Command Prompt.

3.	 Commands can be executed on the terminal. 

Figure 1.1: Screenshot of the command-line interface for Python

The User Interface for the command-line execution environment is shown in Figure 1.1.

Setup via Jupyter Notebook
The second method to run the Python program is through Jupyter Notebook, which is a browser-

based interface where we can write the code. The User Interface of Jupyter Notebook is shown in 

Figure 1.2. The place where we can write the code is called a “cell.”

Figure 1.2: Screenshot of the Jupyter Notebook interface
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Once Python is installed, on Windows, Jupyter Notebook can be easily installed and set up using 

a scientific Python distribution called Anaconda by taking the following steps.

1.	 Download the Anaconda distribution from https://www.anaconda.com/products/

individual.

2.	 Install it according to the installation instructions.

3.	 Once installed, on Windows, we can run the notebook by executing the jupyter notebook 

command at the Command Prompt. Alternatively, following installation, the Jupyter 

Notebook app can be searched for and run from the taskbar.

4.	 On Linux/Mac operating systems, Jupyter Notebook can be installed using pip3 by running 

the following code in the terminal:

pip3 install notebook

5.	 After installation of Jupyter Notebook, we can run it by executing the following command 

at the Terminal:

jupyter notebook

python3 -m notebook

It is important to note that we will be using Jupyter Notebook to execute all the commands and 

programs throughout the book, but the code will also function in the command line if you’d 

prefer to use that.

Overview of data types and objects
Given a problem, we can plan to solve it by writing a computer program or software. The first 

step is to develop an algorithm, essentially a step-by-step set of instructions to be followed by a 

computer system, to solve the problem. An algorithm can be converted into computer software 

using any programming language. It is always desired that the computer software or program 

be as efficient and fast as possible; the performance or efficiency of the computer program also 

depends highly on how the data is stored in the memory of a computer, which is then going to 

be used in the algorithm.

On some systems, this command does not work, depending upon the oper-

ating system or system configuration. In that case, Jupyter Notebook should 

start by executing the following command on the terminal.

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
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The data to be used in an algorithm has to be stored in variables, which differ depending upon 

what kind of values are going to be stored in those variables. These are called data types: an integer 

variable can store only integer numbers, and a float variable can store real numbers, characters, 

and so on. The variables are containers that can store the values, and the values are the contents 

of different data types.

In most programming languages, variables and their data types must initially be declared, and 

then only that type of data can be statically stored in those variables. However, in Python, this is 

not the case. Python is a dynamically typed language; the data type of the variables is not required 

to be explicitly defined. The Python interpreter implicitly binds the value of the variable with 

its type at runtime. In Python, data types of the variable type can be checked using the function 

type(), which returns the type of variable passed. For example, if we enter the following code:

p = "Hello India"

q = 10

r = 10.2

print(type(p))

print(type(q))

print(type(r))

print(type(12+31j))

We will get an output like the following:

<class 'str'>

<class 'int'>

<class 'float'>

<class 'complex'>

The following example, demonstrates a variable that has a var float value, which is substituted 

for a string value:

var = 13.2

print(var)

 

print(type (var))

 

var = "Now the type is string"

print(type(var))
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The output of the code is:

13.2

<class 'float'> 

<class 'str'>

In Python, every item of data is an object of a specific type. Consider the preceding example; here, 

when a variable var is assigned a value of 13.2, the interpreter initially creates a float object having 

a value of 13.2; a variable var then points to that object as shown in Figure 1.3:

Figure 1.3: Variable assignment

Python is an easy-to-learn object-oriented language, with a rich set of built-in data types. The 

principal built-in types are as follows and will be discussed in more detail in the following sections:

•	 Numeric types: Integer (int), float, complex

•	 Boolean types: bool

•	 Sequence types: String (str), range, list, tuple

•	 Mapping types: dictionary (dict)

•	 Set types: set, frozenset

We will divide these into basic (numeric, Boolean, and sequence) and complex (mapping and set) 

data types. In subsequent sections, we will discuss them one by one in detail.

Basic data types
The most basic data types are numeric and Boolean types. We’ll cover those first, followed by 

sequence data types.

Numeric
Numeric data type variables store numeric values. Integer, float, and complex values belong to 

this data type. Python supports three types of numeric types:

•	 Integer (int): In Python, the interpreter takes a sequence of decimal digits as a decimal 

value, such as the integers 45, 1000, or -25.
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•	 Float: Python considers a value having a floating-point value as a float type; it is specified 

with a decimal point. It is used to store floating-point numbers such as 2.5 and 100.98. 

It is accurate up to 15 decimal points.

•	 Complex: A complex number is represented using two floating-point values. It contains an 

ordered pair, such as a + ib. Here, a and b denote real numbers and i denotes the imaginary 

component. The complex numbers take the form of 3.0 + 1.3i, 4.0i, and so on.

Boolean
This provides a value of either True or False, checking whether any statement is true or false. True 

can be represented by any non-zero value, whereas False can be represented by 0. For example:

print(type(bool(22)))

print(type(True))

print(type(False))

The output will be the following:

<class 'bool'>

<class 'bool'>

<class 'bool'>

In Python, the numeric values can be used as bool values using the built-in bool() function. Any 

number (integer, float, complex) having a value of zero is regarded as False, and a non-zero value 

is regarded as True. For example:

bool(False)

print(bool(False))

va1 = 0

print(bool(va1))

va2 = 11

print(bool(va2))

va3 = -2.3

print(bool(va3))
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The output of the above code will be as follows.

False

False

True

True

Sequence data types are also a very basic and common data type, which we’ll look at next.

Sequences
Sequence data types are used to store multiple values in a single variable in an organized and 

efficient way. There are four basic sequence types: string, range, lists, and tuples.

Strings
A string is an immutable sequence of characters represented in single, double, or triple quotes.

The string type in Python is called str. A triple quote string can span into multiple lines that 

include all the whitespace in the string. For example:

str1 = 'Hello how are you'

str2 = "Hello how are you"

str3 = """multiline 

       String"""

print(str1)

print(str2)

print(str3)

The output will be as follows:

Hello how are you

Hello how are you

multiline 

String

Immutable means that once a data type has been assigned some value, it can’t be 

changed.
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The + operator concatenates strings, which returns a string after concatenating the operands, 

joining them together. For example:

f = 'data' 

s = 'structure'

print(f + s)

print('Data ' + 'structure')

The output will be as follows:

datastructure

Data structure

The * operator can be used to create multiple copies of a string. When it is applied with an integer 

(n, let’s say) and a string, the * operator returns a string consisting of n concatenated copies of 

the string. For example:

st = 'data.'

print(st * 3)

print(3 * st)

The output will be as follows.

data.data.data.

data.data.data.

Range
The range data type represents an immutable sequence of numbers. It is mainly used in for and 

while loops. It returns a sequence of numbers starting from a given number up to a number 

specified by the function argument. It is used as in the following command:

range(start, stop, step)

Here, the start argument specifies the start of the sequence, the stop argument specifies the 

end limit of the sequence, and the step argument specifies how the sequence should increase or 

decrease. This example Python code demonstrates the working of the range function:

print(list(range(10)))

print(range(10))

print(list(range(10)))
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print(range(1,10,2))

print(list(range(1,10,2)))

print(list(range(20,10,-2)))

The output will be as follows.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(0, 10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(1, 10, 2)

[1, 3, 5, 7, 9]

[20, 18, 16, 14, 12]

Lists
Python lists are used to store multiple items in a single variable. Duplicate values are allowed in 

a list, and elements can be of different types: for example, you can have both numeric and string 

data in a Python list. 

The items stored in the list are enclosed within square brackets, [], and separated with a comma, 

as shown below:

a = ['food', 'bus', 'apple', 'queen']

print(a)

mylist  = [10, "India", "world", 8] 

# accessing elements in list.

print(mylist[1])

The output of the above code will be as follows.

['food', 'bus', 'apple', 'queen']

India

The data element of the list is shown in Figure 1.4, showing the index value of each of the list items:

Figure 1.4: Data elements of a sample list
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The characteristics of a list in Python are as follows. Firstly, the list elements can be accessed by 

its index, as shown in Figure 1.4. The list elements are ordered and dynamic. It can contain any 

arbitrary objects that are so desired. In addition, the list data structure is mutable, whereas 

most of the other data types, such as integer and float are immutable.

All the properties of lists are explained in Table 1.1 below for greater clarity:

Property Description Example

Ordered The list elements are ordered 

in a sequence in which they are 

specified in the list at the time of 

defining them. This order does 

not need to change and remains 

innate for its lifetime.

[10, 12, 31, 14] == [14, 10, 31, 
12]

False

Dynamic The list is dynamic. It can grow 

or shrink as needed by adding or 

removing list items.

b = ['data', 'and', 'book', 
'structure', 'hello', 'st']

b += [32]

print(b)

b[2:3] = []

print(b)

del b[0]

print(b)

['data', 'and', 'book', 
'structure', 'hello', 'st', 
32]

['data', 'and', 'structure', 
'hello', 'st', 32]

['and', 'structure', 'hello', 
'st', 32]

Seeing as a list is a mutable data type, once created, the list elements can be added, 

deleted, shifted, and moved within the list.
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List elements 

can be any 

arbitrary set 

of objects

List elements can be of the same 

type or varying data types.

a = [2.2, 'python', 31, 14, 
'data', False, 33.59]

print(a)

[2.2, 'python', 31, 14, 
'data', False, 33.59]

List elements 

can be 

accessed 

through an 

index

Elements can be accessed using 

zero-based indexing in square 

brackets, similar to a string. 

Accessing elements in a list is 

similar to strings; negative list 

indexing also works in lists. A 

negative list index counts from 

the end of the list.

Lists also support slicing. If abc 

is a list, the expression abc[x:y] 

will return the portion of 

elements from index x to index y 

(not including index y)

a = ['data', 'structures', 
'using', 'python', 'happy', 
'learning']

print(a[0])

print(a[2])

print(a[-1])

print(a[-5])

print(a[1:5])

print(a[-3:-1])

data

using

learning

structures

['structures', 'using', 
'python', 'happy']

['python', 'happy']

Mutable Single list value: Elements in 

a list can be updated through 

indexing and simple assignment.

Modifying multiple list values is 

also possible through slicing.

a = ['data', 'and', 'book', 
'structure', 'hello', 'st']

print(a)

a[1] = 1

a[-1] = 120

print(a)

a = ['data', 'and', 'book', 
'structure', 'hello', 'st']

print(a[2:5])

a[2:5] = [1, 2, 3, 4, 5]

print(a)
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['data', 'and', 'book', 
'structure', 'hello', 'st']

['data', 1, 'book', 
'structure', 'hello', 120]

['book', 'structure', 
'hello']

['data', 'and', 1, 2, 3, 4, 
5, 'st']

Other 

operators

Several operators and built-

in functions can also be 

applied in lists, such as in, 

not in, concatenation (+), 

and replication (*) operators. 

Moreover, other built-in 

functions, such as len(), min(), 

and max(), are also available.

a = ['data', 'structures', 
'using', 'python', 'happy', 
'learning']

print('data' in a)

print(a)

print(a + ['New', 'elements'])

print(a)

print(a *2)

print(len(a))

print(min(a))

['data', 'structures', 
'using', 'python', 'happy', 
'learning']

['data', 'structures', 
'using', 'python', 'happy', 
'learning', 'New', 
'elements']

['data', 'structures', 
'using', 'python', 'happy', 
'learning']

['data', 'structures', 
'using', 'python', 
'happy', 'learning', 
'data', 'structures', 
'using', 'python', 'happy', 
'learning']

6

data

Table 1.1: Characteristics of list data structures with examples
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Now, while discussing list data types, we should first understand different operators, such as 

membership, identity, and logical operators, before discussing them and how they can be used 

in list data types or any other data types. In the coming section, we discuss how these operators 

work and are used in various data types.

Membership, identity, and logical operations
Python supports membership, identity, and logical operators. Several data types in Python support 

them. In order to understand how these operators work, we’ll discuss each of these operations 

in this section.

Membership operators
These operators are used to validate the membership of an item. Membership means we wish to 

test if a given value is stored in the sequence variable, such as a string, list, or tuple. Membership 

operators are to test for membership in a sequence; that is, a string, list, or tuple. Two common 

membership operators used in Python are in and not in.

The in operator is used to check whether a value exists in a sequence. It returns True if it finds 

the given variable in the specified sequence, and False if it does not:

# Python program to check if an item (say second 

# item in the below example) of a list is present 

# in another list (or not) using 'in' operator

mylist1 = [100,20,30,40]

mylist2 = [10,50,60,90]

if mylist1[1] in mylist2:

    print("elements are overlapping") 

else:

    print("elements are not overlapping")

The output will be as follows:

elements are not overlapping

The ‘not in' operator returns to True if it does not find a variable in the specified sequence and 

False if it is found:

val = 104

mylist = [100, 210, 430, 840, 108]

if val not in mylist:

    print("Value is NOT present in mylist")
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else:

    print("Value is  present in mylist")

The output will be as follows.

Value is NOT present in mylist

Identity operators
Identity operators are used to compare objects. The different types of identity operators are is 

and is not, which are defined as follows.

The is operator is used to check whether two variables refer to the same object. This is different 

from the equality (==) operator. In the equality operator, we check whether two variables are 

equal. It returns True if both side variables point to the same object; if not, then it returns False:

Firstlist = []
Secondlist = []
if Firstlist == Secondlist: 
    print("Both are equal")
else:
    print("Both are not equal")

if Firstlist is Secondlist:
    print("Both variables are pointing to the same object")
else:
    print("Both variables are not pointing to the same object")

thirdList = Firstlist

if thirdList is Secondlist:
    print("Both are pointing to the same object")
else:
    print("Both are not pointing to the same object")

The output will be as follows:

Both are equal

Both variables are not pointing to the same object

Both are not pointing to the same object
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The is not operator is used to check whether two variables point to the same object or not. True 

is returned if both side variables point to different objects, otherwise, it returns False:

Firstlist = []

Secondlist = []

if Firstlist is not Secondlist: 

  print("Both Firstlist and Secondlist variables are the same object")

else:

  print("Both Firstlist and Secondlist variables are not the same object")

The output will be as follows:

Both Firstlist and Secondlist variables are not the same object

This section was about identity operators. Next, let us discuss logical operators.

Logical operators
These operators are used to combine conditional statements (True or False). There are three 

types of logical operators: AND, OR, and NOT.

The logical AND operator returns True if both the statements are true, otherwise it returns False. 

It uses the following syntax: A and B:

a = 32

b = 132

if a > 0 and b > 0:

  print("Both a and b are greater than zero") 

else:

  print("At least one variable is less than 0")

The output will be as follows.

Both a and b are greater than zero

The logical OR operator returns True if any of the statements are true, otherwise it returns False. 

It uses the following syntax: A or B:

a = 32

b = -32

if a > 0 or b > 0:

  print("At least one variable is greater than zero")
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else:

  print("Both variables are less than 0")

The output will be as follows.

At least one variable is greater than zero

The logical NOT operator is a Boolean operator, which can be applied to any object. It returns True if 

the object/operand is false, otherwise it returns False. Here, the operand is the unary expression/

statement on which the operator is applied. It uses the following syntax: not A:

a = 32

if not a:

  print("Boolean value of a is False")

else:

  print("Boolean value of a is True")

The output will be as follows.

Boolean value of a is True

In this section, we learned about different operators available in Python, and also saw how 

membership and identity operators can be applied to list data types. In the next section, we will 

continue discussing a final sequence data type: tuples.

Tuples
Tuples are used to store multiple items in a single variable. It is a read-only collection where 

data is ordered (zero-based indexing) and unchangeable/immutable (items cannot be added, 

modified, removed). Duplicate values are allowed in a tuple, and elements can be of different 

types, similar to lists. Tuples are used instead of lists when we wish to store the data that should 

not be changed in the program.

Tuples are written with round brackets and items are separated by a comma:

tuple_name = ("entry1", "entry2", "entry3")

For example:

my_tuple = ("Shyam", 23, True, "male")

Tuples support + (concatenation) and * (repetition) operations, similar to strings in Python. In 

addition, a membership operator and iteration operation are also available in a tuple. Different 

operations that tuples support are listed in Table 1.2:
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Expression Result Description

print(len((4,5, "hello"))) 3 Length

print((4,5)+(10,20)) (4,5,10,20) Concatenation

print((2,1)*3) (2,1,2,1,2,1) Repetition

print(3 in ('hi', 'xyz',3)) True Membership

for p in (6,7,8):  

   print(p)

6,7,8 Iteration

Table 1.2: Example of tuple operations 

Tuples in Python support zero-based indexing, negative indexing, and slicing. To understand it, 

let’s take a sample tuple, as shown below:

x = ( "hello", "world", " india")

We can see examples of zero-based indexing, negative indexing, and slicing operations in Table 1.3:

Expression Result Description

print(x[1]) "world" Zero-based indexing means that indexing starts from 

0 rather than 1, and hence in this example, the first 

index refers to the second member of the tuple.

print(x[-2]) "world" Negative: counting from the right-hand side.

print(x[1:]) ("world", 
"india")

Slicing fetches a section.

Table 1.3: Example of tuple indexing and slicing

Complex data types
We have discussed basic data types. Next, we discuss complex data types, which are mapping data 

types, in other words, dictionary, and set data types, namely, set and frozenset. We will discuss 

these data types in detail in this section.

Dictionaries
In Python, a dictionary is another of the important data types, similar to a list, in the sense that it 

is also a collection of objects. It stores the data in unordered {key-value} pairs; a key must be of a 

hashable and immutable data type, and value can be any arbitrary Python object. In this context, 

an object is hashable if it has a hash value that does not change during its lifetime in the program. 
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Items in the dictionary are enclosed in curly braces, {}, separated by a comma, and can be created 

using the {key:value} syntax, as shown below:

dict = {

    <key>: <value>,

    <key>: <value>,

      .

      .

      .

    <key>: <value>

}

Keys in dictionaries are case-sensitive, they should be unique, and cannot be duplicated; however, 

the values in the dictionary can be duplicated. For example, the following code can be used to 

create a dictionary:

my_dict = {'1': 'data', 

           '2': 'structure', 

           '3': 'python', 

           '4': 'programming', 

           '5': 'language' 

          }

Figure 1.5 shows the {key-value} pairs created by the preceding piece of code:

Figure 1.5: Example dictionary data structure 
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Values in a dictionary can be fetched based on the key. For example: my_dict['1'] gives data 

as the output.

The dictionary data type is mutable and dynamic. It differs from lists in the sense that dictionary 

elements can be accessed using keys, whereas the list elements are accessed via indexing. Table 

1.4 shows different characteristics of the dictionary data structure with examples:

Item Example

Creating a dictionary, and 

accessing elements from a 

dictionary

person = {}

print(type(person))

person['name'] = 'ABC'

person['lastname'] = 'XYZ'

person['age'] = 31

person['address'] = ['Jaipur']

print(person)

print(person['name'])

<class 'dict'>{'name': 'ABC', 'lastname': 
'XYZ', 'age': 31, 'address': ['Jaipur']}ABC

in and not in operators print('name' in person)

print('fname' not in person)

True 

True 

Length of the dictionary print(len(person))

4

Table 1.4: Characteristics of dictionary data structures with examples
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Python also includes the dictionary methods as shown in Table 1.5:

Function Description Example

mydict.clear() Removes all elements from a 

dictionary.

mydict = {'a': 1, 'b': 2, 
'c': 3}

print(mydict)

mydict.clear()

print(mydict)

{'a': 1, 'b': 2, 'c': 3}

{}

mydict.get(<key>) Searches the dictionary 

for a key and returns the 

corresponding value, if it is 

found; otherwise, it returns 

None.

mydict = {'a': 1, 'b': 2, 
'c': 3}

print(mydict.get('b'))

print(mydict)

print(mydict.get('z'))

2

{'a': 1, 'b': 2, 'c': 3}

None

mydict.items() Returns a list of dictionary 

items in (key, value) pairs.

print(list(mydict.items()))

[('a', 1), ('b', 2), 
('c', 3)]

mydict.keys() Returns a list of dictionary  

keys.

print(list(mydict.keys()))

['a', 'b', 'c']

mydict.values() Returns a list of dictionary  

values.

print(list(mydict.values()))

[1, 2, 3]
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mydict.pop() If a given key is present in the 

dictionary, then this function 

will remove the key and 

return the associated value.

print(mydict.pop('b'))

print(mydict)

{'a': 1, 'c': 3}

mydict.popitem() This method removes the 

last key-value pair added in 

the dictionary and returns it 

as a tuple.

mydict = {'a': 1,'b': 2,'c': 
3}

print(mydict.popitem())

print(mydict)

{'a': 1, 'b': 2}

mydict.update(<obj>) Merges one dictionary with 

another. Firstly, it checks 

whether a key of the second 

dictionary is present in 

the first dictionary; the 

corresponding value is then 

updated. If the key is not 

present in the first dictionary, 

then the key-value pair is 

added.

d1 = {'a': 10, 'b': 20, 'c': 
30}

d2 = {'b': 200, 'd': 400}

print(d1.update(d2))

print(d1)

{'a': 10, 'b': 200, 'c': 
30, 'd': 400}

Table 1.5: List of methods of dictionary data structures

Sets
A set is an unordered collection of hashable objects. It is iterable, mutable, and has unique elements. 

The order of the elements is also not defined. While the addition and removal of items are allowed, 

the items themselves within the set must be immutable and hashable. Sets support membership 

testing operators (in, not in), and operations such as intersection, union, difference, and 

symmetric difference. Sets cannot contain duplicate items. They are created by using the built-in 

set() function or curly braces {}. A set() returns a set object from an iterable. For example:

x1 = set(['and', 'python', 'data', 'structure'])

print(x1)

print(type(x1))

x2 = {'and', 'python', 'data', 'structure'}

print(x2)
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The output will be as follows:

{'python', 'structure', 'data', 'and'}

<class 'set'>

{'python', 'structure', 'data', 'and'}

Sets are generally used to perform mathematical operations, such as intersection, union, difference, 

and complement. The len() method gives the number of items in a set, and the in and not in 

operators can be used in sets to test for membership:

x = {'data', 'structure', 'and', 'python'}

print(len(x))

print('structure' in x)

The output will be as follows:

4

True

The most commonly used methods and operations that can be applied to set data structures are as 

follows. The union of the two sets, say, x1 and x2, is a set that consists of all elements in either set:

x1 = {'data', 'structure'}

x2 = {'python', 'java', 'c', 'data'}

Figure 1.6 shows a Venn diagram demonstrating the relationship between the two sets:

Figure 1.6: Venn diagram of sets

It is important to note that sets are unordered data structures, and the order of items 

in sets is not preserved. Therefore, your outputs in this section may be slightly dif-

ferent than those displayed here. However, this does not affect the function of the 

operations we will be demonstrating in this section. 
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A description of the various operations that can be applied on set type variables is shown, with 

examples, in Table 1.6:

Description Example sample code
Union of two sets, x1 and x2. It can 

be done using two methods, (1) using 

the | operator, (2) using the union 

method.

x1 = {'data', 'structure'}
x2 = {'python', 'java', 'c', 'data'}
x3 = x1 | x2
print(x3)
print(x1.union(x2))

{'structure', 'data', 'java', 'c', 
'python'}

{'structure', 'data', 'java', 'c', 
'python'}

Intersection of sets: to compute the 

intersection of two sets, an & operator 

and the intersection() method can 

be used, which returns a set of items 

common to both sets, x1 and x2.

print(x1.intersection(x2))
print(x1 & x2)

{'data'}

{'data'}

The difference between sets can be 

obtained using .difference() and 

the subtraction operator, -, which 

returns a set of all elements that are 

in x1, but not in x2.

print(x1.difference(x2))
print(x1 - x2)

{'structure'}

{'structure'}

Symmetric difference can be obtained 

using  .symmetric_difference() , 

while ^ returns a set of all data items 

that are present in either x1 or x2, but 

not both.

print(x1.symmetric_difference(x2))
print(x1 ^ x2)

{'structure', 'python', 'c', 'java'}

{'structure', 'python', 'c', 'java'}

To test whether a set is a subset of 

another, use .issubset() and the 

operator <=.

print(x1.issubset(x2))
print(x1 <= x2)

False

False

Table 1.6: Description of various operations applicable to set type variables 
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Immutable sets
In Python, frozenset is another built-in type data structure, which is, in all respects, exactly 

like a set, except that it is immutable, and so cannot be changed after creation. The order of the 

elements is also undefined. A frozenset is created by using the built-in function frozenset():

x = frozenset(['data', 'structure', 'and', 'python'])

print(x)

The output is:

frozenset({'python', 'structure', 'data', 'and'})

Frozensets are useful when we want to use a set but require the use of an immutable object. 

Moreover, it is not possible to use set elements in the set, since they must also be immutable. 

Consider an example:

a11 = set(['data'])

a21 = set(['structure'])

a31 = set(['python'])

x1 = {a11, a21, a31}

The output will be:

TypeError: unhashable type: 'set'

Now with frozenset:

a1 = frozenset(['data'])

a2 = frozenset(['structure'])

a3 = frozenset(['python'])

x = {a1, a2, a3}

print(x)

The output is:

{frozenset({'structure'}), frozenset({'python'}), frozenset({'data'})}

In the above example, we create a set x of frozensets (a1, a2, and a3), which is possible because 

the frozensets are immutable.

We have discussed the most important and popular data types available in Python. Python also 

provides a collection of other important methods and modules, which we will discuss in the 

next section.
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Python’s collections module
The collections module provides different types of containers, which are objects that are used 

to store different objects and provide a way to access them. Before accessing these, let’s consider 

briefly the role and relationships between modules, packages, and scripts.

A module is a Python script with the .py extension that contains a collection of functions, classes, 

and variables. A package is a directory that contains collections of modules; it has an __init__.

py file, which lets the interpreter know that it is a package. A module can be called into a Python 

script, which can in turn make use of the module’s functions and variables in its code. In Python, 

we can import these to a script using the import statement. Whenever the interpreter encounters 

the import statement, it imports the code of the specified module.

Table 1.7 provides the data types and operations of the collections module and their descriptions:

Container data type Description

namedtuple Creates a tuple with named fields similar to regular tuples.

deque Doubly-linked lists that provide efficient adding and removing of items 

from both ends of the list.

defaultdict A dictionary subclass that returns default values for missing keys.

ChainMap A dictionary that merges multiple dictionaries.

Counter A dictionary that returns the counts corresponding to their objects/key.

UserDict UserList 
UserString

These data types are used to add more functionalities to their base data 

structure, such as a dictionary, list, and string. And we can create 

subclasses from them for custom dict/list/string.

Table 1.7: Different container data type of the collections module

Let’s consider these types in more detail.

Named tuples
The namedtuple of collections provides an extension of the built-in tuple data type. namedtuple 

objects are immutable, similar to standard tuples. Thus, we can’t add new fields or modify existing 

ones after the namedtuple instance is created. They contain keys that are mapped to a particular 

value, and we can iterate through named tuples either by index or key. The namedtuple function 

is mainly useful when several tuples are used in an application and it is important to keep track 

of each of the tuples in terms of what they represent. 
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In this situation, namedtuple presents a more readable and self-documenting method. The syntax 

is as follows:

nt = namedtuple(typename , field_names)

Here is an example:

from collections import namedtuple

Book = namedtuple ('Book', ['name', 'ISBN', 'quantity'])

Book1 = Book('Hands on Data Structures', '9781788995573', '50')

#Accessing data items

print('Using index ISBN:' + Book1[1])

print('Using key ISBN:' + Book1.ISBN)

The output will be as follows.

Using index ISBN:9781788995573

Using key ISBN:9781788995573

Here, in the above code, we firstly imported namedtuple from the collections module. Book is 

a named tuples, “class,” and then, Book1 is created, which is an instance of Book. We also see 

that the data elements can be accessed using index and key methods.

Deque
A deque is a double-ended queue (deque) that supports append and pop elements from both sides 

of the list. Deques are implemented as double-linked lists, which are very efficient for inserting 

and deleting elements in O(1) time complexity.

Consider an example:

from collections import deque

s = deque()   # Creates an empty deque

print(s)

my_queue = deque([1, 2, 'Name'])

print(my_queue)

The output will be as follows.

deque([])

deque([1, 2, 'Name'])
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You can also use some of the following predefined functions:

Function Description

my_queue.append('age') Insert 'age' at the right end of the list.

my_queue.appendleft('age') Insert 'age' at the left end of the list.

my_queue.pop() Delete the rightmost value.

my_queue.popleft() Delete the leftmost value.

Table 1.8: Description of different queue functions 

In this section, we showed the use of the deque method of the collections module, and how 

elements can be added and deleted from the queue.

Ordered dictionaries
An ordered dictionary is a dictionary that preserves the order of the keys that are inserted. If the 

key order is important for any application, then OrderedDict can be used:

od = OrderedDict([items])

An example could look like the following:

from collections import OrderedDict

od = OrderedDict({'my': 2, 'name ': 4, 'is': 2, 'Mohan' :5})

od['hello'] = 4

print(od)

The output will be as follows.

OrderedDict([('my', 2), ('name ', 4), ('is', 2), ('Mohan', 5), ('hello', 
4)])

In the above code, we create a dictionary, od, using the OrderedDict module. We can observe 

that the order of the keys is the same as the order when we created the key.

Default dictionary
The default dictionary (defaultdict) is a subclass of the built-in dictionary class (dict) that 

has the same methods and operations as that of the dictionary class, with the only difference 

being that it never raises a KeyError, as a normal dictionary would. defaultdict is a convenient 

way to initialize dictionaries:

d = defaultdict(def_value)
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An example could look like the following:

from collections import defaultdict

dd = defaultdict(int)

words = str.split('data python data data structure data python')

for word in words:

    dd[word] += 1

print(dd)

The output will be as follows.

defaultdict(<class 'int'>, {'data': 4, 'python': 2, 'structure': 1})

In the above example, if an ordinary dictionary had been used, then Python would have shown 

KeyError while the first key was added. int, which we supplied as an argument to defaultdict, 

is really the int() function, which simply returns a zero.

ChainMap object
ChainMap is used to create a list of dictionaries. The collections.ChainMap data structure 

combines several dictionaries into a single mapping. Whenever a key is searched in the chainmap, 

it looks through all the dictionaries one by one, until the key is not found:

class collections.ChainMap(dict1, dict2)

An example could look like the following:

from collections import ChainMap

dict1 = {"data": 1, "structure": 2}

dict2 = {"python": 3, "language": 4}

chain = ChainMap(dict1, dict2)

print(chain)

print(list(chain.keys()))

print(list(chain.values()))

print(chain["data"])

print(chain["language"])

The output will be:

ChainMap({'data': 1, 'structure': 2}, {'python': 3, 'language': 4})

['python', 'language', 'data', 'structure']

[3, 4, 1, 2]
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1

4

In the above code, we create two dictionaries, namely, dict1 and dict2, and then we can combine 

both of these dictionaries using the ChainMap method.

Counter objects
As we discussed earlier, a hashable object is one whose hash value will remain the same during 

its lifetime in the program. counter is used to count the number of hashable objects. Here, the 

dictionary key is a hashable object, while the corresponding value is the count of that object. In 

other words, counter objects create a hash table in which the elements and their count are stored 

as dictionary keys and value pairs.

Dictionary and counter objects are similar in the sense that data is stored in a {key, value} 

pair, but in counter objects, the value is the count of the key whereas it can be anything in the case 

of dictionary. Thus, when we only want to see how many times each unique word is occurring 

in a string, we use the counter object.

An example could look like the following:

from collections import Counter

inventory = Counter('hello')

print(inventory)

print(inventory['l'])

print(inventory['e'])

print(inventory['o'])

The output will be:

Counter({'l': 2, 'h': 1, 'e': 1, 'o': 1})

2

1

1

In the above code, the inventory variable is created, which holds the counts of all the characters 

using the counter module. The count values of these characters can be accessed using dictionary-

like key access ([key]).



Python Data Types and Structures32

UserDict
Python supports a container, UserDict, present in the collections module, that wraps the dictionary 

objects. We can add customized functions to the dictionary. This is very useful for applications 

where we want to add/update/modify the functionalities of the dictionary. Consider the example 

code below where pushing/adding a new data element is not allowed in the dictionary:

# we can not push to this user dictionary

from collections import UserDict

class MyDict(UserDict):

    def push(self, key, value): 

        raise RuntimeError("Cannot insert")

d = MyDict({'ab':1, 'bc': 2, 'cd': 3})

d.push('b', 2)

The output is as follows:

RuntimeError: Cannot insert

In the above code, a customized push function in the MyDict class is created to add the customized 

functionality, which does not allow you to insert an element into the dictionary.

UserList
A UserList is a container that wraps list objects. It can be used to extend the functionality of the 

list data structure. Consider the example code below, where pushing/adding a new data element 

is not allowed in the list data structure:

# we can not push to this user list

from collections import UserList

class MyList(UserList):

    def push(self, key):

        raise RuntimeError("Cannot insert in the list")

d = MyList([11, 12, 13])

d.push(2)

The output is as follows:

RuntimeError: Cannot insert in the list

In the above code, a customized push function in the MyList class is created to add the functionality 

to not allow you to insert an element into the list variable.
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UserString
Strings can be considered as an array of characters. In Python, a character is a string of one length 

and acts as a container that wraps a string object. It can be used to create strings with customized 

functionalities. An example could look like the following:

#Create a custom append function for string

from collections import UserString

class MyString(UserString):

    def append(self, value):

        self.data += value

s1 = MyString("data")

print("Original:", s1)

s1.append('h')

print("After append: ", s1)

The output is:

Original: data

After append:  datah

In the above example code, a customized append function in the MyString class is created to add 

the functionality to append a string.

Summary
In this chapter, we have discussed different built-in data types supported by Python. We have also 

looked at a few basic Python functions, libraries, and modules, such as the collections module. 

The main objective of this chapter was to give an overview of Python and make a user acquainted 

with the language so that it is easy to implement the advanced algorithms of data structures.

Overall, this chapter has provided an overview of several data structures available in Python 

that are pivotal for understanding the internals of data structures. In the next chapter, we will 

introduce the basic concepts of algorithm design and analysis.
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2
Introduction to Algorithm 
Design

The objective of this chapter is to understand the principles of designing algorithms, and the im-

portance of analyzing algorithms in solving real-world problems. Given input data, an algorithm 

is a step-by-step set of instructions that should be executed in sequence to solve a given problem.

In this chapter, we will also learn how to compare different algorithms and determine the best 

algorithm for the given use-case. There can be many possible correct solutions for a given prob-

lem, for example, we can have several algorithms for the problem of sorting n numeric values. So, 

there is no one algorithm to solve any real-world problem.

In this chapter, we will look at the following topics:

•	 Introducing algorithms

•	 Performance analysis of an algorithm

•	 Asymptotic notation

•	 Amortized analysis

•	 Choosing complexity classes

•	 Computing the running time complexity of an algorithm

Introducing algorithms
An algorithm is a sequence of steps that should be followed in order to complete a given task/

problem. 
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It is a well-defined procedure that takes input data, processes it, and produces the desired output. 

A representation of this is shown in Figure 2.1.

Figure 2.1: Introduction to algorithms

Summarized below are some important reasons for studying algorithms:

•	 Essential for computer science and engineering

•	 Important in many other domains (such as computational biology, economics, ecology, 

communications, ecology, physics, and so on)

•	 They play a role in technology innovation

•	 They improve problem-solving and analytical thinking

There are two aspects that are of prime importance in solving a given problem. Firstly, we need 

an efficient mechanism to store, manage, and retrieve data, which is required to solve a problem 

(this comes under data structures); secondly, we require an efficient algorithm that is a finite set 

of instructions to solve that problem. Thus, the study of data structures and algorithms is key to 

solving any problem using computer programs. An efficient algorithm should have the following 

characteristics:

•	 It should be as specific as possible

•	 It should have each instruction properly defined

•	 There should not be any ambiguous instructions

•	 All the instructions of the algorithm should be executable in a finite amount of time and 

in a finite number of steps
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•	 It should have clear input and output to solve the problem

•	 Each instruction of the algorithm should be integral in solving the given problem

Consider an example of an algorithm (an analogy) to complete a task in our daily lives; let us 

take the example of preparing a cup of tea. The algorithm to prepare a cup of tea can include the 

following steps:

1.	 Pour water into the pan

2.	 Put the pan on the stove and light the stove

3.	 Add crushed ginger to the warming water

4.	 Add tea leaves to the pan

5.	 Add milk

6.	 When it starts boiling, add sugar to it

7.	 After 2-3 minutes, the tea can be served

The above procedure is one of the possible ways to prepare tea. In the same way, the solution to 

a real-world problem can be converted into an algorithm, which can be developed into computer 

software using a programming language. Since it is possible to have several solutions for a given 

problem, it should be as efficient as possible when it is to be implemented using software. Given a 

problem, there may be more than one correct algorithm, defined as the one that produces exactly 

the desired output for all valid input values. The costs of executing different algorithms may be 

different; it may be measured in terms of the time required to run the algorithm on a computer 

system and the memory space required for it.

There are primarily two things that one should keep in mind while designing an efficient algorithm:

1.	 The algorithm should be correct and should produce the results as expected for all valid 

input values

2.	 The algorithm should be optimal in the sense that it should be executed on the computer 

within the desired time limit, in line with an optimal memory space requirement

Performance analysis of the algorithm is very important for deciding the best solution for a given 

problem. If the performance of an algorithm is within the desired time and space requirements, it 

is optimal. One of the most popular and common methods of estimating the performance of an 

algorithm is through analyzing its complexity. Analysis of the algorithm helps us to determine 

which one is most efficient in terms of the time and space consumed.
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Performance analysis of an algorithm
The performance of an algorithm is generally measured by the size of its input data, n, and the 

time and the memory space used by the algorithm. The time required is measured by the key 

operations to be performed by the algorithm (such as comparison operations), where key opera-

tions are instructions that take a significant amount of time during execution. Whereas the space 

requirement of an algorithm is measured by the memory needed to store the variables, constants, 

and instructions during the execution of the program.

Time complexity
The time complexity of the algorithm is the amount of time that an algorithm will take to execute 

on a computer system to produce the output. The aim of analyzing the time complexity of the 

algorithm is to determine, for a given problem and more than one algorithm, which one of the 

algorithms is the most efficient with respect to the time required to execute. The running time 

required by an algorithm depends on the input size; as the input size, n, increases, the runtime 

also increases. Input size is measured as the number of items in the input, for example, the input 

size for a sorting algorithm will be the number of items in the input. So, a sorting algorithm will 

have an increased runtime to sort a list of input size 5,000 than that of a list of input size 50.

The runtime of an algorithm for a specific input depends on the key operations to be executed in 

the algorithm. For example, the key operation for a sorting algorithm is a comparison operation 

that will take up most of the runtime, compared to assignment or any other operation. Ideally, 

these key operations should not depend upon the hardware, the operating system, or the pro-

gramming language being used to implement the algorithm.

A constant amount of time is required to execute each line of code; however, each line may take 

a different amount of time to execute. In order to understand the running time required for an 

algorithm, consider the below code as an example:

Code Time required (Cost)

if n==0 || n == 3             #constant time

  print("data")

else:

  for i in range(             #loop run for n 
times

     print("structure")

c1

c2

c3

c4

c5



Chapter 2 39

Here, in statement 1 of the above example, if the condition is true then "data" will be printed, 

and if the condition is not true then the for loop will execute n times. The time required by the 

algorithm depends on the time required for each statement, and how many times a statement 

is executed. The running time of the algorithm is the sum of time required by all the statements. 

For the above code, assume statement 1 takes c1 amount of time, statement 2 takes c2 amount of 

time, and so on. So, if the ith statement takes a constant amount of time ci and if the ith statement 

is executed n times, then it will take cin time. The total running time T(n) of the algorithm for a 

given value of n (assuming the value of n is not zero or three) will be as follows.

T(n) = c1 + c3 + c4 x n + c5 x n

If the value of n is equal to zero or three, then the time required by the algorithm will be as follows.

T(n) = c1 + c2

Therefore, the running time required for an algorithm also depends upon what input is given in 

addition to the size of the input given. For the given example, the best case will be when the input 

is either zero or three, and in that case, the running time of the algorithm will be constant. In the 

worst case, the value of n is not equal to zero or three, then, the running time of the algorithm can 

be represented as a x n + b. Here, the values of a and b are constants that depend on the statement 

costs, and the constant times are not considered in the final time complexity. In the worst case, 

the runtime required by the algorithm is a linear function of n.

Let us consider another example, linear search:

def linear_search(input_list, element):

    for index, value in enumerate(input_list):

        if value == element:

            return index

        

    return -1

input_list = [3, 4, 1, 6, 14]  

element = 4

print("Index position for the element x is:", linear_search(input_
list,element))

The output in this instance will be as follows:

Index position for the element x is: 1
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The worst-case running time of the algorithm is the upper-bound complexity; it is the maximum 

runtime required for an algorithm to execute for any given input. The worst-case time complexity 

is very useful in that it guarantees that for any input data, the runtime required will not take more 

time as compared to the worst-case running time. For example, in the linear search problem, the 

worst case occurs when the element to be searched is found in the last comparison or not found 

in the list. In this case, the running time required will linearly depend upon the length of the list, 

whereas, in the best case, the search element will be found in the first comparison.

The average-case running time is the average running time required for an algorithm to execute. 

In this analysis, we compute the average over the running time for all possible input values. Gen-

erally, probabilistic analysis is used to analyze the average-case running time of an algorithm, 

which is computed by averaging the cost over the distribution of all the possible inputs. For ex-

ample, in the linear search, the number of comparisons at all positions would be 1 if the element 

to be searched was found at the 0th index; and similarly, the number of comparisons would be 2, 

3, and so forth, up to n, respectively, for elements found at the 1, 2, 3, … (n-1) index positions. 

Thus, the average-case running time will be as follows.𝑇𝑇(𝑛𝑛) = 1 + 2 + 3…𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛 2𝑛𝑛  

For average-case, the running time required is also linearly dependent upon the value of n. How-

ever, in most real-world applications, worst-case analysis is mostly used, since it gives a guarantee 

that the running time will not take any longer than the worst-case running time of the algorithm 

for any input value.

Best-case running time is the minimum time needed for an algorithm to run; it is the lower 

bound on the running time required for an algorithm; in the example above, the input data is 

organized in such a way that it takes its minimum running time to execute the given algorithm.

Space complexity
The space complexity of the algorithm estimates the memory requirement to execute it on a 

computer to produce the output as a function of input data. The memory space requirement of 

an algorithm is one of the criteria used to decide how efficient it is. While executing the algorithm 

on the computer system, storage of the input is required, along with intermediate and tempo-

rary data in data structures, which are stored in the memory of the computer. In order to write a 

programming solution for any problem, some memory is required for storing variables, program 

instructions, and executing the program on the computer. The space complexity of an algorithm 

is the amount of memory required for executing and producing the result.
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For computing the space complexity, consider the following example, in which, given a list of 

integer values, the function returns the square value of the corresponding integer number.

def squares(n):

    square_numbers = []

    for number in n:

        square_numbers.append(number * number)

    return square_numbers

 

nums = [2, 3, 5, 8 ]

print(squares(nums))

The output of the code is:

[4, 9, 25, 64]

In the above code, the algorithm will require allocating memory for the number of items in the 

input list. Say the number of elements in the input is n, then the space requirement increases with 

the input size, therefore, the space complexity of the algorithm becomes O(n).

Given two algorithms to solve a given problem, with all other requirements being equal, then the 

algorithm that requires less memory can be considered more efficient. For example, suppose there 

are two search algorithms, one has O(n) and another algorithm has O(nlogn) space complexity. 

The first algorithm is the better algorithm as compared to the second with respect to the space 

requirements. Space complexity analysis is important to understand the efficiency of an algorithm, 

especially for applications where the memory space requirement is high.

When the input size becomes large enough, the order of growth also becomes important. In 

such situations, we study the asymptotic efficiency of algorithms. Generally, algorithms that are 

asymptotically efficient are considered to be better algorithms for large-size inputs. In the next 

section, we will study asymptotic notation.

Asymptotic notation
To analyze the time complexity of an algorithm, the rate of growth (order of growth) is very 

important when the input size is large. When the input size becomes large, we only consider the 

higher-order terms and ignore the insignificant terms. In asymptotic analysis, we analyze the 

efficiency of algorithms for large input sizes considering the higher order of growth and ignoring 

the multiplicative constants and lower-order terms. 



Introduction to Algorithm Design42

We compare two algorithms with respect to input size rather than the actual runtime and measure 

how the time taken increases with an increased input size. The algorithm which is more efficient 

asymptotically is generally considered a better algorithm as compared to the other algorithm. The 

following asymptotic notations are commonly used to calculate the running time complexity of 

an algorithm:

•	 θ notation: It denotes the worst-case running time complexity with a tight bound.

•	 Ο notation: It denotes the worst-case running time complexity with an upper bound, 

which ensures that the function never grows faster than the upper bound.

•	 Ω notation: It denotes the lower bound of an algorithm’s running time. It measures the 

best amount of time to execute the algorithm.

Theta notation
The following function characterizes the worst-case running time for the first example discussed 

in the Time complexity section:

T(n) = c1 + c3 x n + c5 x n

Here, for a large input size, the worst-case running time will be ϴ(n) (pronounced as theta of n). 

We usually consider one algorithm to be more efficient than another if its worst-case running 

time has a lower order of growth. Due to constant factors and lower-order terms, an algorithm 

whose running time has a higher order of growth might take less time for small inputs than an 

algorithm whose running time has a lower order of growth. For example, once the input size n 

becomes large enough, the merge sort algorithm performs better as compared to insertion sort 

with worst-case running times of ϴ(logn) and ϴ(n2) respectively.

Theta notation (ϴ) denotes the worst-case running time for an algorithm with a tight bound. For a 

given function F(n), the asymptotic worst-case running time complexity can be defined as follows.𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
iff there exists constants n0, c1, and c2 such that:0 ≤ 𝑐𝑐1(𝐹𝐹(𝑛𝑛)) ≤  𝑇𝑇(𝑛𝑛) ≤ 𝑐𝑐2(𝐹𝐹𝐹𝐹)) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 

The function T(n) belongs to a set of functions ϴ(F(n)) if there exists positive constants c1 and c2 

such that the value of T(n) always lies in between c1F(n) and c2F(n) for all large values of n. If this 

condition is true, then we say F(n) is asymptotically tight bound for T(n).
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Figure 2.2 shows the graphic example of the theta notation (ϴ). It can be observed from the fig-

ure that the value of T(n) always lies in between c1F(n) and c2F(n) for values of n greater than n0.

Figure 2.2: Graphical example of theta notation (ϴ)

Let us consider an example to understand what should be the worst case running time complexity 

with the formal definition of theta notation for a given function:f(n) = n2 + n is 𝛳𝛳𝛳𝛳2 

In order to determine the time complexity with the ϴ notation definition, we have to first identify 

the constants c1, c2, n0 such that0 ≤   c1 ∗ n2   ≤   n2  +   n  ≤   c2  ∗ n2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 n ≥  n0 

Dividing by n2 will produce:0 ≤ c1 ≤ 1 + 1n ≤ c2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 n ≥ n0 

By choosing c1 = 1, c2 = 2, and n0 = 1, the following condition can satisfy the definition of theta 

notation. 0 ≤ n2 ≤ n2 + n ≤ 2n2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 n ≥ 1 

That gives: 𝑓𝑓(𝑛𝑛) = ϴ(g(n)), means f(n) = ϴ(n2) 
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Consider another example to find out the asymptotically tight bound (ϴ) for another function:𝑓𝑓(𝑛𝑛) = 𝑛𝑛22 + 𝑛𝑛2 

In order to identify the constants c1, c2, and n0, such that they satisfy the condition:0 ≤ c1 ∗ 𝑛𝑛2 ≤ n22 ≤ c2 ∗ 𝑛𝑛2, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛 𝑛𝑛𝑛 

By choosing c1 = 1/5, c2 =1, and n0 = 1, the following condition can satisfy the definition of theta 

notation: 0 ≤ n25 ≤ n22 + 𝑛𝑛2 ≤ n2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 𝑛𝑛𝑛 𝑛 𝑛 

⇒ n22 + 𝑛𝑛2 = ϴ(n2) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐1 = 15  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0 = 1 

So, the following is true: 𝑓𝑓(𝑛𝑛) = 𝑛𝑛22 + 𝑛𝑛2 = ϴ(n2) 
It shows that the given function has the complexity of ϴ(n2) as per the definition of theta notation.

So, the theta notation provides a tight bound for the time complexity of an algorithm. In the next 

section, we will discuss Big O notation.

Big O notation
We have seen that the theta notation is asymptotically bound from the upper and lower sides of 
the function whereas the Big O notation characterizes the worst-case running time complexity, 
which is only the asymptotic upper bound of the function. Big O notation is defined as follows. 
Given a function F(n), the T(n) is a Big O of function F(n), and we define this as follows:

T(n) = O(F(n))

iff there exists constants n0 and c such that: 𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛 𝑛𝑛𝑛 

In Big O notation, a constant multiple of F(n) is an asymptotic upper bound on T(n), and the 
positive constants n0 and c should be in such a way that all values of n greater than n0 always lie 
on or below function c*F(n). 
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Moreover, we only care what happens at higher values of n. The variable n0 represents the threshold 

below which the rate of growth is not important. The plot shown in Figure 2.3 shows a graphical 

representation of function T(n) with a varying value of n. We can see that T(n) = n2 + 500 = O(n2), 

with c = 2 and n0 being approximately 23.

Figure 2.3: Graphical example of O notation

In O notation, O(F(n)) is really a set of functions that includes all functions with the same or 

smaller rates of growth than F(n). For example, O(n2) also includes O(n), O(log n), and so on. 

However, Big O notation should characterize a function as closely as possible, for example, it is 

true that function F(n) = 2n3+2n2+5 is O(n4), however, it is more accurate that F(n) is O(n3).

In the following table, we list the most common growth rates in order from lowest to highest.

Time Complexity Name

O(1) Constant

O(logn) Logarithmic

O(n) Linear

O(nlogn) Linear-logarithmic

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

Table 2.1: Runtime complexity of different functions
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Using Big O notation, the running time of an algorithm can be computed by analyzing the structure 

of the algorithm. For example, a double nested loop in an algorithm will have an upper bound 

on the worst-case running time of O(n2), since the values of i and j will be at most n, and both 

the loops will run n2 times as shown in the below example code:

for i in range(n): 

    for j in range(n): 

        print("data")

Let us consider a few examples in order to compute the upper bound of a function using the 

O-notation:

1.	 Find the upper bound for the function:

T(n) = 2n + 7

Solution: Using O notation, the condition for the upper bound is:

T(n) <= c * F(n)

This condition holds true for all values of n > 7 and c=3.

2n + 7 <= 3n This is true for all values of n, with c=3, n0=7

T(n) = 2n+7 = O(n)

2.	 Find F(n) for functions T(n) =2n+5 such that T(n) = O(F(n)).

Solution: Using O notation, the condition for the upper bound is T(n) <=c * F(n).

Since, 2n+5 ≤ 3n, for all n ≥ 5.

The condition is true for c=3, n0=5.

2n + 5 ≤ O(n)

F(n) = n
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3.	 Find F(n) for the function T(n) = n2 +n, such that T(n) = O(F(n)).

Solution: Using O notation, since, n2+ n ≤ 2n2, for all n ≥ 1 (with c = 2, n0=2)

n2+ n ≤  O(n2)

F(n) = n2

4.	 Prove that f(n) =2n3 - 6n ≠ O(n2).

Solution: Clearly, 2n3-6n ≥ n2, for n ≥ 2. So it cannot be true that 2n3 - 6n ≠ O(n2).

5.	 Prove that: 20n2+2n+5 = O(n2).

Solution: It is clear that:

20n2 + 2n + 5 <= 21n2  for all n > 4 (let c = 21 and n0 = 4)

n2 > 2n + 5 for all n > 4

So, the complexity is O(n2).

So, Big-O notation provides an upper bound on a function, which ensures that the function never 

grows faster than the upper-bounded function. In the next section, we will discuss Omega notation.

Omega notation
Omega notation (Ω) describes an asymptotic lower bound on algorithms, similar to the way in 

which Big O notation describes an upper bound. Omega notation computes the best-case runtime 

complexity of the algorithm. The Ω notation (Ω(F(n)) is pronounced as omega of F of n), is a set 

of functions in such a way that there are positive constants n0 and c such that for all values of n 

greater than n0, T(n) always lies on or above a function to c*F(n).

T(n) = Ω (F(n))

Iff constants n0 and c are present, then: 0 ≤ 𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)) ≤ 𝑇𝑇(𝑛𝑛), 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑛 𝑛 𝑛𝑛0 
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Figure 2.4 shows the graphical representation of the omega (Ω) notation. It can be observed from 

the figure that the value of T(n) always lies above cF(n) for values of n greater than n0.

Figure 2.4: The graphical representation of Ω notation

If the running time of an algorithm is Ω(F(n)), it means that the running time of the algorithm is 

at least a constant multiplier of F(n) for sufficiently large values of input size (n). The Ω notation 

gives a lower bound on the best-case running time complexity of a given algorithm. It means that 

the running time for a given algorithm will be at least F(n) without depending upon the input.

In order to understand the Ω notation and how to compute the lower bound on the best-case 

runtime complexity of an algorithm:

1.	 Find F(n) for the function T(n) =2n2 +3 such that T(n) = Ω(F(n)).

Solution: Using the Ω notation, the condition for the lower bound is:

c*F(n) ≤ T(n)

This condition holds true for all values of n greater than 0, and c=1.

0 ≤ cn2 ≤ 2n2 +3, for all n ≥ 0

2n2 +3 = Ω(n2)

F(n)=n2
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2.	 Find the lower bound for T(n) = 3n2.

Solution: Using the Ω notation, the condition for the lower bound is:

c*F(n) ≤  T(n)

Consider 0 ≤ cn2 ≤ 3n2. The condition for Ω notation holds true for all values of n greater 

than 1, and c=2.

cn2 ≤ 3n2 (for c = 2 and n0 = 1)

3n2 = Ω(n2)

3.	 Prove that 3n = Ω(n).

Solution: Using the Ω notation, the condition for the lower bound is: 

c*F(n) ≤ T(n)

Consider 0 ≤ c*n  ≤ 3n. The condition for Ω notation holds true for all values of n greater 

than 1, and c=1.

cn2  ≤ 3n2 ( for c = 2 and n0 = 1)

3n = Ω(n)

The Ω notation is used to describe that at least a certain amount of running time will be taken 

by an algorithm for a large input size. In the next section, we will discuss amortized analysis.

Amortized analysis
In the amortized analysis of an algorithm, we average the time required to execute a sequence of 

operations with all the operations of the algorithm. This is called amortized analysis. Amortized 

analysis is important when we are not interested in the time complexity of individual operations 

but we are interested in the average runtime of sequences of operations. In an algorithm, each 

operation requires a different amount of time to execute. Certain operations require significant 

amounts of time and resources while some operations are not costly at all. In amortized analysis, 

we analyze algorithms considering both the costly and less costly operations in order to analyze 

all the sequences of operations. So, an amortized analysis is the average performance of each 

operation in the worst case considering the cost of the complete sequence of all the operations. 

Amortized analysis is different from average-case analysis since the distribution of the input 

values is not considered. An amortized analysis gives the average performance of each operation 

in the worst case.
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There are three commonly used methods for amortized analysis:

•	 Aggregate analysis. In aggregate analysis, the amortized cost is the average cost of all 

the sequences of operations. For a given sequence of n operations, the amortized cost 

of each operation can be computed by dividing the upper bound on the total cost of n 

operations with n.

•	 The accounting method. In the accounting method, we assign an amortized cost to each 

operation, which may be different than their actual cost. In this, we impose an extra charge 

on early operations in the sequence and save “credit cost,” which is used to pay expensive 

operations later in the sequence.

•	 The potential method. The potential method is like the accounting method. We determine 

the amortized cost of each operation and impose an extra charge to early operations that 

may be used later in the sequence. Unlike the accounting method, the potential method 

accumulates the overcharged credit as “potential energy” of the data structure as a whole 

instead of storing credit for individual operations.

In this section, we had an overview of amortized analysis. Now we will discuss how to compute 

the complexity of different functions with examples in the next section.

Composing complexity classes
Normally, we need to find the total running time of complex operations and algorithms. It turns 

out that we can combine the complexity classes of simple operations to find the complexity class 

of more complex, combined operations. The goal is to analyze the combined statements in a 

function or method to understand the total time complexity of executing several operations. The 

simplest way to combine two complexity classes is to add them. This occurs when we have two 

sequential operations. For example, consider the two operations of inserting an element into a 

list and then sorting that list. Assuming that inserting an item occurs in O(n) time, and sorting 

in O(nlogn) time, then we can write the total time complexity as O(n + nlogn); that is, we bring 

the two functions inside the O(…), as per Big O computation. Considering only the highest-order 

term, the final worst-case complexity becomes O(nlogn).

If we repeat an operation, for example in a while loop, then we multiply the complexity class by 

the number of times the operation is carried out. If an operation with time complexity O(f(n)) 

is repeated O(n) times, then we multiply the two complexities: O(f(n) * O(n)) = O(nf(n)). For 

example, suppose the function f(n) has a time complexity of O(n2) and it is executed n times in 

a for loop, as follows:
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for i in range(n):

        f(...)

The time complexity of the above code then becomes:

O(n2) x O(n) = O(n x n2) = O(n3)

Here, we are multiplying the time complexity of the inner function by the number of times this 

function executes. The runtime of a loop is at most the runtime of the statements inside the 

loop multiplied by the number of iterations. A single nested loop, that is, one loop nested inside 

another loop, will run n2 times, such as in the following example:

for i in range(n):

    for j in range(n)

        #statements

If each execution of the statements takes constant time, c, i.e. O(1), executed n x n times, we can 

express the running time as follows:

c x n x n = c x n2 = O(n2)

For consecutive statements within nested loops, we add the time complexities of each statement 

and multiply by the number of times the statement is executed—as in the following code, for 

example:

def fun(n):

   for i in range(n):  #executes n times

      print(i)     #c1

   for i in range(n): 

      for j in range(n):

         print(j)  #c2

This can be written as: c1n + c2 *n2 = O(n2).

We can define (base 2) logarithmic complexity, reducing the size of the problem by half, in con-

stant time. For example, consider the following snippet of code:

i = 1

while i <= n:

    i = i*2

    print(i)
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Notice that i is doubling in each iteration. If we run this code with n = 10, we see that it prints 

out four numbers: 2, 4, 8, and 16. If we double n, we see it prints out five numbers. With each 

subsequent doubling of n, the number of iterations is only increased by 1. If we assume that the 

loop has k iterations, then the value of n will be 2n. We can write this as follows:log2(2𝑘𝑘) = log2(𝑛𝑛𝑛 𝑘𝑘𝑘𝑘𝑘2(2) = log2(2) 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 
From this, the worst-case runtime complexity of the above code is equal to O(log(n)).

In this section, we have seen examples to compute the running time complexity of different 

functions. In the next section, we will take examples to understand how to compute the running 

time complexity of an algorithm.

Computing the running time complexity of an 
algorithm
To analyze an algorithm with respect to the best-, worst-, and average-case runtime of the algo-

rithm, it is not always possible to compute these for every given function or algorithm. However, 

it is always important to know the upper-bound worst-case runtime complexity of an algorithm 

in practical situations; therefore, we focus on computing the upper-bound Big O notation to 

compute the worst-case runtime complexity of an algorithm:

1.	 Find the worst-case runtime complexity of the following Python snippet:

# loop will run n times

for i in range(n):

    print("data")  #constant time

Solution: The runtime for a loop, in general, takes the time taken by all statements in the 

loop, multiplied by the number of iterations. Here, total runtime is defined as follows:

T(n) = constant time (c) * n = c*n = O(n)

2.	 Find the time complexity of the following Python snippet:

for i in range(n): 

    for j in range(n):  # This loop will also run for n times

        print("run")
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Solution: O(n2). The print statement will be executed n2 times, n times for the inner loop, 

and, for each iteration of the outer loop, the inner loop will be executed.

3.	 Find the time complexity of the following Python snippet:

for i in range(n):

    for j in range(n):

        print("run fun")

       break

Solution: The worst-case complexity will be O(n) since the print statement will run n 

times because the inner loop executes only once due to a break statement.

4.	 Find the time complexity of the following Python snippet:

def fun(n):

    for i in range(n):

        print("data")  #constant time

 #outer loop execute for n times

    for i in range(n):

        for j in range(n):  #inner loop execute n times

            print("run fun")  #constant time

Solution: Here, the print statements will execute n times in the first loop and n2 times for 

the second nested loop. Here, the total time required is defined as the following:

T(n) = constant time (c1) * n + c2*n*n

c1 n + c2 n2 = O(n2)

5.	 Find the time complexity of the following Python snippet:

if  n == 0:     #constant time

    print("data")

else: 

    for i in range(n):    #loop run for n times 

      print("structure")

Solution: O(n). Here, the worst-case runtime complexity will be the time required for the 

execution of all the statements; that is, the time required for the execution of the if-else 

conditions, and the for loop. The time required is defined as the following:

T(n) = c1  + c2 n = O(n)
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6.	 Find the time complexity of the following Python snippet:

i = 1

j = 0

while i*i < n: 

    j = j +1 

    i = i+1 

    print("data")

Solution: O(√𝑛𝑛 ). The loop will terminate based on the value of i; the loop will iterate 

based on the condition:𝑖𝑖2 ≤ 𝑛𝑛 

T(n) = O(√𝑛𝑛 )

7.	 Find the time complexity of the following Python snippet:

i = 0

for i in range(int(n/2), n):

    j = 1

    while j+n/2 <= n:

    k = 1

         while k < n:

         k *= 2

         print("data")

         j += 1

Solution: Here, the outer loop will execute n/2 times, the middle loop will also run n/2 

times, and the innermost loop will run for log(n) time. So, the total running time com-

plexity will be O(n*n*logn):

O(n2logn)

Summary
In this chapter, we have looked at an overview of algorithm design. The study of algorithms is 

important because it trains us to think very specifically about certain problems. It is conducive to 

increasing our problem-solving abilities by isolating the components of a problem and defining 

the relationships between them. In this chapter, we discussed different methods for analyzing 

algorithms and comparing algorithms. We also discussed asymptotic notations, namely: Big Ο, 
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Ω, and θ notation. 

In the next chapter, we will discuss algorithm design techniques and strategies.

Exercises
1.	 Find the time complexity of the following Python snippets:

a.	

i=1

while(i<n):

    i*=2

    print("data")

b.	

i =n

while(i>0):

    print('complexity')

    i/ = 2

c.	

for i in range(1,n):

    j = i

    while(j<n):

        j*=2

d.	

i=1

while(i<n):

    print('python')

        i = i**2
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3
Algorithm Design Techniques 
and Strategies

In the field of computing, algorithm design is very important for IT professionals for improv-

ing their skills and enabling growth in the industry. The algorithm design process starts with 

a substantial number of real-world computing problems, which must be clearly formulated for 

efficiently building the solution using one of the possible techniques from the range of algorithm 

design techniques available. The world of algorithms contains a plethora of techniques and design 

principles, mastery of which is required to tackle more difficult problems in the field. Algorithm 

designs are important in computer science, in general, to efficiently design the solution for a pre-

cisely formulated problem since a very sophisticated and complex problem can easily be solved 

with an appropriate algorithm design technique.

In this chapter, we will discuss the ways in which different kinds of algorithms can be categorized. 

Design techniques will be described and illustrated, and we will further discuss the analysis of 

algorithms. Finally, we will provide detailed implementations for a few very important algorithms.

In this chapter, we will look at the following algorithm design techniques:

•	 Divide and conquer

•	 Dynamic programming

•	 Greedy algorithms
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Algorithm design techniques
Algorithm design is a powerful tool for viewing and clearly understanding well-posed, real-world 

problems. A straightforward, or brute-force, approach is available that is very simple, yet effective, 

for many problems. The brute-force approach is trying all possible combinations of solutions 

in order to solve any problem. For example, suppose a salesperson has to visit 10 cities across 

the country. In which order should the cities be visited in order to minimize the total distance 

traveled? The brute-force approach to this problem will be to calculate the total distance for all 

possible combinations of routes, and then select the route that provides the smallest distance.

As you might guess, the brute-force algorithm is not efficient.

It can provide useful solutions for limited input sizes, but it becomes very inefficient when the 

input size becomes large. Therefore, we will break the process down into two fundamental com-

ponents for finding the optimal solution for a computing problem:

1.	 Formulate the problem clearly

2.	 Identify the appropriate algorithm design technique based on the structure of the problem 

for an efficient solution

That is why the study of algorithm design becomes very important when developing scalable 

and robust systems. Design and analysis are important in the first instance because they assist in 

developing algorithms that are organized and easy to understand. Design technique guidelines 

also help in developing new algorithms easily for complex problems. Moreover, design techniques 

can also be used to categorize the algorithms and this also helps to understand them better. There 

are several algorithm paradigms as follows:

•	 Recursion

•	 Divide and conquer

•	 Dynamic programming

•	 Greedy algorithms

Since we will be using recursion many times while discussing different algorithm design tech-

niques, let us first understand the concept of recursion, and thereafter, we will discuss different 

algorithm design techniques.
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Recursion
A recursive algorithm calls itself repeatedly in order to solve the problem until a certain condition 

is fulfilled. Each recursive call itself spins off other recursive calls. A recursive function can be in 

an infinite loop; therefore, it is required that each recursive function adheres to certain properties. 

