Hands-On
Data Preprocessing

in Python

Learn how to effectively prepare data for successful
data analytics

Roy Jafari

Hands-On Data
Preprocessing
in Python

Learn how to effectively prepare data for successful
data analytics

Roy Jafari

Pack

BIRMINGHAM—MUMBAI

Hands-On Data Preprocessing in Python
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Gebin George
Publishing Product Manager: Ali Abidi
Senior Editor: Roshan Kumar

Content Development Editor: Priyanka Soam
Technical Editor: Sonam Pandey

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Nilesh Mohite
Marketing Coordinator: Shifa Ansari

First published: January 2022

Production reference: 1161221

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

978-1-80107-213-7

www.packt.com

http://www.packt.com

prole g 3oy 4 ool

Sl S0
9

Syin yile

To my parents,
Soqra Bayati
and

Jahanfar Jafari.

Contributors

About the author

Roy Jafari, Ph.D. is an assistant professor of business analytics at the University of Redlands.

Roy has taught and developed college-level courses that cover data cleaning, decision
making, data science, machine learning, and optimization.

Roy's style of teaching is hands-on and he believes the best way to learn is to learn by
doing. He uses active learning teaching philosophy and readers will get to experience
active learning in this book.

Roy believes that successful data preprocessing only happens when you are equipped
with the most efficient tools, have an appropriate understanding of data analytic goals, are
aware of data preprocessing steps, and can compare a variety of methods. This belief has
shaped the structure of this book.

About the reviewers

Arsia Takeh is a director of data science at a healthcare company and is responsible for
designing algorithms for cutting-edge applications in healthcare. He has over a decade of
experience in academia and industry delivering data-driven products. His work involves
the research and development of large-scale solutions based on machine learning, deep
learning, and generative models for healthcare-related use cases. In his previous role

as a co-founder of a digital health start-up, he was responsible for building the first
integrated -omics platform that provided a 360 view of the user as well as personalized
recommendations to improve chronic diseases.

Sreeraj Chundayil is a software developer with more than 10 years of experience. He is
an expert in C, C++, Python, and Bash. He has a B.Tech from the prestigious National
Institute of Technology Durgapur in electronics and communication engineering. He
likes reading technical books, watching technical videos, and contributing to open source
projects. Previously, he was involved in the development of NX, 3D modeling software,

at Siemens PLM. He is currently working at Siemens EDA (Mentor Graphics) and is
involved in the development of integrated chip verification software.

I would like to thank the C++ and Python communities who have made an immense
contribution to molding me into the tech lover I am today.

Table of Contents

Preface

Part 1: Technical Needs

1

Review of the Core Modules of NumPy and Pandas

Technical requirements 4 Pandas data access 16
Overview of the Jupyter Notebook 4 ~ Boolean masking for filtering a

. . DataFrame 24
Are we analyzing data via : .

. Pandas functions for exploring a
computer programming? 6 DataFrame 28
Overview of the basic functions Pandas applying a function 33
of NumPy 6 The Pandas groupby function 37
The np.arange() function 8 Pandas multi-level indexing 40
The np.zeros() and np.ones() functions 9 Pandas pivot and melt functions 45
The np.linspace() function 12
Summary 48

Overview of Pandas 13 Exercises 48
Review of Another Core Module - Matplotlib
Technical requirements 54 Relating two numerical attributes
Drawing the main plots in using a scatterplot >8
Matplotlib 54 Modifying the visuals 58
Summarizing numerical attributes Adding a title to visuals and labels to
using histograms or boxplots 54 the axis 60
Observing trends in the data using a Adding legends 60
line plot 26 Modifying ticks 61

viii

Modifying markers 64 Example of Matplotilb assisting
data preprocessin 67
Subplots 65 prep g
L. . . Summary 68
Resizing visuals and saving them 67 .
o Exercises 69
Resizing 67
Saving 67
Data - What Is It Really?
Technical requirements 72 Types of data values 81
What is data? 72 Analytics standpoint 81
Why this definition? 73 Programming standpoint 86
DIKW pyramid _ 74 Information versus pattern 86
Data preprocessing for data analytics Und di d fth
versus data preprocessing for n ers.tan INg everyday Use o the
word "information" 87

machine learning 77

The most universal data

structure - a table 79
Data objects 79
Data attributes 81

4

Statistical use of the word "information" 87
Statistical meaning of the word "pattern"90

Summary 94
Exercises 94
References 98

Databases
Technical requirements 99 A practical example that requires a
What is a database? 100 combination of both structured and
Und di h d'ff. b unstructured databases 105

nderstanding the difference between Distributed databases 106
a database and a dataset 101 .

Blockchain 106

Types of databases 102

The differentiating elements of
databases 102

Relational databases (SQL databases) 105
Unstructured databases (NoSQL
databases) 105

Connecting to, and pulling data

from, databases 107
Direct connection 107
Web page connection 109
API connection 110

ix

Request connection 114 Summary 115
Publicly shared 114 Exercises 115
Part 2: Analytic Goals
Data Visualization
Technical requirements 122 Visualizing the relationship
Summarizing a population 122 between two numerical attributes 135
- Visualizing the relationship
Example of summarizing . .
. . between two categorical attributes 137
numerical attributes 122
. Visualizing the relationship between
Example of summarizing . .
categorical attributes 124 2 numerical attribute and a
& categorical attribute 140
Comparing popglatlons . 125 Adding visual dimensions 145
E)S(fanmpbls oflggsmparlng populations 126 Example of a five-dimensional
using boxp . . scatter plot 145
Example of comparing populations
using histograms 127 Showing and comparing trends 153
Exfa\mple of comparing populations Example of visualizing and
using bar charts 129 comparing trends 153
Ibnvestigating the rslationship Summary 156
etween two attributes 134 Exercise 156
Prediction
Technical requirements 160 MLP 170
Predictive models 160 How does MLP work? 171
Forecasting 160 Example of applying MLP to perform
Regression analysis 162 regression analysis 172
Linear regression 164 Summary 175
Exercises 175

Example of applying linear regression
to perform regression analysis 165

7

Classification
Technical requirements 178 Example of using KNN for classification 180
Classification models 178 Decision Trees 185
Example of designing a Example of using Decision Trees
classification model 178 for classification 186
Classification algorithms 179
KNN 180 Summary 188
Exercises 189
Clustering Analysis
Technical requirements 192 Using K-Means to cluster a
Clustering model 192 two-dimensional dataset 199
Clustering exampl in Using K-Means to cluster a dataset
ustering exampre using with more than two dimensions 203
a two-dimensional dataset 192 . .
. . Centroid analysis 204
Clustering example using
a three-dimensional dataset 195 Summary 206
K-Means algorithm 197 Exercises 207
Part 3: The Preprocessing
Data Cleaning Level | - Cleaning Up the Table
Technical requirements 212 Data cleaning level I - cleaning
The levels, tools, and purposes up the table 216
of data cleaning - a roadmap to Example 1 - unwise data collection 216
chapters 9, 10, and 11 212 Example 2 - reindexing (multi-level
Purpose of data analytics 213 indexing) 220
Tools for data analytics 213 Example;% - intuitive but long
Levels of data cleaning 214 column titles e
Mapping the purposes and tools of Summary 224
analytics to the levels of data cleaning 215 .
Exercises 224

xi

10

Data Cleaning Level 11 - Unpacking, Restructuring, and

Reformulating the Table

Technical requirements 228

Example 1 - unpacking columns

and reformulating the table 228
Unpacking FileName 229
Unpacking Content 233
Reformulating a new table for

visualization 235

The last step - drawing the visualization238

Example 2 - restructuring
the table

11

239

Example 3 - level I and II

data cleaning 242
Level I cleaning 244
Level 1I cleaning 245

Doing the analytics - using linear
regression to create a predictive model 252

253
254

Summary
Exercises

Data Cleaning Level Ill - Missing Values, Outliers, and Errors

Technical requirements 258
Missing values 258
Detecting missing values 259
Example of detecting missing values 260
Causes of missing values 262
Types of missing values 263
Diagnosis of missing values 264
Dealing with missing values 279
Outliers 292

12

Detecting outliers 292
Dealing with outliers 302
Errors 323
Types of errors 324
Dealing with errors 325
Detecting systematic errors 325
Summary 329
Exercises 330

Data Fusion and Data Integration

Technical requirements 336
What are data fusion and data
integration? 336

Data fusion versus data integration 337
Directions of data integration 339

Frequent challenges regarding

data fusion and integration 340
Challenge 1 - entity identification 341
Challenge 2 - unwise data collection 341

xii

Challenge 3 - index mismatched

Designing the structure for the result

formatting 341 of data integration 361
Challenge 4 - aggregation mismatch 343 Filling songlintegrate_df from
Challenge 5 - duplicate data objects 344 billboard_df 363
Challenge 6 - data redundancy 344 Filling songintegrate_df from
songAttribute_df 365
Example 1 (challenges 3 and 4) 345 gjjjing songintegrate_df from artist df 369
Example 2 (challenges 2 and 3) 349 Checking for data redundancy 373
Example 3 (challenges 1, 3, 5, The analysis 376
and 6) 355 Example summary 379
Checking for duplicate data objects 355 Summary 380
Exercise 380
Data Reduction
Technical requirements 384 Linear regression as a dimension
The distinction between data reduction method o 398
reduction and data redundancy 384 Using a decision tree as a dimension
o . reduction method 403
The objectives of data reduction 385 . . .
Using random forest as a dimension
Types of data reduction 385 reduction method 404
Performing numerositv data Brute-force computational dimension
. g y reduction 406
reduction 387
_ PCA 409
Random sampling 387 Functional data analysis 420
Stratified sampling 392
Random over/undersampling 394 Summary 437
Performing dimensionality Exercises 437
data reduction 397
Data Transformation and Massaging
Technical requirements 444 Normalization and
The whys of data standardization 446
transformation and massaging 444 Binary coding, ranking
Data transformation versus data transformation, and
massaging 445 discretization 448

xiii

Example one - binary coding of
nominal attribute 450

Example two - binary coding or ranking
transformation of ordinal attributes 454

Example three - discretization of

numerical attributes 456
Understanding the types of

discretization 458
Discretization - the number of

cut-off points 460
A summary - from numbers to

categories and back 460
Attribute construction 461
Example - construct one transformed
attribute from two attributes 461
Feature extraction 464

Example - extract three attributes
from one attribute 464

Part 4: Case Studies
15

Example - Morphological feature

extraction 465
Feature extraction examples from the
previous chapters 467
Log transformation 468
Implementation - doing it yourself 470
Implementation - the working module
doing it for you 472
Smoothing, aggregation, and
binning 473
Smoothing 474
Aggregation 479
Binning 481
Summary 483
Exercise 483

Case Study 1 - Mental Health in Tech

Technical requirements 492
Introducing the case study 492

The audience of the results of analytics 492
Introduction to the source of the data 494

Integrating the data sources 495
Cleaning the data 497
Detecting and dealing with outliers

and errors 499
Detecting and dealing with

missing values 502
Analyzing the data 504

Analysis question one - is there a
significant difference between the

mental health of employees across the
attribute of gender? 504
Analysis question two - is there a
significant difference between the

mental health of employees across the

Age attribute? 507
Analysis question three - do more
supportive companies have mentally
healthier employees? 509
Analysis question four - does the

attitude of individuals toward mental
health influence their mental health

and their seeking of treatments? 512

Summary 514

Xiv

16

Case Study 2 - Predicting COVID-19 Hospitalizations

Technical requirements 515 Designing the dataset to support
Introducing the case study 516 thlf_ pred'“r:o“ - cehoder d >19
Introducing the source of the data 517 Filling gp t e.p ace. oder atfa\set 221
Supervised dimension reduction 523
Preprocessing the data 518 Analyzing the data 526
Summary 529
Case Study 3: United States Counties Clustering Analysis
Technical requirements 532 Data cleaning level Il - missing values,
Introducing the case study 532 errors, and outliers 540
Introduction to the source of the data 533 Checking for data redundancy 340
Preprocessing the data 534 Analyzing the data 543
Transforming election_df to partisan_df 536 Using PCA to visualize the dataset 543
c|eaning edu_df' emp|oy_df' pop_df’ K-Means CIUStering analysis 544
and pov_df 539
Data integration 539 Summary 246
Summary, Practice Case Studies, and Conclusions
A summary of the book 547 san Francisco crime 553
Part 1 - Technical requirements 548 Data analytics job market 555
Part 2 - Analytics goals 548 FIFA 2018 player of the match 555
Part 3 - The preprocessing 549 Hot hands in basketball 556
Part 4 - Case studies 549 Wildfires in California 557
Practice case studies 550 Silicon \./a?lley dlve.r5|ty prc?flle 558
] - Recognizing fake job posting 558
Google Covid-19 mobility dataset 550 . : .
) o . Hunting more practice case studies 559
Police killings in the US 552
US accidents 552 Conclusions 559

Index

Other Books You May Enjoy

Preface

Data preprocessing is the first step in data visualization, data analytics, and machine
learning, where data is prepared for analytics functions to get the best possible insights.
Around 90% of the time spent on data analytics, data visualization, and machine learning
projects is dedicated to performing data preprocessing.

This book will equip you with the optimum data preprocessing techniques from

multiple perspectives. You'll learn about different technical and analytical aspects of

data preprocessing — data collection, data cleaning, data integration, data reduction, and
data transformation — and get to grips with implementing them using the open source
Python programming environment. This book will provide a comprehensive articulation
of data preprocessing, its whys and hows, and help you identify opportunities where data
analytics could lead to more effective decision making. It also demonstrates the role of
data management systems and technologies for effective analytics and how to use APIs to
pull data.

By the end of this Python data preprocessing book, you'll be able to use Python to
read, manipulate, and analyze data; perform data cleaning, integration, reduction, and
transformation techniques; and handle outliers or missing values to effectively prepare
data for analytic tools.

Who this book is for

Junior and senior data analysts, business intelligence professionals, engineering
undergraduates, and data enthusiasts looking to perform preprocessing and data cleaning
on large amounts of data will find this book useful. Basic programming skills, such as
working with variables, conditionals, and loops, along with beginner-level knowledge of
Python and simple analytics experience, are assumed.

What this book covers

Chapter 1, Review of the Core Modules of NumPy and Pandas, introduces two of three
main modules used for data manipulation, using real dataset examples to show their
relevant capabilities.

xvi Preface

Chapter 2, Review of Another Core Module — Matplotlib, introduces the last of the
three modules used for data manipulation, using real dataset examples to show its
relevant capabilities.

Chapter 3, Data — What Is It Really?, puts forth a technical definition of data and
introduces data concepts and languages that are necessary for data preprocessing.

Chapter 4, Databases, explains the role of databases, the different kinds, and teaches you
how to connect and pull data from relational databases. It also teaches you how to pull
data from databases using APIs.

Chapter 5, Data Visualization, showcases some analytics examples using data
visualizations to inform you of the potential of data visualization.

Chapter 6, Prediction, introduces predictive models and explains how to use Multivariate
Regression and a Multi-Layered Perceptron (MLP).

Chapter 7, Classification, introduces classification models and explains how to use
Decision Trees and K-Nearest Neighbors (KNN).

Chapter 8, Clustering Analysis, introduces clustering models and explains how to
use K-means.

Chapter 9, Data Cleaning Level I - Cleaning Up the Table, introduces three different levels
of data cleaning and covers the first level through examples.

Chapter 10, Data Cleaning Level II - Unpacking, Restructuring, and Reformulating the
Table, covers the second level of data cleaning through examples.

Chapter 11, Data Cleaning Level III - Missing Values, Outliers, and Errors, covers the third
level of data cleaning through examples.

Chapter 12, Data Fusion and Data Integration, covers the technique for mixing different
data sources.

Chapter 13, Data Reduction, introduces data reduction and, with the help of examples,
shows how its different cases and versions can be done via Python.

Chapter 14, Data Transformation and Massaging, introduces data transformation and
massaging and, through many examples, shows their requirements and capabilities
for analysis.

Chapter 15, Case Study 1 - Mental Health in Tech, introduces an analytic problem and
preprocesses the data to solve it.

Chapter 16, Case Study 2 - Predicting COVID-19 Hospitalizations, introduces an analytic
problem and preprocesses the data to solve it.

Preface xvii

Chapter 17, Case Study 3 - United States Counties Clustering Analysis, introduces an
analytic problem and preprocesses the data to solve it.

Chapter 18, Summary, Practice Case Studies, and Conclusions, introduces some
possible practice cases that users can use to learn in more depth and start creating their
analytics portfolios.

To get the most out of this book

The book assumes basic programming skills such as working with variables, conditionals,
and loops, along with beginner-level knowledge of Python. Other than that, you can start
your journey from the beginning of the book and start learning.

The Jupyter Notebook is an excellent UI for learning and practicing programming and
data analytics. It can be downloaded and installed easily using Anaconda Navigator. Visit
this page for installation: https://docs.anaconda.com/anaconda/navigator/
install/.

Software/hardware covered in the book Operating system requirements
Python using the Jupyter Notebook Windows or macOS

While Anaconda has most of the modules that the book uses already installed, you will
need to install a few other modules such as Seaborn and Graphviz. Don't worry; when the
time comes, the book will instruct you on how to go about these installations.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

While learning, keep a file of your own code from each chapter. This learning repository
can be used in the future for deeper learning and real projects. The Jupyter Notebook is
especially great for this purpose as it allows you to take notes along with the code.

Download the example code files

You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-
Python. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://docs.anaconda.com/anaconda/navigator/install/
https://docs.anaconda.com/anaconda/navigator/install/
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/

xviii Preface

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801072137 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "To create this interactive visual, we have used the interact and
widgets programming objects from the ipywidgets module."

A block of code is set as follows:

from ipywidgets import interact, widgets

interact (plotyear, year=widgets.
IntSlider (min=2010,max=2019, step=1,value=2010))

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

Xs t.plot.scatter(x='PCl',y='PC2',c="'PC3',sharex=False,
vmin=-1/0.101, vmax=1/0.101,
figsize=(12,9))

X ticks vs = [-2.9*%4 + 2.9*i for i in range(9)]

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "The missing
values for the attributes from SupportQl to AttitudeQ3 are from the same data objects.”

Tips or Important Notes

Appear like this.

https://static.packt-cdn.com/downloads/9781801072137_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801072137_ColorImages.pdf

Preface xix

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.comand mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www . packtpub. com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts

Once you've read Hands-On Data Preprocessing in Python, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-801-07213-2

Part 1;:
Technical Needs

After reading this part of the book, you will be able to use Python to effectively
manipulate data.

This part comprises the following chapters:
+ Chapter 1, Review of the Core Modules of NumPy and Pandas
« Chapter 2, Review of Another Core Module - Matplotlib
« Chapter 3, Data - What Is It Really?
 Chapter 4, Databases

1

Review of the
Core Modules of
NumPy and Pandas

NumPy and Pandas modules are capable of meeting your needs for the majority of data
analytics and data preprocessing tasks. Before we start reviewing these two valuable
modules, I would like to let you know that this chapter is not meant to be a comprehensive
teaching guide to these modules, but rather a collection of concepts, functions, and
examples that will be invaluable, as we will cover data analytics and data preprocessing in
proceeding chapters.

In this chapter, we will first review the Jupyter Notebooks and their capability as an
excellent coding User Interface (UI). Next, we will review the most relevant data analytic
resources of the NumPy and Pandas Python modules.

The following topics will be covered in this chapter:

« Overview of the Jupyter Notebook
+ Are we analyzing data via computer programming?
+ Overview of the basic functions of NumPy

e Overview of Pandas

4 Review of the Core Modules of NumPy and Pandas

Technical requirements

The easiest way to get started with Python programming is by installing Anaconda
Navigator. It is open source software that brings together many useful open source
tools for developers. You can download Anaconda Navigator by following this link:
https://www.anaconda.com/products/individual.

We will be using Jupyter Notebook throughout this book. Jupyter Notebook is one of the
open source tools that Anaconda Navigator provides. Anaconda Navigator also installs a
Python version on your computer. So, following Anaconda Navigator's easy installation,

all you need to do is open Anaconda Navigator and then select Jupyter Notebook.

You will be able to find all of the code and the dataset that is used in this book in a
GitHub repository exclusively created for this book. To find the repository, click on the
following link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. Each chapter in this book will have a folder that
contains all of the code and datasets that were used in the chapter.

Overview of the Jupyter Notebook

The Jupyter Notebook is becoming increasingly popular as a successful User Interface
(UI) for Python programing. As a U, the Jupyter Notebook provides an interactive
environment where you can run your Python code, see immediate outputs, and take notes.

Fernando Pérezthe and Brian Granger, the architects of the Jupyter Notebook, outlines the
following reasons in terms of what they were looking for in an innovative programming UI:

« Space for individual exploratory work
« Space for collaboration

« Space for learning and education

If you have used the Jupyter Notebook already, you can attest that it delivers all these
promises, and if you have not yet used it, I have good news for you: we will be using
Jupyter Notebook for the entirety of this book. Some of the code that I will be sharing will
be in the form of screenshots from the Jupyter Notebook UI.

The UI design of the Jupyter Notebook is very simple. You can think of it as one column of
material. These materials could be under code chunks or Markdown chunks. The solution
development and the actual coding happens under the code chunks, whereas notes for
yourself or other developers are presented under Markdown chunks. The following
screenshot shows both an example of a Markdown chunk and a code chunk. You can see
that the code chunk has been executed and the requested print has taken place and the
output is shown immediately after the code chunk:

https://www.anaconda.com/products/individual
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Overview of the Jupyter Notebook 5

Hello World! This is a Markdown chunk!

In [1]: M print('Hello World! This is Code Chunk!")
Hello World! This is Code Chunk!

Figure 1.1 - Code for printing Hello World in a Jupyter notebook

To create a new chunk, you can click on the + sign on the top ribbon of the UL The

newly added chunk will be a code chunk by default. You can switch the code chunk to a
Markdown chunk by using the drop-down list on the top ribbon. Moreover, you can move
the chunks up or down by using the correct arrows on the ribbon. You can see these three
buttons in the following screenshot:

Move the chunks up Switch between
Cut, Copy, Paste or down Markdown and Code

B+ @A DB » ¥ MRin B C » Makdown v | E

\ \

Create a new chunk Run, Stop, Restart, Restart & Run
Figure 1.2 - Jupyter Notebook control ribbon
You can see the following in the preceding screenshot:

o The ribbon shown in the screenshot also allows you to Cut, Copy, and Paste
the chunks.

o The Run button on the ribbon is to execute the code of a chunk.

 The Stop button is to stop running code. You normally use this button if your code
has been running for a while with no output.

« The Restart button wipes the slate clean; it removes all of the variables you have
defined so you can start over.

o Finally, the Restart & Run button restarts the kernel and runs all of the chunks of
code in the Jupyter Notebook files.

There is more to the Jupyter Notebook, such as useful short keys to speed up development
and specific Markdown syntax to format the text under Markdown chunks. However, the
introduction here is just enough for you to start meaningfully analyzing data using Python
through the Jupyter Notebook UI.

6 Review of the Core Modules of NumPy and Pandas

Are we analyzing data via computer
programming?

To benefit most from the two modules that we will cover in this chapter, we need to
understand what they really are and what we are really doing when we use them. I am

sure whoever is in the business of content development for data analytics using Python,
including me (guilty as charged), would tell you that when you use these modules to
manipulate your data, you are analyzing your data using computer programming. However,
what you are actually doing is not computer programming. The computer programming
part has already been done for the most part. In fact, this has been done by the top-notch
programmers who put together these invaluable packages. What you do is use their code
made available to you as programming objects and functions under these modules. Well, if
I am being completely honest, you are doing a tad bit of computer programming, but just
enough to access the good stuff (these modules). Thanks to these modules, you will not
experience any difficulty in analyzing data using computer programming.

So, before embarking on your journey in this chapter and this book, remember this: for

the most part, our job as data analysts is to connect three things — our business problem,

our data, and technology. The technology could be commercial software such as Excel or
Tableau, or, in the case of this book, these modules.

Overview of the basic functions of NumPy

In short, as the name suggests, NumPy is a Python module brimming with useful
functions for dealing with numbers. The Num in the first part of the name NumPy stands
for numbers, and Py stands for Python. There you have it. If you have numbers and you
are in Python, you know what you need to import. That is correct; you need to import
NumPy, simple as that. See the following screenshot:

In [2]: M import numpy as np

Figure 1.3 - Code for importing the NumPy module

Overview of the basic functions of NumPy 7

As you can see, we have given the alias np to the module after importing it. You can
actually assign any alias that you wish and your code would function; however, I suggest
sticking with np. I have two compelling reasons for doing so:

« First, everyone else uses this alias, so if you share your code with others, they know
what you are doing throughout your project.

+ Second, alot of the time, you end up using code written by others in your projects,
so consistency will make your job easier. You will see that most of the famous
modules also have a famous alias, for example, pd for Pandas, and p1t for
matplotlib.pyplot.

Good practice advice

NumPy can handle all types of mathematical and statistical calculations for a
collection of numbers, such as mean, median, standard deviation (std), and
variance (var). If you have something else in mind and are not sure whether
NumPy has it, I suggest googling it before trying to write your own. If it
involves numbers, chances are NumPy has it.

The following screenshot shows the mean, for example, applied to a collection of numbers:
In [3]: M 1st_nums = [2,5,7,11,13,17,23,31,37,41,43,47]
np.mean(lst_nums)
Out[3]: 23.083333333333332
In [4]: M 1st_nums = [2,5,7,11,13,17,23,31,37,41,43,47]

ary_nums = np.array(lst_nums)
ary_nums.mean()

Out[4]: 23.083333333333332

Figure 1.4 - Example of using the np.mean() NumPy function and the .mean() NumPy array function

8 Review of the Core Modules of NumPy and Pandas

As shown in Figure 1.4, there are two ways to do this. The first one, portrayed in the top
chunk, uses np . mean () . This function is one of the properties of the NumPy module and
can be accessed directly. The great aspect of using this approach is that you do not need to
change your data type most of the time before NumPy honors your request. You can input
lists, Pandas series, or DataFrames. You can see on the top chunk that np . mean () easily
calculated the mean of 1st _nums, which is of the list type. The second way, as shown in

the bottom chunk, is to first use np . array () to transform the list into a NumPy array and
then use the .mean () function, which is a property of any NumPy array. Before continuing
to progress with this chapter, take a moment and use the Python type () function to see the
different types of 1st _numbs and ary nums, as shown in the following screenshot:

In [5]: M type(lst_nums)

Out[5]: 1list

In [6]: M type(ary_nums)

Out[6]: numpy.ndarray

Figure 1.5 - The application of the type() function

Next we will learn about four NumPy functions: np . arange (), np. zeros (),
np.ones (),andnp.linspace().

The np.arange() function

This function, as shown in the following screenshot, produces a sequence of numbers with
equal increments. You can see in the figure that by changing the two inputs, you can get
the function to output many different sequences of numbers that are required for your
analytic purposes:

In [7]: M np.arange(15)
OUt[7]: ar‘f‘aY([0, 1, 2, 3, 4, 5 6, 7, 8, 9,10, 11, 12, 13, 14])

In [8]: M np.arange(5,15)
Out[8]: array([5, 6, 7, 8, 9, 1o, 11, 12, 13, 14])

In [9]: M np.arange(-7.1,7)

out[9]: array([-7.1, -6.1, -5.1, -4.1, -3.1, -2.1, -1.1, -0.1, ©.9, 1.9, 2.9,
3.9, 4.9, 5.9, 6.9])

Figure 1.6 - Examples of using the np.arange() function

Overview of the basic functions of NumPy 9

Pay attention to the three chunks of code in the preceding figure to see the default
behavior of np . arange () when only one or two inputs are passed.

« When only one input is passed, as in the first chunk of code, the default of
np.arange () is that you want a sequence of numbers from zero to the input
number with increments of one.

o When two inputs are passed, as in the second chunk of code, the default of the
function is that you want a sequence of numbers from the first input to the second
input with increments of one.

The np.zeros() and np.ones() functions

np.ones () creates a NumPy array filled with ones, and np . zeros () does the same
thing with zeros. Unlike np . arange (), which takes the input to calculate what needs

to be included in the output array, np . zeros () and np.ones () take the input to
structure the output array. For instance, the top chunk of the following screenshot
specifies the request for an array with four rows and five columns filled with zeros. As you
can see in the bottom chunk, if you only pass in one number, the output array will have
only one dimension:

In [10]: M np.zeros([4,5])

Out[10]: array([[e., ©., ©., 0., 0.],
[6., 0., 0., 0., 0.],
[0., 0., 8., 0., 0.],
[6., 0., 6., 0., 0.]1])

In [11]: M np.ones(7)
Out[11]: array([1., 1., 1., 1., 1., 1., 1.])

Figure 1.7 - Examples of np.zeros() and np.ones()

These two functions are excellent resources for creating a placeholder to keep the results
of calculations in a loop. For instance, review the following example and observe how this
function facilitated the coding.

10 Review of the Core Modules of NumPy and Pandas

Example - Using a placeholder to accommodate analytics

Given the grade data of 10 students, create a code using NumPy that calculates and reports
their grade average.

The data of the 10 students and the solution to this example are provided in the following
screenshots. Please review and try this code before progressing:

In [12]: Names = ['Jevon', 'Dawn’', 'Kayleigh', 'Jadene', 'Kennedy', 'Kaydee',
"Ansh', 'Flynn', 'Kier', 'Clarence']
Math_grades = [80, 50, 60, 70, 60, 100, 70, 70, 60, 70]
Science_grades [90, 80, 50, 50, 60, 50, 90, 70, 80, 80]
History grades = [60, 90, 50, 90, 100, 100, 100, 100, 90, 70]

Figure 1.8 - Grade data for the example

Now that you've had a chance to engage with this example, allow me to highlight a few
matters about the provided solution presented in Figure 1.9:

» Notice hownp. zeros () facilitated the solution by streamlining it significantly.
After the code is done, all of the average grades are calculated and saved already.
Compare the printed values before and after the for loop.

o The enumerate () function in the for loop might sound strange to you. What
that does is help the code to have both an index (i) and the item (name) from the
collection (Names).

« The . format () function is an invaluable property of any string variable. If there
are any symbols such as { } in the string, this function will replace them with what
has been input sequentially.

Overview of the basic functions of NumPy 11

e # better-looking report isa comment in the second chunk of the code.
Comments are not compiled and their only purpose is to communicate something
with whoever reads the source code.