At the core of a recursive function are two types of cases:

1.	 Base cases: These tell the recursion when to terminate, meaning the recursion will be 

stopped once the base condition is met

2.	 Recursive cases: The function calls itself recursively, and we progress toward achieving 

the base criteria

A simple problem that naturally lends itself to a recursive solution is calculating factorials. The 

recursive factorial algorithm defines two cases: the base case when n is zero (the terminating 

condition) and the recursive case when n is greater than zero (the call of the function itself). A 

typical implementation is as follows:

def factorial(n):

    # test for a base case

    if n == 0:

        return 1

    else:

    # make a calculation and a recursive call

        return n*factorial(n-1) 

print(factorial(4))

This produces the following output:

24

To calculate the factorial of 4, we require four recursive calls, plus the initial parent call, as can be 

seen in Figure 3.1. The details of how these recursive calls work is as follows. Initially, the number 

4 is passed to the factorial function, which will return the value 4 multiplied by the factorial of (4-

1=3). For this, the number 3 is again passed to the factorial function, which will return the value 

3 multiplied by the factorial of (3-1=2). Similarly, in the next iteration, the value 2 is multiplied 

by the factorial of (2-1 =1). 
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This continues until we reach the factorial of 0, which returns 1. Now, each function returns the 

value to finally compute 1*1*2*3*4=24, which is the final output of the function.

Figure 3.1: The flow of execution of the factorial 4

We discussed the concept of recursion, which will be very useful in understanding the implemen-

tation of different algorithm paradigms. So, now let us move on to the distinct algorithm design 

strategies in turn, starting with the divide-and-conquer technique in the next section.

Divide and conquer
One of the important and effective techniques for solving a complex problem is divide and conquer. 

The divide-and-conquer paradigm divides a problem into smaller sub-problems, and then solves 

these; finally, it combines the results to obtain a global, optimal solution. More specifically, in 

divide-and-conquer design, the problem is divided into two smaller sub-problems, with each of 

them being solved recursively. The partial solutions are merged to obtain a final solution. This is 

a very common problem-solving technique, and is, arguably, the most commonly used approach 

in algorithm design.

Some examples of the divide-and-conquer design technique are as follows:

•	 Binary search

•	 Merge sort

•	 Quick sort

•	 Algorithm for fast multiplication

•	 Strassen’s matrix multiplication

•	 Closest pair of points
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Let’s have a look at two examples, the binary search and merge sort algorithms, to understand 

how the divide-and-conquer design technique works.

Binary search
The binary search algorithm is based on the divide-and-conquer design technique. This algorithm 

is used to find a given element from a sorted list of elements. It first compares the search element 

with the middle element of the list; if the search element is smaller than the middle element, then 

the half of the list of elements greater than the middle element is discarded; the process repeats 

recursively until the search element is found or we reach the end of the list. It is important to note 

that in each iteration, half of the search space is discarded, which improves the performance of 

the overall algorithm because there are fewer elements to search through.

Take the example shown in Figure 3.2; let’s say we want to search for element 4 in the given sorted 

list of elements. The list is divided in half in each iteration; with the divide-and-conquer strategy, 

the element is searched O(logn) times.

Figure 3.2: The process of searching for an element using a binary search algorithm

The Python code for searching for an element in a sorted list of elements is shown here:

def binary_search(arr, start, end, key):

    while start <= end:  

        mid = start + (end - start)/2

        if arr[mid] == key:  
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            return mid  

        elif arr[mid] < key:  

            start = mid + 1  

        else:  

            end = mid - 1  

    return -1  

arr = [4, 6, 9, 13, 14, 18, 21, 24, 38] 

x = 13

result = binary_search(arr, 0, len(arr)-1, x)  

print(result)

When we search for 13 in the given list of elements, the output of the preceding code is 3, which 

is the position of the searched item.

In the code, initially, the start and end index give the position of the first and last index of the 

input array [4, 6, 9, 13, 14, 18, 21, 24, 38]. The item to be searched that is stored in the 

variable key is firstly matched with the mid element of the array, and then we discard half of the 

list and search for the item in another half of the list. The process is iterated until we find the item 

to be searched, or we reach the end of the list, and we don’t find the element.

When analyzing the workings of the binary search algorithm in the worst case, we can see that 

for a given array of 8 elements, following the first unsuccessful attempt, the list is halved, and 

then again for an unsuccessful search attempt, the list is of length 2, and finally, only 1 element 

is left. So, the binary search requires 4 searches. If the size of the list is doubled, in other words, 

to 16, following the first unsuccessful search, we will have a list of size 8, and that will take a 

total of 4 searches. Therefore, the binary search algorithm will require 5 searches for a list of 16 

items. Thus, we can observe that when we double the number of items in the list, the number 

of searches required also increments by 1. We can say this as when we have a list of length n, the 

total number of searches required will be the number of times we repeated halving the list until 

we are left with 1 element plus 1, which is mathematically equivalent to (log2 n + 1). For example, 

if n=8, the output will be 3, meaning the number of searches required will be 4. The list is divided 

in half in each iteration; with the divide-and-conquer strategy, the worst-case time complexity 

of the binary search algorithm is O(log n).

Merge sort is another popular algorithm that is based on the divide-and-conquer design strategy. 

We will be discussing merge sort in more detail in the next section.
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Merge sort
Merge sort is an algorithm for sorting a list of n natural numbers in increasing order. Firstly, the 

given list of elements is divided iteratively into equal parts until each sublist contains one element, 

and then these sublist are combined to create a new list in a sorted order. This programming 

approach to problem-solving is based on the divide-and-conquer methodology and emphasizes 

the need to break down a problem into smaller sub-problems of the same type or form as the 

original problem. These sub-problems are solved separately and then results are combined to 

obtain the solution of the original problem.

In this case, given a list of unsorted elements, we split the list into two approximate halves. We 

continue to divide the list into halves recursively. 

After a while, the sublist created as a result of the recursive call will contain only one element. At 

that point, we begin to merge the solutions in the conquer or merge step. This process is shown 

in Figure 3.3:

Figure 3.3: Overview of the merge sort algorithm
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The implementation of the merge sort algorithm is implemented using primarily two methods, 

namely, the merge_sort method, which recursively divides the list. Afterward, we will introduce 

the merge method to combine the results:

def merge_sort(unsorted_list): 
    if len(unsorted_list) == 1: 
        return unsorted_list
    mid_point = int(len(unsorted_list)/2)
    first_half = unsorted_list[:mid_point] 
    second_half = unsorted_list[mid_point:] 

    half_a = merge_sort(first_half) 
    half_b = merge_sort(second_half) 

    return merge(half_a, half_b) 

The implementation starts by accepting the list of unsorted elements into the merge_sort func-

tion. The if statement is used to establish the base case, where, if there is only one element in 

the unsorted_list, we simply return that list again. If there is more than one element in the list, 

we find the approximate middle using mid_point = len(unsorted_list)//2.

Using this mid_point, we divide the list into two sublists, namely, first_half and second_half:

    first_half = unsorted_list[:mid_point] 

    second_half = unsorted_list[mid_point:] 

A recursive call is made by passing the two sublist to the merge_sort function again:

    half_a = merge_sort(first_half)

    half_b = merge_sort(second_half)

Now, for the merge step, half_a and half_b are sorted. When half_a and half_b have passed 

their values, we call the merge function, which will merge or combine the two solutions stored 

in half_a and half_b, which are lists:

def merge(first_sublist, second_sublist): 

    i = j = 0

    merged_list = []

    while i < len(first_sublist) and j < len(second_sublist):
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        if first_sublist[i] < second_sublist[j]:

            merged_list.append(first_sublist[i]) 

            i += 1 

        else:

            merged_list.append(second_sublist[j]) 

            j += 1

    while i < len(first_sublist): 

        merged_list.append(first_sublist[i]) 

        i += 1 

    while j < len(second_sublist):

        merged_list.append(second_sublist[j]) 

        j += 1

    return merged_list 

The merge function takes the two lists we want to merge, first_sublist and second_sublist. 

The i and j variables are initialized to 0 and are used as pointers to tell us where we are in the 

two lists with respect to the merging process. 

The final merged_list will contain the merged list.

The while loop starts comparing the elements in first_sublist and second_sublist:

    while i < len(first_sublist) and j < len(second_sublist): 

        if first_sublist[i] < second_sublist[j]: 

            merged_list.append(first_sublist[i]) 

            i += 1 

        else: 

            merged_list.append(second_sublist[j]) 

            j += 1 

The if statement selects the smaller of the two, first_sublist[i] or second_sublist[j], and 

appends it to merged_list. The i or j index is incremented to reflect where we are with the 

merging step. The while loop stops when either sublist is empty.
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There may be elements left behind in either first_sublist or second_sublist. The last two 

while loops make sure that those elements are added to merged_list before it is returned. The 

last call to merge(half_a, half_b) will return the sorted list. The following code shows how to 

pass an array to sort the elements using merge sort:

a= [11, 12, 7, 41, 61, 13, 16, 14] 

print(merge_sort(a))

The output will be:

[7, 11, 12, 14, 16, 41, 61]

Let’s give the algorithm a dry run by merging the two sublists [4, 6, 8] and [5, 7, 11, 40], 

shown in Table 3.1. In this example, initially, the two sorted sublists are given, and then the, 

first elements are matched, and since the first element of the first list is smaller, it is moved to 

merge_list. Next, in step 2, again, the starting elements from both of the lists are matched, and 

the smaller element, which is from the second list, is moved to merge_list. The same process is 

repeated until one of the lists becomes empty.

Step first_sublist second_sublist merged_list

0 [4 6 8] [5 7 11 40] []

1 [ 6 8] [5 7 11 40] [4]

2 [ 6 8] [ 7 11 40] [4 5]

3 [ 8] [ 7 11 40] [4 5 6]

4 [ 8] [ 11 40] [4 5 6 7]

5 [ ] [ 11 40] [4 5 6 7 8]

6 [] [ ] [4 5 6 7 8 11 40]

Table 3.1: Example of merging two lists

This process can also be seen in Figure 3.4:
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Figure 3.4: The process of merging the two sublists
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After one of the lists becomes empty, like after step 4 in this example, at this point in the execu-

tion, the third while loop in the merge function kicks in to move 11 and 40 into merged_list. The 

returned merged_list will contain the fully sorted list.

The worst-case running time complexity of the merge sort will depend on the following steps:

1.	 Firstly, the divide step will take a constant time since it just computes the midpoint, which 

can be done in O(1) time

2.	 Then, in each iteration, we divide the list into half recursively, which will take O(log n), 

which is quite similar to what we have seen in the binary search algorithm

3.	 Further, the combine/merge step merges all the n elements into the original array, which 

will take (n) time.

Hence, the merge sort algorithm has a runtime complexity of O(log n) T(n) = O(n) * O(log n) = 

O(n log n).

We have discussed the divide-and-conquer algorithm design technique with the help of a few 

examples. In the next section, we will discuss another algorithm design technique: dynamic 

programming.

Dynamic programming
Dynamic programming is the most powerful design technique for solving optimization problems. 

Such problems generally have many possible solutions. The basic idea of dynamic programming is 

based on the intuition of the divide-and-conquer technique. Here, essentially, we explore the space 

of all the possible solutions by decomposing the problem into a series of sub-problems and then 

combining the results to compute the correct solution for the large problem. The divide-and-con-

quer algorithm is used to solve a problem by combining the solutions of the non-overlapping 

(disjoint) sub-problems, whereas dynamic programming is used when the sub-problems are 

overlapping, meaning that the sub-problems share sub-sub-problems. The dynamic program-

ming technique is similar to divide and conquer in that a problem is broken down into smaller 

problems. However, in divide and conquer, each sub-problem has to be solved before its results 

can be used to solve bigger problems. In contrast, dynamic programming-based techniques solve 

each sub-sub-problems only once and do not recompute the solution to an already-encountered 

sub-problem. Rather, it uses a remembering technique to avoid the re-computation.
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Dynamic programming problems have two important characteristics:

•	 Optimal substructure: Given any problem, if the solution can be obtained by combining 

the solutions of its sub-problems, then the problem is said to have an optimal substructure. 

In other words, an optimal substructure means that the optimal solution of the problem 

can be obtained from the optimal solution of its sub-problems. For example, the ith Fibo-

nacci number from its series can be computed from (i-1)th and (i-2)th Fibonacci numbers; 

for example, fib(6) can be computed from fib(5) and fib(4).

•	 Overlapping sub-problem: If an algorithm has to repeatedly solve the same sub-problem 

again and again, then the problem has overlapping sub-problems. For example, fib(5) will 

have multiple time computations for fib(3) and fib(2).

If a problem has these characteristics, then the dynamic programming approach is useful, since 

the implementation can be improved by reusing the same solution computed before. In a dynamic 

programming strategy, the problem is broken down into independent sub-problems, and the 

intermediate results are cached, which can then be used in subsequent operations.

In the dynamic approach, we divide a given problem into smaller sub-problems. In recursion 

also, we divide the problem into sub-problems. However, the difference between recursion and 

dynamic programming is that similar sub-problems can be solved any number of times, but in 

dynamic programming, we keep track of previously solved sub-problems, and care is taken not to 

recompute any of the previously encountered sub-problems. One property that makes a problem 

an ideal candidate for being solved with dynamic programming is that it has an overlapping 

set of sub-problems. Once we realize that the form of sub-problems has repeated itself during 

computation, we need not compute it again. Instead, we return a pre computed result for that 

previously encountered sub-problem.

Dynamic programming takes account of the fact that each sub-problem should be solved only 

once, and to ensure that we never re-evaluate a sub-problem, we need an efficient way to store 

the results of each sub-problem. The following two techniques are readily available:

•	 Top-down with memoization: This technique starts from the initial problem set and di-

vides it into small sub-problems. After the solution to a sub-program has been determined, 

we store the result of that particular sub-problem. In the future, when this sub-problem is 

encountered, we only return its pre computed result. Therefore, if the solution to a given 

problem can be formulated recursively using the solution of the sub-problems, then the 

solution of the overlapping sub-problems can easily be memoized. 
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Memoization means storing the solution of the sub-problem in an array or hash table. 

Whenever a solution to a sub-problem needs to be computed, it is first referred to the 

saved values if it is already computed, and if it is not stored, then it is computed in the 

usual manner. This procedure is called memoized, which means it “remembers” the results 

of the operation that has been computed before.

•	 Bottom-up approach: This approach depends upon the “size” of the sub-problems. We 

solve the smaller sub-problems first, and then while solving a particular sub-problem, we 

already have a solution of the smaller sub-problems on which it depends. Each sub-prob-

lem is solved only once, and whenever we try to solve any sub-problem, solutions to all 

the prerequisite smaller sub-problems are available, which can be used to solve it. In this 

approach, a given problem is solved by dividing it into sub-problems recursively, with 

the smallest possible sub-problems then being solved. Furthermore, the solutions to the 

sub-problems are combined in a bottom-up fashion to arrive at the solution to the bigger 

sub-problem in order to recursively reach the final solution.

Let’s consider an example to understand how dynamic programming works. Let us solve the 

problem of the Fibonacci series using dynamic programming.

Calculating the Fibonacci series
The Fibonacci series can be demonstrated using a recurrence relation. Recurrence relations are 

recursive functions that are used to define mathematical functions or sequences. For example, 

the following recurrence relation defines the Fibonacci sequence [1, 1, 2, 3, 5, 8 ...]:

func(0) = 1 

func(1) = 1  

func(n) = func(n-1) + func(n-2) for n>1

Note that the Fibonacci sequence can be generated by putting the values of n in sequence [0, 1, 

2, 3, 4, ...]. Let’s take an example to generate the Fibonacci series to the fifth term: 

    1 1 2 3 5 

A recursive-style program to generate the sequence would be as follows:

def fib(n):   

     if n <= 1:   

        return 1   

     else:  

        return fib(n-1) + fib(n-2)  
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for i in range(5):

    print(fib(i))

This will produce output like the following:

1

1

2

3

5

In this code, we can see that the recursive calls are being called in order to solve the problem. 

When the base case is met, the fib() function returns 1. If n is equal to or less than 1, the base 

case is met. If the base case is not met, we call the fib() function again. The recursion tree to 

solve up to the fifth term in the Fibonacci sequence is shown in Figure 3.5:

Figure 3.5: Recursion tree for fib(5)

We can observe from the overlapping sub-problems from the recursion tree as shown in Figure 

3.6 that the call to fib(1) happens twice, the call to fib(2) happens three times, and the call to 

fib(3) occurs twice. The return values of the same function call never change; for example, the 

return value for fib(2) will always be the same whenever we call it. Likewise, it will also be the 

same for fib(1) and fib(3). So, they are overlapping problems, thus, computational time will be 

wasted if we compute the same function again whenever it is encountered. These repeated calls 

to a function with the same parameters and output suggest that there is an overlap. Certain 

computations reoccur down in the smaller sub-problem.
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Figure 3.6: Overlapping sub-problems shown in the recursion tree for fib(5)

In dynamic programming using the memoization technique, we store the results of the computa-

tion of fib(1) the first time it is encountered. Similarly, we store return values for fib(2) and fib(3). 

Later, whenever we encounter a call to fib(1), fib(2), or fib(3), we simply return their respective 

results. The recursive tree diagram is shown in Figure 3.7:

Figure 3.7: Recursion tree for fib(5) showing re-use of the already computed values

Thus, in dynamic programming, we have eliminated the need to compute fib(3), fib(2), and 

fib(1) if they are encountered multiple times. This is called the memoization technique, wherein 

there is no recomputation of overlapping calls to functions when breaking a problem down into 

its sub-problems.
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Hence, the overlapping function calls in our Fibonacci example are fib(1), fib(2), and fib(3). Below 

is the code for the dynamic programming-based implementation for the Fibonacci series.

def dyna_fib(n):

    if n == 0:

        return 0

    if n == 1:

        return 1  

    if lookup[n] is not None:

        return lookup[n]

  

    lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)

    return lookup[n]

lookup = [None]*(1000)

 

for i in range(6): 

    print(dyna_fib(i))

This will produce an output like the following:

0

1

1

2

3

5

In the dynamic implementation of the Fibonacci series, we store the results of previously solved 

sub-problems in a list (in other words, a lookup in this example code). We first check whether 

the Fibonacci of any number is already computed; if it is already computed, then we return the 

stored value from the lookup[n]. Otherwise, when we compute its value, it is done through the 

following code:

    if lookup[n] is not None:

        return lookup[n]
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After computing the solution of the sub-problem, it is again stored in the lookup list. The Fibonacci 

number of the given value is returned as shown in the following code snippet:

lookup[n] = dyna_fib(n-1) + dyna_fib(n-2)

Furthermore, in order to store a list of 1,000 elements, we create a list lookup using the dyna_fib 

function:

    lookup = [None]*(1000)

So, in dynamic programming-based solutions, we use the precomputed solutions in order to 

compute the final results.

Dynamic programming improves the running time complexity of the algorithm. In the recursive 

approach, for every value, two functions are called; for example, fib(5) calls fib(4) and fib(3), and 

then fib(4) calls fib(3) and fib(2), and so on. Thus, the time complexity for the recursive approach 

is O(2n), whereas, in the dynamic programming approach, we do not recompute the sub-prob-

lems, so for fib(n), we have n total values to be computed, in other words, fib(0), fib(1), fib(2)… 

fib(n). Thus, we only solve these values once, so the total running time complexity is O(n). Thus, 

dynamic programming in general improves performance.

In this section, we have discussed the dynamic programming design technique, and in the next 

section, we discuss the design techniques for greedy algorithms.

Greedy algorithms
Greedy algorithms often involve optimization and combinatorial problems. In greedy algorithms, 

the objective is to obtain the optimum solution from many possible solutions in each step. We 

try to get the local optimum solution, which may eventually lead us to obtain the global opti-

mum solution. The greedy strategy does not always produce the optimal solution. However, the 

sequence of locally optimal solutions generally approximates the globally optimal solution.

For example, consider that you are given some random digits, say 1, 4, 2, 6, 9, and 5. Now you 

have to make the biggest number by using all the digits without repeating any digit. To create the 

biggest number from the given digits using the greedy strategy, we perform the following steps. 

Firstly, we select the largest digit from the given digits, and then append it to the number and 

remove the digit from the list until we have no digits left in the list. Once all the digits have been 

used, we get the largest number that can be formed by using these digits: 965421. The stepwise 

solution to this problem is shown in Figure 3.8:
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Figure 3.8: Example of a greedy algorithm

Let us consider another example to better understand the greedy approach. Say you have to give 

29 Indian rupees to someone in the minimum number of notes, giving one note at a time, but 

never exceeding the owed amount. Assume that we have notes in denominations of 1, 2, 5, 10, 20, 

and 50. To solve this using the greedy approach, we will start by handing over the 20-rupee note, 

then for the remaining 9 rupees, we will give a 5-rupee note; for the remaining 4 rupees, we will 

give the 2-rupee note, and then another 2-rupee note.

In this approach, at each step, we chose the best possible solution and gave the largest available 

note. Assume that, for this example, we have to use the notes of 1, 14, and 25. Then, using the 

greedy approach, we will pick the 25-rupee note, and then four 1-rupee notes, which makes a 

total of 5 notes. However, this is not the minimum number of notes possible . The better solution 

would be to give notes of 14, 14, and 1. Thus, it is also clear that the greedy approach does not 

always give the best solution, but a feasible and simple one.
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The classic example is to apply the greedy algorithm to the traveling salesperson problem, where 

a greedy approach always chooses the closest destination first. In this problem, a greedy approach 

always chooses the closest unvisited city in relation to the current city; in this way, we are not 

sure that we will get the best solution, but we surely get an optimal solution. This shortest-path 

strategy involves finding the best solution to a local problem in the hope that this will lead to a 

global solution.

Listed here are many popular standard problems where we can use greedy algorithms to obtain 

the optimum solution:

•	 Kruskal’s minimum spanning tree

•	 Dijkstra’s shortest path problem

•	 The Knapsack problem

•	 Prim’s minimal spanning tree algorithm

•	 The traveling salesperson problem

Let us discuss one of the popular problems, in other words, the shortest path problem, which can 

be solved using the greedy approach, in the next section.

Shortest path problem
The shortest path problem requires us to find out the shortest possible route between nodes on a 

graph. Dijkstra’s algorithm is a very popular method for solving this using the greedy approach. 

The algorithm is used to find the shortest distance from a source to a destination node in a graph.

Dijkstra’s algorithm works for weighted directed and undirected graphs. The algorithm produces 

the output of a list of the shortest path from a given source node, A, in a weighted graph. The 

algorithm works as follows:

1.	 Initially, mark all the nodes as unvisited, and set their distance from the given source 

node to infinity (the source node is set to zero).

2.	 Set the source node as the current one.

3.	 For the current node, look for all the unvisited adjacent nodes, and compute the distance to 

that node from the source node through the current node. Compare the newly computed 

distance to the currently assigned distance, and if it is smaller, set this as the new value.

Once we have considered all the unvisited adjacent nodes of the current node, we mark it as visited.

If the destination node has been marked visited, or if the list of unvisited nodes is empty, meaning 

we have considered all the unvisited nodes, then the algorithm is finished.
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We next consider the next unvisited node that has the shortest distance from the source node. 

Repeat steps 2 to 6.

Consider the example in Figure 3.9 of a weighted graph with six nodes [A, B, C, D, E, and F] to 

understand how Dijkstra’s algorithm works.

Figure 3.9: Example weighted graph with six nodes

By manual inspection, the shortest path between nodes A and D, at first glance, seems to be the 

direct line with a distance of 9. However, the shortest route means the lowest total distance, even 

if this comprises several parts. By comparison, traveling from node A to E, then from E to F, and 

finally to D will incur a total distance of 7, making it a shorter route.

We would implement the shortest path algorithm with a single source. It would determine the 

shortest path from the origin, which in this case is A, to any other node in the graph. In Chapter 9, 

Graphs and Other Algorithms, we will discuss how to represent a graph with an adjacency list. We 

use an adjacency list along with the weight/cost/distance on every edge to represent the graph, 

as shown in the following Python code. The adjacency list for the diagram and table is as follows:

    graph = dict() 

    graph['A'] = {'B': 5, 'D': 9, 'E': 2} 

    graph['B'] = {'A': 5, 'C': 2} 

    graph['C'] = {'B': 2, 'D': 3} 

    graph['D'] = {'A': 9, 'F': 2, 'C': 3} 

    graph['E'] = {'A': 2, 'F': 3} 

    graph['F'] = {'E': 3, 'D': 2} 

We will return to the rest of the code after a visual demonstration, but don’t forget to declare the 

graph to ensure the code runs correctly. 
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The nested dictionary holds the distance and adjacent nodes. A table is used to keep track of the 

shortest distance from the source in the graph to any other node. Table 3.2 is the starting table:

Node Shortest distance from source Previous node

A 0 None

B ∞ None

C ∞ None

D ∞ None

E ∞ None

F ∞ None

Table 3.2: Initial table showing the shortest distance from the source

When the algorithm starts, the shortest distance from the given source node (A) to any of the 

nodes is unknown. Thus, we initially set the distance to all other nodes to infinity, with the ex-

ception of node A, as the distance from node A to node A is 0. No prior nodes have been visited 

when the algorithm begins. Therefore, we mark the previous node column of node A as None.

In step 1 of the algorithm, we start by examining the adjacent nodes to node A. To find the shortest 

distance from node A to node B, we need to find the distance from the start node to the previous 

node of node B, which happens to be A, and add it to the distance from node A to node B. We do 

this for the other adjacent nodes of A, these being B, E, and D. This is shown in Figure 3.10:

Figure 3.10: A sample graph for Dijkstra’s algorithm

Firstly, we take the adjacent node E as its distance from node A is the minimum; the distance from 

the start node (A) to the previous node (None) is 0, and the distance from the previous node to 

the current node (E) is 2. 
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This sum is compared with the data in the shortest distance column of node E (refer to Table 3.3). 

Since 2 is less than infinity (∞ ), we replace ∞  with the smaller of the two, in other words, 2. 

Similarly, the distance from node A to nodes B and D is compared with the existing shortest dis-

tance to these nodes from node A. Any time the shortest distance of a node is replaced by a smaller 

value, we need to update the previous node column for all the adjacent nodes of the current node.

After this, we mark node A as visited (represented in blue in Figure 3.11):

Figure 3.11: Shortest distance graph after visiting node A using Dijkstra’s algorithm

At the end of step 1, the table looks like that shown in Table 3.3, in which the shortest distance 

from node A to nodes B, D,and E are updated.

Node Shortest distance from source Previous node

A* 0 None

B 5 A

C ∞ None

D 9 A

E 2 A

F ∞ None

Table 3.3: Shortest distance table after visiting node A

At this point, node A is considered visited. As such, we add node A to the list of visited nodes. In 

the table, we show that node A has been visited by appending an asterisk sign to it. 
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In the second step, we find the node with the shortest distance using Table 3.3 as a guide. Node 

E, with its value of 2, has the shortest distance. To reach node E, we must visit node A and cover 

a distance of 2.

Now, the adjacent nodes of node E are nodes A and F. Since node A has already been visited, we will 

only consider node F. To find the shortest route or distance to node F, we must find the distance 

from the starting node to node E and add it to the distance between nodes E and F. We can find 

the distance from the starting node to node E by looking at the shortest distance column of node 

E, which has a value of 2. The distance from nodes E to F can be obtained from the adjacency list, 

which is 3. These two total 5, which is less than infinity. Remember that we are examining the 

adjacent node F. Since there are no more adjacent nodes to node E, we mark node E as visited. Our 

updated table and the figure will have the following values, shown in Table 3.4 and Figure 3.12:

Node Shortest distance from source Previous node

A* 0 None

B 5 A

C ∞ None

D 9 A

E* 2 A

F 5 E

Table 3.4: Shortest distance table after visiting node E

Figure 3.12: Shortest distance graph after visiting node E using Dijkstra’s algorithm
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After visiting node E, we find the smallest value in the Shortest distance column of Table 3.4, which 

is 5 for nodes B and F. Let us choose B instead of F for alphabetical reasons. The adjacent nodes of 

B are nodes A and C since node A has already been visited. Using the rule we established earlier, 

the shortest distance from A to C is 7, which is computed as the distance from the starting node 

to node B, which is 5, while the distance from node B to C is 2. Since 7 is less than infinity, we 

update the shortest distance to 7 and update the previous node column with node B in Table 3.4.

Now, B is also marked as visited (represented in blue in Figure 3.13).

Node Shortest distance from source Previous node

A* 0 None

B* 5 A

C 7 B

D 9 A

E* 2 A

F 5 E

Table 3.5: Shortest distance table after visiting node B

The new state of the table is as follows, in Table 3.5:

Figure 3.13: Shortest distance graph after visiting node B using Dijkstra’s algorithm
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The node with the shortest distance yet unvisited is node F. The adjacent nodes to F are nodes D 

and E. Since node E has already been visited, we will focus on node D. To find the shortest distance 

from the starting node to node D, we calculate this distance by adding the distance from nodes 

A to F to the distance from nodes F to D. This totals 7, which is less than 9. Thus, we update the 

9 with 7 and replace A with F in node D’s previous node column of Table 3.5.

Node F is now marked as visited (represented in blue in Figure 3.14).

Figure 3.14: Shortest distance graph after visiting node F using Dijkstra’s algorithm

Here is the updated table, as shown in Table 3.6:

Node Shortest distance from source Previous node

A* 0 None

B* 5 A

C 7 B

D 7 F

E* 2 A

F* 5 E

Table 3.6: Shortest distance table after visiting node F

Now, only two unvisited nodes are left, C and D, both with a distance cost of 7. In alphabetical 

order, we choose to consider node C because both nodes have the same shortest distance from 

the starting node A.
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However, all the adjacent nodes to C have been visited (represented in blue in Figure 3.15). Thus, 

we have nothing to do but mark node C as visited. The table remains unchanged at this point.

Figure 3.15: Shortest distance graph after visiting node C using Dijkstra’s algorithm

Lastly, we take node D and find out that all its adjacent nodes have been visited too. We only mark 

it as visited (represented in blue in Figure 3.16).

Figure 3.16: Shortest distance graph after visiting node D using Dijkstra’s algorithm
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The table remains unchanged, as shown in Table 3.7:

Node Shortest distance from source Previous node

A* 0 None

B* 5 A

C* 7 B

D* 7 F

E* 2 A

F* 5 E

Table 3.7: Shortest distance table after visiting node F

Let’s verify Table 3.7 with our initial graph. From the graph, we know that the shortest distance 

from A to F is 5.

According to the table, the shortest distance from the source column for node F is 5. This is true. 

It also tells us that to get to node F, we need to visit node E, and from E to node A, which is our 

starting node. This is actually the shortest path from node A to node F.

Now, we will discuss the Python implementation of Dijkstra’s algorithm to find the shortest path. 

We begin the program for finding the shortest distance by representing the table that enables us 

to track the changes in the graph. For the initial Figure 3.8 that we used, here is a dictionary rep-

resentation of the table to accompany the graph representation we showed earlier in the section:

    table = { 

    'A': [0, None], 

    'B': [float("inf"), None], 

    'C': [float("inf"), None], 

    'D': [float("inf"), None], 

    'E': [float("inf"), None], 

    'F': [float("inf"), None], 

}

The initial state of the table uses float("inf") to represent infinity. Each key in the dictionary 

maps to a list. At the first index of the list, the shortest distance from the source, node A is stored. 

At the second index, the previous node is stored:

DISTANCE = 0 

PREVIOUS_NODE = 1 

INFINITY = float('inf') 
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Here, the shortest path’s column index is referenced by DISTANCE. The previous node column’s 

index is referenced by PREVIOUS_NODE.

Firstly, we discuss the helper methods that we will be using while implementing the main func-

tion to find the shortest path, in other words, find_shortest_path. The first helper method is 

get_shortest_distance, which returns the shortest distance of a node from the source node: 

def get_shortest_distance(table, vertex): 

    shortest_distance = table[vertex][DISTANCE] 

    return shortest_distance 

The get_shortest_distance function returns the value stored in index 0 of the table. At that index, 

we always store the shortest distance from the starting node up to vertex. The set_shortest_

distance function only sets this value as follows:

def set_shortest_distance(table, vertex, new_distance): 

    table[vertex][DISTANCE] = new_distance 

When we update the shortest distance of a node, we update its previous node using the following 

method:

def set_previous_node(table, vertex, previous_node): 

    table[vertex][PREVIOUS_NODE] = previous_node 

Remember that the PREVIOUS_NODE constant equals 1. In the table, we store the value of previous_

node at table[vertex][PREVIOUS_NODE]. To find the distance between any two nodes, we use 

the get_distance function:

def get_distance(graph, first_vertex, second_vertex): 

    return graph[first_vertex][second_vertex] 

The last helper method is the get_next_node function:

    def get_next_node(table, visited_nodes): 

        unvisited_nodes = list(set(table.keys()).difference(set(visited_
nodes))) 

        assumed_min = table[unvisited_nodes[0]][DISTANCE] 

        min_vertex = unvisited_nodes[0] 

        for node in unvisited_nodes: 

            if table[node][DISTANCE] < assumed_min: 

                assumed_min = table[node][DISTANCE] 

                min_vertex = node 
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        return min_vertex 

The get_next_node function resembles a function to find the smallest item in a list. The function 

starts off by finding the unvisited nodes in our table by using visited_nodes to obtain the differ-

ence between the two sets of lists. The very first item in the list of unvisited_nodes is assumed 

to be the smallest in the shortest distance column of table.

If a lesser value is found while the for loop runs, min_vertex will be updated. The function then 

returns min_vertex as the unvisited vertex or node with the smallest shortest distance from the 

source.

Now all is set up for the main function of the algorithm, in other words, find_shortest_path, 

as shown here: 

def find_shortest_path(graph, table, origin): 

    visited_nodes = [] 

    current_node = origin 

    starting_node = origin 

    while True: 

        adjacent_nodes = graph[current_node] 

        if set(adjacent_nodes).issubset(set(visited_nodes)): 

            # Nothing here to do. All adjacent nodes have been visited. 

            pass 

        else: 

            unvisited_nodes = 

                set(adjacent_nodes).difference(set(visited_nodes)) 

            for vertex in unvisited_nodes: 

                distance_from_starting_node = 

                    get_shortest_distance(table, vertex) 

                if distance_from_starting_node == INFINITY and 

                   current_node == starting_node: 

                    total_distance = get_distance(graph, vertex, 

                                                  current_node) 

                else: 

                    total_distance = get_shortest_distance (table, 
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                    current_node) + get_distance(graph, current_node, 

                                                 vertex) 

                if total_distance < distance_from_starting_node: 

                    set_shortest_distance(table, vertex, 

                                          total_distance) 

                    set_previous_node(table, vertex, current_node) 

        visited_nodes.append(current_node)

        #print(visited_nodes)

        if len(visited_nodes) == len(table.keys()): 

            break 

        current_node = get_next_node(table,visited_nodes) 

      return (table)

In the preceding code, the function takes the graph, represented by the adjacency list, the table, 

and the starting node as input parameters. We keep the list of visited nodes in the visited_nodes 

list. The current_node and starting_node variables both point to the node in the graph that 

we choose to make our starting node. The origin value is the reference point for all other nodes 

with respect to finding the shortest path.

The main process of the function is implemented by the while loop. Let’s break down what the 

while loop is doing. In the body of the while loop, we consider the current node in the graph 

that we want to investigate and initially get all the adjacent nodes of the current node with 

adjacent_nodes = graph[current_node]. The if statement is used to find out whether all the 

adjacent nodes of current_node have been visited.

When the while loop is executed for the first time, current_node will contain node A and adjacent_

nodes will contain nodes B, D, and E. Furthermore, visited_nodes will be empty. If all nodes 

have been visited, we only move on to the statements further down the program, otherwise, we 

begin a whole new step.

The set(adjacent_nodes).difference(set(visited_nodes)) statement returns the nodes that 

have not been visited. The loop iterates over this list of unvisited nodes:

    distance_from_starting_node = get_shortest_distance(table, vertex) 
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The get_shortest_distance(table, vertex) helper method will return the value stored in the 

shortest distance column of our table, using one of the unvisited nodes referenced by vertex:

    if distance_from_starting_node == INFINITY and current_node == 
starting_node: 

         total_distance = get_distance(graph, vertex, current_node) 

When we are examining the adjacent nodes of the starting node, distance_from_starting_node 

== INFINITY and current_node == starting_node will evaluate to True, in which case we 

only have to find the distance between the starting node and vertex by referencing the graph:

    total_distance = get_distance(graph, vertex, current_node)

The get_distance method is another helper method we use to obtain the value (distance) of the 

edge between vertex and current_node. If the condition fails, then we assign to total_distance 

the sum of the distance from the starting node to current_node and the distance between current_

node and vertex.

Once we have our total distance, we need to check whether total_distance is less than the 

existing data in the shortest distance column of our table. If it is less, then we use the two helper 

methods to update that row:

    if total_distance < distance_from_starting_node: 

        set_shortest_distance(table, vertex, total_distance)

        set_previous_node(table, vertex, current_node)

At this point, we add current_node to the list of visited nodes:

    visited_nodes.append(current_node) 

If all nodes have been visited, then we must exit the while loop. To check whether this is the case, 

we compare the length of the visited_nodes list with the number of keys in our table. If they 

have become equal, we simply exit the while loop.

The get_next_node helper method is used to fetch the next node to visit. It is this method that 

helps us find the minimum value in the shortest distance column from the starting nodes using 

our table. The whole method ends by returning the updated table. To print the table, we use the 

following statements:

shortest_distance_table = find_shortest_path(graph, table, 'A') 

for k in sorted(shortest_distance_table): 

     print("{} - {}".format(k,shortest_distance_table[k])) 
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This is the output for the preceding code snippet:

A - [0, None]

B - [5, 'A']

C - [7, 'B']

D - [7, 'F']

E - [2, 'A']

F - [5, 'E']

The running time complexity of Dijkstra’s algorithm depends on how the vertices are stored and 

retrieved. Generally, the min-priority queue is used to store the vertices of the graph, thus, the 

time complexity of Dijkstra’s algorithm depends on how the min-priority queue is implemented.

In the first case, the vertices are stored numbered from 1 to |V| in an array. Here, each operation 

for searching a vertex from the entire array will take O(V) time, making the total time complexity  

O(V2 V2 + E) = O(V2). Furthermore, if the min-priority queue is implemented using the Fibonacci 

heap, the time taken for each iteration of the loop and extracting the minimum node will take 

O(|V|) time. Further, iterating over all the vertices’ adjacent nodes and updating the shortest 

distance takes O(|E|) time, and each priority value update takes O(log|V|) time, which makes 

O(|E| + log|V|). Thus, the total running time complexity of the algorithm becomes O(|E| + |V|log 

|V|), where |V| is the number of vertices and |E| is the number of edges.

Summary
Algorithm design techniques are very important in order to formulate, understand, and develop 

an optimal solution to a complex problem. In this chapter, we have discussed algorithm design 

techniques, which are very important in the field of computer science. Important categories of 

algorithm design, such as dynamic programming, greedy approach, and divide and conquer, we 

discussed in detail along with implementations of important algorithms.

The dynamic programming and divide-and-conquer techniques are quite similar in the sense 

that both solve a bigger problem by combining the solutions of the sub-problems. Here, the 

divide-and-conquer technique partitions the problem into disjointed sub-problems, solving 

them recursively, and then combines the solutions of the sub-problems to obtain the solution 

of the original problem, whereas, in dynamic programming, this technique is employed when 

sub-problems overlap, and recomputation of the same sub-problem is avoided. Furthermore, in 

the greedy approach-based algorithm design technique, at each step in the algorithm, the best 

choice is taken that looks likely to attain the solution.
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In the next chapter, we will be discussing important data structures such as Linked Lists and 

Pointer Structures.

Exercises
1.	 Which of the following options will be correct when a top-down approach of dynamic pro-

gramming will be applied to solve a given problem related to the space and time complexity?

a.	 It will increase both time and space complexity.  

b.	 It will increase the time complexity, and decrease the space complexity  

c.	 It will increase the space complexity, and decrease the time complexity  

d.	 It will decrease both time and space complexities.

2.	 Dijkstra’s single shortest path algorithm is applied on edge weighted directed graph 

shown in Figure 3.17. What will be the order of the nodes for the shortest path distance 

path (Assume A as source) ? 

Figure 3.17: An edge-weighted directed graph

3.	 Consider the weights and values of the items listed in Table 3.8. Note that there is only 

one unit of each item.

Item Weight Value

A 2 10

B 10 8

C 4 5

D 7 6

Table 3.8: The weights and values of different items

We need to maximize the value; the maximum weight should be 11 kg. No item may be 

split. Establish the values of the items using a greedy approach.
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4
Linked Lists

Python’s list implementation is quite powerful and can encompass several different use cases. 

We have discussed the built-in data structures of lists in Python in Chapter 1, Python Data Types 

and Structures. Most of the time, Python’s built-in implementation of a list data structure is used 

to store data using a linked list. In this chapter, we will understand how linked lists work along 

with their internals.

A linked list is a data structure where the data elements are stored in a linear order. Linked lists 

provide efficient storage of data in linear order through pointer structures. Pointers are used to 

store the memory address of data items. They store the data and location, and the location stores 

the position of the next data item in the memory.

The focus of this chapter will be the following:

•	 Arrays

•	 Introducing linked lists

•	 Singly linked lists

•	 Doubly linked lists

•	 Circular lists

•	 Practical applications of linked lists

Before discussing linked lists, let us first discuss an array, which is one of the most elementary 

data structures.
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Arrays
An array is a collection of data items of the same type, whereas a linked list is a collection of the 

same data type stored sequentially and connected through pointers. In the case of lists, the data 

elements are stored in different memory locations, whereas the array elements are stored in 

contiguous memory locations.

An array stores the data of the same data type and each data element in the array is stored in 

contiguous memory locations. Storing multiple data values of the same type makes it easier and 

faster to compute the position of any element in the array using offset and base address. The term 

base address refers to the address of memory location where the first element is stored, and offset 

refers to an integer indicating the displacement between the first element and a given element.

Figure 4.1 demonstrates an array holding a sequence of seven integer values that are stored 

sequentially in contiguous memory locations. The first element (data value 3) is stored at index 

0, the second element at index position 1, and so on.

Figure 4.1: Representation of a one-dimensional array

To store, traverse, and access array elements is very fast as compared to lists since elements can be 

accessed randomly using their index positions, whereas in the case of a linked list, the elements 

are accessed sequentially. Therefore, if the data to be stored in the array is large and the system 

has low memory, the array data structure will not be a good choice to store the data because it is 

difficult to allot a large block of memory locations. The array data structure has further limitations 

in that it has a static size that has to be declared at the time of creation.

In addition, the insertion and deletion operations in array data structures are slow as compared to 

linked lists. This is because it is difficult to insert an element in an array at a given location since 

all data elements after that desired position must be shifted and then new elements inserted in 

between. Thus, array data structures are suitable when we want to do a lot of accessing of elements 

and fewer insertion and deletion operations, whereas linked lists are suitable in applications 

where the size of the list is not fixed, and a lot of insertion and deletion operations will be required.
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Introducing linked lists
The linked list is an important and popular data structure with the following properties:

1.	 The data elements are stored in memory in different locations that are connected through 

pointers. A pointer is an object that can store the memory address of a variable, and each 

data element points to the next data element and so on until the last element, which 

points to None.

2.	 The length of the list can increase or decrease during the execution of the program.

Contrary to arrays, linked lists store data items sequentially in different locations in memory, 

wherein each data item is stored separately and linked to other data items using pointers. Each 

of these data items is called a node. More specifically, a node stores the actual data and a pointer. 

In Figure 4.2, nodes A and B store the data independently, and node A is connected to node B.

Figure 4.2: A linked list with two nodes

Moreover, the nodes can have links to other nodes based differently on how we want to store the 

data, and on which basis we will learn various kinds of data structures, such as singular linked 

lists, doubly linked lists, circular link lists, and trees.

Nodes and pointers
A node is a key component of several data structures such as linked lists. A node is a container of 

data, together with one or more links to other nodes where a link is a pointer.

To begin with, let us consider an example of creating a linked list of two nodes that contains 

data (for example, strings). For this, we first declare the variable that stores the data along with 

pointers that point to the next variable. Consider the example in the following Figure 4.3, in 

which there are two nodes. The first node has a pointer to the string (eggs), and another node 

pointing to the ham string. 
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Furthermore, the first node that points to the eggs string has a link to another node. Pointers 

are used to store the address of a variable, and since the string is not actually stored in the node, 

rather, the address of the string is stored in the node.

Figure 4.3: A sample linked list of two nodes

Furthermore, we can also add a new third node to this existing linked list that stores spam as a 

data value, while a second node points to the third node, as shown in Figure 4.4. Hence, Figure 

4.3 demonstrates the structure of three nodes having data strings, in other words, eggs, ham, and 

spam, which are stored sequentially in a linked list.

Figure 4.4: A sample linked list of three nodes

So, we have created three nodes—one containing eggs, one ham, and another spam. The eggs 

node points to the ham node, which in turn points to the spam node. But what does the spam 

node point to? Since this is the last element in the list, we need to make sure its next member has 

a value that makes this clear. If we make the last element point to nothing, then we make this 

fact clear. In Python, we will use the special value None to denote nothing. Consider Figure 4.5. 

Node B is the last element in the list, and thus it is pointing to None.
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Figure 4.5: A linked list with two nodes

Let us first learn about the implementation of the node, as shown in the following code snippet:

class Node:

    def __init__ (self, data=None):

        self.data = data 

        self.next = None

Here, the next pointer is initialized to None, meaning that unless we change the value of next, 

the node is going to be an endpoint, meaning that initially, any node that is attached to the list 

will be independent.

You can also add any other data items to the node class if required. If your node is going to contain 

customer data, then create a Customer class and place all the data there.

There are three kinds of list—a singly linked list, a doubly linked list, and a circular linked list. 

First of all, let’s discuss singly linked lists.

We need to learn the following operations in order to use any linked lists in real-time applications.

•	 Traversing the list

•	 Inserting a data item in the list:

•	 Inserting a new data item (node) at the beginning

•	 Inserting a new data item (node) at the end of the list

•	 Inserting a new data item (node) in the middle/or at any given position in the list

•	 Deleting an item from the list:

•	 Deleting the first node

•	 Deleting the last node

•	 Deleting a node in the middle/or at any given position in the list
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We will be discussing these important operations on different types of linked lists in subsequent 

subsections, along with their implementations, using Python. Let us start with singly linked lists.

Singly linked lists
A linked list (also called a singly linked list) contains a number of nodes in which each node 

contains data and a pointer that links to the next node. The link of the last node in the list is 

None, which indicates the end of the list. Refer to the following linked list in Figure 4.6, in which 

a sequence of integers is stored.

Figure 4.6: An example of a singly linked list

Next, we discuss how to create a singly linked list, and how to traverse it.

Creating and traversing
In order to implement the singly linked list, we can use the node class that we created in the 

previous section. For example, we create three nodes, n1, n2, and n3, that store three strings:

n1 = Node('eggs')

n2 = Node('ham') 

n3 = Node('spam')

Next, we link the nodes sequentially to form the linked list. For example, in the following code, 

node n1 is pointing to node n2, node n2 is pointing to node n3, and node n3 is the last node, and 

is pointing to None:

n1.next = n2

n2.next = n3

Traversal of the linked lists means visiting all the nodes of the list, from the starting node to the 

last node. The process of traversing the singly linked list begins with the first node, displaying the 

data of the current node, following the pointers, and finally stopping when we reach the last node.

To implement the traversal of the linked list, we start by setting the current variable to the first 

item (starting node) in the list, and then we traverse the complete list through a loop, traversing 

each node as shown in the following code:
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current = n1 

while current:

     print(current.data)

     current = current.next

In the loop, we print out the current element after which we set current to point to the next 

element in the list. We keep doing this until we reach the end of the list. The output of the preceding 

code for this example is:

eggs

ham

spam

There are, however, several problems with this simplistic list implementation:

•	 It requires too much manual work by the programmer

•	 Too much of the inner workings of the list is exposed to the programmer

So, let us discuss a better and more efficient way of traversing the linked list.

Improving list creation and traversal
As you will notice in the earlier example of the list traversal, we are exposing the node class to the 

client/user. However, the client node should not interact with the node object. We need to use 

node.data to get the contents of the node, and node.next to get the next node. We can access the 

data by creating a method that returns a generator, which can be done using the yield keyword 

in Python. The updated code snippet for list traversal is as follows:

def iter(self):

    current = self.head 

    while current:

        val = current.data 

        current = current.next 

        yield val

Here, the yield keyword is used to return from a function while saving the states of its local 

variables to enable the function to resume from where it left off. Whenever the function is called 

again, the execution starts from the last yield statement. Any function that contains a yield 

keyword is termed a generator.
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Now, list traversal is much simpler. We can completely ignore the fact that there is anything 

called a node outside of the list:

for word in words.iter():

    print(word)

Notice that since the iter() method yields the data member of the node, our client code doesn’t 

need to worry about that at all.

A singly linked list can be created using a simple class to hold the list. We start with a constructor 

that holds a reference to the very first node in the list (that is head in the following code). Since 

this list is initially empty, we will start by setting this reference to None:

class SinglyLinkedList:

    def __init__ (self):

        self.head = None

In the preceding code, we start with an empty list that points to None. Now, new data elements 

can be appended/added to this list.

Appending items
The first operation that we need to perform is to append items to the list. This operation is also 

called an insertion operation. Here we get a chance to hide the Node class away. The user of the 

list class should never have to interact with Node objects.

Appending items to the end of a list
Let’s have a look at the Python code for creating a linked list where we append new elements to 

the list using the append() method, as shown here: 

The first shot at an append() method may look like this:

class SinglyLinkedList:

    def __init__ (self):  

        self.head = None  

        self.size = 0

def append(self, data):

    # Encapsulate the data in a Node 

    node = Node(data)

    if self.head is None:

        self.head = node



Chapter 4 101

    else:

        current = self.head

        while current.next:

            current = current.next

        current.next = node

Here, in this code, we encapsulate data in a node so that it has the next pointer attribute. From 

here, we check if there are any existing nodes in the list (that is, whether self.head points to a 

Node). If there is None, this means that initially, the list is empty and the new node will be the 

first node. So, we make the new node the first node of the list; otherwise, we find the insertion 

point by traversing the list to the last node and updating the next pointer of the last node to the 

new node. This working is depicted in Figure 4.7.

Figure 4.7: Inserting a node at the end of the list in a singly linked list

Consider the following example code to append three nodes:

words = SinglyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

List traversal will work as we discussed before. You will get the first element of the list from the 

list itself, and then traverse the list through the next pointer:

current = words.head

while current:

   print(current.data)

   current = current.next
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Still, this implementation is not very efficient, and there is a drawback with the append method. In 

this, we have to traverse the entire list to find the insertion point. This may not be a problem when 

there are just a few items in the list, but it will be very inefficient when the list is long, as it will 

have to traverse the whole list to add an item every time. Let us discuss a better implementation 

of the append method.

For this, the idea is that we not only have a reference to the first node in the list but also have 

one more variable in the node that references the last node of the list. That way, we can quickly 

append a new node at the end of the list. The worst-case running time of the append operation 

can be reduced from O(n) to O(1) using this method. We must ensure that the previous last node 

points to the new node that is to be appended to the list.

Here is our updated code:

class SinglyLinkedList:

    def __init__ (self):

        self.tail = None

        self.head = None

        self.size = 0

    def append(self, data):

        node = Node(data)

        if self.tail:

            self.tail.next = node

            self.tail = node

        else:

            self.head = node 

            self.tail = node

In this code, a new node can be appended in the end through a tail pointer by making a link from 

the last node to the new node. Figure 4.8 shows the workings of the preceding code.

Take note of the convention being used. The point at which we append new nodes 

is through self.tail. The self.head variable points to the first node in the list.
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Figure 4.8: Illustrating the insertion of a node at the end of a linked list

In Figure 4.8, step 1 shows the addition of the new node at the end, and step 2 shows when the list 

is empty. In that case, head is made the new node, with tail pointing to that node.

Furthermore, the following code snippet shows the workings of the code:

words = SinglyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

 

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the above code is as follows:

eggs

ham

spam

Appending items at intermediate positions
To append or insert an element in an existing linked list at a given position, firstly, we have to 

traverse the list to reach the desired position where we want to insert an element. An element can 

be inserted in between two successive nodes using two pointers (prev and current).
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A new node can easily be inserted in between two existing nodes by updating these links, as 

shown in Figure 4.9.

Figure 4.9: Insertion of a node between two successive nodes in a linked list

When we want to insert a node in between two existing nodes, all we have to do is update two 

links. The previous node points to the new node, and the new node should point to the successor 

of the previous node.

Let’s look at the complete code below to add a new element at a given index position:

class SinglyLinkedList:
    def __init__ (self):
        self.tail = None
        self.head = None
        self.size = 0

    def append_at_a_location(self, data, index): 
        current = self.head 
        prev = self.head 
        node = Node(data)
        count = 1
        while current:
            if count == 1:        
                node.next = current
                self.head = node
                print(count)
                return
            elif index == index:
                node.next = current 
                prev.next = node
                return
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            count += 1
            prev = current
            current = current.next
        if count < index:
            print("The list has less number of elements")

In the preceding code, we start from the first node and move the current pointer to reach the 
index position where we want to add a new element, and then we update the node pointers 
accordingly. In the if condition, firstly, we check whether the index position is 1. In that case, 
we have to update the nodes as we are adding the new node at the start of the list. Therefore, 
we have to make the new node a head node. Next, in the else part, we check whether we have 
reached the required index position by comparing the value of count and index. If both values 
are equal, we add a new node in between nodes indicated by prev and current and update the 
pointers accordingly. Finally, we print an appropriate message if the required index position is 
greater than the length of the linked list.

The following code snippet uses the append method to add a “new” data element at an index 

position of 2 in the existing linked list:

words = SinglyLinkedList()
words.append('egg')
words.append('ham')
words.append('spam')
current = words.head

while current:
    print(current.data)
    current = current.next

words.append_at_a_location('new', 2)
current = words.head
while current:
    print(current.data)
    current = current.next

The output of the above code is as follows:

egg

new

ham

spam
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It is important to note that the condition where we may want to insert a new element can change 

depending upon the requirement, so let’s say we want to insert a new element just before an 

element that has the same data value. In that case, the code to append_at_a_position will be 

as follows:

def append_at_a_location(self, data): 

    current = self.head 

    prev = self.head

    node = Node(data)

    while current:

        if current.data == data:

            node.next = current 

            prev.next = node

        prev = current

        current = current.next

We can now use the preceding code to insert a new node at an intermediate position:

words.append_at_a_location('ham')

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the above code is as follows:

egg

ham

ham

spam

The worst-case time complexity of the insert operation is O(1) when we have an additional 

pointer that points to the last node. Otherwise, when we do not have the link to the last node, 

the time complexity will be O(n) since we have to traverse the list to reach the desired position 

and in the worst case, we may have to traverse all the n nodes in the list.

Querying a list
Once the list is created, we may require some quick information about the linked list, such as 

the size of the list, and occasionally to establish whether a given data item is present in the list.
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Searching an element in a list
We may also need to check whether a list contains a given item. This can be implemented using 

the iter() method, which we have already seen in the previous section while traversing the 

linked list. Using that, we write the search method as follows:

def search(self, data):

    for node in self.iter():

        if data == node:

            return True

    return False

In the above code, each pass of the loop compares the data to be searched with each data item in 

the list one by one. If a match is found, True is returned, otherwise False is returned.

If we run the following code for searching a given data item:

print(words.search('sspam'))

print(words.search('spam'))

The output of the preceding code is as follows:

False

True

Getting the size of the list
It is important to get the size of the list by counting the number of nodes. One way to do it is by 

traversing the entire list and increasing the counter as we go along:

def size(self):

    count = 0

    current = self.head

    while current:

        count += 1

        current = current.next

    return count

The above code is very similar to what we did while traversing the linked list. Similarly, in this 

code, we traverse the nodes of the list one by one and increase the count variable. However, list 

traversal is potentially an expensive operation that we should avoid wherever we can. 
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So instead, we can opt for another method in which we can add a size member to the 

SinglyLinkedList class, initializing it to 0 in the constructor, as shown in the following code 

snippet:

class SinglyLinkedList:

    def __init__(self):

        self.head = data

        self.size = 0

Because we are now only reading the size attribute of the node object, and not using a loop to 

count the number of nodes in the list, we reduce the worst-case running time from O(n) to O(1).

Deleting items
Another common operation on a linked list is to delete nodes. There are three possibilities that 

we may encounter in order to delete a node from the singly linked list.

Deleting the node at the beginning of the singly linked list
Deleting a node from the beginning is quite easy. It involves updating the head pointer to the 

second node in the list. This can be done in two steps:

1.	 A temporary pointer (current pointer) is created that points to the first node (head node), 

as shown in Figure 4.10.

Figure 4.10: Illustration of the deletion of the first node from the linked list

2.	 Next, the current node pointer is moved to the next node and assigned to the head node. 

Now, the second node becomes the head node that is pointed to by the head pointer, as 

shown in Figure 4.11.
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Figure 4.11: After deleting the first node, the head pointer now points to the new 
starting element

This can be implemented using the following Python code. In this code, initially, three data 

elements are added as we have done previously, and then the first node of the list is deleted:

def delete_first_node (self):

       current = self.head  

        if self.head is None:

              print("No data element to delete")

        elif current == self.head:

              self.head = current.next  

In the above code, we initially check if there is no item to delete from the list, and we print the 

appropriate message. Next, if there is some data item in the list, we assign the head pointer to 

the temporary pointer current as per step 1, and then the head pointer is now pointing to the next 

node, assuming that we already have a linked list of three data items – “eggs”, “ham”, and “spam”:

words.delete_first_node()

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the preceding code is as follows:

ham

spam

Deleting the node at the end in the singly linked list
To delete the last node from the list, we have to first traverse the list to reach the last node. At that 

time, we also need an extra pointer that points to just one node before the last node, so that after 

deleting the last node, the second last node can be marked as the last node. It can be implemented 

in the following three steps:
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1.	 Firstly, we have two pointers, in other words, a current pointer that will point to the last 

node, and a prev pointer that will point to the node previous to the last node (second last 

node). Initially, we will have three pointers (current, prev, and head) pointing to the first 

node, as shown in Figure 4.12.

Figure 4.12: Illustration of the deletion of the end node from the linked list

2.	 To reach the last node, we move the current and prev pointers in such a way that the 

current pointer should point to the last node and the prev pointer should point to the 

second last node. So, we stop when the current pointer reaches the last node. This is 

shown in Figure 4.13.

Figure 4.13: Traversal of the linked list to reach the end of the list

3.	 Finally, we mark the prev pointer to point to the second last node, which is rendered as 

the last node of the list by pointing this node to None, as shown in Figure 4.14.

Figure 4.14: Deletion of the last node from the linked list
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The implementation in Python for deleting a node from the end of the list is as follows:

    def delete_last_node (self):  

        current = self.head  

        prev = self.head  

        while current: 

            if current.next is None: 

                prev.next = current.next  

                self.size -= 1 

            prev = current 

            current = current.next

In the preceding code, firstly, the current and prev pointers are assigned the head pointer as per 

step 1. Then, in the while loop, we check whether we reached the end of the list using the current.

next is None condition. Once we reach the end of the list, we make the second last node, which 

is indicated by the prev pointer, the last node. We also decrement the size of the list. If we do not 

reach the end of the list, we increment the prev and current pointers in the while loop in the last 

two lines of code. Next, let us discuss how to delete any intermediate node in a singly linked list.

Deleting any intermediate node in a singly linked list
We first have to decide how to select a node for deletion. Identifying the intermediate node to be 

deleted can be determined by the index number or by the data the node contains. Let us understand 

this concept by deleting a node depending on the data it contains.

To delete any intermediary node, we need two pointers similar to the case when we learned to 

delete the last node; in other words, the current pointer and the prev pointer. Once we reach 

the node that is to be deleted, the desired node can be deleted by making the previous node point 

to the next node of the node that is to be deleted. The process is provided in the following steps:

1.	 Figure 4.15 shows when an intermediate node is deleted from the given linked list. In this, 

we can see that the initial pointers point to the first node.

Figure 4.15: Illustration of the deletion of an intermediate node from the linked list
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2.	 Once the node is identified, the prev pointer is updated to delete the node, as shown in 

Figure 4.16. The node to be deleted is shown along with the link to those to be updated 

in Figure 4.16.

Figure 4.16: Traversing to reach the intermediate node that is to be deleted in the 
linked list

3.	 Finally, the list after deleting the node is shown in Figure 4.17.

Figure 4.17: Deletion of an intermediate node from the linked list

Let’s say we want to delete a data element that has the given value. For this given condition, we 

can first search the node to be deleted and then delete the node as per the steps discussed.

Here is what the implementation of the delete() method may look like:

def delete(self, data):

    current = self.head 

    prev = self.head 

    while current:

          if current.data == data:

              if current == self.head:

                  self.head = current.next 

              else:

                  prev.next = current.next 

              self.size -= 1
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              return

          prev = current

          current = current.next

Assuming that we already have a linked list of three items – “eggs”, “ham”, and “spam”, the 

following code is for executing the delete operation, that is, deleting a data element with the 

value “ham” from the given linked list:

words.delete("ham")

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the preceding code is as follows:

egg

spam

The worst-case time complexity of the delete operation is O(n) since we have to traverse the 

list to reach the desired position and, in the worst-case scenario, we may have to traverse all the 

n nodes in the list.

Clearing a list
We may need to clear a list quickly, and there is a very simple way to do this. We can clear a list 

by simply clearing the pointer head and tail by setting them to None:

def clear(self):

    # clear the entire list.

    self.tail = None

    self.head = None

In the above code, we can clear the list by assigning None to the tail and head pointers.

We have discussed different operations for a singly linked list, and now we will discuss the concept 

of doubly linked list and learn how different operations can be implemented in a doubly linked 

list in the next section.
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Doubly linked lists
A doubly linked list is quite similar to the singly linked list in the sense that we use the same 

fundamental concept of nodes along with how we can store data and links together, as we did in 

a singly linked list. The only difference between a singly linked list and a doubly linked list is that 

in a singly linked list, there is only one link between each successive node, whereas, in a doubly 

linked list, we have two pointers—a pointer to the next node and a pointer to the previous node. 

See the following Figure 4.18 of a node; there is a pointer to the next node and the previous node, 

which are set to None as there is no node attached to this node.

Figure 4.18: Represents a doubly linked list with a single node

A node in a singly linked list can only determine the next node associated with it. However, there 

is no link to go back from this referenced node. The direction of flow is only one way. In a doubly 

linked list, we solve this issue and include the ability not only to reference the next node, but also 

to reference the previous node. Consider the following Figure 4.19 to understand the nature of the 

linkages between two successive nodes. Here, node A is referencing node B; in addition, there is 

also a link back to node A.

Figure 4.19: Doubly linked list with two nodes

Doubly linked lists can be traversed in any direction. A node in a doubly linked list can be easily 

referred to by its previous node whenever required without having a variable to keep track of 

that node. 
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However, in a singly linked list, it may be difficult to move back to the start or beginning of the 

list to make some changes at the start of the list, which is very easy now in the case of a doubly 

linked list.

Creating and traversing
The Python code to create a doubly linked list node includes its initializing methods, the prev 

pointer, the next pointer, and the data instance variables. When a node is newly created, all 

these variables default to None:

class Node:

    def __init__ (self, data=None, next=None, prev=None):

       self.data = data 

       self.next = next 

       self.prev = prev

The prev variable has a reference to the previous node, while the next variable keeps the reference 

to the next node, and the data variable stores the data.

Next, let’s create a doubly linked list class.

The doubly linked list class has two pointers, head and tail, that will point to the start and end 

of the doubly linked list, respectively. In addition, for the size of the list, we set the count instance 

variable to 0. It can be used to keep track of the number of items in the linked list. Consider the 

following Python code for creating a doubly linked list class:

class DoublyLinkedList:

    def __init__ (self): 

        self.head = None

        self.tail = None

        self.count = 0

Doubly linked lists also require functionalities that return the size of the list, insert items into 

the list, and delete nodes from the list. Next, we discuss different operations that can be applied 

to the doubly linked list. Let’s start with the append operation.

Here, self.head points to the beginner node of the list, and self.tail points to 

the last node. However, there are no fixed rules as to the naming of the head and 

tail node pointers.
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Appending items
The append operation is used to add an element at the end of a list. An element can be appended 

or inserted into a doubly linked list in the following instances.

Inserting a node at beginning of the list
Firstly, it is important to check whether the head node of the list is None. If it is None, this means 

that the list is empty, otherwise the list has some nodes, and a new node can be appended to the 

list. If a new node is to be added to the empty list, it should have the head pointer pointing to the 

newly created node, and the tail of the list should also point to this newly created node. 

The following Figure 4.20 illustrates the head and tail pointers of the doubly linked list when a 

new node is added to an empty list.