In [13]:

In [14]:

Average_grades = np.zeros(10)
print(Average_grades)

for i, name in enumerate(Names):
Average_grades[i] = np.mean([Math_grades[i],Science_grades[i],
History_grades[i]])

print(Average_grades)

[0. 6. 0. 0. 0. 0. 0. 0. 0. 0.]
[76.66666667 73.33333333 53.33333333 70. 73.33333333 83.33333333
86.66666667 80. 76.66666667 73.33333333]

better-Looking report

for i, name in enumerate(Names):
print("Average for {} : {}".format(name,Average_grades[i]))

Average for Jevon : 76.66666666666667
Average for Dawn : 73.33333333333333
Average for Kayleigh : 53.333333333333336
Average for Jadene : 70.0

Average for Kennedy : 73.33333333333333
Average for Kaydee : 83.33333333333333
Average for Ansh : 86.66666666666667
Average for Flynn : 80.0

Average for Kier : 76.66666666666667
Average for Clarence : 73.33333333333333

Figure 1.9 - Solution to the preceding example

12 Review of the Core Modules of NumPy and Pandas

The np.linspace() function

This function returns evenly spaced numbers over a specified interval. The function takes
three inputs. The first two inputs specify the interval, and the third shows the number of
elements that the output will have. For example, refer to the following screenshot:

In [15]: np.linspace(0,1,21)

Out[15]: array([@. , ©.05, 0.1 , ©0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 ,
8.55, 0.6 , ©.65, 0.7 , ©.75, 0.8 , 0.85, 0.9 , 6.95, 1.])
In [16]: np.linspace(10,1000,100)
Out[16]: array([10., 20., 30., 4., 50., 60., 70., 80., 90.,
100., 110., 120., 130., 140., 150., 160., 170., 180.,
19%0., 200., 210., 220., 230., 240., 250., 260., 270.,
280., 2%99., 300., 3l1l0., 320., 330., 340., 350., 360.,
370., 380., 390., 400., 410., 420., 430., 440., 450.,
460., 470., 480., 490., 500., 510., 520., 530., 540.,
550., 560., 570., 580., 590., 600., 610., 620., 630.,
640., 650., 660., 670., 680., 690., 700., 710., 720.,
730., 740., 750., 760., 770., 780., 790., 800., 810.,
820., 830., 840., 850., 860., 870., 880., 890., 900.,
910., 920., 930., 940., 950., 960., 970., 980., 990.,
1000.1)

Figure 1.10 - Solution to the preceding example

In the first code block, 19 numbers are evenly spaced between 0 and 1, altogether creating
an array with 21 numbers. The second gives another example. After trying out the two
examples in the screenshot, trynp . linspace (0,1, 20) and after investigating the
results, think about why I chose 21 over 20 in my example.

np.linspace () is a very handy function for situations where you need to try out
different values to find the one that best fits your needs. The following example showcases
a simple situation like that.

Example - np.linspace() to create solution candidates

We are interested in finding the value(s) that holds the following mathematical statement:
x*—5x+6=0.

Imagine that we don't know that the statement can be simplified easily to ascertain that
either 2 or 3 will hold the statement:

x2=5x+ 6 =(x—2)(x —3)

Overview of Pandas 13

So we would like to use NumPy to try out any whole numbers between -1000 and 1000
and find the answer.

The following screenshot shows Python code that provides a solution to this problem:

In [16]: M Candidates = np.linspace(-1000,1000,2001)
#print(Candidates)

for candidate in Candidates:
if(candidate**2 - 5*candidate +6 ==0):
print("Just found a possible answer: {}".format(candidate))

Just found a possible answer: 2.0
Just found a possible answer: 3.0

Figure 1.11 - Solution to the preceding example

Please review and try this code before moving on.

Now that you've had a chance to engage with this example, allow me to highlight a
couple of things:

+ Notice how smart use of np. linspace () leads to an array with all of the
numbers that we were interested in trying out.

e Uncomment #print (Candidates) and review all of the numbers that were
tried out to establish the desired answers.

This concludes our review of the NumPy module. Next, we will review another very useful
Python module, Pandas.

Overview of Pandas

In short, Pandas is our main module for working with data. The module is brimming
with useful functions and tools, but let's get down to the basics first. The greatest tool of
Pandas is its data structure, which is known as a DataFrame. In short, a DataFrame is a
two-dimensional data structure with a good interface and great codability.

The DataFrame makes itself useful to you right off the bat. The moment you read a data
source using Pandas, the data is restructured and shown to you as a DataFrame. Let's give
ita try.

14 Review of the Core Modules of NumPy and Pandas

We will use the famous adult dataset (adult . csv) to practice and learn the different
functionalities of Pandas. Refer to the following screenshot, which shows the importing
of Pandas and then reading and showing the dataset. In this code, . head () requests that
only the top five rows of data are output. The . tail () code could do the same for the
bottom five rows of the data.

In [17]: M import pandas as pd

adult_df = pd.read_csv('adult.csv')
adult_df.head()

Oout[17]:
education- marital-

age workclass fnlwgt education occupation relationship race
num status

0 39 State-gov 77516 Bachelors 13 Never- AdM- ot in-family White
married clerical
Self-emp- Married- Exec-
1 50 . 83311 Bachelors 13 Civ- f Husband White
not-inc managerial
spouse
2 38 Private 215646 HS-grad 9 Divorced HaANdIErS- o in tamily White
cleaners
Married- o dlers
3 53 Private 234721 11th 7 civ- N Husband Black
cleaners
spouse
Married- Prof
4 28 Private 338409 Bachelors 13 civ- ey Wife Black F
specialty
spouse

Figure 1.12 — Reading the adult.csv file using pd.read_csv() and showing its first five rows

The adult dataset has six continuous and eight categorical attributes. Due to print
limitations, I have only been able to include some parts of the data; however, if you pay
attention to Figure 1.12, the output comes with a scroll bar at the bottom that you can
scroll to see the rest of the attributes. Give this code a try and study its attributes. As you
will see, all of the attributes in this dataset are self-explanatory, apart from fnlwgt. The
title is short for final weight and it is calculated by the Census Bureau to represent the ratio
of the population that each row represents.

Overview of Pandas 15

Good practice advice

It is good practice to always get to know the dataset you are about to work on.
This process always starts with making sure you understand each attribute, the
way I just did now. If you have just received a dataset and you don't know what
each attribute is, ask. Trust me, you will look more like a pro than not.

There are other steps to get to know a dataset. I will mention them all here and
you will learn how to do them by the end of this chapter.

Step one: Understand each attribute as I just explained.

Step two: Check the shape of the dataset. How many rows and columns does
the dataset have? This one is easy. For instance, just try adult df.shape
and review the result.

Step three: Check whether the data has any missing values.

Step four: Calculate summarizing values for numerical attributes such as
mean, median, and standard deviation, and compute all the possible values for
categorical attributes.

Step five: Visualize the attributes. For numerical attributes, use a histogram or a
boxplot, and for categorical ones, use a bar chart.

As you just saw, before you know it, you are enjoying the benefits of a Pandas DataFrame.
So it is important to better understand the structure of a DataFrame. Simply put, a
DataFrame is a collection of series. A series is another Pandas data structure that does not
get as much credit, but is useful all the same, if not more so.

To understand this better, try to call some of the columns of the adult dataset. Each
column is a property of a DataFrame, so to access it, all you need to do is to use
.ColumnName after the DataFrame. For instance, try running adult_ df.age to see
the column age. Try running all of the columns and study them, and if you come across
errors for some of them, do not worry about it; we will address them soon if you continue
reading. The following screenshot shows how you can confirm what was just described for
the adult dataset:

In [18]: M type(adult_df.age)

Out[18]: pandas.core.series.Series

In [19]: M type(adult_df)
Out[19]: pandas.core.frame.DataFrame

Figure 1.13 — Checking the type of adult_df and adult_df.age

16 Review of the Core Modules of NumPy and Pandas

It gets more exciting. Not only is each attribute a series, but each row is also a series. To
access each row of a DataFrame, you need to use . loc [] after the DataFrame. What
comes between the brackets is the index of each row. Go back and study the output of

df adult.head () in Figure 1.12 and you will see that each row is represented by an
index. The indices do not have to be numerical and we will see how indices of a Pandas
DataFrame can be adjusted, but when reading data using pd.read_csv () with default
properties, numerical indices will be assigned. So give it a try and access some of the
rows and study them. For instance, you can access the second row by running adult__
df .loc [1]. After running a few of them, run type (adult_df.loc[1]) to confirm
that each row is a series.

When accessed separately, each column or row of a DataFrame is a series. The only
difference between a column series and a row series is that the index of a column series

is the index of the DataFrame, and the index of a row series is the column names. Study
the following screenshot, which compares the index of the first row of adult df and the
index of the first column of adult df:

In [20]: M adult_df.loc[0].index

Out[20]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', ‘'race', 'sex',
'capitalGain', 'capitallLoss', 'hoursPerWeek', 'nativeCountry’,
"income'],
dtype='object")
In [21]: M adult_df.age.index

Out[21]: RangeIndex(start=0, stop=32561, step=1)

Figure 1.14 - Investigating the index for a column series and a row series

Now that we have been introduced to Pandas data structures, next we will cover how we
can access the values that are presented in them.

Pandas data access

One of the greatest advantages of both Pandas series and DataFrames is the excellent
access they afford us. Let's start with DataFrames, and then we will move on to series as
there are lots of commonalities between the two.

Pandas DataFrame access

As DataFrames are two-dimensional, this section first addresses how to access rows, and
then columns. The end part of the section will address how to access each value.

Overview of Pandas 17

DataFrame access rows

The only two keywords you will ever need to access the rows of a DataFrame are . loc []
and .iloc []. To understand the difference between them, you need to know that each
Pandas series or DataFrame carries two types of indices: default indices or assigned
indices. The default indices are the integer numbers that are automatically assigned to
your dataset upon reading. However, Pandas allows you to update them. The function that
you can use to do so is . set_index (). For instance, we would like to make sure all of
the indices in adult_df have five digits, so instead of indices between 0 and 32651 (run
len (adult df) to see that this is the number of rows adult df has), we want indices
to be from 10000 to 42651. The following screenshot uses np . arange () and .set
index () to do this. In this code, inplace=True indicates to the . set index ()
function that you want the change to be applied to the DataFrame itself.

Why is it that when inplace=True is incorporated, there is no output, and when it is
included, Jupyter Notebook shows the updated DataFrame?

The answer is that the . set _index () function, by default, outputs a new DataFrame
that has the requested index unless inplace=True is specified, which requests the
change to be applied to the original DataFrame.

In [22]: M adult_df.set_index(np.arange(10000,42561),inplace=True)

In [23]: M adult_df.set_index(np.arange(10000,42561))

out[23]:

education- marital-

age workclass fnlwgt education occupation relationship ra

num status
Never- Adm- . . .
10000 39 State-gov 77516 Bachelors 13 ; ” Not-in-family ~ Whi
married clerical
Self-emp- Married- Exec-
10001 50 P 83311 Bachelors 13 civ- R Husband Whi
not-inc managerial
spouse
10002 38 Private 215646 HS-grad 9 Divorced Handlers- i family Whi

cleaners
Figure 1.15 - Updating the index of adult_df as described

Now, each row of the DataFrame can be accessed by specifying the index in between
the brackets of . Loc []. For instance, running adult df.loc[10001] will give you
the second row. This is how you would always access the DataFrame using the assigned
indices. If you started missing the default indices, as you often do when you go about
preprocessing your data, Pandas has you covered.

18 Review of the Core Modules of NumPy and Pandas

You can use . iloc [] to access the data using the default integer indices. For instance,
running adult df.iloc [1] will also return the second row. In other words, Pandas
will change the index to your liking, but behind the scenes, it will also keep its integer
default index and also lets you use it if you so wish.

DataFrame access columns

As there are two ways to access each row, there are also two ways to access each column.
The easier and better way to access your columns is to know that each column is coded to
be a property of a DataFrame. So, you can access each column by using . ColumnName.
For instance, run adult_df.age, adult df.occupation, and so on to see how easy
it is to access the columns in this way.

If you happened to run adult df.education-number, you have already seen that
this gives you an error. If you haven't, go ahead and do so to study the error. Why does
this error happen?

In [24]: M adult_df.education-num

NameError Traceback (most recent call last)
<ipython-input-24-a283283968914> in <module>
----> 1 adult_df.education-num

NameError: name 'num' is not defined

Figure 1.16 — Running adult_df.education-number and its error

If you study the error message, it is prompting that 'num' is not defined. That is true; we do
not have anything named 'num'. That is the key to use this error to answer my question.

Python deciphers dashes as subtraction operators unless presented inside a quotation. So
it all comes down to this. Because of the way this variable is named, you cannot use the

. ColumnName method to access the variable. You either need to change the name of the
variable or use the second method to access the columns.

The second method passes the name as a string, or, in other words, inside a quotation. Try
running adult df ['education-num'] and this time you will not get an error.

Overview of Pandas 19

Good practice advice

If you are new to programming, one of the pieces of advice that I have for you

is not to be intimidated by errors, and not only that, welcome errors with open
arms because they are an excellent opportunity to learn. I just used an error to
teach you something.

DataFrame access values

Imagine you want to access the education value for the third row of adult df. There

are so many ways you can go about this. You can start from the column and once you

get a column series, access the value, or you can go from the row, and once you get a row
series, access the value. Study the following screenshot; the first three chunks of code show
different possibilities of doing that. However, my favorite way to access the values is to use
.at [1, shown in the last chunk.

In [25]: M adult_df.iloc[2].loc['education']

Out[25]: 'HS-grad'

In [26]: M adult_df.education.loc[10002]

Out[26]: 'HS-grad’

In [27]: M adult_df['education'].iloc[2]

Out[27]: 'HS-grad'

In [28]: M adult_df.at[10002, 'education’]
Out[28]: 'HS-grad'
Figure 1.17 - Four different methods of accessing the records of a Pandas DataFrame

Accessing values with .at [] is my favorite for two reasons. First, it is much neater and
more straightforward. Second, you can treat the DataFrame like a matrix as it is one, at
least visually.

20 Review of the Core Modules of NumPy and Pandas

Pandas series access

Access to the values of series is very similar to that of DataFrames, just simpler. You can
access the values of a series using all of the methods mentioned for DataFrames, except
for .at []. You can see all of the possibilities in the following screenshot. If you were
to try the last line of the second chunk of code, Python would generate a syntax error as
numbers cannot be the name of programming objects. To use this method, you have to
make sure that the series indices are of the string type.

In [29]: M row_series = adult_df.loc[10002]
print(row_series.loc['education'])
print(row_series.iloc[3])
print(row_series['education'])
print(row_series.education)

HS-grad
HS-grad
HS-grad
HS-grad

In [30]: M columns_series = adult_df.education
print(columns_series.loc[10002])
print(columns_series.iloc[2])
print(columns_series[10002])

print(row_series.10002) This will give syntax error!

HS-grad
HS-grad
HS-grad

Figure 1.18 - Different methods of accessing the values of a Pandas series
Slicing
Slicing applies to both NumPy and Pandas; however, since this is a book about data

preprocessing, we will use it more often with a Pandas DataFrame. Let's begin by slicing
NumPy arrays to understand slicing and then apply it to a Pandas DataFrame.

Overview of Pandas 21

Slicing a NumPy array

We slice a NumPy array when we need access to more than one value of the data. For
instance, consider the code in the following screenshot:

In [31]: M my_array = np.array([[2,3,5,7],[11,13,17,19],
[23,29,31,37,], [41,43,47,49]])
my_array

out[31]: array([[2, 3, 5, 71,
[11, 13, 17, 19],
[23, 29, 31, 37],
[41, 43, 47, 49]])

In [32]: M my_array[1,1]

Out[32]: 13

In [33]: M my_array[1,:]

Out[33]: array([11, 13, 17, 19])

In [34]: M my_array[:,1]

out[34]: array([3, 13, 29, 43])

Figure 1.19 — Examples of slicing NumPy arrays

Here, my array, which is a 4 x 4 matrix, has been sliced in different ways. The second
chunk of code is not slicing; as you can see, only one value is accessed. What separates
normal access from slicing access is the presence of a colon (:) in any of the index inputs.
For instance, a colon in the third chunk of code means you are requesting all of the
columns, and the output includes all of the columns, but since only the second row
(index 1) is specified, the entirety of the second row is output. The fourth chunk of code is
the opposite; one column is specified and the whole rows are requested, so the entirety of
the second column is output.

22 Review of the Core Modules of NumPy and Pandas

You can also use a colon (:) to only specify access from a certain index to another

one. For instance, in the second chunk of the following code, while all the columns are
requested, only the second to fourth rows (1 : 3) are requested. The third chunk of code
shows that both columns and rows can be sliced at the same time. Finally, the last chunk
of code shows that you can pass a list of indices that you want to include in your slice.

In [35]: M my_array

Out[35]: array([[2, 3, 5, 7],
[11, 13, 17, 19],
[23, 29, 31, 37],
[41, 43, 47, 49]])

In [36]: M my_array[1:3,:]
Out[36]: array([[11, 13, 17, 19],
[23, 29, 31, 37]])
In [37]: M my_array[1:3,0:2]
Out[37]: array([[11, 13],
[23, 29]])
In [38]: M my_array[1:3,[0,2]]

Out[38]: array([[11, 17],
[23, 31]11)

Figure 1.20 - More complex examples of slicing

Slicing a Pandas DataFrame

Just like NumPy arrays, Pandas DataFrames can also be sliced both on the columns and
rows. However, the slicing function can only be done inside either . loc [] or .iloc[].
The access method, . at [], and the other ways of accessing data do not support slicing.
For instance, the following code slices adult_df to show all of the rows, but only the
columns from education to occupation. Running adult df.iloc[:,3:6] will result
in the same output.

In [39]: M adult_df.loc[:,'education':'occupation’]

Oout[39]:
education education-num marital-status occupation
10000 Bachelors 13 Never-married Adm-clerical
10001 Bachelors 13 Married-civ-spouse Exec-managerial
10002 HS-grad 9 Divorced Handlers-cleaners

Figure 1.21 - Example of slicing a Pandas DataFrame

Overview of Pandas 23

You want to become comfortable with slicing a Pandas DataFrame. It is a very useful way
to access your data. See the following example, which showcases one practical way in
which you could use slicing.

Practical example of slicing

Run adult df.sort values ('education-num'). You will see this code sort the
DataFrame based on the educat ion-num column. In Jupyter Notebook output, you
only see the first five and the last five rows of this sorting. Slice the output of the rows from
across the DataFrame instead of just from the beginning and the end.

The following screenshot shows how slicing the DataFrame can make this happen:

In [40]: M | adult_df.sort_values('education-num').reset_index().iloc[1:32561:3617]

Out[40]:
education- marital-

index age workclass fnlwgt education num status

occupation relationsh

1 23248 68 Private 168794 Preschool q Never- — Machine- \\ i e
married op-inspct
3618 19607 25 Private 251854 11th 7 Never AdM- o chi
married clerical
. Never- . |
7235 38845 31 Private 272856 HS-grad 9 : Craft-repair Own-chi
married
Married- Machine
10852 32759 56 Private 182273 HS-grad 9 civ- - N Husbar
op-inspct
spouse
14469 10419 34 State-gov 240283 HS-grad 9 Divorced T’ar':;‘;‘i’:g' Unmarri
18086 31532 25 OSof-emp- ga755 Some- 10 Divorced AdM- o chi
inc college clerical
21703 17245 37 Federak 4a955 Some- 1) Nevers Other-— & vn-chi
gov college married service
Married- Adm
25320 40595 43 Private 342567 Bachelors 13 spouse- L Unmarri
clerical
absent
28937 15200 43 Federa 444778 Bachelors 13 Never EXeC- \ ot in-fami
gov married managerial
32554 27308 55 O°N®MP 535ee Doctorate 16 Divorced BXeC \ ot in-fami
not-inc managerial

Figure 1.22 - Solution to the practical example of slicing a Pandas DataFrame

24 Review of the Core Modules of NumPy and Pandas

Let's go over this code step by step:

o The first part, . sort values ('education-num'), as mentioned, sorts the
DataFrame by education-num. I hope you have given this a try before reading
on. Pay attention to the indices of the sorted adult_df. They look jumbled up, as
they should. The reason is that the DataFrame is now sorted by another column.

« If we want to have a new index that matches this new order, we can use . reset
index (), as it has been used in the preceding screenshot. Go ahead and give this
atry as well. Run adult df.sort values('education-num').reset
index (). You will see that the old index is presented as a new column and that the
new index looks as ordered as any newly read dataset.

o Adding .iloc[1:32561:3617] achieves what this example is asking. This
specific slice requests the first row and every 3,617th row after that until the end
of the DataFrame. The number 32561 is the number of rows in adult df (run
len (adult_df)), and 3617 is the quotient of the division of 32561 by 9. This
division calculates the equal jumps that take us from row one to nearly the end of
adult_df. Pay attention if the division of 32561 by 9 didn't have a remainder; the
code would take you all the way to the end of the DataFrame.

Good practice advice

Being able to slice DataFrames this way is advantageous in the initial stages

of getting to know a dataset. One of the disadvantages of data manipulations
using programming instead of spreadsheet software such as Excel is that you
cannot scroll through the data as you would in Excel. However, slicing the data
this way can allow you to somehow mitigate this shortcoming.

Now that we have learned how to access and slice a dataset, we need to learn how to filter
the data based on our needs. To do that, next we will learn about Boolean masking, which
is a powerful filtering technique.

Boolean masking for filtering a DataFrame

One of the simplest and yet most powerful tools of working with data is Boolean
masking. When you want to filter a DataFrame using a Boolean mask, you need a
one-dimensional collection of Boolean values (True or False) that has as many Boolean
values as the number of rows of DataFrames you want to filter.

Overview of Pandas

25

The following screenshot shows an example of Boolean masking:

In [41]:

Out[41]:

M twopowers sr =
BM = [False,False,False,True,False,False,False,True,True,True,True]

twopowers_sr[BM]

3
7
8
9

10

8

128
256
512
1024

Figure 1.23 — Example of Boolean masking

The code portrays Boolean masking in three steps:

pd.Series([1,2,4,8,16,32,64,128,256,512,1024])

1. The code first creates the Pandas series twopowers_sr, which contains the values

of 2 to the power of 0 through 10 (2°, 2, 27, ..., 2'°).

2. 'Then, a Boolean mask is set up. Pay attention as twopowers_sr has 11 numerical
values, while BM also has 11 Boolean values. From now on in this book, every time
you see BM, you can safely assume it stands for Boolean mask.

3. 'The last line of code filters the series using the mask.

The way a Boolean mask works is straightforward. If the counterpart of the numerical
value from twopowers_sr in the Boolean mask (BM) is False, the mask blocks the
number, and if it is True, the mask lets it through. Check whether that has been the case

regarding the output of the preceding code. This is shown in the following figure:

False

False

4
False

8
True

O

8

16
False

32
False

64
False

128
True

O

128

256
True

O

256

512
True

O

512

1024
True

O

1024

Figure 1.24 - Depiction of Boolean masking

What is great about Pandas is that you can use the DataFrame or series themselves to
create useful Boolean masks. You can use any of the mathematical comparison operators
to do this. For instance, the following screenshot first creates a Boolean mask that would
only include True for numbers greater than or equal to 500. Then, the Boolean mask is

applied to twopowers_ sr to filter out the numbers in two ways.

26 Review of the Core Modules of NumPy and Pandas

Both of these ways are legitimate, correct, and they work. On the first one, you still give
the Boolean mask a name. We use the name BM to do this as mentioned earlier. Then, we
use BM to apply the Boolean mask. On the second one, you create and use the Boolean
mask on the fly, as programmers say. That means you do everything in one line of code.

I use the first one more often than not as I believe it makes the code more readable.

In [42]: M twopowers_sr >=500

Out[42]: False
False
False
False
False
False
False
False
False
True
10 True
dtype: bool

oONOUV A WNEO®

(o]

In [43]: M BM = twopowers_sr >=500
twopowers_sr[BM]

Out[43]: 9 512
10 1024
dtype: inté64

In [44]: M twopowers_sr[twopowers_sr >=500]

Out[44]: 9 512
10 1024
dtype: int64

Figure 1.25 - Example of Boolean masking to filter data

You might be asking from the preceding code, so what if we can filter the data using
Boolean masking? That is a legitimate question. Boolean masks come into their own
when you use them on DataFrames for analytics. The following two examples will clarify
this for you.

Overview of Pandas 27

Analytic example 1 that uses Boolean masking

We are interested in calculating the mean and median age of people with preschool
education in adult df.

This can be easily done using Boolean masking. The following screenshot first creates BM
using the series adult_df.education.

In [45]: M BM = adult df.education == 'Preschool’
print('Mean: {}'.format(np.mean(adult_df[BM].age)))
print('Median: {}'.format(np.median(adult_df[BM].age)))

Mean: 42.76470588235294
Median: 41.0

Figure 1.26 - Solution to the preceding example

Since the BM series has as many elements as the adult df DataFrame (why?), BM can be
applied to filter it. Once the DataFrame is filtered using adult df [BM], it only contains
rows that their educationis ' Preschool'. So now you can easily use np . mean ()
and np.median () to calculate the mean and median of age for these filtered rows.

Analytic example 2 that uses Boolean masking

We are interested in comparing the Capital Gain of individuals with less than 10 years'
education with individuals with more than 10 years' education.

In [46]: M BM1
BM2

adult_df['education-num'] > 10
adult_df['education-num'] < 10

print('More than 10 years of education - Capital Gain: {}'
.format(np.mean(adult_df[BM1].capitalGain)))

print('Less than 10 years of education - Capital Gain: {}'
.format(np.mean(adult_df[BM2].capitalGain)))

More than 10 years of education - Capital Gain: 2230.9397109166985
Less than 10 years of education - Capital Gain: 492.25532059102613

Figure 1.27 - Solution to the preceding example

Again, Boolean masks can help us immensely here. Two of them, BM1 and BM2, are
first created based on what we are interested in calculating. Then, two calculations and
reports show the mean of the capital gain for people with more than, and less than, 10
years of education.

28 Review of the Core Modules of NumPy and Pandas

Pandas functions for exploring a DataFrame

When you compare spreadsheet software such as Excel with coding, one of the stark
disadvantages of coding is that you cannot create as tangible a relationship with your data

as you would with Excel. That is a fair comparison as Excel lets you scroll up and down on
your data and so allows you to get to know it. While coding does not grant you this privilege,
Pandas has a handful of useful functions that help you to familiarize yourself with the data.

Getting to know a dataset has two aspects. The first is to get to know the structure of the
data, such as the number of rows, columns, and the name of columns. The second one
is to get to know the values under each column. So we first cover getting to know the
structure of the dataset and then we will focus on the values under each column.

Getting to know the structure of a dataset

You can use three useful properties of a Pandas Dataframe to study the structure of a
dataset. These are . shape, .columns, and . info (). In the following sections, we will
go over them one by one.

The .shape property

. shape is the property of any Pandas DataFrame. It tells you how many rows and columns
the DataFrame has. So, once you apply this to adult df, as executed by the code in the
following screenshot, you can see that the DataFrame has 32,561 rows and 15 columns:

In [47]: M adult_df.shape
out[47]: (32561, 15)
Figure 1.28 — Example of using the .shape property of a DataFrame to get to know the dataset

The .columns property

.columns allows you to see and edit the column names in your DataFrame. In the
following code, you can see that adult df.columns resulted in the output of all
the column names of adult_df. Of course, you could have scrolled to see all of the
columns when you read the dataset; however, this is not possible when the data has
more than 20 columns.

Overview of Pandas 29

In [48]: M adult_df.columns

Out[48]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', ‘'race', ‘'sex’,
'capitalGain', ‘'capitallLoss', 'hoursPerWeek', ‘'nativeCountry’,
"income'],
dtype="object')

Figure 1.29 - Example of using the .columns property of a DataFrame to get to know the dataset

Furthermore, . columns can be used to update the columns' names. This has been
shown in the following screenshot. After running the following code, you can safely

use adult df.education num to access the relevant attribute. We just change the
attribute name from 'education-num' to 'education num' and now the attribute
can be accessed using the . columnName method. Refer to Figure 1.16, which showed the
error you'd get if you were to run adult df.education-num.

In [49]: M adult_df.columns = ['age', 'workclass', 'fnlwgt', 'education’,
‘education_num', 'marital_status', ‘'occupation',
'relationship', 'race', 'sex', 'capitalGain',
‘capitalLoss', 'hoursPerWeek', 'nativeCountry’,
"income"']

Figure 1.30 — Example of updating the column titles of a DataFrame

The .info () function

This function provides information about both the shape and the columns of the
DataFrame. If you run adult_df.info (), you will see other information, such as
the number of non-null values and also the type of data under each column that will
be reported.

Getting to know the values of a dataset

The functions that Pandas has to get to know the numerical columns are different than
those of categorical columns. The difference between numerical and categorical columns
is that categorical columns are not represented by numbers or, more accurately, do not
carry numerical information.

To get to know numerical columns, the . describe (), .plot.hist (), and
.plot.box () functions are very useful. On the other hand, the .unique () and
.value_ counts () functions are instrumental for categorical columns. We will cover
these one by one.

30 Review of the Core Modules of NumPy and Pandas

The .describe() function

This function outputs many useful statistical metrics that are meant to summarize data for
each column. These metrics include Count, Mean, Standard Deviation (std), Minimum
(min), first quartile (25%), second quartile (50%) or median, third quartile (75%), and
Maximum (max). The following screenshot shows the execution of the function for
adult_df and its output:

In [50]: M adult_df.describe()

Out[50]:
age fnlwgt education_num capitalGain capitalLoss hoursPerWee

count 32561.000000 3.256100e+04 32561.000000 32561.000000 32561.000000 32561.00000

mean 38.581647 1.897784e+05 10.080679 1077.648844 87.303830 40.43745
std 13.640433 1.055500e+05 2.572720 7385.292085 402.960219 12.34742
min 17.000000 1.228500e+04 1.000000 0.000000 0.000000 1.00000
25% 28.000000 1.178270e+05 9.000000 0.000000 0.000000 40.00000
50% 37.000000 1.783560e+05 10.000000 0.000000 0.000000 40.00000
5% 48.000000 2.370510e+05 12.000000 0.000000 0.000000 45.00000
max 90.000000 1.484705e+06 16.000000 99999.000000 4356.000000 99.00000

Figure 1.31 - Example of using the .describe() function to get to know a dataset

The metrics that the . describe () function outputs are very valuable summarizing
tools, especially if these metrics are meant to be used for algorithmic analytics. However,
studying them all at once still overwhelms our human comprehension. To summarize data
for human comprehension, there are more effective tools, such as visualizing data using
histograms and boxplots.

Histograms and boxplots to visualize numerical columns

Pandas makes drawing these visuals very easy. Each Pandas series has a very useful
collection of plot functions. For instance, the following screenshot shows how easy it is to
draw the histogram for the age column. To create the boxplot for the age column, all you
need to change is the last part of the code: adult df.age.plot.box (). Giveita try.
Also, draw the boxplot and histogram for all of the other numerical attributes and see for
yourself how much easy it is to understand each column using visualization.

Overview of Pandas 31

In [51]: M adult_df.age.plot.hist()

Out[51]: <matplotlib.axes._ subplots.AxesSubplot at ©x29b11f8d8bo>

6000 -

5000 A

4000

3000 -

Frequency

2000 -

1000 -

20 30 40 50 60 70 80 90

Figure 1.32 - Drawing the histogram of the adult_df.age column

Let's move on to the functions that we will use for categorical attributes. We will start with
.unique ().

The .unique() function

If the column is categorical, our approach to get to know it would be completely different.
First, we need to see what are all the possibilities for the column. The .unique () function
does just that. It simply returns all the possible values of the columns. See the following
screenshot, which is an example of all the possible values of the relationship column
inadult df:

In [52]: M adult_df.relationship.unique()
Out[52]: array(['Not-in-family', 'Husband', 'Wife', 'Own-child', 'Unmarried',
'Other-relative'], dtype=object)
Figure 1.33 - Example of using the .unique() function to get to know a dataset

Now that we have covered the .unique () function, we will cover the .value counts ()
function next.