Figure 4.20: Illustration of inserting a node in an empty doubly linked list

Alternatively, we can insert or append a new node at the beginning of an existing doubly linked 

list, as shown in Figure 4.21.

Figure 4.21: Illustration of inserting an element in a doubly linked list

The new node should be made as a new starting node of the list and that should now point to 

the previous head node.
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It can be done by updating the three links, which are also shown with dotted lines in Figure 4.22 

and described as follows:

1.	 Firstly, the next pointer of a new node should point to the head node of the existing list

2.	 The prev pointer of the head node of the existing list should point to the new node

3.	 Finally, mark the new node as the head node in the list

Figure 4.22: Inserting a node at the beginning of the doubly linked list

The following code is used to append/insert an item at the beginning when the list is initially 

empty and with an existing doubly linked list:

def append_at_start(self, data):

  #Append an item at beginning to the list.

  new_node = Node(data, None, None)

  if self.head is None:

      self.head = new_node

      self.tail = self.head

    else:

      new_node.next = self.head

      self.head.prev = new_node

      self.head = new_node

  self.count += 1

In the above code, firstly, the self.head condition is checked irrespective of whether the list 

is empty. If it is empty, then the head and tail pointers point to the newly created node. In this 

case, the new node becomes the head node. Next, if the condition is not true, this means the list 

is not empty, and a new node has to be added at the beginning of the list. For this, three links are 

updated as shown in Figure 4.22, and also shown in the code in bold font. After updating these 

three links, finally, the size of the list is increased by 1. Furthermore, let us understand how to 

insert an element at the end of the doubly linked list.
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Further, the following code snippet shows how we can create a double link list and append a new 

node at the starting of the list: 

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

print("Items in doubly linked list before append:")

current = words.head

while current:

    print(current.data)

    current = current.next

words.append_at_start('book')

print("Items in doubly linked list after append:")

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the above code is:

Items in doubly linked list before append:

egg

ham

spam

Items in doubly linked list after append:

book

egg

ham

spam

In the output, we can see that the new data item “book" is added in the starting of the list.
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Inserting a node at the end of the list
To append/insert a new element at the end of the doubly linked list, we will need to traverse 

through the list to reach the end of the list if we do not have a separate pointer pointing to the 

end of the list. Here, we have a tail pointer that points to the end of the list.

A visual representation of the append operation to an existing list is shown in the following 

Figure 4.23.

Figure 4.23: Inserting a node at the end of the list in a doubly linked list

To add a new node at the end, we update two links as follows:

1.	 Make the prev pointer of the new node point to the previous tail node

2.	 Make the previous tail node point to the new node

3.	 Finally, update the tail pointer so that the tail pointer now points to the new node

The following code is used to append an item at the end of the doubly linked list:

def append(self, data):

    #Append an item at the end of the list.
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    new_node = Node(data, None, None)

    if self.head is None:

        self.head = new_node

        self.tail = self.head

    else:

        new_node.prev = self.tail

        self.tail.next = new_node

        self.tail = new_node

    self.count += 1

In the above code, the if part of the preceding program is for adding a node to the empty list; the 

else part of the preceding program will be executed if the list is not empty. If the new node is to 

be added to a list, the new node’s previous variable is to be set to the tail of the list:

new_node.prev = self.tail

The tail’s next pointer (or variable) has to be set to the new node:

self.tail.next = new_node

Lastly, we update the tail pointer to point to the new node:

self.tail = new_node

Since an append operation increases the number of nodes by one, we increase the counter by one:

self.count += 1

The following code snippet can be used to append a node at the end of the list:

print("Items in doubly linked list after append")

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

words.append('book')

print("Items in doubly linked list after adding element at end.")

current = words.head

while current:

    print(current.data)

    current = current.next
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The output of the above code:

Items in doubly linked list after adding element at end.

egg

ham

spam

book

The worst-case time complexity of appending an element to the doubly linked list is O(1) since 

we already have the tail pointer that points to the end of the list, and we can directly add a new 

element. Next, we will discuss how to insert a node at an intermediate position of the doubly 

linked list.

Inserting a node at an intermediate position in the list
Inserting a new node at any given position in a doubly linked list is similar to what we discussed 

in a singly linked list. Let us take an example in which we insert a new element just before the 

element that has the same data value as the given data.

Firstly, we traverse to the position where we want to insert a new element in that situation. The 

current pointer points to the target node, while the prev pointer just points to the previous node 

of the target node, as shown in Figure 4.24.

Figure 4.24: Illustration of pointers for inserting a node at an intermediate position in a doubly 
linked list

After reaching the correct position, a few pointers have to be added in order to add a new node. 

The details of these links that need to be updated (also shown in Figure 4.25) are as follows:

1.	 The next pointer of the new node points to the current node

2.	 The prev pointer of the new node should point to the previous node

3.	 The next pointer of the previous node should point to the new node
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4.	 The prev pointer of the current node should point to the new node

Figure 4.25: Demonstration of links that need to be updated in order to add a new node at 
any intermediate position in the list

Here is what the implementation of the append_at_a_location() method may look like:

def append_at_a_location(self, data):

   current = self.head

   prev = self.head

   new_node = Node(data, None, None)

   while current:

        if current.data == data:

            new_node.prev = prev

            new_node.next = current

            prev.next = new_node

            current.prev = new_node

            self.count += 1

        prev = current

        current = current.next

In the preceding code, firstly, the current and prev pointers are initialized by pointing to the 

head node. Then, in the while loop, we first reach the desired position by checking the condition. 

In this example, we check the data value of the current node against the data value provided by 

the user. Once we reach the desired position, we update four links as discussed, which are also 

shown in Figure 4.25.

The following code snippet can be used to insert an data element “ham" after the first occurrence 

of the word “ham" in the doubly linked list:

words = DoublyLinkedList() 

words.append('egg') 

words.append('ham') 
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words.append('spam') 

words.append_at_a_location('ham')

print("Doubly linked list after adding an element after word \"ham\" in 
the list.")

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the above code:

Doubly linked list after adding an element after word "ham" in the list.

egg

ham

ham

spam

Appending at the start and end positions in a doubly linked list will have a worst-case running 

time complexity of O(1) since we can directly append the new node, and the worst-case time 

complexity for appending a new node at any intermediate position will be O(n) since we may 

have to traverse the list of n items.

Next, let us learn how to search a given item if that is present in the doubly linked list or not.

Querying a list
The search for an item in a doubly linked list is similar to the way we did it in the singly linked 

list. We use the iter() method to check the data in all the nodes. As we run a loop through all 

the data in the list, each node is matched with the data passed in the contain method. If we find 

the item in the list, True is returned, denoting that the item is found, otherwise False is returned, 

which means the item was not found in the list. The Python code for this is as follows:

def iter(self):

        current = self.head 

        while current:

            val = current.data 

            current = current.next 

            yield val
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    def contains(self, data): 

        for node_data in self.iter(): 

            if data == node_data: 

                print("Data item is present in the list.")

                return   

        print("Data item is not present in the list.")

        return  

The following code can be used to search if a data item is present in the existing doubly linked list:

words = DoublyLinkedList() 

 

words.append('egg') 

words.append('ham') 

words.append('spam')

words.contains("ham") 

words.contains("ham2")

The output of the above code is as follows:

Data item is present in the list.

Data item is not present in the list.

The search operation in a doubly linked list has a running time complexity of O(n) since we have 

to traverse the list in order to reach the desired element and, in the worst case, we may have to 

traverse the whole list of n items.

Deleting items
The deletion operation is easier in the doubly linked list compared to the singly linked list. Unlike 

in a singly linked list, where we need to traverse the linked list to reach the desired position, and 

we also need one more pointer to keep track of the previous node of the target node, in a doubly 

linked list, we don’t have to do that because we can traverse in both directions.

The delete operation in a doubly linked list can have four scenarios, which are discussed as 

follows:

1.	 The item to be deleted is located at the start of the list

2.	 The item to be deleted is found at the tail end of the list
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3.	 The item to be deleted is located anywhere at an intermediate position in the list

4.	 The item to be deleted is not found in the list

The node to be deleted is identified by matching the data instance variable with the data that is 

passed to the method. If the data matches the data variable of a node, that matching node will 

be deleted:

1.	 For the first scenario, when we have found the item to be deleted at the first position, we 

will have to simply update the head pointer to the next node. It is shown in Figure 4.26.

Figure 4.26: Illustration of the deletion of the first node in a doubly linked list

2.	 For the second scenario, when we found the item to be deleted at the last position in the 

list, we will have to simply update the tail pointer to the second last node. It is shown 

in Figure 4.27.

Figure 4.27: Illustration of the deletion of the last node in a doubly linked list
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3.	 For the third scenario, we found the data item to be deleted at any intermediate position. 

To better understand this, consider the example shown in Figure 4.28. In this, there are 

three nodes, A, B, and C. To delete node B in the middle of the list, we will essentially 

make A point to node C as its next node, while making C point to A as its previous node.

Figure 4.28: Illustration of the deletion of the intermediate node B from the doubly 
linked list

The complete implementation to delete a node from the doubly linked list in Python is as follows. 

We’ll discuss each part of this code step by step:

    def delete(self, data):

          # Delete a node from the list. 

          current = self.head 

          node_deleted = False 

          if current is None:       

          #List is empty 

               print("List is empty")

          elif current.data == data:   

          #Item to be deleted is found at starting of the list

               self.head.prev = None 

               node_deleted = True 

               self.head = current.next

           elif self.tail.data == data:   
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        #Item to be deleted is found at the end of list

               self.tail = self.tail.prev  

               self.tail.next = None 

               node_deleted = True 

          else: 

               while current:          

               #search item to be deleted, and delete that node

                   if current.data == data: 

                       current.prev.next = current.next  

                       current.next.prev = current.prev 

                       node_deleted = True 

                   current = current.next 

               if node_deleted == False: 

               # Item to be deleted is not found in the list

                   print("Item not found")

          if node_deleted: 

               self.count -= 1

Initially, we create a node_deleted variable to denote the deleted node in the list and this is 

initialized to False. The node_deleted variable is set to True if a matching node is found and 

subsequently removed.

In the delete method, the current variable is initially set to the head node of the list (that is, it 

points to the self.head node of the list). This is shown in the following code fragment:

def delete(self, data):

    current = self.head

    node_deleted = False

Next, we use a set of if...else statements to search various parts of the list to ascertain the node 

with the specified data that is to be deleted.

First of all, we search for the data to be deleted at the head node, and if the data is matched at 

the head node, this node would be deleted. Since current is pointing at head, if current is None, 

this means that the list is empty and has no nodes to find the node to be deleted. The following 

is its code fragment:

if current is None:

  node_deleted = False
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However, if current (which now points to head) contains the data being searched for, this means 

that we found the data to be deleted at the head node, and self.head is then marked to point to 

the current.next node. Since there is now no node behind head, self.head.prev is set to None. 

Consider the following code snippet for this:

elif current.data == data:

    self.head.prev = None

    node_deleted = True

    self.head = current.next

Similarly, if the node that is to be deleted is found at the tail end of the list, we delete the last 

node by setting its previous node pointing to None. self.tail is set to point to self.tail.prev, 

and self.tail.next is set to None as there is no node afterward. Consider the following code 

fragment for this:

elif self.tail.data == data:

   self.tail = self.tail.prev

   self.tail.next = None

   node_deleted = True

Lastly, we search for the node to be deleted by looping through the entire list of nodes. If the data 

that is to be deleted is matched with a node, that node will be deleted. 

To delete a node, we make the previous node of the current node point to the next node using 

the current.prev.next = current.next code. After that step, we make the current’s next node 

point to the previous node of the current node using current.next.prev = current.prev. 

Furthermore, if we traverse the complete list, and the desired item is not found, we print the 

appropriate message. Consider the following code snippet for this:

else:

    while current:

       if current.data == data:

             current.prev.next = current.next

             current.next.prev = current.prev

             node_deleted = True

       current = current.next

   if node_deleted == False:

# Item to be deleted is not found in the list

       print("Item not found")
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Finally, the node_delete variable is then checked to ascertain whether a node is actually deleted. 

If any node is deleted, then we decrease the count variable by 1, and this keeps track of the total 

number of nodes in the list. See the following code fragment:

if node_deleted:

  self.count -= 1

This decrements the count variable by 1 in case any node is deleted.

Let’s take an example to see how the delete operation works with the same example of adding 

three strings – “egg”, “ham”, and “spam”, and then a node with the value “ham” is deleted from 

the list. The code is as follows:

#Code to create for a doubly linked list

words = DoublyLinkedList()

words.append('egg')

words.append('ham')

words.append('spam')

words.delete('ham') 

current = words.head

while current:

    print(current.data)

    current = current.next

The output of the preceding code is as follows:

egg

spam

The worst-case running time complexity of the delete operation is O(n) since we may have to 

traverse the list of n items to search for the item to be deleted.

In the next section, we will learn different operations on a circular linked list.

Circular lists
A circular linked list is a special case of a linked list. In a circular linked list, the endpoints are 

connected, which means that the last node in the list points back to the first node. In other words, 

we can say that in circular linked lists, all the nodes point to the next node (and the previous node 

in the case of a doubly linked list) and there is no end node, meaning no node will point to None.
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The circular linked lists can be based on both singly and doubly linked lists. Consider Figure 4.29 

for the circular linked list based on a singly linked list where the last node, C, is again connected 

to the first node A, thus making a circular list.

Figure 4.29: Example of a circular list based on a singly linked list

In the case of a doubly linked circular list, the first node points to the last node, and the last 

node points back to the first node. Figure 4.30 shows the concept of the circular linked list based 

on a doubly linked list where the last node C is again connected to the first node A through the 

next pointer. Node A is also connected to node C through the previous pointer, thus making a 

circular list.

Figure 4.30: Example of a circular list based on a doubly linked list

Now, we are going to look at an implementation of a singly linked circular list. It is very 

straightforward to implement a doubly linked circular list once we understand the basic concepts 

of singly and doubly linked lists. 
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Almost everything is similar except that we should be careful in managing the link of the last 

node to the first node.

We can reuse the node class that we created in the singly linked lists subsection. We can reuse 

most parts of the SinglyLinkedList class as well. So, we are going to focus on where the circular 

list implementation differs from the normal singly linked list.

Creating and traversing
The circular linked list class can be created using the following code:

class CircularList:

    def __init__ (self):

        self.tail = None

        self.head = None

        self.size = 0

In the above code, initially in the circular linked list class, we have two pointers; self.tail is 

used to point to the last node, and self.head is used to point to the first node of the list.

Appending items
Here, we want to add a node at the end of a circular linked list, as shown in Figure 4.31, in which 

we have four nodes, wherein the head is pointing to the starting node and the tail is pointing to 

the last node.

Figure 4.31: Example of a circular linked list for adding a node at the end
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Figure 4.32 shows how a node is added to a circular linked list.

Figure 4.32: Inserting a node at the end of the singly circular list 

To add a node at the end, we will update three links:

1.	 The next pointer of the last node to point to a new node

2.	 The next pointer of a new node to point to the head node

3.	 Update the tail pointer to point to the new node

The implementation of the circular linked list to append an element at the end of the circular list 

based on a singly linked list is as follows:

    def append(self, data):

        node = Node(data) 

        if self.tail: 

            self.tail.next = node

            self.tail = node

            node.next = self.head

        else: 

            self.head = node 

            self.tail = node 

            self.tail.next = self.tail

        self.size += 1

In the above code, firstly, we check whether the list is empty. If the list is empty, we go to the 

else part of the above code. In this case, the new node will be the first node of the list, and both 

the head and tail pointers will point to the new node, while the next pointer of the new node 

will again point to the new node. 
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Otherwise, if the list is not empty, we go to the if part of the preceding code. In this case, we 

update the three pointers as shown in Figure 4.32. This is similar to what we did in the case of 

the single linked list. Only one link is additionally added in this case, which is shown in bold font 

in the preceding code.

Further, we can use iter() method traverse all the elements of the list, The iter() method 

described below should be defined in CircularList class:

def iter(self):

     current = self.head

     while current:

          val = current.data

          current = current.next

          yield val

The below code can be used to create a singly circular linked list, and then print all the data 

elements of the list, and then we stop when the counter becomes 3 which is the length of the list.

words = CircularList()

words.append('eggs')

words.append('ham')

words.append('spam')

 

counter = 0

for word in words.iter():

    print(word)

    counter += 1

    if counter > 2:

        break

The output of the preceding code is as follows:

eggs

ham

spam

Appending any element at an intermediate position in a circular list is exactly to its implementation 

in a singly linked list.
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Querying a list
Traversing a circular linked list is very convenient as we don’t need to look for the starting point. 

We can start anywhere, and we just need to carefully stop traversing when we reach the same 

node again. We can use the same iter() method, which we discussed at the start of this chapter. 

This will also be the case for the circular list; the only difference is that we have to mention an 

exit condition when we are iterating through the circular list, otherwise the program will get 

stuck in a loop, and it will run indefinitely. We can make any exit condition dependent upon our 

requirements; for example, we can use a counter variable. Consider the following example code:

words = CircularList()

words.append('eggs')

words.append('ham')

words.append('spam')

counter = 0

for word in words.iter():

    print(word)

    counter += 1

    if counter > 100:

        break

In the above code, we add three strings of data to the circular linked list, and then we print the 

data values iterating through the list 100 times.

In the next section, let us understand how the delete operation works in a circular linked list.

Deleting an element in a circular list
To delete a node in a circular list, it looks like we can do it similarly to how we did in the case of 

the append operation—simply make sure that the last node through the tail pointer points back 

to the starting node of the list through the head pointer. We have the following three scenarios:

1.	 When the item to be deleted is the head node:

In this scenario, we have to ensure that we make the second node of the list the new head 

node (shown as step 1 in Figure 4.33), and the last node should be pointing back to the 

new head (shown as step 2 in Figure 4.33).
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Figure 4.33: Deletion of a starting node in a singly circular list

2.	 When the item to be deleted is the last node:

In this scenario, we have to ensure that we make the second last node the new tail node 

(shown as step 1 in Figure 4.34), while the new tail node should be pointing back to the 

new head (shown as step 2 in Figure 4.34).

Figure 4.34: Deletion of the last node in a singly circular list

3.	 When the item to be deleted is an intermediate node:

This is very similar to what we did in the singly linked list. We have to make a link from the 

previous node of the target node to the next node of the target node, as shown in Figure 4.35.

Figure 4.35: Deletion of any intermediate node in a singly circular list
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The implementation of the delete operation is as follows:

    def delete(self, data):

        current = self.head

        prev = self.head

        while prev == current or prev != self.tail:

            if current.data == data:

                if current == self.head:   

                    #item to be deleted is head node

                    self.head = current.next

                    self.tail.next = self.head

                elif current == self.tail:  

                    #item to be deleted is tail node

                    self.tail = prev

                    prev.next = self.head

                else:

                    #item to be deleted is an intermediate node

                    prev.next = current.next

                self.size -= 1

                return

            prev = current

            current = current.next

            if flag is False:

                print("Item not present in the list")

In the preceding code, firstly, iterate over all the elements to search the desired element to be 

deleted. Here, it is important to note the stopping condition. If we simply check the current 

pointer to be equal to None (which we did in the singly linked list), the program will go into an 

indefinite loop since the current node will never point to None in the case of circular linked lists. 

For this, we cannot check whether current has reached tail because then it will never check the 

last node. So, the stopping criterion in the circular list is the fact that the prev and current pointers 

point to the same node. It will work fine except on one occasion when the first loop iteration, at 

that time, current and prev, will point to the same node, in other words, the head node.

Once, we enter the loop, we check the data value of the current pointer with the given data value 

to get the node to be deleted. We check whether the node to be deleted is the head node, tail node, 

or intermediate node, and then update the appropriate links shown in Figures 4.33, 4.34, and 4.35.
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So, we have discussed the different scenarios while deleting any node in singly circular linked list, 

similarly, the doubly linked list based circular linked list can be implemented. 

The following code can be used to create a circular linked list, and apply different delete operations:

words = CircularList()

words.append('eggs')

words.append('ham')

words.append('spam')

words.append('foo')

words.append('bar')

 

print("Let us try to delete something that isn't in the list.")

words.delete('socks')

counter = 0

for item in words.iter():

    print(item)

    counter += 1

    if counter > 4:

        break

        

print("Let us delete something that is there.")

words.delete('foo')

counter = 0

for item in words.iter():

    print(item)

    counter += 1

    if counter > 3:

        break

The output of the above code is as follows:

Let us try to delete something that isn't in the list.

Item not present in the list

eggs

ham

spam

foo

bar
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Let us delete something that is there.

eggs

ham

spam

bar

The worst-case time complexity of inserting an element at a given location in the circular linked 

list is O(n) since we have to traverse the list to the desired location. The complexity of insertion at 

the first and last locations of the circular list will be O(1). Similarly, the worst-case time complexity 

to delete an element at a given location is O(n).

So far, we have discussed the different scenarios while deleting any node in a singly circular linked 

list. Similarly, the doubly linked list can be implemented based on a circular linked list.

In a singly linked list, the traversal of nodes can be done in one direction, whereas, in a doubly 

linked list, it is possible to traverse in both directions (forward and backward). In both cases, the 

complexity of the insertion and deletion operations at a given location is O(n) whenever we have 

to traverse the list in order to reach the desired location where we want to insert or delete any 

element. Similarly, the worst-case time complexity of the insertion or deletion of a node for a 

given desired location is O(n). Whenever we need to save memory space, we should use a singly 

linked list since it only needs one pointer, whereas a doubly linked list takes more memory space 

to store double pointers. When a search operation is important, we should use a doubly linked 

list since it is possible to search in both directions. Furthermore, the circular linked list should 

be used when we have an application when we need to iterate over the nodes in the list. Let us 

now see more real-world applications of linked lists.

Practical applications of linked lists
As of now, we have discussed singly linked lists, circular linked lists, and doubly linked lists. 

Depending upon what kind of operations (insertion, deletion, updating, and so on) will be required 

in different applications, these data structures are used accordingly. Let’s see a few real-time 

applications where these data structures are being used.

Singly linked lists can be used to represent any sparse matrix. Another important application is 

to represent and manipulate polynomials by accumulating constants in the node of linked lists. 

It can also be used in implementing a dynamic memory management scheme that allows the 

user to allocate and deallocate the memory as per requirements during the execution of programs.
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On the other hand, doubly linked lists are used by the thread schedular in the operating system to 

maintain the list of processes running at that time. These lists are also used in the implementation 

of MRU (most recently used) and LRU (least recently used) cache in the operating system. 

Doubly linked lists can also be used by various applications to implement Undo and Redo 

functionality. The browsers can use these lists to implement backward and forward navigation 

of the web pages visited.

A circular linked list can be used by operating systems to implement a round-robin scheduling 

mechanism. Another application of circular linked lists is to implement Undo functionality in 

Photoshop or Word software and use it in implementing a browser cache that allows you to hit 

the BACK button. Besides that, it is also used to implement advanced data structures such as the 

Fibonacci heap. Multiplayer games also use a circular linked list to swap between players in a loop.

Summary
In this chapter, we studied the concepts that underlie lists, such as nodes and pointers to other 

nodes. We have discussed singly linked lists, doubly linked lists, and circular linked lists. We have 

seen various operations that can be applied to these data structures and their implementations 

using Python.

These types of data structures have certain advantages over arrays. In the case of arrays, insertion 

and deletion are quite time-consuming as these operations require the shifting of elements 

downward and upward, respectively, due to contiguous memory allocations. On the other hand, 

in the case of linked lists, these operations require only changes in pointers. Another advantage of 

linked lists over arrays is the allowance of a dynamic memory management scheme that allocates 

memory during the runtime as and when needed, while the array is based on a static memory 

allocation scheme.

The singly linked list can traverse in a forward direction only, while traversal in doubly linked 

lists is bidirectional, hence the reason why the deletion of a node in a doubly linked list is easy 

compared to a singly linked list. Similarly, circular linked lists save time while accessing the first 

node from the last node as compared to the singly linked list. Thus, each list has its advantages 

and disadvantages. We should use them as per the requirements of the application.

In the next chapter, we are going to look at two other data structures that are usually implemented 

using lists—stacks and queues.
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Exercise
1.	 What will be the time complexity when inserting a data element after an element that is 

being pointed to by a pointer in a linked list?

2.	 What will be the time complexity when ascertaining the length of the given linked list?

3.	 What will be the worst-case time complexity for searching a given element in a singly 

linked list of length n?

4.	 For a given linked list, assuming it has only one head pointer that points to the starting 

point of the list, what will be the time complexity for the following operations?

a.	 Insertion at the front of the linked list

b.	 Insertion at the end of the linked list

c.	 Deletion of the front node of the linked list

d.	 Deletion of the last node of the linked list

5.	 Find the nth node from the end of a linked list.

6.	 How can you establish whether there is a loop (or circle) in a given linked list?

7.	 How can you ascertain the middle element of the linked list?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4


5
Stacks and Queues

In this chapter, we will discuss two very important data structures: stacks and queues. Stacks and 

queues have many important applications, such as form operating system architecture, arithmetic 

expression evaluation, load balancing, managing printing jobs, and traversing data. In stack and 

queue data structures, the data is stored sequentially, like arrays and linked lists, but unlike arrays 

and linked lists, the data is handled in a specific order with certain constraints, which we will 

be discussing in detail in this chapter. Moreover, we will also examine how we can implement 

stacks and queues using linked lists and arrays.

In this chapter, we will discuss constraints and methods to handle the data in stacks and queues. 

We will also implement these data structures and learn how to apply different operations to these 

data structures in Python.

In this chapter, we will cover the following:

•	 How to implement stacks and queues using various methods

•	 Some real-life example applications of stacks and queues

Stacks
A stack is a data structure that stores data, similar to a stack of plates in a kitchen. You can put 

a plate on the top of the stack, and when you need a plate, you take it from the top of the stack. 
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The last plate that was added to the stack will be the first to be picked up from the stack:

Figure 5.1: Example of a stack

The preceding diagram depicts a stack of plates. Adding a plate to the pile is only possible by 

leaving that plate on top of the pile. To remove a plate from the pile of plates means to remove 

the plate that is on top of the pile.

A stack is a data structure that stores the data in a specific order similar to arrays and linked lists, 

with several constraints:

•	 Data elements in a stack can only be inserted at the end (push operation)

•	 Data elements in a stack can only be deleted from the end (pop operation)

•	 Only the last data element can be read from the stack (peek operation)

A stack data structure allows us to store and read data from one end, and the element which is 

added last is picked up first. Thus, a stack is a last in first out (LIFO) structure, or last in last 

out (LILO).

There are two primary operations performed on stacks – push and pop. When an element is added 

to the top of the stack, it is called a push operation, and when an element is to be picked up (that 

is, removed) from the top of the stack, it is called a pop operation. Another operation is peek, in 

which the top element of the stack can be viewed without removing it from the stack. All the 

operations in the stack are performed through a pointer, which is generally named top. All these 

operations are shown in Figure 5.2:
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Figure 5.2: Demonstration of push and pop operations in a stack

The following table demonstrates the use of two important stack operations (push and pop) in 

the stack:

Stack operation Size Contents Operation results 

stack() 0 [] Stack object created, which is empty.

push "egg" 1 ['egg'] One item egg is added to the stack.

push "ham" 2 ['egg', 'ham'] One more item, ham, is added to the stack.

peek() 2 ['egg', 'ham'] The top element, ham, is returned.

pop() 1 ['egg']
The ham item is popped off and returned. 
(This item was added last, so it is removed 
first.)

pop() 0 []
The egg item is popped off and returned. 
(This is the first item added, so it is returned 
last.)

Table 5.1: Illustration of different operations in a stack with examples
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Stacks are used for a number of things. One common usage for stacks is to keep track of the return 

address during function calls. Let’s imagine that we have the following program:

def b(): 

    print('b') 

def a(): 

    b() 

a() 

print("done")

When the program execution gets to the call to a(), a sequence of events will be followed in order 

to complete the execution of this program. A visualization of all these steps is shown in Figure 5.3:

Figure 5.3: Steps for a sequence of events during function calls in our sample program 

The sequence of events is as follows:

1.	 First, the address of the current instruction is pushed onto the stack, and then execution 

jumps to the definition of a

2.	 Inside function a(), function b() is called

3.	 The return address of function b() is pushed onto the stack. Once the execution of the 

instructions and functions in b() are complete, the return address is popped off the stack, 

which takes us back to function a()

4.	 When all the instructions in function a() are completed, the return address is again popped 

off the stack, which takes us back to the main program and the print statement

The output of the above program is as follows:

b

done
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We have now discussed the concept of the stack data structure. Now, let us understand its 

implementation in Python using array and linked list data structures.

Stack implementation using arrays
Stacks store data in sequential order like arrays and linked lists, with a specific constraint that 

the data can only be stored and read from one end of the stack following the last in first out 

(LIFO) principle. In general, stacks can be implemented using arrays and linked lists. Array-based 

implementations will have fixed lengths for the stack, whereas linked list-based implementations 

can have stacks of variable lengths.

In the case of the array-based implementation of a stack (where the stack has a fixed size), it is 

important to check whether the stack is full or not, since trying to push an element into a full 

stack will generate an error, called an overflow. Likewise, trying to apply a pop operation to an 

empty stack causes an error known as an underflow.

Let us understand the implementation of a stack using an array with an example in which we 

wish to push three data elements, “egg”, “ham”, and “spam”, into the stack. Firstly, to insert new 

elements into a stack using the push operation, we check the overflow condition, which is when 

the top pointer is pointing to the end index of the array. The top pointer is the index position 

of the top element in the stack. If the top element is equal to the overflow condition, the new 

element cannot be added. This is a stack overflow condition. If there is free space in the array to 

insert new elements, new data is pushed into the stack. An overview of the push operation on a 

stack using an array is shown in Figure 5.4:

Figure 5.4: Sequence of push operations in a stack implementation using an array

The Python code for the push operation is as follows:

size = 3

data = [0]*(size)   #Initialize the stack
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top = -1

def push(x):

     global top

     if top >= size - 1:

           print("Stack Overflow")

     else:

           top = top + 1

           data[top] = x

In the above code, we initialize the stack with a fixed size (say, 3 in this example), and also the 

top pointer to –1, which indicates that the stack is empty. Further, in the push method, the top 

pointer is compared with the size of the stack to check the overflow condition and, if the stack is 

full, the stack overflow message is printed. If the stack is not full, the top pointer is incremented 

by 1, and the new data element is added to the top of the stack. The following code is used to 

insert data elements into the stack:

push('egg')

push('ham')

push('spam')

print(data[0 : top + 1] ) 

push('new')

push('new2')

In the above code, when we try to insert the first three elements, they are added since there was 

enough space, but when we try to add the data elements new and new2, the stack is already full, 

hence these two elements cannot be added to the stack. The output of this code is as follows:

['egg', 'ham', 'spam'] 

Stack Overflow 

Stack Overflow 

Next, the pop operation returns the value of the top element of the stack and removes it from the 

stack. Firstly, we check if the stack is empty or not. If the stack is already empty, a stack underflow 

message is printed. Otherwise, the top is removed from the stack. An overview of the pop operation 

is shown in Figure 5.5:
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Figure 5.5: Sequence of the pop operation in a stack implementation using an array

The Python code for the pop operation is as follows:

def pop():

    global top

    if top == -1:

        print("Stack Underflow")

    else:

        top = top – 1

        data[top] = 0

        return data[top+1]

In the above code, we first check the underflow condition by checking whether the stack is empty 

or not. If the top pointer has a value of –1, it means the stack is empty. Otherwise, the data 

elements in the stack are removed by decrementing the top pointer by 1, and the top data element 

is returned to the main function.

Let’s assume we already added three data elements to the stack, and then we call the pop function 

four times. Since there are only three elements in the stack, the initial three data elements are 

removed, and when we try to call the pop operation a fourth time, the stack underflow message 

is printed. This is shown in the following code snippet:

print(data[0 : top + 1])

pop()

pop()

pop()

pop()

print(data[0 : top + 1])
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The output of the above code is as follows:

['egg', 'ham', 'spam']

Stack Underflow 

[]

Next, let us see an implementation of the peek operation in which we return the value of the top 

element of the stack. The Python code for this is as follows:

def peek():

   global top

   if top == -1:

       print("Stack is empty")

   else:

       print(data[top])

In the above code, firstly, we check the position of the top pointer in the stack. If the value of 

the top pointer is –1, it means that the stack is empty, otherwise, we print the value of the top 

element of the stack. 

We have discussed the Python implementation of a stack using an array, so next let us discuss 

stack implementation using linked lists.

Stack implementation using linked lists
In order to implement the stacks using linked lists, we will write the Stack class in which all the 

methods will be declared; however, we will also use the node class similar to what we discussed 

in the previous chapter:

class Node: 

    def __init__(self, data=None): 

        self.data = data 

        self.next = None 

As we know, a node in a linked list holds data and a reference to the next item in the linked list. 

Implementing the stack data structure using a linked list can be treated as a standard linked list 

with some constraints, including that elements can be added or removed from the end of the list 

(push and pop operations) through the top pointer. This is shown in Figure 5.6:
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Figure 5.6: Representation of the stack using a linked list

Now let us look at the stack class. Its implementation is quite similar to a singly linked list. In 

addition, we need two things to implement a stack:

1.	 We first need to know which node is at the top of the stack so that we can apply the push 

and pop operations through this node

2.	 We would also like to keep track of the number of nodes in the stack, so we add a size 

variable to the Stack class

Consider the following code snippet for the Stack class:

class Stack: 

    def __init__(self): 

        self.top = None 

        self.size = 0 

In the above code, we have declared the top and size variables, which are initialized to None and 

0. Once we have initialized the Stack class, next, we will implement different operations in the 

Stack class. First, let us start with a discussion of the push operation.

Push operation
The push operation is an important operation on a stack; it is used to add an element at the top of 

the stack. In order to add a new node to the stack, firstly, we check if the stack already has some 

items in it or if it is empty. We are not required here to check the overflow condition because 

we are not required to fix the length of the stack, unlike the stack implementation using arrays.

If the stack already has some elements, then we have to do two things:

1.	 The new node must have its next pointer pointing to the node that was at the top earlier

2.	 We put this new node at the top of the stack by pointing self.top to the newly added node
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See the two instructions in the following Figure 5.7:

Figure 5.7: Workings of the push operation on the stack

If the existing stack is empty, and the new node to be added is the first element, we need to 

make this node the top node of the element. Thus, self.top will point to this new node. See the 

following Figure 5.8:

Figure 5.8: Insertion of the data element “egg” into an empty stack

The following is the complete implementation of the push operation, which should be defined 

in the Stack class:

   def push(self, data):

        # create a new node

       node = Node(data)

       if self.top:
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           node.next = self.top

           self.top = node

       else: 

           self.top = node

       self.size += 1

In the above code, we create a new node and store the data in that. Then we check the position 

of the top pointer. If it is not null, that means the stack is not empty, and we add the new node, 

updating two pointers as shown in Figure 5.7. In the else part, we make the top pointer point to 

the new node. Finally, we increase the size of the stack by incrementing the self.size variable.

To create a stack of three data elements, we use the following code:

words = Stack()

words.push('egg')

words.push('ham')

words.push('spam')

#print the stack elements.

current = words.top

while current:

      print(current.data)

      current = current.next

The output of the above code is as follows:

spam

ham

egg

In the above code, we created a stack of three elements – egg, ham, and spam. Next, we will discuss 

the pop operation in stack data structures.

Pop operation
Another important operation that is applied to the stack is the pop operation. In this operation, the 

topmost element of the stack is read, and then removed from the stack. The pop method returns 

the topmost element of the stack and returns None if the stack is empty.

To implement the pop operation on a stack, we do following:

1.	 First, check if the stack is empty. The pop operation is not allowed on an empty stack.
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2.	 If the stack is not empty, check whether the top node has its next attribute pointing to 

some other node. If so, it means the stack contains elements, and the topmost node is 

pointing to the next node in the stack. To apply the pop operation, we have to change the 

top pointer. The next node should be at the top. We do this by pointing self.top to self.

top.next. See the following Figure 5.9 to understand this:

Figure 5.9: Workings of the pop operation on the stack

3.	 When there is only one node in the stack, the stack will be empty after the pop operation. 

We have to change the top pointer to None. See the following Figure 5.10:

Figure 5.10: The pop operation on a stack with one element

4.	 Removing this node results in self.top pointing to None, as shown in Figure 5.10.

5.	 We also decrement the size of the stack by 1 if the stack is not empty.
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Here is the code for the pop operation for the stack in Python, which should be defined in the 

Stack class:

    def pop(self): 

        if self.top: 

            data = self.top.data 

            self.size -= 1  

            if self.top.next:  #check if there is more than one node.

                self.top = self.top.next 

            else: 

                self.top = None 

            return data 

        else: 

            print("Stack is empty")

In the above code, firstly, we check the position of the top pointer. If it is not null, it means the 

stack is not empty, and we can apply the pop operation such that if there is more than one data 

element in the stack, we move the top pointer to point to the next node (see Figure 5.9), and if 

that is the last node, we make the top pointer point to None (see Figure 5.10). We also decrease 

the size of the stack by decrementing the self.size variable.

Let’s say we have three data elements in a stack. We can use the following code to apply the pop 

operation to the stack:

words.pop()

current = words.top

while current:

     print(current.data)

     current = current.next

The output of the above code is as follows:

ham

egg

In the above code, we popped off the top element from the stack of three elements – egg, ham, spam.

Next, we will discuss the peek operation used on stack data structures.
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Peek operation
There is another important operation that can be applied to stacks—the peek method. This 

method returns the top element from the stack without deleting it from the stack. The only 

difference between peek and pop is that the peek method just returns the topmost element; 

however, in the case of a pop method, the topmost element is returned, and that element is also 

deleted from the stack.

The peek operation allows us to look at the top element without changing the stack. This operation 

is very straightforward. If there is a top element, return its data; otherwise, return None (thus, the 

behavior of peek matches that of pop). The implementation of the peek method is as follows (this 

should be defined in the Stack class):

    def peek(self): 

        if self.top: 

             return self.top.data 

        else: 

            print("Stack is empty")

         

In the above code, we first check the position of the top pointer using self.top. If it is not null, 

this means the stack is not empty, and we return the data value of the topmost node, otherwise, 

we print the message that the stack is empty. We can use the peek method to get the top element 

of the stack through the following code:

words.peek()

The output of the above code is:

spam

As per our original example of the three data elements being added to the stack, if we use the 

peek method, we get the top element, spam, as an output.

Stacks are an important data structure with several real-world applications. To better understand 

the concept of the stack, we will discuss one of these applications: bracket matching utilizing 

stacks.

Applications of stacks
As we know, array and linked list data structures can do whatever the stack or queue data structures 

(that we will discuss shortly) can do. 
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Despite this, these data structures are important because of their many applications. For example, 

in any application, it may be required to add or delete any element in a particular order. stack and 

queues can be used for this to avoid any potential bug in the program, perhaps accessing/deleting 

an element from the middle of the list (which can happen in the cases of arrays and linked lists).

Now let us look at an example bracket-matching application and see how we can use our stack 

to implement it.

Let us write a function check_brackets that will verify whether a given expression containing 

brackets—( ), [ ], or { }— is balanced or not, that is, whether the number of closing brackets 

matches the number of opening brackets. Stacks can be used for traversing a list of items in 

reverse order since they follow the LILO rule, which makes them a good choice for this problem.

The following code is for a separate check_brackets method defined outside the Stack class. 

This method will use the Stack class that we discussed in the previous section. The method takes 

an expression consisting of alphabetical characters and brackets as input and produces True or 

False as output for whether the given expression is valid or not, respectively. The code for the 

check_brackets method is as follows:

def check_brackets(expression):  
    brackets_stack = Stack()     #The stack class, we defined in previous 
section. 
    last = ' ' 
    for ch in expression:  
        if ch in ('{', '[', '('):  
            brackets_stack.push(ch)  
        if ch in ('}', ']', ')'): 
            last = brackets_stack.pop()  
            if last == '{' and ch == '}': 
                continue  
            elif last == '[' and ch == ']': 
                continue  
            elif last == '(' and ch == ')':  
                continue  
            else:  
                return False  
    if brackets_stack.size > 0: 
        return False  
    else:
        return True
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The above function parses each character in the expression passed to it. If it gets an open bracket, 

it pushes it onto the stack. If it gets a closing bracket, it pops the top element off the stack and 

compares the two brackets to make sure their types match-( should match ), [ should match ], 

and { should match }. If they don’t, we return False; otherwise, we continue parsing.

Once we reach the end of the expression, we need to do one last check. If the stack is empty, then 

it is fine and we can return True. But if the stack is not empty, then we have an opening bracket 

that does not have a matching closing bracket and we will return False.

We can test the bracket-matcher with the following code:

sl = ( 

   "{(foo)(bar)}[hello](((this)is)a)test", 

   "{(foo)(bar)}[hello](((this)is)atest", 

   "{(foo)(bar)}[hello](((this)is)a)test))" 

) 

for s in sl: 

   m = check_brackets(s) 

   print("{}: {}".format(s, m))

Only the first of the three statements should match. When we run the code, we get the following 

output:

{(foo)(bar)}[hello](((this)is)a)test: True

{(foo)(bar)}[hello](((this)is)atest: False 

{(foo)(bar)}[hello](((this)is)a)test)): False

In the above sample three expressions, we can see that the first expression is valid, while the other 

two are not valid expressions. Hence, the output of the preceding code is True, False, and False.

In summary, the push, pop, and peek operations of the stack data structure have a time complexity 

of O(1) since the addition and deletion operations can be directly performed in constant time 

through the top pointer. The stack data structure is simple; however, it is used to implement 

many functionalities in real-world applications. For example, the back and forward buttons in 

web browsers are implemented using stacks. Stacks are also used to implement the undo and 

redo functionalities in word processors.

We have discussed the stack data structure and its implementations using arrays and linked lists. 

In the next section, we will discuss the queue data structure and the different operations that 

can be applied to queues.
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Queues
Another important data structure is the queue, which is used to store data similarly to stacks and 

linked lists, with some constraints and in a specific order. The queue data structure is very similar 

to the regular queue you are accustomed to in real life. It is just like a line of people waiting to 

be served in sequential order at a shop. Queues are a fundamentally important concept to grasp 

since many other data structures are built on them.

A queue works as follows. The first person to join the queue usually gets served first, and everyone 

will be served in the order in which they joined the queue. The acronym FIFO best explains the 

concept of a queue. FIFO stands for first in, first out. When people are standing in a queue waiting 

for their turn to be served, service is only rendered at the front of the queue. Therefore, people are 

dequeued from the front of the queue and enqueued from the back where they wait their turn. 

The only time people exit the queue is when they have been served, which only occurs at the very 

front of the queue. Refer to the following diagram, where people are standing in the queue, and 

the person at the front will be served first:

Figure 5.11: Illustration of a queue

To join the queue, participants must stand behind the last person in the queue. This is the only 

legal or permitted way the queue accepts new entrants. The length of the queue does not matter.

A queue is a list of elements stored in sequence with the following constraints:

1.	 Data elements can only be inserted from one end, the rear end/tail of the queue.

2.	 Data elements can only be deleted from the other end, the front/head of the queue.

3.	 Only data elements from the front of the queue can be read.

The operation to add an element to the queue is known as enqueue. Deleting an element from the 

queue uses the dequeue operation. Whenever an element is enqueued, the length or size of the 

queue increments by 1, and dequeuing an item reduces the number of elements in the queue by 1. 
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We can see this concept in the doubly linked list shown in Figure 5.12, in which we can add new 

elements to the tail/rear end and elements can only be deleted from the head/front end of the 

queue:

Figure 5.12: Queue implementation using the stack data structure

The reader is advised to not confuse the notation: the enqueue operation will be performed only 

at the tail/rear end and the dequeue operation will be performed from the head/front end. It 

should be fixed that one end will be used for enqueue operations and the other end will be used 

for dequeue operations; however, either end can be used for each of these operations. It is good 

in general practice to fix that we perform enqueue operations from the rear end and dequeue 

operations from the front end. To demonstrate these two operations, the following table shows 

the effects of adding and removing elements from a queue:

Queue operation Size Contents Operation results

queue() 0 [] Queue object created, which is empty.

enqueue- "packt" 1 ['packt'] One item, packt, is added to the queue.

enqueue 
"publishing"

2 [ 'packt', 
'publishing']

One more item, publishing, is added to the 

queue.

Size() 2 [ 'packt', 
'publishing']

Return the number of items in the queue, 

which is 2 in this example.

dequeue() 1 ['publishing'] The packt item is dequeued and returned. 

(This item was added first, so it is removed 

first.)
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dequeue() 0 [] The publishing item is dequeued and 

returned. (This is the last item added, so it is 

returned last.)

Table 5.2: Illustration of different operations on an example queue

Queue data structures in Python have a built-in implementation, queue.Queue, and can also be 

implemented using the deque class from the collections module. Queue data structures can be 

implemented using various methods in Python, namely, (1) Python’s built-in list, (2) stacks, and 

(3) node-based linked lists. We will discuss them one by one in detail.

Python’s list-based queues
Firstly, in order to implement a queue based on Python’s list data structure, we create a ListQueue 

class, in which we declare and define the different functionalities of queue. In this method, we 

store the actual data in Python’s list data structure. The ListQueue class is defined as follows:

class ListQueue: 

    def __init__(self): 

        self.items = [] 

        self.front = self.rear = 0

        self.size = 3     # maximum capacity of the queue

In the __init__ initialization method, the items instance variable is set to [], which means the 

queue is empty when created. The size of the queue is also set to 4 (as an example in this code), 

which is the maximum capacity for the number of elements that can be stored in the queue. 

Moreover, the initial position of the rear and front indices are also set to 0. enqueue and dequeue 

are important methods in queues, and we will discuss them next.

The enqueue operation
The enqueue operation adds an item at the end of the queue. Consider the example of adding 

elements to the queue to understand the concept shown in Figure 5.13. We start with an empty 

list. Initially, we add an item 3 at index 0. 
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Next, we add an item 11 at index 1, and move the rear pointer every time we add an element:

Figure 5.13: Example of an enqueue operation on the queue

In order to implement the enqueue operation, we use the append method of the List class to 

append items (or data) to the end of the queue. See the following code for the implementation 

of the enqueue method. This should be defined in the ListQueue class:

    def enqueue(self, data):  

        if self.size == self.rear:

            print("\n Queue is full")

        else:   

            self.items.append(data)  

            self.rear += 1

Here, we first check whether the queue is full by comparing the maximum capacity of the queue 

with the position of the rear index. Further, if there is space in the queue, we use the append 

method of the List class to add the data at the end of the queue and increase the rear pointer by 1.

To create a queue using the ListQueue class, we use the following code:

q= ListQueue()

q.enqueue(20)

q.enqueue(30)

q.enqueue(40)
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q.enqueue(50)

print(q.items)

The output of the above code is as follows:

Queue is full

[20, 30, 40]

In the above code, we add can a maximum of three data elements since we have set the maximum 

capacity of the queue to be 3. After adding three elements, when we try to add another new 

element, we get a message that the queue is full.

The dequeue operation
The dequeue operation is used to read and delete items from the queue. This method returns the 

front item from the queue and deletes it. Consider the example of dequeuing elements from the 

queue shown in Figure 5.14. Here, we have a queue containing elements {3, 11, 7, 1, 4, 2}. 

In order to dequeue any element from this queue, the element inserted first will be removed first, 

so the item 3 is removed. When we dequeue any element from the queue, we also decrease the 

rear pointer by 1:

Figure 5.14. Example of a dequeue operation on a queue
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The following is the implementation of the dequeue method, which should be defined in the 

ListQueue class:

    def dequeue(self):

        if self.front == self.rear:

            print("Queue is empty")

        else:

            data = self.items.pop(0)    # delete the item from front end 
of the queue        

            self.rear -= 1

            return data

In the above code, we firstly check whether the queue is already empty by comparing the front 

and rear pointers. If both rear and front pointers are same, it means the queue is empty. If there 

are some elements in the queue, we use the pop method to dequeue an element. The Python List 

class has a method called pop(). The pop method does the following:

1.	 Deletes the last item from the list

2.	 Returns the deleted item from the list back to the user or code that called it

The item at the first position pointed to by the front variable is popped and saved in the data 

variable. We also decrease the rear variable by 1, since one data item has been deleted from the 

queue. Finally, in the last line of the method, the data is returned.

To dequeue any element from an existing queue (say items {20, 30, 40}), we use the following 

code:

data = q.dequeue()

print(data)

print(q.items)

The output of the above code is as follows:

20

[30, 40]

In the above code, when we dequeue an element from the queue, we get the element 20, which 

was the first added.

The limitation of this approach to queue implementation is that the length of the queue is fixed, 

which may be not desirable for an efficient implementation of a queue. Now, let’s discuss the 

linked list-based implementation of queues.
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Linked list based queues
A queue data structure can also be implemented using any linked list, such as singly-linked or 

doubly-linked lists. We already discussed the implementation of singly or doubly linked lists in 

the previous Chapter 4, Linked Lists. We implement queues using linked lists that follow the FIFO 

property of the queue data structure.

Let us discuss the implementation of a queue using a doubly-linked list. For this, we start with 

the implementation of the node class the same as the node we defined when we discussed doubly-

linked lists in the previous Chapter 4, Linked Lists. Moreover, the Queue class is very similar to that 

of the doubly-linked list class. Here, we have head and tail pointers, where tail points to the 

end of the queue (the rear end) that will be used for adding new elements, and the head pointer 

points to the start of the queue (the front end) that will be used for dequeuing the elements from 

the queue. The implementation of the Queue class is shown in the following code:

class Node(object):

    def __init__(self, data=None, next=None, prev=None):

        self.data = data

        self.next = next

        self.prev = prev

class Queue: 

    def __init__(self): 

        self.head = None 

        self.tail = None 

        self.count = 0 

Initially, the self.head and self.tail pointers are set to None upon creation of an instance of 

the Queue class. To keep a count of the number of nodes in Queue, the count instance variable is 

also maintained here and initially set to 0.

The enqueue operation
Elements are added to a Queue object via the enqueue method. The data elements are added 

through nodes. The enqueue method code is very similar to the append operation of the doubly-

linked list that we discussed in Chapter 4, Linked Lists.

The enqueue operation creates a node from the data passed to it and appends it to the tail of 

the queue. 
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Firstly, we check if the new node to be enqueued is the first node, and whether the queue is empty 

or not. If it is empty, the new node becomes the first node of the queue, as shown in Figure 5.15:

Figure 5.15: Illustration of enqueuing a new node in an empty queue

If the queue is not empty, the new node is appended to the rear end of the queue. In order to do 

this and enqueue an element to an existing queue, we append the node by updating three links: 

(1) the previous pointer of the new node should point to the tail of the queue, (2) the next pointer 

of the tail node should point to the new node, and (3) the tail pointer should be updated to the 

new node. All these links are shown in Figure 5.16:

Figure 5.16: Illustration of links to be updated for an enqueue operation in a queue

The enqueue operation is implemented in the Queue class, as shown in the following code:

    def enqueue(self, data): 

        new_node = Node(data, None, None) 

        if self.head == None: 
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            self.head = new_node 

            self.tail = self.head 

        else: 

            new_node.prev = self.tail 

            self.tail.next = new_node 

            self.tail = new_node 

        self.count += 1

In the above code, we first check whether the queue is empty or not. If head points to None, this 

means the queue is empty. If it is empty, the new node is made the first node of the queue, and we 

make both self.head and self.tail point to the newly created node. If the queue is not empty, 

we append the new node to the rear of the queue by updating the three links shown in Figure 

5.16. Finally, the total count of elements in the queue is increased by the line self.count += 1.

The worst-case time complexity of an enqueue operation on the queue is O(1), since any item can 

be appended directly through the tail pointer in constant time.

The dequeue operation
The other operation that makes a doubly-linked list behave like a queue is the dequeue method. 

This method removes the node at the front of the queue, as shown in Figure 5.17. Here, we first 

check whether the dequeuing element is the last node in the queue, and if so, we will make the 

queue empty after the dequeue operation. If this is not the case, we dequeue the first element by 

updating the front/head pointer to the next node and the previous pointer of the new head to 

None, as shown in Figure 5.17:

Figure 5.17: Illustration of the dequeue operation on a queue 
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The implementation of the dequeue operation on a queue is very similar to deleting the first 

element from the given doubly-linked list, as the following code for the dequeue operation shows:

    def dequeue(self): 
        if self.count == 1: 
            self.count -= 1 
            self.head = None 
            self.tail = None 
        elif self.count > 1: 
            self.head = self.head.next 
            self.head.prev = None 
        elif self.count <1:
            print("Queue is empty")
        self.count -= 1

In order to dequeue any element from the queue, we firstly check the number of items in the queue 

using the self.count variable. If the self.count variable is equal to 1, it means the dequeuing 

element is the last element, and we update the head and tail pointers to None.

If the queue has many nodes, then the head pointer is shifted to point to the next node after self.

head by updating the two links shown in Figure 5.17. We also check whether there is an item left in 

the queue, and if not, then a message is printed that the queue is empty. Finally, the self.count 

variable is decremented by 1.

The worst-case time complexity of a dequeue operation in the queue is O(1), since any item can 

be directly removed via the head pointer in constant time.

Stack-based queues
A queue is a linear data structure in which enqueue operations are performed from one end and 

deletion (dequeue) operations are performed from the other end following the FIFO principle. 

There are two methods to implement queues using stacks:

•	 When the dequeue operation is costly

•	 When the enqueue operation is costly

Approach 1: When the dequeue operation is costly
We use two stacks for the implementation of the queue. In this approach, the enqueue operation 

is straightforward. A new element can be enqueued in the queue using the push operation on 

the first of the two stacks (in other words, Stack-1) used for the implementation of the queue. 
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The enqueue operation is depicted in Figure 5.18, showing an example of enqueuing elements 

{23, 13, 11} to the queue:

Figure 5.18: Illustration of an enqueue operation in the queue using approach 1

Further more, the dequeue operation can be implemented with two stacks (Stack-1 and Stack-2) 

using the following steps:

1.	 Firstly, the elements are removed (popped off) from Stack-1, and then one by one all the 

elements are added (pushed) to Stack-2.

2.	 The topmost data element will be popped off Stack-2 and will be returned as the desired 

element.

3.	 Finally, the remaining elements are popped off Stack-2 one by one and then pushed again 

to Stack-1.

Let’s look at an example to help understand this concept. Let’s say we have three elements stored 

in the queue {23, 13, 11}, and now we want to dequeue an element from this queue. The 

complete process is shown in Figure 5.19 following the above three steps. As you might notice, this 

implementation follows the FIFO property of queues and hence 23 is returned, as it was added first:

Figure 5.19: Illustration of a dequeue operation in the queue using approach 1
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The worst-case time complexity of enqueue operations is O(1), since any element can be added 

directly to the first stack, and the time complexity of the dequeue operation is O(n), since all 

elements are accessed and transferred from Stack-1 to Stack-2.

Approach 2: When the enqueue operation is costly
In this method, the enqueue operation is quite similar to the dequeue operation of the previous approach 

we just discussed, and the dequeue operation is likewise similar to the previous enqueue operation.

In order to implement the enqueue operation, we follow the steps:

1.	 Move all the elements from Stack-1 to Stack-2.

2.	 Push the element we want to enqueue to Stack-2.

Move all the elements from Stack-2 to Stack-1 one by one. Pop the elements from Stack-2 

and push them to Stack-1.

Let’s take an example to understand this concept. Let’s say we want to enqueue three elements 

{23, 13, 11} in the queue one by one. We do this by following the above three steps, as shown 

in Figure 5.20, Figure 5.21, and Figure 5.22:

Figure 5.20: Enqueueing element 23 to an empty queue using approach 2

Figure 5.21: Enqueueing element 13 to the existing queue using approach 2
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Figure 5.22: Enqueueing element 11 to the queue using approach 2

The dequeue operation can be directly implemented by applying a pop operation to Stack-1. Let’s 

take an example to understand this. Assuming we have already enqueued three elements, and 

we want to apply the dequeue operation, we can simply pop the top element off the stack, as 

shown in Figure 5.23:

Figure 5.23: Illustration of a dequeue operation on a queue using approach 2

In this second approach, the time complexity for the enqueue operation is O(n), and for the 

dequeue operation, it is O(1).

Next, we discuss the implementation of a queue using two stacks using approach-1, in which the 
dequeue operation is costly. In order to implement queues using two stacks, we initially set two 
stack instance variables to create an empty queue upon initialization. The stacks, in this case, are 
simply Python lists that allow us to call the push and pop methods on them, which allow us to get 
the functionality of the enqueue and dequeue operations. Here is the Queue class:

class Queue: 
    def __init__(self): 
        self.Stack1 = [] 
        self.Stack2 = [] 
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Stack1 is only used to store elements that are added to the queue. No other operation can be 

performed on this stack.

Enqueue operation
The enqueue method is used to add items to the queue. This method only receives the data that 

is to be appended to the queue. This data is then passed to the append method of Stack1 in the 

Queue class. Further, the append method is used to mimic the push operation, which pushes 

elements to the top of the stack. The following code is the implementation of enqueue using the 

stack in Python, which should be defined in the Queue class:

def enqueue(self, data): 

    self.Stack1.append(data) 

To enqueue data onto Stack1, the following code does the job:

queue = Queue() 

queue.enqueue(23) 

queue.enqueue(13) 

queue.enqueue(11) 

print(queue.Stack1)

The output of Stack1 on the queue is as follows:

[23, 13, 11]

Next, we will examine the implementation of the dequeue operation.

Dequeue operation
The dequeue operation is used to delete the elements from the queue in the same order in which 

the items were added, according to the FIFO principle. New elements are added to the queue in 

Stack1. Further, we use another stack, that is, Stack2, to delete the elements from the queue. The 

delete (dequeue) operation will only be performed through Stack2. To better understand how 

Stack2 can be used to delete the items from the queue, let us consider the following example.

Initially, assume that Stack2 was filled with the elements 5, 6, and 7, as shown in Figure 5.24:
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Figure 5.24. Example of Stack1 in a queue

Next, we check if the Stack2 is empty or not. As it is empty at the start, we move all the elements 

delete from Stack1 to Stack2 using the pop operation on Stack1 for all the element and then 

push them to Stack2. Now, Stack1 becomes empty and Stack2 has all the elements. We show 

this in Figure 5.25 for more clarity:

Figure 5.25. Demonstration of Stack1 and Stack2 in a queue

Now, if the Stack is not empty, in order to pop an element from this queue, we apply the pop 

operation to Stack2, and we get the element 5, which is correct as it was added first and should 

be the first element to be popped off from the queue.
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Here is the implementation of the dequeue method for the queue, which should be defined in 

the Queue class:

    def dequeue(self):   

        if not self.Stack2:  

            while self.Stack1:  

                self.Stack2.append(self.Stack1.pop())  

        if not self.Stack2:

            print("No element to dequeue")

            return

        return self.Stack2.pop()

The if statement first checks whether Stack2 is empty. If it is not empty, we proceed to remove 

the element at the front of the queue using the pop method, as follows:

return self.Stack2.pop() 

If Stack2 is empty, all the elements of Stack1 are moved to Stack2:

while self.Stack1: 

    self.Stack2.append(self.Stack1.pop()) 

The while loop will continue to be executed as long as there are elements in Stack1.

The self.Stack1.pop() statement will remove the last element added to Stack1 and immediately 

pass the popped data to the self.Stack2.append() method.

Let us consider some example code to understand the operations on the queue. We firstly use the 

Queue implementation to add three items to the queue, that is, 5, 6, and 7. Next, we apply dequeue 

operations to remove items from the queue using the following code:

queue = Queue()  

queue.enqueue(23)  

queue.enqueue(13)  

queue.enqueue(11)  

print(queue.Stack1) 

 

queue.dequeue()    

print(queue.Stack2)
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The output for the preceding code is as follows:

 [23, 13, 11] 

 [13, 11] 

 

The preceding code snippet firstly adds elements to a queue and prints out the elements within 

the queue. Next, the dequeue method is called, after which a change in the number of elements 

is observed when the queue is printed out again.

The enqueue and dequeue operations on the queue data structure using a stack with approach 

1 have time complexities of O(1), and O(n) respectively. The reason for this is that the enqueue 

operation is straightforward as a new element can be appended directly, whereas in the dequeue 

operation, all the n elements need to be accessed and moved to the other stack.

Overall, the linked list-based implementation is the most efficient since both the enqueue and 

dequeue operations can be performed in O(1) time and there is no constraint on the size of the 

queue. In the stack-based implementation of queues, one of the operations is costly, be it enqueue 

or dequeue.

Applications of queues
Queues can be used to implement a variety of functionalities in many real computer-based 

applications. For instance, instead of providing each computer on a network with its own printer, 

a network of computers can be made to share one printer by queuing what each computer wants 

to print. When the printer is ready to print, it will pick one of the items (usually called jobs) in the 

queue to print out. It will print the command from the computer that has given the command 

first and will choose the following jobs in the order in which they were submitted by the different 

computers.

Operating systems also queue processes to be executed by the CPU. Let’s create an application 

that makes use of a queue to create a bare-bones media player.

Most music player software allows users to add songs to a playlist. Upon hitting the play button, 

all the songs in the main playlist are played one after the other. Sequential playing of the songs 

can be implemented with queues because the first song to be queued is the first song that is to 

be played. This aligns with the FIFO acronym. We will implement our own playlist queue to play 

songs in the FIFO manner.
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Our media player queue will only allow for the addition of tracks and a way to play all the tracks 

in the queue. In a full-blown music player, threads would be used to improve how the queue is 

interacted with, while the music player continues to be used to select the next song to be played, 

paused, or even stopped.

The track class will simulate a musical track:

from random import randint 

class Track: 

    def __init__(self, title=None): 

        self.title = title 

        self.length = randint(5, 10) 

Each track holds a reference to the title of the song and also the length of the song. The length 

of the song is a random number between 5 and 10. The random module in Python provides the 

randint function to enable us to generate random numbers. The class represents any MP3 track or 

file that contains music. The random length of a track is used to simulate the number of seconds 

it takes to play a track.

To create a few tracks and print out their lengths, we do the following:

track1 = Track("white whistle") 

track2 = Track("butter butter") 

print(track1.length) 

print(track2.length) 

The output of the preceding code is as follows:

6

7

Your output may be different depending on the random length generated for the two tracks.

Now, let’s create our queue using inheritance. We simply inherit from the Queue class:

import time 

class MediaPlayerQueue(Queue): 

To add tracks to the queue, an add_track method is created in the MediaPlayerQueue class:

    def add_track(self, track):

        self.enqueue(track) 
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The method passes a track object to the enqueue method of the queue super class. This will, in 

effect, create a Node using the track object (as the node’s data) and point either the tail if the 

queue is not empty, or both the head and tail if the queue is empty, to this new node.

Assuming the tracks in the queue are played sequentially, from the first track added to the last 

(FIFO), then the play function has to loop through the elements in the queue:

def play(self):

        while self.count > 0:

            current_track_node = self.dequeue()

            print("Now playing {}".format(current_track_node.data.title)) 

            time.sleep(current_track_node.data.length)

self.count keeps count of when a track is added to our queue and when tracks have been 

dequeued. If the queue is not empty, a call to the dequeue method will return the node (which 

houses the track object) at the front of the queue. The print statement then accesses the title of 

the track through the data attribute of the node. To further simulate the playing of a track, the 

time.sleep() method halts program execution till the number of seconds for the track has elapsed:

time.sleep(current_track_node.data.length)

The media player queue is made up of nodes. When a track is added to the queue, the track is 

hidden in a newly created node and associated with the data attribute of the node. That explains 

why we access a node’s track object through the data property of the node returned by the call 

to dequeue.

You can see that, instead of our node object just storing any data, it stores tracks in this case.

Let’s take our music player for a spin:

track1 = Track("white whistle") 

track2 = Track("butter butter") 

track3 = Track("Oh black star") 

track4 = Track("Watch that chicken") 

track5 = Track("Don't go") 

We create five track objects with random words as titles, as follows:

print(track1.length) 

print(track2.length) 
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The output is as follows:

 8

 9

The output may be different from what you get on your machine due to the random length.

Next, an instance of the MediaPlayerQueue class is created using the following code snippet:

media_player = MediaPlayerQueue()

The tracks will be added, and the output of the play function should print out the tracks being 

played in the same order in which we queued them:

media_player.add_track(track1) 

media_player.add_track(track2) 

media_player.add_track(track3) 

media_player.add_track(track4) 

media_player.add_track(track5) 

media_player.play() 

The output of the preceding code is as follows:

    Now playing white whistle

    Now playing butter butter

    Now playing Oh black star

    Now playing Watch that chicken

    Now playing Don't go

Upon execution of the program, it can be seen that the tracks are played in the order in which 

they were queued. When playing each track, the system also pauses for the number of seconds 

equal to the length of the track.

Summary
In this chapter, we discussed two important data structures, namely, stacks and queues. We 

have seen how these data structures closely mimic stacks and queues in the real world. Concrete 

implementations, together with their varying types, were explored. We later applied the concepts 

of stacks and queues to write real-life programs.

We will consider trees in the next chapter. The major operations on trees will be discussed, along 

with the different spheres of application of this data structure.
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Exercises
1.	 Which of the following options is a true queue implementation using linked lists?

a.	 If, in the enqueue operation, new data elements are added at the start of the list, 

then the dequeue operation must be performed from the end.

b.	 If, in the enqueue operation, new data elements are added to the end of the list, 

then the enqueue operation must be performed from the start of the list.

c.	 Both of the above.

d.	 None of the above.

2.	 Assume a queue is implemented using a singly-linked list that has head and tail pointers. 

The enqueue operation is implemented at the head, and the dequeue operation is 

implemented at the tail of the queue. What will be the time complexity of the enqueue 

and dequeue operations?

3.	 What is the minimum number of stacks required to implement a queue?

4.	 The enqueue and dequeue operations in a queue are implemented efficiently using an 

array. What will be the time complexity for both of these operations?

5.	 How can we print the data elements of a queue data structure in reverse order?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4




6
Trees

A tree is a hierarchical form of data structure. Data structures such as lists, queues, and stacks 

are linear in that the items are stored in a sequential way. However, a tree is a non-linear data 

structure, as there is a parent-child relationship between the items. The top of the tree’s data 

structure is known as a root node. This is the ancestor of all other nodes in the tree.

Tree data structures are very important, owing to their use in various applications, such as pars-

ing expressions, efficient searches, and priority queues. Certain document types, such as XML and 

HTML, can also be represented in a tree. 

In this chapter, we will cover the following topics:

•	 Terms and definitions of trees

•	 Binary trees and binary search trees

•	 Tree traversal

•	 Binary search trees

Terminology
Let’s consider some of the terminology associated with tree data structures.

To understand trees, we need to first understand the basic concepts related to them. A tree is a 

data structure in which data is organized in a hierarchical form. 
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Figure 6.1 contains a typical tree consisting of character nodes lettered A through to M:

Figure 6.1: Example tree data structure 

Here is a list of terms associated with a tree:

•	 Node: Each circled letter in the preceding diagram represents a node. A node is any data 

structure that stores data.

•	 Root node: The root node is the first node from which all other nodes in the tree descend 

from. In other words, a root node is a node that does not have a parent node. In every tree, 

there is always one unique root node. The root node is node A in the above example tree.

•	 Subtree: A subtree is a tree whose nodes descend from some other tree. For example, nodes 

F, K, and L form a subtree of the original tree.

•	 Degree: The total number of children of a given node is called the degree of the node. A 

tree consisting of only one node has a degree of 0. The degree of node A in the preceding 

diagram is 2, the degree of node B is 3, the degree of node C is 3, and, the degree of node G is 1.

•	 Leaf node: The leaf node does not have any children and is the terminal node of the given 

tree. The degree of the leaf node is always 0. In the preceding diagram, the nodes J, E, K, 

L, H, M, and I are all leaf nodes.
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•	 Edge: The connection among any given two nodes in the tree is called an edge. The total 

number of edges in a given tree will be a maximum of one less than the total nodes in the 

tree. An example edge is shown in Figure 6.1.

•	 Parent: A node that has a subtree is the parent node of that subtree. For example, node B 

is the parent of nodes D, E, and F, and node F is the parent of nodes K and L.

•	 Child: This is a node that is descendant from a parent node. For example, nodes B and C 

are children of parent node A, while nodes H, G, and I are the children of parent node C. 

•	 Sibling: All nodes with the same parent node are siblings. For example, node B is the 

sibling of node C, and, similarly, nodes D, E, and F are also siblings. 

•	 Level: The root node of the tree is considered to be at level 0. The children of the root node 

are considered to be at level 1, and the children of the nodes at level 1 are considered to be 

at level 2, and so on. For example, in Figure 6.1, root node A is at level 0, nodes B and C are 

at level 1, and nodes D, E, F, H, G, and I are at level 2.

•	 Height of a tree: The total number of nodes in the longest path of the tree is the height of 

the tree. For example, in Figure 6.1, the height of the tree is 4, as the longest paths, A-B-D-J, 

A-C-G-M, and A-B-F-K, all have a total number of four nodes each.

•	 Depth: The depth of a node is the number of edges from the root of the tree to that node. 

In the preceding tree example, the depth of node H is 2.

In linear data structures, data items are stored in sequential order, whereas non-linear data 

structures store data items in a non-linear order, where a data item can be connected to more 

than one other data item. All of the data items in linear data structures, such as arrays, lists, stacks, 

and queues, can be traversed in one pass, whereas this is not possible in the case of non-linear 

data structures such as trees; they store the data differently from other linear data structures.

In a tree data structure, the nodes are arranged in a parent-child relationship. There should not 

be any cycle among the nodes in trees. The tree structure has nodes to form a hierarchy, and a 

tree that has no nodes is called an empty tree.

First, we’ll discuss one of the most important kind of trees, that is, the binary tree.

Binary trees
A binary tree is a collection of nodes, where the nodes in the tree can have zero, one, or two child 

nodes. A simple binary tree has a maximum of two children, that is, the left child and the right child. 
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For example, in the binary tree shown in Figure 6.2, there is a root node that has two children (a 

left child, a right child):

Figure 6.2: Example of a binary tree

The nodes in the binary tree are organized in the form of the left subtree and right subtree. For 

example, a tree of five nodes is shown in Figure 6.3 that has a root node, R, and two subtrees, i.e. 

left subtree, T1, and right subtree, T2:

Figure 6.3: An example binary tree of five nodes

A regular binary tree has no other rules as to how elements are arranged in the tree. It should only 

satisfy the condition that each node should have a maximum of two children.

A tree is called a full binary tree if all the nodes of a binary tree have either zero or two children, 

and if there is no node that has one child. An example of a full binary tree is shown in Figure 6.4:
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Figure 6.4: An example of a full binary tree

A perfect binary tree has all the nodes in the binary tree filled, and it doesn’t have space vacant 

for any new nodes; if we add new nodes, they can only be added by increasing the tree’s height. 

A sample perfect binary tree is shown in Figure 6.5:

Figure 6.5: An example of a perfect binary tree

A complete binary tree is filled with all possible nodes except with a possible exception at the 

lowest level of the tree. All nodes are also filled on the left side. A complete binary tree is shown 

in Figure 6.6:

Figure 6.6: An example of a complete binary tree
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A binary tree can be balanced or unbalanced. In a balanced binary tree, the difference in height of 

the left and right subtrees for every node in the tree is no more than 1. A balanced tree is shown 

in Figure 6.7:

Figure 6.7: An example of a balanced tree

An unbalanced binary tree is a binary tree that has a difference of more than 1 between the right 

subtree and left subtree. An example of an unbalanced tree is shown in Figure 6.8:

Figure 6.8: An example of an unbalanced tree

Next, we’ll discuss the details of the implementation of a simple binary tree.

Implementation of tree nodes
As we have already discussed in previous chapters, a node consists of data items and references 

to other nodes. 
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In a binary tree node, each node will contain data items and two references that will point to 

their left and right children, respectively. Let’s look at the following code for building a binary 

tree Node class in Python:

class Node:

    def __init__(self, data):

        self.data = data

        self.right_child = None

        self.left_child = None

To better understand the working of this class, let’s first create a binary tree of four nodes—n1, 

n2, n3, and n4—as shown in Figure 6.9:

Figure 6.9: An example binary tree of four nodes

For this, we firstly create four nodes—n1, n2, n3, and n4:

n1 = Node("root node")

n2 = Node("left child node")

n3 = Node("right child node")

n4 = Node("left grandchild node")

Next, we connect the nodes to each other according to the previously discussed properties of a 
binary tree. n1 will be the root node, with n2 and n3 as its children. Furthermore, n4 will be the 
left child of n2. The next code snippet shows the connections among different nodes of the tree 
according to the desired tree, as shown in Figure 6.9:

n1.left_child = n2

n1.right_child = n3

n2.left_child = n4
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Here, we have created a very simple tree structure of four nodes. After creating a tree, one of the 

most important operations that is to be applied to trees is traversal. Next, we’ll understand how 

we can traverse the tree.

Tree traversal
The method to visit all the nodes in a tree is called tree traversal. In the case of a linear data struc-

ture, data element traversal is straightforward since all the items are stored in a sequential manner, 

so each data item is visited only once. However, in the case of non-linear data structures, such 

as trees and graphs, traversal algorithms are important. To understand traversing, let’s traverse 

the left subtree of the binary tree we created in the previous section. For this, we start from the 

root node, print out the node, and move down the tree to the next left node. We keep doing this 

until we have reached the end of the left subtree, like so:

current = n1

while current:

    print(current.data)

    current = current.left_child

The output of traversing the preceding code block is as follows:

root node

left child node

left grandchild node

There are multiple ways to process and traverse the tree that depend upon the sequence of visit-

ing the root node, left subtree, or right subtree. Mainly, there are two kinds of approaches, firstly, 

one in which we start from a node and traverse every available child node, and then continue to 

traverse to the next sibling. There are three possible variations of this method, namely, in-order, 

pre-order, and post-order. Another approach to traverse the tree is to start from the root node 

and then visit all the nodes on each level, and process the nodes level by level. We will discuss 

each approach in the following sections.

In-order traversal
In-order tree traversal works as follows: we start traversing the left subtree recursively, and once 

the left subtree is visited, the root node is visited, and then finally the right subtree is visited 

recursively. It has the following three steps:

•	 We start traversing the left subtree and call an ordering function recursively
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•	 Next, we visit the root node

•	 Finally, we traverse the right subtree and call an ordering function recursively

So, in a nutshell, for in-order tree traversal, we visit the nodes in the tree in the order of left sub-

tree, root, then the right subtree.

Let’s consider an example tree shown in Figure 6.10 to understand in-order tree traversal:

Figure 6.10: An example binary tree for in-order tree traversal

In the binary tree shown in Figure 6.10, the working of the in-order traversal is as follows: first, 

we recursively visit the left subtree of the root node A. The left subtree of node A has node B as 

the root node, so we again go to the left subtree of root node B, that is, node D. We recursively go 

to the left subtree of root node D so that we get the left child of root node D. We visit the left child, 

G, then visit the root node, D, and then visit the right child, H.

Next, we visit node B and then visit node E. In this manner, we have visited the left subtree of root 

node A. Next, we visit root node A. After that, we visit the right subtree of root node A. Here, we 

first go to the left subtree of root node C, which is null, so next, we visit node C, and then we visit 

the right child of node C, that is, node F.

Therefore, the in-order traversal for this example tree is G-D-H-B-E-A-C-F.

The Python implementation of a recursive function to return an in-order listing of nodes in a 

tree is as follows:

def inorder(root_node):

    current = root_node

    if current is None:
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        return

    inorder(current.left_child)

    print(current.data)

    inorder(current.right_child)

inorder(n1)

Firstly, we check if the current node is null or empty. If it is not empty, we traverse the tree. We 

visit the node by printing the visited node. In this case, we first recursively call the inorder func-

tion with current.left_child, then we visit the root node, and finally, we recursively call the 

inorder function with current.right_child.

Finally, when we apply the above in-order traversal algorithm on the above sample tree of four 

nodes. With n1 as the root node, we get the following output:

left grandchild node

left child node

root node

right child node

Next, we will discuss pre-order traversal.

Pre-order traversal
Pre-order tree traversal traverses the tree in the order of the root node, the left subtree, and then 

the right subtree. It works as follows:

1.	 We start traversing with the root node

2.	 Next, we traverse the left subtree and call an ordering function with the left subtree re-

cursively

3.	 Next, we visit the right subtree and call an ordering function with the right subtree re-

cursively

Consider the example tree shown in Figure 6.11 to understand pre-order traversal:
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Figure 6.11: An example tree to understand pre-order traversal

The pre-order traversal for the example binary tree shown in Figure 6.11 works as follows: first, 

we visit root node A. Next, we go to the left subtree of root node A. The left subtree of node A has 

node B as the root, so we visit this root node, and then go to the left subtree of root node B, node D. 

We visit node D and then the left subtree of root node D, and then we visit the left child, G, which 

is the subtree of root node D. Since there is no child of node G, we visit the right subtree. We visit 

the right child of the subtree of root node D, node H. Next, we visit the right child of the subtree 

of root node B, node E.

In this manner, we have visited root node A and the left subtree of root node A. Next, we visit the 

right subtree of root node A. Here, we visit root node C, and then we go to the left subtree of root 

node C, which is null, so we visit the right child of node C, node F.

The pre-order traversal for this example tree would be A-B-D-G-H-E-C-F.

The recursive function for the pre-order tree traversal is as follows:

def preorder(root_node):

    current = root_node

    if current is None:

        return

    print(current.data)

    preorder(current.left_child)

    preorder(current.right_child)

preorder(n1)
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First, we check if the current node is null or empty. If it is empty, it means the tree is an empty 

tree, and if the current node is not empty, then we traverse the tree using the pre-order algorithm. 

The pre-order traversal algorithm traverses the tree in the order of root, left subtree, and right 

subtree recursively, as shown in the above code. Finally, when we apply the above pre-order 

traversal algorithm on the above sample tree of four nodes with n1 node as the root node, we get 

the following output:

root node

left child node

left grandchild node

right child node

Next, we will discuss post-order traversal.

Post-order traversal
Post-order tree traversal works as follows:

1.	 We start traversing the left subtree and call an ordering function recursively

2.	 Next, we traverse the right subtree and call an ordering function recursively

3.	 Finally, we visit the root node

So, in a nutshell, for post-order tree traversal, we visit the nodes in the tree in the order of the left 

subtree, the right subtree, and finally the root node.

Consider the following example tree shown in Figure 6.12 to understand post-order tree traversal:

Figure 6.12: An example tree to understand pre-order traversal



Chapter 6 191

In the preceding figure, Figure 6.12, we first visit the left subtree of root node A recursively. We 

get to the last left subtree, that is, root node D, and then we visit the node to the left of it, which 

is node G. We visit the right child, H, after this, and then we visit root node D. Following the same 

rule, we next visit the right child of node B, node E. Then, we visit node B. Following on from this, 

we traverse the right subtree of node A. Here, we first reach the last right subtree and visit node 

F, and then we visit node C. Finally, we visit root node A.

The post-order traversal for this example tree would be G-H-D-E-B-F-C-A.

The implementation of the post-order method for tree traversal is as follows:

def postorder( root_node):

    current = root_node

    if current is None:

        return

    postorder(current.left_child)

    postorder(current.right_child)

    print(current.data)

postorder(n1)

First, we check if the current node is null or empty. If it is not empty, we traverse the tree using 

the post-order algorithm as discussed, and finally, when we apply the above post-order traversal 

algorithm on the above sample tree of four nodes with n1 as the root node. We get the following 

output:

left grandchild node

left child node

right child node

root node

Next, we will discuss level-order traversal.

Level-order traversal
In this traversal method, we start by visiting the root of the tree before visiting every node on the 

next level of the tree. Then, we move on to the next level in the tree, and so on. This kind of tree 

traversal is how breadth-first traversal in a graph works, as it broadens the tree by traversing all 

the nodes in a level before going deeper into the tree.
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Let’s consider the following example tree and traverse it:

Figure 6.13: An example tree to understand level-order traversal

In Figure 6.13, we start by visiting the root node at level 0, which is the node with a value of 4. We 

visit this node by printing out its value. Next, we move to level 1 and visit all the nodes at this level, 

which are the nodes with the values 2 and 8. Finally, we move to the next level in the tree, that is, 

level 3, and we visit all the nodes at this level, which are 1, 3, 5, and 10. Thus, the level-order tree 

traversal for this tree is as follows: 4, 2, 8, 1, 3, 5, and 10.

This level-order tree traversal is implemented using a queue data structure. We start by visiting 

the root node, and we push it into a queue. The node at the front of the queue is accessed (de-

queued), which can then be either printed or stored for later use. After adding the root node, the 

left child node is added to the queue, followed by the right node. Thus, when traversing at any 

given level of the tree, all the data items of that level are firstly inserted in the queue from left to 

right. After that, all the nodes are visited from the queue one by one. This process is repeated for 

all the levels of the tree.

The traversal of the preceeding tree using this algorithm will enqueue root node 4, dequeue it, and 

visit the node. Next, nodes 2 and 8 are enqueued, as they are the left and right nodes at the next 

level. Node 2 is dequeued so that it can be visited. Next, its left and right nodes, nodes 1 and 3, are 

enqueued. At this point, the node at the front of the queue is node 8. We dequeue and visit node 8, 

after which we enqueue its left and right nodes. This process continues until the queue is empty.

The Python implementation of breadth-first traversal is as follows. We enqueue the root node 

and keep a list of the visited nodes in the list_of_nodes list. The dequeue class is used to main-

tain a queue:
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from collections import deque

class Node:

    def __init__(self, data):

        self.data = data

        self.right_child = None

        self.left_child = None

        

n1 = Node("root node")

n2 = Node("left child node")

n3 = Node("right child node")

n4 = Node("left grandchild node")

n1.left_child = n2

n1.right_child = n3

n2.left_child = n4

 

def level_order_traversal(root_node):

    list_of_nodes = []

    traversal_queue = deque([root_node])

    while len(traversal_queue) > 0:

        node = traversal_queue.popleft()

        list_of_nodes.append(node.data)

        if node.left_child:

            traversal_queue.append(node.left_child)

            if node.right_child:

                traversal_queue.append(node.right_child)

    return list_of_nodes

print(level_order_traversal(n1))

If the number of elements in traversal_queue is greater than zero, the body of the loop is exe-

cuted. The node at the front of the queue is popped off and added to the list_of_nodes list. The 

first if statement will enqueue the left child node if the node provided with a left node exists. The 

second if statement does the same for the right child node. Further, the list_of_nodes list is 

returned in the last statement.
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The output of the above code is as follows:

['root node', 'left child node', 'right child node', 'left grandchild 
node']

We have discussed different tree traversal algorithms; we can use any of these algorithms depend-

ing upon the application. In-order traversal is very useful when we need sorted contents from 

a tree. This also applies if we need items in descending order, which we can do by reversing the 

order, such as right subtree, root, and then left subtree. This is known as reverse in-order traversal. 

And, if we need to inspect the root before any leaves, we use pre-order traversal. Likewise, if we 

need to inspect the leaf nodes before the root nodes.

The following are some important applications of binary trees:

1.	 Binary trees as expression trees are used in compilers

2.	 It is also used in Huffman coding in data compression

3.	 Binary search trees are used for efficient searching, insertion, and deletion of a list of items

4.	 Priority Queue (PQ), which is used for finding and deleting minimum or maximum items 

in a collection of elements in logarithm time in the worst case

Next, let us discuss expression trees.

Expression trees
An expression tree is a special kind of binary tree that can be used to represent arithmetic ex-

pressions. An arithmetic expression is represented by a combination of operators and operands, 

where the operators can be unary or binary. Here, the operator shows which operation we want 

to perform, and the operator tells us what data items we want to apply those operations to. If the 

operator is applied to one operand, then it is called a unary operator, and if it is applied to two 

operands, it is called a binary operator.

An arithmetic expression can also be represented using a binary tree, which is also known as an 

expression tree. The infix notation is a commonly used notation to express arithmetic expres-

sions where the operators are placed in between the operands. It is a commonly used method of 

representing an arithmetic expression. In an expression tree, all the leaf nodes contain operands 

and non-leaf nodes contain the operators. It is also worth noting that an expression tree will have 

one of its subtrees (right or left) empty in the case of a unary operator.

The arithmetic expression is shown using three notations: infix, postfix, or prefix. The in-order 

traversal of an expression tree produces the infix notation. For example, the expression tree for 

3 + 4 would look as shown in Figure 6.14:
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Figure 6.14: An expression tree for the expression 3 + 4

In this example, the operator is inserted (infixed) between the operands, as 3 + 4. When nec-

essary, parentheses can be used to build a more complex expression. For example, for (4 + 5) * 

(5 - 3), we would get the following:

Figure 6.15: An expression tree for the expression (4 + 5) * (5-3)

Prefix notation is commonly referred to as Polish notation. In this notation, the operator comes 

before its operands. For example, the arithmetic expression to add two numbers, 3 and 4, would 

be shown as + 3 4. Let’s consider another example, (3 + 4) * 5. This can also be represented 

as * (+ 3 4) 5 in prefix notation. The pre-order traversal of an expression tree results in the 

prefix notation of the arithmetic expression. For example, consider the expression tree shown 

in Figure 6.16:

Figure 6.16: An example expression tree to understand pre-order traversal
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The pre-order traversal of the expression tree shown in Figure 6.16 will give the expression in 

prefix notation as +- 8 3 3.

Postfix, or reverse Polish notation (RPN), places the operator after its operands, such as 3 4 +. 

The post-order traversal of the expression tree shown in Figure 6.17 gives the postfix notation of 

the arithmetic expression.

Figure 6.17: An example expression tree to understand post-order traversal

The postfix notation for the preceding expression tree is 8 3 -3 +. We have now discussed ex-

pression trees. It is easy to evaluate an expression tree for the given arithmetic expression using 

the reverse Polish notation since it provides faster calculations.

Parsing a reverse Polish expression
To create an expression tree from the postfix notation, a stack is used. In this, we process one 

symbol at a time; if the symbol is an operand, then its references are pushed in to the stack, and 

if the symbol is an operator, then we pop two pointers from the stack and form a new subtree, 

whose root is the operator. The first reference popped from the stack is the right child of the sub-

tree, and the second reference becomes the left child of the subtree. Further, a reference to this 

new subtree is pushed into the stack. In this manner, all the symbols of the postfix notation are 

processed to create the expression tree.

Let’s take an example of 4 5 + 5 3 - *.
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Firstly, we push symbols 4 and 5 onto the stack, and then we process the next symbol + as shown 

in Figure 6.18:

Figure 6.18: Operands 4 and 5 are pushed onto the stack

When the new symbol + is read, it is made into a root node of a new subtree, and then two refer-

ences are popped from the stack, and the topmost reference is added as the right of the root node, 

and the next popped reference is added as the left child of the subtree, as shown in Figure 6.19:

Figure 6.19: Operator + is processed in creating an expression tree
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The next symbols are 5 and 3, and they are pushed into the stack. Next, when a new symbol is 

an operator (-), it is created as the root of the new subtree, and two top references are popped 

and added to the right and left child of this root respectively, as shown in Figure 6.20. Then, the 

reference to this subtree is pushed to the stack:

Figure 6.20: Operator (-) is processed in creating an expression tree

The next symbol is the operator *; as we have done so far, this will be created as the root, and 

then two references will be popped from the stack, as shown in Figure 6.21. The final tree is then 

shown in Figure 6.21:

Figure 6.21: Operator (*) is processed in creating an expression tree

To learn how to implement this algorithm in Python, we will look at building a tree for an expres-

sion written in postfix notation. For this, we need a tree node implementation; it can be defined 

as follows:
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class TreeNode:

    def __init__(self, data=None):

        self.data = data

        self.right = None

        self.left = None

The following is the code for the implementation of the stack class that we will be using:

class Stack:

    def __init__(self):

        self.elements = []

        

    def push(self, item):

        self.elements.append(item)

    

    def pop(self):

        return self.elements.pop()

In order to build the tree, we are going to enlist the items with the help of a stack. Let’s take an 

example of an arithmetic expression and set up our stack:

expr = "4 5 + 5 3 - *".split()

stack = Stack()

In the first statement, the split() method splits on whitespace by default. The expr is a list with 

the values 4, 5, +, 5, 3, -, and *.

Each element of the expr list is going to be either an operator or an operand. If we get an operand, 

then we embed it in a tree node and push it onto the stack. If we get an operator, we embed the 

operator into a tree node and pop its two operands into the node’s right and left children. Here, 

we have to take care to ensure that the first pop reference goes into the right child.

In continuation of the previous code snippet, the below code is a loop to build the tree:

for term in expr:

    if term in "+-*/":

        node = TreeNode(term)

        node.right = stack.pop()

        node.left = stack.pop()

    else:

        node = TreeNode(int(term))

    stack.push(node)
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Notice that we perform a conversion from string to int in the case of an operand. You could use 

float() instead, if you wish to support floating-point operands.

At the end of this operation, we should have one single element in the stack, and that holds the 

full tree. 

If we want to evaluate the expression, we can use the following function:

def calc(node):

    if node.data == "+":

        return calc(node.left) + calc(node.right)

    elif node.data == "-":

        return calc(node.left) - calc(node.right)

    elif node.data == "*":

        return calc(node.left) * calc(node.right)

    elif node.data == "/":

        return calc(node.left) / calc(node.right)

    else:

        return node.data

In the preceding code, we pass a node to the function. If the node contains an operand, then we 

simply return that value. If we get an operator, then we perform the operation that the operator 

represents on the node’s two children. However, since one or more of the children could also 

contain either operators or operands, we call the calc() function recursively on the two child 

nodes (bearing in mind that all the children of every node are also nodes).

Now, we just need to pop the root node off the stack and pass it onto the calc() function. Then, 

we should have the result of the calculation:

root = stack.pop()

result = calc(root)

print(result)

Running this program should yield the result 18, which is the result of (4 + 5) * (5 - 3).

Expression trees are very useful in representing and evaluating complex expressions easily. It 

is also useful to evaluate the postfix, prefix, and infix expression. It can be used to find out the 

associativity of the operators in the given expression.

In the next section, we will discuss the binary search tree, which is a special kind of binary tree.
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Binary search trees
A binary search tree (BST) is a special kind of binary tree. It is one of the most important and 

commonly used data structures in computer science applications. A binary search tree is a tree 

that is structurally a binary tree, and stores data in its nodes very efficiently. It provides very fast 

search, insertion, and deletion operations.

A binary tree is called a binary search tree if the value at any node in the tree is greater than the 

values in all the nodes of its left subtree, and less than (or equal to) the values of all the nodes of 

the right subtree. For example, if K1, K2, and K3 are key values in a tree of three nodes (as shown 

in Figure 6.22), then it should satisfy the following conditions:

•	 The key values K2<=K1

•	 The key values K3>K1

The following figure depicts the above condition of the binary search tree:

Figure 6.22: An example of a binary search tree

Let’s consider another example so that we have a better understanding of binary search trees. 

Consider the binary search tree shown in Figure 6.23:

Figure 6.23: Binary search tree of six nodes
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In this tree, all the nodes in the left subtree are less than (or equal to) the value of the parent 

node. All the nodes in the right subtree of this node are also greater than that of the parent node. 

To see if the above example tree fulfills the properties of a binary search tree, we see that all the 

nodes in the left subtree of the root node have a value less than 5. Likewise, all the nodes in the 

right subtree have a value that is greater than 5. This property applies to all the nodes in the tree 

with no exceptions. For example, if we take another node with the value 3, we can see that the 

values for all the left subtree nodes are less than the value 3 and the values for all the right subtree 

nodes are greater than 3.

Considering another example of a binary tree. Let’s check to see if it is a binary search tree. De-

spite the fact that the following diagram, Figure 6.24, looks similar to the previous diagram, it 

does not qualify as a binary search tree, as node 7 is greater than the root node 5; even though 

it is located in the left subtree of the root node. Node 4 is to the right subtree of its parent node 

7, which is also violating a rule of binary search trees. Thus, the following figure, Figure 6.24, is 

not a binary search tree:

Figure 6.24: An example of a binary tree that is not a binary search tree

Let’s begin the implementation of a binary search tree in Python. Since we need to keep track of 

the root node of the tree, we start by creating a Tree class that holds a reference to the root node:

class Tree:

    def __init__(self):

        self.root_node = None

That’s all it takes to maintain the state of a tree. Now, let’s examine the main operations used 

within the binary seach tree.

Binary search tree operations
The operations that can be performed on a binary search tree are insert, delete, finding min, 

finding max, and searching. We discuss them in detail one by one in the following sections.
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Inserting nodes
One of the most important operations to implement on a binary search tree is to insert data items 

in the tree. In order to insert a new element into a binary search tree, we have to ensure that the 

properties of the binary search tree are not violated after adding the new element.

In order to insert a new element, we start by comparing the value of the new node with the root 

node: if the value is less than the root value, then the new element will be inserted into the left 

subtree; otherwise, it will be inserted into the right subtree. In this manner, we go to the end of 

the tree to insert the new element.

Let’s create a binary search tree by inserting data items 5, 3, 7, and 1 in the tree. Consider the 

following:

1.	 Insert 5: We start with the first data item, 5. To do this, we will create a node with its data 

attribute set to 5, since it is the first node.

2.	 Insert 3: Now, we want to add the second node with a value of 3 so that the data value of 

3 is compared with the existing node value, 5, of the root node. Since the node value 3 is 

less than 5, it will be placed in the left subtree of node 5. The binary search tree will look 

as shown in Figure 6.25:

Figure 6.25: Step 2 of the insertion operation in an example binary search tree

Here, the tree satisfies the binary search tree rule, where all the nodes in the left subtree 

are less than the parent.

3.	 Insert 7: To add another node with a value of 7 to the tree, we start from the root node 

with value 5 and make a comparison, as shown in Figure 6.26. Since 7 is greater than 5, 

the node with a value of 7 is placed to the right of this root:

Figure 6.26: Step 3 of the insertion operation in an example binary search tree
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4.	 Insert 1: Next, we add another node with the value 1. Starting from the root of the tree, 

we make a comparison between 1 and 5, as shown in Figure 6.27:

Figure 6.27: Step 4 of the insertion operation in an example binary search tree

This comparison shows that 1 is less than 5, so we go to the left subtree of 5, which has a node 

with a value of 3, as shown in Figure 6.28:

Figure 6.28: Comparison of node 1 and node 3 in an example binary search tree

When we compare 1 against 3, 1 is less than 3, so we move a level below node 3 and to its left, as 

shown in Figure 6.28. However, there is no node there. Therefore, we create a node with a value 

of 1 and associate it with the left pointer of node 3 to obtain the final tree. Here, we have the final 

binary search tree of 4 nodes, as shown in Figure 6.29:

Figure 6.29: Final step of the insertion operation in an example binary search tree

We can see that this example contains only integers or numbers. So, if we need to store string 

data in a binary search tree, the strings would be compared alphabetically. 
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If we wanted to store any custom data types inside a binary search tree, we would have to make 

sure that the binary search tree class supports ordering.

The Python implementation of the insert method to add the nodes in the binary search tree is 

given as follows:

class Node:

    def __init__(self, data):

        self.data = data

        self.right_child = None

        self.left_child = None

class Tree:

    def __init__(self):

        self.root_node = None

    def insert(self, data):

        node = Node(data)

        if self.root_node is None:

            self.root_node = node

            return self.root_node

        else:

            current = self.root_node

            parent = None

            while True:

                parent = current

                if node.data < parent.data:

                    current = current.left_child

                    if current is None:

                        parent.left_child = node

                        return self.root_node

                else:

                    current = current.right_child

                    if current is None:

                        parent.right_child = node

                        return self.root_node
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In the above code, we first declare the Node class with the Tree class. All the operations that can be 

applied to the tree are defined in the Tree class. Let’s understand the steps of the insert method. 

We begin with a function declaration:

    def insert(self, data):

Next, we encapsulate the data in a node using the Node class. We check whether we have a root 

node or not. If we don’t have a root node in the tree, the new node becomes the root node and 

then root node is returned:

        node = Node(data)
        if self.root_node is None:
            self.root_node = node
            return self.root_node
        else:

Further, in order to insert a new element, we have to traverse the tree and reach the correct posi-

tion where we can insert the new element in a way that the properties of the binary search tree 

are not violated. For this, we keep track of the current node while traversing the tree as well as its 

parent. The current variable is always used to track where a new node will be inserted:

        current = self.root_node
        parent = None
        while True:
            parent = current

Here, we must perform a comparison. If the data held in the new node is less than the data held 

in the current node, then we check whether the current node has a left child node. If it doesn’t, 

this is where we insert the new node. Otherwise, we keep traversing:

            if node.data < parent.data:

                current = current.left_child

                if current is None:

                    parent.left_child = node

                    return self.root_node

After this, we need to take care of the greater than (or equal to) case. If the current node doesn’t 

have a right child node, then the new node is inserted as the right child node. Otherwise, we move 

down and continue looking for an insertion point:

            else:

                current = current.right_child



Chapter 6 207

                if current is None:

                    parent.right_child = node

                    return self.root_node

Now, in order to see what we have inserted in the binary search tree, we can use any of the existing 

tree traversal algorithms. Let’s implement the in-order traversal, which should be defined in the 

Tree class. The code is as follows:

    def inorder(self, root_node):

        current = root_node

        if current is None:

            return

        self.inorder(current.left_child)

        print(current.data)

        self.inorder(current.right_child)

Now, let us take an example to insert a few elements (e.g. elements 5, 2, 7, 9, and 1) in a binary 

search tree, as shown in Figure 6.24, and then we can use the in-order traversal algorithm to see 

what we have inserted in the tree:

tree = Tree()

r = tree.insert(5)

r = tree.insert(2)

r = tree.insert(7)

r = tree.insert(9)

r = tree.insert(1)

 

tree.inorder(r)

The output of the above code is as follows:

1

2

5

7

9

Insertion of a node in a binary search tree takes O(h), where h is the height of the tree.
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Searching the tree
A binary search tree is a tree data structure in which all the nodes in the left subtree of a node 

have lower key values and the right subtree has greater key values. Thus, searching for an element 

with a given key value is quite easy. Let’s consider an example binary search tree that has nodes 

1, 2, 3, 4, 8, 5, and 10, as shown in Figure 6.30:

Figure 6.30: An example binary search tree with seven nodes

In the preceding tree shown in Figure 6.30, if we wish to search for a node with a value of 5, for 

example, then we start from the root node and compare the root with our desired value. As node 

5 is a greater value than the root node’s value of 4, we move to the right subtree. In the right 

subtree, we have node 8 as the root node, so we compare node 5 with node 8. As the node to be 

searched has a smaller value than node 8, we move it to the left subtree. When we move to the 

left subtree, we compare the left subtree node 5 with the required node value of 5. This is a match, 

so we return "item found".

Here is the implementation of the searching method in a binary search tree, which is being de-

fined in the Tree class:

    def search(self, data):

        current = self.root_node

        while True:

            if current is None:

                print("Item not found")

                return None

            elif current.data is data:

                print("Item found", data)

                return data
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            elif current.data > data:

                current = current.left_child

            else:

                current = current.right_child

In the preceding code, we return the data if it was found, or None if the data wasn’t found. We 

start searching from the root node. Next, if the data item to be searched for doesn’t exist in the 

tree, we return None. If we find the data, it is returned.

If the data that we are searching for is less than that of the current node, we go down the tree 

to the left. Furthermore, in the else part of the code, we check if the data we are looking for is 

greater than the data held in the current node, which means that we go down the tree to the right. 

Finally, the below code can be used to create an example binary search tree with some values 

between 1 and 10. Then, we search for a data item with the value 9, and also all the numbers in 

that range. The ones that exist in the tree get printed:

tree = Tree()

tree.insert(5)

tree.insert(2)

tree.insert(7)

tree.insert(9)

tree.insert(1)

tree.search(9)

The output of the above code is as follows:

Item found 9

In the above code, we see the items that were present in the tree have been correctly found; the 

rest of the items could not be found in the range 1 to 10. In the next section, we discuss the dele-

tion of a node in binary search tree.

Deleting nodes
Another important operation on a binary search tree is the deletion or removal of nodes. There 

are three possible scenarios that we need to take care of during this process. The node that we 

want to remove might have the following:

•	 No children: If there is no leaf node, directly remove the node



Trees210

•	 One child: In this case, we swap the value of that node with its child, and then delete 

the node

•	 Two children: In this case, we first find the in-order successor or predecessor, swap their 

values, and then delete that node

The first scenario is the easiest to handle. If the node about to be removed has no children, we 

can simply remove it from its parent. In Figure 6.31, suppose we want to delete node A, which has 

no children. In this case, we can simply delete it from its parent (node Z):

Figure 6.31: Deletion operation when deleting a node with no children

In the second scenario, when the node we want to remove has one child, the parent of that node 

is made to point to the child of that particular node. Let’s take a look at the following diagram, 

where we want to delete node 6, which has one child, node 5, as shown in Figure 6.32:

Figure 6.32: Deletion operation when deleting a node with one child

In order to delete node 6, which has node 5 as its only child, we point the left pointer of node 9 

to node 5. Here, we need to ensure that the child and parent relationship follows the properties 

of a binary search tree.
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In the third scenario, when the node we want to delete has two children, in order to delete it, 

we first find a successor node, then move the content of the successor node into the node to be 

deleted. The successor node is the node that has the minimum value in the right subtree of the 

node to be deleted; it will be the first element when we apply the in-order traversal on the right 

subtree of the node to be deleted.

Let’s understand it with the example tree shown in Figure 6.33, where we want to delete node 9, 

which has two children:

Figure 6.33: Deletion operation when deleting a node with two children

In the example tree shown in Figure 6.33, we find the smallest element in the right subtree of the 

node (i.e. the first element in the in-order traversal in the right subtree) which is node 12. After 

that, we replace the value of node 9 with the value 12 and remove node 12. Node 12 has no chil-

dren, so we apply the rule for removing nodes without children accordingly.

To implement the above algorithm using Python, we need to write a helper method to get the node 

that we want to delete along with the reference to its parent node. We have to write a separate 

method because we do not have any reference to the parent in the Node class. This helper method 

get_node_with_parent is similar to the search method, which finds the node to be deleted, and 

returns that node with its parent node:

    def get_node_with_parent(self, data):

        parent = None

        current = self.root_node

        if current is None:
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            return (parent, None)

        while True:

            if current.data == data:

                return (parent, current)

            elif current.data > data:

                parent = current

                current = current.left_child

            else:

                parent = current

                current = current.right_child

        return (parent, current)

The only difference is that before we update the current variable inside the loop, we store its parent 

with parent = current. The method to do the actual removal of a node begins with this search:

    def remove(self, data):

        parent, node = self.get_node_with_parent(data)

        if parent is None and node is None:

            return False

        # Get children count

        children_count = 0

        if node.left_child and node.right_child:

            children_count = 2

        elif (node.left_child is None) and (node.right_child is None):

            children_count = 0

        else:

            children_count = 1

We pass the parent and the found nodes to parent and node, respectively, with the parent, node 

= self.get_node_with_parent(data) line. It is important to know the number of children that 

the node has that we want to delete, and we do so in the if statement.

Once we know the number of children a node has that we want to delete, we need to handle 

various conditions in which a node can be deleted. The first part of the if statement handles the 

case where the node has no children:
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        if children_count == 0:

            if parent:

                if parent.right_child is node:

                    parent.right_child = None

                else:

                    parent.left_child = None

            else:

                self.root_node = None

In cases where the node to be deleted has only one child, the elif part of the if statement does 

the following:

        elif children_count == 1:

            next_node = None

            if node.left_child:

                next_node = node.left_child

            else:

                next_node = node.right_child

            if parent:

                if parent.left_child is node:

                    parent.left_child = next_node

                else:

                    parent.right_child = next_node

            else:

                self.root_node = next_node

next_node is used to keep track of that single node, which is the child of the node that is to be 

deleted. We then connect parent.left_child or parent.right_child to next_node.

Lastly, we handle the condition where the node we want to delete has two children:

        else:

            parent_of_leftmost_node = node

            leftmost_node = node.right_child

            while leftmost_node.left_child:

                parent_of_leftmost_node = leftmost_node

                leftmost_node = leftmost_node.left_child

            node.data = leftmost_node.data
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In finding the in-order successor, we move to the right node with leftmost_node = node.right_

child. As long as a left node exists, leftmost_node.left_child will be True and the while loop 

will run. When we get to the leftmost node, it will either be a leaf node (meaning that it will have 

no child node) or have a right child.

We update the node that’s about to be removed with the value of the in-order successor with 

node.data = leftmost_node.data:

            if parent_of_leftmost_node.left_child == leftmost_node:

                parent_of_leftmost_node.left_child = leftmost_node.right_
child

            else:

                parent_of_leftmost_node.right_child = leftmost_node.right_
child

The preceding statement allows us to properly attach the parent of the leftmost node with any 

child node. Observe how the right-hand side of the equals sign stays unchanged. This is because 

the in-order successor can only have a right child as its only child.

The following code demonstrates how to use the remove method in the Tree class:

tree = Tree()

tree.insert(5)

tree.insert(2)

tree.insert(7)

tree.insert(9)

tree.insert(1)

tree.search(9)

tree.remove(9)

tree.search(9)

The output of the above code is:

Item found 9

Item not found

In the above code, when we search for item 9, it is available in the tree, and after the remove 

method, item 9 is not present in the tree. In the worst-case scenario, the remove operation takes 

O(h), where h is the height of the tree.
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Finding the minimum and maximum nodes
The structure of the binary search tree makes searching a node that has a maximum or a minimum 

value very easy. To find a node that has the smallest value in the tree, we start traversal from the 

root of the tree and visit the left node each time until we reach the end of the tree. Similarly, we 

traverse the right subtree recursively until we reach the end to find the node with the biggest 

value in the tree.

For example, consider Figure 6.34, in order to search for the minimum and maximum elements.

Figure 6.34: Finding the minimum and maximum nodes in a binary search tree

Here, we start by moving down the tree from root node 6 to 3, and then from node 3 to 1 to find 

the node with the smallest value. Similarly, to find the maximum value node from the tree, we 

go down from the root along the right-hand side of the tree, so we go from node 6 to node 8 and 

then node 8 to node 10 to find the node with the largest value.

The Python implementation of the method that returns the minimum value of any node is as 

follows:

    def find_min(self):

        current = self.root_node

        while current.left_child:

            current = current.left_child

        return current.data

The while loop continues to get the left node and visits it until the last left node points to None. 

It is a very simple method.
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Similarly, the following is the code of the method that returns the maximum node:

    def find_max(self):

        current = self.root_node

        while current.right_child:

            current = current.right_child

        return current.data

The following code demonstrates how to use the find_min and find_max methods in the Tree class:

tree = Tree()

tree.insert(5)

tree.insert(2)

tree.insert(7)

tree.insert(9)

tree.insert(1)

print(tree.find_min())

print(tree.find_max())

The output of the above code is as shown below:

1

9

The output of the above code, 1 and 9,  are the minimum and maximum values. The minimum 

value in the tree is 1 and the maximum is 9. The running time complexity to find the minimum 

or maximum value in a binary search tree is O(h), where h is the height of the tree.

Benefits of a binary search tree
A binary search tree is, in general, a better choice compared to arrays and linked lists when we are 
mostly interested in accessing the elements frequently in any application. A binary search tree is 
fast for most operations, such as searching, insertion, and deletion, whereas arrays provide fast 
searching, but are comparatively slow regarding insertion and deletion operations. In a similar 
fashion, linked lists are efficient in performing insertion and deletion operations, but are slower 
when performing the search operation. The best-case running time complexity for searching 
an element from a binary search tree is O(log n), and the worst-case time complexity is O(n), 
whereas both best-case and worst-case time complexity for searching in lists is O(n).

The following table provides a comparison of the array, linked list, and binary search tree data 

structures:
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Properties Array Linked list BST

Data structure Linear. Linear. Non-linear.

Ease of use

Easy to create and 

use. Average-case 

complexity for search, 

insert, and delete is 

O(n).

Insertion and deletion 

are fast, especially with 

the doubly linked list.

Access of elements, 

insertion, and deletion is 

fast with the average-case 

complexity of O(log n).

Access 

complexity

Easy to access elements. 

Complexity is O(1).

Only sequential access 

is possible, so slow. 

Average- and worst-

case complexity are 

O(n).

Access is fast, but 

slow when the tree is 

unbalanced, with a worst-

case complexity of O(n).

Search 

complexity

Average- and worst-

case complexity are 

O(n).

It is slow due to 

sequential searching. 

Average- and worst-

case complexity are 

O(n).

Worst-case complexity for 

searching is O(n).

Insertion 

complexity

Insertion is slow. 

Average- and worst-

case complexity are 

O(n).

Average- and worst-

case complexity are 

O(1).

The worst-case complexity 

for insertion is O(n).

Deletion 

complexity

Deletion is slow. 

Average- and worst-

case complexity are 

O(n).

Average- and worst-

case complexity are 

O(1).

The worst-case complexity 

for deletion is O(n).

Let’s consider an example to understand when the binary search tree is a good choice to store 

the data. Let’s assume that we have the following data nodes—5, 3, 7, 1, 4, 6, and 9, as shown 

in Figure 6.35. If we use a list to store this data, the worst-case scenario will require us to search 

through the entire list of seven elements to find the item. So, it will require six comparisons to 

search for item 9 in this data node, as shown in Figure 6.35:

Figure 6.35: An example list of seven elements requires six comparisons if stored in a list
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However, if we use a binary search tree to store these values, as shown in the following diagram, 

in the worst-case scenario, we will require two comparisons to search for item 9, as shown in 

Figure 6.36:

Figure 6.36: An example list of seven elements requires three comparisons if stored in a binary 
search tree

However, it is important to note that the efficiency of searching also depends on how we built 

the binary search tree. If the tree hasn’t been constructed properly, it can be slow. For example, 

if we had inserted the elements into the tree in the order 1, 3, 4, 5, 6, 7, 9, as shown in Figure 6.37, 

then the tree would not be more efficient than the list:

Figure 6.37: A binary search tree constructed with elements in the order 1, 3, 4, 5, 6, 7,9
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Depending upon the sequence of the nodes added to the tree, it is possible that we may have a 
binary tree that is unbalanced. Thus, it is important to use a method that can make the tree a 
self-balancing tree, which in turn will improve the search operation. Therefore, we should note 
that a binary search tree is a good choice if the binary tree is balanced.

Summary
In this chapter, we discussed an important data structure, i.e. tree data structures. Tree data 
structures in general provide better performance compared to linear data structures in search, 
insert, and deletion operations. We have also discussed how to apply various operations to tree 
data structures. We studied binary trees, which can have a maximum of two children for each 
node. Further, we learned about binary search trees and discussed how we can apply different 
operations to them. Binary search trees are very useful when we want to develop a real-world 
application in which the retrieval or searching of data elements is an important operation. We 
need to ensure that the tree is balanced for the good performance of binary search tree. We will 
discuss priority queues and heaps in the next chapter.

Exercises
1.	 Which of the following is a true about binary trees:

a.	 Every binary tree is either complete or full

b.	 Every complete binary tree is also a full binary tree

c.	 Every full binary tree is also a complete binary tree

d.	 No binary tree is both complete and full

e.	 None of the above

2.	 Which of the tree traversal algorithms visit the root node last?

Consider this binary search tree:

Figure 6.38: Sample binary search tree
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3.	 Suppose we remove the root node 8, and we wish to replace it with any node from the left 

subtree, then what will be the new root?

4.	 What will be the inorder, postorder and preorder traversal of the following tree?

Figure 6.39: Example tree

5.	 How do you find out if two trees are identical?

6.	 How many leaves are there in the tree mentioned in question number 4?

7.	 What is the relation between a perfect binary tree’s height and the number of nodes in 

that tree?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4


7
Heaps and Priority Queues

A heap data structure is a tree-based data structure in which each node of the tree has a specific 

relationship with other nodes, and they are stored in a specific order. Depending upon the specific 

order of the nodes in the tree, heaps can be of different types, such as a min heap and a max heap.

A priority queue is an important data structure that is similar to the queue and stack data structures 

that stores data along with the priority associated with them. In this, the data is served according 

to the priority. Priority queues can be implemented using an array, linked list, and trees; however, 

they are often implemented using a heap as it is very efficient.

In this chapter, we will learn the following:

•	 The concept of the heap data structure and different operations on it

•	 Understanding the concept of the priority queue and its implementation using Python

Heaps
A heap data structure is a specialization of a tree in which the nodes are ordered in a specific 

way. A heap is a data structure where each data elements satisfies a heap property, and the heap 

property states that there must be a certain relationship between a parent node and its child 

nodes. According to this certain relationship in the tree, the heaps can be of two types, in other 

words, max heaps and min heaps. In a max heap, each parent node value must always be greater 

than or equal to all its children. In this kind of tree, the root node must be the greatest value in 

the tree. For example, see Figure 7.1 showing the max heap in which all the nodes have greater 

values compared to their children:
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Figure 7.1: An example of a max heap

In a min heap, the relationship between parent and children is that the value of the parent node 

must always be less than or equal to its children. This rule should be followed by all the nodes 

in the tree. In the min heap, the root node holds the lowest value. For example, see Figure 7.2 

showing the min heap in which all the nodes have smaller values compared to their children:

Figure 7.2: An example of a min heap

The heap is an important data structure due to its several applications and uses in implementing 

heap sort algorithms and priority queues. We will be discussing these in detail later in the chap-

ter. The heap can be any kind of tree; however the most common type of heap is a binary heap in 

which each node has at most two children.

If the binary heap is a complete binary tree with n nodes, then it will have a minimum height 

of log2n. 
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A complete binary tree is one in which each row must be fully filled before starting to fill the next 

row, as shown in the following Figure 7.3:

Figure 7.3: An example of a complete binary tree

In order to implement the heap, we can derive a relationship between parent and child nodes 

in index values. The relationship is that the children of any node at the n index can be retrieved 

easily, in other words, the left child will be located at 2n, and the right child will be located at 2n 

+ 1. For example, the node C would be at the index of 3, since node C is a right child of the node A, 

which is at index 1, so it becomes 2n+1 = 2*1 + 1 = 3. This relationship always holds true. Let’s 

say we have a list of elements {A, B, C, D, E} as shown in Figure 7.4. If we store any element 

at an index of i, then its parent can be stored at index i/2, for example, if the index of the node 

D is 4, then its parent would be at 4/2 = 2,  index 2. The index of root has to be starting from 1 in 

the array. See Figure 7.4 to understand the concept:

Figure 7.4: Binary tree and index positions of all the nodes
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This relation between parent and child is a complete binary tree. In respect of indexing values, it 

is very important in order to efficiently retrieve, search, and store the data elements in the heap.  

Due to this property, it is very easy to implement the heap. The only constraint is that we should 

have indexing starting from 1, and if we implement the heap using an array, then we have to add 

one dummy element at index 0 in the array. Next, let’s understand the implementation of the 

heap. It is important to note that we will be discussing all the concepts with respect to the min 

heap, and the implementation for the max heap will be very similar to it, with the only difference 

being the heap property. 

Let’s discuss the implementation of the min heap using Python. We start with the heap class, as 

follows:

    class MinHeap: 

        def __init__(self): 

            self.heap = [0] 

            self.size = 0 

We initialize the heap list with a zero to represent the dummy first element, and we are adding 

a dummy element just to start the indexing of data items from 1 since if we start indexing from 

1, accessing of the elements becomes very easy due to the parent-child relationship. We also 

create a variable to hold the size of the heap. We will further discuss different operations, such 

as insert, delete, and delete at a specific location in the heap. Let’s start with the insertion 

operation in the heap.

Insert operation
The insertion of an item into a min heap works in two steps. First, we add the new element to the 

end of the list (which we understand to be the bottom of the tree), and we increment the size of 

the heap by one. Secondly, after each insertion operation, we need to arrange the new element up 

in the heap tree, to organize all the nodes in such a way that satisfies the heap property, which in 

this case is that each node must be larger than its parent. In other words, the value of the parent 

node must always be less than or equal to its children, and the lowest element in the min-heap 

needs to be the root element. Therefore, we first insert an element into the last heap of the tree; 

however, after inserting an element into the heap, it is possible that the heap property is violated. 

In that case, the nodes have to be rearranged so that all the nodes satisfy the heap property. This 

process is called heapifying. To heapify the min heap, we need to find the minimum of its children 

and swap it with the current element, and this process has to be repeated until the heap property 

is satisfied for all the nodes. 
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Let’s consider an example of adding an element in the min heap, such as inserting a new node 

with a value of 2 in Figure 7.5:

Figure 7.5: Insertion of a new node 2 in the existing heap

The new element will be added to the last position in the third row or level. Its index value is 7. We 

compare that value with its parent. The parent is at index 7/2 = 3 (integer division). The parent 

node holds value 6, which is higher than the new node value (in other words, 2), so according to 

the property of the min heap, we swap these values, as shown in Figure 7.6:

Figure 7.6: Swapping nodes 2 and 6 to maintain the heap property

The new data element has been swapped and moved up to index 3. Since, we have to check all 

the nodes up to the root, we check the index of its parent node which is 3/2 = 1 (integer division), 

so we continue the process to heapify. 

So, we compare both of these elements, and swap again, as shown in Figure 7.7:

Figure 7.7: Swapping nodes 2 and 3 to maintain the heap property
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After the final swap, we reach the root. Here, we can notice that this heap adheres to the definition 

of the min heap, as shown in Figure 7.8:

Figure 7.8: Final heap after insertion of a new node 2

Now, let’s take another example to see how to create and insert elements in a heap. We start with 

the construction of a heap by inserting 10 elements, one by one.  The elements are {4, 8, 7, 2, 9, 

10, 5, 1, 3, 6}. We can see a step-by-step process to insert elements into the heap in Figure 7.9:

Figure 7.9: The step-by-step procedure to create a heap
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We can see, in the preceding diagram, a step-by-step process to insert elements into the heap. 

Here, we continue adding elements, as shown in Figure 7.10:

Figure 7.10: Steps 7 to 9 in creating the heap

Finally, we insert an element, 6, into the heap, as shown in Figure 7.11:

Figure 7.11: Last step and construction of the final heap
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The implementation of the insertion operation in the heap is discussed as follows. Firstly, we 

create a helper method, called the arrange, that takes care of arrangements of all the nodes after 

insertion of a new node. Here is the implementation of the arrange() method, which should be 

defined in the MinHeap class:

    def arrange(self, k):

        while k // 2 > 0:

            if self.heap[k] < self.heap[k//2]:

                self.heap[k], self.heap[k//2] = self.heap[k//2], self.
heap[k]

            k //= 2

We execute the loop until we reach up to the root node; until then, we can keep arranging the 

element. Here, we are using integer division. The loop will break out after the following condition:

    while k // 2 > 0:

After that, we compare the values between the parent and child node. If the parent is greater than 

the child, swap the two values:

        if self.heap[k] < self.heap[k//2]: 

            self.heap[k], self.heap[k//2] = self.heap[k//2], self.heap[k] 

Finally, after each iteration, we move up in the tree:

             k //= 2 

This method ensures that the elements are ordered properly.

Now, for adding new elements in the heap, we need to use the following insert method, which 

should be defined in the MinHeap class:

    def insert(self, item): 

        self.heap.append(item) 

        self.size += 1 

        self.arrange(self.size) 

In the above code, we can insert an element using the append method; then we increase the size of 

the heap. Then, in the last line of the insert method, we call the arrange() method to reorganize 

the heap (heapify it) to ensure that all the nodes in the heap satisfy the heap property.
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Now, let’s create the heap and insert that data {4, 8, 7, 2, 9, 10, 5, 1, 3, 6} using the 

insert() method, which is defined in the MinHeap class, as shown in the following code:

    h = MinHeap()

    for i in (4, 8, 7, 2, 9, 10, 5, 1, 3, 6): 

        h.insert(i)

We can print the heap list, just to inspect how the elements are ordered. If you redraw this as a 

tree structure, you will notice that it meets the required properties of a heap, similar to what we 

created manually:

    print(h.heap)

The output of the above code is as follows:

[0, 1, 2, 5, 3, 6, 10, 7, 8, 4, 9]

We can see in the output that all the data items of the heap in the array are as in the index position 

as per Figure 7.11. Next, we will discuss the delete operation in the heap.

Delete operation
The delete operation removes an element from the heap. To delete any element from the heap, 

let’s first discuss how we can delete the root element since it is mostly used for several use cases, 

such as finding the minimum or maximum element in a heap. Remember, in a min-heap, the root 

element denotes the minimum value of the list, and the root of the max-heap gives the maximum 

value of the list of elements. 

Once we delete the root element from the heap, we make the last element of the heap the new 

root of the heap. In that case, the heap property will not be satisfied by the tree. So, we have to 

reorganize the nodes of the tree such that all the nodes of the tree satisfy the heap property. The 

delete operation in min-heap works as follows.

1.	 Once we delete the root node, we need a new root node. For this, we take the last item 

from the list and make it the new root.

2.	 Since the selected last node might not be the lowest element of the heap, we have to 

reorganize the nodes of the heap.

3.	 We reorganize the nodes from the root node to the last node (which is made into a new 

root); this process is called heapify. Since we move from top to bottom (which means from 

the root node down to the last element) of the heap, this process is called percolate down.
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Let’s consider an example to help us understand this concept in the following heap. First, we 

delete the root node that has value 2, as shown in Figure 7.12:

Figure 7.12: Deletion of a node with value 2 at the root in the existing heap

Once we delete the root, next we need to choose a node that can be the new root; commonly, we 

choose to take the last node, in other words, node 6 at index 7. So, the last element, 6, is placed 

at the root position, as shown in Figure 7.13:

Figure 7.13: Moving the last element, in other words, node 6 to the root position

After moving the last element to the new root, clearly this tree is now not satisfying the min-heap 

property. So, we have to reorganize the nodes of the heap, hence we move down from the root to 

the nodes in the heap, that is, heapify the tree. So, we compare the value of the newly replaced 

node with all its children nodes in the tree. In this example, we compare the two children of the 

root, that is, 5 and 3. Since the right child is smaller, its index is 3, which is represented as (root 

index * 2 + 1). We will go ahead with this node and compare the new root node with the value at 

this index, as shown in Figure 7.14:
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Figure 7.14: Swapping of the root node with the node 3

Now, the node with value 6 should be moved down to index 3 as per the min heap property. Next, 

we need to compare it to its children down to the heap. Here, we only have one child, so we don’t 

need to worry about which child to compare it against (for a min heap, it is always the lesser 

child), as shown in Figure 7.15:

Figure 7.15: Swapping of node 6 and node 10

There is no need to swap here since it is following the min-heap property. After reaching the last 

one, the final heap adheres to the min-heap property.

In order to implement the deletion of the root node from the heap using Python, firstly, we im-

plement the percolate-down process, in other words, the sink() method. Before we implement 

the sink() method, we implement a helper method for finding out which of the children to 

compare against the parent node. This helper method is minchild(), which should be defined 

in the MinHeap class:

    def minchild(self, k):

        if k * 2 + 1 > self.size:

            return k * 2

        elif self.heap[k*2] < self.heap[k*2+1]:

            return k * 2

        else:

            return k * 2 + 1
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In this method, firstly, we check if we get beyond the end of the list—if we do, then we return 

the index of the left child:

        if k * 2 + 1 > self.size: 

            return k * 2 

Otherwise, we simply return the index of the lesser of the two children:

        elif self.heap[k*2] < self.heap[k*2+1]: 

            return k * 2 

        else: 

            return k * 2 + 1

Now we can create the sink() method. The sink() method should be defined in the MinHeap class:

def sink(self, k):

        while k * 2 <= self.size:

            mc = self.minchild(k)

            if self.heap[k] > self.heap[mc]:

                self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]

            k = mc

In the above code, we first run the loop until the end of the tree so that we can sink (move down) 

our element down as far as is needed; this is shown in the following code snippet:

    def sink(self, k): 

          while k*2 <= self.size: 

Next, we need to know which of the left or right children to compare against. This is where we 

make use of the minindex() function, as shown in the following code snippet:

            mi = self.minchild(k)

Next, we compare parent and child to see whether we need to make the swap, as we did in the 

arrange() method during the insertion operation:

            if self.heap[k] > self.heap[mc]: 

                self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k] 

Finally, we need to make sure that we move down the tree in each iteration so that we don’t get 

stuck in a loop, as follows:

            k = mc



Chapter 7 233

Now, we can implement the main delete_at_root() method itself, which should be defined in 

the MinHeap class:

    def delete_at_root(self): 

        item = self.heap[1] 

        self.heap[1] = self.heap[self.size] 

        self.size -= 1 

        self.heap.pop() 

        self.sink(1) 

        return item

In the above code for deletion of the root node, we first copy the root element in a variable item, 

and then the last element is moved to the root node in the following statement:

self.heap[1] = self.heap[self.size]

Further, we reduce the size of the heap, and remove the element from the heap, and then we use 

the sink() method to reorganize the heap element so that all the elements of the heap follow 

the heap property.

We can now use the following code to delete the root node from the heap. Let’s first insert some 

data items {2, 3, 5, 7, 9, 10, 6} in the heap and then remove the root node:

h = MinHeap()

for i in (2, 3, 5, 7, 9, 10, 6):

    h.insert(i)

print(h.heap)

n = h.delete_at_root()

print(n)

print(h.heap)

The output of the above code is as follows:

[0, 2, 3, 5, 7, 9, 10, 6]

2

[0, 3, 6, 5, 7, 9, 10]

We can see in the output that the root element 2 is returned in the new heap, and that the data 

elements are rearranged so that all the nodes of the heap are following the heap property (indexes 

of the nodes can checked as shown in Figure 7.16). Next, we will discuss if we want to delete any 

node with the given index position.
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Deleting an element at a specific location from a heap
Generally, we delete an element at the root, however, an element can be deleted at a specific 

location from the heap. Let us understand it with an example. Given the following heap, let’s 

assume that we want to delete a node with value 3 at index 2. After deleting the node with value 

3, we move the last node to the deleted node, in other words, the node with value 15, as shown 

in Figure 7.16:

Figure 7.16: The deletion of node 3 from the heap

After shifting the last element to the deleted node, we compare this with its root element since it 

is already greater than the root element, so we do not swap. Next, we compare this element with 

all of its children, and since the left child is smaller, it is swapped with the left child, as shown 

in Figure 7.17:

Figure 7.17: A comparison of node 15 with 5 and 11, and swapping node 15 and node 5

After swapping node 15 with node 5, we move down in the heap. Next, we compare node 15 with 

its child, node 8. Finally, node 8 and node 15 are swapped. Now, the final tree follows the heap 

property, as shown in Figure 7.18:
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Figure 7.18: The final heap after swapping node 8 and node 15

The implementation of the delete operation for removing a data item at any given index location 

is given below, which should be defined in the MinHeap class:

    def delete_at_location(self, location):
        item = self.heap[location]
        self.heap[location] = self.heap[self.size]
        self.size -= 1
        self.heap.pop()
        self.sink(location)
        return item

This implementation is very similar to what we have seen in the previous section for deleting the 

root element. The only difference is that in this code, we have specified the index location that 

has to be deleted. The following code snippet demonstrates the deletion of a node at a specific 

location 2 from the heap created from data elements {4, 8, 7, 2, 9, 10, 5, 1, 3, 6}:

h = MinHeap()  
for i in (4, 8, 7, 2, 9, 10, 5, 1, 3, 6):  
    h.insert(i)    
print(h.heap)
 
n = h.delete_at_location(2)
print(n)
print(h.heap)

The output of the preceding code is as follows:

[0, 1, 2, 5, 3, 6, 10, 7, 8, 4, 9]

2

[0, 1, 3, 5, 4, 6, 10, 7, 8, 9]
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In the above output, we see that, before and after, the heap nodes are placed according to their 
index positions. We have discussed the concepts and implementation using examples of min-
heap; all these operations and concepts can be easily implemented for a max-heap by simply 
reversing the logic in conditions where we ensured that the parent node should have smaller 
values compared to the children in min-heap. Now in the case of max-heap, we have to make the 
larger value in the parent. Heaps are used in various applications such as to implement heap sort 
and priority queues, which we will discuss in subsequent sections.

Heap sort
Heap is an important data structure for sorting a list of elements since it is very suitable for a 

large number of elements. If we want to sort a list of elements, say in ascending order, we can use 

min-heap for this purpose; we first create a min-heap of all the given data elements, and as per 

the heap property, the smallest data value will be stored at the root of the heap. With the help of 

the heap property, it is straightforward to sort the elements. The process is as follows:

1.	 Create a min-heap using all the given data elements.

2.	 Read and delete the root element, which is the minimum value. After that, copy the last 

element of the tree to the new root, and further reorganize the tree to maintain the heap 

property.

3.	 Now, we repeat step 2 until we get all the elements.

4.	 Finally, we get the sorted list of elements. 

The data elements are stored in the heap adhering to the heap property; whenever a new element 

is added or deleted, the heap property is maintained using the arrange() and sink() helper 

methods, respectively, as discussed in previous sections.

In order to implement heap sort using the heap data structure, first we create a heap with the 

data items {4, 8, 7, 2, 9, 10, 5, 1, 3, 6} using the below code (details of the creation of 

the heap are given in previous sections):

    h = MinHeap() 

    unsorted_list = [4, 8, 7, 2, 9, 10, 5, 1, 3, 6] 

    for i in unsorted_list: 

        h.insert(i) 

    print("Unsorted list: {}".format(unsorted_list)) 

In the above code, the min-heap, h, is created and the elements in unsorted_list are inserted. 

After each call to the insert() method, the heap order property is restored by the subsequent 

call to the sink method.
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After creation of the heap, next, we read and delete the root element. In each iteration, we get 

the minimum value, and thus the data items in ascending order. The implementation of the 

heap_sort() method should be defined in the minHeap class (it uses the delete_at_root() 

method discussed in previous sections):

        def heap_sort(self): 

            sorted_list = [] 

            for node in range(self.size): 

                n = self.delete_at_root() 

                sorted_list.append(n) 

            return sorted_list

In the above code, we create an empty array, sorted_list, which stores all the data elements in 

sorted order. Then we run the loop for the number of items in the list. In each iteration, we call 

the delete_at_root() method to get the minimum value, which is appended to sorted_list.