32 Review of the Core Modules of NumPy and Pandas

The .value_counts() function

The next step in getting to know a categorical column is realizing how often each
possibility happens. The .value counts () function does exactly that. The following
screenshot shows the outcome of this function on the column's relationship:

In [53]: M adult_df.relationship.value_counts()

Out[53]: Husband 13193
Not-in-family 8305
Own-child 5068
Unmarried 3446
Wife 1568
Other-relative 981

Name: relationship, dtype: int64

Figure 1.34 — Example of using the .value_counts() function to get to know a dataset

The output of the . value counts () function is also known as the frequency table.
There is also the relative frequency table, which shows the ratio of occurrences
instead of the number of occurrences for each possibility. To get the relative frequency
table, all you need to do is to specify that you want the table to be normalized:

.value counts (normalize=True). Giveita try!

Barcharts for visualizing numerical columns

To draw the bar chart of a categorical attribute, even though you might be tempted to try
out something like adult df.relationship.plot.bar (), it won't work. Give it a
try and study the error.

To create the bar chart, you would have to first create the frequency table. As the
frequency table is a Pandas series itself, you can then draw the bar chart using that. The
following screenshot shows how we can draw the bar chart for the relationship column
using the functions .value_counts () and .plot.bar():

Overview of Pandas 33

In [54]: M adult_df.relationship.value_counts().plot.bar()

Out[54]: <matplotlib.axes. subplots.AxesSubplot at 0x2341fcf2f40>

12000 A1

10000 A

8000 A

2000 A

r
|

Husband

Not in family
Own child
Unmarried
Wife

Other relative

Figure 1.35 - Drawing the bar chart of the adult_df.relationship column

In this part, we learned how we can take advantage of Pandas resources to get to know
new datasets. Next, we will learn about a Pandas function that is a game-changer in
analyzing and preprocessing data using programming.

Pandas applying a function

There are a lot of instances where we will want to do the same calculations for each row

in a dataset. The traditional approach to going about such calculations is to loop through
the data and, on every iteration of the loop, perform and save the calculations. Python and
Pandas have changed this paradigm by introducing the concept of applying a function.
When you apply a function to a DataFrame, you request Pandas to run it for every row.

You can apply a function to a series or a DataFrame. Since applying a function to a series
is somewhat easier, we will learn about that first and then we will move on to apply
a function to a DataFrame.

34 Review of the Core Modules of NumPy and Pandas

Applying a function to a series

Let's say we want to multiply the series adult df.age by 2. First, you need to write a
function that assumes one input as a number, multiply the input by 2, and then output the
result. The following screenshot shows this. First, the Mut iplyBy?2 () function is defined,
and then, using adult df.age.apply (MutiplyBy2), is applied to the series.

In [55]: M def MultiplyBy2(n):
return n*2

adult_df.age.apply(MultiplyBy2)

Out[55]: 10000 78
10001 100
10002 76
10003 106
10004 56
42556 54
42557 80
42558 116
42559 44
42560 104

Figure 1.36 — Example of using the .apply() function

Now, let's see an analytic example where the . apply () function can be instrumental.

Applying a function - Analytic example 1

Not only does the series adult df . fnlwgt not have an intuitive name, but also its values
are not easily relatable. As mentioned earlier, the values are meant to be the ratio of the
population that each row represents. As the numbers are neither percentages nor the actual
number of people that each row represents, these values are neither intuitive nor relatable.

Now that we know how to do a calculation for each value in a series, let's fix this with
a simple calculation. How about we divide every value by the sum of all the values in
the series?

The following screenshot shows the steps for going about this:

1. First, total fnlwgt, which is the sum of all the values in the fnlwgt column,
is calculated.

2. Second, the CalculatePercentage function is defined. This function outputs
the input values divided by total fnlwgt and multiplied by 100 (to develop
a percentage).

Overview of Pandas 35

3. 'Third, the CalculatePercentage function is applied to the series
adult df.fnlwgt.

Now, pay attention! Instead of just seeing the results of the calculations, the following code
has assigned the result to adult_df . fnlwgt itself, which substitutes the original values
with the newly calculated percentages. The following code does not show the output of the
code, but give it a try on your Jupyter notebook and study the output on your own:

total fnlwgt = adult_df.fnlwgt.sum()
def CalculatePercentage (v) :
return v/total fnlwgt*100
adult df.fnlwgt = adult df.fnlwgt.apply (
CalculatePercentage)
adult df

Applying a Lambda function

A lambda function is a function that is expressed in one line. So, a lot of the time,
applying a lambda function may make coding easier and perhaps help our code become
a bit more readable at times. For instance, if you wanted to answer the preceding
calculations "on the fly," you could simply apply a lambda function instead of an explicit
function. See the following code and compare the simplicity and conciseness of using a
lambda function instead of an explicit function:

total fnlwgt = adult df.fnlwgt.sum/()

adult df.fnlwgt = adult df.fnlwgt.apply(lambda v: v/total
fnlwgt*100)

adult df

It is important to understand that the right choice between a lambda function or an explicit
function depends on the situation. Sometimes, having to jam a perhaps complicated
function into a line causes coding to become more difficult and renders the code less
readable. This will be the case if the function has more than one conditional statement.

Applying a function to a DataFrame

The major difference between applying a function to a DataFrame and a series is when
you are defining the function. While, for a series, we had to assume that one value would
be input in the function, for a DataFrame, we have to assume that a row series will be
input. So, when you are defining a function to apply to a DataFrame, you can engage any
column that you need.

36 Review of the Core Modules of NumPy and Pandas

For instance, the following code has defined and applied a function that subtracts
education numfrom age for every column. Pay attention to three aspects:

1. First, when defining the CalcLifeNoEd () function, the input row was assumed
to be a row series of adult df. In other words, the CalcLifeNoEd () function
is tailored just for application to adult df or any DataFrame that has age and
eduction num as columns.

2. Second, the .apply () function comes right after the DataFrame itself instead of
after any columns. Compare the code for applying a function to a DataFrame to that
of a series. Compare the last two code snippets with the following code snippet.

3. 'Third, the inclusion of axis=1 is necessary, and what this means is that you want
to apply the function to every row and not every column. You could also apply a
function to every column. That almost never happens for analytics, but if you ever
needed to, you would have to change it to axis=0.

I have not included the output of this executed code. Give the code a try and study
its output:

def CalcLifeNoEd (row) :
return row.age - row.education num
adult df.apply(CalcLifeNoEd,axis=1)

This could have easily been done using the lambda function as well. The code that you will
need to run is the following. Give it a try:

adult df.apply(lambda r: r.age-r.education num,axis=1)

Applying a function - Analytic example 2
Which one is more important in terms of your financial success: education or life experience?

To answer this question, we could use adult df as a sample dataset and extract some
insight from the population of people in 1966. The code in the following screenshot first
creates two new columns in the data:

o lifeNoEd: The number of years for which you have lived without formal education

e capitalNet: The subtraction of capitalLoss from capitalGain

Overview of Pandas 37

To answer this question, we can check which one of education numor 1ifeNoEd
has a higher correlation with capitalNet. Doing this is very easy using Pandas,

as each Pandas DataFrame comes with a function, . corr (), which calculates the
Pearson correlation coeflicient for all the combinations of the numerical attributes in the
DataFrame. As we are only interested in the correlations between education num,
lifeNoEd, and capitalNet, the last line of the code has removed other columns
before running the . corr () function.

In [60]: M adult_df['lifeNoEd'] = adult_df.apply(
lambda r: r.age-r.education_num,axis=1)

adult_df['capitalNet'] = adult_df.apply(
lambda r: r.capitalGain - r.capitalloss,axis=1)

adult_df[['education_num', 'lifeNoEd', 'capitalNet']].corr()

Out[60]:
education_num lifeNoEd capitalNet
education_num 1.000000 -0.150452 0.117891
lifeNoEd -0.150452 1.000000 0.051490
capitalNet 0.117891 0.051490 1.000000

Figure 1.37 - Solution to the preceding example

From the output, you can see that while the correlation between 1ifeNoEd and
capitalNet is 0.051490, the correlation between education numand capitalNet
is higher, at 0.117891. So we have some evidence that education has a more effective role
in financial success than just life experience.

Now that you've learned how to effectively apply a function for analytics purposes, we
can move on to learn about another very powerful and useful function in Pandas that is
invaluable for data analytics and preprocessing.

The Pandas groupby function

This is one of the most useful analytics and preprocessing tools of Pandas. As the name
Groupby suggests, it groups your data by something. Normally, you would want to group
your data by categorical attributes.

If you are familiar with SQL queries, Pandas groupby is almost identical to SQL groupby.
For both SQL queries and Pandas queries, grouping your data by itself will not have any
added value or any output, unless it is accompanied by an aggregate function.

38 Review of the Core Modules of NumPy and Pandas

For instance, if you want to count the number of rows per marital status category,
you can use the Groupby function. See and try the following code:

adult df.groupby ('marital status').size()

You can group the DataFrame by more than one column as needed. To do so, you will
have to introduce the columns you are grouping the DataFrame by in the form of a list
of column names. For instance, the following code groups the data based on both the
marital status and sex columns:

adult df.groupby(['marital status',6 'sex']) .size()

Pay attention that the two columns are introduced to the function as a list of string values.

The only aggregate function that works without having to specify a column of interest

is .size (), as seen above. However, once you specify the column of interest that you
want to aggregate the data of, you could use any aggregate function that you can use on a
Pandas series or DataFrame. The following table shows a list of all the aggregate functions
that you can use:

Function Description Function Description

Number of non-null . Arithmetic median of
.count () . .median ()

observations values
.sum () Sum of values .min () Minimum of values
.mean () Mean of values .max () Maximum of values

Mean absolute

.mad () deviation .mode () Mode of values
Unbiased standard

.std () dgvi;atsizn standar .Var () Unbiased variance

sem () Unbiased standard _Describe () Count(), mean(), std(),
error of the mean and so on

.skew () Unbiased skewness .kurt () Unbiased kurtosis

Figure 1.38 - List of Pandas aggregate functions

Overview of Pandas 39

For instance, the following shows the code to group adult df bymartial status
and sex, and calculates the median of each group:

adult df.groupby(['marital status',6 'sex']) .age.median ()

As you study the code and its output, you can start appreciating the analytic value of the
.groupby () function. Next, we will look at an example that will help you appreciate this
valuable function even further.

Analytic example using Groupby

Were the race and gender of individuals in 1966 influential in their financial success?
Incidentally, adult df was collected in 1966, so we can use it to provide some insight
into this question. You may take different approaches in going about this. One approach,

as depicted in the following screenshot, is to group the data by race and sex and then
calculate the mean of capitalNet for the groups and study the differences.

In [62]: M adult_df.groupby(['race','sex"']).capitalNet.mean()

Out[62]: race sex
Amer-Indian-Eskimo Female 530.142857
Male 628.864583
Asian-Pac-Islander Female 727.583815
Male 1707 .440115
Black Female 471.142765
Male 627.268324
Other Female 218.385321
Male 1314.438272
White Female 508.219857
Male 1266.413112

Figure 1.39 - Solution to the preceding example

Another approach would be to group the data based on race, sex, and income and
then calculate the mean of £nlwgt. Give this one a try and see whether you come to
a different conclusion.

40 Review of the Core Modules of NumPy and Pandas

Pandas multi-level indexing

Let's first understand what multi-level indexing is. If you look at the output of grouping
a DataFrame by more than one column, the indexing of the output looks different than
normal. Although the output is a Pandas series, it looks different. The reason for this
dissimilarity is multi-level indexing. The following screenshot shows you the index of the
.groupby () output for the previous screenshot. You can see that the index of the series
has two levels, specifically, race and sex:

In [63]: M grb_result =adult_df.groupby(['race', 'sex']).capitalNet.mean()

print(grb_result.index)

MultiIndex([('Amer-Indian-Eskimo', 'Female'),

('Amer-Indian-Eskimo"', 'Male'),
('Asian-Pac-Islander', 'Female'),
('Asian-Pac-Islander’, 'Male'),

('Black', 'Female'),
('Black’, 'Male'),
('Other', 'Female'),
('Other’, 'Male'),
('White', 'Female'),
('White', 'Male')],
names=['race', 'sex'])

Figure 1.40 — An example of multi-level indexing

Now, let's learn a few useful and relevant functions that can help us with data analytics
and preprocessing. These functions are . stack () and .unstack ().

The .unstack() function

This function pushes the outer level of the multi-level index to the columns. If the
multi-level index only has two levels, after running . unstack (), it will become
single-level. Likewise, if the . unstack () function is run for a series with a multi-level
index, the output will be a DataFrame whose columns are the outer level index that was
pushed. For instance, the following screenshot demonstrates the change in appearance
and structure of the output when the .unstack () function is executed:

Overview of Pandas 41

In [64]: M grb_result =adult_df.groupby(['race', 'sex']).capitalNet.mean()

grb_result
Out[64]: race sex

Amer-Indian-Eskimo Female 530.142857
Male 628.864583

Asian-Pac-Islander Female 727.583815
Male 1707 .440115

Black Female 471.142765
Male 627.268324

Other Female 218.385321
Male 1314.438272

White Female 508.219857
Male 1266.413112

Name: capitalNet, dtype: float64

In [65]: M grb_result.unstack()

Out[65]:
sex Female Male

race

Amer-Indian-Eskimo 530.142857 628.864583
Asian-Pac-Islander 727.583815 1707.440115
Black 471.142765 627.268324

Other 218.385321 1314.438272

White 508.219857 1266.413112

Figure 1.41 - Example of the .unstack() function

If there are more than two levels, executing . unstack () more than once will, one by
one, push the outer level of the index to the columns. For instance, you can see in the
following screenshot that the code in the first chunk results in grb_result, which is a
series with a three-level index. The second chunk of code executes .unstack () once
and the outer level of the index in grb_result, which is income, is pushed to the
columns. The third chunk of code, however, executes .unstack () twice, and the second
outer level of the index in grb_result, which is sex, joins income in the columns.

42 Review of the Core Modules of NumPy and Pandas

In [66]: M mlt_seris =adult_df.groupby(['race', 'sex', "income"']).fnlwgt.mean()

mlt_seris
Out[66]: race sex income
Amer-Indian-Eskimo Female <=50K 0.001764
>50K 0.002395
Male <=50K 0.002046
>50K 0.001954
Asian-Pac-Islander Female <=50K 0.002398
>50K 0.002305
Male <=50K 0.002652
>50K 0.002762
Black Female <=50K 0.003454
>50K 0.003331
Male <=50K 0.003922
>50K 0.003971
Other Female <=50K 0.002803
>50K 0.002593
Male <=50K 0.003478
>50K 0.003310
White Female <=50K 0.002969
>50K 0.002978
Male <=50K 0.003074
>50K 0.003025
Name: fnlwgt, dtype: float64
In [67]: M mlt_seris.unstack()
out[67]:
income <=50K >50K
race sex
Amer-Indian-Eskimo Female 0.001764 0.002395
Male 0.002046 0.001954
Asian-Pac-Islander Female 0.002398 0.002305
Male 0.002652 0.002762
Black Female 0.003454 0.003331
Male 0.003922 0.003971
Other Female 0.002803 0.002593
Male 0.003478 0.003310
White Female 0.002969 0.002978
Male 0.003074 0.003025
In [68]: M mlt_seris.unstack().unstack()
out[68]:
income <=50K >50K
sex Female Male Female Male

race

Amer-Indian-Eskimo 0.001764 0.002046 0.002395 0.001954
Asian-Pac-Islander 0.002398 0.002652 0.002305 0.002762
Black 0.003454 0.003922 0.003331 0.003971

Other 0.002803 0.003478 0.002593 0.003310

White 0.002969 0.003074 0.002978 0.003025

Figure 1.42 — Another example of the .unstack() function with two levels of indexing

Overview of Pandas 43

As an index can be multi-level in Pandas, columns can also have multiple levels. For
instance, in the first chunk of the following screenshot, you can see that the output
DataFrame has two levels. The second chunk of code outputs the columns of the
DataFrame. You can see that the columns have the two levels that were pushed from the
index using .unstack():

In [69]: mlt_seris.unstack().unstack()

Out[69]:
income <=50K >50K

sex Female Male Female Male

race

Amer-Indian-Eskimo 0.001764 0.002046 0.002395 0.001954
Asian-Pac-Islander 0.002398 0.002652 0.002305 0.002762
Black 0.003454 0.003922 0.003331 0.003971

Other 0.002803 0.003478 0.002593 0.003310

White 0.002969 0.003074 0.002978 0.003025

In [70]: mlt_df= mlt_seris.unstack().unstack()
mlt_df.columns

Out[70]: MultiIndex([('<=50K', 'Female'),
('<=50K', 'Male'),
('>50K"', 'Female'),
('>5eK’", '"Male')],
names=['income', ‘'sex'])

Figure 1.43 - An example of multi-level columns

The .stack() function

The opposite of .unstack () is . stack (), where the outer level of the columns

is pushed to be added as the outer level of the index. For example, in the following
screenshot, you can see that m1t_df, which we saw has two-level columns, has
undergone . stack () twice. The first . stack () function pushed the income level to
the index, and the second . stack () function pushed the sex level to the index. This
made the data be presented as a series as there is only one column of data.

44 Review of the Core Modules of NumPy and Pandas

In [71]: mlt_df.stack()

Out[71]:

race

income <=50K >50K

sex

Amer-Indian-Eskimo

Asian-Pac-Islander

Black

Other

White

Female 0.001764 0.002395

Male 0.002046 0.001954

Female 0.002398 0.002305

Male 0.002652 0.002762

Female 0.003454 0.003331

Male 0.003922 0.003971

Female 0.002803 0.002593

Male 0.003478 0.003310

Female 0.002969 0.002978

Male 0.003074 0.003025

In [72]: mlt_df.stack().stack()

Out[72]: race

sex

Amer-Indian-Eskimo Female

Male

Asian-Pac-Islander Female

Black

Other

White

dtype: float64

Male

Female

Male

Female

Male

Female

Male

income
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K

[OIER R RO RE R RO RE R RN R RO R R R B R I)

Figure 1.44 — Example of the .stack() function

.001764
.002395
.002046
.001954
.002398
.002305
.002652
.002762
.003454
.003331
.003922
.003971
.002803
.002593
.003478
.003310
.002969
.002978
.003074
.003025

Overview of Pandas 45

Multi-level access

The value access in series or DataFrames with multi-level indexes, or DataFrames with
multi-level columns, is slightly different. Exercise 2 at the end of this chapter is designed to
help you learn that.

In this subsection, we gathered sizable exposure to multi-level indexing and columns.
Now we are moving on to another set of functions that are somewhat similar to the
.stack () and .unstack () functions, but different at the same time. These functions
are .pivot () and .melt ().

Pandas pivot and melt functions

In a nutshell, .pivot () and .melt () help you to switch between two forms of
two-dimensional data structures: wide form and long form. The following figure depicts
the difference between the two forms. The wide form is what you are typically used to if you
are a spreadsheet user. The wide form uses many columns to introduce new dimensions in
the dataset. The long form, however, uses a different logic of data structure and uses one
index column to include all the relevant dimensions. The .melt () function, as you may
picture it in your mind based on the meaning of the word melt, can easily reshape a dataset
from the wide form to the long form. The . pivot () function can do the opposite.

To practice and learn these two functions, we will read wide . csv using Pandas into
wide df, and read long. csv using Pandas into long_df.

ReadingDateTime Species Value

0 01/01/2017 00:00 NO 35
1 01/01/2017 01:00 NO 38
2 01/01/2017 02:00 NO 22
3 01/01/2017 00:00 NO2 308
4 01/01/2017 01:00 NO2 315

ReadingDateTime NO NO2 NOX PM10 PM2.5

01/01/2017 02:00 NO2 273
0 01/01/201700:00 35 308 362 357 31.0

01/01/2017 00:00 NOX 36.2
1 01/01/201701:00 36 315 370 285 3.0
01/01/2017 01:00 NOX 370
2 01/01/201702:00 22 273 307 227 31.0
01/01/2017 02:00 NOX 307

w @ =N o

e 01/01/201700:00 PM10 357

10 01/01/2017 01.00 PM10 285
1 01/01/2017 02:00 PM10 227
12 01/01/2017 00:00 PM25 31.0
13 01/01/2017 01:00 PM25 31.0
14 01/01/201702:00 PM25 31.0

long df

Figure 1.45 - Comparison of the long and wide forms

46 Review of the Core Modules of NumPy and Pandas

To switch between the long and the wide format, all you need to do is to provide the right
input to these functions. The following screenshot shows the application of . melt () on
wide df, reshaping it into a long format. In the second chunk of code, you can see that
.melt () requires four inputs:

o 1id vars: This input takes the identifying columns.
o value vars: This input takes the columns that hold the values.

o var name: This input takes the name you would like to give to the identifying
column that will be added to the long format.

« value name: This input takes the name you would like to give to the new value
column that will be added to the long format.

The following screenshot shows an example of using the .melt () function to switch the
data from wide format to long format:

In [73]: M wide_df = pd.read_csv('wide.csv')
wide_df

out[73]:
ReadingDateTime NO NO2 NOX PM10 PM2.5

0 01/01/2017 00:00 3.5 308 36.2 357 31.0
1 01/01/201701:00 3.6 315 37.0 285 31.0

2 01/01/2017 02:00 2.2 273 307 227 31.0

In [74]: M wide_df.melt(id_vars='ReadingDateTime",
value_vars=['NO', 'NO2', 'NOX', 'PM1@', 'PM2.5'],
var_name='Species’,
value_name='Value')

out[74]:

ReadingDateTime Species Value
0 01/01/2017 00:00 NO 3.5
1 01/01/2017 01:00 NO 3.6
2 01/01/2017 02:00 NO 22
3 01/01/2017 00:00 NO2 30.8
4 01/01/2017 01:00 NO2 315
5 01/01/2017 02:00 NO2 273
6 01/01/2017 00:00 NOX 36.2
7 01/01/2017 01:00 NOX 37.0
8 01/01/2017 02:00 NOX 30.7
9 01/01/2017 00:00 PM10 357

10 01/01/2017 01:00 PM10 285
11 01/01/2017 02:00 PM10 227
12 01/01/2017 00:00 PM25 31.0
13 01/01/2017 01:00 PM25 31.0

14 01/01/2017 02:00 PM25 31.0

Figure 1.46 — Example of using the .melt() function to switch the data from wide format to long format

Overview of Pandas 47

The .pivot () function reshapes a DataFrame from the long form to the wide form. For
instance, the following screenshot shows the application of the function on long df.
Unlike, .melt (), which requires four inputs, .pivot () needs three:

+ index: This input takes what will be the index of the wide form.

« columns: This input takes the columns of the long form that will be expanded to
create the columns for the wide form.

« values: This input takes the column in which the long form keeps the values.

In [75]: M long_df = pd.read_csv('long.csv')

long_df
Out[75]:

ReadingDateTime Species Value
0 01/01/2017 00:00 NO 3.5
1 01/01/2017 01:00 NO 3.6
2 01/01/2017 02:00 NO 22
3 01/01/2017 00:00 NO2 30.8
4 01/01/2017 01:00 NO2 315
5 01/01/2017 02:00 NO2 27.3
6 01/01/2017 00:00 NOX 36.2

7 01/01/2017 01:00 NOX 37.0
8 01/01/2017 02:00 NOX 30.7
9 01/01/2017 00:00 PM10 35.7
10 01/01/2017 01:00 PM10 28.5
11 01/01/2017 02:00 PM10 227
12 01/01/2017 00:00 PM2.5 31.0
13 01/01/2017 01:00 PM2.5 31.0
14 01/01/2017 02:00 PM2.5 31.0

In [76]: M long_df.pivot(index='ReadingDateTime",
columns="Species"',
values="'Value'")

out[76]:
Species NO NO2 NOX PM10 PM2.5

ReadingDateTime

01/01/2017 00:00 3.5 30.8 36.2 357 31.0
01/01/2017 01:00 3.6 315 37.0 285 31.0
01/01/2017 02:00 2.2 27.3 30.7 227 31.0

Figure 1.47 - Example of using the .pivot() function to switch the data from the long format
to the wide format

48 Review of the Core Modules of NumPy and Pandas

Summary

Congratulations on your excellent progress so far! In this chapter, you first learned about the
Jupyter Notebook, which is the UI we will be using throughout this book. Then, you learned
about the most important functions of the two Python core modules for data analytics and
data preprocessing. In the next chapter, you will learn about the functions of another core
module: Matplotlib. This module will be our core module for visualization needs.

Before moving on to the next chapter, I highly encourage you to spend some time and
meaningfully engage with the following exercises.

Exercises

1. Usethe adult.csv dataset and run the code shown in the following screenshots.
Then, answer the questions that follow:

In [1]: M dimport pandas as pd
import numpy as np

In [2]: M adult_df = pd.read_csv('adult.csv')
adult_df.set_index(np.arange(10000,42561),inplace=True)
In [3]: M adult_df.iloc[5:7,0:2]

Out[3]:
age workclass

10005 37 Private
10006 49 Private

In [4]: M adult_df.loc['10005':'10007', 'age': " 'fnlwgt']

out[4]:
age workclass fnlwgt
10005 37 Private 284582
10006 49 Private 160187

10007 52 Self-emp-not-inc 209642

Figure 1.48 - Exercise 1

a) Use the output to answer what is the difference in behavior of . loc and .iloc
when it comes to slicing?

b) Without running, but just by looking at the data, what will be the output of
adult df.loc['10000':'10003', 'relationship':'sex']?

¢) Without running, but just by looking at the data, what will be the output of
adult df.iloc[0:3, 7:9]7

Exercises 49

Use Pandas to read adult.csvinto adult df and then use the . groupby ()
function to run the following code and create the multi-index series mlt_sr:

import pandas as pd

adult df = pd.read csv('adult.csv')

mlt seris =adult df.groupby(['race', 'sex',6 'income']) .
fnlwgt.mean ()

mlt seris

a) Now that you have created a multi-index series, run the following code, study the
outputs, and answer the following questions:

Run the following code first and then answer this question: When we use . iloc []
for a multi-index series or DataFrame, what should we expect?

print (mlt seris.iloc[0])

print (mlt seris.iloc[1])

print (mlt seris.iloc([2])

b) Run the following code first and then answer this question: When we use
.1loc [] to access the data of one of the innermost index levels of the multi-index
series, what should we expect?

mlt seris.loc['Other']

¢) Run the following code first and then answer this question: When we use
.loc [] to access the data of one of the non-innermost index levels of a multi-
index series, what should we expect?

When you run either line of the following code, you will get an error, and that is the
point of this question. Study the error and try to answer the question:

mlt seris.loc['Other']

mlt seris.loc['<=50K']
d) Run the following code first and then answer this question: How does the use of
.loc[] or .iloc [] differ when working with a multi-index series or a DataFrame?

print (mlt seris.loc['Other'] ['Female'] ['<=50K'])
print (mlt seris.iloc[12])

50 Review of the Core Modules of NumPy and Pandas

3. For this exercise, you need to use a new dataset: billboard. csv. Visit
https://www.billboard.com/charts/hot-100 and see the latest song
rankings of the day. This dataset presents information and rankings for 317 song
tracks in 80 columns. The first four columns are artist, track, time, and
date_e. The first columns are intuitive descriptions of song tracks. The date e
column shows the date that the songs entered the hot 100 list. The rest of the 76
columns are song rankings at the end of each week from "wl" to "w76". Download
and read this dataset using Pandas and answer the following questions:

a) Write one line of code that gives you a great idea of how many null values each
column has. If any columns have no non-null values, drop them.

b) With a for loop, draw and study the values in each of the remaining W columns.

¢) The dataset is in wide format. Use an appropriate function to switch to a long
format and name the transformed DataFrame mlt df.

d) Write code that shows mlt df every 1,200 rows.
e) Run the following code first and answer this question: Could this also have been
done by using Boolean masking?

mlt df.query('artist == "Spears, Britney"')

f) Use either the approach in e or the Boolean mask to extract all the unique songs
that Britney Spears has in this dataset.

g) Inmlt_df, show all of the weeks when the song "Oops!.. I Did It Again" was in
the top 100.

4. We will use LagnData . csv for this exercise. Each row of this dataset shows an
hourly measurement recording of one of the following five air pollutants: NO, NO2,
NOX, PM10, and PM2.5. The data was collected in a location in London for the
entirety of the year 2017. Read the data using Pandas and perform the following tasks:

a) The dataset has six columns. Three of them, named 'Site', 'Units', and
'Provisional or Ratified' are not adding any informational values as they are
the same across the whole dataset. Use the following code to drop them:

air df.drop(columns=['Site', 'Units', 'Provisional or
Ratified'], inplace=True)

b) The dataset is in a long format. Apply the appropriate function to switch it to the
wide format. Name the transformed Dataframe pvt df.

c) Draw and study the histogram and boxplots for columns of pvt_df.

https://www.billboard.com/charts/hot-100

Exercises 51

5. We will continue working with LagnData . csv:

a) Run the following code, see its output, and then study the code to answer what
each line of this code does:
air df = pd.read csv('LagnData.csv')

air df.drop(columns=['Site', 'Units', 'Provisional or
Ratified'], inplace=True)

datetime df = air df.ReadingDateTime.str.split ('
', expand=True)

datetime df.columns = ['Date', 'Time']
date df = datetime df.Date.str.split('/', expand=True)
date df.columns = ['Day', 'Month', 'Year']

air df = air df.join(date df) .join(datetime df.Time) .
drop (columns=['ReadingDateTime', 'Year'])

air df
b) Run the following code, see its output, and then study the code to answer what
this line of code does:

air df = air df.set

index (['Month', 'Day', 'Time', 'Species'])

air df
¢) Run the following code, see its output, and then study the code to answer what
this line of code does:

air df.unstack()

d) Compare the output of the preceding code with pvt df from Exercise 4. Are
they the same?

e) Explain what the differences and similarities are between the pair
.melt ()/.pivot () and the pair .stack ()/.unstack ()?

f) If you were to choose one counterpart for .melt () between
.stack ()/.unstack (), which one would you choose?

2

Review of
Another Core
Module - Matplotlib

Matplotlib is our go-to module for creating visualizations from data. Not only can this
module draw many different plots, but it also gives us the capability to design and tailor
the plots to our needs. Matplotlib will serve our data analytics and data preprocessing
journey by providing a great number of functions for effective visualizations.

Before we start reviewing this valuable module, I would like to let you know that this
chapter is not meant to be a comprehensive teaching guide for Matplotlib, but rather

a collection of concepts, functions, and examples that will be invaluable as we cover data
analytics and data preprocessing in future chapters.

We have actually started using this module in the previous chapter. The Pandas plot
functions that we introduced in Chapter 1, Review of the Core Modules of NumPy
and Pandas, under the Pandas functions to explore a DataFrame are section, actually
Matplotlib visuals that Pandas uses internally.

54 Review of Another Core Module - Matplotlib

In this chapter, I will first introduce the main plots that Matplotlib can draw. Following
that, I will cover some design and altering functionalities of the visuals. Then, we will
learn about the invaluable subplotting capability of Matplotlib that will allow us to create
more complex and effective visualizations.