Now we can use the heap sort algorithm using the following code:

print("Unsorted list: {}".format(unsorted_list))

print("Sorted list: {}".format(h.heap_sort()))

The output of the above code is as follows:

Unsorted list: [4, 8, 7, 2, 9, 10, 5, 1, 3, 6]

Sorted list: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

The time complexity to build the heap using the insert method takes O(n) times. Further, to reor-

ganize the tree after deleting the root element takes O(log n) since we go from top to bottom in 

the heap tree, and the height of the heap is log2(n), hence the complexity of rearranging the tree 

is O(log n). So, overall, the worst-case time complexity of the heap sort is O(n logn). Heapsort is 

very efficient in general, giving a worst-case, average-case and best-case complexity of O(nlogn).

Priority queues
A priority queue is a data structure that is similar to a queue in which data is retrieved based on 

the First In, First Out (FIFO) policy, but in the priority queue, priority is attached with the data. 

In the priority queue, the data is retrieved based on the priority associated with the data elements, 

the data elements with the highest priority are retrieved before the lower priority data elements, 

and if two data elements have the same priority, they are retrieved according to the FIFO policy. 
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We can assign the priority of the data depending upon the application. It is used in many ap-

plications, such as CPU scheduling, and many algorithms also rely on priority queues, such as 

Dijkstra’s shortest-path, A* search, and Huffman codes for data compression.

So, in the priority queue, the item with the highest priority is served first. The priority queue stores 

the data according to the priority associated with the data, so insertion of an element will be at 

a specific position in the priority queue. Priority queues can be considered as modified queues 

that return the items in the order of highest priority instead of returning the items in the FIFO 

order. A priority queue can be implemented by modifying an enqueue position by inserting the 

item according to the priority. It is demonstrated in Figure 7.19, in which given the queue, a new 

item 5 is added to the queue at a specific index (here assuming that the data items having higher 

values have higher priority):

Figure 7.19: A demonstration of a priority queue

Let’s understand the priority queue with an example. When we receive data elements in an order, 

the elements are enqueued in the priority queue in the order of priority (assuming that the higher 

data value is of higher importance). Firstly, the priority queue is empty, so 3 is added initially in 

the queue; the next data element is 8, which will be enqueued at the start since it is greater than 

3. Next, the data item is 2, then 6, and finally, 10, which are enqueued in the priority queue as per 

their priority, and when the dequeue operation is applied, the high priority item will be dequeued 

first. All the steps are represented in Figure 7.20:
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Figure 7.20: A step-by-step procedure to create a priority queue

Let us discuss the implementation of a priority queue in Python. We first define the node class. 

A node class will have the data elements along with the priority associated with the data in the 

priority queue:

# class for Node with data and priority

class Node:

  def __init__(self, info, priority):

    self.info = info

    self.priority = priority 

Next, we define the PriorityQueue class and initialize the queue:

# class for Priority queue

class PriorityQueue:

  def __init__(self):

    self.queue = []
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Next, let us discuss the implementation of the insertion operation for adding a new data element 

to the priority queue. In the implementation, we assume that the data element has high priority 

if it has a smaller priority value (for example, a data element with the priority value 1 has higher 

priority compared to the data element that has a priority value 4). The following are cases of 

insertion of elements in a priority queue:

1.	 Insertion of a data element to the priority queue when the queue is initially empty.

2.	 If the queue is not empty, we perform the traversal of the queue and reach the appropri-

ate index position in the queue according to the associated priorities by comparing the 

priorities of the existing node with the new node. We add the new node before the node 

that has a priority greater than the new node.

3.	 If the new node has a lower priority than the high priority value, then the node will be 

added to the start of the queue.

The implementation of the insert() method is as follows, which should be defined in the 

PriorityQueue class:

    def insert(self, node):        

        if len(self.queue) == 0:

            # add the new node

            self.queue.append(node)

        else:

            # traverse the queue to find the right place for new node

            for x in range(0, len(self.queue)):

                # if the priority of new node is greater

                if node.priority >= self.queue[x].priority:

                    # if we have traversed the complete queue

                    if x == (len(self.queue)-1):

                        # add new node at the end

                        self.queue.insert(x+1, node)

                    else:

                        continue

                else:

                    self.queue.insert(x, node)

                    return True

In the above code, we first append a new data element when the queue is empty, and then we itera-

tively reach the appropriate position by comparing the priorities associated with the data elements. 
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Next, when we apply the delete operation in the priority queue, the highest priority data element is 

returned and removed from the queue. It should be defined in the PriorityQueue class as follows:

    def delete(self):

        # remove the first node from the queue

        x = self.queue.pop(0)

        print("Deleted data with the given priority-", x.info, x.priority)

        return x

In the preceding code, we get the top element with the highest priority value. Further, the im-

plementation of the show() method that prints all the data elements of the priority queue in the 

order of the priorities should be defined in the PriorityQueue class:

    def show(self):

        for x in self.queue:

            print(str(x.info)+ " - "+ str(x.priority))

  

Now, let’s consider an example to see how to use the priority queue in which we firstly add data 

elements ("Cat", “Bat", "Rat", "Ant", and "Lion") with associated priorities 13, 2, 1, 26, and 25, 

respectively:

p = PriorityQueue()

p.insert(Node("Cat", 13))

p.insert(Node("Bat", 2))

p.insert(Node("Rat", 1))

p.insert(Node("Ant", 26))

p.insert(Node("Lion", 25))

p.show()

p.delete()

The output of the above code is as follows:

Rat – 1

Bat – 2

Cat – 13

Lion – 25

Ant – 26

Deleted data with the given priority- Rat 1
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Priority queues can be implemented using several data structures; in the above example, we 

saw its implementation using a list of tuples where the tuple contains the priority as the first 

element and the value data item as the next element. However, the priority queues are mostly 

implemented using a heap, since it is efficient with the worst-case time complexity of O(log n) 

in insertion and deletion operations.

The implementation of the priority queue using heap is very similar to what we have discussed in 

the min-heap implementation. The only difference is that now we store the priorities associated 

with the data elements, and we create a min-heap tree considering the priority values using a list 

of tuples in Python. For completeness, the code for the priority queue using heaps is as follows:

class PriorityQueueHeap:

    def __init__(self):

        self.heap = [()]

        self.size = 0

 

    def arrange(self, k):

        while k // 2 > 0:

            if self.heap[k][0] < self.heap[k//2][0]:

                self.heap[k], self.heap[k//2] = self.heap[k//2], self.heap[k]

            k //= 2

 

    def insert(self,priority, item):

        self.heap.append((priority, item))

        self.size += 1

        self.arrange(self.size)

 

    def sink(self, k):

        while k * 2 <= self.size:

            mc = self.minchild(k)

            if self.heap[k][0] > self.heap[mc][0]:

                self.heap[k], self.heap[mc] = self.heap[mc], self.heap[k]

            k = mc

 

    def minchild(self, k):

        if k * 2 + 1 > self.size:

            return k * 2

        elif self.heap[k*2][0] < self.heap[k*2+1][0]:
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            return k * 2

        else:

            return k * 2 + 1

 

    def delete_at_root(self):

        item = self.heap[1][1]

        self.heap[1] = self.heap[self.size]

        self.size -= 1

        self.heap.pop()

        self.sink(1)

        return item

We use the code below to create a priority queue with data elements "Bat", "Cat", "Rat", "Ant", 

"Lion", and "Bear" with the associated priority values 2, 13, 18, 26, 3, and 4, respectively:

h = PriorityQueueHeap() 

h.insert(2, "Bat") 

h.insert(13,"Cat")

h.insert(18, "Rat")

h.insert(26, "Ant")

h.insert(3, "Lion")

h.insert(4, "Bear")

h.heap

The output of the above code is as follows:

[(), (2, 'Bat'), (3, 'Lion'),  (4, 'Bear'),  (26, 'Ant'),  (13, 'Cat'),  
(18, 'Rat')]

In the above output, we can see that it shows a min-heap tree that adheres to the min-heap prop-

erty. Now we can use the code below to remove the data elements:

for i in range(h.size):

    n = h.delete_at_root()

    print(n)

    print(h.heap)

The output of the preceding code is as follows:

'Bat

[(), (3, 'Lion'), (13, 'Cat'), (4, 'Bear'), (26, 'Ant'), (18, 'Rat')]
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Lion

[(), (4, 'Bear'), (13, 'Cat'), (18, 'Rat'), (26, 'Ant')]

Bear

[(), (13, 'Cat'), (26, 'Ant'), (18, 'Rat')]

Cat

[(), (18, 'Rat'), (26, 'Ant')]

Rat

[(), (26, 'Ant')]

Ant

[()]

In the above output, we can see that the data items are produced according to the priorities as-

sociated with the data elements.

Summary
In this chapter, we have discussed an important data structure, in other words, the heap data 

structure. We also discussed heap properties for min-heap and max-heap. We have seen the im-

plementation of several operations that can be applied to the heap data structure, such as heapi-

fying, and the insertion and deletion of a data element from the heap. We have also discussed 

two of the important applications of the heap—heap sort and a priority queue. The heap is an 

important data structure since it has many applications, such as sorting, selecting minimum and 

maximum values in a list, graph algorithms, and priority queues. Moreover, the heap can also be 

useful when we have to repeatedly remove a data object with the highest or lowest priority values.

In the next chapter, we will discuss the concepts of Hashing and Symbol Tables.

Exercises
1.	 What will be the time complexity for deleting an arbitrary element from the min-heap?

2.	 What will be the time complexity for finding the kth smallest element from the min-heap?

3.	 What will be the worst-case time complexity for ascertaining the smallest element from 

a binary max-heap and binary min-heap?

4.	 What will be the time complexity to make a max-heap that combines two max-heap each 

of size n?
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5.	 The level order traversal of max-heap is 12, 9, 7, 4, and 2. After inserting new elements 1 

and 8, what will be the final max-heap and the level order traversal of the final max-heap?

6.	 Which of the following is a binary max-heap?

Figure 7.21: Example trees
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Hash Tables

A hash table is a data structure that implements an associative array in which the data is stored 

by mapping the keys to the values as key-value pairs. In many applications, we mostly require 

different operations such as insert, search, and delete in a dictionary data structure. For example, 

a symbol table is a data structure based on a hash table that is used by the compiler. A compiler 

that translates a programming language maintains a symbol table in which keys are character 

strings that are mapped to the identifiers. In such situations, a hash table is an effective data struc-

ture since we can directly compute the index of the required record by applying a hash function 

to the key. So, instead of using the key as an array index directly, the array index is computed by 

applying the hash function to the key. It makes it very fast to access an element from any index 

from the hash table. The hash table uses the hashing function to compute the index of where the 

data item should be stored in the hash table.

While looking up an element in the hash table, hashing of the key gives the index of the corre-

sponding record in the table. Ideally, the hash function assigns a unique value to each of the keys; 

however, in practice, we may get hash collisions where the hash function generates the same 

index for more than one key. In this chapter, we will be discussing different techniques that deal 

with such collisions.

In this chapter, we will discuss all the concepts related to these, including:

•	 Hashing methods and hash table techniques

•	 Different collision resolution techniques in hash tables
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Introducing hash tables
As we know, arrays and lists store the data elements in sequence. As in an array, the data items 

are accessed by an index number. Accessing array elements using index numbers is fast. How-

ever, they are very inconvenient to use when it is required to access any element when we can’t 

remember the index number. For example, if we wish to extract the phone number for a person 

from the address book at index 56, there is nothing to link a particular contact with number 56. 

It is difficult to retrieve an entry from the list using the index value.

Hash tables are a data structure better suited to this kind of problem. A hash table is a data struc-

ture where elements are accessed by a keyword rather than an index number, unlike in lists and 

arrays. In this data structure, the data items are stored in key-value pairs similar to dictionaries. 

A hash table uses a hashing function in order to find an index position where an element should 

be stored and retrieved. This gives us fast lookups since we are using an index number that cor-

responds to the hash value of the key.

An overview of how the hash table stores the data is shown in Figure 8.1, in which key values 

are hashed using any hash function to obtain the index position of the record in the hash table.

Figure 8.1: An example of a hash table

Dictionaries are a widely used data structure, often built using hash tables. A dictionary uses a 

keyword instead of an index number, and it stores data in (key, value) pairs. That is, instead of 

accessing the contact with the index value, we use the key value in the dictionary data structure.

The following code demonstrate the working of dictionaries that store the data in (key, value) 

pairs:

my_dict={"Basant" : "9829012345", "Ram": "9829012346", "Shyam": 
"9829012347", "Sita": "9829012348"}
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print("All keys and values")

for x,y in my_dict.items():

    print(x, ":" , y)       #prints keys and values

my_dict["Ram"]

The output of the preceding code is as follows:

Basant : 9829012345

Ram : 9829012346

Shyam : 9829012347

Sita : 9829012348

'9829012346'

Hash tables stores the data in a very efficient way so that retrieval can be very fast. Hash tables 

are based on a concept called hashing.

Hashing functions
Hashing is a technique in which, when we provide data of arbitrary size to a function, we get a 

small, simplified value. This function is called a hash function. Hashing uses a hash function to 

map the keys to another range of data in a way that a new range of keys can be used as an index in 

the hash table; in other words, hashing is used to convert the key values to integer values, which 

can be used as an index in the hash table.

In our discussions in this chapter, we are using hashing to convert strings into integers.  We could 

have used any other data type in place of strings that can be converted into integers. Let’s take 

an example. Say, we want to hash the expression hello world, that is, we want to get a numeric 

value corresponding to this string that can be used as an index in the hash table.

In Python, the ord() function returns a unique integer value (known as ordinal values) that is 

mapped to a character in the Unicode encoding system. The ordinal values map the Unicode 

character to a unique numerical representation provided the character is Unicode-compatible, 

for example, numbers 0-127 are mapped to ASCII characters, which also correspond to the ordi-

nal values within Unicode systems. However, the range of Unicode encoding may be larger. So, 

Unicode encoding is a superset of ASCII. For example, in Python, we get a unique ordinal value 

102 for character ‘f' by using ord('f'). Further, to get the hash of the whole string, we could just 

sum the ordinal numbers of each character in the string. See the following code snippet:

sum(map(ord, 'hello world'))
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The output of the above is as follows:

1116

In the above output, we obtain a numeric value, 1116, for the hello world string, which is the 
hash of the given string. Consider the following Figure 8.2 to see the ordinal values of each char-
acter in the string that results in the hash value 1116:

Figure 8.2: Ordinal values of each character for the hello world string

The preceding approach used to obtain the hash value for a given string has the problem that 
more than one string can have the same hash value; for example, when we change the order of 
the characters in the string and we have the same hash value. See the following code snippet 

where we get the same hash value for the 'world hello' string:

sum(map(ord, 'world hello'))

The output of the above is as follows:

1116

Again, there would be the same hash value for the 'gello xorld' string, as the sum of the ordinal 

values of the characters for this string would be the same since g has an ordinal value that is one 

less than that of h, and x has an ordinal value that is one greater than that of w. See the following 

code snippet:

sum(map(ord, 'gello xorld'))

The output of the above is as follows:

1116

Look at the following Figure 8.3, where we can see that the hash value for this 'gello xorld' 

string is again 1116:

Figure 8.3: Ordinal values of each character for the gello xorld string
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In practice, most of the hashing functions are imperfect and face collisions. This means that a 

hash function gives the same hash value to more than one string. Such collisions are undesirable 

for implementing the hash table.

Perfect hashing functions
A perfect hashing function is one by which we get a unique hash value for a given string (it can 

be any data type; here, we are using a string data type as an example). Our aim is to create a hash 

function that minimizes the number of collisions, is fast, easy to compute, and distributes the 

data items equally in the hash table. But, normally, creating an efficient hash function that is fast 

as well as providing a unique hash value for each string is very difficult. If we try to develop a 

hash function that avoids collisions, this becomes very slow, and a slow hash function does not 

serve the purpose of the hash table. So, we use a fast hash function and try to find a strategy to 

resolve the collisions rather than trying to find a perfect hash function.

To avoid the collisions in the hash function discussed in the previous section, we can add a multi-

plier to the ordinal value of each character that continuously increases as we progress in the string. 

Furthermore, the hash value of the string can be obtained by adding the multiplied ordinal value 

of each character. To better understand the concept, refer to the following Figure 8.4:

Figure 8.4: Ordinal values multiplied by numeric values for each character of the hello world 
string

In the preceding Figure 8.4, the ordinal value of each character is progressively multiplied by a 

number. Note that row two has the ordinal values of each character; row three shows the mul-

tiplier value; and, in row four, we get values by multiplying the values of rows two and three so 

that 104 x 1 equals 104. Finally, we add all of these multiplied values to get the hash value of 

the hello world string, that is, 6736.

The implementation of this concept is shown in the following function:

def myhash(s): 

       mult = 1 

       hv = 0 
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       for ch in s: 

           hv += mult * ord(ch) 

           mult += 1 

       return hv 

We can test this function on the strings that we used earlier, shown as follows:

for item in ('hello world', 'world hello', 'gello xorld'): 

        print("{}: {}".format(item, myhash(item))) 

When we execute the preceding code, we get the following output:

hello world: 6736

world hello: 6616

gello xorld: 6742

We can see that this time, we get different hash values for these three strings. Still, this is not a 

perfect hash. Let’s now try the strings ad and ga:

for item in ('ad', 'ga'): 

        print("{}: {}".format(item, myhash(item)))

The output of the preceding code snippet is as follows:

ad: 297

ga: 297

So, we still do not have a perfect hash function since we get the same hash values for these two 

different strings. Therefore, we need to devise a strategy for resolving such collisions. We will 

discuss more strategies to resolve collisions in the next sections.

Resolving collisions
Each position in the hash table is often called a slot or bucket that can store an element. Each 

data item in the form of a (key, value) pair is stored in the hash table at a position that is decided 

by the hash value of the key. Let’s take an example in which firstly we use the hashing function 

that computes the hash value by summing up the ordinal values of all the characters. Then, we 

compute the final hash value (in other words, the index position) by computing the total ordinal 

values of module 256. Here, we use 256 slots/buckets as an example. We can use any number of 

slots depending upon how many records we require in the hash table. We show a sample hash in 

Figure 8.5, which has key strings corresponding to data values, for example, the eggs key string 

has the corresponding data value 123456789. 
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This hash table uses a hashing function that maps the input string hello world to a hash value 

of 92, which finds a slot position in the hash table:

Figure 8.5: A sample hash table

Once we know the hash value of the key, it will be used to find the position where the element 

should be stored in the hash table. So, we need to find an empty slot. We start at the slot that 

corresponds to the hash value of the key. If that slot is empty, we insert the data item there. And, 

if the slot is not empty, that means we have a collision. It means that we have a hash value for 

the item that is the same as a previously stored item in the table. We need to ascertain a strategy 

to avoid such collisions or conflicts.

For example, in the following diagram, the key string hello world is already stored in the table 

at index position 92, and with a new key string, for example, world hello, we get the same hash 

value of 92. This means that there is a collision. Refer to the following Figure 8.6 depicting this 

concept:

Figure 8.6: Hash values of two strings are the same
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One way of resolving this kind of collision is to find another free slot from the position of the 

collision. This collision resolution process is called open addressing.

Open addressing
In open addressing, the key values are stored in the hash table, and collisions are resolved using 

the probing technique. Open addressing a collision resolution technique used in hash tables. 

The collision is resolved by searching (also called probing) an alternate position until we get an 

unused slot in the hash table to store the data item.

There are three popular approaches for an open addressing-based collision resolution technique:

1.	 Linear probing

2.	 Quadratic probing

3.	 Double hashing

Linear probing
The systematic way of visiting each slot is a linear way of resolving collisions, in which we linearly 

look for the next available slot by adding 1 to the previous hash value where we get the collision. 

This is known as linear probing. We can resolve the conflict by adding 1 to the sum of the ordinal 

values of each character in the key string, which is further used to compute the final hash value 

by taking its modulo according to the size of the hash table.

Let’s consider an example. First, compute the hash value of the key. If the position is occupied, 

we check the hash table sequentially for the next free slot. Let’s use this to resolve a collision, as 

shown in the following Figure 8.7, wherein, for the key string egg, the sum of ordinal values comes 

to 307, and then we compute the hash value by taking the module 256, which gives the hash val-

ue for the egg key string as 51. However, data is already stored at this position, so this means a 

collision. Therefore, we add 1 to the hash value that is computed by the sum of the ordinal values 

of each character of the string. In this way, we obtain a new hash value, 52, for this key string to 

store the data. Refer to the following Figure 8.7, which depicts the above process:
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Figure 8.7: An example of collision resolution

In order to find the next free slot in the hash table, we increment the hashing value, and this incre-

ment is fixed in the case of linear probing. Due to a fixed increment in the hashing value when we 

get collisions, the new data element is always stored at the next available index position given by 

the hash function. This creates a continuous cluster of occupied index positions, with this cluster 

growing whenever we get another data element that has a hash value anywhere within the cluster.

So, one major drawback of this approach is that the hash table can have consecutive occupied 

positions that are called clusters of items. In this case, one portion of the hash table may become 

dense, with the other part of the table remaining empty. Because of these limitations, we may 

prefer to use a different strategy to resolve collisions such as quadrant probing or double hashing, 

which we will discuss in forthcoming sections. Let us first discuss the implementation of the hash 

table with linear probing as a collision resolution technique, and after understanding the concept 

of linear probing, we will discuss other collision resolution techniques.
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Implementing hash tables
To implement the hash table, we start by creating a class to hold hash table items. These need to 

have a key and a value since the hash table is a {key-value} store:

class HashItem: 

    def __init__(self, key, value): 

        self.key = key 

        self.value = value 

Next, we start working on the hash table class itself. As usual, we start with a constructor:

class HashTable: 

     def __init__(self): 

         self.size = 256 

         self.slots = [None for i in range(self.size)] 

         self.count = 0 

Standard Python lists can be used to store data elements in a hash table. Let’s set the size of the 

hash table to 256 elements to start with. Later, we will look at strategies for how to grow the hash 

table as we begin filling it up. We will now initialize a list containing 256 elements in the code. 

These are the positions where the elements are to be stored—the slots or buckets. So, we have 

256 slots to store elements in the hash table. It is important to note the difference between the 

size and count of a table. The size of a table refers to the total number of slots in the table (used or 

unused). The count of the table refers to the number of slots that are filled, meaning the number 

of actual (key-value) pairs that have been added to the table.

Now, we have to decide on a hashing function for the table. We can use any hash function. Let’s 

take the same hash function that returns the sum of ordinal values for each character in the strings 

with a slight modification. Since this hash table has 256 slots, that means we need a hashing 

function that returns a value in the range of 0 to 255 (the size of the table). A good way of doing 

it is to return the remainder of dividing the hash value by the size of the table since the remainder 

would surely be an integer value between 0 and 255.

Since the hashing function is only meant to be used internally by the class, we put an underscore 

(_) at the beginning of the name to indicate this. This is a Python convention for indicating that 

something is intended for internal use. Here is the implementation of the hash function, which 

should be defined in the HashTable class:

def _hash(self, key): 
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      mult = 1 

      hv = 0 

      for ch in key: 

          hv += mult * ord(ch) 

          mult += 1 

      return hv % self.size 

For the time being, we are assuming that keys are strings. We will discuss how non-string keys 

can be used later. For now, the _hash() function is going to generate the hash value for a string.

Storing elements in a hash table
To store the elements in the hash table, we add them to the table with the put() function and 

retrieve them with the get() function. First, we will look at the implementation of the put() 

function. We start by adding the key and the value to the HashItem class and then compute the 

hash value of the key. The put() method should be defined in the HashTable class:

def put(self, key, value): 

    item = HashItem(key, value) 

    h = self._hash(key)

    while self.slots[h] != None:

        if self.slots[h].key == key:

            break

        h = (h + 1) % self.size

    if self.slots[h] == None:

        self.count += 1

    self.slots[h] = item

    self.check_growth()

After obtaining the hash value of the key and if the slot is not empty, the next free slot is checked 

by adding 1 to the previous hash value by applying the linear probing technique. Consider the 

following code:

while self.slots[h] != None: 

      if self.slots[h].key == key: 

          break 

      h = (h + 1) % self.size 

If the slot is empty, then we increase the count by one and store the new element (meaning the 

slot contained None previously) in the list at the required position. Refer to the following code:
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if self.slots[h] is None: 

     self.count += 1 

self.slots[h] = item 

self.check_growth()

In the above code, we have created a hash table and discussed the put() method for storing the 

data element in the hash table with the linear probing technique at the time of the collision. 

In the last line of the preceding code, we call a check_growth() method, which is used to expand 

the size of the hash table when we have a very limited number of empty slots remaining in the 

hash table. We will discuss this in more detail in the next section.

Growing a hash table
In the example that we have discussed, we have fixed the hash table size at 256. It is obvious that, 

when we add the elements to the hash table, the hash table starts filling up, and at some point, 

all of the slots would be filled up and the hash table will be full. To avoid such a situation, we can 

grow the size of the table when it is starting to get full.

To grow the size of the hash table, we compare the size and the count in the table. size is the 

total number of slots, and count denotes the number of slots that contain elements. So, if count is 

equal to size, this means we have filled up the table. The load factor of the hash table is generally 

used to expand the size of the table; that gives us an indication of how many available slots of 

the table have been used. The load factor of the hash table is computed by dividing the number 

of used slots by the total number of slots in the table. It is defined as follows:

Load factor = n/k

Here, n is the number of used slots, and k is the total number of slots. As the load factor value 

approaches 1, this means that the table is going to be filled, and we need to grow the size of the 

table. It is better to grow the size of the table before it gets almost full, as the retrieval of elements 

from the table becomes slow when the table fills up. A value of 0.75 for the load factor may be a 

good value to grow the size of the table. Another question is how much we should increase the 

size of the table. One strategy would be to simply double its size.

The problem of linear probing is that as the load factor increases, it takes a long time to find the 

insertion point for the new element. Moreover, in the case of the open addressing collision res-

olution technique, we should grow the size of the hash table depending upon the load factor to 

reduce the number of collisions.
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The implementation of growing the hash table when the load factor increases more than the 

threshold is as follows. First, we redefine the HashTable class that includes one more variable, 

MAXLOADFACTOR, that is used to ensure that the load factor of the hash table is always below the 

predefined maximum load factor. The HashTable class is defined as follows:

class HashTable: 
     def __init__(self): 
         self.size = 256 
         self.slots = [None for i in range(self.size)] 
         self.count = 0 
         self.MAXLOADFACTOR = 0.65

Next, we check the load factor of the hash table after adding any record to the hash table using 

the following check_growth() method, which should be defined in the HashTable class:

    def check_growth(self):
        loadfactor = self.count / self.size 
        if loadfactor > self.MAXLOADFACTOR:
            print("Load factor before growing the hash table", self.count 
/ self.size )
            self.growth()
            print("Load factor after growing the hash table", self.count / 
self.size )

In the preceding code, we compute the load factor of the table, and then we check if it is more 

than the set threshold (in other words, MAXLOADFACTOR is a variable that we initialize at the time 

of creating a hash table). In that case, we call the growth() method that increases the hash table 

size (in this example, we are doubling the hash table size). The growth() method, which should 

be defined in the HashTable class, is implemented as follows:

    def growth(self):
        New_Hash_Table = HashTable()
        New_Hash_Table.size = 2 * self.size
        New_Hash_Table.slots = [None for i in range(New_Hash_Table.size)]
        
        for i in range(self.size):
             if self.slots[i] != None:
                New_Hash_Table.put(self.slots[i].key, self.slots[i].value)
             
        self.size = New_Hash_Table.size
        self.slots = New_Hash_Table.slots
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In the preceding code, we firstly create a new hash table double the size of the original hash table 

and then we initialize all of its slots to be None. Next, we check all the filled slots in the original 

hash table where we have the data, since we have to insert all these existing records into the new 

hash table, hence, we call the put() method with all the key-value pairs of the existing hash table. 

Once we copy all the records to the new hash table, we replace the size and slots of the existing 

table with the new hash table.

Let’s create a hash table with a maximum capacity of 10 records and a threshold load factor of 65% 

by defining self.size = 10 in the __init__ method in the HashTable class, meaning whenever 

a seventh record is added to the hash table, we call a check_growth() method:

ht = HashTable() 

ht.put("good", "eggs") 

ht.put("better", "ham") 

ht.put("best", "spam") 

ht.put("ad", "do not") 

ht.put("ga", "collide") 

ht.put("awd", "do not") 

ht.put("add", "do not") 

ht.checkGrow()

In the above code, we add seven records using the put() method. The output of the preceding 

code is as follows:

Load factor before growing the hash table 0.7

Load factor after growing the hash table 0.35

In the above output, we can see that the load factor before and after adding the seventh record 

became half of the load factor before growing the hash table.

In the next section, we will discuss the get() method for retrieving the data element that we 

have stored in the hash table.

Retrieving elements from the hash table
To retrieve the elements from the hash table, the value stored corresponding to the key would be 

returned. Here, we discuss the implementation of the retrieval method—the get() method. This 

method returns the value stored in the table corresponding to the given key.
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Firstly, we compute the hash of the given key corresponding to the value that is to be retrieved. 

Once we have the hash value of the key, we look up the hash table at the position of the hash 

value. If the key item is matched with the stored key value at that location, the corresponding 

value is retrieved.

If that does not match, then we add 1 to the sum of the ordinal values of all the characters in the 

string, similar to what we did at the time of storing the data, and we look at the newly obtained hash 

value. We keep searching until we get the key element, or we check all the slots in the hash table. 

Here, we used the linear probing technique to resolve the collision, and hence we use the same 

technique when retrieving the data element from the hash table. Hence, if we were to use a dif-

ferent technique, let’s say double hashing or quadratic probing at the time of storing the data 

element, we should use the same method to retrieve the data element. Consider an example to 

understand the concept in Figure 8.8, and in the following four steps:

1.	 We compute the hash value for the given key string, egg, which turns out to be 51. Then, 

we compare this key with the stored key value at location 51, but it does not match.

2.	 As the key does not match, we compute a new hash value.

3.	 We look up the key at the location of the newly created hash value, which is 52; we compare 

the key string with the stored key value and, here, it matches, as shown in the following 

diagram.

4.	 The stored value is returned corresponding to this key value in the hash table. See the 

following Figure 8.8:

Figure 8.8: Four steps are demonstrated for retrieving an element from the hash table
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To implement this retrieval method, that is, the get() method, we start by calculating the hash 

of the key. Next, we look up the computed hash value in the table. If there is a match, we return 

the corresponding stored value. Otherwise, we keep looking at the new hash value location com-

puted as described. Here is the implementation of the get() method, which should be defined 

in the HashTable class:

def get(self, key): 

    h = self._hash(key)    # computed hash for the given key 

    while self.slots[h] != None:

        if self.slots[h].key == key: 

            return self.slots[h].value 

        h = (h+ 1) % self.size 

    return None

Finally, we return None if the key was not found in the table; we could have printed the message 

that the key is not found in the hash table.

Testing the hash table
To test the hash table, we create HashTable and store a few elements in it, and then try to retrieve 

them. We can use get() method to find out if a record exists for a given key. We also use the two 

strings, ad and ga, that had the collision and returned the same hash value with our hashing 

function. To evaluate the work of the hash table, we throw this collision as well, just to see that 

the collision is properly resolved. Refer to the example code, as follows:

ht = HashTable()

ht.put("good", "eggs")

ht.put("better", "ham")

ht.put("best", "spam")

ht.put("ad", "do not")

ht.put("ga", "collide")

for key in ("good", "better", "best", "worst", "ad", "ga"):

        v = ht.get(key)

        print(v)

After executing the above code, we get the following output:

eggs

ham
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spam

none

do not

collide

As you can see, looking up the worst key returns None, since the key does not exist. The ad and ga 

keys also return their corresponding values, showing that the collision between them is handled 

properly.

Implementing a hash table as a dictionary
Using the put() and get() methods to store and retrieve elements in the hash table may look 

slightly inconvenient. However, we can also use the hash table as a dictionary, as it would be 

easier to use. For example, we would like to use ht["good"] instead of ht.get("good") to retrieve 

elements from the table.

This can easily be done with the special methods, __setitem__() and __getitem__(), which 

should be defined in the HashTable class.

See the following code for this:

def __setitem__(self, key, value):

     self.put(key, value)

def __getitem__(self, key):

     return self.get(key)

Now, our test code would be like the following:

ht = HashTable()

ht["good"] = "eggs"

ht["better"] = "ham"

ht["best"] = "spam"

ht["ad"] = "do not"

ht["ga"] = "collide"

for key in ("good", "better", "best", "worst", "ad", "ga"):

     v = ht[key]

     print(v)

print("The number of elements is: {}".format(ht.count))



Hash Tables264

The output of the preceding code is as follows:

eggs

ham

spam

none

do not

collide

The number of elements is: 5

Notice that we also print the number of elements already stored in the hash table using the count 

variable. The above code does the same thing as we did in the previous section, but it is just more 

convenient to use.

In the next section, we discuss the quadratic probing technique for collision resolution.

Quadratic probing
This is also an open addressing scheme for resolving collisions in hash tables. It resolves the 

collision by computing the hash value of the key and adding successive values of a quadratic 

polynomial; the new hash is iteratively computed until an empty slot is found. If a collision occurs, 

the next free slots are checked at the locations h + 12, h + 22, h + 32, h + 42, and so on. Hence, the 

new hash value is computed as follows:

new-hash(key) = (old-hash-value + i2)

Here, hash-value = key mod table_size

When we have a key as strings, we compute the hash value using the sum of the ordinal values 

multiplied by numeric values for each character, and then we pass it the hash function to finally 

obtain the hash of the key string. However, in the case of non-string key elements, we can use 

the hash function directly to compute the hash of the key.

Let us take a simple example of a hash table in which we have seven slots and assume that the 

hash function is h(key) = key mod 7. To understand the concept of quadratic probing, let’s 

assume that we have key element values that are the hash of the given key strings.

So, whenever we use the quadratic probing technique to ascertain the next index positions to 

store a data element when we have a collision, we should perform the following steps to resolve 

the collision:
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1.	 Initially, since we have an empty table, when we get a key element of 15 (assuming it is 

a hash of the given string), we compute the hash value using our given hash function, in 

other words, 15 mod 7= 1. So, the data element is stored at index position 1.

2.	 Then, let’s say we get a key element of 22 (assuming it is a hash of the next given string), 

we use the hash function to compute the hash value, in other words, 22 mod 7 = 1, it 

gives the index position 1. Since index position 1 is already occupied,  there is a collision, 

so we compute a new hash value using quadratic probing, which is (1+ 12 = 2). The new 

index position is 2. Therefore, the data element is stored at index position 2.

3.	 Next, assuming that we get a data element of 29 (assuming it is a hash of the given string), 

we compute the hash value 29 mod 7 = 1. Since we have a collision here, we compute the 

hash value again as in step 2, but we get another collision here, so we have to recompute 

the hash value once more, in other words (1+22 = 5), so the data is stored at that location.

The above example of resolving the process using the quadratic probing technique is shown in 

Figure 8.9:

Figure 8.9: Example of collision resolution using quadratic probing

The quadratic probing technique for collision avoidance does not suffer from the formation of 

clusters of items in the same way as linear probing; however, it does suffer from secondary clus-

tering. Secondary clustering creates a long run of filled slots since the data elements that have 

the same hash value will also have the same probe sequence.
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We discussed the implementation of a hash table in the previous section with the addition and 

retrieval of data elements, and we used the linear probing technique to resolve the collision. Now, 

we can update the implementation of the hash table if we want to use any other collision resolu-

tion technique, such as the quadratic probing technique. All the methods will be the same in the 

HashTable class except the following two methods, which should be defined in the HashTable class:

    def get_quadratic(self, key):

        h = self._hash(key)

        j = 1

        while self.slots[h] != None:

            if self.slots[h].key == key:

                return self.slots[h].value

            h = (h+ j*j) % self.size

            j = j + 1

        return None

    def put_quadratic(self, key, value):

        item = HashItem(key, value)

        h = self._hash(key)

        j = 1

        while self.slots[h] != None:

            if self.slots[h].key == key:

                break

            h = (h + j*j) % self.size

            j = j+1

        if self.slots[h] == None:

            self.count += 1

        self.slots[h] = item

        self.check_growth()

The above code of the get_quadratic() and put_quadratic() methods are similar to the im-

plementation of the get() and put() methods that we discussed earlier, except for the fact that 

the code statements are in bold in the preceding codes. The bold statements are indicating that 

at the time of the collision, we check the next empty slot using the quadratic probing formula:

ht = HashTable() 

ht.put_quadratic("good", "eggs") 
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ht.put_quadratic("ad", "packt") 

ht.put_quadratic("ga", "books") 

 

v = ht.get_quadratic("ga") 

print(v) 

In the above code, we first add three data elements along with their associated values, and then 

we search for a data item with the key "ga" in the hash table. The output of the preceding code 

is as follows:

books

The above output corresponds to the key string "ga", which is correct as per the input data stored 

in the hash table. Next, we will discuss another collision resolution technique – double hashing.

Double hashing
In the double hashing collision resolution technique, we use two hashing functions. This tech-

nique works as follows. Firstly, the primary hash function is used to compute the index position 

in the hash table, and whenever we get a collision, we use another hash function to decide the 

next free slot to store the data by incrementing the hashing value.

In order to find the next free slot in the hash table, we increment the hashing value, and this in-

crement is fixed in the case of linear probing and quadratic probing. Due to a fixed increment in 

the hashing value when we get collisions, the record is always moved to the next available index 

position given by the hash function. It creates a continuous cluster of occupied index positions. 

This cluster grows whenever we get another record that has a hash value anywhere within the 

cluster.

However, in the case of the double hashing technique, the probing interval depends on the key 

data itself, meaning that we always map to the different index positions in the hash table when-

ever we get a collision, which, in turn, helps in avoiding the formation of clusters.

The probing sequence for this collision resolving technique is as follows:

(h1(key)+i*h2(key))mod table_size

h1(key) = key mod table_size

It is important to note here that the second hash function should be fast, easy to compute, should 

not evaluate to 0, and should be different from the first hash function.
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One choice for the second hash function can be defined as follows:

h2(key) = prime_number - (key mod prime_number)

In the above hash function, the prime number should be less than the table size.

For example, let’s say we have a hash table that can have a maximum of seven slots when we add 

data elements {15, 22, 29} to this table in sequence. The following steps are performed to store 

these data elements in the hash table using the double hashing technique when we get a collision:

1.	 Firstly, we have data element 15, and we compute the hash value using the primary hash 

function, in other words, (15 mod 7 = 1). Since the table is empty initially, we store the 

data at index position 1.

2.	 Next, the data element is 22, and we compute the hash value using the primary hash 

function, in other words, (22 mod 7 = 1). Since the index position 1 is already filled, this 

means there is a collision. Next, we use the secondary hashing function defined above as 

h2(key) = prime_number - (key mod prime_number) to ascertain the next index posi-

tions in the hash table. Here, we assume that the prime number less than the table size is 

5. This means that the next index position in the hash table will be (1 + 1*(5 - (22 mod 

5))) mod 7, which is equivalent to 4. So, we store this data element at index position 4.

3.	 Next, we have data element 29, so we compute the hash value using the primary hashing 

function, in other words, (29 mod 7 =1). We get a collision, and now we use the secondary 

hash function to establish the next index position for storing the data element, in other 

words, (1 + 1*(5 - (29 mod 5))) mod 7, which turns out to be 2, so we store this data 

element at location 2.
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The above example of the process of resolving the collision using double hashing is shown in 

Figure 8.10:

Figure 8.10: Example of collision resolution using double hashing

Let us now see how we can implement the hash table with the double hashing technique to resolve 

the collision. The put_double_hashing() and get_ double_hashing () methods are given as 

follows, which should be defined in the HashTable class.  

The following h2() method is used to compute the sum of the ordinal values since, in our exam-

ples, we have strings as a key element:

    def h2(self, key):

        mult = 1

        hv = 0

        for ch in key:

            hv += mult * ord(ch)

            mult += 1

        return hv
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Furthermore, we should redefine the hash table to include a prime number as a variable that will 

be used in computing the secondary hash function:

class HashTable:

    def __init__(self):

        self.size = 256

        self.slots = [None for i in range(self.size)]

        self.count = 0

        self.MAXLOADFACTOR = 0.65

        self.prime_num = 5

The following code is designed to insert a data element and associated value in the hash table 

and use the double hashing technique at the time of collision:

    def put_double_hashing(self, key, value):

        item = HashItem(key, value)

        h = self._hash(key)

        j = 1    

        while self.slots[h] != None:

            if self.slots[h].key == key:

                break

            h = (h + j * (self.prime_num - (self.h2(key) % self.prime_
num))) % self.size

            j = j+1

        if self.slots[h] == None:

            self.count += 1

        self.slots[h] = item

        self.check_growth()

    

    def get_double_hashing(self, key):

        h = self._hash(key)

        j = 1

        while self.slots[h] != None:

            if self.slots[h].key == key:

                return self.slots[h].value

            h = (h + j * (self.prime_num - (self.h2(key) % self.prime_
num))) % self.size

            j = j + 1

        return None
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The above code of the get_doubleHashing() and put_doubleHashing() methods are very sim-

ilar to the implementation of the get() and put() methods that we discussed earlier, except for 

the statements that are in bold in the preceding codes. The statements in bold are showing that 

at the time of the collision, we use the double hashing technique formula to get the next empty 

slot in the hash table:

ht = HashTable() 

ht.put_doubleHashing("good", "eggs") 

ht.put_doubleHashing("better", "spam") 

ht.put_doubleHashing("best", "cool") 

ht.put_doubleHashing("ad", "donot") 

ht.put_doubleHashing("ga", "collide") 

ht.put_doubleHashing("awd", "hello") 

ht.put_doubleHashing("addition", "ok") 

 

for key in ("good", "better", "best", "worst", "ad", "ga"): 

        v = ht.get_doubleHashing(key) 

        print(v) 

print("The number of elements is: {}".format(ht.count))

In the above code, we first insert seven different data elements along with their associated val-

ues, and then we search and check a few random data items in the hash table. The output of the 

preceding code is as follows:

eggs

spam

cool

none

donot

collide

The number of elements is: 7

In the above output, we can observe that the key string worst is not present in the hash table, 

meaning the output corresponding to this is None.

Linear probing leads to primary clustering, while quadratic probing may lead to secondary clus-

tering, whereas the double hashing technique is one of the most effective methods for collision 

resolution since it does not yield any clusters. The advantage of this technique is that it produces 

a uniform distribution of records in the hash table.
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In open addressing collision resolution techniques, we search for another empty slot within 

the hash table, as we did in linear probing, quadratic probing, and double hashing. “closed” in 

“closed hashing” refers to the fact that we do not leave the hash table, and every record is stored 

at an index position given by the hash function, hence “closed hashing” and “open addressing” 

are synonyms.

On the other hand, when a record is always stored at an index position given by the hash function, 

this is known as the “closed addressing,” or “open hashing,” technique. Here, “open” in “open 

hashing” refers to the fact that we are open to leaving the hash table through a separate list where 

the data elements can be stored; for example, separate chaining is a closed addressing technique.

In the next section, we will discuss another collision resolution technique – the chaining technique.

Separate chaining
Separate chaining is another method to handle the problem of collision in hash tables. It solves this 

problem by allowing each slot in the hash table to store a reference to many items at the position 

of a collision. So, at the index of a collision, we are allowed to store multiple items in the hash table.

In chaining, the slots in the hash table are initialized with empty lists. When a data element is 

inserted, it is appended to the list that corresponds to that element’s hash value. For example, 

in the following Figure 8.11, there is a collision for the key strings hello world and world hello. 

In the case of chaining, both data elements are stored using a list at the index position given by 

the hash function, in other words, 92 in the example shown in Figure 8.11. Here is an example to 

show collision resolution using chaining:

Figure 8.11: Example of collision resolution using chaining
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One more example is shown in Figure 8.12, wherein if we have many data elements that have a 

hash value of 51, all of these elements would be added to the list that exists in the same slot of 

the hash table:

Figure 8.12: More than one element having the same hash value stored in a list

Chaining then avoids conflict by allowing multiple elements to have the same hash value. Hence, 

there is no limit in terms of the number of elements that can be stored in a hash table, whereas, 

in the case of open addressing collision resolution techniques, we had to fix the size of the table, 

which we need to later grow when the table is filled up. Moreover, the hash table can hold more 

values than the number of available slots, since each slot holds a list that can grow.

However, there is a problem with chaining—it becomes inefficient when a list grows at a particular 

hash value location. As a particular slot has many items, searching them can become very slow 

since we have to do a linear search through the list until we find the element that has the key we 

want. This can slow down retrieval, which is not good since hash tables are meant to be efficient. 

Hence, the worst-case time complexity for searching in a separate chaining algorithm using linked 

lists is O(n), because in the worst case, all the items will be added to only one index position in 

the hash table, and searching an item will work just similar to a linked list. The following Figure 

8.13 demonstrates a linear search through list items until we find a match:

Figure 8.13: Demonstration of a linear search for the hash value of 51

So, there is a problem with the slow retrieval of items when a particular position in a hash table 

has many entries. This problem can be resolved using another data structure in place of using a 

list that can perform fast searching and retrieval. There is a nice choice of using binary search 

trees (BSTs), which provide fast retrieval, as we discussed in the previous chapter.
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We could simply insert an (initially empty) BST into each slot, as shown in the following Figure 8.14:

Figure 8.14: BST for a bucket for the hash value of 51

In the preceding diagram, the 51 slot holds a BST, which we use to store and retrieve the data 

items. However, we would still have a potential problem—depending on the order in which the 

items were added to the BST, we could end up with a search tree that is as inefficient as a list. 

That is, each node in the tree has exactly one child. To avoid this, we would need to ensure that 

our BST is self-balancing.

Here is the implementation of the hash table with separate chaining. Firstly, we create a Node 

class to store the key-value pairs and one pointer for pointing to the next node in the linked list:

class Node:

    def __init__(self, key=None, value=None):

        self.key = key

        self.value = value

        self.next = None

Next, we define the singly linked list, the details of which are provided in Chapter 4, Linked Lists. 

Here, we have defined the append() method for adding a new data record to the linked list:

class SinglyLinkedList:
    def __init__ (self):
        self.tail = None
        self.head = None
        
    def append(self, key, value):
        node = Node(key, value)
        if self.tail:
            self.tail.next = node 
            self.tail = node        else:
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            self.head = node 
            self.tail = node
            

Next, we define the traverse() method, which prints all the data records with key-value pairs. 

The traverse() method should be defined in the SinglyLinkedList class. We start from the 

head node, and move the next nodes while iterating through the while loop:

    def traverse(self):
        current = self.head
        while current:
            print("\"", current.key, "--", current.value, "\"")
            current = current.next

Next, we define a search() method that matches the key that we want to search in the linked list. 

If the key matches any of the nodes, the corresponding key-value pair is printed. The search() 

method should be defined in the SinglyLinkedList class:

    def search(self, key):
        current = self.head
        while current:
            if current.key == key: 
                print("\"Record found:", current.key, "-", current.value, 
"\"")
                return True
            current = current.next
        return False

Once, we have defined the linked list and all the required methods, we define the HashTableChaining 

class, in which we initialize the hash table with its size and all the slots with an empty linked list:

    

class HashTableChaining:

    def __init__(self):

        self.size = 6

        self.slots = [None for i in range(self.size)]

        for x in range(self.size) :

            self.slots[x] = SinglyLinkedList()
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Next, we define the hash function, in other words, _hash(), similar to what we have discussed 

in previous sections:

    def _hash(self, key):

        mult = 1

        hv = 0

        for ch in key:

            hv += mult * ord(ch)

            mult += 1

        return hv % self.size

Then, we define the put() method to insert a new data record in the hash table. Firstly, we create 

a node with key-pair pairs and then compute the index position based on the hash function. Then, 

we append the node at the end of the linked list associated with the given index position. The 

put() method should be defined in the HashTableChaining class:

    def put(self, key, value):

        node = Node(key, value)        

        h = self._hash(key) 

        self.slots[h].append(key, value)

Next, we define the get() method to retrieve the data elements given the key value from the 

hash table. Firstly, we compute the index position using the same hash function that we used at 

the time of adding the records to the hash table, and then we search the required data record in 

the linked list associated with the given index position computed. The get() method should be 

defined in the HashTableChaining class:

    def get(self, key):

        h = self._hash(key)

        v = self.slots[h].search(key)

        

Finally, we can define the printHashTable() method, which prints the complete hash table 

showing all the records of the hash table:

    def printHashTable(self) :

        print("Hash table is :- \n")

        print("Index \t\tValues\n")

        for x in range(self.size) :

            print(x,end="\t\n")

            self.slots[x].traverse()



Chapter 8 277

We can use the following code to insert a few sample data records in the hash table and we use 

the chaining technique to store the data. Then, we search a data record with the key string best, 

and we also print the complete hash table:

ht = HashTableChaining() 

ht.put("good", "eggs") 

ht.put("better", "ham") 

ht.put("best", "spam") 

ht.put("ad", "do not") 

ht.put("ga", "collide") 

ht.put("awd", "do not") 

        

ht.printHashTable()

The output of the preceding code is as follows:

Hash table is :- 

Index              Values

0

1

2

" good - eggs "

3

" better - ham "

" ad - do not "

" ga - collide "

4

5

" best - spam "

" awd - do not "

The above output shows how all the data records are stored at each index position in the hash 

table. We can observe that multiple data records are stored at the same index position given by 

the hash function.

Hash tables are important data structures for storing data in key-value pairs, and we can use 

any of the collision resolution techniques, in other words, open addressing or separate chaining. 

Open addressing techniques are very fast when the keys are uniformly distributed in the hash 

table, but there is a possible complication of cluster formation. 
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The separate chaining technique does not have the problem of clustering, but it may become 

slower when all the data records are hashed to a very few index positions in the hash table.

Symbol tables
Symbol tables are used by compilers and interpreters to keep track of the symbols and different 

entities, such as objects, classes, variables, and function names, that have been declared in a pro-

gram. Symbol tables are often built using hash tables since it is important to efficiently retrieve 

a symbol from the table.

Let’s look at an example. Suppose we have the following Python code in the symb.py file:

    name = "Joe"

    age = 27

Here, we have two symbols, name and age. Each symbol has a value; for example, the name symbol 

has the value Joe, and the age symbol has the value 27. A symbol table allows the compiler or the 

interpreter to look up these values. So, the name and age symbols become keys in the hash table. 

All of the other information associated with them becomes the value of the symbol table entry.

In compilers, symbol tables can have other symbols as well, such as functions and class names. 

For example, the greet() function and two variables, in other words, name and age, are stored 

in the symbol table as shown in Figure 8.15:

Figure 8.15: Example of a symbol table
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The compiler creates a symbol table for each of its modules that are loaded in memory at the 

time of its execution. Symbol tables are one of the important applications of hash tables, which 

are mostly used in the compilers and interpreters to efficiently store and retrieve the symbols 

and associated values.

Summary
In this chapter, we discussed hashing techniques and the data structure of hash tables. We learned 

about the implementation and concepts of different operations performed on hash tables. We also 

discussed several collision resolution techniques, including open addressing techniques, namely, 

linear probing, quadratic probing, and double hashing. Furthermore, we discussed another kind 

of collision resolution method – separate chaining. Finally, we looked at symbol tables, which are 

often built using hash tables. Symbol tables allow a compiler or an interpreter to look up a symbol 

(such as a variable, function, or class) that has been defined and retrieve all the information about 

it. In the next chapter, we will discuss graph algorithms in detail.

Exercise
1.	 There is a hash table with 40 slots and there are 200 elements stored in the table. What 

will be the load factor of the hash table?

2.	 What is the worst-case search time of hashing using a separate chaining algorithm?

3.	 Assume a uniform distribution of keys in the hash table. What will be the time complex-

ities for the Search/Insert/Delete operations?

4.	 What will be the worst-case complexity for removing duplicate characters from an array 

of characters?

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4
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Graphs and Algorithms

Graphs are a non-linear data structure, in which the problem is represented as a network by con-

necting a set of nodes with edges, like a telephone network or social network. For example, in a 

graph, nodes can represent different cities while the links between them represent edges. Graphs 

are one of the most important data structures; they are used to solve many computing problems, 

especially when the problem is represented in the form of objects and their connection, e.g. to find 

out the shortest path from one city to another city. Graphs are useful data structures for solving 

real-world problems in which the problem can be represented as a network-like structure. In 

this chapter, we will be discussing the most important and popular concepts related to graphs.

In this chapter, we will learn about the following concepts:

•	 The concept of the graph data structure

•	 How to represent a graph and traverse it

•	 Different operations and their implementation on graphs

First, we will be looking into the different types of graphs.

Graphs
A graph is a set of a finite number of vertices (also known as nodes) and edges, in which the edges 

are the links between vertices, and each edge in a graph joins two distinct nodes. Moreover, a 

graph is a formal mathematical representation of a network, i.e. a graph G is an ordered pair of 

a set V of vertices and a set E of edges, given as G = (V, E) in formal mathematical notation.
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An example of a graph is shown in Figure 9.1:

Figure 9.1: An example of a graph

The graph G = (V, E) in Figure 9.1 can be described as below:

•	 V = {A, B, C, D, E}

•	 E = {{A, B}, {A, C}, {B, C}, {B, D}, {C, D}, {D, D}, {B, E}, {D, E}}

•	 G = (V, E)

Let’s discuss some of the important definitions of a graph:

•	 Node or vertex: A point or node in a graph is called a vertex. In the preceding diagram, 

the vertices or nodes are A, B, C, D, and E and are denoted by a dot.

•	 Edge: This is a connection between two vertices. The line connecting A and B is an ex-

ample of an edge.

•	 Loop: When an edge from a node is returned to itself , that edge forms a loop, e.g. D node.

•	 Degree of a vertex/node: The total number of edges that are incidental on a given vertex 

is called the degree of that vertex. For example, the degree of the B vertex in the previous 

diagram is 4.

•	 Adjacency: This refers to the connection(s) between any two nodes; thus, if there is a con-

nection between any two vertices or nodes, then they are said to be adjacent to each other. 

For example, the C node is adjacent to the A node because there is an edge between them.

•	 Path: A sequence of vertices and edges between any two nodes represents a path. For 

example, CABE represents a path from the C node to the E node.

•	 Leaf vertex (also called pendant vertex): A vertex or node is called a leaf vertex or pendant 

vertex if it has exactly one degree.

Now, we shall take a look at the different types of graphs.
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Directed and undirected graphs
Graphs are represented by the edges between the nodes. The connecting edges can be considered 

directed or undirected. If the connecting edges in a graph are undirected, then the graph is called 

an undirected graph, and if the connecting edges in a graph are directed, then it is called a direct-

ed graph. An undirected graph simply represents edges as lines between the nodes. There is no 

additional information about the relationship between the nodes, other than the fact that they 

are connected. For example, in Figure 9.2, we demonstrate an undirected graph of four nodes, A, 

B, C, and D, which are connected using edges: 

Figure 9.2: An example of an undirected graph

In a directed graph, the edges provide information on the direction of connection between any 

two nodes in a graph. If an edge from A node to B is said to be directed, then the edge (A, B) would 

not be equal to the edge (B, A). The directed edges are drawn as lines with arrows, which will 

point in whichever direction the edge connects the two nodes. 

For example, in Figure 9.3, we show a directed graph where many nodes are connected using 

directed edges:

Figure 9.3: An example of a directed graph
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The arrow of an edge determines the flow of direction. One can only move from A to B, as shown 

in the preceding diagram—not B to A. In a directed graph, each node (or vertex) has an indegree 

and an outdegree. Let’s have a look at what these are:

•	 Indegree: The total number of edges that come into a vertex in the graph is called the 

indegree of that vertex. For example, in the previous diagram, the E node has 1 indegree, 

due to edge CE coming into the E node.

•	 Outdegree: The total number of edges that go out from a vertex in the graph is called the 

outdegree of that vertex. For example, the E node in the previous diagram has an outde-

gree of 2, as it has two edges, EF and ED, going out of that node.

•	 Isolated vertex: A node or vertex is called an isolated vertex when it has a degree of zero, 

as shown as G node in Figure 9.3.

•	 Source vertex: A vertex is called a source vertex if it has an indegree of zero. For example, 

in the previous diagram, the A node is the source vertex.

•	 Sink vertex: A vertex is a sink vertex if it has an outdegree of zero. For example, in the 

previous diagram, the F node is the sink vertex.

Now that we understand how directed graphs work, we can look into directed acyclic graphs.

Directed acyclic graphs
A directed acyclic graph (DAG) is a directed graph with no cycles; in a DAG all the edges are 

directed from one node to another node so that the sequence of edges never forms a closed loop. 

A cycle in a graph is formed when the starting node of the first edge is equal to the ending node 

of the last edge in a sequence.

A DAG is shown in Figure 9.4 in which all the edges in the graph are directed and the graph does 

not have any cycles:

Figure 9.4: An example of a directed acyclic graph
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So, in a directed acyclic graph, if we start on any path from a given node, we never find a path 

that ends on the same node. A DAG has many applications, such as in job scheduling, citation 

graphs, and data compression.

Next, we will discuss weighted graphs.

Weighted graphs
A weighted graph is a graph that has a numeric weight associated with the edges in the graph. A 

weighted graph can be either a directed or an undirected graph. The numeric weight can be used 

to indicate distance or cost, depending on the purpose of the graph: 

Figure 9.5: An example of a weighted graph

Let’s consider an example – Figure 9.5 indicates different ways to reach from A node to D node. 

There are two possible paths, such as from A node to D node, or it can be nodes A-B-C-D through 

B node and C node. Now, depending on the weights associated with the edges, any one of the 

paths can be considered better than the others for the journey – e.g. assume the weights in this 

graph represent the distance between two nodes, and we want to find out the shortest path be-

tween A-D nodes; then one possible path A-D has an associated cost of 40, and another possible 

path A-B-C-D has an associated cost of 25. In this case, the better path is A-B-C-D, which has a 

lower distance.

Next, we will discuss bipartite graphs.

Bipartite graphs
A bipartite graph (also known as a bigraph) is a special graph in which all the nodes of the graph 

can be divided into two sets in such a way that edges connect the nodes from one set to the nodes 

of another set. See Figure 9.6 for a sample bipartite graph; all the nodes of the graphs are divided 

into two independent sets, i.e., set U and set V, so that each edge in the graph has one end in set 

U and another end in set V (e.g. in edge (A, B), one end or one vertex is from set U, and another 

end or another vertex is from set V). 
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In bipartite graphs, no edge will connect to the nodes of the same set:

Figure 9.6: An example of a bipartite graph

Bipartite graphs are useful when we need to model a relationship between two different classes 

of objects, for example, a graph of applicants and jobs, in which we may need to model the rela-

tionship between these two different groups; another example may be a bipartite graph of football 

players and clubs in which we may need to model if a player has played for a particular club or not.

Next, we will discuss different graph representation techniques.

Graph representations
A graph representation technique means how we store the graph in memory, i.e., how we store 
the vertices, edges, and weights (if the graph is a weighted graph). Graphs can be represented 
with two methods, i.e. (1) an adjacency list, and (2) an adjacency matrix.

An adjacency list representation is based on a linked list. In this, we represent the graph by main-
taining a list of neighbors (also called an adjacent node) for every vertex (or node) of the graph. 
In an adjacency matrix representation of a graph, we maintain a matrix that represents which 
node is adjacent to which other node in the graph; i.e., the adjacency matrix has the information 
of every edge in the graph, which is represented by cells of the matrix.

Either of these two representations can be used; however, our choice depends on the application 
where we will be using the graph representation. An adjacency list is preferable when we expect 
that the graph is going to be sparse and we will have a  smaller number of edges; e.g. if a graph of 
200 nodes has say 100 edges, it is better to store this kind of graph in an adjacency list, because if 
we use an adjacency matrix, the size of the matrix will be 200x200 with a lot of zero values. The 
adjacency matrix is preferable when we expect the graph to have a lot of edges, and the matrix 
will be dense. In the adjacency matrix, the lookup and check for the presence or absence of an 
edge are very easy compared to adjacency list representation.
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We will be discussing adjacency matrices in detail in subsequent sections. First, we will take a 

look at adjacency lists.

Adjacency lists
In this representation, all the nodes directly connected to a node x are listed in its adjacent list 

of nodes. The graph is represented by displaying the adjacent list for all the nodes of the graph.

Two nodes, A and B, in the graph shown in Figure 9.7, are said to be adjacent if there is a direct 

connection between them:

Figure 9.7: A sample graph of five nodes

A linked list can be used to implement the adjacency list. In order to represent the graph, we 

need the number of linked lists equal to the total number of nodes in the graph. At each index, 

the adjacent nodes to that vertex are stored. For example, consider the adjacency list shown in 

Figure 9.8 corresponding to the sample graph shown in Figure 9.7:

Figure 9.8: Adjacency list for the graph shown in Figure 9.7
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Here, the first node represents the A vertex of the graph, with its adjacent nodes being B and C. The 

second node represents the B vertex of the graph, with its adjacent nodes of E, C, and A. Similarly, 

the other vertices, C, E, and F, of the graph are represented with their adjacent nodes, as shown 

in the previous Figure 9.8.

Using a list for the representation is quite restrictive, because we lack the ability to directly use 

the vertex labels. So, to implement a graph efficiently using Python, a dictionary data structure 

is used since it is more suitable to represent the graph. To implement the same graph using a 

dictionary data structure, we can use the following code snippet:

graph = dict()

graph['A'] = ['B', 'C']

graph['B'] = ['E','C', 'A']

graph['C'] = ['A', 'B', 'E','F']

graph['E'] = ['B', 'C']

graph['F'] = ['C']

Now we can easily establish that the A vertex has the adjacent vertices of B and C. The F vertex 

has the C vertex as its only neighbor. Similarly, the B vertex has adjacent vertices of E, C, and A.

The adjacency list is a preferable graph representation technique when the graph is going to be 

sparse and we may need to add or delete the nodes in the graph frequently. However, it is very 

difficult to check whether a given edge is present in the graph or not using this technique.

Next, we will discuss another method of graph representation, i.e., the adjacency matrix.

Adjacency matrix
Another approach to representing a graph is to use an adjacency matrix. In this, the graph is 

represented by showing the nodes and their interconnections through edges. Using this method, 

the dimensions (V x V) of a matrix are used to represent the graph, where each cell denotes an 

edge in the graph. A matrix is a two-dimensional array. So, the idea here is to represent the cells 

of the matrix with a 1 or a 0, depending on whether two nodes are connected by an edge or not. 

We show an example graph, along with its corresponding adjacency matrix, in Figure 9.9:
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Figure 9.9: Adjacency matrix for a given graph

An adjacency matrix can be implemented using the given adjacency list. To implement the adja-

cency matrix, let’s take the previous dictionary-based implementation of the graph. Firstly, we 

have to obtain the key elements of the adjacency matrix. It is important to note that these matrix 

elements are the vertices of the graph. We can get the key elements by sorting the keys of the 

graph. The code snippet for this is as follows:

matrix_elements = sorted(graph.keys())

cols = rows = len(matrix_elements)

Next, the length of the keys of the graph will be the dimensions of the adjacency matrix, which 

are stored in cols and rows. The values of the cols and rows are equal.

So, now, we create an empty adjacency matrix of the dimensions cols by rows, initially filling 

all the values with zeros. The code snippet to initialize an empty adjacency matrix is as follows:

adjacency_matrix = [[0 for x in range(rows)] for y in range(cols)]

edges_list = []

The edges_list variable will store the tuples that form the edges in the graph. For example, an 

edge between the A and B nodes will be stored as (A, B). The multidimensional array is filled using 

a nested for loop:

for key in matrix_elements:

    for neighbor in graph[key]:

        edges_list.append((key, neighbor))

print(edges_list)
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The neighbors of a vertex are obtained by graph[key]. The key, in combination with the neighbor, 

is then used to create the tuple stored in edges_list.

The output of the preceding Python code for storing the edges of the graph is as follows:

[('A', 'B'), ('A', 'C'), ('B', 'E'), ('B', 'C'), ('B', 'A'), ('C', 'A'), 
('C', 'B'), ('C', 'E'), ('C', 'F'), ('E', 'B'), ('E', 'C'), ('F', 'C')]

The next step in implementing the adjacency matrix is to fill it, using 1 to denote the presence of 

an edge in the graph. This can be done with the adjacency_matrix[index_of_first_vertex]

[index_of_second_vertex] = 1 statement. The full code snippet that marks the presence of 

edges of the graph is as follows:

for edge in edges_list:

    index_of_first_vertex = matrix_elements.index(edge[0])

    index_of_second_vertex = matrix_elements.index(edge[1])

    adjacency_matrix[index_of_first_vertex][index_of_second_vertex] = 1 

print(adjacency_matrix)

The matrix_elements array has its rows and cols, starting from A to all other vertices with indices 

of 0 to 5. The for loop iterates through the list of tuples and uses the index method to get the 

corresponding index where an edge is to be stored.

The output of the preceding code is the adjacency matrix for the sample graph shown previously 

in Figure 9.9. The adjacency matrix produced looks like the following:

[0, 1, 1, 0, 0]

[1, 0, 0, 1, 0]

[1, 1, 0, 1, 1]

[0, 1, 1, 0, 0]

[0, 0, 1, 0, 0]

At row 1 and column 1, 0 represents the absence of an edge between A and A. Similarly, at row 3 

and column 2 there is a value of 1 that denotes the edge between the C and B vertices in the graph.