The following topics will be covered in this chapter:

« Main plots
« Moditying the visuals
o Subplots

 Resizing visuals and saving them

Technical requirements

You will be able to find all of the code and the dataset that is used in this chapter in this
book's GitHub repository:

https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python

Each chapter in this book will have a folder that contains all of the code and datasets used.

Drawing the main plots in Matplotlib

Drawing visuals with Matplotlib is easy. All you need is the right input and a correct
understanding of the data. The main five visuals that we use in Matplotlib to draw are
histograms, boxplots, bar charts, line plots, and scatterplots. Let's introduce them with
the following examples.

Summarizing numerical attributes using histograms
or boxplots

We already draw histograms using Pandas, which we learned about in the Pandas
functions to explore a DataFrame section in the previous chapter. However, the same plot
can also be drawn using Matplotlib. The following screenshot shows the best and most
common way to import Matplotlib. There are two points here:

1. First, you want to use the plt alias, as everyone else uses that.

2. Second, you want to import matplotlib.pyplot instead of just matplotlib,
as everything we will need from matplotlib is under .pyplot.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Drawing the main plots in Matplotlib

55

The second chunk of code in the following screenshot shows how easy it is to draw a
histogram using Matplotlib. All you need to do is input the data you want to be plotted
intoplt.hist (). The lastline of code, p1t . show (), is what I always add to force
Jupyternotebook to only show the plot I want without the rest of the outputs that
come with the plot. Runplt.hist (adult_df.age) by itself to see the difference.

In [1]: M |#from previous chapter
import pandas as pd

import numpy as np
adult_df = pd.read_csv('adult.csv")

In [2]: M |import matplotlib.pyplot as plt

In [3]: M plt.hist(adult_df.age)
plt.show()

6000 -

5000

4000 A

3000 A

2000 -

1000 A

20 30 40 50 60 70 80 90

Figure 2.1 - Drawing the histogram of adult_df.age using Matplotlib

56 Review of Another Core Module - Matplotlib

The following screenshot, in turn, shows the boxplot of the same data using p1t.
boxplot (). I have also requested the boxplot to be drawn horizontally by specifying
vert=False so the boxplot and the preceding histogram can be compared visually.

In [4]: M plt.boxplot(adult_df.age, vert=False)
plt.show()

Figure 2.2 - Drawing the box plot of adult_df.age using Matplotlib

So far, we've learned two of the main plots of the Matplotlib module. Next, we will cover
the line plot.

Observing trends in the data using a line plot

A line plot, not exclusively, but very often, is applied to time series data to show trends.
A great example of time series data is stock prices. For instance, the stock price of the
company Amazon changes minute by minute, and if someone is interested to see the
trend of changes in these stock prices, they can use a line plot to do that.

Drawing the main plots in Matplotlib

57

We are going to use Amazon and Apple stock prices to showcase the application of line
plots in illustrating trends. The following code shows the loading of that data with the
Amazon Stock.csvand Apple Stock.csv files using the pd.read csv ()
function. These files contain the stock prices of Amazon and Apple from 2000 to 2020:

amz_df
apl df

pd.read csv('Amazon Stock.csv')

pd.read csv('Apple Stock.csv')

The following screenshot shows us using the p1t .plot () function to draw the line plot
of the closing prices of the stocks:

In [6]:

M plt.plot(amz_df.Close)
plt.plot(apl_df.Close)
plt.show()

3500 -1

3000 A

2500

2000 -

1500 -

1000 -

500

0 - — —

T T T

0 1000 2000 3000 4000 5000

Figure 2.3 - Drawing the line plots of Amazon and Apple stock trends

Next, we are going to learn about scatterplots.

58 Review of Another Core Module - Matplotlib

Relating two numerical attributes using a scatterplot

Scatterplots can be drawn using the plt . scatter () function. This function is great
for examining the relationship between numerical attributes. For instance, the following
screenshot shows us the relationship between the prices of Amazon and Apple stocks in
the years from 2000 to 2020. Each dot in this scatterplot represents one trading day from
2000 to 2020.

In [7]: M plt.scatter(apl_df.Close,amz_df.Close)

plt.show()

3500 -

3000 -

2500 -

2000 -

1500 A1

1000 A1

500 1

0.

T T T T T

0 0 40 € 80 100 120 140

Figure 2.4 - Drawing the scatterplots of Amazon and Apple stock trends

So far in this chapter, we have been introduced to the main plots of Matplotlib and their
analytics functionalities. Next, we will learn how to edit the visuals in simple but effective
ways.

Modifying the visuals

The Matplotlib module is great at allowing you to modify the plots so that they serve your
needs. The first thing you need before modifying a visual is to know the name of the part
of the visual that you are intending to modify. The following figure shows you the anatomy
of these visuals and is a great reference to find the name of the part you intend to modify.

Modifying the visuals 59

In the following examples, we will see how to modify the title and markers of the visuals,
and the labels and the ticks of the axes of the visuals. These are the most frequent
modifications that you will need. If you found yourself in situations where you need to
modify other parts too, how you would go about those are very similar, and so long as you

know the name of what you plan to modify, you are one Google search away from finding
how it is done.

s Anato of a Matp)otlib Figure
Title Blue Tine
Red Lipe

Legend
markers
4_
. C) © o © © O o O
yticks o
O (o] Q» o

o
QO
©
B
X
©
>—
ylabel 2]
1 -
I Line plot
0 : . . .
0 Q) 2 3 4 5
xticks

xlabel

Figure 2.5 - Anatomy of Matplotlib visuals

60 Review of Another Core Module - Matplotlib

Adding a title to visuals and labels to the axis

To modify any part of a Matplotlib visual, you need to execute a function that can do the
modifying trick. For instance, to add a title to a visual, you need to use plt.title ()
after a visual is executed. Also, to add a label to the x axis or the y axis, you can employ
plt.xlabel () orplt.ylabel().

The following screenshot shows the application of p1t.title () and plt.ylabel ()
to add a title to the visual and add a label to the y axis respectively:

In [8]: M plt.plot(amz_df.Close)
plt.plot(apl_df.Close)
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price')
plt.show()

Line plots of Amazon and Apple stock prices from 2000 to 2020
3500 1

3000 +

2500 1

2000 A

1500 1

Closing Price

1000 1

500 A
04 S —e - el

0 1000 2000 3000 4000 5000
Figure 2.6 - Example of adding a title and label to a Matplotlib visual

Having learned how to add titles and labels, we will now turn our attention to learn how
to add and modify legends.

Adding legends

For adding legends to a Matplotlib visual, there are two steps:

1. First, you need to add a relevant label as you introduce each segment of the data
to Matplotlib.

2. Second, after executing the visuals, you need to execute plt.legend ().

Modifying the visuals 61

The following screenshot depicts how these two steps are taken to add a legend to the
line plot:

In [9]: M plt.plot(amz_df.Close, label='Amazon')
plt.plot(apl_df.Close, label='Apple')
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price")
plt.legend()
plt.show()

Line plots of Amazon and Apple stock prices from 2000 to 2020

3500 { = Amazon
— Apple

3000 -
2500 A
2000 -

1500 -

Closing Price

1000 -

500 -

— -

0

T T T

0 1000 2000 3000 4000 5000
Figure 2.7 - Example of adding a legend to a Matplotlib visual

Next, we will learn about how to edit the xticks or the yticks.

Modifying ticks
Modifying the ticks is perhaps the most complex of all modifications of Matplotlib visuals.

Let's discuss how this is done as it pertains to a line plot, and you can extrapolate that to
the other visuals easily.

You need to know a little about the workings of the p1t .plot () function before you
can successfully modify the ticks. When a line plot is first introduced, you either explicitly
introduce the x axis to the p1t . plot () function, or the function assumes integer values
starting from zero to the number values inputted for plotting minus one. As we did not
explicitly introduce the x values in the past couple of line plots (see previous), the plt.
plot () function has assumed the integer values for the x axis. However, pay attention to
the outputted visuals where only x values of 0, 1000, 2000, 3000, 4000, and 5000 are
being represented.

62 Review of Another Core Module - Matplotlib

The following screenshot shows how instead of representing all the trading days with six

integers, you could represent them with as many as you want. The integers you want to be
represented in the ticks are simply introduced to the p1t .xticks () function. Also, you
can use the property rotation to change the angle of the ticks, so they are more legible.

In [10]:

M plt.plot(amz_df.Close, label='Amazon')

plt.plot(apl_df.Close, label='Apple‘)

plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price")
plt.xticks([0,500,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500],

rotation=90)

plt.legend()
plt.show()

Closing Price

Line plots of Amazon and Apple stock prices from 2000 to 2020

3500 { =—— Amazon
—— Apple
3000 A
2500 A
2000 A
1500 1
1000 -
500 1
0 Se- saamnedl
° g g8 8288888818 8sgs
g 8 R B R B & ¢ R 1R

Figure 2.8 - Example of modifying the ticks of a Matplotlib visual - level 1

How about if we want to re-represent these integers that represent trading days with their
trading day's actual dates? This can easily be done using the p1t .xticks () function.
After introducing the integers that you want to be represented, you need to also introduce
the replacing counterparts of these integers to the function.

The code in the following screenshot provides an example of how this can be done:

1. First, the integers that we want represented are inputted as
np.arange (0, len(amz_df),250). Pay attention to the fact that instead
of typing the integers, the code has used the np . arange () function to produce
those integers. Run np . arange (0, len (amz_df) ,250) separately and study
the output.

Modifying the visuals 63

2. Second, the replacing counterparts, which are the dates of these trading days,
are also introduced to plt .xticks (). They are introduced using the column
Datein amz_df.Theamz_ df.Date[0:1len(amz_df) :250] code ensures
that the replacing representations are their relevant counterparts in the integer
representation. Pay attention — we have used amz_df, as we know the column date
for amz_df and apl df are identical.

In [11]: M plt.plot(amz_df.Close, label='Amazon')
plt.plot(apl_df.Close, label='Apple"')
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price')
plt.legend()
plt.xticks(np.arange(0,len(amz_df),250),amz_df.Date[0:1len(amz_df):250],

rotation=90)

plt.show()

Line plots of Amazon and Apple stock prices from 2000 to 2020

3500 { =—— Amazon
— Apple
3000 A
2500 A
v
k¥
& 2000 A
o
]
§1500'
(&)
1000
500
0 — p— N e
—T T
oNN MO0 "N MTNON~N 0N O
== - - - - N = = e e e e R e R B R]
OO0 0000000000000 00 00 O
R
m @ CWMO WM~ NODONST NN NSO WINN
:NSMNNN:—C:—Ov—C-—O\\\\NNNNHHH
8 Qaddaddaq Aa4d4d384ad

Figure 2.9 - Example of modifying the ticks of a Matplotlib visual - level 2

Pay attention to the fact that the number 250 in the preceding code had been reached
by trial and error. We were looking for an increment that would not make the xticks too

crowded or too sparse. Try running the code with alternative increments and study the
behavior of the visual.

64 Review of Another Core Module - Matplotlib

Modifying markers

The only visuals that we presented here that use markers are scatterplots. To modify the
color and the shape of the markers, all you need to do is specify them when executing
plt.scatter (). This function takes two inputs that it uses to draw the visual the way
you would like. The marker input takes the shape of the marker you intend to draw, and
the color input takes its color. The following screenshot shows how to change the default
blue dots of Matplotlib scatterplots to green crosses by inputting marker="x" and
color="'green'. You cannot see the change of the colors in print as the book is

printed in grayscale, but you will see the change in color if you try out the code yourself.
The code also shows another example of using plt.title (), plt.xlabel (), and
plt.ylabel () to modify the title of the visual and the labels of its axes.

In [12]: M |plt.scatter(apl_df.Close,amz_df.Close, marker = 'x', color='green')
plt.title('Amazon and Apple stock prices in 2000 to 2020')
plt.xlabel('Apple price ($)")
plt.ylabel('Amazon price ($)')
plt.show()

Amazon and Apple stock prices in 2000 to 2020
3500 - ﬁ
3000 -

2500

2000 A

1500 H

Amazon price ($)

1000 H

500

.

T T T

0 20 40 60 80 100 120 140
Apple price ($)

Figure 2.10 - Example of modifying the markers in a Matplotlib visual

Subplots 65

There are many marker shapes and marker color options that you can use. To study these
options, visit the following web pages from the Matplotlib official website:

o Markers: https://matplotlib.org/stable/api/markers api.html

o Colors: https://matplotlib.org/stable/gallery/color/named
colors.html

So far, we have learned how to create visuals and modify them using Matplotlib. Next,
we will learn another useful function that allows us to organize multiple visuals next to
one another.

Subplots

Drawing a subplot can be a very useful data analytics and data preprocessing tool. We use
subplots when we want to populate more than one visual and organize them next to one
another in a specific way.

The following screenshot shows an example of subplotting. The logic of creating subplots
in Matplotlib is unique and interesting. To draw a subplot, you first need to plan and
decide the number of visuals you intend to have and their matrix-like organization. For
instance, the following example has two visuals, and the visuals are organized in a matrix
with two rows and one column. Once you know that, you can start coding.

Let's do this together step by step:

1. 'The logic of Matplotlib subplots is that you use a line of code to announce you are
about to start giving the code for each specific visual. The p1t .subplot (2,1,1)
line says that you want to have a subplot with two rows and one column, and you
are about to run the code for the first visual.

2. Once you are done with the first visual, you run another plt . subplot (), but this
time you announce your intention to start another visual. For instance, by running
plt.subplot (2,1, 2), you are announcing that you are done with the first
visual, and you are about to start introducing the second visual.

Pay attention to the fact that the first two inputs of p1t . subplot () stay the same
throughout subplotting, as they specify the matrix-like organization of the subplots and
they should be the same throughout.

https://matplotlib.org/stable/api/markers_api.html
https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/named_colors.html

66 Review of Another Core Module - Matplotlib

Theplt.tight layout () function is best used after you are done with all the visuals
and are about to show the whole subplots. This function makes sure that each visual

fits within its own boundaries and there are no overlaps. Run the following code block
without plt.tight layout () and study the differences:

In [13]: M plt.subplot(2,1,1)
plt.hist(adult_df.age)
plt.title('Histogram')
plt.ylabel('Age")

plt.subplot(2,1,2)
plt.boxplot(adult_df.age, vert=False)
plt.title('Boxplot")
plt.yticks([1],['Age'])

plt.tight_layout()

plt.show()
Histogram
6000
v 4000
)
2000
0
20 30 40 50 60 70 80 90
Boxplot
roe { — T} Ao

Figure 2.11 - Example of using subplots

So far, we have learned how to draw and design the visuals and then modify them.
However, we have yet to learn how to resize them so we can fit them for our needs. Next,
we will learn how to resize and save them on our computers.

Resizing visuals and saving them 67

Resizing visuals and saving them

It is very simple to save Matplotlib visuals with any resolution that you would like.
However, before adjusting the resolution and saving the visuals, you might want to resize
the visual. Let's first take a look at how we can resize the visuals and then see how we can
save the visuals with specific resolutions.

Resizing

Matplotlib uses a default visual size (6x4 inches) for all its visual output, and from time

to time, you may want to adjust the size of the visuals (especially if you have subplots as
you may need a larger output). To adjust the visual size, the easiest way is to run p1t.
figure (figsize=(6,4)) before starting to request any visuals. Of course, adding
the mentioned code will not change the size as the inputted values are the same as the
Matplotlib default size. To observe the difference, add plt . figure (figsize=(9,6))
to the code in the previous screenshot and run it to study the differences. Also, change the
values a few times to find the values that work best for you.

Saving

All you need to use to save and adjust the resolution of the output figures is the
plt.savefig () function. This function takes the name of the file you would like to
create for saving the visual and also its resolution in terms of dots per inch (DPI). The
higher the DPI value of a figure, the higher its resolution. For instance, running p1t.
savefig('visual.png',dpi=600) saves the visual in a file named visual . png
in your computer under the same directory where your Jupyter Notebook file is located.
Of course, the DPI resolution of the saved visual will be 600.

Example of Matplotilb assisting data
preprocessing

A great way to get to know a new dataset is to visualize its columns. The numerical
columns are best visualized using either histograms or boxplots. However, the
combination of the two is the best, especially when the boxplot is drawn vertically. Use
the subplot function of Matplotlib to draw the histogram and boxplot of all the numerical
columns of adult_df in a 2x5 matrix-like visual. Make sure that the histogram and the
boxplot of each column are in the same subplot column. Also, save the visual in a file
named ColumnsVsiaulization.png with a resolution of 900 DPI.

68 Review of Another Core Module - Matplotlib

The following code shows the solution for this example:

Numerical colums = ['age',6 'education num', 'capitalGain',
'capitalLoss', 'hoursPerWeek']

plt.figure(figsize=(20,5))

for i,col in enumerate (Numerical colums) :
plt.subplot (2,5,1+1)
plt.hist (adult df [col])
plt.title(col)

for i,col in enumerate (Numerical colums) :
plt.subplot (2,5,1+6)
plt.boxplot (adult df [col],vert=False)
plt.yticks ([1)

plt.tight layout ()

plt.savefig('ColumnsVsiaulization.png', dpi=900)

After running the code, if it is successfully executed, check the directory that your Jupyter
Notebook file is in, and the ColumnsVisualization.png file must be added there.
Open the file and enjoy the high-quality visual that was created by Matplotlib.

age education_num capitalGain capitalLoss hoursPerWeek
6000 10000 30000 30000

15000
8000

20000 20000

6000 10000

4000

2000 10000 10000 000

2000

o 0) 0 0
20 40 60 80 25 50 75 100 125 150 0 20000 40000 60000 80000 100000 0 1000 2000 3000 4000 0 20 4 6 8 100

—{ o ccoo b— —— (—w 0 0 ° @ ouoE——C0 @ © |

20 40 60 80 25 50 75 100 125 150 0 20000 40000 60000 80000 100000 0 1000 2000 3000 4000 0 20 4 6 8 100

Figure 2.12 - Histogram and boxplot of the numerical attributes of adult_df

Congratulations on successfully finishing this chapter! Now you are equipped with
visualization tools that will prove very handy for data analytics and data preprocessing.

Summary

In this chapter, you learned how to create the five main Matplotlib visuals and design
them for your needs. You also learned how to create more complex visuals by organizing
them in one visual using the Matplotlib subplot functionality. Ultimately, you also learned
how to resize the visuals and save them with your desired resolution for later use.

Exercises 69

In the next chapter, you will be given some essential lessons about data, along with
concepts that are necessary for successful data preprocessing. However, before moving
on to the next chapter, take some time and solidify and improve your learning using the
following exercises.

Exercises

1.

Use adult . csv and Boolean masking to answer the following questions:

a. Calculate the mean and median of education-num for every race in the data.

b. Draw one histogram of education-num that includes the data for each race in
the data.

c. Draw a comparative boxplot that compares the education-num for each race.
d. Create a subplot that puts the visual from b) on top of the one from c).

Repeat the analysis on 1, a), but this time use the groupby function.

a. Compare the runtime of using Boolean masking versus groupby (hint: you can
import the module time and use the . time () function).

If you have not already done so, solve Exercise 4 in the previous chapter. After you
have created pvt_df for Exercise 4, run the following code:

import seaborn as sns

sns.pairplot (pvt df)

The code outputs what is known as a scatter matrix. This code takes advantage

of the Seaborn module, which is another very useful visualization module. To
practice subplots and resizing, recreate what Seaborn was able to do with sns.
pairplot () using Matplotlib (hint: doing this with p1t . subplot () might be
a bit too challenging for you. First, give it a try and figure out what the challenge is,
and then Google plt . subplot2grid()).

Pay attention - if you have never used the Seaborn module before, you may have
to install it on your Anaconda first. It is easy — just run the following code in your
Jupyter notebook:

conda install seaborn

3

Data - What Is It
Really?

This chapter presents a conceptual understanding of data and introduces data concepts,
definitions, and theories that are essential for effective data preprocessing. First, the chapter
demystifies the word "data" and presents a definition that best serves data preprocessing.
Next, it puts forth the universal data structure, table, and the common language everyone
uses to describe it. Then, we will talk about the four types of data values and their
significance for data preprocessing. Finally, we will discuss the statistical meanings of the
terms information and pattern and their significance for data preprocessing.

The following topics will be covered in this chapter:
o What is data?
o The most universal data structure: a table

» Types of data values

+ Information versus pattern

72 Data - What Is It Really?

Technical requirements

You will be able to find all of the code examples that are used in this chapter, as well as the
dataset, in Chapter 3's GitHub repository:

https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python/tree/main/Chapter03

What is data?

What is the definition of data? If you ask this question of different professionals in various
fields, you will get all kinds of answers. I always ask this at the beginning of my data-
related courses, and I always get a wide range of answers. The following are some of the
common answers that my students have given when this question was asked:

» Facts and statistics

« Collections of records in databases

 Information

« Facts, figures, or information that's stored in or used by a computer
o Numbers, sounds, and images

o Records and transactions

« Reports

 Things that computers operate on

All of the preceding answers are correct, as the term data in different situations could

be used to refer to all of the preceding. So, next time someone says we came to XYZ
conclusions after analyzing the data, you know what your first question should be, right?
Yes, the next question would be to understand exactly what they mean by "data."

So, let me try and answer this question, What is meant by data?, with regards to this book,
Hands-On Data Preprocessing Using Python.

From a data preprocessing perspective, we need to step back and provide a more general
and all-encompassing definition. Here, we define data as symbols or signs representing a
measurement or model of reality. These symbols and signs are in themselves useless until
used with regard to higher-level conventions and understandings (HLCUs).

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter03

What is data? 73

I like two things about the previous definition:

« First, the definition is universal and encompasses all of the kinds of data you can
imagine, including the ones my students offered.

 Second, it verbalizes an implicit assumption in all the other definitions - the
existence of HLCUs.

Without HLCUg, data is a pile of meaningless symbols and signs.

Note:

A quick note before moving forward - I am going to use "HLCU" a lot in this
chapter, so maybe read its definition a few more times to commit it to memory.

Before the advent of AI, we could safely say the HLCU is almost always human language
and comprehension. However, now algorithms and computers are becoming a legitimate,
and in some aspects more powerful, HLCU of data.

Why this definition?

For data preprocessing, the very first thing you want to decide is the HLCU you will be
using. That is, what HLCU are you preparing your data for? If the data is being prepared
for human comprehension, the result will be very different than when the data is prepared
for computers and algorithms. Not only that, the HLCU might be different from one
algorithm to another.

One of the stark differences between human comprehension and computers as HLCUs
is that humans cannot digest more than two to three dimensions at a time. Being able to
process data with larger dimensions and size is the hallmark of algorithms and computers.

There is an important and distinctive relationship between the two HLCUs that needs to
be understood for effective data preprocessing. Let's learn about the DIKW pyramid first,
and I will use this to discuss that distinction.

74 Data - What Is It Really?

DIKW pyramid

Data, Information, Knowledge, and Wisdom (DIKW), also known as the wisdom
hierarchy or data pyramid, shows the relative importance and abundance of each of these
four elements. The following figure shows transactional steps between the stages, namely
processing, cognition, and judgment. Moreover, the figure specifies that only wisdom,
which is the rarest and most important element, is of the future, and the three other
elements, namely knowledge, information, and data, are of the past.

’

Future v

Data

Figure 3.1 - DIKW pyramid

The definition of the four elements is presented as follows:

Data: A collection of symbols - cannot answer any questions.

Information: Processed data — can answer the questions who, when, where,
and what.

Knowledge: Descriptive application of Information — can answer the question how.

Wisdom: Embodiment of Knowledge and appreciation of why.

While the DIKW pyramid is referenced again and again in many data analytics books and
articles, you can see that the pyramid's HLCU is human language and comprehension.
That is why even though the pyramid makes a lot of sense, it is still not completely
applicable to data analytics.

What is data? 75

An update to DIKW for machine learning and Al

I have updated the DIKW pyramid to Data, Dataset, Pattern, and Action (DDPA) as I
believe it pertains better to Machine Learning (ML) and artificial intelligence.

’

4
Future 7

Dataset

Preprocess

Data

Figure 3.2 - DDPA pyramid

The definitions of all four elements of DDPA are presented as follows:

« Data: All possible data from across all the data resources

« Dataset: A relevant collection of data selected from all the available data sources,
cleaned and organized for the next step

« Patterns: The interesting and useful trends and relationships within the dataset
o Action: The decision made, which is informed by the recognized patterns
Let's go through the three transactional steps between the four elements of the
DDAP pyramid:
1. Preprocess is to select the relevant data and prepare it for the next step.
2. Mine is applying data mining algorithms to the data in search of patterns.

3. Lastly, risk analysis is the step to consider the uncertainty of the recognized
patterns and arrive at a decision.

76 Data - What Is It Really?

The DDPA pyramid shows the pivotal role of data preprocessing as the goal of being able
to drive action from data. Preprocessing of the data is perhaps the most important step
from D to A (Data to Action). Not all the data in the world will be useful for driving action
in specific cases, and the data mining algorithms that are developed are not capable of
finding patterns in all types of data.

An update to DIKW for data analytics

It is important to remember that data preprocessing in no way pertains only to ML and
artificial intelligence. When analyzing data using data visualization, data preprocessing
also has a pivotal but slightly different role.

Neither the DIWK nor the DDPA pyramid can be applied well to data analytics. As
mentioned earlier, DIWK was designed for human language and comprehension, and I
created DDPA for algorithms and computers, so it is better suited for machine learning
and artificial intelligence. However, data analytics falls between the two ends of this
spectrum, where both humans and computers are involved.

I have designed another pyramid specifically for data analytics and its unique HLCUs. As the
HLCUs of data analytics are both humans and computers, the Data, Dataset, Visualization,
and Wisdom (DDVW) pyramid is a combination of the other two pyramids.

Dataset

Preprocess

Data

Figure 3.3 - DDVW pyramid

What is data? 77

The definitions of all four elements of DDVW are presented as follows:

« Data: All possible data from across all the data resources

o Dataset: A relevant collection of data selected from all the available data sources
and organized for the next step

« Visualization: The comprehensible presentation of what has been found in the
dataset (similar to Knowledge in DIKW - descriptive application of Information)

« Wisdom: Embodiment of Knowledge and appreciation of why (the same as Wisdom
in DIKW)

While the first transactional step of DDVW is similar to that of DDPA (both are
preprocessing), the second and third are different. The second transactional step of DDVW
is to analyze. That is what a data analyst does — use technology to do the following:

1. Explore the dataset.
2. Test the hypothesis.
3. Report the relevant findings.

The most understandable way to report the findings for the decision-maker is
visualization. A decision-maker will understand the visualization and use judgment (the
third transaction step of DDVW) to develop wisdom.

Data preprocessing for data analytics versus data
preprocessing for machine learning

Data preprocessing is a pivotal step for both data analytics and machine learning.
However, it is important to recognize the preprocessing that is done for data analytics is
very different from that of machine learning.

As seen in DDPA, the only HLCU for machine learning is computers and algorithms.
However, as shown in DDVW, the HLCU of data analytics is first computers and then it
switches over to humans. So, in a sense, the data preprocessing that is done for machine
learning is simpler, as there is only one HLCU to consider. However, when the data is
preprocessed for data analytics, both HLCUs need to be considered.

Now that we have a good understanding of what we mean by data, let's switch gears and
learn some important concepts surrounding data. The next concept we will discuss helps
us distinguish between data analytics and machine learning even further.

78 Data - What Is It Really?

The three Vs of big data

A very useful concept that helps to distinguish between machine learning and data
analytics is the three Vs of big data. The three Vs are volume, variety, and velocity.

The general rule of thumb is that when your data has high volume, high variety, and high
velocity, you want to consider machine learning and Al over data analytics. As a general
rule, this could be true, but if and only if you have high volume, high variety, and high
velocity after appropriate data preprocessing. So, data preprocessing plays a major role, and
that will be explained in more detail after going over the three Vs:

o Volume: The number of data points that you have. You can roughly think of data
points as rows in an Excel spreadsheet. So, if you have many occurrences of the
phenomena or entities that you have collected, your data is of high volume. For
example, if Facebook was interested in studying its users in the US, the volume of
this data would be the number of Facebook users in the US. Pay attention - the data
point in this study of Facebook is US users of the platform.

« Variety: The number of different sources of data you have that give you fresh new
information and perspective about the data points. You can roughly think of the
variety of your data as the number of columns you have in an Excel spreadsheet.
Continuing the Facebook example - Facebook has information such as the name,
date of birth, and email of its users. But Facebook could also add variety to this data
by including behavior columns, such as the number of visits in the last week, the
number of posts, and many more. The variety does not stop there for Facebook,
as it also owns other services that users may be using, such as Instagram and
WhatsApp. Facebook could add variety by including the behavior data of the same
users from the other services.

« Velocity: The rate at which you are getting new data objects. For instance, the
velocity of Facebook US users' data is much higher than the velocity of Facebook's
employees' data. But the velocity of Facebook US users' data is much lower than
Facebook's US post's data. Pay attention to what changes the velocity of data - it is
how often the phenomena or the entities you are collecting happen.

The importance of the three Vs for data preprocessing

Data analytics that heavily involves human comprehension cannot accommodate data
that has high volume, high variety, and high velocity. However, sometimes the high Vs

are happening due to the lack of proper data preprocessing. One important element of
successful data preprocessing is to include data that is relevant to the analysis. Just because
you have to dig through data with high Vs to prepare a dataset, that is not enough of a
reason to give up on data analytics in favor of machine learning.

The most universal data structure — a table 79

Next, we will move on from pure concepts to begin talking about the data itself and the
way we normally organize it.

The most universal data structure - a table

Regardless of the complexity and high Vs of your data, and even regardless of you wanting
to do data visualization or machine learning, successful data preprocessing always leads

to one table. At the end of successful data preprocessing, we want to create a table that

is ready to be mined, analyzed, or visualized. We call this table a dataset. The following
figure shows you a table with its structural elements:

Data Attributes

l
[\

Column1 | Column2 |. . . Columnm

Row 1
Row 2

Data Objects

Row n

Figure 3.4 - Table data structure

As shown in the figure, for data analytics and machine learning, we use specific keywords
to talk about the structure of a table: data objects and data attributes.

Data objects

I'm sure you have seen and successfully made sense of so many tables and created so many
of them as well. I bet many of you would have never paid attention to the conceptual
foundations of the table that allows you to create them and make sense of them. The
conceptual foundation of a table is its definition of the data object.

Data objects are known by many different names, such as data points, rows, records,
examples, samples, tuples, and many more. However, as you know for a table to make
sense, you need the conceptual definition of data objects. You need to know for what
phenomena, entity, or event the table is presenting values.

The definition of the data object is the entity, concept, phenomena, or event that all of
the rows share. For instance, the entity that holds a table of information about customers
together is the concept of the "customer.” Each row of the table represents a customer and
gives you more information about them.

80 Data - What Is It Really?

The definition of the data object for some tables is straightforward, but not always. The
very first concept you want to figure out when reading a new table is what the assumed
definition of data objects for the table is. The best way you can go about this is to ask the
following question: what is the one entity that all of the columns in the table describe? Once
you have found that one entity, bingo! You have found the definition of the data object.