The use of the adjacency matrix for graph representation is suitable when we have to frequently 
look up and check the presence or absence of an edge between two nodes in the graph, e.g. in cre-
ating routing tables in networks, searching routes in public transport applications and navigation 
systems, etc. Adjacency matrices are not suitable when nodes are frequently added or deleted 
within a graph, in those situations, the adjacency list is a better technique.
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Next, let us discuss different graph traversal methods in which we visit all the nodes of the given 

graph.

Graph traversals
A graph traversal means to visit all the vertices of the graph while keeping track of which nodes 

or vertices have already been visited and which ones have not. A graph traversal algorithm is effi-

cient if it traverses all the nodes of the graph in the minimum possible time. Graph traversal, also 

known as a graph search algorithm, is quite similar to the tree traversal algorithms like preorder, 

inorder, postorder, and level order algorithms; similar to them, in a graph search algorithm we 

start with a node and traverse through edges to all other nodes in the graph.

A common strategy of graph traversal is to follow a path until a dead end is reached, then tra-

verse back up until there is a point where we meet an alternative path. We can also iteratively 

move from one node to another in order to traverse the full graph or part of it. Graph traversal 

algorithms are very important in answering many fundamental problems—they can be useful 

to determine how to get from one vertex to another in a graph, and which path from A node to B 

node in a graph is better than other paths. For example, graph traversal algorithms can be useful 

in finding out the shortest route from one city to another in a network of cities.

In the next section, we will discuss two important graph traversal algorithms: breadth-first 

search (BFS) and depth-first search (DFS).

Breadth-first traversal
Breadth-first search (BFS) works very similarly to how a level order traversal algorithm works in 

a tree data structure. The BFS algorithm also works level by level; it starts by visiting the root node 

at level 0, and then all the nodes at the first level directly connected to the root node are visited at 

level 1. The level 1 node has a distance of 1 from the root node. After visiting all the nodes at level 1, 

the level 2 nodes are visited next. Likewise, all the nodes in the graph are traversed level by level 

until all the nodes are visited. So, breadth-first traversal algorithms work breadthwise in the graph.

A queue data structure is used to store the information of vertices that are to be visited in a graph. 

We begin with the starting node. Firstly, we visit that node, and then we look up all of its neigh-

boring, or adjacent, vertices. We first visit these adjacent vertices one by one, while adding their 

neighbors to the list of vertices that are to be visited. We follow this process until we have visited 

all the vertices of the graph, ensuring that no vertex is visited twice.
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Let’s consider an example to better understand the working of the breadth-first traversal for 

graphs, using the sample shown in Figure 9.10:

Figure 9.10: A sample graph 

In Figure 9.10, we have a graph of five nodes on the left, and on the right, a queue data structure 

to store the vertices to be visited. We start visiting the first node, i.e., A node, and then we add all 

its adjacent vertices, B, C, and E, to the queue. Here, it is important to note that there are multi-

ple ways of adding the adjacent nodes to the queue since there are three nodes, B, C, and E, that 

can be added to the queue as either BCE, CEB, CBE, BEC, or ECB, each of which would give us 

different tree traversal results.

All of these possible solutions to the graph traversal are correct, but in this example, we add the 

nodes in alphabetical order just to keep things simple in the queue, i.e., BCE. The A node is visited 

as shown in Figure 9.11:

Figure 9.11: Node A is visited in breadth-first traversal

Once we have visited the A vertex, next, we visit its first adjacent vertex, B, and add those adjacent 

vertices of vertex B that are not already added in the queue or not visited. In this case, we have 

to add the D vertex (since it has two vertices, A and D nodes, out of which A is already visited) to 

the queue, as shown in Figure 9.12:
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Figure 9.12: Node B is visited in breadth-first traversal

Now, after visiting the B vertex, we visit the next vertex from the queue—the C vertex. And again, 

add those adjacent vertices that have not already been added to the queue. In this case, there are 

no unrecorded vertices left, as shown in Figure 9.13:

Figure 9.13: Node C is visited in breadth-first traversal

After visiting the C vertex, we visit the next vertex from the queue, the E vertex, as shown in 

Figure 9.14:

Figure 9.14: Node E is visited in breadth-first traversal



Graphs and Algorithms294

Similarly, after visiting the E vertex, we visit the D vertex in the last step, as shown in Figure 9.15:

Figure 9.15: D node is visited in breadth-first traversal

Therefore, the BFS algorithm for traversing the preceding graph visits the vertices in the order of 

A-B-C-E-D. This is one of the possible solutions to the BFS traversal for the preceding graph, but 

we can get many possible solutions, depending on how we add the adjacent nodes to the queue.

To understand the implementation of this algorithm in Python, we will use another example of 

an undirected graph, as shown in Figure 9.16:

Figure 9.16: An undirected sample graph

The adjacency list for the graph shown in Figure 9.16 is as follows:

graph = dict()

graph['A'] = ['B', 'G', 'D']
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graph['B'] = ['A', 'F', 'E']

graph['C'] = ['F', 'H']

graph['D'] = ['F', 'A']

graph['E'] = ['B', 'G']

graph['F'] = ['B', 'D', 'C']

graph['G'] = ['A', 'E']

graph['H'] = ['C']

After storing the graph using the adjacency list, the implementation of the BFS algorithm is as 

follows, which we will discuss with an example in detail:

from collections import deque

def breadth_first_search(graph, root):

    visited_vertices = list()

    graph_queue = deque([root])

    visited_vertices.append(root)

    node = root

    while len(graph_queue) > 0:

        node = graph_queue.popleft()

        adj_nodes = graph[node]

        remaining_elements = set(adj_nodes).difference(set(visited_
vertices))

        if len(remaining_elements) > 0:

             for elem in sorted(remaining_elements):

                 visited_vertices.append(elem)

                 graph_queue.append(elem)

    return visited_vertices

To traverse this graph using the breadth-first algorithm, we first initialize the queue and the source 

node. We start traversal from A node. Firstly, A node is queued and added to the list of visited 

nodes. Afterward, we use a while loop to affect the traversal of the graph. In the first iteration of 

the while loop, node A is dequeued.
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Next, all the unvisited adjacent nodes of A node, which are B, D, and G, are sorted in alphabetical 

order and queued up. The queue now contains nodes B, D, and G. This is shown in Figure 9.17:

Figure 9.17: Node A is visited using the BFS algorithm

For implementation, we add all these nodes (B, D, G) to the list of visited nodes, and then we add 

the adjacent/neighboring nodes of these nodes. At this point, we start another iteration of the 

while loop. After visiting A node, B node is dequeued. Out of its adjacent nodes (A, E, and F), A 

node has already been visited. Therefore, we only queue the E and F nodes in alphabetical order, 

as shown in Figure 9.18.

When we want to find out whether a set of nodes is in the list of visited nodes, we use the 

remaining_elements = set(adj_nodes).difference(set(visited_vertices)) statement. 

This uses the set object’s difference method to find the nodes that are in adj_nodes, but not 

in visited_vertices:

Figure 9.18: Node B is visited using the BFS algorithm
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The queue now holds the following nodes at this point—D, G, E, and F. The D node is dequeued, 

but all of its adjacent nodes have been visited, so we simply dequeue it. The next node at the front 

of the queue is G. We dequeue the G node, but we also find out that all its adjacent nodes have 

been visited because they are in the list of visited nodes. So, the G node is also dequeued. We 

dequeue the E node too because all of its adjacent nodes have also been visited. The only node 

in the queue now is the F node; this is shown in Figure 9.19:

Figure 9.19: Node E is visited using the BFS algorithm

The F node is dequeued, and we see that out of its adjacent nodes, B, D, and C, only C has not been 

visited. We then enqueue the C node and add it to the list of visited nodes, as shown in Figure 9.20:

Figure 9.20: Node E is visited using the BFS algorithm

Then, the C node is dequeued. C has the adjacent nodes of F and H, but F has already been visited, 

leaving the H node. The H node is enqueued and added to the list of visited nodes. Finally, the 

last iteration of the while loop will lead to the H node being dequeued. 
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Its only adjacent node, C, has already been visited. Once the queue is empty, the loop breaks. This 

is shown in Figure 9.21:

Figure 9.21: Final node H is visited using the BFS algorithm

The output of the traversal of the given graph using the BFS algorithm is A, B, D, G, E, F, C, and H.

When we run the above BFS code on the graph shown in Figure 9.16 using the following code:

print(breadth_first_search(graph, 'A'))

We get the following sequence of nodes when we traverse the graph shown in Figure 9.16:

['A', 'B', 'D', 'G', 'E', 'F', 'C', 'H']

In the worst-case scenario, each node and the edge will need to be traversed, and hence each 

node will be enqueued and dequeued at least once. The time taken for each enqueue and dequeue 

operation is O(1), so the total time for this is O(V). Further, the time spent scanning the adjacency 

list for every vertex is O(E). So, the total time complexity of the BFS algorithm is O(|V| + |E|), 

where |V| is the number of vertices or nodes, while |E| is the number of edges in the graph.

The BFS algorithm is very useful for constructing the shortest path traversal in a graph with 

minimal  iterations. As for some of the real-world applications of BFS, it can be used to create an 

efficient web crawler in which multiple levels of indexes can be maintained for search engines, 

and it can maintain a list of closed web pages from a source web page. BFS can also be useful 

for navigation systems in which neighboring locations can be easily retrieved from a graph of 

different locations.
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Next, we will discuss another graph traversal algorithm, i.e., the depth-first search algorithm.

Depth-first search
As the name suggests, the depth-first search (DFS) or traversal algorithm traverses the graph 

similar to how the preorder traversal algorithm works in trees. In the DFS algorithm, we traverse 

the tree in the depth of any particular path in the graph. As such, child nodes are visited first 

before sibling nodes.

In this, we start with the root node; firstly we visit it, and then we see all the adjacent vertices of 

the current node. We start visiting one of the adjacent nodes. If the edge leads to a visited node, 

we backtrack to the current node. And, if the edge leads to an unvisited node, then we go to that 

node and continue processing from that node. We continue the same process until we reach a 

dead end when there is no unvisited node; in that case, we backtrack to previous nodes, and we 

stop when we reach the root node while backtracking.

Let’s take an example to understand the working of the DFS algorithm using the graph shown 

in Figure 9.22:

Figure 9.22: An example graph for understanding the DFS algorithm
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We start by visiting the A node, and then we look at the neighbors of the A vertex, then a neigh-

bor of that neighbor, and so on. After visiting the A vertex, we visit one of its neighbors, B (in our 

example, we sort alphabetically; however, any neighbor can be added), as shown in Figure 9.23:

Figure 9.23: Nodes A and B are visited in depth-first traversal 

After visiting the B vertex, we look at another neighbor of A, that is, S, as there is no vertex con-

nected to B that can be visited. Next, we look for the neighbors of the S vertex, which are the C 

and G vertices. We visit C as shown in Figure 9.24:

Figure 9.24: Node C is visited in depth-first traversal
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After visiting the C node, we visit its neighboring vertices, D and E, as shown in Figure 9.25:

Figure 9.25: D and E nodes are visited in depth-first traversal

Similarly, after visiting the E vertex, we visit the H and G vertices, as shown in Figure 9.26:

Figure 9.26: H and F nodes are visited in depth-first traversal
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Finally, we visit the F node, as shown in Figure 9.27:

Figure 9.27: F node is visited in depth-first traversal

The output of the DFS traversal is A-B-S-C-D-E-H-G-F.

To implement DFS, we start with the adjacency list of the given graph. Here is the adjacency list 

of the preceding graph:

graph = dict()

graph['A'] = ['B', 'S']

graph['B'] = ['A']

graph['S'] = ['A','G','C']

graph['D'] = ['C']

graph['G'] = ['S','F','H']

graph['H'] = ['G','E']

graph['E'] = ['C','H']

graph['F'] = ['C','G']

graph['C'] = ['D','S','E','F']

The implementation of the DFS algorithm begins with creating a list to store the visited nodes. The 

graph_stack stack variable is used to aid the traversal process. We are using a Python list as a stack. 
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The starting node, called root, is passed with the graph’s adjacency matrix, graph. Firstly, the root 

is pushed onto the stack. The statement node = root is for holding the first node in the stack:

def depth_first_search(graph, root):

    visited_vertices = list()

    graph_stack = list()

    graph_stack.append(root)

    node = root

        while graph_stack: 

            if node not in visited_vertices: 

                visited_vertices.append(node) 

            adj_nodes = graph[node] 

            if set(adj_nodes).issubset(set(visited_vertices)): 

                graph_stack.pop() 

                if len(graph_stack) > 0: 

                    node = graph_stack[-1] 

                continue 

            else: 

                remaining_elements = set(adj_nodes).
difference(set(visited_vertices)) 

            first_adj_node = sorted(remaining_elements)[0] 

            graph_stack.append(first_adj_node) 

            node = first_adj_node 

        return visited_vertices 

The body of the while loop will be executed, provided the stack is not empty. If the node under 

consideration is not in the list of visited nodes, we add it. All adjacent nodes of node are collected 

by adj_nodes = graph[node]. If all the adjacent nodes have been visited, we pop the top node 

from the stack and set node to graph_stack[-1]. Here, graph_stack[-1] is the top node on the 

stack. The continue statement jumps back to the beginning of the while loop’s test condition.

If, on the other hand, not all the adjacent nodes have been visited, then the nodes that are yet to be 

visited are obtained by finding the difference between the adj_nodes and visited_vertices with 

the remaining_elements = set(adj_nodes).difference(set(visited_vertices)) statement.
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The first item within sorted(remaining_elements) is assigned to first_adj_node, and pushed 

onto the stack. We then point the top of the stack to this node.

When the while loop exits, we will return visited_vertices.

We will now explain the working of the source code by relating it to the previous example. The A 

node is chosen as our starting node. A is pushed onto the stack and added to the visited_vertices 

list. In doing so, we mark it as having been visited. The graph_stack stack is implemented with 

a simple Python list. Our stack now has A as its only element. We examine the A node’s adja-

cent nodes, B and S. To test whether all the adjacent nodes of A have been visited, we use the if 

statement:

    if set(adj_nodes).issubset(set(visited_vertices)):

        graph_stack.pop()

        if len(graph_stack) > 0:

            node = graph_stack[-1]

        continue

If all the nodes have been visited, we pop the top of the stack. If the graph_stack stack is not 

empty, we assign the node on top of the stack to node, and start the beginning of another exe-

cution of the body of the while loop. The set(adj_nodes).issubset(set(visited_vertices)) 

statement will evaluate to True if all the nodes in adj_nodes are a subset of visited_vertices. 

If the if statement fails, it means that some nodes remain to be visited. We obtain that list of 

nodes with remaining_elements = set(adj_nodes).difference(set(visited_vertices)).

Referring to the diagram, the B and S nodes will be stored in remaining_elements. We will access 

the list in alphabetical order as follows:

    first_adj_node = sorted(remaining_elements)[0]

    graph_stack.append(first_adj_node)

    node = first_adj_node

We sort remaining_elements and return the first node to first_adj_node. This will return B. 

We push the B node onto the stack by appending it to the graph_stack. We prepare the B node 

for access by assigning it to node.

On the next iteration of the while loop, we add the B node to the list of visited nodes. We discover 

that the only adjacent node to B, which is A, has already been visited. Because all the adjacent 

nodes of B have been visited, we pop it off the stack, leaving A as the only element on the stack. 

We return to A and examine whether all of its adjacent nodes have been visited. The A node now 

has S as the only unvisited node. We push S to the stack and begin the whole process again.
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The output of the traversal is A-B-S-C-D-E-H-G-F.

The time complexity of DFS is O(V+E) when we use an adjacency list, and O(V2) when we use an 

adjacency matrix for graph representation. The time complexity of DFS with the adjacency list is 

lower because getting the adjacent nodes is easier, whereas it is not efficient with the adjacency 

matrix.

DFS can be applied to solving maze problems, finding connected components, cycle detection in 

graphs, and finding the bridges of a graph, among other use cases.

We have discussed very important graph traversal algorithms; now let us discuss some more useful 

graph-related algorithms for finding the spanning tree from the given graph. Spanning trees are 

useful for several real-world problems such as the traveling salesman problem.

Other useful graph methods
It is very often that we need to use graphs for finding a path between two nodes. Sometimes, it 

is necessary to find all the paths between nodes, and in some situations, we might need to find 

the shortest path between nodes. For example, in routing applications, we generally use various 

algorithms to determine the shortest path from the source node to the destination node. For 

an unweighted graph, we would simply determine the path with the lowest number of edges 

between them. If a weighted graph is given, we have to calculate the total weight of passing 

through a set of edges.

Thus, in a different situation, we may have to find the longest or shortest path using different 

algorithms, such as a Minimum Spanning Tree, which we look into in the next section.

Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subset of the edges of the connected graph with an 

edge-weighted graph that connects all the nodes of the graph, with the lowest possible total 

edge weights and no cycle. More formally, given a connected graph G, where G = (V, E) with re-

al-valued edge weights, an MST is a subgraph with a subset of the edges 𝑇𝑇 𝑇 𝑇𝑇  so that the sum 

of edge weights is minimum and there is no cycle. There are many possible spanning trees that 

can connect all the nodes of the graph without any cycle, but the the minimum weight spanning 

tree is a spanning tree that has the lowest total edge weight (also called cost) among all other 

possible spanning trees. An example graph is shown in Figure 9.28 along with its corresponding 

MST (on the right) in which we can observe that all the nodes are connected and have a subset 

of edges taken from the original graph (on the left). 
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The MST has the lowest total weight of all the edges, i.e. (1+4+2+4+5 = 16) among all the other 

possible spanning trees:

Figure 9.28: A sample graph with the corresponding Minimum Spanning Tree

The MST has diverse real-world applications. They are mainly used in network design for road 

congestion, hydraulic cables, electric cable networks, and even cluster analysis.

First, let us discuss Kruskal’s minimum spanning tree algorithm.

Kruskal’s Minimum Spanning Tree algorithm
Kruskal’s algorithm is a widely used algorithm for finding the spanning tree from a given weighted, 

connected, and undirected graph. It is based on the greedy approach, as we firstly find the edge 

with the lowest weight and add it to the tree, and then in each iteration, we add the edge with the 

lowest weight to the spanning tree so that we do not form a cycle. In this algorithm, initially, we 

treat all the vertices of the graph as a separate tree, and then in each iteration we select edge with 

the lowest weight in such a way that it does not form a cycle. These separate trees are combined, 

and it grows to form a spanning tree. We repeat this process until all the nodes are processed. 

The algorithm works as follows:

1.	 Initialize an empty MST (M) with zero edges

2.	 Sort all the edges according to their weights

3.	 For each edge from the sorted list, we add them one by one to the MST (M) in such a way 

that it does not form a cycle

Let’s consider an example.

We start by selecting the edge with the lowest weight (weight 1), as represented by the dotted 

line shown in Figure 9.29:
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Figure 9.29: Selecting the first edge with the lowest weight in the spanning tree

After selecting the edge with weight 1, we select the edge with weight 2 and then the edge with 

weight 3, since these are the next lowest weights, as shown in Figure 9.30:

Figure 9.30: Selecting edges with wieghts 2 and 3 in the spanning tree

Similarly, we select the next edges with weights 4 and 5 respectively as shown in Figure 9.31:

Figure 9.31: Selecting edges with weights 4 and 5 in the spanning tree



Graphs and Algorithms308

Next, we select the next edge with weight 6 and make it a dotted line. After that, we see that the 

lowest weight is 7 but if we select it, it makes a cycle, so we ignore it. Next, we check the edge 

with weight 8, and then 9, which are also ignored because they will also form a cycle. So, the next 

edge with the lowest weight, 10, is selected. This is shown in Figure 9.32:

Figure 9.32: Selecting edges with weights 6 and 10 in the spanning tree

Finally, we see the following spanning tree using Kruskal’s algorithm, as shown in Figure 9.33:

Figure 9.33: The final spanning tree created using Kruskal’s algorithm

Kruskal’s algorithm has many real-world applications, such as solving the traveling salesman 

problem (TSP), in which starting from one city, we have to visit all the different cities in a network 

with the minimum total cost and without visiting the same city twice. There are many other 

applications, such as TV networks, tour operations, LAN networks, and electric grids. 
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The time complexity of Kruskal’s algorithm is O (E log (E)) or O (E log(V)), where E is the number 

of edges and V is the number of vertices.

Now, let us discuss one more popular MST algorithm in the next section.

Prim’s Minimum Spanning Tree algorithm
Prim’s algorithm is also based on a greedy approach to find the minimum cost spanning tree. 

Prim’s algorithm is very similar to the Dijkstra algorithm for finding the shortest path in a graph. 

In this algorithm, we start with an arbitrary node as a starting point, and then we check the out-

going edges from the selected nodes and traverse through the edge that has the lowest cost (or 

weights). The terms cost and weight are used interchangeably in this algorithm. So, after starting 

from the selected node, we grow the tree by selecting the edges, one by one, that have the lowest 

weight and do not form a cycle. The algorithm works as follows:

1.	 Create a dictionary that holds all the edges and their weights

2.	 Get the edges, one by one, that have the lowest cost from the dictionary and grow the tree 

in such a way that the cycle is not formed

3.	 Repeat step 2 until all the vertices are visited

Let us consider an example to understand the working of Prim’s algorithm. Assuming that we 

arbitrarily select A node, we then check all the outgoing edges from A. Here, we have two options, 

AB and AC; we select edge AC since it has less cost/weight (weight 1), as shown in Figure 9.34:

Figure 9.34: Selecting edge AC in constructing the spanning tree using Prim’s algorithm
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Next, we check the lowest outgoing edges from edge AC. We have options AB, CD, CE, CF, out of 

which we select edge CF, which has the lowest weight of 2. Likewise, we grow the tree, and next 

we select the lowest weighted edge, i.e., AB, as shown in Figure 9.35:

Figure 9.35: Selecting edge AB in constructing the spanning tree using Prim’s algorithm

Afterward, we select edge BD, which has a weight of 3, and similarly, next, we select edge DG, 

which has the lowest weight of 4. This is shown in Figure 9.36:

Figure 9.36: Selecting edges BD and DG in constructing the spanning  
tree using Prim’s algorithm

Next, we select edges FE and GH, which have weights of 6 and 10 respectively, as shown in Figure 

9.37:
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Figure 9.37: Selecting edges FE and GH in constructing the spanning tree using Prim’s algorithm

Next, whenever we try to include any more edges, a cycle is formed, so we ignore those edges. 

Finally, we obtain the spanning tree, which is shown below in Figure 9.38:

Figure 9.38: The final spanning tree using Prim’s algorithm

Prim’s algorithm also has many real-world applications. For all the applications where we can 

use Kruskal’s algorithm, we can also use Prim’s algorithm. Other applications include road net-

works, game development, etc.

Since both Kruskal’s and Prim’s MST algorithms are used for the same purpose, which one should 

be used? In general, it depends on the structure of the graph. For a graph with C vertices and E 

edges, Kruskal’s algorithm’s worst-case time complexity is O(E logV), and Prim’s algorithm has 

a time complexity of O(E + V logV). So, we can observe that Prim’s algorithm works better when 

we have a dense graph, whereas Kruskal’s algorithm is better when we have a sparse graph.
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Summary
A graph is a non-linear data structure, which is very important due to the large number of re-
al-world applications it has. In this chapter, we have discussed different ways to represent a 
graph in Python, using lists and dictionaries. Further, we learned two very important graph 
traversal algorithms, i.e., depth-first search (DFS) and breadth-first search (BFS). Moreover, we 
also discussed two very important algorithms for finding an MST, i.e. Kruskal’s algorithm and 
Prim’s algorithm.

In the next chapter, we will discuss searching algorithms and the various methods using which 
we can efficiently search for items in lists.

Exercises
1.	 What is the maximum number of edges (without self-loops) possible in an undirected 

simple graph with five nodes?

2.	 What do we call a graph in which all the nodes have equal degrees?

3.	 Explain what cut vertices are and identify the cut vertices in the given graph:

Figure 9.39: A sample graph

4.	 Assuming a graph G of order n, what will be the maximum number of cut vertices possible 

in graph G? 

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4


10
Searching

An important operation for all data structures is searching for elements from a collection of data. 

There are various methods to search for an element in data structures; in this chapter, we shall 

explore the different strategies that can be used to find elements in a collection of items.

Data elements can be stored in any kind of data structure, such as an array, link list, tree, or graph; 

the search operation is very important for many applications, mostly whenever we want to know 

if a particular data element is present in an existing list of data items. In order to retrieve the 

information efficiently, we require an efficient search algorithm.

In this chapter, we will learn about the following:

•	 Various search algorithms

•	 Linear search algorithm

•	 Jump search algorithm 

•	 Binary search algorithm

•	 Interpolation search algorithm

•	 Exponential search algorithm

Let us start with an introduction to searching and a definition and then look at the linear search 

algorithm.

Introduction to searching
A search operation is carried out to find the location of the desired data item from a collection of 

data items. The search algorithm returns the location of the searched value where it is present 

in the list of items and if the data item is not present, it returns None. 
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Efficient searching is important to efficiently retrieve the location of the desired data item from 

a list of stored data items. For example, we have a long list of data values, such as {1, 45, 65, 

23, 65, 75, 23}, and we want to see if 75 is present in the list or not. It becomes important to 

have an efficient search algorithm when the list of data items becomes large.

There are two different ways in which data can be organized, which can affect how a search 

algorithm works:

•	 First, the search algorithm is applied to a list of items that is already sorted; that is, it is 

applied to an ordered set of items. For example, [1, 3, 5, 7, 9, 11, 13, 15, 17].

•	 The search algorithm is applied to an unordered set of items, which is not sorted. For 

example, [11, 3, 45, 76, 99, 11, 13, 35, 37].

We will first take a look at linear searching.

Linear search
The search operation is used to find out the index position of a given data item in a list of data 

items. If the searched item is available in the given list of data items, then the search algorithm 

returns the index position where it is located; otherwise, it returns that the item is not found. 

Here, the index position is the location of the desired item in the given list.

The simplest approach to search for an item in a list is to search linearly, in which we look for 

items one by one in the whole list. Let’s take an example of six list items {60, 1, 88, 10, 11, 

100} to understand the linear search algorithm, as shown in Figure 10.1:

Figure 10.1: An example of linear search

The preceding list has elements that can be accessed through the index. To find an element in 

the list, we can search for the given element linearly one by one. This technique traverses the list 

of elements by using the index to move from the beginning of the list to the end. Each element 

is checked, and if it does not match the search item, the next item is examined. By hopping from 

one item to the next, the list is traversed sequentially. We use list items with integer values in 

this chapter to help you understand the concept, since integers can be compared easily; however, 

a list item can hold any other data type as well.
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The linear search approach depends on how the list items are stored in memory—whether they 

are already sorted in order or they are not sorted. Let’s first see how the linear search algorithm 

works if the given list of items is not sorted.

Unordered linear search
The unordered linear search is a linear search algorithm in which the given list of date items is 

not sorted. We linearly match the desired data item with the data items of the list one by one till 

the end of the list or until the desired data item is found. Consider an example list that contains 

the elements 60, 1, 88, 10, and 100—an unordered list. To perform a search operation on such a 

list, one proceeds with the first item and compares that with the search item. If the search item 

is not matched, then the next element in the list is checked. This continues till we reach the last 

element in the list or until a match is found.

In an unordered list of items, the search for the term 10 starts from the first element and moves 

to the next element in the list. Thus, firstly 60 is compared with 10, and since it is not equal, we 

compare 66 with the next element 1, then 88, and so on till we find the search term in the list. 

Once the item is found, we return the index position of where we have found the desired item. 

This process is shown in Figure 10.2:

Figure 10.2: Unordered linear search
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Here is the implementation in Python for the linear search on an unordered list of items:

def search(unordered_list, term):

    for i, item in enumerate(unordered_list):

        if term == unordered_list[i]:

            return i

    return None

The search function takes two parameters; the first is the list that holds the data, and the second 

parameter is the item that we are looking for, called the search term. On every pass of the for 

loop, we check if the search term is equal to the indexed item. If this is true, then there is a match, 

and there is no need to proceed further with the search. We return the index position where the 

searched item is found in the list. If the loops run to the end of the list with no match found, then 

None is returned to signify that there is no such item in the list.

We can use the following code snippet to check if a desired data element is present in the given 

list of data items:

list1 = [60, 1, 88, 10, 11, 600]

 

search_term = 10

index_position = search(list1, search_term) 

print(index_position)

list2 = ['packt', 'publish', 'data']

search_term2 = 'data'

Index_position2 = search(list2, search_term2)

print(Index_position2)
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The output of the above code is as follows:

3

2

In the output of the above code, firstly, the index position 3 is returned when we search for data 

element 10 in list1. And secondly, index position 2 is returned when data item 'data' is searched 

for in list2. We can use the same algorithm for searching a non-numeric data item from a list 

of non-numeric data items in Python, since string elements can also be compared similarly to 

numeric data in Python.

When searching for any element from an unordered list of items, in the worst case the desired 

item may be in the last position or may not be present in the list. In this situation we will have to 

compare the search item with all the elements of the list, i.e. n times if the total number of data 

items in the list is n. Thus, the unordered linear search has a worst-case running time of O(n). All 

the elements may need to be visited before finding the search term. The worst-case scenario will 

be when the search term is located at the last position of the list.

Next, we discuss how the linear search algorithm works if the given list of data items is already 

sorted.

Ordered linear search
If the data elements are already arranged in a sorted order, then the linear search algorithm can 

be improved. The linear search algorithm in a sorted list of elements has the following steps:

1.	 Move through the list sequentially

2.	 If the value of a search item is greater than the object or item currently under inspection 

in the loop, then quit and return None
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In the process of iterating through the list, if the value of the search term is less than the current 

item in the list, then there is no need to continue with the search. Let’s consider an example to 

see how this works. Let’s say we have a list of items {2, 3, 4, 6, 7} as shown in Figure 10.3, 

and we want to search for term 5:

Figure 10.3: Example of ordered linear search

We start the search operation by comparing the desired search element 5 with the first element; 

no match is found. We continue on to compare the search element with the next element, i.e. 3, in 

the list. Since it also does not match, we move on to examine the next element, i.e. 4, and since it 

also does not match, we continue searching in the list, and we compare the search element with 

the fourth element, i.e. 6. This also does not match the search term. Since the given list is already 

sorted in ascending order and the value of the search item is less than the fourth element, the 

search item cannot be found in any later position in the list. In other words, if the current item 

in the list is greater than the search term, then it means there is no need to further search the list, 

and we stop searching for the element in the list.
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Here is the implementation of the linear search when the list is already sorted:

def search_ordered(ordered_list, term):

     ordered_list_size = len(ordered_list)

     for i in range(ordered_list_size):

          if term == ordered_list[i]:

              return i

          elif ordered_list[i] > term:

              return None

     return None

In the preceding code, the if statement now caters to checking if the search item is found in the 

list or not. Then, elif tests the condition where ordered_list[i] > term. We stop searching 

if the comparison evaluates to True, which means the current item in the list is greater than the 

search element. The last line in the method returns None because the loop may go through the 

list and still the search item is not matched in the list.

We use the following code snippet to use the search algorithm:

list1 = [2, 3, 4, 6, 7]

 

search_term = 5

index_position1 = search_ordered(list1, search_term)

 

if index_position1 is None:

    print("{} not found".format(search_term))

else:

    print("{} found at position {}".format(search_term, index_position1))

 

 

list2 = ['book','data','packt', 'structure']

 

search_term2 = 'structure'

index_position2 = search_ordered(list2, search_term2)

if index_position2 is None:

    print("{} not found".format(search_term2))

else:

    print("{} found at position {}".format(search_term2, index_position2))
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The output of the above code is as follows:

5 not found

structure found at position 3

In the output of the above code, firstly, the search item 5 is not matched in the given list. And for 

the second list of non-numeric data elements, the string structure is matched at index position 

3. Hence, we can use the same linear search algorithm for searching a non-numeric data item 

from an ordered list of data items, so the given list of data items should be sorted similarly to a 

contact list on a phone.

In the worst-case scenario, the desired search item will be present in the last position of the list or 

will not be present at all. In this situation, we will have to trace the complete list (say n elements). 

Thus, the worst-case time complexity of an ordered linear search is O(n).

Next, we will discuss the jump search algorithm.

Jump search
The jump search algorithm is an improvement over linear search for searching for a given element 

from an ordered (or sorted) list of elements. This uses the divide-and-conquer strategy in order to 

search for the required element. In linear search, we compare the search value with each element 

of the list, whereas in jump search, we compare the search value at different intervals in the list, 

which reduces the number of comparisons.

In this algorithm, firstly, we divide the sorted list of data into subsets of data elements called 

blocks. Within each block, the highest value will lie within the last element, as the array is sorted. 

Next, in this algorithm, we start comparing the search value with the last element of each block. 

There can be three conditions:

1.	 If the search value is less than the last element of the block, we compare it with the next 

block.

2.	 If the search value is greater than the last element of the block, it means the desired search 

value must be present in the current block. So, we apply linear search in this block and 

return the index position. 

3.	 If the search value is the same as the compared element of the block, we return the index 

position of the element and we return the candidate.

Generally, the size of the block is taken as √𝑛𝑛 , since it gives the best performance for a given 

array of length n.
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In the worst-case situation, we will have to make n/m number of jumps (here, n is the total number 

of elements, and m is the block size) if the last element of the last block is greater than the item 

to be searched, and we will need m - 1 comparisons for linear search in the last block. Therefore, 

the total number of comparisons will be ((n/m) + m - 1), which will minimize when m = √n . So 

the size of the block is taken as √n since it gives the best performance.

Let’s take an example list {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} to search for a given element 

(say 10):

Figure 10.4: Illustration of the jump search algorithm

In the above example, we find the desired element 10 in 5 comparisons. Firstly, we compare the 

first value of the array with the desired item A[0] <= item; if it is true, then we increase the index 

by the block size (this is shown in step 1 in Figure 10.4). Next, we compare the desired item with 

the last element of each block. If it is greater, then we move to the next block, such as from block 

1 to block 3 (this is shown in steps 2, 3, and 4 in Figure 10.4).

Further, when the desired search element becomes smaller than the last element of a block, we 

stop incrementing the index position and then we do the linear search in the current block. Now, 

let us discuss the implementation of the jump searching algorithms. Firstly, we implement the 

linear search algorithm, which is similar to what we discussed in the previous section. 
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It is given again here for the sake of completeness as follows:

def search_ordered(ordered_list, term):

    print("Entering Linear Search")

    ordered_list_size = len(ordered_list)

    for i in range(ordered_list_size):

        if term == ordered_list[i]:

            return i

        elif ordered_list[i] > term:

            return -1

    return -1

In the above code, given an ordered list of elements, it returns the index of the location where a 

given data element is found in the list. It returns –1 if the desired element is not found in the list. 

Next, we implement the jump_search() method as follows:

def jump_search(ordered_list, item):

    import math

    print("Entering Jump Search")

    list_size = len(ordered_list)

    block_size = int(math.sqrt(list_size))

    i = 0

    while i != len(ordered_list)-1 and ordered_list[i] <= item: 

        print("Block under consideration - {}".format(ordered_list[i: 
i+block_size]))

        if i+ block_size > len(ordered_list):

            block_size =  len(ordered_list) - i

            block_list = ordered_list[i: i+block_size]

            j = search_ordered(block_list, item)

            if j == -1:

                print("Element not found")

                return

            return i + j

        if ordered_list[i + block_size -1] == item: 

            return i+block_size-1
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        elif ordered_list[i + block_size - 1] > item: 

            block_array = ordered_list[i: i + block_size - 1]

            j = search_ordered(block_array, item)

            if j == -1:

                print("Element not found")

                return

            return i + j

        i += block_size

In the above code, firstly we assign the length of the list to the variable n, and then we compute 

the block size as √𝑛𝑛 . Next, we start with the first element, index 0, and then continue searching 

until we reach the end of the list.

We start with the starting index i = 0 with a block of size m, and we continue incrementing until 

the window reaches the end of the list. We compare whether ordered_list [I + block_size 

-1] == item. If they match, it returns the index position (i+ block_size -1). The code snippet 

for this is as follows:

        if ordered_list[i+ block_size -1] == item:           

            return i+ block_size -1

If ordered_list [i+ block_size -1] > item, we proceed to carry out the linear search algorithm 

inside the current block block_array = ordered_list [i : i+ block_size-1], as follows:

        elif ordered_list[i+ block_size -1] > item:           

            block_array = ordered_list[i: i+ block_size -1]

            j = search_ordered(block_array, item) 

            if j == -1:

                print("Element not found")

                return   

            return i + j

In the above code, we use the linear search algorithm in the subarray. It returns –1 if the desired 

element is not found in the list; otherwise, the index position of (i + j) is returned. Here, i is 

the index position until the previous block where we may find the desired element and j is the 

position of the data element within the block where the desired element is matched. This process 

is also depicted in Figure 10.5. 



Searching324

In this figure, we can see that i is in index position 5, and then j is the number of elements within 

the final block where we find the desired element, i.e. 2, so the final returned index will be 5 + 

2 = 7:

Figure 10.5: Demonstration of index position i and j for the search value 8

Further, we need to check for the length of the last block since it may have a number of elements 

less than the block size. For example, if the total number of elements is 11, then in the last block 

we will have 2 elements. So, we check if the desired search element is present in the last block, 

and if so we should update the starting and ending index as follows:

      if i+ block_size > len(ordered_list):

            block_size =  len(ordered_list) - i

            block_list = ordered_list[i: i+block_size]

            j = search_ordered(block_list, item)

            if j == -1:

                print("Element not found")

                return

            return i + j

In the above code, we search for the desired element using the linear search algorithm.

Finally, if ordered_list[i+m-1] < item, then we move to the next iteration, and update the 

index by adding the block size to the index as i += block_size.

print(jump_search([1,2,3,4,5,6,7,8,9, 10, 11], 8))

The output of the above code snippet is:

Entering Jump Search

Block under consideration - [1, 2, 3]
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Block under consideration - [4, 5, 6]

Block under consideration - [7, 8, 9]

Entering Linear Search

7

In the above output, we can see the steps for how we searched for element 10 in the given list of 

elements.

Thus, jump search performs linear search on a block, so first it finds the block in which the element 

is present and then applies linear search within that block. The size of the block depends on the 

size of the array. If the size of the array is n, then the block size may be √𝑛𝑛 . If it does not find the 

element in that block, it moves to the next block. The jump search first finds out in which block 

the desired element may be present. For a list of n elements, and a block size of m, the total number 

of jumps possible will be n/m jumps. Let’s say the size of the block is √𝑛𝑛 ; thus, the worst-case 

time complexity will be 𝑂𝑂𝑂𝑂𝑂𝑂𝑂 .
Next, we will discuss the binary search algorithm.

Binary search
The binary search algorithm finds a given item from the given sorted list of items. It is a fast and 

efficient algorithm to search for an element; however, one drawback of this algorithm is that 

we need a sorted list. The worst-case running time complexity of a binary search algorithm is  

O(logn) whereas for linear search it is O(n).

The binary search algorithm works as follows. It starts searching for the item by dividing the given 

list in half. If the search item is smaller than the middle value then it will look for the searched 

item only in the first half of the list, and if the search item is greater than the middle value it will 

only look at the second half of the list. We repeat the same process every time until we find the 

search item, or we have checked the whole list. In the case of a non-numeric list of data items, for 

example, if we have string data items, then we should sort the data items in alphabetical order 

(similar to how a contact list is stored on a phone).

Let’s understand the binary search algorithm with an example. Suppose we have a book with 1,000 

pages, and we want to reach page number 250. We know that every book has its pages numbered 

sequentially from 1 upward. So, according to the binary search analogy, we first check forsearch 

item 250, which is less than the midpoint, which is 500. Thus, we search for the required page 

only in the first half of the book. 
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We again find the midpoint of the first half of the book, using page 500 as a reference we find the 

midpoint, 250. That brings us closer to finding the 250th page. Then we find the required page 

in the book.

Let’s take another example to understand the workings of binary search. We want to search for 

item 43 from a list of 12 items, as shown in Figure 10.6:

Figure 10.6: Working of binary search

We start searching for the item by comparing it to the middle item of the list, which is 37 in the 

example. If the value of the search item is less than the middle value, we only look at the first half 

of the list; otherwise, we will look at the other half. So, we only need to search for the item in the 

second half. We follow the same procedure until we find search item 43 in the list. This process 

is shown in the Figure 10.6.

The following is an implementation of the binary search algorithm on an ordered list of items:

def binary_search_iterative(ordered_list, term):

    size_of_list = len(ordered_list) – 1

    index_of_first_element = 0
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    index_of_last_element = size_of_list

    while index_of_first_element <= index_of_last_element:

        mid_point = (index_of_first_element + index_of_last_element)/2

        if ordered_list[mid_point] == term:

            return mid_point

        if term > ordered_list[mid_point]:

            index_of_first_element = mid_point + 1

        else:

            index_of_last_element = mid_point – 1

    if index_of_first_element > index_of_last_element:

        return None

We’ll explain the above code using a list of sorted elements {10, 30, 100, 120, 500}. Now 

let’s assume we have to find the position where item 10 is located in the list shown in Figure 10.7:

Figure 10.7: Sample list of five items

Firstly, we declare two variables, i.e. index_of_first_element and index_of_last_element, 

which denote the starting and ending index positions in the given list. Next, the algorithm uses 

a while loop to iteratively adjust the limits in the list within which we have to find a search item. 

The terminating condition to stop the while loop is that the difference between the starting index, 

index_of_first_element, and the index_of_last_element index should be positive.

The algorithm first finds the midpoint of the list by adding the index of the first element (i.e. 0 

in this case) to the index of the last element (which is 4 in this example) and dividing it by 2. We 

get the middle index, mid_point:

mid_point = (index_of_first_element + index_of_last_element)/2

In this case, the index of the midpoint is 2, and the data item stored at this position is 100. We 

compare the midpoint element with the search item 10. 
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Since these do not match, and the search item 10 is less than the midpoint, the desired search item 

should lie in the first half of the list, thus, we adjust the index range of index_of_first_element 

to mid_point-1, which means the new search range becomes 0 to 1, as shown in Figure 10.8:

Figure 10.8: Index of first and last elements for the first half of the list

However, if we had been searching for 120, as 120 would have been greater than the middle value 

(100), we would have searched for the item in the second half of the list, and as a result, we would 

have needed to change the list index range to be mid_point +1 to index_of_last_element. In 

that case the new range would have been (3, 4).

So, with the new indexes of the first and last elements, i.e. index_of_first_element and index_

of_last_element, now being 0 and 1 respectively, we compute the midpoint (0 + 1)/2, which 

equals 0. The new midpoint is 0, so we find the middle item and compare it with the search item, 

which yields the value 10. Now, our search item is found, and the index position is returned.

Finally, we check if index_of_first_element is less than index_of_last_element or not. If this 

condition fails, it means that the search term is not in the list.

We can use the below code snippet to search for a term/item in the given list:

list1 = [10, 30, 100, 120, 500]

 

search_term = 10

index_position1 = binary_search_iterative(list1, search_term)

if index_position1 is None:

    print("The data item {} is not found".format(search_term))

else:

    print("The data item {} is found at position {}".format(search_term, 
index_position1))

 

list2 = ['book','data','packt', 'structure']
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search_term2 = 'structure'

index_position2 = binary_search_iterative(list2, search_term2)

if index_position2 is None:

    print("The data item {} is not found".format(search_term2))

else:

    print("The data item {} is found at position {}".format(search_term2, 
index_position2))

The output of the above code is as follows:

The data item 10 is found at position 0

The data item structure is found at position 3

In the above code, firstly we check the search term 10 in the list, and we get the correct location, i.e. 

index position 0. Further, we check the index position of the string structure in the given sorted 

list of data items, and we get the index position 3.

The implementation that we have discussed is based on an iterative process. However, we can also 

implement it using the recursive method, in which we recursively shift the pointers that point to 

the beginning (or starting) and end of the search list. See the following code for an example of a 

recursive implementation of the binary search algorithm:

def binary_search_recursive(ordered_list, first_element_index, last_
element_index, term):

    if (last_element_index < first_element_index):

        return None

    else:

        mid_point = first_element_index + ((last_element_index - first_
element_index) // 2)

        if ordered_list[mid_point] > term:

            return binary_search_recursive (ordered_list, first_element_
index, mid_point-1, term)

        elif ordered_list[mid_point] < term:

            return binary_search_recursive (ordered_list, mid_point+1, 
last_element_index, term)

        else:

            return mid_point
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A call to this recursive implementation of the binary search algorithm and its output is as follows:

list1 = [10, 30, 100, 120, 500]

 

search_term = 10

index_position1 =  binary_search_recursive(list1, 0, len(list1)-1, search_
term)

if index_position1 is None:

    print("The data item {} is not found".format(search_term))

else:

    print("The data item {} is found at position {}".format(search_term, 
index_position1))

 

 

list2 = ['book','data','packt',  'structure']

 

search_term2 = 'data'

index_position2 = binary_search_recursive(list2, 0, len(list1)-1, search_
term2)

if index_position2 is None:

    print("The data item {} is not found".format(search_term2))

else:

    print("The data item {} is found at position {}".format(search_term2, 
index_position2))

The output of the above code is as follows:

The data item 10 is found at position 0

The data item data is found at position 1

Here, the only distinction between the recursive binary search and the iterative binary search is 

the function definition and also the way in which mid_point is calculated. The calculation for 

mid_point after the ((last_element_index - first_element_index)//2) operation must add 

its result to first_element_index. That way, we define the portion of the list to attempt the search.
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In binary search, we repeatedly divide the search space (i.e. the list in which the desired item may 

lie) in half. We start with the complete list, and in each iteration, we compute the middle point; 

we only consider half the list to search for the item and the other half of the list is ignored. We 

repeatedly check until the value is found, or the interval is empty. Therefore, at each iteration, the 

size of the array reduces by half; for example, at iteration 1, the size of the list is n, in iteration 2, the 

size of the list becomes n/2, in iteration 3 the size of the list becomes n/22, and after k iterations 

the size of the list becomes n/2k. At that time the size of the list will be equal to 1. That means:

=>  n/2k = 1

Applying the log function on both sides:

=> log2(n) = log2(2k)

=> log2(n) = k log2(2)

=> k = log2(n)

Hence, the binary search algorithm has the worst-case time complexity of O(log n).

Next, we will discuss the interpolation search algorithm.

Interpolation search
The binary search algorithm is an efficient algorithm for searching. It always reduces the search 

space by half by discarding one half of the search space depending on the value of the search item. 

If the search item is smaller than the value in the middle of the list, the second half of the list is 

discarded from the search space. In the case of binary search, we always reduce the search space 

by a fixed value of half, whereas the interpolation search algorithm is an improved version of the 

binary search algorithm in which we use a more efficient method that reduces the search space 

by more than half after each iteration.

The interpolation search algorithm works efficiently when there are uniformly distributed 

elements in the sorted list. In a binary search, we always start searching from the middle of the 

list, whereas in the interpolation search we compute the starting search position depending on 

the item to be searched. In the interpolation search algorithm, the starting search position is most 

likely to be close to the start or end of the list; if the search item is near the first element in the 

list, then the starting search position is likely to be near the start of the list and if the search item 

is near the end of the list, then the starting search position is likely to be near the end of the list.
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It is quite similar to how humans perform a search on any list of items. It is based on trying to make 

a good guess of the index position where a search item is likely to be found in a sorted list of items. 

It works in a similar way to the binary search algorithm except for the method to determine the 

splitting criteria to divide the data in order to reduce the number of comparisons. In the case of 

a binary search, we divide the data into equal halves and in the case of an interpolation search, 

we divide the data using the following formula:

In the preceding formula, low_index is the lower-bound index of the list, which is the index of 

the smallest value, and upper_index denotes the index position of the highest value in the list. 

The list[low_index] and list[upper_index] are the lowest and highest values respectively in 

the list. The search_value variable contains the value of the item that is to be searched.

Let’s consider an example to understand how the interpolation search algorithm works using 

the following list of seven items:

Figure 10.9: Example of interpolation search

Given the list of seven items, 44, 60, 75, 100, 120, 230, and 250, the mid point can be computed 

using the above mentioned formula with the following values:

list1 = [4,60,75,100,120,230,250]

low_index = 0

upper_index = 6

list1[upper_index] = 250

list1[low_index] = 44

search_value = 230
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Putting the values of all the variables in the formula, we get:

mid = low_index +  ((upper_index - low_index)/ (list1[upper_index] - 
list1[low_index])) * (search_value - list1[low_index])

=> 0 + [(6-0)/(250-44)] * (230-44)

=> 5.41

=> 5

The mid index is 5, in the case of an interpolation search, so the algorithm starts searching from 

the index position 5. So, this is how we compute the midpoint from which we start searching for 

the given element.

The interpolation search algorithm works as follows:

1.	 We start searching for the given search value from the midpoint (we have just seen how 

to compute it).

2.	 If the search value matches the value stored at the index of the midpoint, we return this 

index position.

3.	 If the search value does not match the value stored at the midpoint, we divide the list into 

two sublists, i.e. a higher sublist and lower sublist. The higher sublist has all the elements 

with higher index values than the midpoint, and the lower sublist has all the elements 

with lower index values.

4.	 If the search value is greater than the value of the midpoint, we search the given search 

value in the higher sublist and ignore the lower sublist.

5.	 If the search value is lower than the value of the midpoint, we search the given search 

value in the lower sublist and ignore the higher sublist.

6.	 We repeat the process until the size of the sublists is reduced to zero.

Let us understand the implementation of the interpolation search algorithm. Firstly, we define 

the nearest_mid() method, which computes the midpoint as follows:

def nearest_mid(input_list, low_index, upper_index, search_value):

       mid = low_index + (( upper_index - low_index)/(input_list[upper_
index] - input_list[low_index])) * (search_value - input_list[low_index])

       return int(mid)
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The nearest_mid function takes, as arguments, the lists on which to perform the search. The 

low_index and upper_index parameters represent the bounds in the list within which we are 

hoping to find the search term. Furthermore, search_value represents the value being searched for.

In an interpolation search, the midpoint is generally more to the left or right. This is caused by 

the effect of the multiplier being used when dividing to obtain the midpoint. The implementation 

of the interpolation algorithm remains the same as that of the binary search except for the way 

we compute the midpoint.

In the following code, we provide the implementation of the interpolation search algorithm:

def interpolation_search(ordered_list, search_value):

    low_index = 0

    upper_index = len(ordered_list) - 1

    while low_index <= upper_index:

        mid_point = nearest_mid(ordered_list, low_index, upper_index, 
search_value)

        if mid_point > upper_index or mid_point < low_index:

            return None

        if ordered_list[mid_point] == search_value:

            return mid_point

        if search_value > ordered_list[mid_point]:

            low_index = mid_point + 1

        else:

            upper_index = mid_point – 1

    if low_index > upper_index:

        return None

In the above code, we initialize the low_index and upper_index variables for the given sorted 

list. We firstly compute the midpoint using the nearest_mid() method.

The computed midpoint using the nearest_mid function may produce values that are greater than 

upper_bound_index or lower than lower_bound_index. When this occurs, it means the search 

term, term, is not in the list. None is, therefore, returned to represent this.
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Next, we match the search value with the value stored at the midpoint, i.e. ordered_list[mid_

point]. If that matches, the index of the midpoint is returned; if it does not match, then we divide 

the lists into higher and lower sublists, and we readjust low_index and upper_index so that the 

algorithm will focus on the sublist that is likely to contain the search term similar to what we 

did in the binary search:

        if search_value > ordered_list[mid_point]:

            low_index = mid_point + 1

        else:

            upper_index = mid_point - 1

In the above code, we check if the search value is greater than the value stored at ordered_

list[mid_point], then we only adjust the low_index variable to point to the mid_point + 1 index.

Let’s see how this adjustment occurs. Suppose we want to search for 190 in the given list in Figure 

10.10, then the midpoint will be 4 as per the above formula. Then we compare the search value (i.e. 

190) with the value stored at the midpoint (i.e. 120). Since the search value is greater, we search for 

the element in the higher sublist, and readjust the low_index value. This is shown in Figure 10.10:

Figure 10.10: Readjustment of the low_index when the value of the search item is greater 
than the value at the midpoint

On the other hand, if the value of the search term is less than the value stored at ordered_list[mid_

point], then we only adjust the upper_index variable to point to the index mid_point - 1. For 

example, if we have the list shown in Figure 10.11, and we want to search for 185, then the midpoint 

will be 4 as per the formula. 
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Next, we compare the search value (i.e. 185) with the value stored at the midpoint (i.e. 190). Since 

the search value is less as compared to ordered_list[mid_point], we search for the element in 

the lower sublist, and readjust the upper_index value. This is shown in Figure 10.11:

Figure 10.11: Readjustment of the upper_index when the search item is less than the value 
at the midpoint

The following code snippet can be used to create a list of elements {44, 60, 75, 100, 120, 230, 

250}, in which we want to search for 120 using the interpolation search algorithm.

list1 = [44, 60, 75, 100, 120, 230, 250]

a = interpolation_search(list1, 120)

print("Index position of value 2 is ", a)

The output of the above code is as follows:

Index position of value 2 is  4

Let’s use a more practical example to understand the inner workings of both the binary search 

and interpolation algorithms.

Consider for example the following list of elements:

[ 2, 4, 5, 12, 43, 54, 60, 77] 

At index 0, the value 2 is stored, and at index 7, the value 77 is stored. Now, assume that we want 

to find element 2 in the list. How will the two different algorithms go about it?

If we pass this list to the interpolation search function, then the nearest_mid function will 

return a value equal to 0 using the formula of mid_point computation, which is as follows:

mid_point = 0 + [(7-0)/(77-2)] * (2-2)

          = 0 
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As we get the mid_point value 0, we start the interpolation search with the value at index 0. Just 

with one comparison, we have found the search term.

On the other hand, the binary search algorithm needs three comparisons to arrive at the search 

term, as illustrated in Figure 10.12:

Figure 10.12: Three comparisons are required to search for the item using the binary search 
algorithm

The first mid_point value calculated is 3. The second mid_point value is 1 and the last mid_point 

value where the search term is found is 0. So, we reach the desired search item in three comparisons 

whereas in interpolation search we find the desired item on the first attempt.

The interpolation search algorithm works well when the data set is sorted, and uniformly 

distributed. In this case, the average case time complexity is O(log(log n)) in which n is the 

length of the array. Moreover, if the dataset is randomized, in that case, the worst-case time 

complexity of the interpolation search algorithm will be O(n). So, interpolation search may work 

better than binary search if the given data is uniformly distributed.

Exponential search
Exponential search is another search algorithm that is mostly used when we have large numbers 

of elements in a list. Exponential search is also known as galloping search and doubling search. 

The exponential search algorithm works in the following two steps:

1.	 Given a sorted array of n data elements, we first determine the subrange in the original 

list where the desired search item may be present

2.	 Next, we use the binary search algorithm to find out the search value within the subrange 

of data elements identified in step 1
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Firstly, in order to find out the subrange of data elements, we start searching for the desired item 

in the given sorted array by jumping 2i elements every iteration. Here, i is the value of the index 

of the array. After each jump, we check if the search item is present between the last jump and 

the current jump. If the search item is present then we use the binary search algorithm within 

this subarray, and if it is not present, we move the index to the next location. Therefore, we first 

find the first occurrence of an exponent i such that the value at index 2i is greater than the search 

value. Then, the 2i becomes the lower bound and 2i-1 becomes the upper bound for this range 

of data elements in which the search value will be present. The exponential search algorithm is 

defined as follows:

1.	 First, we check the first element A[0] with the search element.

2.	 Initialize the index position i=1.

3.	 We check two conditions: (1) if it is the end of the array or not (i.e. 2i < len(A)), and (2) if 

A[i] <= search_value). In the first condition, we check if we have searched the complete 

list, and we stop if we have reached the end of the list. In the second condition, we stop 

searching when we reach an element whose value is greater than the search value, because 

it means the desired element will be present before this index position (since the list is 

sorted).

4.	 If either of the above two conditions is true, we move to the next index position by 

incrementing i in powers of 2.

5.	 We stop when either of the two conditions of step 3 is satisfied.

6.	 We apply the binary search algorithm on the range 2i//2 to min (2i, len(A)).

Let’s take an example of a sorted array of elements A = {3, 5, 8, 10, 15, 26, 35, 45, 56, 

80, 120, 125, 138} in which we want to search for the element 125.

We start with comparing the first element at index i = 0, i.e. A[0] with the search 

element. Since A[0] < search_value, we jump to the next location 2i with i = 0, since  

A[20] < search_value, the condition is true, hence we jump to the next location with  

i = 1 i.e. A[221] < search_value. We again jump to the next location 2i with i = 2, since  

A[22] < search_value, the condition is true. We iteratively jump to the next location until we 

complete searching the list or the search value is greater than the value at that location, i.e.  

A[2i] < len(A) or A[2i] <= search_value. Then we apply the binary search algorithm on the range 

of the subarray. The complete process for searching a given element in the sorted array using the 

exponential search algorithm is depicted in Figure 10.13:
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Figure 10.13: Illustration of the exponential search algorithm
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Now, let us discuss the implementation of the exponential search algorithm. Firstly, we implement 

the binary search algorithm, which we have already discussed in the previous section, but for the 

completeness of this algorithm it is given again as follows:

def binary_search_recursive(ordered_list, first_element_index, last_
element_index, term):

    if (last_element_index < first_element_index):

        return None

    else:

        mid_point = first_element_index + ((last_element_index - first_
element_index) // 2)

        if ordered_list[mid_point] > term:

            return binary_search_recursive (ordered_list, first_element_
index, mid_point-1, term)

        elif ordered_list[mid_point] < term:

            return binary_search_recursive (ordered_list, mid_point+1, 
last_element_index, term)

        else:

            return mid_point

In the above code, given the ordered list of elements, it returns the index of the location where 

the given data element is found in the list. It returns None if the desired element is not found in 

the list. Next, we implement the exponential_search() method as follows:

def exponential_search(A, search_value):

    if (A[0] == search_value):

        return 0    

    index = 1

    while index < len(A) and A[index] < search_value:

        index *= 2       

    return binary_search_recursive(A, index // 2, min(index, len(A) - 1), 
search_value)

In the above code, firstly, we compare the first element A[0] with the search value. If it matches 

then the index position 0 is returned. If that does not match, we increase the index position to 20, 

i.e. 1. We check A[1] < search_value. Since the condition is true, we jump to the next location 21, 

i.e. we compare A[2] < search_value. Since the condition is true, we move to the next location. 
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We iteratively increase the index position in the power of 2 until the stop condition is satisfied:

    while index < len(A) and A[index] < search_value:

        index *= 2

Finally, when the stopping criteria are met, we use the binary search algorithm to search for the 

desired search value within the subrange as follows:

    return binary_search_recursive(A, index // 2, min(index, len(A) - 1), 
search_value)

Finally, the exponential_search() method returns the index position if the search value is found 

in the given array; otherwise, None is returned.

print(exponential_search([1,2,3,4,5,6,7,8,9, 10, 11, 12, 34, 40], 34))

The output of the above code snippet is:

12

In the above output, we get index position 12 for the search item 34 in the given array.

The exponential search is useful for very large-sized arrays. This is better than binary search 
because instead of performing a binary search on the complete array, we find a subarray in which 
the element may be present and then apply binary search, so it reduces the number of comparisons.

The worst-case time complexity of exponential search is O(log2i), where i is the index where 
the element to be searched is present. The exponential search algorithm can outperform binary 
search when the desired search element is present at the beginning of the array.

We can also use exponential search to search in bounded arrays. It can even out-perform binary 
search when the target is near the beginning of the array, since exponential search takes O(log(i)) 
time whereas the binary search takes O(log n) time, where n is the total number of elements. 
The best-case complexity of exponential search is O(1), when the element is present at the first 
location of the array.

Next, let us discuss how to decide which search algorithm we should choose for a given situation.

Choosing a search algorithm
Now that we’ve covered the different types of search algorithms, we can look into which ones 

work better and in what situations. The binary search and interpolation search algorithms are 

better in performance compared to both ordered and unordered linear search functions. The 

linear search algorithm is slower because of the sequential probing of elements in the list to find 

the search term.
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Linear search has a time complexity of O(n). The linear search algorithm does not perform well 

when the given list of data elements is large.

The binary search operation, on the other hand, slices the list in two anytime a search is attempted. 

On each iteration, we approach the search term much faster than in a linear strategy. The time 

complexity yields O(log n). The binary search algorithm performs well but the drawback of it 

is that it requires a sorted list of elements. So, if the given data elements are short and unsorted 

then it is better to use the linear search algorithm.

Interpolation search discards more than half of the list of items from the search space, and this 

gives it the ability to get to the portion of the list that holds a search term more efficiently. In the 

interpolation search algorithm, the midpoint is computed in such a way that it gives a higher 

probability of obtaining the search term faster. The average-case time complexity of interpolation 

search is O(log(log n)), whereas the worst-case time complexity of the interpolation search 

algorithm is O(n). This shows that interpolation search is better than binary search and provides 

faster searching in most cases.

Therefore, if the list is short and unsorted, then the linear search algorithm is suitable, and if the list 

is sorted and not very big then the binary search algorithm can be used. Further, the interpolation 

search algorithm is good to use if the data elements in the list are uniformly distributed. If the 

list is very large, then the exponential search algorithm and jump search algorithm can be used.

Summary
In this chapter, we discussed the concept of searching for a given element from a list of data 

elements. We discussed several important search algorithms, such as linear search, binary 

search, jump search, interpolation search, and exponential search. The implementations of these 

algorithms were discussed using Python in detail. We will be discussing sorting algorithms in 

the next chapter.

Exercise
1.	 On average, how many comparisons are required in a linear search of n elements?

2.	 Assume there are eight elements in a sorted array. What is the average number of 

comparisons that will be required if all the searches are successful and if the binary search 

algorithm is used?

3.	 What is the worst-case time complexity of the binary search algorithm?

4.	 When should the interpolation search algorithm perform better than the binary search 

algorithm?



Chapter 10 343

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4




11
Sorting

Sorting means reorganizing data in such a way that it is in ascending or descending order. Sorting 

is one of the most important algorithms in computer science and is widely used in database-

related algorithms. For several applications, if the data is sorted, it can efficiently be retrieved, 

for example, if it is a collection of names, telephone numbers, or items on a simple to-do list.

In this chapter, we’ll study some of the most important and popular sorting techniques, including 

the following:

•	 Bubble sort

•	 Insertion sort

•	 Selection sort

•	 Quicksort

•	 Timsort

Technical requirements
All source code used to explain the concepts of this chapter is provided in the GitHub repository 

at the following link:

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-

Python-Third-Edition/tree/main/Chapter11

Sorting algorithms
Sorting means arranging all the items in a list in ascending or descending order. We can compare 

different sorting algorithms by how much time and memory space is required to use them. 

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter11
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The time taken by an algorithm changes depending on the input size. Moreover, some algorithms 

are relatively easy to implement, but may perform poorly with respect to time and space complexity, 

whereas other algorithms are slightly more complex to implement, but can perform well when 

sorting longer lists of data. One of the sorting algorithm, merge sort, we have already discussed 

in Chapter 3, Algorithm Design Techniques and Strategies. We will discuss several more sorting 

algorithms one by one in detail along with their implementation details, starting with the bubble 

sort algorithm.

Bubble sort algorithms
The idea behind the bubble sort algorithm is very simple. Given an unordered list, we compare 

adjacent elements in the list, and after each comparison, we place them in the right order according 

to their values. So, we swap the adjacent items if they are not in the correct order. This process is 

repeated n-1 times for a list of n items.

In each iteration, the largest element of the list is moved to the end of the list. After the second 

iteration, the second largest element will be placed at the second-to-last position in the list. The 

same process is repeated until the list is sorted.

Let’s take a list with only two elements, {5, 2}, to understand the concept of bubble sort, as shown 

in Figure 11.1:

Figure 11.1: Example of bubble sort

To sort this list of two elements, first, we compare 5 and 2; since 5 is greater than 2, it means they 

are not in the correct order, so we swap these values to put them in the correct order. To swap 

these two numbers, first, we move the element stored at index 0 in a temporary variable (step 1 

of Figure 11.2), then the element stored at index 1 is copied to index 0 (step 2 of Figure 11.2), and 

finally the first element stored in the temporary variable is stored back at index 1 (step 3 of Figure 

11.2). So, first, element 5 is copied to a temporary variable, temp. Then, element 2 is moved to 

index 0. Finally, 5 is moved from temp to index 1. The list will now contain the elements as [2, 5]:
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Figure 11.2: Swapping of two elements in bubble sort

The following code will swap the elements of unordered_list[0] with unordered_list[1] if 

they are not in the right order:

unordered_list = [5, 2]

temp = unordered_list[0]

unordered_list[0] = unordered_list[1]

unordered_list[1] = temp

print(unordered_list)

The output of the above code is:

[2, 5]

Now that we have been able to swap a two-element array, it should be simple to use this same 

idea to sort a whole list using bubble sort.

Let’s consider another example to understand the working of the bubble sort algorithm and 

sort an unordered list of six elements, such as {45, 23, 87, 12, 32, 4}. In the first iteration, we start 

comparing the first two elements, 45 and 23, and we swap them, as 45 should be placed after 

23. Then, we compare the next adjacent values, 45 and 87, to see whether they are in the correct 

order. As 87 is a higher value than 45, we do not need to swap them. We swap two elements if 

they are not in the correct order. 
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We can see, in Figure 11.3, that after the first iteration of the bubble sort, the largest element, 87, 

is placed in the last position of the list:

Figure 11.3: Steps of the first iteration to sort an example array using bubble sort  

After the first iteration, we just need to arrange the remaining (n-1) elements; we repeat the 

same process by comparing the adjacent elements for the remaining five elements. After the 

second iteration, the second largest element, 45, is placed at the second-to-last position in the 

list, as shown in Figure 11.4:

Figure 11.4: Steps of the second iteration to sort an example array using bubble sort

Next, we have to compare the remaining (n-2) elements to arrange them as shown in Figure 11.5:
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Figure 11.5: Steps of the third iteration to sort an example array using bubble sort  

Similarly, we compare the remaining elements to sort them, as well, as shown in Figure 11.6:

Figure 11.6: Steps of the fourth iteration to sort an example array using bubble sort

Finally, for the last two remaining elements, we place them in the correct order to obtain the final 

sorted list, as shown in Figure 11.7:

Figure 11.7: Steps of the fifth iteration to sort an example array using bubble sort

The complete Python code of the bubble sort algorithm is shown below, and afterward, each step 

is explained in detail:

def bubble_sort(unordered_list):

    iteration_number = len(unordered_list)-1

    for i in range(iteration_number,0,-1):

        for j in range(i):

            if unordered_list[j] > unordered_list[j+1]:

                temp = unordered_list[j]

                unordered_list[j] = unordered_list[j+1]

                unordered_list[j+1] = temp
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Bubble sort is implemented using a double-nested loop, wherein one loop is inside another loop. 

In bubble sort, the inner loop repeatedly compares and swaps the adjacent elements in each 

iteration for a given list, and the outer loop keeps track of how many times the inner loop should 

be repeated.

Firstly, in the above code, we compute how many times the loop should run to complete all 

swaps; this is equal to the length of the list minus 1 and could be written as iteration_number 

= len(unordered_list)-1. Here, the len function will give the length of the list. We subtract 1 

because it gives us exactly the maximum number of iterations to run. The outer loop ensures this 

and executes for one minus the size of the list.

Further, in the above code, for each iteration, in the inner loop, we compare the adjacent elements 

using the if statement, and we check if the adjacent elements are in the correct order or not. For 

the first  iteration, the inner loop should run for n times, for the second iteration, the inner loop 

should run n-1 times, and so on. For example, to sort a list of three numbers say [3, 2, 1], the 

inner loop runs two times, and we need to swap the elements a maximum of two times as shown 

in Figure 11.8:

 

Figure 11.8: Number of swaps in iteration 1 for an example list [3, 2, 1]

Further, after the first iteration, in the second iteration, we execute the inner loop once as shown 

in Figure 11.9:
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Figure 11.9: Number of swaps in iteration 2 for an example list [3, 2, 1]

The following code snippet can be used to deploy the bubble sort algorithm:

my_list = [4,3,2,1]

bubble_sort(my_list)

print(my_list)

 

my_list = [1,12,3,4]

bubble_sort(my_list)

print(my_list)

The output is as follows:

[1, 2, 3, 4]

[1, 3, 4, 12]

In the worst case, the number of comparisons required in the first iteration will be (n-1), in the 

second, the number of comparisons will be (n-2), and in the third iteration it will be (n-3), and 

so on. Therefore, the total number of comparisons required in the bubble sort will be as follows:

(n-1) + (n-2) + (n-3) +.....+ 1 = n(n-1)/2

n(n+1)/2

O(n2)
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The bubble sort algorithm is not an efficient sorting algorithm, as it provides a worst-case runtime 

complexity of O(n2), and a best-case complexity of O(n). The worst-case situation occurs when 

we want to sort the given list in ascending order and the given list is in descending order, and 

the best case occurs when the given list is already sorted; in that case, there will not be any need 

for swapping.

Generally, the bubble sort algorithm should not be used to sort large lists. The bubble sort 

algorithm is suitable for applications where performance is not important or the length of the 

given list is short, and moreover, short and simple code is preferred. The bubble sort algorithm 

performs well on relatively small lists.

Now we shall look into the insertion sort algorithm.

Insertion sort algorithm
The idea of insertion sort is that we maintain two sublists (a sublist is a part of the original larger 

list), one that is sorted and one that is not sorted, in which elements are added one by one from the 

unsorted sublist to the sorted sublist. So, we take elements from the unsorted sublist and insert 

them in the correct position in the sorted sublist, in such a way that this sublist remains sorted.

In the insertion sort algorithm, we always start with one element, taking it to be sorted, and then 

take elements one by one from the unsorted sublist and place them at the correct positions (in 

relation to the first element) in the sorted sublist. So, after taking one element from the unsorted 

sublist and adding it to the sorted sublist, now we have two elements in the sorted sublist. Then, 

we again take another element from the unsorted sublist, and place it in the correct position (in 

relation to the two already sorted elements) in the sorted sublist. We repeatedly follow this process 

to insert all the elements one by one from the unsorted sublist into the sorted sublist. The shaded 

elements denote the ordered sublists in Figure 11.10, and in each iteration, an element from the 

unordered sublist is inserted at the correct position in the sorted sublist.

Let’s consider an example to understand the working of the insertion sorting algorithm. Let’s 

say; we have to sort a list of six elements: {45, 23, 87, 12, 32, 4}. Firstly, we start with one element, 

assuming it to be sorted, then take the next element, 23, from the unsorted sublist and insert it 

at the correct position in the sorted sublist. In the next iteration, we take the third element, 87, 

from the unsorted sublist, and again insert it into the sorted sublist at the correct position. We 

follow the same process until all elements are in the sorted sub-list. This whole process is shown 

in Figure 11.10:
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Figure 11.10: Steps to sort example array elements using the insertion sort algorithm

The complete Python code for insertion sort is given below; each statement of the algorithm is 

further explained in detail with an example:

def insertion_sort(unsorted_list):

    for index in range(1, len(unsorted_list)):

        search_index = index

        insert_value = unsorted_list[index]

        while search_index > 0 and unsorted_list[search_index-1] > insert_
value :

            unsorted_list[search_index] = unsorted_list[search_index-1]

            search_index -= 1

        unsorted_list[search_index] = insert_value
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To understand the implementation of the insertion sort algorithm, let’s take another example of 

five elements, {5, 1, 100, 2, 10}, and examine the process with a detailed explanation. Let’s 

consider the following array, as shown in Figure 11.11:

Figure 11.11: An example array with index positions

The algorithm starts by using a for loop to run between the 1 and 4 indices. We start from index 1 

because we take the element stored at index 0 to be in the sorted subarray and elements between 

index 1 to 4 are of the unsorted sublist, as shown in Figure 11.12:

Figure 11.12: Demonstration of sorted and unsorted sublists in insertion sorting

At the start of the execution of the loop, we have the following code snippet:

    for index in range(1, len(unsorted_list)):

        search_index = index

        insert_value = unsorted_list[index]

At the beginning of the execution of each run of the for loop, the element at unsorted_list[index] 

is stored in the insert_value variable. Later, when we find the appropriate position in the sorted 

portion of the sublist, insert_value will be stored at that index in the sorted sublist. The next 

code snippet is shown below:

        while search_index > 0 and unsorted_list[search_index-1] > insert_
value :

        unsorted_list[search_index] = unsorted_list[search_index-1]

        search_index -= 1

    unsorted_list[search_index] = insert_value 
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search_index is used to provide information to the while loop, that is, exactly where to find the 

next element that needs to be inserted into the sorted sublist.

The while loop traverses the list backward, guided by two conditions. First, if search_index > 0, 

then it means that there are more elements in the sorted portion of the list; second, for the while 

loop to run, unsorted_list[search_index-1] must be greater than the insert_value variable. 

The unsorted_list[search_index-1] array will do either of the following things:

•	 Point to the element, just before unsorted_list[search_index], before the while loop 

is executed the first time

•	 Point to one element before unsorted_list[search_index-1], after the while loop has 

been run the first time

In the example list, the while loop will be executed because 5 > 1. In the body of the while loop, 

the element at unsorted_list[search_index-1] is stored at unsorted_list[search_index]. 

And, search_index -= 1 moves the list traversal backward until it holds a value of 0.

After the while loop exits, the last known position of search_index (which, in this case, is 0) 

now helps us to know where to insert insert_value. Figure 11.13 shows the position of elements 

after the first iteration:

Figure 11.13: Example list position after 1st iteration

On the second iteration of the for loop, search_index will have a value of 2, which is the index 

of the third element in the array. At this point, we start our comparison in the leftward direction 

(toward index 0). 100 will be compared with 5, but because 100 is greater than 5, the while loop 

will not be executed. 100 will be replaced by itself, because the search_index variable never got 

decremented. As such, unsorted_list[search_index] = insert_value will have no effect.
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When search_index is pointing at index 3, we compare 2 with 100, and move 100 to where 2 is 

stored. We then compare 2 with 5 and move 5 to where 100 was initially stored. At this point, the 

while loop will break and 2 will be stored in index 1. The array will be partially sorted with the 

values [1, 2, 5, 100, 10]. The preceding step will occur one last time for the list to be sorted. 

The following code can be used to create a list of elements, which we can sort using the defined 

insertion_sort() method:

my_list = [5, 1, 100, 2, 10]

print("Original list", my_list)

insertion_sort(my_list)

print("Sorted list", my_list)

The output of the above code is as follows:

Original list [5, 1, 100, 2, 10]

Sorted list [1, 2, 5, 10, 100]

The worst-case time complexity of insertion sort is when the given list of elements is sorted in 

reverse order. In that case, each element will have to be compared with each of the other elements. 

So, we will need one comparison in the first iteration, two comparisons in the second iteration, 

and three comparisons in the third iteration, and (n-1) comparisons in the (n-1)th iteration. Thus, 

the total number of comparisons are:

1 + 2 + 3 .. (n-1) 

n(n-1)/2

Hence, the insertion sort algorithm gives a worst-case runtime complexity of O(n2). Furthermore, 

the best-case complexity of the insertion sort algorithm is O(n), in the situation when the given 

input list is already sorted in which each element from the unsorted sublist is compared to only 

the right-most element of the sorted sublist in each iteration. The insertion sort algorithm is good 

to use when the given list has a small number of elements, and it is best suited when the input 

data arrives one by one, and we need to keep the list sorted. Now we are going to take a look at 

the selection sort algorithm.

Selection sort algorithm
Another popular sorting algorithm is selection sort. The selection sort algorithm begins by finding 

the smallest element in the list and interchanges it with the data stored at the first position in 

the list. Thus, it sorts the sublist sorted up to the first element. This process is repeated for (n-1) 

times to sort n items. 
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Next, the second smallest element, which is the smallest element in the remaining list, is identified 

and interchanged with the second position in the list. This makes the initial two elements sorted. 

The process is repeated, and the smallest element remaining in the list is swapped with the 

element in the third index on the list. This means that the first three elements are now sorted. 

Let’s look at an example to understand how the algorithm works. We’ll sort the following list of 

four elements {15, 12, 65, 10, 7}, as shown in Figure 11.14, along with their index positions 

using the selection sort algorithm:

Figure 11.14: Demonstration of the first iteration of the selection sort

In the first iteration of the selection sort, we start at index 0, we search for the smallest item in 

the list, and when the smallest element is found, it is exchanged with the first data element of the 

list at index 0. We simply repeat this process until the list is fully sorted. After the first iteration, 

the smallest element will be placed in the first position in the list.
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Next, we start from the second element of the list at index position 1 and search the smallest 

element in the data list from index position 1 to the length of the list. Once we find the smallest 

element from this remaining list of elements, we swap this element with the second element of the 

list. The step-by-step process of the second iteration of the selection sort is shown in Figure 11.15:

Figure 11.15: Demonstration of the second iteration of the selection sort

In the next iteration, we find out the smallest element in the remaining list in index position 2 to 

4 and swap the smallest data element with the data element at index 2 in the second iteration. 

We follow the same process until we sort the complete list.

The following is an implementation of the selection sort algorithm. The argument to the function 

is the unsorted list of items we want to put in ascending order of their values:

def selection_sort(unsorted_list): 

    size_of_list = len(unsorted_list) 

    for i in range(size_of_list): 

        small = i

        for j in range(i+1, size_of_list): 

            if unsorted_list[j] < unsorted_list[small]: 

                small = j

        temp = unsorted_list[i] 

        unsorted_list[i] = unsorted_list[small] 

        unsorted_list[small] = temp
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In the above code of selection sort, the algorithm begins with the outer for loop to go through the 

list, starting from index 0 to size_of_list. Because we pass size_of_list to the range method, 

it’ll produce a sequence from 0 through to size_of_list-1.

Next, we declare a variable small, which stores the index of the smallest element. Further, the 

inner loop is responsible for going through the list and we keep track of the index of the smallest 

value of the list. Once the index of the smallest element is found, then we swap this element with 

the correct position in the list.

The following code can be used to create a list of elements and we use the selection sort algorithm 

to sort the list:

a_list = [3, 2, 35, 4, 32, 94, 5, 7]

print("List before sorting", a_list)

selection_sort(a_list)

print("List after sorting", a_list)

The output of the above code is as follows:

List before sorting [3, 2, 35, 4, 32, 94, 5, 7]

List after sorting [2, 3, 4, 5, 7, 32, 35, 94]

In the selection sort, (n-1) comparisons are required in the first iteration, and (n-2) comparisons 

are required in the second iteration, and (n-3) comparisons are required in the third iteration, 

and so on. So, the total number of comparisons required is: (n-1) + (n-2) + (n-3) + ..... + 

1 = n(n-1) / 2 , which nearly equals to n2. Thus, the worst-case time complexity of the selection 

sort is O(n2). The worst-case situation is when the given list of elements is reverse ordered. The 

selection sorting algorithm gives the best-case runtime complexity of O(n2). The selection sorting 

algorithm can be used when we have a small list of elements.

Next, we will discuss the quicksort algorithm.

Quicksort algorithm
Quicksort is an efficient sorting algorithm. The quicksort algorithm is based on the divide-and-

conquer class of algorithms, similar to the merge sort algorithm, where we break (divide) a 

problem into smaller chunks that are much simpler to solve, and further, the final results are 

obtained by combining the outputs of smaller problems (conquer).

The concept behind quicksorting is partitioning a given list or array. To partition the list, we first 

select a data element from the given list, which is called a pivot element. 
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We can choose any element as a pivot element in the list. However, for the sake of simplicity, 

we’ll take the first element in the array as the pivot element. Next, all the elements in the list 

are compared with this pivot element. At the end of first iteration, all the elements of the list are 

arranged in such a way that the elements which are less than the pivot element are arranged to 

the left of the pivot, that the elements that are greater than the pivot element are arranged to 

the right of the pivot.

Now, let’s understand the working of the quicksort algorithm with an example.

In this algorithm, firstly we partition the given list of unsorted data elements into two sublists 

in such a way that all the elements on the left side of that partition point (also called a pivot) 

should be smaller than the pivot, and all the elements on the right side of the pivot should be 

greater. This means that elements of the left sublist and the right sublist will be unsorted, but 

the pivot element will be at its correct position in the complete list. This is shown in Figure 11.16.

Therefore, after the first iteration of the quicksort algorithm, the chosen pivot point is placed in 

the list at its correct position, and after the first iteration, we obtain two unordered sublists and 

follow the same process again on these two sublists. Thus, the quicksort algorithm partitions 

the list into two parts and recursively applies the quicksort algorithm to these two sublists to 

sort the whole list:

Figure 11.16: Illustration of sublists in quicksort
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The quicksort algorithm works as follows:

1.	 We start by choosing a pivot element with which all the data elements are to be compared, 

and at the end of the first iteration, this pivot element will be placed in its correct position 

in the list. In order to place the pivot element in its correct position, we use two pointers, 

a left pointer, and a right pointer. This process is as follows:

a.	 The left pointer initially points to the value at index 1, and the right pointer points 

to the value at the last index. The main idea here is to move the data items that are 

on the wrong side of the pivot element. So, we start with the left pointer, moving 

in a left-to-right direction until we reach a position where the data item in the 

list has a greater value than the pivot element.

b.	 Similarly, we move the right pointer toward the left until we find a data item less 

than the pivot element.

c.	 Next, we swap these two values indicated by the left and right pointers.

d.	 We repeat the same process until both pointers cross each other, in other words, 

until the right pointer index indicates a value less than that of the left pointer index.

2.	 After each iteration described in step 1, the pivot element will be placed at its correct 

position in the list, and the original list will be divided into two unordered sublists, left 

and right. We follow the same process (as described in step 1) for both these left and right 

sublists until each of the sublists contains a single element.

3.	 Finally, all the elements will be placed at their correct positions, which will give the sorted 

list as an output.
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Let’s take an example of a list of numbers, {45, 23, 87, 12, 72, 4, 54, 32, 52}, to understand how 

the quicksort algorithm works. Let’s assume that the pivot element (also called the pivot point) 

in our list is the first element, 45. We move the left pointer from index 1 in a rightward direction, 

and stop when we reach the value 87, because (87>45). Next, we move the right pointer toward 

the left and stop when we find the value 32, because (32<45). Now, we swap these two values. 

This process is shown in Figure 11.17:

Figure 11.17: An illustrative example of the quicksort algorithm
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After that, we repeat the same process and move the left pointer toward the right, and stop when 

we find the value 72, because (72 > 45). Next, we move the right pointer toward the left and stop 

when we reach the value 4, because (4 < 45). Now, we swap these two values, because they are 

on the wrong sides of the pivot value. We repeat the same process and stop once the right pointer 

index value becomes less than the left pointer index. Here, we find 4 as the splitting point, and 

swap it with the pivot value. This is shown in Figure 11.18:

Figure 11.18: An example of the quicksort algorithm (continued)
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It can be observed that after the first iteration of the quicksort algorithm, the pivot value 45 is 

placed at its correct position in the list.

Now we have two sublists:

1.	 The sublist to the left of the pivot value, 45, has values less than 45.

2.	 Another sublist to the right of the pivot value contains values greater than 45. We will 

apply the quicksort algorithm recursively on these two sublists, and repeat it until the 

whole list is sorted, as shown in Figure 11.19:

Figure 11.19: After the first iteration of the quicksort algorithm on an example list 
of elements

We will take a look at the implementation of the quicksort algorithm in the next section.

Implementation of quicksort
The main task of the quicksort algorithm is to first place the pivot element in its correct position 

so that we divide the given unsorted list into two sublists (left and right sublists); this process 

is called the partitioning step. The partitioning step is very important in understanding the 

implementation of the quicksort algorithm, so we will understand the implementation of the 

partitioning step first with an example. In this, given a list of elements, all the elements will be 

arranged in such a way that elements smaller than the pivot element will be on the left side of it, 

and elements greater than the pivot will be arranged to the right of the pivot element.

Let’s look at an example to understand the implementation. Consider the following list of integers. 

[43, 3, 20, 89, 4, 77]. We shall partition this list using the partition function:

[43, 3, 20, 89, 4, 77]
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Consider the code of the partition function below; we will discuss each line of this in detail:

def partition(unsorted_array, first_index, last_index):

    pivot = unsorted_array[first_index]

    pivot_index = first_index

    index_of_last_element = last_index

    less_than_pivot_index = index_of_last_element

    greater_than_pivot_index = first_index + 1

    while True:

        while unsorted_array[greater_than_pivot_index] < pivot and 
greater_than_pivot_index < last_index:

            greater_than_pivot_index += 1

        while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

            less_than_pivot_index -= 1

        if greater_than_pivot_index < less_than_pivot_index:

            temp = unsorted_array[greater_than_pivot_index]

            unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

            unsorted_array[less_than_pivot_index] = temp

        else:

            break

    unsorted_array[pivot_index] = unsorted_array[less_than_pivot_index]

    unsorted_array[less_than_pivot_index] = pivot

    return less_than_pivot_index

The partition function receives, as its parameters, the indices of the first and last elements of the 

array that we need to partition.

The value of the pivot is stored in the pivot variable, while its index is stored in pivot_index. 

We are not using unsorted_array[0], because when the unsorted array parameter is called 

with a segment of an array, index 0 will not necessarily point to the first element in that array. 

The index of the element next to the pivot, that is, the left pointer, first_index + 1, marks the 

position where we begin to look for an element in the array. This array is greater than the pivot 

as greater_than_pivot_index = first_index + 1 suggests. The right pointer less_than_

pivot_index variable points to the position of the last element in the less_than_pivot_index = 

index_of_last_element list, where we begin the search for the element that is less than the pivot.
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Further, at the beginning of the execution of the main while loop, the array looks as shown in 

Figure 11.20:

Figure 11.20: Illustration 1 of an example array for the quicksort algorithm

The first inner while loop moves one index to the right until it lands on index 2 because the value 
at that index is greater than 43. At this point, the first while loop breaks and does not continue. At 
each test of the condition in the first while loop, greater_than_pivot_index += 1 is evaluated 
only if the while loop’s test condition evaluates to True. This makes the search for an element, 
greater than the pivot, progress to the next element on the right.

The second inner while loop moves one index at a time to the left, until it lands on index 5, whose 

value, 20, is less than 43, as shown in Figure 11.21:

Figure 11.21 Illustration 2 of example array for quicksort algorithm

Next, at this point, neither of the inner while loops can be executed any further, and the next 

code snippet is as shown below:

    if greater_than_pivot_index < less_than_pivot_index:

        temp = unsorted_array[greater_than_pivot_index]

        unsorted_array[greater_than_pivot_index] = 

                unsorted_array[less_than_pivot_index] 

        unsorted_array[less_than_pivot_index] = temp

    else:

        break
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Here, since greater_than_pivot_index < less_than_pivot_index, the body of the if statement 

swaps the element at those indexes. The else condition breaks the infinite loop any time that 

greater_than_pivot_index becomes greater than less_than_pivot_index. In such a condition, 

it means that greater_than_pivot_index and less_than_pivot_index have crossed over each 

other.

The array now looks as shown in Figure 11.22:

Figure 11.22: Illustration 3 of an example array for the quicksort algorithm

The break statement is executed when less_than_pivot_index is equal to 3 and greater_than_

pivot_index is equal to 4.

As soon as we exit the while loop, we interchange the element at unsorted_array[less_than_

pivot_index] with that of less_than_pivot_index, which is returned as the index of the pivot:

    unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]

    unsorted_array[less_than_pivot_index]=pivot

    return less_than_pivot_index

Figure 11.23 shows how the code interchanges 4 with 43 as the last step in the partitioning process:

Figure 11.23: Illustration 4 of an example array for the quicksort algorithm

To recap, the first time the quick_sort function was called, it was partitioned at the element at 

index 0. After the return of the partitioning function, we obtain the array in the order of [4, 3, 

20, 43, 89, 77].
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As you can see, all elements to the right of element 43 are greater than 43, while those to the left 

are smaller. Thus, the partitioning is complete.

Using the split point 43 with index 3, we will recursively sort the two subarrays, [4, 30, 20] and 

[89, 77], using the same process we just went through.

The body of the main quick_sort function is as follows:

def quick_sort(unsorted_array, first, last):

    if last - first <= 0:

        return

    else:

        partition_point = partition(unsorted_array, first, last)

        quick_sort(unsorted_array, first, partition_point-1)

        quick_sort(unsorted_array, partition_point+1, last)

The quick_sort function is quite simple; initially, the partition method is called, which returns 

the partition point. This partition point is in the unsorted_array array where all elements to 

the left are less than the pivot value, and all elements to the right are greater. We print the state 

of unsorted_array immediately after the partition progress to see the status of the array after 

every call.

After the first partition, the first subarray[4, 3, 20] will be done; the partition of this subarray 

will stop when greater_than_pivot_index is at index 2 and less_than_pivot_index is at index 

1. At that point, the two markers are said to have crossed. Because greater_than_pivot_index 

is greater than less_than_pivot_index, further execution of the while loop will cease. Pivot 4 

will be exchanged with 3, while index 1 is returned as the partition point.

We can use the below code snippet to create a list of elements, and use the quicksort algorithm 

to sort it:

my_array = [43, 3, 77, 89, 4, 20]

print(my_array)

quick_sort(my_array, 0, 5)

print(my_array)

The output of the above code is as follows:

[43, 3, 77, 89, 4, 20]

[3, 4, 20, 43, 77, 89]
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In the quicksort algorithm, the partition algorithm takes O(n) time. As the quicksort algorithm 

follows the divide and conquer paradigm, it takes O(logn) time; therefore, the overall average-

case runtime complexity of the quicksort algorithm is O(n) * O(logn) = O(nlogn). The quicksort 

algorithm gives a worst-case runtime complexity of O(n2). The worst-case complexity for the 

quicksort algorithm would be when it selects the worst pivot point every time, and one of the 

partitions always has a single element. For example, if the list is already sorted, the worst-case 

complexity would occur if the partition picks the smallest element as a pivot point. When worst-

case complexity does occur, the quicksort algorithm can be improved by using the randomized 

quicksort. The quicksort algorithm is efficient when the given list of elements is very long; it 

works better compared to the other aforementioned algorithms for sorting in such situations.

Timsort algorithm
Timsort is used as the default standard sorting algorithm in all Python versions >=2.3. The Timsort 

algorithm is an optimal algorithm for real-world long lists that is based on a combination of 

the merge sort and insertion sort algorithms. The Timsort algorithm utilizes the best of both 

algorithms; insertion sort works best when the array is sorted partially and its size is small, and the 

merge method of the merge sort algorithm works fast when we have to combine small, sorted lists.

The main concept of the Timsort algorithm is that it uses the insertion sort algorithm to sort 

small blocks (also known as chunks) of data elements, and then it uses the merge sort algorithm 

to merge all the sorted chunks. The main characteristic of the Timsort algorithm is that it takes 

advantage of already-sorted data elements known as “natural runs,” which occur very frequently 

in real-world data.

The Timsort algorithm works as follows:

1.	 Firstly, we divide the given array of data elements into a number of blocks which are also 

known as a run.

2.	 We generally use 32 or 64 as the size of the run as it is suitable for Timsort; however, we 

can use any other size that can be computed from the length of the given array (say N). 

The minrun is the minimum length of each run. The size of the minrun can be computed 

by following the given principles:

a.	 The minrun size should not be too long as we use the insertion sort algorithm to 

sort these small blocks, which performs well for short lists of elements.
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b.	 The length of the run should not be very short; in that case, it will result in a greater 

number of runs, which will make the merging algorithm slow.

c.	 Since merge sort works best when we have the number of runs as a power of 2, it 

would be good if the number of runs that compute as  N/minrun are a power of 2.

3.	 For example, if we take a run size of 32, then the number of runs will be (size_of_

array/32); if this is a power of 2, then the merge process will be very efficient.

4.	 Sort each of the runs one by one using the insertion sort algorithm.

5.	 Merge all the sorted runs one by one using the merge method of the merge sort algorithm.

6.	 After each iteration, we double the size of the merged subarray.

Let’s take an example to understand the working of the Timsort algorithm. Let’s say we have the 

array [4, 6, 3, 9, 2, 8, 7, 5]. We sort it using the Timsort algorithm; here, for simplicity, 

we take the size of the run as 4. So, we divide the given array into two runs,  run 1 and run 2. Next, 

we sort run 1 using the insertion sort algorithm, and then we sort run 2 using the insertion sort 

algorithm. Once we have all the runs sorted, we use the merge method of the merge sort algorithm 

to obtain the final complete sorted list. The complete process is shown in Figure 11.24:

Figure 11.24: Illustration of an example array for the Timsort algorithm



Chapter 11 371

Next, let’s discuss the implementation of the Timsort algorithm. Firstly, we implement the 

insertion sort algorithm and the merge method of the merge sort algorithm. The insertion sort 

algorithm has already been discussed in detail in previous sections. For completeness, it is given 

below again:

def Insertion_Sort(unsorted_list): 

    for index in range(1, len(unsorted_list)): 

        search_index = index 

        insert_value = unsorted_list[index] 

        while search_index > 0 and unsorted_list[search_index-1] > insert_
value : 

            unsorted_list[search_index] = unsorted_list[search_index-1] 

            search_index -= 1 

        unsorted_list[search_index] = insert_value 

    return unsorted_list

In the above, the insertion sort method is responsible in sorting the run. Next, we present the 

merge method of the merge sort algorithm; this has been discussed in detail in Chapter 3, Algorithm 

Design Techniques and Strategies. This Merge() function is used to merge the sorted runs, and it 

is defined as follows:

def Merge(first_sublist, second_sublist):

    i = j = 0

    merged_list = []

    while i < len(first_sublist) and j < len(second_sublist):

        if first_sublist[i] < second_sublist[j]:

            merged_list.append(first_sublist[i])  

            i += 1  

        else:

            merged_list.append(second_sublist[j])  

            j += 1

    while i < len(first_sublist):  

        merged_list.append(first_sublist[i])  

        i += 1  

    while j < len(second_sublist):

        merged_list.append(second_sublist[j])  

        j += 1

    return merged_list
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Next, let’s discuss the Timsort algorithm. Its implementation is given below. Let’s understand 

it bit by bit:

def Tim_Sort(arr, run):

    for x in range(0, len(arr), run):

        arr[x : x + run] = Insertion_Sort(arr[x : x + run]) 

    runSize = run    

    while runSize < len(arr):

        for x in range(0, len(arr), 2 * runSize):

            arr[x : x + 2 * runSize] = Merge(arr[x : x + runSize], arr[x + 
runSize: x + 2 * runSize]) 

            

        runSize = runSize * 2

In the above implementation, we firstly pass two parameters, the array that is to be sorted and 

the size of the run. Next, we use insertion sort to sort the individual subarrays by run size in the 

below code snippet:

for x in range(0, len(arr), run):

       arr[x : x + run] = Insertion_Sort(arr[x : x + run])

In the above code for the example list [4, 6, 3, 9, 2, 8, 7, 5], let’s say run size is 2, so we 

will have a total of four blocks/chunks/runs, and after exiting this loop, the array will be like this: 

[4, 6, 3, 9, 2, 8, 5, 7], indicating that all runs of size 2 are sorted. After that we initialize 

runSize and we iterate until runSize becomes equal to the array length. So, we use the merge 

method for combining the sorted small lists:

    runSize = run    

    while runSize < len(arr):

        for x in range(0, len(arr), 2 * runSize):

            arr[x : x + 2 * runSize] = Merge(arr[x : x + runSize], arr[x + 
runSize: x + 2 * runSize]) 

            

        runSize = runSize * 2

In the above code, the for loop is using the Merge function for merging the runs of size runSize. 

For the example above, the runSize is 2. In the first iteration, it will merge the left run from index 

(0 to 1) and right run from index (2 to 3) to form a sorted array from index (0 to 3), and the 

array will become [3, 4, 6, 9, 2, 8, 5, 7].
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Further, in the second iteration, it will merge the left run from index (4 to 5) and the right run 

from index (6 to 7) to form a sorted run from index (4 to 7). After the second iteration the 

for loop will terminate and the array will become [3, 4, 6, 9, 2, 5, 7, 8], which indicates 

the array has been sorted from index (0 to 3) and (4 to 7).

Now we update the size of the run as 2*runSize and we repeat the same process for the updated 

runSize. So now, runSize is 4. Now, in the first iteration, it will merge the left run (index 0 to 3) 

and right run (index 4 to 7) to form a sorted array from index (0 to 7) and after this the for loop 

will terminate and the array will become [2, 3, 4, 5, 6, 7, 8, 9], which indicates the array 

has been sorted.

Now, runSize will become equal to the array length so the while loop will terminate, and at last, 

we will be left with the sorted array.

We can use the below code snippet to create a list, and then sort the list using the Timsort algorithm:

arr = [4, 6, 3, 9, 2, 8, 7, 5]

run = 2

Tim_Sort(arr, run) 

print(arr)

The output of the above code is as follows:

[2,3,4,5,6,7,8,9]

Timsort is very efficient for real-world applications since it has a worst-case complexity of O(n 

logn). Timsort is the best choice for sorting, even if the length of the given list is short. In that 

case, it uses the insertion sort algorithm, which is very fast for smaller lists, and the Timsort 

algorithm works fast for long lists due to the merge method; hence, the Timsort algorithm is a 

good choice for sorting due to its adaptability for sorting arrays of any length in real-world usage.

A comparison of the complexities of different sorting algorithms is given in the following table:

Algorithm worst-case average-case best-case

Bubble sort O(n2) O(n2) O(n)

Insertion sort O(n2) O(n2) O(n)

Selection sort O(n2) O(n2) O(n2)

Quicksort O(n2) O(n log n) O(n log n)

Timsort O(n log n) O(n log n) O(n)

Table 11.1: Comparing the complexity of different sorting algorithms
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Summary
In this chapter, we have explored important and popular sorting algorithms that are very useful 

for many real-world applications. We have discussed the bubble sort, insertion sort, selection 

sort, quicksort, and Timsort algorithms, along with explaining their implementation in Python. 

In general, the quicksort algorithm performs better than the other sorting algorithms, and the 

Timsort algorithm is the best choice to use in real-world applications.

In the next chapter, we will discuss selection algorithms.

Exercise
1.	 If an array arr = {55, 42, 4, 31} is given and bubble sort is used to sort the array 

elements, then how many iterations will be required to sort the array?

a.	 3

b.	 2

c.	 1

d.	 0

2.	 What is the worst-case complexity of bubble sort?

a.	 O(n log n)

b.	 O(log n)

c.	 O(n)

d.	 O(n2)

3.	 Apply quicksort to the sequence (56, 89, 23, 99, 45, 12, 66, 78, 34). What is the 

sequence after the first phase, and what pivot is the first element?

a.	 45, 23, 12, 34, 56, 99, 66, 78, 89

b.	 34, 12, 23, 45, 56, 99, 66, 78, 89

c.	 12, 45, 23, 34, 56, 89, 78, 66, 99

d.	 34, 12, 23, 45, 99, 66, 89, 78, 56

4.	 Quicksort is a ___________

a.	 Greedy algorithm

b.	 Divide and conquer algorithm

c.	 Dynamic programming algorithm
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d.	 Backtracking algorithm

5.	 Consider a situation where a swap operation is very costly. Which of the following sorting 

algorithms should be used so that the number of swap operations is minimized?

a.	 Heap sort

b.	 Selection sort

c.	 Insertion sort

d.	 Merge sort

6.	 If the input array A = {15, 9, 33, 35, 100, 95, 13, 11, 2, 13} is given, using selection sort, what 

would the order of the array be after the fifth swap? (Note: it counts regardless of whether 

they exchange places or remain in the same position.)

a.	 2, 9, 11, 13, 13, 95, 35, 33, 15, 100

b.	 2, 9, 11, 13, 13, 15, 35, 33, 95, 100

c.	 35, 100, 95, 2, 9, 11, 13, 33, 15, 13

d.	 11, 13, 9, 2, 100, 95, 35, 33, 13, 13

7.	 What will be the number of iterations to sort the elements {44, 21, 61, 6, 13, 1} 

using insertion sort?

a.	 6

b.	 5

c.	 7

d.	 1

8.	 How will the array elements A= [35, 7, 64, 52, 32, 22] look after the second iteration, 

if the elements are sorted using insertion sort?

a.	 7, 22, 32, 35, 52, 64

b.	 7, 32, 35, 52, 64, 22

c.	 7, 35, 52, 64, 32, 22

d.	 7, 35, 64, 52, 32, 22
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12
Selection Algorithms

One interesting set of algorithms related to finding elements in an unordered list of items is 

selection algorithms. Given a list of elements, selection algorithms are used to find the kth smallest 

or largest element from the list. So given a list of data elements and a number (k), the aim is to 

find the kth smallest or largest element. The simplest case of selection algorithms is to find the 

minimum or maximum data element from the list. However, sometimes, we may need to find 

the kth smallest or largest element in the list. The simplest way is to first sort the list using any 

sorting algorithm, and then we can easily obtain the kth smallest (or largest) element. However, 

when the list is very large, then it is not efficient to sort the list to get the kth smallest or largest 

element. In that case, we can use different selection algorithms that can efficiently produce the 

kth smallest or largest element.

In this chapter, we will cover the following topics:

•	 Selection by sorting

•	 Randomized selection

•	 Deterministic selection

We will start with the technical requirements, and then we will discuss selection by sorting.

Technical requirements
All of the source code that’s used in this chapter is provided in the given GitHub link: https://
github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-

Third-Edition/tree/main/Chapter12.

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter12
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Selection by sorting
Items in a list may undergo statistical inquiries such as finding the mean, median, and mode 

values. Finding the mean and mode values does not require the list to be ordered. However, to find 

the median in a list of numbers, the list must first be ordered. Finding the median requires you 

to find the element in the middle position of the ordered list. In addition, this can be used when 

we want to find the kth smallest item in the list. To find the kth smallest number in an unordered 

list of items, an obvious method is to first sort the list, and after sorting, you can rest assured that 

the element at index 0 will hold the smallest element in the list. Likewise, the last element in the 

list will hold the largest element in the list. 

For more information on how to order data items within a list, see Chapter 11, Sorting. However, 

in order to obtain a kth smallest element from the list, it is not a good solution to apply a sorting 

algorithm to a long list of elements to obtain the minimum or maximum or kth smallest or largest 

value from the list since sorting is quite an expensive operation. Thus, if we need to find out the 

kth smallest or largest element from a given list, there is no need to sort the complete list as we 

have other methods that we can use for this purpose. Let’s discuss better techniques to find the 

kth smallest element without having to sort the list in the first place, starting with randomized 

selection.

Randomized selection
The randomized selection algorithm is used to obtain the kth smallest number that is based on the 

quicksort algorithm; the randomized selection algorithm is also known as quickselect. In Chapter 

11, Sorting, we discussed the quicksort algorithm. The quicksort algorithm is an efficient algorithm 

to sort an unordered list of items. To summarize, the quicksort algorithm works as follows:

1.	 It selects a pivot.

2.	 It partitions the unsorted list around the pivot.

3.	 It recursively sorts the two halves of the partitioned list using steps 1 and 2.

One important fact about quicksort is that after every partitioning step, the index of the pivot 

does not change, even after the list becomes sorted. This means that after each iteration, the 

selected pivot value will be placed in its correct position in the list. This property of quicksort 

enables us to obtain the kth smallest number without sorting the complete list. Let’s discuss the 

randomized selection method, which is also known as the quickselect algorithm, to obtain the 

kth smallest element from a list of n data items.
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Quickselect
The quickselect algorithm is used to obtain the kth smallest element in an unordered list of items. 

It is based on the quicksort algorithm, in which we recursively sort the elements of both the 

sublists from the pivot point. In each iteration, the pivot value reaches the correct position in 

the list, which divides the list into two unordered sublists (left and right sublists), where the left 

sublist has smaller values as compared to the pivot value, and the right sublist has greater values 

compared to the pivot value. Now, in the case of the quickselect algorithm, we recursively call 

the function only for the sublist that has the kth smallest element. 

In the quickselect algorithm, we compare the index of the pivot point with the k value to obtain 

the kth smallest element from the given unordered list. There will be three cases in the quickselect 

algorithm, as follows:

1.	 If the index of the pivot point is smaller than k, then we are sure that the kth smallest value 

will be present on the right-hand sublist of the pivot point. So we only recursively call the 

quickselect function for the right sublist.

2.	 If the index of the pivot point is greater than k, then it is obvious that the kth smallest 

element will be present on the left-hand side of the pivot point. So we only recursively 

look for the ith element in the left sublist.

3.	 If the index of the pivot point is equal to k, then it means that we have found out the kth 

smallest value, and we return it.

Let’s understand the working of the quickselect algorithm with an example. Consider a list of 

elements, {45, 23, 87, 12, 72, 4, 54, 32, 52}. We can use the quickselect algorithm to 

find the third smallest element in this list.

We start the algorithm by selecting a pivot value, that is, 45. Here we are choosing the first 

element as the pivot element for simplicity; however, any other element can be chosen as a pivot 

element. After the first iteration of the algorithm, the pivot value moves to its correct position 

in the list, which in this example is at index 4 (the index is starting from 0). Next, we check the 

condition k<pivot point (that is, 2<4). Case- 2 is applicable, so we only consider the left sublist, 

and recursively call the function. Here, we compare the index of the pivot value (that is, 4) with 

the value of k (that is, the 3rd position or at index 2).

Next, we take the left sublist and select the pivot point (that is, 4). After the run, the 4 is placed 

in its correct position (that is, the 0th index). As the index of the pivot is less than the value of k, 

we consider the right sublist. 
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Similarly, we take 23 as the pivot point, which is also placed in its correct position. Now, when 

we compare the index of the pivot point and the value of k, they are equal, which means we have 

found the 3rd smallest element, and it will be returned. The complete step-by-step process to find 

the 3rd smallest element is shown in Figure 12.1:

Figure 12.1: Step-by-step demonstration of the quickselect algorithm



Chapter 12 381

Let’s discuss the implementation of the quick_select method. It is defined as follows:

def quick_select(array_list, start, end, k):

    split = partition(array_list, start, end)

    if split == k:

        return array_list[split]

    elif split < k:

        return quick_select(array_list, split + 1, end, k)

    else:

        return quick_select(array_list, start, split-1, k)

In the above code, the quick_select function takes the complete array, the index of the first 

element of the list, the index of the last element, and the kth element specified by value k as 

parameters. The value of k maps with the index that the user is searching for, meaning the kth 

smallest number in the list.

Initially, we use the partition() method (which is defined and discussed in detail in Chapter 11, 

Sorting) to place the selected pivot point in such a way that it divides the given list of elements in 

the left sublist and the right sublist, in which the left sublist has data elements that are smaller 

than the pivot value, and right subtree has data elements that are greater than the pivot value. 

The partition() method is called split = partition(array_list, start, end) and returns 

the split index. Here, the split index is the position where the pivot element is placed in the 

array, and (start, end) is the starting and ending indices of the list. Once we get the split point, 

we compare the split index with the required value of k to find out whether we have reached 

the position of the kth smallest data item or whether the required kth smallest element will be on 

the left sublist or the right sublist. These three conditions are as follows:

1.	 If the split is equal to the value of k, then it means that we have reached the kth smallest 

data item in the list.

2.	 If the split is less than k, then it means that the kth smallest item should exist or be found 

between split+1 and right.

3.	 If the split is greater than k, then it means that the kth smallest item should exist or be 

found between left and split-1.

In the preceding example, a split point occurs at index 4 (index starting from 0). If we are searching 

for the 3rd smallest number, then since 4 < 2 yields false, a recursive call to the right sublist is 

made using quick_select(array_list, left, split-1, k). 
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Here, for the completeness of this algorithm, the partition() method is given as follows:

def partition(unsorted_array, first_index, last_index):

    pivot = unsorted_array[first_index]

    pivot_index = first_index

    index_of_last_element = last_index

    less_than_pivot_index = index_of_last_element

    greater_than_pivot_index = first_index + 1

    while True:

        while unsorted_array[greater_than_pivot_index] < pivot and 
greater_than_pivot_index < last_index:

            greater_than_pivot_index += 1

        while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

            less_than_pivot_index -= 1

        if greater_than_pivot_index < less_than_pivot_index:

            temp = unsorted_array[greater_than_pivot_index]

            unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

            unsorted_array[less_than_pivot_index] = temp

        else:

            break

    unsorted_array[pivot_index] = unsorted_array[less_than_pivot_index]

    unsorted_array[less_than_pivot_index] = pivot

    return less_than_pivot_index

We can use the below code snippet to find out the kth smallest element using the quickselect 

algorithm for a given array.

list1 = [3,1,10, 4, 6, 5]

print("The 2nd smallest element is", quick_select(list1, 0, 5, 1))

print("The 3rd smallest element is", quick_select(list1, 0, 5, 2))

The output of the above code is as follows:

The 2nd smallest element is 3

The 3rd smallest element is 4

In the above code, we get the 2nd and 3rd smallest elements from the given list of elements. The 

worst-case performance of a randomized selection-based quick-select algorithm is O(n2).
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In the above implementation of the partition() method, we use the first element of the list 

as the pivot element for simplicity, but any element can be chosen from the list as the pivot 

element. A good pivot element is one that divides the list into almost equal halves. Therefore, it 

is possible to improve the performance of the quickselect algorithm by selecting the split point 

more efficiently in linear time with the worst-case complexity of O(n). We discuss how to do this 

in the next section using deterministic selection.

Deterministic selection
Deterministic selection is an algorithm for finding out the kth item in an unordered list of elements. 

As we have seen in the quickselect algorithm, we select a random “pivot” element that partitions 

the list into two sublists and calls itself recursively for one of the two sublists. In a deterministic 

selection algorithm, we choose a pivot element more efficiently instead of taking any random 

pivot element.

The main concept of the deterministic algorithm is to select a pivot element that produces a good 

split of the list, and a good split is one that divides the list into two halves. For instance, a good 

way to select a pivot element would be to choose the median of all the values. But we will need to 

sort the elements in order to find out the median element, which is not efficient, so instead, we 

try to find a way to select a pivot element that divides the list roughly in the middle.

The median of medians is a method that provides us with the approximate median value, that is, 

a value close to the actual median for a given unsorted list of elements. It divides the given list of 

elements in such a way that in the worst case, at least 3 out of 10 (3/10) of the list will be below 

the pivot element, and at least 3 out of 10 of the elements will be above the list.

Let’s take an example to understand this. Let’s say we have a list of 15 elements: {11, 13, 12, 

111, 110, 15, 14, 16, 113, 112, 19, 18, 17, 114, 115}.

Next, we divide it into groups of 5 elements and sort them as follows: {{11, 12, 13, 110, 111}, 

{14, 15, 16, 112, 113}, {17, 18, 19, 114, 115}}.

Next, we compute the median of each of these groups, and they are 13, 16, and 19, respectively. 

Further, the median of these median values {13, 16, 19} is 16. This is the median of medians 

for the given list. Here, we can see that 5 elements are smaller, and 9 elements are greater than 

the pivot element. When we select this median of the median as a pivot element, the list of n 

elements is divided in such a way that at least 3n/10 elements are smaller than the pivot element.
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The deterministic algorithm to select the kth smallest element works as follows:

1.	 Split the list of unordered items into groups of five elements each (the number 5 is not 

mandatory; it can be changed to any other number, for example, 8)

2.	 Sort these groups (in general, we use insertion sort for this purpose) and find the median 

of all these groups

3.	 Recursively, find the median of the medians obtained from these groups; let’s say that 

is point p

4.	 Using this point p as the pivot element, recursively call the partition algorithm similar to 

quickselect to find out the kth smallest element

Let’s consider an example list of 15 elements to understand the working of the deterministic 

algorithm to find out the 3rd smallest element from the list, as shown in Figure 12.2. First, we 

divide the list into groups of 5 elements each, and then we sort these groups/sublists. Once we 

have sorted the lists, we find out the median of the sublists. For this example, items 23, 52, and 

34 are the medians of these three sublists, as shown in Figure 12.2.

Next, we sort the list of medians for all the sublists. Further, we find out the median of this list, that 

is, the median of the median, which is 34. This median of medians is used to select the partition/

pivot point for the whole list. Further, we divide the given list using this pivot element to partition 

the list into 2 sublists, placing the given pivot element at its correct position in the list. For this 

example, the index of the pivot element is 7 (index starting from 0; this is shown in Figure 12.2.).
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Figure 12.2: Step-by-step procedure for the deterministic selection algorithm

The index of the pivot element is greater than the kth value, and hence, we recursively call the 

algorithm on the left sublist to obtain the required kth smallest element.
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Next, we will discuss the implementation of the deterministic selection algorithm.

Implementation of the deterministic selection algorithm
To implement the deterministic algorithm for determining the kth smallest value from the list, 

we start implementing the updated partition() method, which divides the list where we select 

the pivot element using the median of medians method. Let’s now understand the code for the 

partition function:

def partition(unsorted_array, first_index, last_index): 

    if first_index == last_index: 

        return first_index 

    else: 

        nearest_median = median_of_medians(unsorted_array[first_
index:last_index]) 

    index_of_nearest_median = get_index_of_nearest_median(unsorted_array, 
first_index, last_index, nearest_median) 

    swap(unsorted_array, first_index, index_of_nearest_median) 

 

    pivot = unsorted_array[first_index] 

    pivot_index = first_index 

    index_of_last_element = last_index 

    less_than_pivot_index = index_of_last_element 

    greater_than_pivot_index = first_index + 1 

 

    ## This while loop is used to correctly place pivot element at its 
correct position 

    while 1:

        while unsorted_array[greater_than_pivot_index] < pivot and 
greater_than_pivot_index < last_index:

            greater_than_pivot_index += 1

        while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

            less_than_pivot_index -= 1

 

        if greater_than_pivot_index < less_than_pivot_index:

            temp = unsorted_array[greater_than_pivot_index]
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            unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

            unsorted_array[less_than_pivot_index] = temp

        else:

            break

 

    unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]

    unsorted_array[less_than_pivot_index]=pivot

    return less_than_pivot_index

In the above code, we implement the partition method, which is very similar to what we did in 

the quickselect algorithm. In the quickselect algorithm, we used a random pivot element (for 

simplicity, the first element of the list), but in the deterministic selection algorithm, we select 

the pivot element using the median of medians. The partition method divides the list into two 

sublists – the left and right sublists, in which the left sublist has elements that are smaller than 

the pivot element, and the right sublist has elements that are greater than the pivot element. The 

main benefit of using the pivot element with the median of medians is that it, in general, divides 

the list into almost two halves.

At the start of the code, firstly, in the if-else condition, we check the length of the given list of 

elements. If the length of the list is 1, then we return the index of that element, so if the unsorted_

array has only one element, first_index and last_index will be equal. Therefore, first_index 

is returned. And, if the length is greater than 1, then we call the median_of_medians() method to 

compute the median of medians of the list passed to this method with the starting and ending 

indices as first_index and last_index. The return median of medians value is stored in the 

nearest_median variable.

Now, let’s understand the code of the median_of_medians() method. It is given as follows:

def median_of_medians(elems):  

    sublists = [elems[j:j+5] for j in range(0, len(elems), 5)] 

    medians = [] 

    for sublist in sublists: 

        medians.append(sorted(sublist)[int(len(sublist)/2)]) 

    if len(medians) <= 5: 

        return sorted(medians)[int(len(medians)/2)]

    else: 

        return median_of_medians(medians)
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In the above code of the median_of_medians function, recursion is used to compute the median 

of medians for the given list. The function begins by splitting the given list, elems, into groups of 

five elements each. As discussed earlier in the deterministic algorithm, we divide the given list into 

groups of 5 elements. Here, we choose 5 elements since it mostly performs well. However, we could 

have used any other number as well. This means that if elems contains 100 items, there will be 

20 groups that are created by the sublists = [elems[j:j+5] for j in range(0, len(elems), 

5)] statement, with each containing a maximum of five elements.

After creating sublists of five elements each, we create an empty array, medians, that stores the 

medians of each of the five-element arrays (i.e., sublists). Further, the for loop iterates over 

the list of lists inside sublists. Each sublist is sorted, the median is found, and it is stored in the 

medians list. The medians.append(sorted(sublist)[len(sublist)//2]) statement will sort the 

list and obtain the element stored in its middle index. The medians variable becomes the median 

list of all the sublists of which there are five elements in each sublist. In this implementation, we 

use an existing sorting function of Python; it will not impact the performance of the algorithm 

due to the list’s small size.

Thereafter, the next step is to recursively compute the median of medians, which we will use as 

a pivot element. It is important to note here that the length of the median array can itself be a 

large array because if the original length of the array is n, then the length of the median array 

will be n/5, and sorting this may be time-consuming in itself. Hence, we check the length of the 

medians array, and if it is less than 5, we sort the medians list and return the element located in its 

middle index. If, on the other hand, the size of the list is greater than five, we recursively call the 

median_of_medians function again, supplying it with the list of the medians stored in medians. 

Finally, the function returns the median of medians of the given list of elements.

Let’s take another example to better understand the concept of the median of medians with the 

following list of numbers:

[2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 
21, 22, 25, 24, 14]

We can break this list down into groups of five elements, each with the sublists = [elems[j:j+5] 

for j in range(0, len(elems), 5)] code statement, in order to obtain the following list:

[[2, 3, 5, 4, 1], [12, 11, 13, 16, 7], [8, 6, 10, 9, 17], [15, 19, 20, 18, 
23], [21, 22, 25, 24, 14]]
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Each of the five-element lists will be sorted as follows:

[[1, 2, 3, 5, 5], [7, 11, 12, 13, 16], [6, 8, 9, 10, 17], [15, 18, 19, 20, 
23], [14, 21, 22, 24, 25]]

Next, we obtain their medians to produce the following list:

[3, 12, 9, 19, 22]

We sort the above list:

[3, 9, 12, 19, 22]

Since the list is five elements in size, we only return the median of the sorted list, which is 12 in 

this case. Otherwise, if the length of this array had been greater than 5, we would have made 

another call to the median_of_median function. 

Once we have the median of the median value, we need to find out its index in the given list. 

We write the get_index_of_nearest_median function for this purpose. This function takes the 

starting and ending indices of the list indicated by the first and last parameters:

def get_index_of_nearest_median(array_list, first, last, median): 

    if first == last: 

        return first 

    else: 

        return array_list.index(median)

Next in the partition method, we swap the median of medians value with the first element of 

the list, that is, we swap index_of_nearest_median with first_index of the unsorted_array 

using the swap function:

swap(unsorted_array, first_index, index_of_nearest_median)

The utility function to swap two array elements is shown here:

def swap(array_list, first, index_of_nearest_median):

    temp = array_list[first]

    array_list[first] = array_list[index_of_nearest_median]

    array_list[index_of_nearest_median] = temp

We swap these two elements. The rest of the implementation is quite similar to what we discussed 

in the quick_select algorithm. Now, we have the median of the median for the given list, which 

is stored in first_index of the unsorted list. 
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Now, the rest of the implementation is similar to the partition method of the quick_select 

algorithm and also the quicksort algorithm, which is discussed in detail in Chapter 11, Sorting. For 

the completeness of the algorithm here, we discuss this again.

We consider the first element as a pivot element, and we take two pointers, that is, left and right. 

The left pointer moves from the left to the right direction in the list to keep elements that are 

smaller than the pivot element on the left hand side of the pivot element. It is initialized with 

the second element of the list, that is, first_index+1, whereas the right pointer moved from the 

right to the left direction, which maintains the list in a way that elements greater than the pivot 

element are on the right-hand side of the pivot element in the list. It is initialized with the last 

element of the list. So we have two variables less_than_pivot_index (the right pointer) and 

greater_than_pivot_index (the left pointer) in which less_than_pivot_index is initialized 

with index_of_last_element and greater_than_pivot_index with first_index + 1:

    less_than_pivot_index = index_of_last_element

    greater_than_pivot_index = first_index + 1

Next, we move the left and right pointers in such a way that after one iteration, the pivot element 

is placed in its correct position in the list. That means it divides the list into two sublists such that 

the left sublist has all the elements that are smaller than the pivot element, and the right sublist 

has elements greater than the pivot element. We do this with these three steps given below:

    ## This while loop is used to correctly place pivot element at its 
correct position 

    while 1:

        while unsorted_array[greater_than_pivot_index] < pivot and 
greater_than_pivot_index < last_index:

            greater_than_pivot_index += 1

        while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index:

            less_than_pivot_index -= 1

        if greater_than_pivot_index < less_than_pivot_index:

            temp = unsorted_array[greater_than_pivot_index]

            unsorted_array[greater_than_pivot_index] = unsorted_
array[less_than_pivot_index]

            unsorted_array[less_than_pivot_index] = temp

        else:

            break
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1.	 The first while loop will move greater_than_pivot_index to the right side of the array 

until the element pointed out by greater_than_pivot_index is less than the pivot element 

and greater_than_pivot_index is less than last_index:

while unsorted_array[greater_than_pivot_index] < pivot and greater_
than_pivot_index < last_index: greater_than_pivot_index += 1

2.	 In the second while loop, we’ll be doing the same thing but for the less_than_pivot_

index in the array. We’ll move less_than_pivot_index to the left direction until the 

element pointed out by less_than_pivot_index is greater than the pivot element and 

less_than_pivot_index is greater than or equal to first_index:

while unsorted_array[less_than_pivot_index] > pivot and less_than_
pivot_index >= first_index: less_than_pivot_index -= 1

3.	 Now, we check if greater_than_pivot_index and less_than_pivot_index have crossed 
each other or not. If  greater_than_pivot_index is still less than less_than_pivot_index 
(that is, we have not found the correct position for the pivot element yet), we swap the 
elements indicated by greater_than_pivot_index and less_than_pivot_index, and then 
we will repeat the same three steps again. If they have crossed each other, that means we 
have found the correct position for the pivot element, and we will break from the loop:

if greater_than_pivot_index < less_than_pivot_index:

    temp = unsorted_array[greater_than_pivot_index]

    unsorted_array[greater_than_pivot_index] = unsorted_array[less_
than_pivot_index]

    unsorted_array[less_than_pivot_index] = temp

else:

    break

After exiting the loop, the variable less_than_pivot_index will point to the correct index of the 

pivot, so we will just swap the values that are present at less_than_pivot_index and pivot_index:

    unsorted_array[pivot_index]=unsorted_array[less_than_pivot_index]

    unsorted_array[less_than_pivot_index]=pivot

Finally, we will simply return the pivot index, which is stored in the variable less_than_pivot_

index.

After the partition method, the pivot element reaches its correct position in the list. Thereafter, 

we recursively call the partition method to one of the sublists (the left sublist or the right sublist) 

depending on the required value of k and the pivot element position to find out the kth smallest 

element. This process is the same as the quickselect algorithm.
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The implementation of the deterministic select algorithm is given as follows:

def deterministic_select(array_list, start, end, k): 

    split = partition(array_list, start, end) 

    if split == k: 

        return array_list[split] 

    elif split < k:

        return deterministic_select(array_list, split + 1, end, k) 

    else: 

        return deterministic_select(array_list, start, split-1, k)

As you may have observed, the implementation of the deterministic selection algorithm looks 

exactly the same as the quickselect algorithm. The only difference between the two is how we 

select the pivot element; apart from that, everything is the same.

After the initial array_list has been partitioned by the selected pivot element, which is the 

median of medians of the list, a comparison with the kth element is made:

1.	 If the index of the split point, that is, split, is equal to the required value of k, it means 

that we have found the required kth smallest element.

2.	 If the index of the split point, the, split is less than the required value of k, then a recursive 

call to the right sublist is made as deterministic_select(array_list, split + 1, 

right, k). This will look for the kth element on the right-hand side of the array. 

3.	 Otherwise, if the split index is greater than the value of k, then the function call to the left 

sublist is made as deterministic_select(array_list, left, split-1, k).

The following code snippet can be used to create a list and further use the deterministic algorithm 

to find out the kth smallest element from the list:

list1= [2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 
23, 21, 22, 25, 24, 14]

print("The 6th smallest element is", deterministic_select(list1, 0, 
len(list1)-1, 5))

The output of the above code is as follows.

The 6th smallest element is 6
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In the output of the above code, we have the 6th smallest element from a given list of 25 elements. 

The deterministic selection algorithm improves the quickselect algorithm by using the median 

of medians element as a pivot point for selecting the kth smallest element from a list. It improves 

performance because the median of medians method finds out the estimated median in linear 

time, and when this estimated median is used as a pivot point in the quickselect algorithm, the 

worst-case running time’s complexity improves from O(n2) to the linear O(n).

The median of medians algorithm can also be used to choose a pivot point in the quicksort 

algorithm for sorting a list of elements. This significantly improves the worst-case performance 

of the quicksort algorithm from O(n2) to a complexity of O(nlogn).

Summary
In this chapter, we discussed two important methods to find the kth smallest element in a list, 

randomized selection and deterministic selection algorithms. The simple solution of merely 

sorting a list to perform the operation of finding the kth smallest element is not optimal as we 

can use better methods to determine the kth smallest element. The quickselect algorithm, which 

is the random selection algorithm, divides the list into two sublists. One list has smaller values, 

and the other list has greater values as compared to the selected pivot element. We reclusively use 

one of the sublists to find the location of the kth smallest element, which can be further improved 

by selecting the pivot point using the median of medians method in the deterministic selection 

algorithm.

In the next chapter, we will discuss several important string matching algorithms.

Exercise
1.	 What will be the output if the quickselect algorithm is applied to the given array

arr = [3, 1, 10, 4, 6, 5] with k given as 2?

2.	 Can quickselect find the smallest element in an array with duplicate values?

3.	 What is the difference between the quicksort algorithm and the quickselect algorithm?

4.	 What is the main difference between the deterministic selection algorithm and the 

quickselect algorithm?

5.	 What triggers the worst-case behavior of the selection algorithm?
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13
String Matching Algorithms

There are many popular string matching algorithms. String matching algorithms have very im-

portant applications, such as searching for an element in a text document, plagiarism detection, 

text editing programs, and so on. In this chapter, we will study the pattern matching algorithms 

that find the locations of a given pattern or substring in any given text. We will discuss the brute 

force algorithm, along with the Rabin-Karp, Knuth-Morris-Pratt (KMP), and Boyer-Moore 

pattern matching algorithms. This chapter aims to discuss algorithms that are related to strings. 

The following topics will be covered in this chapter:

•	 Learning pattern matching algorithms and their implementation

•	 Understanding and implementing the Rabin-Karp pattern matching algorithm

•	 Understanding and implementing the Knuth-Morris-Pratt (KMP) algorithm

•	 Understanding and implementing the Boyer-Moore pattern matching algorithm

Technical requirements
All of the programs based on the concepts and algorithms discussed in this chapter are provid-

ed in the book as well as in the GitHub repository at the following link: https://github.com/
PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/

tree/main/Chapter13.

String notations and concepts
Strings are sequences of characters. Python provides a rich set of operations and functions that 

can be applied to the string data type. Strings are textual data and are handled very efficiently in 

Python. The following is an example of a string (s)—"packt publishing".

https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Python-Third-Edition/tree/main/Chapter13
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A substring is a sequence of characters that’s part of the given string, i.e., specified indices in the 

string in a continuous order. For example, “packt" is a substring of the string “packt publishing". 

On the other hand, a subsequence is also a sequence of characters that can be obtained from the 

given string by removing some of the characters from the string by keeping the order of occurrence 

of the characters. For example, “pct pblishing" is a valid subsequence for the string “packt 

publishing" that is obtained by removing the characters a, k, and u. However, this is not a sub-

string since “pct pblishing" is not a continuous sequence of characters. Hence, a subsequence 

is different from a substring, and it can be considered a generalization of substrings.

The prefix (p) is a substring of the string (s) in that it is present at the start of the string. There 

is also another string (u) that exists in the string (s) after the prefix. For example, the substring 

“pack" is a prefix for the string (s) = "packt publishing" as it is the starting substring and there 

is another substring u = "publishing" after it. Thus, the prefix plus string (u) makes “packt 

publishing", which is the whole string.

The suffix (d) is a substring that is present at the end of the string (s). For example, the sub-

string “shing" is one of the many possible suffixes for the string “packt publishing". Python 

has built-in functions to check whether a string starts or ends with a specific string, as shown in 

the following code snippet:

string = "this is data structures book by packt publisher"

suffix = "publisher"

prefix = "this"

print(string.endswith(suffix))  #Check if string contains given suffix. 

print(string.startswith(prefix)) #Check if string starts with given 
prefix.

The output of the above code is as follows:

True

True

In the above example of the given string, we can see that the given text string ends with another 

substring “publisher", which is a valid suffix, and that also has another substring “this", which 

is a substring of the string start and is also a valid prefix.

Note that the pattern matching algorithms discussed here are not to be confused with the match-

ing statements of Python 3.10. 
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Pattern matching algorithms are the most important string processing algorithms and we will 

discuss them in the subsequent sections, starting with pattern matching algorithms.

Pattern matching algorithms
A pattern matching algorithm is used to determine the index positions where a given pattern 

string (P) is matched in a text string (T). Thus, the pattern matching algorithm finds and returns 

the index where a given string pattern appears in a text string. It returns "pattern not found" 

if the pattern does not have a match in the text string.

For example, for the given text string (s) = "packt publisher" and the pattern string (p) = 

"publisher", the pattern-matching algorithm returns the index position where the pattern string 

is matched in the text string. An example of a string matching problem is shown in Figure 13.1:

Figure 13.1: An example of a string matching problem

We will discuss four pattern matching algorithms, that is, the brute force method, Rabin-Karp 

algorithm, and the Knuth-Morris-Pratt (KMP) and Boyer-Moore pattern-matching algorithms. 

We start with the brute force pattern matching algorithm.

The brute force algorithm
The brute force algorithm is also called the naive approach to pattern matching algorithms. Na-

ive approach means that it is a very basic and simple algorithm. In this approach, we match all 

the possible combinations of the input pattern in the given text string to find the position of the 

occurrence of the pattern. This algorithm is very naive and is not suitable if the text is very long.