Emphasizing the importance of data objects

For data preprocessing, the definition of the data objects becomes more important. A lot
of the time, the data analyst or machine learning engineer is the one that needs to first
envision the end table that data needs to be preprocessed into. This table needs to be both
realistic and useful. In the following two paragraphs I will address what I mean by realistic
and useful:

o Realistic: The table needs to be realistic in the sense that you have the data,
technology, and access to create the table. For instance, I can imagine if had a
table of data about newly married couples, with columns for the first month of their
marriage such as the number of times they kissed, or the number of times they were
passive-aggressive toward each other, I could build a universal model that could tell
couples whether their marriage was going to be successful or not. In this case, the
definition of data objects is newly married couples, and all of the imagined columns
describe this entity. However, realistically coming up with such a table is very
difficult. Incidentally, John Gottman from the University of Washington and James
Murry from Oxford University did create this model, but only with 700 couples who
were willing to be recorded while they were discussing contentious topics and were
willing to share the updates on their relationship with the researchers.

o Useful: The imagined table also needs to be useful for analytics goals. For instance,
suppose that somehow we have access to the video recordings of the first month
of all of the newly married couples. These recordings are stored in separate files,
organized by day. So, we set out to preprocess the data and count the number of
kisses and the number of passive-aggressive incidents for each recording and store
them in a table. This table's data object definition is the video recording of one day of
a newly married couple. Is this data object definition useful for the analytics goals of
predicting the success of couples? No, the data needs to be collated differently so the
data objects are the newly married couples.

Types of data values 81

Data attributes

As shown in Figure 3.4, the columns of a table are known as attributes. Different names
such as columns, variables, features, and dimensions might be used instead of attributes.
For example, in math, you are more likely to refer to "variables" or "dimensions," whereas,
in programming, you more often refer to "variables."

Attributes are describers of the data objects in a table. Each attribute describes something
about all of the data objects. For instance, in the table we envisioned for the newly married
couples, the number of kisses and the number of passive-aggressive incidents are the
attributes of that table.

Types of data values

For successful data preprocessing, you need to know the different types of data values from
two different standpoints: analytics and programming. I will review the types of data values
for both standpoints and then share with you their relationships and their connections.

Analytics standpoint

There are four major types of values from analytics standpoints: nominal, ordinal,
interval-scaled, and ratio-scaled. In the literature, these four types of values are under
four types of data attributes. The reason is that the types of values for each attribute must
remain the same, therefore, you can extrapolate value types to attribute types.

Ratio-Scaled
Numerical
Interval-
Data Scaled
Attributes)
— Ordinal Symmetric
Categorical 5
Nominal Asymmetric

Non-Binary

Figure 3.5 - Types of data attributes

82 Data - What Is It Really?

The preceding figure shows the tree of attribute types. The four mentioned types are in the
middle. As you can see in the tree, Nominal and Ordinal attributes are called Categorical
(or qualitative) attributes, whereas Interval-Scaled and Ratio-Scaled attributes are called
Numerical (or quantitative).

Nominal attributes

As the name suggests, this type of attribute refers to the naming of objects. There is no
other information that this attribute describes apart from a simple set of letters and
symbols that act as a name of the object or a category of the object.

A prominent example of a nominal attribute is gender when data objects are individuals.
While this attribute may be shown differently, the information it contains is a simple name
for two categories of humans. I have seen this information represented in many ways. The
following table shows all the different ways the nominal attribute gender can be presented.
Regardless of how the categories are presented, the information that is gathered by this
category is that an individual is either male or female.

Male M |0 1|1

Female | F 1 0|2

Figure 3.6 - Different presentations of the nominal attribute gender

Other examples of nominal attributes when the data objects are individuals are hair color,
skin color, eye color, marital status, or occupation. What is important to remember about
nominal attributes is that they do not contain any other information than just names.

Ordinal attributes

On the other hand, ordinal attributes, as the name suggests, contain more information
that pertains to some types of order. For instance, when the data objects are individuals,
the level of education is a prime example of an ordinal attribute. While high school,
bachelor's, master's, and doctoral are names that refer to the names of education degrees,
there is a well-recognized order between all of them.

No one could logically give any order to the importance, value, or recognition between the
values of a nominal attribute such as gender. However, it is quite acceptable to assume the
number of resources (time, money, energy) someone has spent to get a bachelor's degree
is more than a high school degree.

Types of data values 83

Other examples of ordinal attributes are course letter grades (A, B, C, D), professional
rankings (Assistant Professor, Associate Professor, and Full Professor), and survey rates
(highly agree, agree, neutral, disagree, highly disagree).

So far, we know that ordinal attributes can contain more information than nominal
attributes. At the same time, ordinal attributes are themselves limited in the sense that
they do not contain how much each possible value of an ordinal attribute is different from
the other. For instance, we know that Individual A, who has a doctorate, might be able to
deal with research projects better than Individual B, who has a bachelor's degree. However,
we cannot say Individual A will finish a research task 20 hours faster than Individual B.
Simply put, ordinal attributes do not contain information that allows for interval
comparison between data objects.

Interval-scaled attributes

These attributes contain more information than ordinal attributes, as they allow for
interval comparison between data objects. By moving from ordinal attributes to interval
attributes, we also move from symbols and categories to numbers (categorical attributes to
numerical attributes). With numbers comes the capability to know how much difference
exists between data objects. For instance, when data objects are individuals, height is an
interval attribute. For instance, Roger Federer's height is 6'1", and everyone will agree that
he is shorter than Juan Martin del Potro by 5", as del Potro's height is 6'6".

Another example of an interval attribute when the data objects are individuals is weight.
The measurement of temperature in Fahrenheit or Celcius when the data objects are days
is also an example of an interval-scaled attribute.

The limitation of interval attributes is that we cannot use them for a ratio-based
comparison. For instance, will we ever be able to say an individual is twice as tall as the
other individual? You might be thinking yes. But the answer is no. The reason is that
there is no meaningful zero for the concept of human tallness. That is to say, there is no
individual whose height is zero.

84 Data - What Is It Really?

The shortest man in the world is documented to have been Chandra Bahadur Dangi and

his height was 1'10". Also, Robert Wadlow, with a height of 8'3", is reported to have been

the tallest man in the world. To put things into perspective, consider the following figure,
where you can compare the average heights with the recorded extremes:

Robert Wadlow
Height: 8 ft 3 in
Netherland Average M
Height: 6 ft
4

US Average Man
Height 5t 7in

Srilanka Average Man

Indonesia Average Man Height:5ft5in
Height: 5 ft 3in

Height:5ft7in I

Chandra Bahadur Dangi
Height:1ft10in

Figure 3.7 - The spectrum of men's heights

Looking at the two extremes might challenge our preconceptions about height. However,
if you remove the two extremes, you will start feeling more comfortable. The reason for
this discomfort is that tallness is an interval attribute for our brain. We do not come across
very tall people or very short people in our daily lives. Although it will completely make
sense to most people if you say you are 2 inches taller than another person, it would not
make sense if you were to claim you are more than 3 times taller than the shortest man in
the world.

For instance, since I am 6'3", you will believe I am 3.41 times taller than the shortest

man in the world. While the mathematics of this calculation is correct ((6¥12+3) /
(6¥1+10) = 3.41), you cannot say I am 3.41 times taller than the shortest man in the
world, because the shortest man in the world is the zero in the concept of human tallness.
At best, you can say I am 3.41 times taller an object than Chandra Bahadur Dangi. But to
be able to do that, you had to change the definition of the data object from an individual
to an object.

Even if you have a roommate that is a very short person and you see him every day,
mathematically, it does not make sense to have a multiplication of tallness as there is no
absolute zero. There is no individual you could ascribe the value zero to for their tallness.

Types of data values 85

Ratio-scaled attributes

When we move to ratio-scaled attributes, the last limitation, which was the incapability

to multiply or divide values for interval-scaled attributes, is also removed, as we can find
an inherent zero for them. For instance, when our data objects are individuals, monthly
income is an example of a ratio-scaled attribute. We can imagine an individual with no
monthly income. For instance, it completely makes sense if you were to report that your
dad makes twice what you make every month. Another example of a ratio-scaled attribute
is the temperature in kelvin when the definition of data object is a day.

Binary attributes

Binary attributes are nominal attributes with only two possibilities. For instance, the
gender you are assigned at birth is either male or female, so Sex Assigned At Birth
(SAAB) is a binary attribute.

There are two types of binary attributes: symmetric and asymmetric. Symmetric binary
attributes, such as SAAB, are where either of the two possibilities happens as frequently
and carries the same level of importance for our analysis.

However, one of the two possibilities of asymmetric binary attributes happens less
frequently and is normally more important. For instance, the result of a COVID test is
an asymmetric binary attribute, where the positive results happen less often but are more
important in our analysis.

You might think that symmetric binary attributes are more common than asymmetric
binary attributes, however, that is far from the reality. Try to think of other symmetric
binary attributes, and email them to me if you find a few good ones.

Conventionally, the rarer possibility of a binary attribute is denoted by a positive (or one),
whereas the more common possibility is denoted by a negative (or zero).

Understanding the importance of attribute types

As analytic methods become more complex, it will become easier to make mistakes and
never know about them. For instance, you might inadvertently input an integer-coded
nominal attribute into an algorithm that regards these values as real numbers. What you
have done is to input randomly assumed relationships between the data objects that have no
basis in reality to a model that cannot think for itself. See Exercise 5 for an example of this.

86 Data - What Is It Really?

Programming standpoint

By and large, values are either known as numbers, strings, or Booleans for computers.
Numbers might be recognized as integers or floating points, but that is it.

Integers are whole numbers from zero to infinity. For instance, 0, 1, 2, 3, and so on are
all integer values. Floating points are numbers. They can be positive or negative and have
decimal points. For instance, 1.54, -25.1243, and 0.1 are all floating points.

I hope you see the challenge here — from an analytics perspective, you may have
nominal or ordinal attributes but computers can only show them as strings. Similarly,
from an analytics perspective, you may have ratio-scaled or interval-scaled attributes
but computers can only show them as numbers. The only complete match between
programming value types and analytics value types is binary attributes that can be
presented completely with Boolean values.

The following table presents a mapping of attribute (value) types between analytics and
programming perspectives. As you are developing skills to effectively preprocess data, this
mapping should become second nature to you. For instance, you want to understand your
options of presenting an ordinal attribute with Booleans, strings, or integers, and what
each option would entail (see exercise 6 in the Exercise section).

Analytic Perspective Programming Perspective
Binary
MNon-binary Booleans or strings

Mominal attributes

Ordinal attributes
Integers

Interval-scaled attributes

Integers or floating points
Ration-scaled attributes g gp

Figure 3.8 - Mapping of value types between analytics and programming

So far in this chapter, we covered the definition of data and also the types of data
attributes. Now, we are going to talk about two high-level and important concepts that are
essential for successful data preprocessing: information and pattern.

Information versus pattern

Before finishing this chapter, which aims to arm you with all the necessary definitions and
concepts needed for data preprocessing, we need to cover two more concepts: information
and pattern.

Information versus pattern

87

Understanding everyday use of the word "information”

First, I need to bring your attention to two specific and yet very different functions of the
term information. The first one is the everyday use of "information," which means "facts
or details about somebody or something." This is how the Oxford English Dictionary

defines information. However, while statisticians also employ this function of the word,
sometimes the term information serves another purpose.

Statistical use of the word "information"

The term "information" could also refer to the value variation of one attribute across
the population of a data object. In other words, information is used to refer to what an
attribute adds to space knowledge of a population of data objects. Let's explore an example
dataset, customer df, as shown in the following screenshot. The dataset is pretty small
and has 10 data objects and 4 attributes. The definition of the data object for the following
dataset is customers.

In [1]:

Out[1]:

M | import pandas as pd

customer_df = pd.read_excel('Customers Dataset.xlsx")

customer_df

Customer Name

Store

Last week number of

Last week Purchase

visits $

0 0 i Starbuck - Clare'mont 5 33.43
Village

1 Colleen Melendez Starbuck - Claremont 4 11.32
Village

2 Lyla-Rose Ruiz Starbuck - CIareAmont 1 9.48
Village
. . Starbuck - Claremont

3 Riley-Jay Manning Village 2 15.50
Starbuck - Claremont

4 leuan Carroll Village 4 17.96

5 Renesmae Starbuck - Clare_mont 5 19.84
Lawson Village

6 Lawrence Medina SitEriae = GEremeil 3 23.21
Village

7 Ben O'Connor Starbuck - Clare_mont 1 6.12
Village

8 Adnaan Kim Starbuck - CIareAmont 6 36.16
Village

9 Abbigail Dunlap Starbuck - Claremont 2 6.88

Village

Figure 3.9 - Reading Customer Dataset.xlsx and seeing its records

We will talk about this dataset as we go over the following subsections.

88 Data - What Is It Really?

Statistical information for categorical attributes

Customer Name is a nominal attribute, and the value variation this attribute adds to the
space knowledge of this dataset is the maximum possible for a nominal attribute. Each
data object has a completely different value under this attribute. Statistically speaking, the
amount of information this attribute has is very high.

The case of the attribute store is the opposite. This attribute adds the minimal possible
information a nominal attribute may add - that is, the value for every data object under
this attribute is the same. When this happens, you should remove the attribute and see
whether you can perhaps update the definition of the data objects. If we change the
definition of the data objects to Starbucks customers of Claremont Village
store, we have retained the information and we can safely remove the attribute.

Statistical information for numerical attributes

The matter of statistical information for numerical attributes is a little bit different. For
numerical attributes, you can calculate a metric called variance to drive how much
information each numerical attribute has. Variance is a statistical metric that captures the
spread between a collection of numbers. It is calculated by the summation of the squared
distances of each number from the mean of all the numbers. The higher the variance of an
attribute, the more information the attribute has. For instance, the variance for the Last
week number of wvisits attribute is 3.12, and the variance for the Last week
Purchase $ attribute is $109.63. Calculating the variance using Pandas is very easy. See
the following screenshot:

In [2]: M customer_df.var()

Out[2]: Last week number of visits 3.122222
Last week Purchase $ 109.628044
dtype: float64

Figure 3.10 - Calculating the variance for the numerical attributes of customer_df

We would be able to say the Last week Purchase $ attribute has more information
than the Last week number of visits attribute if the attributes had a similar
range. However, the attributes have a completely different range of values, and it makes
the two variance values incomparable. There is a way to get around this issue — we can
normalize both the attributes and then calculate their variance. Normalization is a
concept that we will cover later in this book.

Information versus pattern 89

Data redundancy - attributes presenting similar information

We call an attribute redundant if the variation of its value across the data objects of a
dataset is too similar to that of another attribute. To check data redundancy, you can draw
a scatterplot for the variables you suspect are presenting similar information. For instance,
the following screenshot has drawn the scatterplot of the two numerical attributes of
customer_ df:

In [3]: M | import matplotlib.pyplot as plt
customer_df.plot.scatter(x="Last week number of visits',
y="'Last week Purchase $')
plt.show()

35 1

30 4

Last week Purchase §
b
&

T T T T

1 2 3 4 5 6
Last week number of visits

Figure 3.11 - Drawing the scatterplots for the two attributes, Last week number of visits and

Last week Purchase $

You can see that it seems that with the increase in the number of visits, the purchase has
also increased.

90 Data - What Is It Really?

Correlation coefficient to investigate data redundancy

You can also use the correlation coefficient to investigate data redundancy. A correlation
coefficient value falls between -1 and 1. When the value is close to zero, it means the two
attributes are not showing similar information. When the correlation coeflicient between
two numerical attributes is closer to both ends of the spectrum (-1 or +1), it shows that
the two attributes are showing similar statistical information and perhaps one of them

is redundant. When two attributes have a significant and positive correlation coeflicient
(greater than 0.7), that means if the value of one attribute increases the value of the other
attribute will also increase. On the other hand, when two attributes have a significant
and negative correlation coefficient (smaller than -0.7), that means the increase of one
attribute leads to the decrease of the other.

The following screenshot has used . corr () to calculate the correlation coefficient
between the numerical attributes in customer df:

In [4]: M customer_df.corr()

Out[4]:
Last week number of visits Last week Purchase $
Last week number of visits 1.000000 0.821282
Last week Purchase $ 0.821282 1.000000

Figure 3.12 - Finding the correlation coefficients for the pairs of numerical attributes in customer_df

The correlation coefficient is 0.82, which is considered high, indicating one of the two
numerical attributes might be redundant. The cut-off rule of thumb for high correlation is
0.7 - that is, if the correlation coefficient is higher than 0.7 or lower than -0.7, there might
be a case of data redundancy.

Now that we have a good understanding of the term information, let's turn our attention
to the term pattern.

Statistical meaning of the word "pattern”

While the statistical meaning of "information" is the value variation of one attribute
across the data objects of a dataset, the statistical meaning of "pattern" is about the value
variation of more than one attribute across the data objects. Every specific value variation
of more than one attribute across the data objects of a dataset is called a pattern.

It is important to understand that most patterns are neither useful nor interesting. It is the
job of a data analyst to find interesting and useful patterns from the data and present them.
Also, it is the job of an ML engineer to streamline a model that collects the expected and
useful patterns from the data and makes calculated decisions based on the collected patterns.

Information versus pattern 91

Example of finding and employing a pattern

The relationship we found between the two numerical attributes of customer df in the
following situation could be considered as useful.

The manager of the Starbucks store in Claremont Village made a huge blunder and
accidentally removed the values of Last week Purchase ¢ for 10 customers from
the records, but luckily she knows about the power of data analytics, and the Last week
number of visits attribute is intact. The following screenshot shows the second part
of this data:

In [5]: M customer2_df = pd.read_excel('Customers Dataset 2.x1lsx')
customer2_df

Out[5]:
Customer Store Last week number of Last week Purchase
Name visits

0 Nelson Rivera BRI = ST 3 NaN
Village

1 Abbigail Felix Starbuck - Claremont 1 NaN
Village

2 Kelly North Starbuck - Clarelmont 2 NaN
Village

3 Aneesa Moran Starbuck - Clare‘mont 5 NaN
Village

4 Ammara Ritter Sl (S T 7 NaN
Village
) Starbuck - Claremont

5 Elise Valenzuela Village 1 NaN

6 Jaidan Gay Starbuck - Clarelmont 4 NaN
Village

7 Alejandro Starbuck - Clare.mont 3 NaN
Mercer Village

8 Arisha Whittaker Sl e ST 5 NaN
Village

9 Mehmet Power Starbuck - Claremont 2 NaN

Village
Figure 3.13 - Reading Customer Dataset 2.xlsx and seeing its records

The manager of the store, after having seen the high correlation between Last week
number of visitsandLast week Purchase $,can use simple linear regression
to extract, formulate, and package the pattern from the 10 customers with all of the data.
After the regression model is trained, the manager can use it to estimate the purchase $ for
the customers that have missing values.

92 Data - What Is It Really?

Simple linear regression is a statistical method where the values of one numerical
attribute (X) are linked to the values of another numerical attribute (Y). In statistical
terms, when we observe a close relationship between two numerical attributes, we may
investigate to see whether X can predict Y.

The following screenshot illustrates the application of . regplot () from the Seaborn
module to visualize the linear regression line that has fitted to the data of the first 10
customers in customer df:

In [6]: M import seaborn as sns
sns.regplot(x="Last week number of visits',

y="'Last week Purchase $',data=customer_df)
plt.show()

8 B 8 W

Last week Purchase $§

=

(%)

1 2 3 4 5 6
Last week number of visits

Figure 3.14 - Using .regplot() to show the regression line between the two attributes, Last week number

of visits and Last week Purchase $

Installation of the Seaborn module

If you have never used the Seaborn module, you have to install it first.
Installing it on Anaconda is very simple. Open a chunk of code in your Jupyter
notebook and run the following line of code:

conda install seaborn

Information versus pattern 93

The equation of the fitted regression model is shown as follows:

Last Week Purchase $ = 1.930 + 4.867 X Last Week number of visits

Now, this equation allows us to estimate the missing values of customer2_ df. The
following screenshot shows the preceding equation is applied to customer2_ df to
calculate the missing values:

In [7]: M customer2_ df['Last week Purchase $'] =

Out[7]:

customer2_df[

‘Last week number of visits'].apply(lambda v:1.930 + 4.867 *v)
customer2_df

Customer Last week number of Last week Purchase
Store .
Name visits

0 Nelson Rivera SIS (G e 3 16.531
Village

1 Abbigail Felix Starbuck - Claremont 1 6.797
Village

2 Kelly North SIS = I Wl 2 11.664
Village

3 Aneesa Moran Starbuck - Claremont 5 26.265
Village
. Starbuck - Claremont

4 Ammara Ritter Village 7 35.999

5 Elise Valenzuela Starbuck - Claremont 1 6.797
Village

6 Jaidan Gay S0 S= G R 4 21.398
Village

7 Alejandro Starbuck - CIarelmont 3 16.531
Mercer Village

8 Arisha Whittaker SIS G e 5 26.265
Village

9 Mehmet Power Starbuck - Claremont 2 11.664

Village

Figure 3.15 - Using the extracted pattern (regression equation) and .apply() function to estimate and

replace the missing values

So, this way the manager of the Starbucks store in Claremont Village was able to save
the day and replace the missing values with estimated values that are based on a reliable
pattern found in the data.

Before moving on, let me acknowledge that we have not yet covered linear regression in
this book (we will do this in Chapter 6, Prediction). However, in this example, we used
linear regression to showcase an instance of extracting and using the pattern in a dataset
for an analytic situation. We did this in the interest of understanding what we mean by
"useful patterns,” and extracting and packaging patterns for later use.

94 Data - What Is It Really?

Summary

Congratulations on finishing this chapter. You have now equipped yourself with an
essential understanding of data, data types, information, and pattern. Your understanding
of these concepts will be vital in your journey to successful data preprocessing.

In the next chapter, you will learn about the important roles databases play for data
analytics and data preprocessing. However, before moving on to the next chapter, take
some time and solidify and improve your learning using the following exercises.

Exercises

1.

Ask five colleagues or classmates to provide a definition for the term data.
a) Record these definitions and notice the similarities among them.

b) In your own words, define the all-encompassing definition of data put forth in
this chapter.

¢) Indicate the two important aspects of the definition in b).

d) Compare the five definitions of data from your colleagues with the
all-encompassing definitions and indicate their similarities and differences.

In this exercise, we are going to use covid impact on airport traffic.
csv. Answer the following questions. This dataset is from Kaggle.com - use this
link to see its page:

https://www.kaggle.com/terenceshin/covidl9s-impact-on-
airport-traffic

The key attribute of this dataset is PercentOfBaseline, which shows the ratio
of air traffic in a specific day compared to a pre-pandemic time range (February 1 to
March 15, 2020).

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the . unique ()
function to check. If there are, remove them from the data and update the definition
of the data object.

c) What type of values do the remaining attributes carry?

d) How much statistical information does the PercentOfBasel ine attribute have?

https://www.kaggle.com/terenceshin/covid19s-impact-on-airport-traffic
https://www.kaggle.com/terenceshin/covid19s-impact-on-airport-traffic

Exercises 95

For this exercise, we are going to use US_Accidents. csv. Answer the following
questions. This dataset is from Kaggle.com - use this link to see its page:

https://www.kaggle.com/sobhanmoosavi/us-accidents

This dataset shows all the car accidents in the US from February 2016 to
December 2020.

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique ()
function to check. If there are, remove them from the data and update the definition
of the data object.

c) What type of values do the remaining attributes carry?
d) How much statistical information do the numerical attributes of the dataset carry?

e) Compare the statistical information of the numerical attributes and see whether
any of them are a candidate for data redundancy.

For this exercise, we are going to use fatal-police-shootings-data.csv.
There are a lot of debates, discussions, dialogues, and protests happening in the

US surrounding police killings. The Washington Post has been collecting data on

all fatal police shootings in the US. The dataset available to the government and

the public alike has date, age, gender, race, location, and other pieces of situational
information related to these fatal police shootings. You can download the last version
of the data from https://github.com/washingtonpost/data-police-
shootings.

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique ()
function to check. If there are, remove them from the data and update the definition
of the data object.

c) What type of values do the remaining attributes carry?
d) How much statistical information do the numerical attributes of the dataset carry?

e) Compare the statistical information of the numerical attributes and see whether
any of them are a candidate for data redundancy.

https://www.kaggle.com/sobhanmoosavi/us-accidents
https://github.com/washingtonpost/data-police-shootings
https://github.com/washingtonpost/data-police-shootings

96 Data - What Is It Really?

5. For this exercise, we will be using electricity prediction.csv. The
following screenshot shows the five rows of this dataset and a linear regression
model created to predict electricity consumption based on the weekday and daily
average temperature:

In [1]: |import pandas as pd

electricity_df = pd.read_csv('electricity prediction.csv')
electricity_df.head()

Out[1]:
Date Weekday Consumption Average Temperature
0 1/1/2016 4 2581914 80
1 1/2/2016 5 2663011 77
2 1/3/2016 6 2725351 78
3 1/4/2016 0 3092978 80
4 1/5/2016 1 3231827 81

In [2]: from sklearn.linear_model import LinearRegression

X
y

electricity_df[['Weekday', 'Average Temperature']]
electricity_df['Consumption’]

1rm = LinearRegression()
Irm.fit(X, y)

print(‘'intercept ', lrm.intercept_)
print(pd.DataFrame({'Predictor': X.columns, ‘coefficient': lrm.coef_}))

intercept 3074181.4950158806
Predictor coefficient
0 Weekday -55710.145405
1 Average Temperature -3476.377056
Figure 3.16 — Screenshot for Exercise 5

a) The regression model that is derived from the data is presented as follows:
Consumption = 3074181.5 — 55710.1 X Weekday — 3476.4 X Average Temperature

b) What is the fundamental mistake in this analysis? Describe it and provide
possible solutions for it.

Exercises 97

For this exercise, we will be using adult . csv. We used this dataset extensively in
Chapter 1, Review of the Core Modules NumPy and Pandas and Chapter 2, Review
of Another Core Module — Matplotlib. Read the dataset using Pandas and call it
adult df.

a) What type of values does the education attribute carry?

b) Run adult df.education.unique (), study the results, and explain what
the code does.

c) Based on your understanding, order the output of the code you ran for b).

d) Run pd.get dummies (adult df.education), study the results, and
explain what the code does.

e) Run adult df.sort values (['education-num']) .
iloc[1:32561:1200], study the results, and explain what the code does.

) Compare your answer to c¢) and what you learned from e). Was the order you
came up with in ¢) correct?

g) The education attribute is an ordinal attribute - translating an ordinal attribute
from an analytic perspective to a programming perspective involves choosing
between Boolean representation, string representation, and integer representation.
Choose which choice has been made for the three following representations of the
education attribute:

adult df.education
pd.get dummies (adult df.education)
adult df['education']

h) Each choice has some advantages and some disadvantages. Select which
programing data representation each following statement describes:

If an ordinal attribute is presented using this programming value representation, no
bias or assumptions are added to the data, but algorithms that work with numbers
cannot use the attribute.

If an ordinal attribute is presented using this programming value representation,
the data can be used by algorithms that only take numbers, but the size of the data
becomes bigger and there may be concerns for computational costs.

If an ordinal attribute is presented using this programming value representation,
there will be no size or computational concerns, but some statistical information
that may not be true is assumed and it may create bias.

98 Data - What Is It Really?

References

John M. Gottman, James D. Murray, Catherine C. Swanson, Rebecca Tyson, and Kristin R.
Swanson. The Mathematics of Marriage: Dynamic Nonlinear Models. MIT Press, 2005.

4
Databases

Databases play a major technological role in data preprocessing and data analytics.
However, time and again, I have seen plenty of misunderstandings surrounding their

role in analytics. While it is possible to do simple analytics and data preprocessing using
databases themselves, these tasks are not what databases are designed for. In contrast,
databases are technological solutions to record and retrieve data effectively and efficiently.

In this chapter, we will first discuss the technological role of databases in effective
analytics and preprocessing. We will then enumerate and understand the different types
of databases. Finally, we will cover five different methods of connecting to, and pulling
data from, databases.

The following topics will be covered in this chapter:

« What is a database?
» Types of databases

 Connecting to, and pulling data from, databases

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub
repository exclusively created for this book. To find the repository, click on this link,
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-
in-Python, find chapter 04 in this repository, and download the code and the data for
better learning.

100 Databases

What is a database?

There may be a handful of different definitions of a database, all of which might be correct,
but there is one definition that best serves the purpose of data analytics. A database is a
technological solution to store and retrieve data both effectively and efficiently.

While it is true that databases are the technological foundations of data analytics, effective
analytics do not happen inside them and that is a great thing. We want databases to be
good at what they are meant to do: the effective and efficient storage and retrieval of data.
We want a database to be fast, accurate, and secure. We also want a database to be able to
serve our needs as regards quick sharing and synching.

When we want to get some data from databases for analytics purposes, it is easy to forget
that databases are not designed to serve our analytics purposes. So, it should not be a
surprise that the data in the database is organized in a way that serves its functions - the
effective and eflicient storage and retrieval of data - rather than being organized for our
analytics purposes.

One of the very first steps of data analytics is to locate and collect data from various
databases and sources, and reorganize it into a dataset that has the potential to answer
questions about our decision-making environment. The following diagram illustrates this
important step of data analytics:

Column1 | Column2 . . . Column m

Row 1
Row 2

Row n

LN
—

Figure 4.1 - From databases to a dataset

What is a database? 101

At times, the data might be coming from one database but, all the same, the data needs
to be reorganized into a dataset that is designed for our analytics needs. When we are
reorganizing the data into a dataset, we need to pay close attention to the dataset's
definition of the data objects. We define the data object of a dataset so that the dataset
serves the needs of our analytics.

Understanding the difference between a database and
a dataset

A database and dataset are not the same concepts, but are often and incorrectly used
interchangeably. We did define a database as a technological solution for storing and
retrieving data both effectively and efficiently. However, a dataset is a specific organization
and presentation of some data for a specific reason.

For data analytics, while the data comes from databases, it is eventually reorganized into
a dataset. The "specific reason" for such a dataset is the analytics goals and the "specific
organization and presentation" of that dataset is to support those goals.

For instance, we want to use weather data such as temperature, humidity, and wind speed
to predict the hourly electricity consumption of the city of Redlands. For such analytics, we
need a dataset whose definition of the data object is an hour in the city of Redlands. The
attributes will be average temperature, average humidity, average wind speed, and electricity
consumption. Pay attention that all of these attributes describe the data object — an hour

in the city of Redlands. That is the design of the dataset that supports the analytical goal of
predicting hourly electricity consumption in the city of Redlands based on weather data.

In the city of Redlands, the weather data and electricity data come from different
databases. The weather data comes from 5 databases that collect data from 5 locations
across the city, and each database records the weather data of its surroundings every
15 minutes. The electricity data comes from the city's only electricity supplier and its
database records the amount of electricity consumption in the city every 5 minutes.

The data in these six databases needs to be collated and reorganized into the described
dataset so that the prediction of hourly electricity consumption based on weather is possible.

102 Databases

Types of databases

Mainly there are four types of databases:

o Relational databases (or SQL databases)
o Unstructured databases (NoSQL)

o Distributed databases

o Blockchain

The distinctions between these databases are not cut and dried technologically and in
practice. For instance, distributed databases are essentially a combination of different
types of databases in multiple locations. Here, we will discuss these types of databases to
develop a better appreciation for the way databases organize data according to a situation's
needs. We will also briefly talk about the differences and similarities, as well as the
advantages and disadvantages, of the types of databases.