In this algorithm, we start by comparing the characters of the pattern string and the text string 

one by one, and if all the characters of the pattern are matched with the text, we return the in-

dex position of the text where the first character of the pattern is located. If any character of the 

pattern is mismatched with the text string, we shift the pattern by one position to check if the 

pattern appears at the next index position. We continue comparing the pattern and text string 

by shifting the pattern by one index position.
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To better understand how the brute force algorithm works, let’s look at an example. Suppose we 

have a text string (T) = “acbcabccababcaacbcac”, and the pattern string (P) is “acbcac”. Now, 

the objective of the pattern matching algorithm is to determine the index position of the pattern 

string in the given text, T, as shown in Figure 13.2:

Figure 13.2: An example of the brute force algorithm for string matching

We start by comparing the first character of the text, that is, a, and the first character of the pattern. 

Here, the initial five characters of the pattern are matched, and then there is a mismatch in the 

last character of the pattern. This is a mismatch, so we shift the pattern by one place. We again 

start comparing the first character of the pattern and the second character of the text string one 

by one. Here, character c of the text string does not match with the character a of the pattern. 

So, this is also a mismatch, and we shift the pattern by one space, as shown in Figure 13.2. We 

continue comparing the characters of the pattern and the text string until we traverse the whole 

text string. In this example, we find a match at index position 14, which is shown in Figure 13.2.

Let’s consider the Python implementation of the brute force algorithm for pattern matching:

def brute_force(text, pattern):

    l1 = len(text)      # The length of the text string
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    l2 = len(pattern)   # The length of the pattern 

    i = 0

    j = 0               # looping variables are set to 0

    flag = False        # If the pattern doesn't appear at all, then set 
this to false and execute the last if statement

    while i < l1:         # iterating from the 0th index of text

        j = 0

        count = 0    

        # Count stores the length upto which the pattern and the text have 
matched

        while j < l2:

            if i+j < l1 and text[i+j] == pattern[j]:  

        # statement to check if a match has occurred or not

                count += 1     # Count is incremented if a character is 
matched 

            j += 1

        if count == l2:   # it shows a matching of pattern in the text 

                print("\nPattern occurs at index", i) 

                # print the starting index of the successful match

                flag = True 

                # flag is True as we wish to continue looking for more 
matching of pattern in the text. 

        i += 1

    if not flag: 

        # If the pattern doesn't occur at all, means no match of pattern 
in the text string

        print('\nPattern is not at all present in the array')

The following code snippet can be used to call the function to search the pattern 'acbcac' in 

the given string:

brute_force('acbcabccababcaacbcac','acbcac')         # function call

The output of the above function call is as follows:

Pattern occurs at index 14

In the preceding code for the brute force approach, we start by computing the length of the given 

text strings and pattern. We also initialize the looping variables with 0 and set the flag to False. 
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This variable is used to continue searching for a match of the pattern in the string. If the flag 

variable is False by the end of the text string, it means that there is no match for the pattern at 

all in the text string.

Next, we start the searching loop from the 0th index to the end of the text string. In this loop, we 

have a count variable that is used to keep track of the length up to which the pattern and the 

text have been matched. Next, we have another nested loop that runs from the 0th index to the 

length of the pattern. Here, the variable i keeps track of the index position in the text string and 

the variable j keeps track of the characters in the pattern. Next, we compare the characters of the 

patterns and the text string using the following code fragment:

if i+j<l1 and text[i+j] == pattern[j]:

Furthermore, we increment the count variable after every match of the character of the pattern 

in the text string. Then, we continue matching the characters of the pattern and text string. If the 

length of the pattern becomes equal to the count variable, it means there is a match.

We print the index position of the text string if there is a match for the pattern string in the text 

string and keep the flag variable as to True as we wish to continue searching for more matches 

of the patterns in the text string. Finally, if the value of the variable flag is False, it means that 

there was not a match for the pattern in the text string at all.

The best-case and worst-case time complexities for the naive string matching algorithms are O(n) 

and O(m*(n-m+1)), respectively. The best-case scenario occurs when the pattern is not found in 

the text and the first character of the pattern is not present in the text at all, for example, if the 

text string is ABAACEBCCDAAEE, and the pattern is FAA. Here, as the first character of the pattern will 

not find a match anywhere in the text, it will have comparisons equal to the length of the text (n). 

The worst-case scenario occurs when all characters of the text string and the pattern are the same 

and we want to find out all the occurrences of the given pattern string in the text string, for example, 

if the text string is AAAAAAAAAAAAAAAA, and the pattern string is AAAA. Another worst-case scenario 

occurs when only the last character is different, for example, if the text string is AAAAAAAAAAAAAAAF 

and the pattern is AAAAF. Thus, the total number of comparisons will be m*(n-m+1) and the worst-

case time complexity will be O(m*(n-m+1)).

Next, we discuss the Rabin-Karp pattern matching algorithm.
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The Rabin-Karp algorithm
The Rabin-Karp pattern matching algorithm is an improved version of the brute force approach 

to find the location of the given pattern in the text string. The performance of the Rabin-Karp 

algorithm is improved by reducing the number of comparisons with the help of hashing. We  

discussed the concept of hashing in Chapter 8, Hash Tables. The hashing function returns a unique 

numeric value for a given string. 

This algorithm is faster than the brute force approach as it avoids unnecessary comparisons. In 

this algorithm, we compare the hash value of the pattern with the hash value of the substring of 

the text string. If the hash values are not matched, the pattern is shifted forward one position. This 

is a better algorithm as compared to the brute-force algorithm since there is no need to compare 

all the characters of the pattern one by one.

This algorithm is based on the concept that if the hash values of the two strings are equal, then 

it is assumed that both the strings are also equal. However, it is also possible that there can be 

two different strings whose hash values are equal. In that case, the algorithm will not work; this 

situation is known as a spurious hit and happens due to a collision in hashing. To avoid this 

with the Rabin-Karp algorithm, after matching the hash values of the pattern and the substring, 

we ensure that the pattern is actually matched in the string by comparing the pattern and the 

substring character by character.

The Rabin-Karp pattern matching algorithm works as follows:

1.	 First, we preprocess the pattern before starting the search, that is, we compute the hash 

value of the pattern of length m and the hash values of all the possible substrings of the 

text of length m. The total number of possible substrings would be (n-m+1). Here, n is the 

length of the text.

2.	 We compare the hash value of the pattern with the hash value of the substrings of the 

text one by one.

3.	 If the hash values are not matched, then we shift the pattern by one position.

4.	 If the hash value of the pattern and the hash value of the substring of the text match, then 

we compare the pattern and substring character by character to ensure that the pattern 

is actually matched in the text. 

5.	 We continue the process of steps 2-5 until we reach the end of the given text string.
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In this algorithm, we compute the numerical hash values using Horner’s rule (any other hashing 

function can also be used) that returns a unique value for the given string. We also compute the 

hash value using the sum of the ordinal values of all the characters of the string.

Let’s consider an example to understand the Rabin-Karp algorithm. Let’s say we have a text 

string (T) = "publisher paakt packt", and the pattern (P) = "packt". First, we compute the 

hash values of the pattern (length m) and all the substrings (of length m) of the text string. The 

functionality of the Rabin-Karp algorithm is shown in Figure 13.3:

Figure 13.3: An example of the Rabin-Karp algorithm for string matching

We start comparing the hash value of the pattern "packt" with the first substring "publi". Since 

the hash values do not match, we shift the pattern by one position, and then we compare the 

hash value of pattern with the hash value of the next substring of the text, i.e. "ublis". As these 

hash values also do not match, we again shift the pattern by one position. We shift the pattern 

by one position at a time if the hash values do not match. And, if the hash value of the pattern 

and the hash value of the substring match, we compare the pattern and substring character by 

character and we return the location of the text string if they match.

In the example shown in Figure 13.3, hash values of the pattern and the substring of the text are 

matched at location 17. 
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It is important to note that there can be a different string whose hash value can match with the 

hash of the pattern, i.e. a spurious hit.

Next, let us discuss the implementation of the Rabin-Karp pattern matching algorithm.

Implementing the Rabin-Karp algorithm
The implementation of the Rabin-Karp algorithm is done in two steps:

1.	 We implement the generate_hash() method, which is used to compute the hash value 

of the pattern and all the possible combinations of the substrings of length equal to the 

length of the pattern.

2.	 We implement the Rabin-Karp algorithm, which uses the generate_hash() method to 

identify the substring whose hash value matches the hash value of the pattern. Finally, 

we match them character by character to ensure we have correctly found the pattern.

Let us first discuss the implementation of generating hash values for the patterns and substrings 

of the text. For this, we need to first decide on the hash function. Here, we use the sum of all the 

ordinal values of all the characters of the string as the hashing function.

The complete Python implementation to compute the hashing values is given below:

def generate_hash(text, pattern):
    ord_text = [ord(i) for i in text]       # stores unicode value of each 
character in text
    ord_pattern = [ord(j) for j in pattern] # stores unicode value of each 
character in pattern
    len_text = len(text)                    # stores length of the text 
    len_pattern = len(pattern)              # stores length of the pattern
    len_hash_array = len_text - len_pattern + 1 # stores the length of new 
array that will contain the hash values of text
    hash_text = [0]*(len_hash_array)        # Initialize all the values in 
the array to 0.
    hash_pattern = sum(ord_pattern)                                                
    for i in range(0,len_hash_array):       # step size of the loop will 
be the size of the pattern
        if i == 0:                          # Base condition 
            hash_text[i] = sum(ord_text[:len_pattern])   # initial value 
of hash function
        else:
            hash_text[i] = ((hash_text[i-1] - ord_text[i-1]) + ord
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[i+len_pattern-1])   # calculating next hash value using previous value

    return [hash_text, hash_pattern]                 # return the hash 
values

In the above code, we start by storing the ordinal values of all the characters of the text and the 

pattern in the ord_text and ord_pattern variables. Next, we store the length of the text and the 

pattern in the len_text and len_pattern variables.

Next, we create a variable called len_hash_array that stores the number of all the possible sub-

strings of length (equal to the length of the pattern) using len_text - len_pattern + 1, and 

we create an array called hash_text that stores the hash value for all the possible substrings. This 

is shown in the following code snippet:

    len_hash_array = len_text - len_pattern + 1        

    hash_text = [0]*(len_hash_array)  

Next, we compute the hash value for the pattern by summing up the ordinal values of all the 

characters in the pattern using the following code snippet:

    hash_pattern = sum(ord_pattern)

Next, we start a loop that executes for all the possible substrings of the text. For this, initially, we 

compute the hash value for the first substring by summing the ordinal values of all of its charac-

ters using sum(ord_text[:len_pattern]). Further, the hash values for all of the substrings are 

computed using the hash value of the previous substrings as shown in the following code snippet:

    hash_text[i] = ((hash_text[i-1] - ord_text[i-1]) + ord_text[i+len_
pattern-1])

So, we have precomputed the hash values for the pattern and all the substrings of the text that 

we will use for comparing the pattern and the text in the implementation of the Rabin-Karp 

algorithm. The Rabin-Karp algorithm works as follows. Firstly, we compare the hash values of 

the pattern and substrings of the text. Next, we take the substring for which the hash matches 

with the hash of the pattern and compare them both character by character.

The complete Python implementation of the Rabin-Karp algorithm is as follows:

def Rabin_Karp_Matcher(text, pattern):

    text = str(text)                            # convert text into string 
format

    pattern = str(pattern)                 # convert pattern into string 
format
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    hash_text, hash_pattern = generate_hash(text, pattern) # generate hash 
values using generate_hash function

    len_text = len(text)          # length of text

    len_pattern = len(pattern)    # length of pattern 

    flag = False                  # checks if pattern is present atleast 
once or not at all 

    for i in range(len(hash_text)):                         

        if hash_text[i] == hash_pattern:   # if the hash value matches

            count = 0                      # count the total characters 
upto which both are similar

            for j in range(len_pattern):                                 

                if pattern[j] == text[i+j]: # checking equality for each 
character

                    count += 1              # if value is equal, then 
update the count value

                else:

                    break

            if count == len_pattern:        # if count is equal to length 
of pattern, it means there is a match

                    flag = True             # update flag accordingly

                    print('Pattern occurs at index',i)

    if not flag:                            # if pattern doesn't match 
even once, then this if statement is executed

        print('Pattern is not at all present in the text')

In the above code, firstly, we convert the given text and pattern into string format as the ordinal 

values can only be computed for strings. Next, we use the generate_hash function to compute 

the hash values of patterns and texts. We store the length of the text and patterns in the len_text 

and len_pattern variables. We also initialize the flag variable to False so that it keeps track of 

whether the pattern is present in the text at least once.

Next, we start a loop that implements the main concept of the algorithm. This loop executes for 

the length of hash_text, which is the total number of possible substrings. Initially, we compare 

the hash value of the first substring with the hash of the pattern by using if hash_text[i] == 

hash_pattern. If they do not match; we move one index position and look for another substring. 

We iteratively move further until we get a match.

If we find a match, we compare the substring and the pattern character by character through a 

loop by using if pattern[j] == text[i+j].
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We then create a count variable to keep track of how many characters match in the pattern and 

the substring. If the length of the count and the length of the pattern are equal, this means that all 

of the characters match, and the index location where the pattern was found is returned. Finally, 

if the flag variable remains False, this means that the pattern does not match at all with the 

text. The following code snippets can be used to execute the Rabin-Karp matching algorithm:

  Rabin_Karp_Matcher("101110000011010010101101","1011")

  Rabin_Karp_Matcher("ABBACCADABBACCEDF","ACCE")

The output of the above code is as follows:

   Pattern occurs at index 0

   Pattern occurs at index 18

   Pattern occurs at index 11

In the above code, we first check whether the pattern “1011" appears in the given text string 

“101110000011010010101101". The output shows that the given pattern occurs at index position 0 

and 18. Next, the pattern “ACCE" occurs at index position 11 in the text string “ABBACCADABBACCEDF".

The Rabin-Karp pattern matching algorithm preprocesses the pattern before the searching; that 

is, it computes the hash value for the pattern that has the complexity of O(m). Also, the worst-

case running time complexity of the Rabin-Karp algorithm is O(m *(n-m+1)). The worst-case 

scenario is when the pattern does not occur in the text at all. The average-case scenario is when 

the pattern occurs at least once.

Next, we will discuss the KMP string matching algorithm.

The Knuth-Morris-Pratt algorithm
The KMP algorithm is a pattern matching algorithm based on the idea that the overlapping text 

in the pattern itself can be used to immediately know at the time of any mismatch how much the 

pattern should be shifted to skip unnecessary comparisons. In this algorithm, we will precompute 

the prefix function that indicates the required number of shifts of the pattern whenever we get 

a mismatch. The KMP algorithm preprocesses the pattern to avoid unnecessary comparisons 

using the prefix function. So, the algorithm utilizes the prefix function to estimate how much 

the pattern should be shifted to search the pattern in the text string whenever we get a mismatch. 

The KMP algorithm is efficient as it minimizes the number of comparisons of the given patterns 

with respect to the text string.
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The motivation behind the KMP algorithm can be observed in Figure 13.4. In this example, it can 

be seen that the mismatch occurred at the 6th position with the last character “d” after matching 

the initial 5 characters. It is also known from the prefix function that the character “d” did not 

appear before in the pattern, and utilizing this information, the pattern can be shifted by six places:

Figure 13.4: Example of the KMP algorithm

So, in this example, the pattern has shifted six positions instead of one. Let us discuss another 

example to understand the concept of the KMP algorithm, as shown in Figure 13.5:

Figure 13.5: Second example of the KMP algorithm

In the above example, the mismatch occurs at the last character of the pattern. Since the pattern 

at the location of the mismatch has a partial match of the prefix bc, this information is given by 

the prefix function. Here, the pattern can be shifted to align with the other occurrence of the 

matched prefix bc in the pattern.

We will look into the prefix function next for a better understanding of how we use it to know 

by how much we should shift the pattern.
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The prefix function
The prefix function (also known as the failure function) finds the pattern within the pattern. 

It finds out how much the previous comparisons can be reused due to repetition in the pattern 

itself when there is a mismatch. The prefix function returns a value for each position wherever 

we get a mismatch, which tells us by how much the pattern should be shifted.

Let us understand how we use the prefix function to find the required shift amount with the 

following examples. Consider the first example: if we had a prefix function for a pattern where 

all of the characters are different, the prefix function would have a value of 0. This means that 

if we find any mismatch, the pattern will be shifted by the number of characters compared up to 

that position in the pattern.

Consider an example with the pattern abcde, which contains all different characters. We start 

comparing the first character of the pattern with the first character of the text string, as shown 

in Figure 13.6. As shown in the figure, the mismatch occurs at the 4th character in the pattern. 

Since the prefix function has the value 0, it means that there is no overlap in the pattern and no 

previous comparisons would be reused, so the pattern will be shifted to the number of characters 

compared up until that point:

Figure 13.6: Prefix function in the KMP algorithm
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Let’s consider another example to better understand how the prefix function works for the 

pattern (P) abcabbcab as shown in Figure 13.7:

Figure 13.7: Example of the prefix function in the KMP algorithm

In Figure 13.7, we start calculating the values of the prefix function starting from index 1. We 

assign the value 0 if there is no repetition of the characters in the pattern. So, in this example, we 

assign 0 to the prefix function for index positions 1 to 3. Next, at index position 4, we can see 

that there is a character, a, which is a repetition of the first character of the pattern itself, so we 

assign the value 1 here, as shown in Figure 13.8:

Figure 13.8: Value of the prefix function at index 4 in the KMP algorithm

Next, we look at the next character at position 5. It has the longest suffix pattern, ab, and so it 

would have a value of 2, as shown in Figure 13.9:

Figure 13.9: Value of the prefix function at index 5 in the KMP algorithm

Similarly, we look at the next index position of 6. Here, the character is b. This character does 

not have the longest suffix in the pattern, so it has the value 0. Next, we assign value 0 at index 

position 7. Then, we look at the index position 8, and we assign the value 1 as it has the longest 

suffix of length 1. 
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Finally, at the index position of 9, we have the longest suffix of 2. This is shown in Figure 13.10:

Figure 13.10: Value of the prefix function at index 6 to 9 in the KMP algorithm

The value of the prefix function shows how much of the start of the string can be reused if there 

is a mismatch. For example, if the comparison fails at index position 5, the prefix function value 

is 2, which means that the two starting characters don’t need to be compared, and the pattern 

can be shifted accordingly.

Next, we discuss the details of the KMP algorithm.

Understanding the KMP algorithm
The KMP pattern matching algorithm detects overlaps in the pattern itself so that it avoids 

unnecessary comparisons. The main idea behind the KMP algorithm is to detect how much the 

pattern should be shifted, based on the overlaps in the patterns. The algorithm works as follows:

1.	 First, we precompute the prefix function for the given pattern and initialize a counter q 

that represents the number of characters that matched.

2.	 We start by comparing the first character of the pattern with the first character of the 

text string, and if this matches, then we increment the counter q for the pattern and the 

counter for the text string, and we compare the next character.

3.	 If there is a mismatch, then we assign the value of the precomputed prefix function for 

q to the index value of q.

4.	 We continue searching the pattern in the text string until we reach the end of the text, that 

is, if we do not find any matches. If all of the characters in the pattern are matched in the 

text string, we return the position where the pattern is matched in the text and continue 

to search for another match.

Let’s consider the following example to understand the working of the KMP algorithm. We 

have a pattern acacac along with index positions from 1 to 6 (just for simplicity, we have index 

positions starting from 1 instead of 0), shown in Figure 13.11. The prefix function for the given 

pattern is constructed as shown in Figure 13.11:
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Figure 13.11: The prefix function for pattern “acacac”

Let us take an example to understand how we use the prefix function to shift the pattern accord-

ing to the KMP algorithm for the text string and pattern given in Figure 13.12. We start comparing 

the pattern and the text character by character. When we mismatch at index position 6, we see 

the prefix value for this position is 2. Then we shift the pattern according to the return value of 

the prefix function. Next, we start comparing the pattern and text string from the index position 

of 2 on the pattern (character c), and the character b of the text string. Since this is a mismatch, 

the pattern will be shifted according to the value of the prefix function at this position. This 

description is depicted in Figure 13.12:

Figure 13.12: The pattern is shifted according to the return value of the prefix function

Now let’s take another example shown in Figure 13.13 where the position of the pattern over the 

text is shown. When we start comparing the characters b and a, these do not match, and we see 

the prefix function for index position 1 shows a value of 0, meaning no overlapping of text in 

the pattern has occurred. Therefore, we shift the pattern by 1 place as shown in Figure 13.12. Next, 

we compare the pattern and text string character by character, and we find a mismatch at index 
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position 10 in the text between characters b and c. 

Here, we use the precomputed prefix function to shift the pattern – as the prefix_function(4) 

is 2, we shift the pattern to align over the text at index position 2 of the pattern. After that, we 

compare characters b and c at index position 10, and since they do not match, we shift the pattern 

by one place. This process is shown in Figure 13.13:

Figure 13.13: Shifting of the pattern according to the return value of the prefix function

Let us continue our searching from index position 11, as shown in Figure 13.14. Next, we compare 

the characters at index 11 in the text and continue until a mismatch is found. We find a mismatch 

between characters b and c at index position 12, as shown in Figure 13.14. We shift the pattern 

and move it next to the mismatched character since the prefix_function(2) is 0. We repeat the 

same process until we reach the end of the string. We find a match of the pattern in the text string 

at index location 13 in the text string, as in Figure 13.14:
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Figure 13.14: Shifting of the pattern for index positions of 11 to 18

The KMP algorithm has two phases: first, the preprocessing phase, which is where we compute 

the prefix function, which has the space and time complexity of O(m). Further, the second phase 

involves searching, for which the KMP algorithm has a time complexity of O(n). So, the worst-

case time complexity of the KMP algorithm is O(m +n).

Now, we will discuss the implementation of the KMP algorithm using Python.

Implementing the KMP algorithm
The Python implementation of the KMP algorithm is explained here. We start by implementing 

the prefix function for the given pattern. The code for the prefix function is as follows:

def pfun(pattern):              # function to generate prefix function for 
the given pattern,  

    n = len(pattern)            # length of the pattern 

    prefix_fun = [0]*(n)        # initialize all elements of the list to 0 

    k = 0 
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    for q in range(2,n):
        while k>0 and pattern[k+1] != pattern[q]: 
            k = prefix_fun[k] 
        if pattern[k+1] == pattern[q]:     # If the kth element of the 
pattern is equal to the qth element 
            k += 1                       # update k accordingly 
        prefix_fun[q] = k 
    return prefix_fun           # return the prefix function

In the above code, we first compute the length of the pattern using the len() function, and then 

we initialize a list to store the values computed by the prefix function.

Next, we start the loop that executes from 2 to the length of the pattern. Then, we have a nested 

loop that is executed until we have processed the whole pattern. The variable k is initialized to 

0, which is the prefix function for the first element of the pattern. If the kth element of the pat-

tern is equal to the qth element, then we increment the value of k by 1. The value of k is the value 

computed by the prefix function, and so we assign it at the index position of q in the pattern. 

Finally, we return the list of the prefix function that has the computed value for each character 

of the pattern. 

Once we have created the prefix function, we implement the main KMP matching algorithm. 

The following code shows this in detail:

def KMP_Matcher(text,pattern):   # KMP matcher function
    m = len(text)
    n = len(pattern)
    flag = False
    text = '-' + text   # append dummy character to make it 1-based 
indexing
    pattern = '-' + pattern # append dummy character to the pattern also
    prefix_fun = pfun(pattern) # generate prefix function for the pattern
    q = 0
    for i in range(1,m+1):
        while q>0 and pattern[q+1] != text[i]: # while pattern and text 
are not equal, decrement the value of q if it is > 0
            q = prefix_fun[q]
        if pattern[q+1] == text[i]:                 # if pattern and text 
are equal, update value of q
            q += 1
        if q == n:                                      # if q is equal to 
the length of the pattern, it means that the pattern has been found.
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            print("Pattern occurs at positions ",i-n)     # print the 
index, where first match occurs.
            flag = True
            q = prefix_fun[q]
    if not flag:
        print('\nNo match found')

In the above code, we start by computing the length of the text string and the pattern, which are 

stored in the variables m and n, respectively. Next, we define a variable flag to indicate whether the 

pattern has found a match or not. Further, we add a dummy character - in the text and pattern to 

make the indexing start from index 1 instead of index 0. Next, we call the pfun() method to con-

struct the array containing the prefix values for all the positions of the pattern using prefix_fun 

= pfun(pattern). Next, we execute a loop starting from 1 to m+1, where m is the length of the 

pattern. Further, for each iteration of the for loop, we compare the pattern and text in a while 

loop until we finish searching the pattern.

If we get a mismatch, we use the value of the prefix function at index q (here, q is the index 

where the mismatch occurs) to find out by how much we have to shift the pattern. If the pattern 

and text are equal, then the value of 1 and n will be equal, and we can return the index where the 

pattern was matched in the text. Further, we update the flag variable to True when the pattern 

is found in the text. If we finished searching the whole text string and still the variable flag was 

False, it would mean the pattern was not present in the given text.

The following code snippet can be used to execute the KMP algorithm for string matching:

    KMP_Matcher('aabaacaadaabaaba','aabaa')   # function call, with two 
parameters, text and pattern

The output of the above code is as follows:

   Pattern occurs at positions 0

   Pattern occurs at positions 9

In the above output, we see that the pattern is present at index positions 0 and 9 in the given 

text string.

Next, we will discuss another pattern matching algorithm, the Boyer-Moore algorithm.

The Boyer-Moore algorithm
As we have already discussed, the main objective of the string pattern matching algorithm is to 

find ways of skipping comparisons as much as possible by avoiding unnecessary comparisons.
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The Boyer-Moore pattern matching algorithm is another such algorithm (along with the KMP 

algorithm) that further improves the performance of pattern matching by skipping comparisons 

using different methods. We have to understand the following concepts in order to understand 

the Boyer-Moore algorithm:

1.	 In this algorithm, we shift the pattern in the direction from left to right, similar to the 

KMP algorithm.

2.	 We compare the characters of the pattern and the text string from right to left, which is 

the opposite of what we do in the case of the KMP algorithm.

3.	 The algorithm skips the unnecessary comparisons by using the good suffix and bad char-

acter shift heuristics. These heuristics themselves find the possible number of comparisons 

that can be skipped. We slide the pattern over the given text with the greatest offsets 

suggested by both of these heuristics.

Let us understand all about these heuristics and the details of how the Boyer-Moore pattern 

matching algorithm works.

Understanding the Boyer-Moore algorithm
The Boyer-Moore algorithm compares the pattern with the text from right to left, meaning that 

in this algorithm if the end of the pattern does not match with the text, the pattern can be shifted 

rather than checking every character of the text. The key idea is that the pattern is aligned with 

the text and the last character of the pattern is compared with the text, and if they do not match, 

then it is not required to continue comparing each character and we can rather shift the pattern.

Here, how much we shift the pattern depends upon the mismatched character. If the mismatched 

character of the text does not appear in the pattern, it means we can shift the pattern by the whole 

length of the pattern, whereas if the mismatched character appears in the pattern somewhere, 

then we partially shift the pattern in such a way that the mismatched character is aligned with 

the other occurrence of that character in the pattern.

In addition, in this algorithm, we can also see what portion of the pattern has matched (with 

the matched suffix), so we utilize this information and align the text and pattern by skipping 

any unnecessary comparisons. Making the pattern jump along the text to reduce the number of 

comparisons rather than checking every character of the pattern with the text is the main idea 

of an efficient string matching algorithm.
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The concept behind the Boyer-Moore algorithm is demonstrated in Figure 13.15:

Figure 13.15: A example to demonstrate the concept of the Boyer-Moore algorithm

In the example shown in Figure 13.15, where character b of the pattern mismatches with character 

d of the text, we can shift the entire pattern since the mismatched character d is not present in the 

pattern anywhere. In the second mismatch, we can see that the mismatched character a in the 

text is present in the pattern, so we shift the pattern to align with that character. This example 

shows how we can skip unnecessary comparisons. Next, we will discuss further the details of 

the algorithm.

The Boyer-Moore algorithm has two heuristics to determine the maximum shift possible for the 

pattern when we find a mismatch:

•	 Bad character heuristic

•	 Good suffix heuristic

At the time of a mismatch, each of these heuristics suggests possible shifts, and the Boyer-Moore 

algorithm shifts the pattern over the text string by a longer distance considering the maximum 

shift given by bad character and good suffix heuristics. The details of the bad character and good 

suffix heuristics are explained in detail with examples in the following subsections.

Bad character heuristic
The Boyer-Moore algorithm compares the pattern and the text string in the direction of right to 

left. It uses the bad character heuristic to shift the pattern, where we start comparing character 

by character from the end of the pattern, and if they match then we compare the second to-last 

character, and if that also matches, then the process is repeated until the entire pattern is matched 

or we get a mismatch. 
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The mismatched character of the text is also known as a bad character. If we get any mismatch 

in this process, we shift the pattern according to one of the following conditions:

1.	 If the mismatched character of the text does not occur in the pattern, then we shift the 

pattern next to the mismatched character.

2.	 If the mismatched character has one occurrence in the pattern, then we shift the pattern 

in such a way that we align with the mismatched character.

3.	 If the mismatched character has more than one occurrence in the pattern, then we make 

the most minimal shift possible to align the pattern with that character.

Let us understand these three cases with examples. Consider a text string (T) and the pattern 

= {acacac}. We start by comparing the characters from right to left, that is, character c of the 

pattern and character b of the text string. Since they do not match, we look for the mismatched 

character of the text string (that is b) in the pattern. Since the bad character b does not appear 

in the pattern, we shift the pattern next to the mismatched character, as shown in Figure 13.16:

Figure 13.16: Example of the bad character heuristic in the Boyer-Moore algorithm
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Let’s take another example with a given text string and the pattern = {acacac} as shown in Figure 

13.17. For the given example, we compare the characters of the text string and the pattern from 

right to left, and we get a mismatch for the character d of the text. Here, the suffix ac is matched, 

but the characters d and c do not match, and the mismatched character d does not appear in the 

pattern. Therefore, we shift the pattern next to the mismatched character, as shown in Figure 13.17:

Figure 13.17: Second example of the bad character heuristic in the Boyer-Moore algorithm

Let’s consider an example to understand the second and third cases of the bad character heuristic 

for the given text string and the pattern as shown in Figure 13.18. Here, the suffix ac is matched, 

but the next characters, a and c, do not match, so we search for the occurrences of the mismatched 

character a in the pattern. Since it has two occurrences in the pattern, we have two options for 

shifting the pattern to align it with the mismatched character. Both of these options are shown 

in Figure 13.18:
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In such situations where we have more than one option to shift the pattern, we apply the least 

possible number of shifts to prevent missing any possible match. If on the other hand we have 

only one occurrence of the mismatched character in the pattern, we can easily shift the pattern in 

such a way that the mismatched character is aligned. So, in this example, we would prefer option 

1 to shift the pattern as shown in Figure 13.18:

Figure 13.18: Third example of the bad character heuristic in the Boyer-Moore algorithm

We have discussed the bad character heuristic so far, and we consider the good suffix heuristic 

in the next section.

Good suffix heuristic
The bad character heuristic does not always provide good suggestions for shifting the pattern. 

The Boyer-Moore algorithm also uses the good suffix heuristic to shift the pattern over the text 

string, which is based on the matched suffix. In this method, we shift the pattern to the right in 

such a way that the matched suffix of the pattern is aligned with another occurrence of the same 

suffix in the pattern.

It works like this: we start by comparing the pattern and the text string from right to left, and if 

we find any mismatch, then we check the occurrence of the suffix in the pattern that has been 

matched so far, which is known as a good suffix. 
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In such situations, we shift the pattern in such a way that we align another occurrence of the 

good suffix to the text. The good suffix heuristic has two main cases:

1.	 The matching suffix has one or more occurrences in the pattern

2.	 Some part of the matching suffix is present at the start of the pattern (this means that 

the suffix of the matched suffix exists as the prefix of the pattern)

Let’s understand these cases with the following examples. Suppose we have a given text string 

and the pattern acabac as shown in Figure 13.19. We start comparing the characters from right 

to left, and we get a mismatch with the character a of the text string and b of the pattern. By the 

point of this mismatch, we have already matched the suffix ac, which is called the “good suffix.” 

Now, we search for another occurrence of the good suffix ac in the pattern (which is present at 

the starting position of the pattern in this example) and we shift the pattern to align it with that 

suffix, as shown in Figure 13.19:

Figure 13.19: Example of the good suffix heuristic in the Boyer-Moore algorithm

Let’s take another example to understand the good suffix heuristic. Consider the text string and 

pattern given in Figure 13.18. Here, we get a mismatch between characters a and c, and we get a 

good suffix ac. Here, we have two options for shifting the pattern to align it with the good suffix 

string. 
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In a situation where we have more than one option to shift the pattern, we take the option with the 

lower number of shifts. For this reason, we take option 1 in this example, as shown in Figure 13.20:

Figure 13.20: Second example of the good suffix heuristic in the Boyer-Moore algorithm

Let’s take a look at another example of the text string and pattern shown in Figure 13.19. In this 

example, we get a good suffix string aac, and we get a mismatch for the characters b of the text 

string and a of the pattern. Now, we search for the good suffix aac in the pattern, but we do not 

find another occurrence of it. When this happens, we check whether the prefix of the pattern 

matches the suffix of the good suffix, and if so, we shift the pattern to align with it.

For this example, we find that the prefix ac at the start of the pattern does not match with the full 

good suffix, but does match the suffix ac of the good suffix aac. In such a situation, we shift the 

pattern by aligning with the suffix of aac that is also a prefix of the pattern as shown in Figure 13.21:
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Figure 13.21: Third example of the good suffix heuristic in the Boyer-Moore algorithm

Another case for the good suffix heuristic for the given text string and pattern is shown in Figure 

13.22. In this example, we compare the text and pattern and find the good suffix aac, and we get 

a mismatch with character b of the text and a of the pattern.

Next, we search for the matched good suffix in the pattern, but there is no occurrence of the suffix 

in the pattern, nor does any prefix of the pattern match the suffix of the good suffix. So, in this 

kind of situation, we shift the pattern after the matched good suffix as shown in Figure 13.22:

Figure 13.22: Fourth example of the good suffix heuristic in the Boyer-Moore algorithm
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In the Boyer-Moore algorithm, we compute the shifts given by the bad character and good suffix 

heuristics. Further, we shift the pattern by the longer of the distances given by the bad character 

and good suffix heuristics.

The Boyer-Moore algorithm has a time complexity of O(m) for the preprocessing of the pattern, 

and the searching has a time complexity of O(mn), where m is the length of the pattern and n is 

the length of the text.

Next, let us discuss the implementation of the Boyer-Moore algorithm.

Implementing the Boyer-Moore algorithm
Let’s understand the implementation of the Boyer-Moore algorithm. The complete implemen-

tation of the Boyer-Moore algorithm is as follows:

text = "acbaacacababacacac"

pattern = "acacac"

 

 

matched_indexes = []

 

i=0

flag = True

while i<=len(text)-len(pattern):

    for j in range(len(pattern)-1, -1, -1):     #reverse searching

        if pattern[j] != text[i+j]:

            flag = False    #indicates there is a mismatch

            if j == len(pattern)-1:     #if good-suffix is not present, we 
test bad character 

                if text[i+j] in pattern[0:j]:

                    i=i+j-pattern[0:j].rfind(text[i+j])   

                    #i+j is index of bad character, this line is used for 
jumping pattern to match bad character of text with same character in 
pattern

                else:

                    i=i+j+1     #if bad character is not present, jump 
pattern next to it

            else:
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                k=1

                while text[i+j+k:i+len(pattern)] not in 
pattern[0:len(pattern)-1]:     

                    #used for finding sub part of a good-suffix

                    k=k+1

                if len(text[i+j+k:i+len(pattern)]) != 1:    #good-suffix 
should not be of one character

                    gsshift=i+j+k-pattern[0:len(pattern)-1].
rfind(text[i+j+k:i+len(pattern)])    

                    #jumps pattern to a position where good-suffix of 
pattern matches with good-suffix of text

                else:

                    #gsshift=i+len(pattern)

                    gsshift=0   #when good-suffix heuristic is not 
applicable, 

                                #we prefer bad character heuristic

                if text[i+j] in pattern[0:j]:

                    bcshift=i+j-pattern[0:j].rfind(text[i+j])  

                    #i+j is index of bad character, this line is used for 
jumping pattern to match bad character of text with same character in 
pattern

                else:

                    bcshift=i+j+1

                i=max((bcshift, gsshift))

            break

    if flag:    #if pattern is found then normal iteration

        matched_indexes.append(i)

        i = i+1

    else:   #again set flag to True so new string in text can be examined

        flag = True

    

print ("Pattern found at", matched_indexes)

An explanation of each of the statements of the preceding code is presented here. Initially, we have 

the text string and the pattern. After initializing the variables, we start with a while loop that 

starts by comparing the last character of the pattern with the corresponding character of the text.

Then, the characters are compared from right to left by the use of the nested loop from the last index 

of the pattern to the first character of the pattern. This uses range(len(pattern)-1, -1, -1).
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The outer while loop keeps track of the index in the text string while the inner for loop keeps 

track of the index position in the pattern.

Next, we start comparing the characters by using pattern[j] != text[i+j]. If they are mis-

matched, we make the flag variable False, denoting that there is a mismatch.

Now, we check whether the good suffix is present using the condition j == len(pattern)-1. If this 

condition is true, it means that there is no good suffix possible, so we check for the bad character 

heuristics, that is, whether a mismatched character is present in the pattern using the condition 

text[i+j] in pattern[0:j], and if the condition is true, then it means that the bad character 

is present in the pattern. In this case, we move the pattern to align this bad character to the other 

occurrence of this character in the pattern by using i=i+j-pattern[0:j].rfind(text[i+j]). 

Here, (i+j) is the index of the bad character.

If the bad character is not present in the pattern (it isn’t in the else part of it), we move the whole 

pattern next to the mismatched character by using the index i=i+j+1.

Next, we go into the else part of the condition to check the good suffix. When we find the mis-

match, we further test to see whether we have any subpart of a good suffix present in the prefix 

of the pattern. We do this using the following condition:

text[i+j+k:i+len(pattern)] not in pattern[0:len(pattern)-1]

Furthermore, we check whether the length of the good suffix is 1 or not. If the length of the good 

suffix is 1, we do not consider this shift. If the good suffix is more than 1, we find out the number 

of shifts by using the good suffix heuristics and store this in the gsshift variable. This is the 

pattern, which leads to a position where the good suffix of the pattern matches the good suffix 

in the text using the instruction gsshift=i+j+k-pattern[0:len(pattern)-1].rfind(text[i

+j+k:i+len(pattern)]). Furthermore, we computed the number of shifts possible due to the 

bad character heuristic and stored this in the bcshift variable. The number of shifts possible 

is i+j-pattern[0:j].rfind(text[i+j]) when the bad character is present in the pattern, and 

the number of shifts possible would be i+j+1 in the case of the bad character not being present 

in the pattern.

Next, we shift the pattern on the text string by the maximum number of moves given by the bad 

character and good suffix heuristics by using the instruction i=max((bcshift, gsshift)). Fi-

nally, we check whether the flag variable is True or not. If it is True, this means that the pattern 

has been found and that the matched index has been stored in the matched_indexes variable.
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We have discussed the concept of the Boyer-Moore pattern matching algorithm, which is an 

efficient algorithm that skips unnecessary comparisons using the bad character and good suffix 

heuristics.

Summary
In this chapter, we have discussed the most popular and important string matching algorithms 

that have a wide range of applications in real-time scenarios. We discussed the brute force, Rabin-

Karp, KMP, and Boyer-Moore pattern matching algorithms. In string matching algorithms, we 

try to uncover ways to skip unnecessary comparisons and move the pattern over the text as fast 

as possible. The KMP algorithm detects unnecessary comparisons by looking at the overlapping 

substrings in the pattern itself to avoid redundant comparisons. Furthermore, we discussed the 

Boyer-Moore algorithm, which is very efficient when the text and pattern are long. It is the most 

popular algorithm used for string matching in practice.

Exercise
1.	 Show the KMP prefix function for the pattern "aabaabcab".

2.	 If the expected number of valid shifts is small and the modulus is larger than the length 

of the pattern, then what is the matching time of the Rabin-Karp algorithm?

a.	 Theta (m)

b.	 Big O (n+m)

c.	 Theta (n-m)

d.	 Big O (n)

3.	 How many spurious hits does the Rabin-Karp string matching algorithm encounter in the 

text T = "3141512653849792" when looking for all occurrences of the pattern P = "26", 

working modulo q = 11, and over the alphabet set Σ = {0, 1, 2,..., 9}?

4.	 What is the basic formula applied in the Rabin-Karp algorithm to get the computation 

time as Theta (m)?

a.	 Halving rule

b.	 Horner’s rule

c.	 Summation lemma

d.	 Cancellation lemma
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5.	 The Rabin-Karp algorithm can be used for discovering plagiarism in text documents.

a.	 True

b.	 False

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers: 

https://packt.link/MEvK4

https://packt.link/MEvK4


Appendix
Answers to the Questions

Chapter 2: Introduction to Algorithm Design
Question 1
Find the time complexity of the following Python snippets:

a.	

i=1 

while(i<n): 

    i*=2 

    print("data")

b.	

i =n

while(i>0):

    print("complexity")

    i/ = 2

c.	

for i in range(1,n):

    j = i 

    while(j<n):

        j*=2

d.	

i=1

while(i<n): 

    print("python")

    i = i**2
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Solution
a.	 The complexity will be O(log(n)).

As we are multiplying the integer i by 2 in each step there will be exactly log(n) steps. 

(1, 2, 4, …… till n).

b.	 The complexity will be O(log(n)).

As we are dividing the integer i by 2 in each step there will be exactly log(n) steps.  

(n, n/2, n/4, …… till 1).

c.	 The outer loop will run n times for each i in the outer loop, while the inner while loop 

will run log(i) times because we are multiplying each of the j values by 2 until it is less 

than n. Hence, there will be a maximum of log(n) steps in the inner loop. Therefore, the 

overall complexity will be O(nlog(n)).

In this code snippet, the while loop will execute based on the value of i until the condition 

becomes false. The value of i is incrementing in the following series:

                 2, 4, 16, 256, ... n 

We can see that the number of times the loop is executing is log2(log2(n)) for a given value 

of n. So, for this series there will be exactly log2(log2(n)) executions of the loop. Hence the 

time complexity will be O(log2(log2(n)).

Chapter 3: Algorithm Design Techniques and 
Strategies
Question 1
Which of the following options will be correct when a top-down approach of dynamic program-

ming is applied to solve a given problem related to the space and time complexity?

a.	 It will increase both time and space complexity

b.	 It will increase the time complexity, and decrease the space complexity

c.	 It will increase the space complexity, and decrease the time complexity

d.	 It will decrease both time and space complexities

Solution
Option c is correct.
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Since the top-down approach of dynamic programming uses the memoization technique, which 

stores the pre-calculated solution of a subproblem. It avoids recalculation of the same subprob-

lem that decreases the time complexity, but at the same time, the space complexity will increase 

because of storing the extra solutions of the subproblems.

Question 2
What will be the sequence of nodes in the following edge-weighted directed graph using the 

greedy approach (assume node A as the source)?

Figure A.1: A weighted directed graph

Solution
A, B, C, F, E, D

In Dijkstra’s algorithm, at each, point we choose the smallest weight edge, which starts from any 

one of the vertices in the shortest path found so far, and add it to the shortest path.

Question 3
Consider the weights and values of the items in Table 3.8. Note that there is only one unit of each item.

Item Weight Value

A 2 10

B 10 8

C 4 5

D 7 6

Table A.1: The weights and values of different items
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We need to maximize the value; the maximum weight should be 11 kg. No item may be split. Es-

tablish the values of the items using a greedy approach.

Solution
Firstly, we picked item A (weight 2 kg) as the value is the maximum (10). The second highest 

value is for item B, but as the total weight becomes 12 kg, this violates the given condition, so we 

cannot pick it. The next highest value is item D, and now the total weight becomes 2+7 = 9 kg 

(item A + item D). The next remaining item, C, cannot be picked because after adding it, the total 

weight condition will be violated.

So, the total value of the items picked up using the greedy approach = 10 + 6 = 16

Chapter 4: Linked Lists
Question 1
What will be the time complexity when inserting a data element after an element that is being 

pointed to by a pointer in a linked list?

Solution
It will be O(1), since there is no need to traverse the list to reach the desired location where a new 

element is to be added. A pointer is pointing to the current location, and a new element can be 

directly added by linking it.

Question 2
What will be the time complexity when ascertaining the length of the given linked list?

Solution
O(n).

In order to find out the length, each node of the list has to be traversed, which will take O(n).

Question 3
What will be the worst-case time complexity for searching a given element in a singly linked list 

of length n?

Solution
O(n).
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In the worst case, the data element to be searched will be at the end of the list, or will not be 

present in the list. In that case, there will be a total n number of comparisons, thus making the 

worst-case time complexity O(n).

Question 4
For a given linked list, assuming it has only one head pointer that points to the starting point of 

the list, what will be the time complexity for the following operations?

a.	 Insertion at the front of the linked list

b.	 Insertion at the end of the linked list

c.	 Deletion of the front node of the linked list

d.	 Deletion of the last node of the linked list

Solution
a.	 O(1). This operation can be performed directly through the head node.

b.	 O(n). It will require traversing the list to reach the end of the list.

c.	 O(1). This operation can be performed directly through the head node.

d.	 O(n). It will require traversing the list to reach the end of the list.

Question 5
Find the nth node from the end of a linked list.

Solution
In order to find out the nth node from the end of the linked list, we can use two pointers – first 

and second. Firstly, move the second pointer to n nodes from the starting point. Then, move both 

the pointers one step at a time until the second pointer reaches the end of the list. At that time, 

the first pointer will point to the nth node from the end of the list.

Question 6
How can you establish whether there is a loop (or circle) in a given linked list?

Solution
To find out the loop in a linked list, it is most efficient to use Floyd’s cycle-finding algorithm. In 

this approach, two pointers are used to detect the loop – let’s say the first and second pointers. 

We start moving both the pointers from the starting point of the list. 
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We move the first and second pointers by one and two nodes at a time. If these two pointers meet at 

the same node, that indicates that there is a loop, otherwise, there is no loop in the given linked list.

The process is shown in the below figure with an example:

Figure A.2: Loop in a singly linked list

Question 7
How can you ascertain the middle element of the linked list?

Solution
It can be done with two pointers, say, the first and second pointers. Start moving these two 

pointers from the starting node. The first and second pointers should move one and two nodes 

at a time, respectively. When the second node reaches the end of the list, the first node will point 

to the middle element of the singly linked list.
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Chapter 5: Stacks and Queues
Question 1
Which of the following options is a true queue implementation using linked lists?

a.	 If, in the enqueue operation, new data elements are added at the start of the list, then the 

dequeue operation must be performed from the end.

b.	 If, in the enqueue operation, new data elements are added to the end of the list, then the 

enqueue operation must be performed from the start of the list.

c.	 Both of the above.

d.	 None of the above.

Solution
B is correct. The queue data structure follows a FIFO order, hence data elements must be added 

to the end of the list, and then removed from the front.

Question 2
Assume a queue is implemented using a singly linked list that has head and tail pointers. The 

enqueue operation is implemented at head, and the dequeue operation is implemented at the 

tail of the queue. What will be the time complexity of the enqueue and dequeue operations?

Solution
The time complexity of the enqueue operation will be O(1) and O(n) for the dequeue operation. 

As for the enqueue operation, we only need to delete the head node, which can be achieved in 

O(1) for a singly linked list. For the dequeue operation, to delete the tail, we need to traverse the 

whole list first to the tail, and then we can delete it. For this we need linear, O(n), time.

Question 3
What is the minimum number of stacks required to implement a queue?

Solution
Two stacks.

Using two stacks and the enqueue operation, the new element is entered at the top of stack1. In 

the dequeue process, if stack2 is empty, all the elements are moved to stack2, and finally, the 

top of stack2 is returned.
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Question 4
The enqueue and dequeue operations in a queue are implemented efficiently using an array. What 

will be the time complexity for both of these operations?

Solution
O(1) for both operations.

If we use a circular array for the implementation of a queue, then we do not need to shift the 

elements, just the pointers, so we can implement both the enqueue and dequeue operations in 

O(1) time.

Question 5
How can we print the data elements of a queue data structure in reverse order?

Solution
Make an empty stack, then enqueue each of the elements from the queue and push them into the 

stack. After the queue is empty, start popping out the elements from the stack and then printing 

them one by one.

Chapter 6: Trees
Question 1
Which of the following is true about binary trees:

a.	 Every binary tree is either complete or full

b.	 Every complete binary tree is also a full binary tree

c.	 Every full binary tree is also a complete binary tree

d.	 No binary tree is both complete and full

e.	 None of the above

Solution
Option A is incorrect since it is not compulsory that a binary tree should be complete or full.

Option B is incorrect since a complete binary tree can have some nodes that are not filled in the 

last level, so a complete binary tree will not always be a full binary tree.
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Option C is incorrect, as it is not always true, the following figure is a full binary tree, but not a 

complete binary tree:

Figure A.3: A binary tree that is full, but not complete

Option D is incorrect, as it is not always true. The following tree is both a complete and full bi-

nary tree:

Figure A.4: A binary tree, that is full and complete

Question 2
Which of the tree traversal algorithms visit the root node last?

Solution
postorder traversal.

Using postorder traversal, we first visit the left subtree, then the right subtree, and finally we 

visit the root node.
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Question 3
Consider this binary search tree:

Figure A.5: Sample binary search tree

Suppose we remove the root node 8, and we wish to replace it with any node from the left subtree 

then what will be the new root?

Solution
The new node will be node 6. To maintain the properties of the binary search tree, the maximum 

value from the left subtree should be the new root.

Question 4
What will be the inorder, postorder, and preorder traversal of the following tree?

Figure A.6: Example tree

Solution
The preorder traversal will be 7-5-1-6-8-9.

The inorder traversal will be 1-5-6-7-8-9.
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The postorder traversal will be 1-6-5-9-8-7.

Question 5
How do you find out if two trees are identical?

Solution
In order to find out if two binary trees are identical or not, both of the trees should have exactly 

the same data and element arrangement. This can be done by traversing both of the trees with any 

of the traversal algorithms (it should be the same for both trees) and matching them element by 

element. If all the elements are the same in traversing both of the trees, then the trees are identical.

Question 6
How many leaves are there in the tree mentioned in question 4?

Solution
Three, nodes 1, 6, and 9.

Question 7
What is the relation between a perfect binary tree’s height and the number of nodes in that tree?

Solution
log2 (n+1)  = h.

The number of nodes in each level:

Level 0: 20 = 1 nodes

Level 1: 21 = 2 nodes

Level 2: 22 = 4 nodes

Level 3: 23 = 8 nodes

The total nodes at level h can be computed by adding all nodes in each level:

n = 20 +  21 +  22  + 23    + …….   2h-1  =   2h - 1

So, the relationship between n and h is: n = 2h - 1

 = log (n+1) = log2h

 = log2 (n+1) = h
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Chapter 7: Heaps and Priority Queues
Question 1
What will be the time complexity for deleting an arbitrary element from the min-heap?

Solution
To delete any element from the heap, we first have to search the element that is to be deleted, and 

then we delete the element.

Total time complexity = Time for searching the element + Deleting the element

= O(n) + O(log n)

= O(n)

Question 2
What will be the time complexity for finding the kth smallest element from the min-heap?

Solution
The kth element can be found out from the min-heap by performing delete operations k times. For 

each delete operation, the time complexity is O(logn). So, the total time complexity for finding 

out the kth smallest element will be O(klogn).

Question 3
What will be the time complexity to make a max-heap that combines two max-heap each of size n?

Solution
O(n).

Since the time complexity of creating a heap from n elements is O(n), creating a heap of 2n ele-

ments will also be O(n).

Question 4
What will be the worst-case time complexity for ascertaining the smallest element from a binary 

max-heap and binary min-heap?
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Solution
In a max-heap, the smallest element will always be present at a leaf node. So, in order to find out the 

smallest element, we have to search all the leaf nodes. So, the worst-case complexity will be O(n). 

The worst-case time complexity to find out the smallest element in the min-heap will be O(1) 

since it will always be present at the root node.

Question 5
The level order traversal of max-heap is 12, 9, 7, 4, 2. After inserting new elements 1 and 8, what 

will be the final max-heap and level order traversal of the final max-heap?

Solution
The max-heap after the insertion of element 1 is shown in the below figure:

Figure A.7: The max-heap before insertion of element 8

The final max-heap after the insertion of element 8 is shown in the below figure:

Figure A.8: The max-heap after the insertion of elements 1 and 8
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The level order traversal of the final max-heap will be 12, 9, 8, 4, 2, 1, 7.

Question 6
Which of the following is a binary max-heap?

Figure A.9: Example trees

Solution
B.

A binary max-heap should be a complete binary tree and all the levels should be filled, except the 

last level. The value of the parent should be greater or equal to the values of its children. 

Option A is not correct because it is not a complete binary tree. Options C and D are not correct 

because they are not fulfilling the heap property. Option B is correct because it is complete and 

fulfills the heap property.
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Chapter 8: Hash Tables
Question 1
There is a hash table with 40 slots and there are 200 elements stored in the table. What will be 

the load factor of the hash table?

Solution
The load factor of the hash table = (no. of elements) / (no. of table slots) = 200/40 = 5.

Question 2 
What is the worst-case search time of hashing using a separate chaining algorithm?

Solution
The worst-case time complexity for searching in a separate chaining algorithm using linked lists 

is O(n), because in the worst case, all the items will be added to index 1 in a linked list, searching 

an item will work similarly to a linked list.

Question 3
Assume a uniform distribution of keys in the hash table. What will be the time complexities for 

the search/insert/delete operations?

Solution
The index of the hash table is computed from the key in O(1) time when the keys are uniformly 

distributed in the hash table. The creation of the table will take O(n) time, and other operations 

such as search, insert, and delete operations will take O(1) time because all the elements are 

uniformly distributed, hence, we directly get the required element.

Question 4
What will be the worst-case complexity for removing the duplicate characters from an array of 

characters?

Solution
The brute force algorithm starts with the first character and searches linearly with all the char-

acters of the array. If a duplicate character is found, then that character should be swapped with 

the last character and then the length of the string should be decremented by one. The same 

process is repeated until all characters are processed. The time complexity of this process is O(n2).
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It can be implemented more efficiently using a hash table in O(n) time.

Using this method, we start with the first character of the array and store it in the hash table 

according to the hash value. We do it for all the characters. If there is any collision, then that 

character can be ignored, otherwise, the character is stored in the hash table.

Chapter 9: Graphs and Algorithms
Question 1
What is the maximum number of edges (without self-loops) possible in an undirected simple 

graph with five nodes?

Solution
Each node can be connected to every other node in the graph. So, the first node can be connected 

to n-1 nodes, the second node can be connected to n-2 nodes, the third node can be connected 

to n-3 nodes, and so on. The total number of nodes will be:

[(n-1)+(n-2)+ … +3+2+1] = n(n-1)/2.

Question 2
What do we call a graph in which all the nodes have an equal degree?

Solution
A complete graph.

Question 3
Explain what cut vertices are and identify the cut vertices in the given graph?
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Figure A.10: Sample graph

Solution
Cut vertices also known as articulation points. These are the vertices in the graph, after removal 

of which, the graph splits in two disconnected components. In the given graph, the vertices B, 

and C are cut vertices since after removal of node B, the graph will split into {A, D}, {C,E} vertices. 

And, after removal of node C, the graph will split into {A,B, D}, {E} vertices.

Question 4
Assuming a graph G of order n, what will be the maximum number of cut vertices possible in 

graph G?

Solution
It will be n-2, since the first and last vertices will not be cut vertices, except those two nodes, all 

nodes can split the graph into two disconnected graphs. See the below graph:

Figure A.11: A graph G
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Chapter 10: Searching
Question 1
On average, how many comparisons are required in a linear search of n elements?

Solution
The average number of comparisons in linear search will be as follows. When a search element is 

found at the 1st position, 2nd position, 3rd position, and similarly at the nth position, correspondingly, 

it will require 1, 2, 3… n number of comparisons.

Total average number of comparisons 

= 
(1 + 2 + 3 +⋯𝑛𝑛𝑛𝑛𝑛  

= [𝑛𝑛𝑛𝑛𝑛 𝑛 𝑛𝑛2 ]𝑛𝑛  

= 
(𝑛𝑛 𝑛 𝑛𝑛2  

Question 2
Assume there are eight elements in a sorted array. What is the average number of comparisons 

that will be required if all the searches are successful and if the binary search algorithm is used?

Solution
Average number of comparisons = (1+2+2+3+3+3+3+4)/8

= 21/8

= 2.625
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Figure A.12: Demonstration of number of the comparisons in the given array

Question 3
What is the worst-case time complexity of the binary search algorithm?

Solution
O(logn).

The worst-case scenario of the binary search algorithm will occur when the desired element 

is present in the first position or at the last position. In that case, log(n) comparisons will be 

required. Hence the worst-case complexity will be O(logn).



Appendix: Answers to the Questions448

Question 4
When should the interpolation search algorithm perform better than the binary search algorithm?

Solution
The interpolation search algorithm performs better than the binary search algorithm when the 

data items in the array are uniformly distributed.

Chapter 11: Sorting
Question 1
If an array arr = {55, 42, 4, 31} is given and bubble sort is used to sort the array elements, 

then how many passes will be required to sort the array?

a.	 3

b.	 2

c.	 1

d.	 0

Solution
The answer is a. To sort n elements, the bubble sort algorithm requires (n-1) iterations (passes), 

where n is the number of elements in the given array. Here in the question, the value of n = 4, so 

4-1 = 3 iterations will be required to sort the given array.
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Question 2
What is the worst-case complexity of bubble sort?

a.	 O(nlogn)

b.	 O(logn)

c.	 O(n)

d.	 O(n2)

Solution
The answer is d. The worst case appears when the given array is in reverse order. In that case, the 

time complexity of bubble sort would be O(n2).

Question 3
Apply quicksort to the sequence (56, 89, 23, 99, 45, 12, 66, 78, 34). What is the sequence after the 

first phase, and what pivot is the first element?

a.	 45, 23, 12, 34, 56, 99, 66, 78, 89

b.	 34, 12, 23, 45, 56, 99, 66, 78, 89

c.	 12, 45, 23, 34, 56, 89, 78, 66, 99

d.	 34, 12, 23, 45, 99, 66, 89, 78, 56
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Solution
b.

After the first phase, 56 would be in the right position so that all the elements smaller than 56 

will be on the left side of it, and elements bigger than 56 will be on the right side of it. Further, 

quicksort is applied recursively to the left subarray and right subarray. The process of the quicksort 

for the given sequence, as shown in the below figure.

Figure A.13: Demonstration of the quicksort algorithm
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Question 4
Quicksort is a ___________

a.	 Greedy algorithm

b.	 Divide-and-conquer algorithm

c.	 Dynamic programming algorithm

d.	 Backtracking algorithm

Solution
The answer is b. Quicksort is a divide-and-conquer algorithm. Quick sort first partitions a large 

array into two smaller sub arrays and then recursively sorts the sub-arrays. Here, we find the 

pivot element such that all elements to the left side of the pivot element would be smaller than 

the pivot element and create the first subarray. The elements to the right side of the pivot element 

are greater than the pivot element and create the second subarray. Thus, the given problem is 

reduced into two smaller sets. Now, sort these two subarrays again, finding the pivot element in 

each subarray, i.e. apply quicksort on each subarray.

Question 5
Consider a situation where a swap operation is very costly. Which of the following sorting algo-

rithms should be used so that the number of swap operations is minimized?

a.	 Heap sort

b.	 Selection sort

c.	 Insertion sort

d.	 Merge sort

Solution
b. In the selection sort algorithm, in general, we identify the largest element, and then swap it 

with the last element so that in each iteration, only one swap is required. For n elements, the total 

(n-1) swaps will be required, which is the lowest in comparison to all other algorithms.

Question 6
If the input array A = {15, 9, 33, 35, 100, 95, 13, 11, 2, 13} is given, using selection sort, 

what would be the order of the array after the fifth swap? (Note: it counts regardless of whether 

they exchange or remain in the same position.)
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a.	 2, 9, 11, 13, 13, 95, 35, 33, 15, 100

b.	 2, 9, 11, 13, 13, 15, 35, 33, 95, 100

c.	 35, 100, 95, 2, 9, 11, 13, 33, 15, 13

d.	 11, 13, 9, 2, 100, 95, 35, 33, 13, 13

Solution
The answer is a. In selection sort, select the smallest element. Start the comparison from the be-

ginning of the array and swap the smallest element with the first greatest element. Now, exclude 

the previous element that was chosen as the smallest element, as it has been put in the right place.

Figure A.14: Demonstration of insertion sort on the given sequence
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Question 7
What will be the number of iterations to sort the elements {44, 21, 61, 6, 13, 1} using 

insertion sort?

a.	 6

b.	 5

c.	 7

d.	 1

Solution
The answer is a. Suppose there are N keys in an input list, then it requires N iterations to sort the 

entire list using insertion sort.

Question 8
How will the array elements A= [35, 7, 64, 52, 32, 22] look after the second iteration, if the 

elements are sorted using insertion sort?

a.	 7, 22, 32, 35, 52, 64

b.	 7, 32, 35, 52, 64, 22

c.	 7, 35, 52, 64, 32, 22

d.	 7, 35, 64, 52, 32, 22

Solutions
d. Here N = 6. In the first iteration, the first element, that is, A[1] = 35, is inserted into array B, which 

is initially empty. In the second iteration, A[2] = 7 is compared with the elements in B starting 

from the rightmost element of B to find its place. So, after the second iteration, the input array 

would be A = [7, 35, 64, 52, 32, 22].

Chapter 12: Selection Algorithm
Question 1
What will be the output if the quickselect algorithm is applied to the given array arr=[3, 1, 10, 

4, 6, 5] with k given as 2?



Appendix: Answers to the Questions454

Solution
1.	 Given the initial array: [3, 1, 10, 4, 6, 5], we can find the median of medians: 4 

(index = 3).

2.	 We swap the pivot element with the first element: [4, 1, 3, 10, 6, 5].

3.	 We will move the pivot element to its correct position: [1, 3, 4, 10, 6, 5].

4.	 Now we get a split index equal to 2 but the value of k is also equal to 2, hence the value at 

index 2 will be our output. Hence the output will be 4.

Question 2
Can quickselect find the smallest element in an array with duplicate values?

Solution
Yes, it works. By the end of every iteration, we have all elements less than the current pivot stored 

to the left of the pivot. Let’s consider when all elements are the same. In this case, every iteration 

ends up putting a pivot element to the left of the array. And the next iteration will continue with 

one element shorter in the array.

Question 3
What is the difference between the quicksort algorithm and the quickselect algorithm?

Solution
In quickselect, we do not sort the array, and it is specifically for finding the kth smallest element 

in the array. The algorithm repeatedly divides the array into two sections based on the value of 

the pivot element. As we know, the pivot element will be placed such that all the elements to its 

left are smaller than the pivot element, and all the elements to the right are larger than the pivot 

element. Thus, we can select any one of the segments of the array based on the target value. This 

way, the size of the operable range of our array keeps on reducing. This reduces the complexity 

from O(nlog2(n)) to O(n).

Question 4
What is the main difference between the deterministic selection algorithm and the quickselect 

algorithm?
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Solution
In the quickselect algorithm, we find the kth smallest element in an unordered list based on 

picking up the pivot element randomly. Whereas, in the deterministic selection algorithm, which 

is also used for finding the kth smallest element from an unordered list, but in this algorithm, we 

choose a pivot element by using median of medians, instead of taking any random pivot element.

Question 5
What triggers the worst-case behavior of the selection algorithm?

Solution
Continuously picking the largest or smallest element on each iteration triggers the worst-case 

behavior of the selection algorithm.

Chapter 13: String Matching Algorithms
Question 1
Show the KMP prefix function for the pattern "aabaabcab".

Solution
The prefix function values are given below:

pattern a a b a a b c a b

prefix_

function 𝜋𝜋 
0 1 0 1 2 3 0 1 0

Table A.2: Prefix function for the given patten

Question 2
If the expected number of valid shifts is small and the modulus is larger than the length of the 

pattern, then what is the matching time of the Rabin-Karp algorithm?

a.	 Theta (m)

b.	 Big O (n+m)

c.	 Theta (n-m)

d.	 Big O (n)
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Solution
Big O (n+m)

Question 3
How many spurious hits does the Rabin-Karp string matching algorithm encounter in the text 

T = "3141512653849792" when looking for all occurrences of the pattern P = "26", working 

modulo q = 11 and over the alphabet set Σ = {0, 1, 2,..., 9}?

Solution
2.

Question 4
What is the basic formula applied in the Rabin-Karp algorithm to get the computation time as 

Theta (m)?

a.	 Halving rule

b.	 Horner’s rule

c.	 Summation lemma

d.	 Cancellation lemma

Solution
Horner’s rule.

Question 5
The Rabin-Karp algorithm can be used for discovering plagiarism in text documents.

a.	 True

b.	 False

Solution
True, the Rabin-Karp algorithm is a string matching algorithm, and it can be used for detecting 

plagiarism in text documents.
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