Why do we need to know the types of databases for data preprocessing?

Each of the four types of databases organizes and stores the data differently.
As our data analytics journey always involves locating and collecting data
from various databases, knowing different kinds of databases serves two
important purposes.

First, by knowing what is possible, we may be able to envision what could be
out there when we look for data.

Second, and more importantly, as we want to reorganize the relevant data into
our designed dataset, we need to understand the organization and structure of
its source first.

The differentiating elements of databases

Before discussing the four types of databases, let's first talk about what are the elements
that may require using various kinds of databases. These elements are the level of
structure, storage location, and authority.

Types of databases 103

Level of data structure

Data with no structure is a pile of signs and symbols with no use or meaning. So do not let
the term "unstructured databases" fool you since every piece of usable data needs at least
some structure. The more data is structured, the less processing it will need when using it.
However, structuring data is expensive and not always sensible.

When data is structured, not only does it potentially take up more space, but it also needs
resources to preprocess and handle data before it is recorded. On the other hand, when
the data is sufficiently structured on one occasion, it can then be used again and again. So,
the way to determine how much structure data needs is to factor in the costs and benefits
of structuring.

For example, while the benefits of structuring the basic customer data that is the core
asset of many businesses easily outweigh its costs, in many cases, the costs of structuring
customer emails, voice, and social media data may seem too overwhelming for small and
medium organizations.

The following diagram shows the interaction between costs and benefits of structuring
data. As the data is more structured, naturally, the cost of structuring it goes up. But in
return, the cost of having to deal daily with unstructured data goes down until the benefits
of structuring the data plateau. By considering the costs and benefits, we can find the
appropriate level of data structure.

= Cost of structuring data
—— (Cost of dealing with unstructured data -~

----- Total cost

® Minimum cost

ot
o
ar®?
"

Level of data structure

Figure 4.2 - Interaction between costs and benefits of structuring data — a general case

104 Databases

The best level of structuring data will vary from situation to situation and also from data
to data. For instance, some data, such as video, sound, and social media data, may need
specific preprocessing every time it is used for different purposes. That means every

time it is used, it needs to go through data restructuring in any case, so structuring the
data will not bestow any benefit and it does not make economical sense. Furthermore,
these types of data tend to be large, and only a unique segment of them are needed to be
structured from time to time without us not knowing which segment in advance. In such
cases, structuring the whole data in advance does not make economical sense as we do not
know what segment of the data we will need to be structured in the future. The following
diagram shows this specific situation:

— Cost of structuringdata | .7
~—— Cost of dealing with unstructured data
---- Total cost

® Minimum cost

="

Cost
@

Level of data structure

Figure 4.3 - Interaction between costs and benefits of structuring data - a specific situation

Storage location

The geographical location that the databases are located in is also important for a variety
of reasons, including data security, data availability, data accessibility, and, of course,
operation costs.

Authority

There are two key questions under authority that are very important to consider when
choosing what type of database is appropriate:

1. Who does that data belong to?
2. Who should have the authority to update it?

Types of databases 105

Relational databases (SQL databases)

Relational databases, or structured databases, are an ecosystem of data collection

and management in which both the collected data and the incoming data must conform
with a pre-defined set of relationships between the data. For relational databases, if
incoming data is not expected in a relational database, the data cannot be stored. Until the
database ecosystem is updated in such ways, those types of incoming data are expected in
the new ecosystem.

Some types of data are so different that updating the ecosystem of the database so

that they are expected will only impede the database's goals. Furthermore, for some

types of data, we may not be certain if we want to invest in them enough to change the
ecosystem for them. This is often the case for video, voice, text, and social media data that
tends to have a large size. For these types of data, we give up on changing the relational
databases to accommodate them and store them in types of databases that do not require
as much structuring.

Unstructured databases (NoSQL databases)

NoSQL, or unstructured databases, are precisely the solution for the problem of wanting
to store data that we are unable to structure, or are ambivalent to do so. Furthermore,
unstructured databases can be used as an interim house for data we do not have the
resources to structure just now.

The term "unstructured databases" is not literal of course. Fully unstructured data is a
pile of signs and symbols with no values. The term "unstructured databases" comes up
against relational databases to create a distinction. The following example demonstrates
a practical distinction between structured and unstructured data and their different
applications for a law firm.

A practical example that requires a combination of
both structured and unstructured databases

Seif and Associates law firm has been active in the area of civil and criminal law since
1956. Back in the day, the firm kept a paper copy of every legal document, every memo,
every appeal, every invoice, and so on. In 1998, the firm went through a major IT overhaul
and created a relational database that keeps track of all of the legal and business activities.
The relational database that supports the firm is highly structured and allows the firm four
different types of reports, that only such a highly structured database would allow. For
instance, the database could report the monthly assigned legal tasks of every paralegal.

106 Databases

All of the documents that are sent out to the courts and the invoices that are sent to
customers are not data objects in the database, but are produced on demand from the
database. For instance, an invoice is produced every time by checking the invoice number
in the database reading the items and prices associated with the invoice. Once all this data
is found in the database, a piece of software puts them together and prints out an invoice
every time.

As the major IT overhaul in 1998 was a significant undertaking by itself, the firm never
had the chance to digitalize the paper copies from 1956 to 1998. However, 1 year ago,

the firm decided to unburden itself from having to carry all those physical copies. Now,
the firm keeps a scanned version of these documents on an unstructured database. Even
though the data is all in the unstructured database, detailed reports from this database are
not possible.

An Al company has recently approached the firm and suggested that they have the
technology to go through the digital copies of the documents from 1956 to 1998 and include
them in the structured database. The firm concluded that the cost of structuring that data
(the AT company's price quote) does not meet or exceed the possible benefits of structuring
it. Therefore, the firm decided that an unstructured database for those records will suffice

as they are only recorded for legal purposes and if any of those documents are needed, the
unstructured database has enough indexing, so the documents are found in 5 to 10 minutes.

Distributed databases

When we think of structured or unstructured databases, we normally assume that each
database is located physically at one site or one computer. However, this can easily be

an incorrect assumption. There are many reasons for having multiple locations/sites/
computers for a database, such as higher data availability, lower operational costs, and
superior data safety. Simply put, a distributed database is a collection of databases
(structured, unstructured, or a combination of the two) whose data is physically stored in
multiple locations. To the end user, however, it feels like just one database.

The foundation of cloud computing is distributed databases. For instance, Amazon Web
Services (AWS) is a masterfully connected web of distributed databases across the world
that offers database space with high availability and safety and bills its customers based on
their actual usage.

Blockchain

We normally assume that a database is owned by one person or one organization. While
this is a correct assumption in many cases, Blockchain is the solution when central
ownership and authority are not advantageous.

Connecting to, and pulling data from, databases 107

For instance, this is one of the many reasons that Bitcoin has become a competitive
option for digital money. While banks' central authority of the databases provides some
assurances for data safety, the banks will also have the technological authority to cut
customers off from their money if they deem this necessary. However, Blockchain is a
database alternative that does not have a central authority while providing data safety.

The downside of Blockchain is that all of its data is stored in blocks and each block can
only hold a small amount of information. Furthermore, the complex and detailed reports
that are easily produced by relational databases cannot be created by Blockchain.

So far, we have covered some important topics:

« What are databases?
« Different types of databases

« Why we need various types of databases

Now, we turn our attention to how we can create and connect to databases and get the
data we want.

Connecting to, and pulling data from,
databases

For data analytics and data preprocessing, we need to have the skillset to connect to
databases and pull the data we want from them. There are a few ways you can go about
this. In this section, we will cover these ways, share their advantages and disadvantages,
and, with the help of examples, we will see how this is done.

We will cover five methods of connecting to a database: direct connection, web page
connection, API connection, request connection, and publicly shared.

Direct connection

When you are allowed access to a database directly, it means you can pull any data you
want from the database. This is a great method of pulling data from databases, but there
are two major disadvantages. First, you are rarely given direct access to databases unless
you are completely trusted by the owner of the database. Second, you need to have the
skillset to interact with a database to pull the data from it. The script you need to know
for connecting to relational databases is called Structured Query Language (SQL). In
SQL, every time you want to pull data from a database, you write a query using the SQL
language. A great resource for learning SQL is available for free at W3Schools . com:
https://www.w3schools.com/sql/.

http://W3Schools.com:
https://www.w3schools.com/sql/

108 Databases

Adpvice to beginners about learning SQL

If you are not familiar with SQL, make certain to at least know the following
concepts: SQL table, primary keys, and foreign key, and the following
operators: SELECT, DISTINCT, WHERE, AND, OR, ORDER BY, LIKE,
JOIN, GROUP BY, COUNT (),MIN(),MAX(),AVE (), SUM(),
HAVING, and CASE. https://www.w3schools.com/sqgl/ can help
you learn the topics mentioned.

When you have written a correct query, you need to somehow send it to the database and
be able to get back the results, and for that, you need a connection to the database. There
is no one way to create a connection to the database. There is software with an interactive
User Interface (UI) that can do that for you. Examples of such software are Microsoft
Access, SQL Server Management Studio (SSMS), and SQLite.

The good news is that we can also create a connection to a database using the Python
module sqlite3. We will be using the Chinook sample database to practice connecting
to databases using Python and the module sqlite3. The following diagram shows the
Chinook database using the Unified Modeling Language (UML). This sample database
has 11 tables that are connected to one another by their primary keys to create a database
that is designed to support a small/medium-sized business that sells music tracks. The
UML of a database helps to understand the connections between tables and to design
queries to pull data from a database.

Playlistld: INTEGER
Name: NVARCHAR(120)

l Invoiceld: INTEGER ~—H l Customerld: INTEGER

Customerld: INTEGER FirstName: NVARCHAR(40)
InvoiceDate: DATETIME LastName: NVARCHAR(20)
BillingAddress: NVAR... Company: NVARCHAR(80)
. BillingCity: NVARCHA... Address: NVARCHAR(70)
¥ Playlistld: INTEGER 4 more columns... City: NVARCHAR(40)

Trackld: INTEGER State: NVARCHAR(40)

Country: NVARCHAR(40)

PostalCode: NVARCHAR(10)

Phone: NVARCHAR(24)

Fax: NVARCHAR(24)
Invoiceltemld: INTEGER Email: NVARCHAR(60)

Invoiceld: INTEGER SupportRepld: INTEGER
Trackld: INTEGER

UnitPrice: NUMERIC

Quantity: INTEGER
-~
Employeeld: INTEGER

LastName: NVARCHAR(20)
FirstName: NVARCHAR(20)
Title: NVARCHAR(30)
ReportsTo: INTEGER
BirthDate: DATETIME
HireDate: DATETIME
Address: NVARCHAR(70)
7 more columns...

MediaTypeld: INTEGER
Name: NVARCHAR(120)

Trackld: INTEGER
Name: NVARCHAR(120
Albumid: INTEGER
MediaTypeld: INTEGER
Genreld: INTEGER
Composer: NVARCHAR(220)
Milliseconds: INTEGER
Bytes: INTEGER
UnitPrice: NUMERIC

Genreld: INTEGER
Name: NVARCHAR(120)

Albumld: INTEGER
Title: NVARCHAR(160)
Artistld: INTEGER

Artistld: INTEGER
Name: NVARCHAR(120)

Figure 4.4 - UML of the Chinook database (source: sqlitetutorial.net)

https://www.w3schools.com/sql/

Connecting to, and pulling data from, databases 109

The following screenshot shows the combined use of pandas and sglite3 modules
to create a connection to a database and read the data from the database into a pandas
DataFrame. The code employs the function pd.read _sgl query () for this purpose.
This function requires two inputs: a query in the form of a string and a connection. The
code uses the sglite3.connect () function to create a connection, and then passes
Connectionand query txt intopd.read sqgl query () to have the requested
data in a DataFrame.

In [1]: M | import sqlite3
import pandas as pd

In [2]: M |Connection = sqglite3.connect('chinook.db")
query_txt = "SELECT * FROM customers;"

df_customers = pd.read_sql_query(query_txt,Connection)

Figure 4.5 - Creating a connection to chinook.db using the sqlite3 module

So far, we have covered one of the five methods of connecting to databases: direct
connection. Next, we will look at the four remaining methods: web page connection, API
connection, request connection, and publicly shared.

Web page connection

Sometimes, the owner of the database only wishes to give you controlled access to their
database. As these types of access are controlled, data sharing happens on the owner's
terms. For instance, the owner might wish to give you access to a certain part of their
database. Furthermore, the owner might not wish you to be able to pull all the data you
need at once, but in timed portions.

A web page connection is one of the methods that database owners can use when offering
controlled access to their database. A great example of a web page connection can be seen
and interacted with at londonair.org.uk/london/asp/datadownload. asp.
After you open this page, you can either pick a specific location or a specific measurement.
Regardless of your choice, the page takes you to another page and takes more input from
you before showing you a graph and providing you with a CSV dataset. Go to this web
page and try different inputs and download some datasets before reading on.

http://londonair.org.uk/london/asp/datadownload.asp

110 Databases

API connection

The second method for giving out controlled access to databases is providing an API
connection. However, unlike the web page connection method, where a web page would
navigate and respond to your request, with API connections, a web server handles your
data requests. A great example of data sharing through an API connection is data of the
stock market. Different web services provide free and or subscription-based APIs for users
to get access to live stock market data.

An example of connecting and pulling data using an API

The Finnhub Stock API (finnhub.io) is a great example of such a web service. Finnhub
provides both free and subscription-based access to its databases. You can access and use
their basic stock market data, such as daily, hourly, and minute by minute, of US stock
prices. With their free version access, you can request their basic data, such as stock prices
and you may send up to 60 requests per minute. If you need to process more than 60
requests per minute, or you want data that is not included in the free access, you will have
to subscribe.

The Finnhub free version is enough for us to practice accessing data through APIs. First,
on the first page of £innhub. io, click on Get a Free API Key and get yourself an API key.
Second, type the following code into your Jupyter notebook and change API Key from
the arbitrary 'abcdefghijklmnopq"' to the free API key you got from finnhub.io.
If you have done every step correctly, you will get <Response [200]> printed out, which
means everything went well. Via this code, you connected to the Finnhub web server and
collected some data:

import requests

stk _ticker = 'AMZN'

data resolution = 'W!'
timestamp from = 1577865600
timestamp to = 1609315200
API Key = 'abcdefghijklmnopqg'

Address_ template = 'https://finnhub.io/api/vl/stock/
candle?symbol={}&resolution={}&from={}&to={}&token={}"

API address = Address template.format (stk ticker, data
resolution, timestamp from, timestamp to, API Key)

r = requests.get (API_address)
print (r)

http://finnhub.io
http://finnhub.io
http://finnhub.io

Connecting to, and pulling data from, databases 111

Now, let's dissect this code together. Every API request needs to be expressed in a web
address. This is universally true; the way you should translate your request into a web
address might be somewhat different for different web servers, but they are very similar. If
you have already run the proceeding code, when you execute print (API_address),
as realized in the following screenshot, you will see the web address that claims to have
the API key of abcdefghijklmnopq and requests the weekly Amazon stock price from
January 1 to December 30, 2020. Study the web address and find out each segment of the
address before reading on.

In [4]: M print(API_address)

https://finnhub.io/api/v1l/stock/candle?symbol=AMZN&resolution=W&from=157786
5600&t0=1609315200&token=bsiqli7rh5rc8orbnkqg

Figure 4.6 - Printing API_address
The following bullet points list and explain the different parts of the web address:

» symbol=AMZN specifies that you want the prices with the stock ticker AMZN,
which indicates Amazon.

+ resolution=W specifies that you want the weekly prices. You could request minute
by minute, every 5 minutes, every 15 minutes, every half an hour, hourly, daily,
weekly, and monthly prices by using, respectively, 1, 5, 15, 30, 60, D, W, and M.

« from=1577865600 specifies the time from which you want data. The weird-
looking number is a timestamp for January 1, 2020.

e to0=1609315200 specifies the time up to which you want data. The weird-looking
number is a timestamp for December 30, 2020.

+ token=abcdefghijklmnopq specifies the API key for this address.

What is next?

Now that you understand the preceding code and you have got the <Response [200] >
message, we need to access and use the data. Let's do this step by step. First, run and study
the output of the following code:

print (r.json())

The output is a JSON formatted string that has the following structure: { 'c': a list
with 51 numbers, 'h': a list with 51 numbers, 'l': a list with
51 numbers, 'o': a list with 51 numbers, 's': 'okay', 't: a
list with 51 numbers, 'v': a list with 51 numbers}.

112 Databases

The output basically shows the 51-week data of Amazon stock prices. The following list
shows what each letter stands for.

o 'c':the closing price for the period

o 'h':the highest price during the period

o '1':the lowest price during the period

o 'o':the opening price for the period

o 's':the status of the stock

o 't ':the timestamp showing the end of the period

« 'v':the trading volume in the period

Working with the stock data when presented with this format is not easy. However,
transforming it to a format that you are used to is easy. Run the following code and study
the output:

AMZN df = pd.DataFrame(r.json())
AMZN df

After running the code, the data will be presented in AMZN_df, which is a pandas
DataFrame. A pandas DataFrame is a data structure that we like as we know how to
manipulate the data using multiple pandas functions.

Putting it all together

The following screenshot shows all the preceding code that created AMZN_df and another
six lines of code that are added to restructure the data into a more presentable and
codeable format:

Connecting to, and pulling data from, databases

113

In [7]: M |from datetime import datetime
import requests
import pandas

stk_ticker = 'AMZN'
data_resolution = 'W'
timestamp_from =

timestamp_to = 1609315200
API_Key = 'bsiqli7rh5rc8orbnkqgg"’

Address_template

API_address = Address_template.format(stk_ticker,data_resolution,
timestamp_from,timestamp_to,API_Key)

AMZN_df = pd.DataFrame(r.json())
AMZN_df.drop(columns=["'s"'],inplace=True)
AMZN_df.t = AMZN_df.t.apply(datetime.fromtimestamp)

1577865600

= 'https://finnhub.io/api/v1l/stock/candle?symbol={}&resolut:

AMZN_df.t = AMZN_df.t.apply(lambda v:v.date())
AMZN_df.set_index('t',drop=True,inplace=True)
AMZN_df.columns
AMZN_df.head()

['Closing', 'High', 'Low', 'Opening', 'Volume']

Out[7]:

Closing High Low Opening Volume

t
2020-01-01 1891.97 1913.89 1860.00 1875.00 19514188
2020-01-08 1862.02 1917.82 1855.09 1909.89 15160738
2020-01-15 1887.46 1902.50 1857.25 1882.99 13580875
2020-01-22 1858.00 1894.99 1815.34 1885.11 14688733
2020-01-29 2039.87 2071.02 1850.61 1858.00 37459327

Figure 4.7 — An example of using an API connection to connect and pull data

The following list indicates how each added line of code contributes to this goal.

« inplace=True: When this is added to a pandas function, you mean to specify
that you want the requested change to be applied to the DataFrame itself. The

alternative is to have the function output a new DataFrame that has the requested

change. This code is added to two of the following lines of code.

e AMZN df.drop(columns=['s'],inplace=True): This line of code drops

the column s as this column only has one value across all the data objects.

114 Databases

e AMZN df.t = AMZN df.t.apply(datetime.fromtimestamp): Thisline
of code applies the datetime . fromt imestamp function from the datatime
module to the column t. This function takes a timestamp and transforms it into a
DateTime object. Run datetime.fromtimestamp (1609315200) to see the
workings of this function.

e AMZN df.t = AMZN df.t.apply(lambda v:v.date ()): Thisline of code
applies a lambda function to only keep the date part of a DataTime object as the
time for all the data objects is 16:00.

e AMZN df.set index('t', drop=True, inplace=True): This line of code
sets the column t as the index of the DataFrame. The part drop=True indicates
that you want the original index to be dropped.

e AMZN df.columns =
['Closing', 'High', 'Low', 'Opening', 'Volume']: This line of code
changes the name of AMZN_df columns.

e AMZN df.head (): This line of code outputs a DataFrame with only the first five
rows of the AMZN _df DataFrame.

So far, we have covered three of the five methods of connecting to databases: direct
connection, web page connection, and API connection. Next, we will look at the
remaining two methods: request connection and publicly shared.

Request connection

This type of connection to a database happens when you do not have any access to the
database of interest under any of the three preceding methods, but you know someone
who has access and is authorized to share some parts of the data with you. In this method,
you need to clearly explain what data you need from the database. This method of
accessing the database has some pros and cons. See Exercise 4 to figure out what they are.

Publicly shared

This method of connecting to databases is the least flexible. Under the publicly shared
method, the owner of the database has extracted one dataset out of the databases they
owned and has provided access to that one dataset. For instance, almost all of the datasets
that you find on kaggle . com fall under this method of connecting to a database.
Furthermore, most of the data access that is provided under data . gov also falls under
this inflexible access to the databases.

http://kaggle.com
http://data.gov

Summary 115

Ssummary

Congratulations on successfully finishing this chapter! Now you are equipped with a
powerful understanding of databases and it will pay dividends in your quest for effective
data preprocessing.

In this chapter, you learned the technological role of databases in data analytics and data
preprocessing. You also learned about different kinds of databases and how they should
be chosen for different situations. Specifically, you understood how you would decide
about the level of data structures in their databases. Last but not least, you learned the five
different methods of connecting to, and pulling data from, databases.

This chapter concludes your learning of part 1 of this book: Technical needs. Now
you are ready to start learning about analytics goals, which is the second part of this
book. The technical needs will empower you to use technology to effectively read and
manipulate data. The analytics goals will give you a foundational understanding so that
you know for what purposes you will need to manipulate the data.

The next part of the book will be an exciting one as we will see examples of what can be
done with data. However, before moving on to the next part, take some time and solidify
and improve your learnings by completing the following exercises.

Exercises

1. Inyour own words, describe the difference between a dataset and a database.

2. What are the advantages and disadvantages of structuring data for a relational
database? Mention at least two advantages and two disadvantages. Use examples
to elucidate.

3. In this chapter, we were introduced to four different types of databases: relational
databases, unstructured databases, distributed databases, and Blockchain.

a. Use the following table to specify a ranking for each of the four types of databases
based on the criteria presented in the table.

b. Provide reasoning for your selections.

116

Databases

The table already has some of the rankings to get you started. N/A stands for
Not applicable. Study the ranking provided and give your reasoning as to why they
are correct.

Relational | Unstructured | Distributed

Databases | Databases | databases Blockchain

Ease of loading new data to

the database 2 1 lor2 N/A

Ease of introducing new
types of data to the database

Data access reliability 2 2 1 N/A

Decentralized authority

Ease of creating more
detailed reports

Ease of recording larger sizes
of data

Better manageability of
operational costs

Prone to political

N/A N/A 1 2
considerations / /

The need for more
preprocessing for analytic
purposes

Figure 4.8 — Database type ranking

In this chapter, we were introduced to five different methods for connecting to
databases: direct connection, web page connection, API connection, request
connection, and publicly shared. Use the following table to indicate a ranking for
each of the five methods of connecting to databases based on the specified criteria.
Study the rankings and provide reasoning as to why they are correct.

Exercises 117
Direct Web page API Request Publicly

Connection | Connection | Connection | Connection Shared
Flexibility of access 1 2 2 4 5
Prpne to hur'nan. 5 5 5 1 5
miscommunications
Ngedfora high level of technical 1 3) 4 5
skillset
Need for knowing the database 1 5 5 5 5
tables
Fastest access to the desired data 1 2 2 5 4
More code-friendly 1 5 2 5 5
Awareness of the possibilities in 1 3 3) 5
the database
Least time-consuming data pulling 1 3 2 5 4
Highest database security 4 2 2 3 1

Figure 4.9 - Ranking of database connection methods

5. Using the Chinook database as an example, we want to investigate and find an
answer to the following question: Do tracks that are titled using positive words sell
better on average than tracks that are titled with negative words. We would like to
focus solely on the following words in the investigations:

List of negative words: ['Evil', Night', 'Problem’, ‘Sorrow', 'Dead’, 'Curse’, 'Venom',
'Pain’, 'Lonely’, 'Beast']

List of positive words: ['Amazing', 'Angel’, 'Perfect’, 'Sunshine’, 'Home', 'Live', Friends']
a. Connect to the Chinook database using Sqlite3 and execute the following query:

SELECT * FROM tracks join invoice items on tracks.TrackId
= invoice items.TrackId

118 Databases

b. Use the skills you learned in previous chapters (applying a function, group by
function, and so on) to come up with a table that lists the average total sales for
tracks containing good words and the same for tracks containing bad words. Here is
what the table will look like:

TotalSale

MusicTitleTyple

Negative 1.110000
Neither 1.174550
Positive 1.188667
Figure 4.10 - Table report from the Chinook database for Exercise 5
c. Report your conclusions.

6. In the year 2020, which of the following 12 stocks experienced the highest growth.
Stocks: ['Baba’, NVR',"AAPL', ' NFLX', 'FB', 'SBUX', ' NOW', 'AMZN', 'GOOGL',
'MSFT', 'FDX', and "TSLA']

For a good estimate of growth, use both formula 1 and formula 2 on the weekly
closing stock prices. (a) Formulal: (a-b), and (b) Formula2: (a-b)/c

In these formulas, a, b, and c are, respectively, the stock closing price for 2020, the
median of stock prices during 2020, and the mean of stock prices during 2020.

Based on each formula, what is the stock with the highest growth, and what is the
difference between the outcome of each formula?

Part 2:
Analytic Goals

After reading this part, you will be able to perform popular analytics using cleaned and
issue-free data.

This part comprises the following chapters:
« Chapter 5, Data Visualization
o Chapter 6, Prediction
o Chapter 7, Classification
 Chapter 8, Clustering Analysis

5
Data Visualization

Being able to visualize data is the backbone of data analysis. The area of data visualization
is very exciting, as there are endless possibilities for novelty and creativity in drawing
visualizations that tell better stories about your data. However, the core mechanisms

of even the most innovative graphs are similar. In this chapter, we will cover these
fundamental mechanisms of visualizations that give life to the data and allow us to
compare, analyze, and see patterns in it.

As you will learn these fundamental mechanisms, you will also be developing a better
backbone/skillset for your data preprocessing goals. If you can fully understand the
connection between the data and its visualizations, you will be more effective at
preprocessing data for effective visuals. In this chapter, you will work with the data that I
have already preprocessed, but in later chapters, we will cover the concepts and techniques
that lead to these preprocessed datasets.

This chapter will cover the following main topics:

« Summarizing a population

« Comparing populations

« Investigating the relationship between two attributes
+ Adding visual dimensions

 Showing and comparing trends

122 Data Visualization

Technical requirements

You will be able to find the codes and dataset for this chapter in the book's GitHub
repository in the Chapter05 folder:

https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python

Summarizing a population

You can use simple tools such as the histogram, boxplot, or bar chart to visualize the
variations in the values of one column of a dataset across the populations of the data
object. These visualizations are immensely useful, as they help you to see the values of one
attribute at a glance.

One of the most common reasons for using these visuals is to familiarize yourself with
a dataset. The term getting to know your data is famous among data scientists and is said
time and again to be one of the most necessary steps for successful data analytics and
data preprocessing.

What we mean by getting to know a dataset is understanding and exploring the statistical
information for each attribute of the dataset. That is, we want to know what types of values
each attribute has and how the values vary across the population of the datasets.

For this purpose, we use data visualization tools to summarize the data object population
per attribute. Numerical and categorical attributes require different tools for each type

of attribute. For numerical attributes, we can use either the histogram or boxplot to
summarize the attribute, whereas for categorical attributes, it is best to use bar charts. The
following examples walk you through how this can be done all at once for any dataset.

Example of summarizing numerical attributes

Write some code that does the following:

1. Readsthe adult.csv dataset into the adult df pandas DataFrame
2. Creates a histogram and boxplots for the numerical attributes of adult df

3. Saves the figure for each attribute with a 600 mpi resolution in a separate file

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Summarizing a population 123

Give the preceding example a try before looking at the following code:

1. First, we will import the modules that we will use throughout this chapter:

import pandas as pd
import matplotlib.pyplot as plt

import numpy as np

2. Then, we start working on the problem:
adult df = pd.read csv('adult.csv')

numerical attributes = ['age', 'fnlwgt', 'education-num',
'capitalGain', 'capitalLoss', 'hoursPerWeek']

for att in numerical attributes:
plt.subplot(2,1,1)
adult df [att] .plot.hist ()
plt.subplot(2,1,2)
adult df [att] .plot.box (vert=False)
plt.tight layout ()
plt.show ()
plt.savefig('{}.png'.format (att), dpi=600)

When you run this code, the Jupyter notebook will show you all 12 charts. Each
numerical attribute will have one histogram and one boxplot. The code will also save a
.png file on your computer for each attribute that saves the histogram and boxplot of the
attribute. For example, the following figure shows the educat ion-num. png file that
was saved on my computer after running the preceding code:

10000 A

7500 A

5000 -

Frequency

2500 A

0 -

education-num4{ O O O O |—|:I:|—|

2 4 6 8 10 12 14 16

Figure 5.1 - education-num.png

124 Data Visualization

Where Are the Files on My Computer?

If you have difficulty finding the files on your computer, you need to
understand the difference between an absolute file path and a relative file path.
The absolute file path includes the root element and the complete directory
path. However, the relative path is given with an understanding that you are
already in a specific directory.

In the preceding code, we did not include the root element in the file path
when using plt .savefig (), so Python correctly read this as a relative
path and assumed that you want the files to be saved in the same directory as
the one you have in your Jupyter notebook file.

In this example, you saw the application of boxplots and histograms to summarize the
numerical attributes of a dataset. Now, let's look at another example that shows you
similar steps for categorical attributes. For categorical attributes, we always use bar charts.

Example of summarizing categorical attributes

Write some code that does the following:

1. Creates bar charts for the categorical attributes of adult_df

2. Saves the figure for each attribute with a 600 mpi resolution in a separate file
Give the preceding example a try before looking at the following code:

categorical attributes = ['workclass',6 'education',
'marital-status', 'occupation', 'relationship', 'race',
'sex', 'nativeCountry', 'income']

for att in categorical attributes:
adult df [att] .value counts () .plot.barh()
plt.title(att)
plt.tight layout ()
plt.savefig('{}.png'.format (att), dpi=600)
plt.show ()

When you run this code, the Jupyter notebook will show you all nine charts. Each
categorical attribute will have one bar chart. The code will also save a . png file on your
computer for each attribute that saves the bar chart of the attribute. For example, the
following figure shows the education. png file that was saved on my computer after
running the preceding code:

Comparing populations 125

education

Preschool
1st-4th
5th-6th

Doctorate

12th

9th
Prof-school
7th-8th

10th
Assoc-acdm
11th
Assoc-voc
Masters
Bachelors
Some-college
HS-grad

0 2000 4000 6000 8000 10000

Figure 5.2 - education.png

Good Practice Advice

Technically, you could also use a pie chart to summarize a categorical attribute.
However, I advise against it. The reason is that pie charts are not as easily
digested by our human brains as bar charts. It has been shown we do much
better in appreciating differences in length than the difference in chunks of pies.

So far, you were able to create visualizations that are meant to summarize a population.
There are other advantages of being able to do this. Now that we can create these
visualizations, we can also create more than one of them and put them next to one another
for comparison. The next section will teach you how to do this.

Comparing populations

Putting these kinds of summarizing visualizations of different populations next to one
another will be useful to create visuals that help us compare those populations. This can
be done with histograms, boxplots, and bar charts. Let's see how this is done using the
following three examples.

126 Data Visualization

Example of comparing populations using boxplots
Write some code that creates the following two boxplots next to one another:
« A boxplot of education-num for data objects with an income value that
is <=50K

« A boxplot of education-num for data objects with an income value that is >50K
Give the preceding example a try on your own before looking at the following code:

income possibilities = adult df.income.unique ()
for poss in income possibilities:
BM = adult_df.income == poss

plt.hist (adult df [BM] ['education-num'], label=poss,
histtype="'step')

plt.boxplot (dataForBox dic.values () ,vert=False)
plt.yticks ([1,2],income possibilities)
plt.show ()

Once you run this code, the Jupyter notebook will display the following figure:

<=50K-ooooooop—D—|ooooo

Figure 5.3 - Boxplots of education-num for two populations of income <=50K and >50K

Comparing populations 127

Let's first go through the code before discussing the preceding visual. To completely
understand the functioning of the preceding code, you will need to understand
three concepts:

1. The code first loops through all the populations that we want to be included in the
visual. Here, we have two populations: data objects with an income <=50K and
data objects with an income >50K. In each iteration of the loop, the code uses
Boolean masking to extract each specific population from adult df.

2. 'The code uses dataForBox_dic, which is a dictionary data structure, as a
placeholder. On each iteration of the loop, the code adds a new key and its specific
value. In the case of this code, there are two iterations. The first iteration adds

'<=50K ' as the first key and all the education-num values of the specific
population as the value of the key. All those values are assigned to each key as a
Pandas Series. On the second iteration, the code does the same thing for ' >550K .

3. After the loop is completed, the dataForBox dic is full with the necessary
data, so plt .boxplot () can be applied to create the visuals with two
boxplots. The reason that dataForBox_dic.values () is passed instead of
dataForBox_dic isthat plt.boxplot () requires the dictionary that is passed
for drawing only has strings as keys and lists of numbers as values of the keys. Add
print (dataForBox dic) and print (dataForBox dic.values())
before and after the loop to see all these differences on your own.

Now, let's bring our attention to the merit of the output of the preceding code, which is
shown in Figure 5.3. As you can see, the visual clearly tells the story of how education is
important for higher income.

Example of comparing populations using histograms

Write some code that creates the following two histograms in the same plot:

A histogram of educat ion-num for data objects with an income value that
is <=50K

+ A histogram of education-num for data objects with an income value that
is >50K

Give the preceding example a try on your own before looking at the following code:

income possibilities = adult df.income.unique ()
for poss in income possibilities:

BM = adult df.income == poss

128 Data Visualization

plt.hist (adult df [BM] ['education-num'],
label=poss, histtype='step')

plt.legend()
plt.show ()

Once you run this code, the Jupyter notebook will display the following figure:

CJ <=50K
8000 1 >50K
6000
4000 -
2000
0 ’—1‘_!—"_’7' T T T T
2 4 6 8 10 12 18 16

Figure 5.4 - Histograms of education-num for two populations of income <=50K and >50K

The code for creating histograms is less complicated than the code for creating boxplots.
The major difference is that for histograms, you do not need to use a placeholder to
prepare the data for plt .boxplot (). Withplt.hist (), you can just call it as
many times as you need and Matplotlib will put these visuals on top of one another.

The code, however, uses two of the p1t .hist () properties: label=poss and
histtype="'step'. The following explains the necessity of both:

+ label=poss isadded to the code so that p1t.legend () can add the legends
to the visual. Remove label=poss from the code and study the warning that
running the update code gives you.

o histtype='step' issetting the type of histogram. There are two
different histograms that you can choose from: 'bar' or 'step'. Change
histtype='step' tohisttype='bar' and run the code to see the
difference between them.

The following figure is created by using p1t. subplot () to put Figure 5.3 and
Figure 5.4 together. I have not shared the code here, so challenge yourself to create it
before reading on:

Comparing populations 129

>50K A coo0oo0 —— T }F—

<=50k{ 0o o o o0 oo —_}— 0 O0OOUOTGUO

2 4) 8 10 12 14 16
8000 4 [<=50K
[>50K
6000 4
4000 A
2000 4
ol | Lot
2 4 6 8 10 12 14 16

Figure 5.5 - Histograms and boxplots of education-num for two populations of income
<=50K and >50K

These two visuals next to one another can help us see the differences and similarities
between the two populations easily, and that is the value we get from creating them and
meaningfully organizing them together.

So far, we have learned how to compare populations that are described by numerical
attributes. Now, let's look at an example that will teach us how we can compare populations
that are described by categorical attributes. For this purpose, we will use bar charts.

Example of comparing populations using bar charts

Create a visualization that uses bar charts to compare the categorical attribute race for
the two following populations:

« Data objects with an income value that is <=50K
« Data objects with an income value that is >50K
Give this a try on your own before reading on.

You can do this in six different but meaningful ways. Let's go through all of the possible
ways that this can be done.

130 Data Visualization

The first way of solving the problem

The following screenshot shows the code and its output for the first way. In this way of
solving the problem, we have used plt . subplot () to put the bar charts of the two
populations on top of one another:

In [8]: M income_possibilities = adult_df.income.unique()

for i,poss in enumerate(income_possibilities):
plt.subplot(2,1,i+1)
BM = adult_df.income == poss
adult_df[BM].race.value_counts().plot.barh()
plt.x1im([0,22000])
plt.ylabel(poss)

Other

Amer-Indian-Eskimo

50K

Asian-Pac-Islander
Black
White

(’) 25'00 50'00 75'00 10600 125:00 150'00 175'00 20600

<=

Other
Amer-Indian-Eskimo
Asian-Pac-Islander
Black
White

6 ZSbO 50'00 75'00 10600 125'00 15600 175'00 20(')00

>50K

Figure 5.6 — The first way of solving the problem (screenshot of the code and its output)

While this way of solving the problem is legitimate and valuable, bar chats are capable
of fusing the chart of the two populations at different levels. The five other ways show
these levels.

The second way of solving the problem

The following screenshot shows the code and its output for the second way. In this way
of coding it, we have merged the two visuals we saw in Figure 5.6 and we only have one
bar chart that contains all the information. However, this merging has come at the price
of having to make the y-ticks of the chart more complicated. Take a moment to compare
Figure 5.6 and Figure 5.7 before reading on:

Comparing populations 131

In [9]: M adult_df.groupby(['income’, 'race']).size().plot.barh()
plt.show()

(>50K, White)

(>50K, Other)

(=>50K, Black)

(>50K, Asian-Pac-Islander)
(>50K, Amer-Indian-Eskimo)
(<=50K, White)

(<=50K, Other)

income,race

(<=50K, Black)

(<=50K, Asian-Pac-Islander)

(<=50K, Amer-Indian-Eskimo)
(') ZSIOO 50'00 75'00 10600 125'00 15600 175'00 20(")00

Figure 5.7 — The second way of solving the problem (screenshot of the code and its output)

So far, we have managed to somewhat fuse the bar charts of the two populations. Let's take
another step by using a legend and colors to make the resulting chart a bit stronger.

The third way of solving the problem

The following screenshot shows the code and its output for the third way. In this way, we have
used a legend and different colors to represent each possibility under the race attribute.
Compared to the fusion in Figure 5.7, the fusion in the following figure is more effective:

In [10]: M adult_df.groupby(['income’, ‘race']).size().unstack().plot.barh()
plt.show()

race
N Amer-Indian-Eskimo
B Asian-Pac-Islander
>50K = Black
NN Other
E White
w
E
8
£
<=50K

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 5.8 — The third way of solving the problem (screenshot of the code and its output)

132 Data Visualization

While the comparison of the two populations based on income is possible with all three
preceding figures, the comparison of each possibility of the race attribute is not easily
done. The next three ways of solving this problem will highlight visualizations that make
that easier.

The fourth way of solving the problem

The following screenshot shows the code and its output for the fourth way. In this approach,
we have coded the visual so that the two possibilities of the income attribute are next to
one another for each possibility of the race attribute. This way allows us to compare both
income group populations (income <=50K and income >50K) against each race attribute.

In [11]: M adult_df.groupby(['race’, 'income']).size().plot.barh()

plt.show()
(White, >50K)
(White, <=50K)
(Other, >50K)
- (Other, <=50K)
g (Black, >50K)
; (Black, <=50K)
€ (Asian-Pac-Islander, >50K)
(Asian-Pac-Islander, <=50K)
(Amer-Indian-Eskimo, >50K)
(Amer-Indian-Eskimo, <=50K)

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 5.9 - The fourth way of solving the problem (screenshot of the code and its output)

The fusion level of the preceding visual can be improved, and the next way of solving this
problem will do this.

Comparing populations 133

The fifth way of solving the problem

The following screenshot shows the code and its output for the fifth way. The only
difference between this and the previous way is the use of a legend and colors to make the
visual more presentable and neater. Without reservations, we can claim that Figure 5.10 is
more effective in solving this problem than Figure 5.9. Why?

In [12]: M adult_df.groupby(['race’, 'income']).size().unstack().plot.barh()
plt.legend(loc=4)
plt.show()

White

Other

race

Black

Asian-Pac-Islander

N <=50K

Amer-Indian-Eskimo . 50K

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 5.10 — The fifth way of solving the problem (screenshot of the code and its output)

The last way of presenting this data is to stack the two bars under each race category,
instead of having them next to one another. The next way of solving the problem will show
how that can be done.

134 Data Visualization

The sixth way of solving the problem

The following screenshot shows the code and its output for the sixth way. The visual
created from this code is called a stacked bar chart.

In [13]: M adult_df.groupby(['race', 'income']).size().unstack().plot.barh(stacked=True)
plt.legend(loc=4)

Out[13]: «<matplotlib.legend.Legend at ©x2ac@34b4970>

White

Other

Black

race

Asian-Pac-Islander

N <=50K

Amer-Indian-Eskimo . 50K

0 5000 10000 15000 20000 25000

Figure 5.11 - The sixth way of solving the problem (screenshot of the code and its output)

We prefer a stacked bar chart to a typical bar chart when we know the total number of
data objects under each possibility is more important than the comparison between
populations. In this case, as we are creating this visual to compare the two income group
populations, using a stacked bar chart is not very wise.

So far in this chapter, we have learned how we can summarize and compare populations
of data objects based on one attribute. Next, we are going to learn how we can see if two or
more attributes have specific relationships with one another.

Investigating the relationship between two
attributes

The best way to investigate the relationships between attributes visually is to do it in pairs.
The tools we use for investigating the relationship between a pair of attributes depends
on the type of attributes. In what follows, we will cover these tools based on the following
pairs: numerical-numerical, categorical-categorical, and categorical-numerical.

Investigating the relationship between two attributes 135

Visualizing the relationship between two numerical
attributes

The best tool for portraying the relationship between two numerical attributes is the
scatter plot. In the following example, we will use a tool called scatter matrix that creates
a matrix of scatterplots for a dataset with numerical attributes.

Example of using scatterplots to investigate relationships between
numerical attributes

In this example, we will use a new dataset, Universities imputed reduced.csv.
This dataset's definition of data objects is Universities in the USA, and these data
objects are described using the following attributes: College Name, State, Public/
Private,num_appli rec,num appl accepted,num new stud enrolled,
in-state tuition,out-of-state tuition,% fac. w/PHD, stud./fac.
Ratio, and Graduation rate. The naming of these attributes is very intuitive and
does not need further description.

To practice, apply the techniques that you have learned so far to get to know this new
dataset before reading on. It will help your understanding immensely.

The following code uses the pariplot () function of the seaborn module to create

a scatter plot for every pair combination of the numerical attributes in the uni_df
DataFrame. If you have never used the seaborn module before, you need to install it
first. How to install seaborn is shown in Chapter 4, Databases, in the Statistical meaning
of the word pattern section:

import seaborn as sns
uni df = pd.read csv('Universities imputed reduced.csv')

sns.pairplot (uni_ df)

After running the preceding code, the Jupyter notebook will show you Figure 5.12. Using
this figure, you can investigate the relationship between any two attributes in uni_d£. For
instance, you can see that there is a strong relationship between num appl accepted
and num_new_stud_enrolled, which makes sense. As the number of accepted
applications increases, we would expect the number of new enrollments to increase.

136 Data Visualization

Furthermore, by studying the last column or the last row of the scatter matrix in the
following figure, you can study the relationship between graduation and all the other
attributes one by one. After doing so, you can see that, surprisingly and interestingly, the
graduation rate attribute's strongest relationship is with in-state tuitionand
out-of-state tuition. Interestingly, graduation does not have a strong relationship
with other attributes, such as num_new stud enrolled, % fac. w/PHD,and
stud./fac. Ratio.

50000

0 10000 20000 s s 75 100
out-of-state tuition % fac. wiPHD

13 0000 40000 0 10000 20000
rum_appli rec rum_appl accepted

% 0 75 100
Graduation rate

Figure 5.12 - Scatter matrix of the uni_df DataFrame

Investigating the relationship between two attributes 137

Now that we have practiced making visuals to investigate the relationship between
numerical attributes, next, we will do the same for categorical attributes.

Visualizing the relationship between two categorical
attributes

The best visual tool for examining the relationship between two categorical attributes

is the color-coded contingency table. A contingency table is a matrix that shows the
frequency of data objects in all the possible value combinations of two attributes. While
you could create a contingency table for numerical attributes, doing so in most cases
will not lead to effective visualizations; contingency tables are almost always used for
categorical attributes.

Example of using a contingency table to examine the relationship
between two categorical (binary) attributes

In this example, we are interested to see if there is a relationship between two categorical
attributes, sex and income, among the data objects in adult df. To examine this
relationship, we will use a contingency table. The following screenshot shows how this can
be done using the pd. crosstab () pandas function. This function gets two attributes
and outputs the contingency table for them:

In [15]: M contingency tbl = pd.crosstab(adult_df.income,adult_df.sex)
contingency_tbl

Out[15]:
sex Female Male

income

<=50K 9592 15128

>50K 1179 6662

Figure 5.13 - The code and output of creating a contingency table for two categorical attributes,

adult_df.sex and adult_df.income

138 Data Visualization

You can see in the outputted contingency table in the preceding screenshot that, while
around 11% of female data objects have an income >50K, around 30% of male data objects
have an income >50K. To derive such conclusions from a contingency table we normally
do some simple calculations, such as the one we did just now; we calculated the relative
percentages of the income totals for each gender. However, we could color code the
contingency table so that these extra steps are not be needed. The following screenshot
displays a two-step process for doing this by using the sns.heatmapt () function from
the seaborn module:

In [16]: M probablity tbl = contingency_tbl/ contingency_ tbl.sum()
sns.heatmap(probablity tbl, annot=True, center=0.5 ,cmap="Greys")
plt.show()

-0.8

07

<=50K

0.6

05

income

-04

>50K

-0.2

1 1
Female Male
sex

Figure 5.14 - Transforming the contingency table from Figure 5.13 into a heatmap

The two steps to create the color-coded contingency table from the original contingency
table are as follows:

1. Create a probability table from the contingency table by dividing the values of each
column by the sum of all the values in the column.

2. Use sns.heatmap () to create the color-coded contingency table. Apart
from inputting the calculated probability table (probablity tbl) from the
previous step, three more inputs are added: annot=True, center=0.5, and
cmap="Greys". Remove them one by one and run the same code shown in the
preceding screenshot to understand what each addition does.

Investigating the relationship between two attributes 139

Now, by simply looking at the color-coded contingency table in the preceding screenshot,
we can see that while among both males and females, more data objects earn <=50K, data
objects that are male are more likely to earn >50K than female data objects. Therefore, we
can conclude that sex and income do have a meaningful and visualizable relationship
with one another.

This example examines the relationship between two binary attributes. When the
attributes are not binary, the steps we take to create a color-coded contingency table are
identical. Let's see this in an example.

Example of a using contingency table to relationship between two
categorical (non-binary) attributes

Create a visualization that examines the relationship between the race and occupation
attributes for the data objects in adult_df.

Give this a try on your own before reading on.

The following screenshot displays the code and the correct output for this example:

In [17]: M contingency_tbl = pd.crosstab(adult_df.occupation,adult_df.race)
probablity tbl = contingency_tbl/ contingency_tbl.sum()
sns.heatmap(probablity tbl, annot=True, center=0.5 ,cmap="Greys")

plt.show()
Adm-clerical - 011 0.14 0.17 0.1 0.12
Armed-Forces - 0.0035 0 0.00034 0 0.00027 -0.175
Craft-repair - 015 0091 0084 0.11 0.14
Exec-managerial - 0.1 0.14 0.084 0.044 0.14 -0.150

Farming-fishing - 0.035 0.016 0014 0044 0.035

& Handlers-cleaners - 0077 0024 0062 0048 0043 - 0125
2 Machine-op-inspct - 0.066 0.061 0.094 0.16 0.061 -
S Othersenvice- 012 013 02 016 0096
8 Priv-house-serv - 0 0.0041 0.0096 0.012 0.0043 - 0075
Prof-specialty - 0.12 019 0.082 012 014
Protective-serv - 0.028 0015 0035 0.02 0.02 - 0.050
Sales - 0.091 0.11 0.087 01 012
TEch-support - 0014 0.045 0.024 0.012 0.031 -0.025
TFansport-moving - 0.087 0.029 0.058 0.056 0.052
1] | 1 ' - 0000
E 0§ 0§ &
¥ < o 8 £
u w
[
3 8
& c
[]
§ 2
race

Figure 5.15 - Creating a contingency heatmap for the two categorical attributes,

adult_df.race and adult_df.occupation

140 Data Visualization

In the color-coded table, you can clearly see the following patterns:

« Data objects with the race attribute value of white are more likely to have the
occupation attribute values of Craft-repair, Exec-managerial, or
Prof-specialty

« Data objects with the race attribute value of black are more likely to have the
occupation attribute values of Adm-clerical and Other-service

 Data objects with the race attribute value of Asian-Pac-Islander are more
likely to have the occupation attribute value of Prof -specialty

« Data objects with the race attribute value of Amer-Indian-Eskimo are more
likely to have the occupation attribute value of Craft-repair.

Again, using the contingency table we can see that there is a visualizable and meaningful
relationship between race and occupat ion among the data object in adult df.

So far, we have learned how to visualize the relationships between pairs of attributes of the
same type, namely, numerical-numerical and categorical-categorical. Next, we will tackle
visualizing the relationship for the non-matching pairs, specifically, numerical-categorical.

Visualizing the relationship between a numerical
attribute and a categorical attribute

What makes this situation more challenging is obvious: the types of the attributes are
different. To be able to visualize the relationship between a categorical attribute and

a numeric attribute, one of the attributes has to be transformed into the other type of
attribute. Almost always, it is best to transform the numerical attribute into a categorical
one, and then use a contingency table to examine the relationship between the two
attributes. The following example shows how this can be done.

Example of examining the relationship between a categorical
attribute and a numerical attribute
First, create a visualization that examines the relationship between the race and age

attributes for the data objects in adult_df.

The Age attribute is numerical and the race attribute is categorical. So first, we need
to transform age into a categorical attribute. Then, we can use a contingency table to
visualize their relationship. The following screenshot shows these steps:

Investigating the relationship between two attributes 141

In [18]: M age_discretized = pd.cut(adult_df.age, bins = 5)
contingency_tbl = pd.crosstab(age_discretized,adult_df.race)
probablity_tbl = contingency_tbl/ contingency_tbl.sum()
sns.heatmap(probablity tbl, annot=True, center=0.5 ,cmap="Greys")

plt.show()

05

(16.927,316] 1 04 037 036 035
-04

(31.6,46.2] - 039 041 04 034 037
-03

§ (46.2,60.8] - 017 0.17 019 012 02

-02

(60.8, 75.4] - 0032 0.048 0.05 0.015 0.067
-01

(75.4,90.0] - 00064 00067 00038 00037 00079

Black -
Other -
White -

Amer-Indian-Eskimo -
Asian-Pac-Islander -

race

Figure 5.16 — Creating a contingency heatmap for a categorical attribute (adult_df.race) and

a numerical attribute (adult_df.age)

The solution showed in the preceding screenshot has the following three steps:

1. Usethepd.cut () pandas function to transform adult df.ageintoa
categorical attribute with five possibilities. Choosing 5 bins is arbitrary, but it is
a good number unless there are good reasons to group the data into a different
number of bins. Discretization is what we call the transformation of a numerical
attribute into a categorical one; that is why we have used age discretizedas
the name for the transformed adult df.age attribute.

2. Create a contingency table for age discretizedand adult_ df.race using
the pd. crosstab () pandas function.

3. Create a probability table using the contingency table created in the previous step
and then use sns.heatmap () to create the color-coded contingency table.

142 Data Visualization

The output visual shows that there is a meaningful and visualizable relationship between
the two attributes. Specifically, the data objects that have other for the race attribute
are younger than the data objects where the race attributes are white, black,
asian-Pac-Islander, and Amer-Indian-Eskimo.

This example demonstrated the common scenario where the numerical attribute will be
transformed into a categorical attribute to examine its relationship with another categorical
attribute. While this is will be the best way to go about this in almost all cases, there are cases
where it is advantageous to transform the categorical attribute into a numerical one. The
following example shows a rare situation where this transformation is preferred.

Another example of examining the relationship between a
categorical attribute and a numerical attribute

First, create a visualization that examines the relationship between the education and
age attributes for the data objects in adult_df.

Again, we have a categorical attribute and a numerical attribute. However, this time, the
categorical attribute has two characteristics that make it possible for us to choose the less
common way to approach this situation. These two characteristics are as follows:

» Education is an ordinal categorical attribute and not a nominal categorical attribute.

o The attribute can be made into a numeric attribute with a few reasonable assumptions.

The default method to transform an ordinal attribute to a numerical one is ranking
transformation. For instance, you can perform a ranking transformation on the
education attribute and replace each of the possibilities under adult df.education
with an integer number. Interestingly, the adult df dataset already has another attribute
that is the rank transformation of the education attribute, and that transformed attribute
is called educat ion-num. The following figure shows the one-to-one relationship
between these two attributes:

education Preschool or S T oot g1t qom HS- Some- Assoc ASSOC- goipoios Masters 'O Doctorate
4th 6th 8th grad college voc acdm school
education- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

num

Figure 5.17 — The one-to-one relationship between the education and education-num
attributes in adult_df

Investigating the relationship between two attributes 143

You can see the relationship between the two attributes portrayed in the preceding figure
yourself by running the following code:

adult df.['education', 'education-num']) .size()

When you run this code, you will see that the . groupy () function does not split per
possibilities of education-num for education; the reason for this is that there is a
one-to-one relationship between these two attributes.

Now that we have the numerical version of the education attribute, we can use a scatter
plot to visualize the relationship between education and age. The following screenshot
shows the code and the visualization:

In [21]: M adult_df.plot.scatter(x='age',y='education-num")
plt.show()

16 A x L TX]
14 4 o oo SotN000R0NRNRNINRNNNRINNENININIININININNIRcIENIRS S0 @
12 1 SN s e tesneees 06 2 w5 -

10 | coeorEsedIesatehaisIbISDRRITeseeeIITitbOcEeDRMIDNINIE 10N & & ©

education-num
[=-]
”
-
=

T T T T T T T

20 30 40 50 6 70 80 9%
age

Figure 5.18 — Creating a scatter plot for a categorical attribute (adult_df.education) and

a numerical attribute (adult_df.age)

144 Data Visualization

Using the visualized relationship, we can see that the two attributes, age and education,
are not related. For the sake of practice, let's also do this analysis the other way around; let's
discretize age and create a contingency table to see if we will get to the same conclusion.
The following screenshot shows the code and the output visual for this analysis:

In [22]: M age_discretized = pd.cut(adult_df['age'], bins = 5)
contingency_tbl = pd.crosstab(adult_df.education,age_discretized)
probablity_tbl = contingency_tbl/ contingency_tbl.sum()
sns.heatmap(probablity_tbl, annot=True, center=0.5 ,cmap="Greys")
plt.show()

10th - 0036 0.018 0.032 0.043 0.029
11th - 0.058 0.022 0.026 0.033 0.025

12th - 0021 00088 0.0088 0.01 0.0041 e
1st-4th - 00032 00042 00076 0012 0.017
Sth-6th - 0.0084 00084 0013 0.02 0.029 -0.25
7th-8th - 0011 0012 0.031 0.067 0.12
g oh- 0015 0012 0.018 0.03 0.033 -020
& Assoc-acdm - 0032 0.04 0026 0014 0.017
Y Assocvoc - 0038 0053 0036 0031 0.025 015
® Bachelors - 015 0.19 015 013 012 '
Doctorate - 0003 0014 0.023 0.028 0.021
HS-grad - 031 032 034 034 031 -0.10
Masters - 0.02 0.068 0.082 0.051 0.075
Preschool - 0.0012 00013 0002 00038 0 -005
Prof-school - 0.0065 0.024 0.022 0.027 0.037
Some-college - 0.'28 O.'2 0,'18 0’.16 0,|13 - 0,00
@ ~ @ =3)
- (Y=} (=] [T [~}
m - w ~ o
~ 3 ~N o or
o b I o o
. m -r [¥<} r~
- [l * e 5
=
age

Figure 5.19 - Creating a contingency heatmap for a categorical attribute (adult_df.education)

and a numeric attribute (adult_df.age)

We can see that this visual also gives the impression that the two attributes, age and
education, are not related to one another.

So far in this chapter, we have learned how to summarize a population, compare
populations, and just now, we learned how to visualize the relationship between all kinds
of attributes. Now, let's begin another data visualization aspect — next, we will learn about
adding dimensions to our visualizations.

Adding visual dimensions 145

Adding visual dimensions

The visualizations that we have created so far have only two dimensions. When using

data visualization as a way to tell a story or share findings, there are many good reasons
not to add too many dimensions to your visuals. For instance, visuals that have too

many dimensions may overwhelm your audience. However, when the visuals are used as
exploratory tools to detect patterns in the data, being able to add dimensions to the visuals
might be just what a data analyst needs.

There are many ways to add dimensions to a visual, such as using color, size, hue, line
styles, and more. Here, we will cover the three most applied approaches by adding
dimensions using color, size, and time. In this case, we will show adding the dimensions
for the case of scatter plots, but the techniques shown can be easily extrapolated to other
visuals if applicable. The following example demonstrates how adding extra dimensions to
the scatter plot could be of significant value.

Example of a five-dimensional scatter plot

Use WH Report preprocessed.csv to create a visualization that shows the
interaction of the following five columns in this dataset:

e Healthy life expectancy at birth
e Log GDP_per capita

e Year

 Continent

e Population

To solve this problem, we are going to have to do it step by step. So, please stay with
me throughout.

The dataset we use for this example is taken from The World Happiness Report, which
includes the data of 122 countries from 2010 to 2019. Before starting to engage with the
solutions given for this example, take some time and familiarize yourself with the dataset.

146 Data Visualization

Advice for Better Learning

As we learn more and more complex analyses, algorithms, and code, we may
not have space in these pages to get to know every new dataset we cover in the
book. Every time a new dataset is introduced throughout this book, I strongly
recommend that you take the steps that were laid out in the Pandas functions to
explore a DataFrame section in Chapter 1, Review of the Core Modules NumPy
and Pandas. Of course, this applies here. Take the time to get to know the WH
Report preprocessed.csv dataset before reading on.

The following code uses p1t . subplot () and plt.scatter () to bring three
dimensions together: Healthy life expectancy at birth,Log GDP per
capita, and year:

country df = pd.read csv('WH Report preprocessed.csv')
plt.figure(figsize=(15,8))
year poss = country df.year.unique ()
for i,yr in enumerate (year poss) :
BM = country df.year == yr
X= country df [BM] .Healthy life expectancy at birth
Y= country df [BM].Log GDP_per capita
plt.subplot(2,5,1i+1)
plt.scatter (X,Y)
plt.title(yr)
plt.x1lim([30,80])
plt.ylim([6,12])
plt.show ()
plt.tight layout ()

The output of the preceding code is shown in Figure 5.20. The visual manages to achieve
the following important things:

o The figure visualizes the three dimensions all at once.

o The figure shows the upward and rightward movement of the countries in both
X and Y dimensions. This movement has the potential to tell the story of global
success improving on both dimensions, Healthy life expectancy at
birthand Log GDP per capita.

Adding visual dimensions 147

However, the visual is choppy and sloppy at showing the movement of the countries in the
years between 2010 and 2019, so we can do better.

2010 2011 2012 2013 2014
12 2 12 12 2
.. L] . ..
1 1 1 11 4 1 '
10 10 10 10 A 10 ‘.
." .. I- .~ .‘.
9 9 9 9) 9
e o h.' . 'IE . *m-' . (7] L L] oq‘
.,
8 :}'f‘.. 8 ", 8 2.{. 8 < 3% 8 . 8 5‘.
e &% * 2% 0o 3 %o
7 - 7 - 7 L4 74 4 7 e
6 & 6 T [6
Eol &0 80 a0 80 80 a0 60 a0 il &0 80 40 60 80
2015 2016 2017 2018 2019
12 1z 12 12 P
. b) : . .
n & n P n 3 11 4 b n b
10 . 10 10 b/ 10 10
.~. -‘. [] . []
9 9 9 o 9 K 9 p
. 0 ™ - . ‘ . . - o?
M ol
8 'l‘:] o 8 %8 d'n 8 ..k! 2 8 ..c
4 % L 0&‘0‘ ot §o a* Lo
7 .y 7 ., 7 ., 74 ., 7 [
6 r . [- - 6 T T [: - 6 - -
40 &0 80 40 80 80 40 60] a0 &0 80 40 60 80

Figure 5.20 — One figure with three dimensions of the WH Report_preprocessed.csv dataset

Now, we want to improve the preceding figure by seamlessly incorporating time in one
visual instead of having to use subplots. The following figure (Figure 5.21) shows our end
goal in this segment. The figure is interactive, and by sliding the control bar on the top
widget, we can change the year for the visual and therefore see the movement of countries
under the two dimensions of Healthy life expectancy at birthand

Log GDP_per_ capita. Of course, we cannot do that on paper, but I will share the
code that can make this happen right here. But, we have to do this in two steps:

1. Create a function that outputs the relevant visual for the inputted year.

148 Data Visualization

2. Use new modules and programing objects to create the slide bar.

year () 2010
12
&
11 ¢
.
M
- [
E ° e O * e 2
o L ®
[T}
g 9 Yo ”
0] .o o 0
o 8 oo, % %°
5 ..o‘g. o
. @ g
7 e
5 T T T T
30 40 50 60 70 80

Healthy_life_expectancy_at birth

Figure 5.21 - One figure with three dimensions of the WH Report_preprocessed.csv dataset using a slide
bar widget

The following code creates the function that we need for the interactive visual:

def plotyear (year) :
BM = country df.year == year
X= country df[BM] .Healthy life expectancy at birth
Y= country df [BM].Log GDP per capita
plt.scatter (X,Y)
plt.xlabel ('Healthy life expectancy at birth')
plt.ylabel ('Log GDP per capita')
plt.x1lim([30,80])
plt.ylim([6,12])
plt.show ()

After creating this function and before moving forward, put the function in use by
calling it a few times — for instance, run plotyear (2011), plotyear (2018), and
plotyear (2015). If everything is working well, you'd get a new scatter plot on every run.

Adding visual dimensions 149

After you have a well-functioning plotyear (), writing and running the following code
gives you the interactive visual showed in the preceding figure (Figure 5.21). To create this
interactive visual, we have used the interact and widgets programming objects from
the ipywidgets module:

from ipywidgets import interact, widgets

interact (plotyear, year=widgets.
IntSlider (min=2010,max=2019, step=1,value=2010))

After you have managed to create the interactive visual, go ahead and put the control bar
to use and enjoy the upward movement of the countries. Before your eyes, you will see the
history of global success from 2010 to 2019.

The fourth dimension

So far, we have only been able to include three dimensions in our visuals: Healthy
life expectancy at birth,Log GDP per capita,andyear. We have two
more dimensions to go.

We used a scatter plot to include the first two dimensions, and we used the time
to include the third dimension, year. Now, let's use color to include the fourth
dimension, Cont inent.

The following code adds color to what we've already built. Pay close attention to how
a for loop has been used to iterate over all the continents and add the data of each
continent one by one to the visual and thus separate them:

Continent poss = country df.Continent.unique ()
colors_dic:{'Asia':'b', 'Europe':'g', 'Africa':'r',
'South America':'c', 'Oceania':'m', 'North America':'y',

'Antarctica':'k'}
def plotyear (year) :
for cotinent in Continent poss:

BM1 = (country df.year == year)
BM2 = (country df.Continent ==cotinent)
BM = BM1 & BM2
X = country df [BM] .Healthy life expectancy at birth
Y= country df [BM].Log GDP per capita

plt.scatter(X,Y,c=colors dic[cotinent], marker='o',
linewidths=0.5, edgecolors='w', label=cotinent)

150 Data Visualization

plt.
plt.
plt.
plt.
plt.
plt.

xlabel ('Healthy life expectancy at birth!')
ylabel ('Log GDP_ per capita')

x1lim([30,80])

ylim([6,12])

legend()

show ()

interact (plotyear, year=widgets.
IntSlider (min=2010,max=2019, step=1,value=2010))

After successfully running the preceding code, you will get another interactive visual. The
following figure shows the visual when the year control bar is set to 2015.

year () 2015
12
e Asia . .
e Europe .y
n e Africa t:t. ﬁ.
- s South America % !.)
£101{ e Oceania * e
3| North America .. ® .*
o e Antarctica e N
s 9 " g
& . e *°°
9, e s B,
g. 8 :- A
L1] []
.. .‘ e @
7 *
6 T T T T
40 50 B0 70 BO

Healthy _life_expectancy_at_birth

Figure 5.22- One figure with four dimensions of the WH Report_preprocessed.csv dataset using

a slide bar widget and color

Contemplating and interacting with the preceding visual not only adds extra dimensions
to the visual before our eyes, but it also adds further dimensions to the story we have been
developing. We can see the clear disparity between the continents in the world, but also,
we see the same upward movement to a higher GDP and life expectancy for all countries.

Adding visual dimensions 151

The fifth dimension

So far, we have only been able to include the following four dimensions in one visual:
Healthy life expectancy at birth,Log GDP per capita,year,and
Continent. Now, let's add the fifth dimension, which is population, using the size of
the markers to represent this. The following code adds the dimension of the population as
the size of the markers:

Continent poss = country df.Continent.unique ()
colors_dic:{'Asia':'b', 'Europe':'g', 'Africa':'r',
'South America':'c', 'Oceania':'m', 'North America':'y',
'Antarctica':'k'}

country df.sort values(['population'],inplace = True,
ascending=False)

def plotyear (year) :
for cotinent in Continent poss:
BM1 = (country df.year == year)
BM2 = (country df.Continent ==cotinent)
BM = BM1 & BM2
size = country df [BM] .population/200000
X = country df [BM] .Healthy life expectancy at birth
Y= country df[BM].Log GDP_per capita

plt.scatter(X,Y,c=colors dic[cotinent], marker='o',
s=size, inewidths=0.5, edgecolors='w', label=cotinent)

plt.xlabel ('Healthy life expectancy at birth!')
plt.ylabel ('Log GDP per capita')
plt.x1im([30,80])

plt.ylim([6,12])

plt.legend (markerscale=0.5)

plt.show ()

interact (plotyear, year=widgets.
IntSlider (min=2010,max=2019, step=1,value=2010))

152 Data Visualization

After successfully running the preceding code, you will get another interactive visual. The
following figure shows the visual when the year control bar is set to 2019.

year () 2019
12
Asia
11 - Oceania
& South America
- @ Africa
£ 10 1 Morth America
S e Europe
g g Antarctica
m|
=}
(U]
g °
7
6 g T T
30 40 50 60 70 BO

Healthy_life_expectancy_at_birth

Figure 5.23 — One figure with five dimensions of the WH Report_preprocessed.csv dataset, using a slide

bar widget, color, and size

There are three parts of the preceding code that might be confusing for you. Let's go over
them together:

country df.sort values(['population'], inplace = True,
ascending=False)

The preceding code is included so the countries with higher populations are added to the
visual first, therefore, their markers will go to the background and will not cover up the
countries with lower populations.

size = country df [BM] .population/200000

The preceding code is added to scale down the big population numbers for creating the
visual. The number was found purely after some trial and error.

plt.legend (markerscale=0.5)

The markerscale=0.5 is added to scale the markers shown in the legend, as without this
they would be too big. Remove markerscale=0.5 from the code to see this for yourself.

Voila! We are done. We were able to learn how to create a five-dimensional scatter plot.

Showing and comparing trends 153

So far in this chapter, you have been able to learn useful visualization techniques and
concepts, such as summarizing and comparing populations, investigating the relationships
between attributes, and adding visual dimensions. Next, we will cover how we can use
Python to display and compare trends in data.

Showing and comparing trends

Trends can be visualized when the data objects are described by attributes that are highly
related to one another. A great example of such datasets is time series data. Time series
datasets have data objects that are described by time attributes and with an equal duration
of time between them. For instance, the following dataset is a time series dataset that
shows the daily closing prices of Amazon and Apple stocks for the first 10 trading days
of 2020. In this example, you can see that all of the attributes of the dataset have a time
nature and they have an equal duration of a day between them:

Date 1/2/2020 1/3/2020 1/6/2020 1/7/2020 1/8/2020 1/9/2020 1/10/2020 1/13/2020 1/14/2020 1/15/2020

Amazon 1898.01 1874.97 1902.88 1906.86 1891.97 1901.05 1883.16 1891.3 1869.44 1862.02

Apple 743335 73.6108 74.1974 73.8484 75.0364 76.6302 76.8035 78.4443 77.3851 77.0534

Figure 5.24 - Time series data example (daily stock prices of Amazon and Apple)

The best way to visualize time series data is using line plots. Figure 2.9 from Chapter 2,
Review of Another Core Module — Matplotlib, is a great example of using line plots to show
and compare trends.

Line plots are very popular in stock market analysis. If you search for any stock ticker,
you will see that Google will show you a line plot of the price trends. It also gives you the
option to change the duration of time over which you want the line plot to visualize the
price trends. Give this a try — for example, try some searches: Amazon stock, Google
stock, and Walmart stock.

Line plots are popular in stock market analysis; however, they are very useful in other
areas, too. Any dataset that has time series data could potentially take advantage of line
plots for showing trends. The following example illustrates another instance of applying
line lots to visualize and compare trends.

Example of visualizing and comparing trends

Use WH Report preprocessed.csv to create a visualization that shows and compares
the trend of the Perceptions of corruption attribute for all continents between the
years 2010 and 2019. To be clear, we want the data for only the two years - 2010 and 2019.

Give this example a try before reading on.

154

Data Visualization

This example can be easily solved by all the programming and visualization tools that we
have learned so far. The following code creates the requested visualization:

country df = pd.read csv('WH Report preprocessed.csv')

continent poss = country df.Continent.unique ()

byContinentYear df = country df.groupby(['Continent', 'year']).
Perceptions of corruption.mean ()

Markers options = ['o', '

A

l,lPl, l8l, lsl, lpl, l*l]

for i,c in enumerate (continent poss) :

plt.
plt.

plt
201

plt.

plt

plt.plot ([2010,2019], byContinentYear
df.loc[c, [2010,2019]], label=c, marker=Markers options[i])

xticks ([2010,2019])

legend (bbox to anchor=(1.05, 1.0))

.title ('Aggregated values per each continent in 2010 and
9'")

label ('Perceptions of corruption')

.show ()

Before going over the different parts of this code, let's enjoy seeing, analyzing, and
appreciating the story the following visual tells us. These are the following five points that
the visual clearly shows:

For most continents, namely, Africa, North America,Asia, and Europe,
Perceptions of corruption have declined.

Between all these improving continents, Europe has had the fastest decrease in
Perceptions of corruption.

Asia has had a faster improvement than North America, thereby placing Asia
in a better place than North America in 2019 compared to 2010.

The two continents that have had an increase in Perceptions of corruption
are South Americaand Antarctica.

The Perceptions of corruption values for Oceania have not changed,
and because of that, the continent has achieved the status of having the lowest
Perceptions of corruption among all continents.

Showing and comparing trends 155

Aggregated values per each continent in 2010 and 2019

0.80 - Asia
#— Europe

= 075 - =~ Africa
] S M —e~ South America
S 070 e ~m~ Oceania
E —— g —e— North America
»0-'065 * +— Antarctica
Vll
S 060
a
S 055
&

050

0454 =

2010 2019

Figure 5.25 - Line plot comparing Perceptions_of_corruption across different continents
in 2010 and 2019

Now, let's go through different elements of the preceding code:

1.

The following line of code groups the data based on the two attributes, Cont inent
and year, and then calculates the aggregate function .mean () for the
Perceptions of corruption attribute. The result of this grouping is recorded
inbyContinentYear df, which isa DataFrame.

byContinentYear df = country df.groupby (
['Continent', 'year']
) .Perceptions of corruption.mean ()

The rest of the solution uses numbers in this DataFrame to draw different elements
of the visual. Separately, run print (byContinentYear df) to see this. That
will help your understanding of the solution.

To better separate the continents, the code has used markers. First, the code creates
a list of possible markers for later use. The following line of code has done this:
Markers options = ['o', '*','P', '8', 's', 'p', '*'].Then,
within the loop through all the continents and when each line is introduced using
theplt.plot () function, the code uses marker=Markers options[i] to
assign one of those possible markers.

The code has incorporated box to anchor=(1.05, 1.0) forplt.
legend () to place the legend box outside the visual. Change the numbers a few
times and run the code to see how this functionality of Matplotlib works.

Now, we are completely done with this example. We first appreciated the visual's
storytelling values, then we also discussed each important element of the code we used
to create the visual.

156 Data Visualization

Summary

Congratulations on your excellent progress in this chapter. Together, we learned the
fundamental data visualization paradigms, such as summarizing and comparing
populations, examining the relationships between attributes, adding visual dimensions, and
comparing trends. These visualization techniques are very useful in effective data analytics.

All of the data we used in this chapter had been cleaned and preprocessed so we

could focus on learning the visualization goals of data analytics. Now that you are on
your way toward learning about effective data preprocessing in the next chapters, this
deeper understanding of data visualization will help you become more effective in data
preprocessing, and in turn, become more effective in data visualization and analytics.

In the next two chapters, we will continue learning about other data analytics goals,
namely, prediction, classification, and clustering, before we start introducing effective
preprocessing techniques.

Before moving forward and starting your journey in understanding those goals, spend
some time on the following exercises to practice what you have learned.

Exercise

1. In this exercise, we will be using Universities imputed reduced.csv.
Draw the following visualizations:

a) Use boxplots to compare the student/faculty ratio (stud. /fac. ratio) for
the two populations of public and private universities.

b) Use a histogram to compare the student/faculty ratio (stud./fac. ratio) for
the two populations of public and private universities.

¢) Use subplots to put the results of a) and b) on top of one another to create a visual
that compares the two populations even better.

2. In this exercise, we will continue using Universities imputed reduced.
csv. Draw the following visualizations:

a) Use a bar chart to compare the private/public ratio of all the states in the dataset.
In this example, the populations we are comparing are the states.

b) Improve the visualizations by sorting the states on the visuals based on the total
number of universities they have.

c) Create a stacked bar chart that shows and compares the percentages of public and
private schools across different states.

Exercise 157

For this example, we will be using WH Report preprocessed.csv. Draw the
following visualizations:

a) Create a visual that compares the relationship between all the happiness indices.

b) Use the visual you created in a) to report the happiness indices with strong
relationships and describe those relationships.

c¢) Confirm the relationships you found and described by calculating their
correlation coeflicients and adding these new pieces of information to your
description to improve them.

For this exercise, we will continue using WH Report preprocessed.csv.
Draw the following visualizations:

a) Draw a visual that examines the relationship between two attributes, Cont inent
and Generosity.

b) Based on the visual, is there a relationship between the two attributes? Explain why.

For this exercise, we will be using whickham. csv. Draw the following visualizations:

a) What is the numerical attribute in this dataset? Draw two different plots that
summarize the population of data objects for the numerical attribute.

b) What are the categorical attributes in this dataset? Draw a plot per attribute that
summarizes the population of the data object for each attribute.

c) Draw a visual that examines the relationship between out come and smoker.
Do you notice anything surprising about this visualization?

d) To demystify the surprising relationship you observed on ¢), run the following
code, and study the visual it creates:
person df = pd.read csv('whickham.csv')

person df ['age discretized'] = pd.cut (person df.age, bins
= 4, labels=False)

person df.groupby(['age discretized', 'smoker']) .outcome.
value counts () .unstack() .unstack () .plot .bar (stacked=True)

plt.show ()

Using the visual that was created for the preceding code, explain the surprising
observation made for ¢).

e) How many dimensions does the visual that was created for d) have? How did we
manage to add dimensions to the bar chart?

158 Data Visualization

6. For this exercise, we will be using WH Report preprocessed.csv.

a) Use this dataset to create a five-dimensional scatter plot to show the interactions
between the following five attributes: year, Healthy life expectancy at
birth, Social support,Life Ladder, and population. Use a control bar for
year, marker size for population, marker color for Social support, the x-axis
forHealthy life expectancy at birth, and the y-axis for Life Ladder.

b) Interact with and study the visual you created for a) and report your observations.

7. For this exercise, we will continue using WH Report preprocessed.csv.

a) Create a visual that shows the trend of change for the Generosity attribute for
all the countries in the dataset. To avoid making the visual overwhelming, use a gray
color for the line plots of all the countries, and don't use a legend.

b) Add three more line plots to the previous visual using a blue color and a thicker
line (1inewidth=1. 8) for the three countries, United States, China, and
India. Work out the visual so it only shows you the legend of these three countries.
The following screenshot shows the visual that is being described:

=+ United States

\\

06 A - In#ia
-~ China [——

0.4 1

0.0 1

2010 2019

Figure 5.26 - Line plot comparing Generosity across all countries in 2010 and 2019 with an
emphasis on the United States, India, and China

c) Report your observations from the visual. Make sure to refer to all of the line

plots (gray and blue) in your observations.

6
Prediction

Being able to predict the future using data is becoming increasingly possible. Not only
that; soon, being able to perform successful predictive modeling will not be a competitive
advantage anymore—it will be a necessity to survive. To improve the effectiveness of
predictive modeling, many focus on the algorithms that are used for prediction; however,
there are many meaningful steps you can take to improve the success of prediction

by performing more effective data preprocessing. That is the end goal in this book:
learning how to preprocess data more effectively. However, in this chapter, we are going
to take a very important step toward that goal. In this chapter, we are going to learn the
fundamentals of predictive modeling. When we learn the concepts and the techniques

of data preprocessing, we will rely on these fundamentals to make better data
preprocessing decisions.

While many different algorithms can be applied for predictive modeling, the fundamental
concepts of these algorithms are all the same. After covering those fundamentals in this
chapter, we will cover two of these algorithms that are distinct from one another in terms
of complexity and transparency: linear regression and multi-layer perceptron (MLP).

These are the main topics that this chapter will cover:
o Predictive models

o Linear regression

« MLP

160 Prediction

Technical requirements

You will be able to find all of the code and the datasets that are used in this book in

a GitHub repository exclusively created for this book. To find the repository, click

on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. In this repository, you will find a folder titled
Chapter06, from which you can download the code and the data for better learning.

Predictive models

Using data to predict the future is exciting and doable using data analytics. In the realm
of data analytics, there are two types of future predictions, outlined as follows:

o Predict a numerical value—for example, predict next year's price of Amazon's
stock market.

o Predict a label or a class—for example, predict whether a customer is likely to stop
purchasing your services and switch to your competition.

By and large, when we use the term prediction, we mean predicting a numerical value.
To predict a class or a label, the term that is used is classification. In this chapter,

we will focus on the prediction goal of data analytics, and the next chapter will cover
classification.

The prediction of future numerical values also falls into two major overarching types:
forecasting and regression analysis. We will briefly explain forecasting, before turning
our attention to regression analysis.

Forecasting

In data analytics, forecasting refers to techniques that are used to predict the future
numerical values of time-series data. Where forecasting is distinct is in its application
to time-series data—for instance, the simplest forecasting method is the simple moving
average (SMA). Under this method, you would forecast the numerical value of a future
data point in your time-series data using the most recent data points.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Predictive models 161

Example of using forecasting to predict the future

Let's look at an example that features the moving average (MA) for forecasting. The
following table shows the number of student applications that Mississippi State
University (MSU) received from 2006 to 2021:

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

N_Applications 5778 5140 6141 7429 7839 9300 9864 10449 11117 10766 12701 13930 13817 17363 18269 16127

Figure 6.1 - Number of MSU applications from 2006 to 2021

The following screenshot visualizes the data presented in the preceding table using
a line plot:

18000 -
16000 -
14000 -
12000 A
10000 -
8000 -
6000 -

2006 -
2007 A
2008 -
2009 -
2010 4
2011 A
2012 A
2013 4
2014 A
2015 A
2016
2017 A
2018 -
2019 -
2020 A
2021 A

Figure 6.2 - Line plot for the number of MSU applications from 2006 to 2021

MSU, for planning purposes, would like to have some ideas of how many new applications
they will receive in 2022. One way to go about this would be to use the MA method.

For this method, you need to specify the number of data points you want to use for
forecasting. This is often denoted by n. Let's use five data points (n=5). In that case, you
would use the data from 2017, 2018, 2019, 2020, and 2021 in your prediction. Simply, you
calculate the average number of applications for these years and use that as the estimated
forecast for the next year. The average value of 13,930, 13,817, 17,363, 18,269, and 16,127
is 15,901.2, which can be used as an estimate for the number of applications for 2022.

162 Prediction

The following screenshot depicts the application of MA with n=5:

18000 -
16000 -
14000 -
12000 -
10000 -
8000
6000

2006 -
2007 A
2008 A
2009 A
2010 4
2011 A
2012 A
2013 A
2014 -
2015
2016 A
2017 A
2018 -
2019 -
2020 A
2021 A

Figure 6.3 - Application of a simple MA forecasting method on the number
of MSU applications from 2006 to 2021

There are more complicated methods for forecasting using time-series data such
as weighted MA, exponential smoothing, double exponential smoothing, and more.

We do not cover these methods in this book as the data preprocessing that is needed for
all time-series data is the same. However, what you'd want to remember from forecasting
is that the methods work on single-dimensional time-series data for prediction.

For instance, in the MSU example, the only dimension of data we had was the N_
Applications attribute.

This single dimensionality is in stark contrast to the next prediction methodology we will
cover. Regression analysis, in contrast to forecasting, finds relationships between multiple
attributes to estimate numerical values of one of the attributes.

Regression analysis

Regression analysis tackles the task of predicting numerical values using the relationship
between predictor attributes and the target attribute.

The target attribute is the attribute whose numerical values we are interested in
predicting. The term dependent attribute is another name that is used for the same
idea. The meaning of dependent attribute comes from the fact that the value of the

target attribute is dependent on other attributes; we call those attributes predictors
or independent attributes.

Predictive models 163

Many different methods could be used for regression analysis. As long as the methods
seek to find relationships between the independent attributes and the dependent attribute
for predicting the dependent attribute, we categorize the methods under regression
analysis. Linear regression, which is one of the simplest and yet widely used methods of
regression analysis is, of course, one of these methods. However, other techniques such

as MLP and regression tree are also categorized under regression analysis.

Example of designing regression analysis to predict future values

For example, the prediction of the number of MSU applications in the next year can
also be modeled using regression analysis. The following figure shows two independent
attributes that have the potential to predict the Number of Applications dependent
attribute. You can see in this example that the prediction model engages more than

one dimension; we have three dimensions—two independent attributes and one
dependent attribute.

The first independent attribute, Previous year football performance, is the MSU football
team ratio of winning games. The second independent attribute is Average number of
applications from last two years:

Independent Attributes Dependent Attribute

Previous year football
performance

Average number of /
applications from last

two years

Number of applications

Figure 6.4 - Example of regression analysis

The second independent attribute is interesting as it depicts that you can interface
forecasting methods with regression analysis by including the value of forecasting
methods as independent attributes of regression analysis. The average number of
applications from the last 2 years is the value of the SMA method with n=2.

164 Prediction

How Do We Find Possible Independent Attributes?

You can see the vital role of having appropriate independent attributes for
predicting the attribute of interest (dependent attribute) in regression analysis.
Envisioning and collecting possible predictors (independent attributes) is the
most important part of performing successful regression analysis.

So far, you have learned valuable skills in this book that can help you in the
quest to envision possible predictors. The understanding you amassed in
Chapter 4, Databases, will allow you to imagine what is possible and search for
and collect that data.

In one of the future chapters, Chapter 12, Data Fusion and Integration, you will
learn all the skills you will need to go about integrating data from different
sources to support your regression analysis.

Once the independent and dependent attributes are identified, we have completed and
modeled our regression analysis. Next, we will need to employ the appropriate algorithms
to find relationships between these attributes and use those relationships for prediction.
In this chapter, we will cover two very different algorithms that can do this: linear
regression and MLP.

Linear regression

The name linear regression will tell you all you need to know about it—the regression
part tells you this method performs regression analysis, and the linear part tells you the
method assumes linear relationships between attributes.

To find a possible relationship between attributes, linear regression assumes and models
a universal equation that relates the target (the dependent attribute) to the predictors (the
independent attributes). This equation is depicted here:

target = By + f1 X predictorl + 8, X predictor2 + ---+ By X predictorN

This equation uses a parameter approach. In this equation N stands for the number of
predictors shows the linear regression universal equation.

The working of linear regression is very simple. The method first estimates the fs so that
the equation fits the data best, and then uses the estimated fs for prediction.

Let's learn this method with an example. We will continue solving the number of MSU
applications in the following example.

Linear regression

165

Example of applying linear regression to perform

regression analysis

We have so far identified our independent and dependent attributes, so we can show the
linear regression equation for this example. The equation is shown here:

N_Applications = [, + B; X P_Football_Performance + [f, X SMA2

The MSU applications.csv dataset has all the attributes we need to estimate the fs.
Let's first read this data and take a look at it. The following screenshot shows the code we

run to read the data and the wh

In [1]: M dimport

ole dataset:

pandas as pd

msu_df = pd.read_csv('MSU applications.csv')
msu_df.set_index('Year',drop=True,inplace=True)

msu_df

out[1]:

Year

P_Football_Performance

SMANn2 N_Applications

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

0.273
0.273
0.250
0.615
0.333
0.417
0.692
0.538
0.615
0.538
0.769
0.692
0.462
0.692
0.615
0.462

5778.0
5778.0
5459.0
5640.5
6785.0
7634.0
8569.5
9582.0
10156.5
10783.0
10941.5
11733.5
13315.5
13873.5
15590.0

17816.0

5778
5140
6141
7429
7839
9300
9864

10449

11117

10766

12701

13930

13817

17363

18269

16127

Figure 6.5 — Reading MSU applications.csv and showing the dataset

166 Prediction

In this dataset, we have the following attributes:

o P Football Performance: This attribute is the overall winning ratio of the
MSU football team during the previous academic year.

e SMAn2: This attribute is the calculated value of the SMA with n=2. For instance,
SMAn2 for row 2009 is the average of the N_Applications attribute in 2008 and
2007. Confirm this calculation before reading on.

o N Applications: This is the same data as what we saw in Figure 6.1 and Figure
6.2. This is the dependent attribute that we are interested in predicting.

We are going to use the scikit-learn module to estimate these s using msu_df,
so first, we need to install this module on our Anaconda platform. Running the following
code will install the module:

conda install scikit-learn

Once installed, you need to import the module to start using it every time, just as with
the other module we have been using. However, since scikit-1learn is rather large,
we will import exactly what we want to use each time. For instance, the following code
only imports the LinearRegression function from the module:

from sklearn.linear model import LinearRegression

Now, we have at our disposal a function that can seamlessly calculate the s of our model
using msu_df. We now only need to introduce the data to the LinearRegression ()
function in the appropriate way.

We can do this in four steps, as follows:

1. First, we will specify our independent and dependent attributes, by specifying the X
and y list of variables. See the following code snippet:

X = ['P_Football Performance', 'P_2SMA']
Y

'N Applications'

2. Second, we will create two separate datasets from msu_df using the list X and v:
data_Xanddata_y.data_Xisa DataFrame with all the independent attributes,
and data_vy is a Series that is the dependent attribute. The following code shows this:

data X = msu_df [X]

data y = msu_df [y]

Linear regression 167

This step and the previous step could have been merged with the next steps;
however, it is best to keep your code clean and tidy, and I highly recommend using
my guidelines, at least in the beginning.

3. Next, we will create the model and introduce the data. The following code will do
that. We create a linear regression model and call it 1m, and introduce the data to it:

lm = LinearRegression ()
Im.fit (data X, data_y)

When you run the following code almost nothing happens, but don't worry—the
model has done its bit, and we only need to access the estimated fs in the next step.

4. Asindicated, the estimated fs are within the trained 1m model. We can use
lm.intercept to access f0,and 1m.coef will show you 1, and 2. The
following code prints out an organized report with all the 30 instances:

print ('intercept (b0) ', 1lm.intercept)
coef names = ['bl', 'b2']
print (pd.DataFrame ({'Predictor': data X.columns,

'coefficient Name':coef names,
'coefficient Value': lm.coef }))

After running these four steps successfully, you will have estimated the fs. I did show the
code for this step by step, but all this is normally done in one chunk of code. The following
screenshot shows the preceding lines of code and a small report from Step 4:

In [2]: M from sklearn.linear_model import LinearRegression

X = ['P_Football Performance', 'SMAn2']
y = "N_Applications’
data_X = msu_df[X]

data_y = msu_df[y]

1Im = LinearRegression()
1m.fit(data_X, data_y)

print('intercept (b@) ', lm.intercept_)

coef_names = ['bl','b2"']

print(pd.DataFrame({'Predictor': data_X.columns,
'coefficient Name':coef_names,
‘coefficient Vvalue': 1m.coef_}))

intercept (b@) -890.7106225983407

Predictor coefficient Name coefficient Value
@ P_Football_Performance bl 5544.961933
1 SMAN2 b2 0.907032

Figure 6.6 - Fitting msu_df data to LinearRegression() and reporting the Bs

168 Prediction

Now that we have estimated the fs of the regression model, we can introduce our trained
model. The following equation shows the trained regression equation:

N_Applications = —890.71 + 5544.96 X P_Football_Performance + 0.91 X SMAn2

Next, we will learn how the trained regression equation can be used for prediction.

How to use the trained regression equation for prediction

To use the equation to predict the number of MSU applications in 2022, MSU needs to
put together the P Football performance and SMAn2 attributes for 2022. Here, we
describe the process of finding these values:

e P _Football performance: At the time of writing this chapter (April 2021), the
college football season of 2020-21 had ended and MSU achieved 4 wins out of 11
games, reaching 0.364 winning ratios.

o SMAn2:TheN Applications values for 2021 and 2020 are 18,269 and 16,127,
respectively. The average value of these numbers is 17,198.

Here is the calculation to predict N Applications values in 2022:

Nppplications = —890.71 + 5544.96 x 0.364 +0.91 x 17198 = 16777.83

We do not have to do the preceding calculations ourselves; we did this for learning purposes.
We can use the .predict () function that comes with all of the scikit-learn
predictive models. The following screenshot shows how this can be done:

In [3]: M newData = pd.DataFrame({'P_Football Performance':0.364, 'SMAn2"':17198},
index=[2022])
newData

Out[3]:
P_Football_Performance SMAn2

2022 0.364 17198

In [4]: M 1m.predict(newData)

Out[4]: array([16726.78787061])

Figure 6.7 — Calculating the number of applications for 2022 using the .predict() function

Linear regression 169

There is some difference between the preceding equation calculation and programming
calculation. One reached 16777 . 82 and the other arrived at 16726 . 78. The difference
is due to the rounding-ups we did to present the regression equation. The value that the
.predict () function came to, 16726 . 78, is more accurate.

Pay Attention!

Linear regression, and regression analysis in general, is a very established field
of analytics. There are many evaluative methods and procedures to ensure the
model we have created is of good quality. In this book, we will not cover those
concepts, as the goal of this chapter is to introduce techniques that may need
data preprocessing. By knowing the mechanism of these techniques, you will
be able to perform data preprocessing more eftectively.

Now that we have completed this prediction, look back and examine the working of linear
regression. Here, linear regression achieved the following two objectives:

1. Linear regression used its universal and linear equation to find the relationship
between the independent and dependent attributes. The f3 coefficient of each
independent attribute tells you how the independent attributes relate to the
dependent attribute—for instance, the coefficient of SMAn2, 32, came out to be
0.91. This means that even if the MSU football team loses all of its games (which
makes the value of N Football Performance zero), next year, the number
of applications will be an equation of -890.71 + 0.91xSMAn2.

2. The linear regression equation has packaged the estimated relationship in an
equation that can be used for future observations.

These two matters, extraction and estimation of the relationships and packaging the
estimated relationship for future data objects, are essential for the proper working of any
predictive model.

What is great about linear regression is that the simplicity of these matters can be seen and
appreciated. This simplicity helps in understanding the working of linear regression and
comprehending the patterns it extracts. However, the simplicity works against the method
as far as its reach to estimate and package a more complex and non-linear relationship
between the independent and dependent attributes.

Next in this chapter, we will be briefly introduced to another prediction algorithm that

is at the other end of the spectrum. MLP is a complex algorithm that is capable of finding
and packaging more complex patterns between independent and dependent attributes, but
it lacks the transparency and intuitiveness of linear regression.

170 Prediction

MLP

MLP is a very complex algorithm with many details, and going over its functioning and
different parts abstractly will be difficult to follow. So, let's dive in with an example. We
will continue using the number of MSU applications in this section.

While linear regression uses an equation, MLP uses a network of neurons to connect the
independent attributes to the dependent attribute. An example of such a network is shown
in the following screenshot:

P_Football_Performance |
SMAR2

N_Applications

Figure 6.8 — An MLP network example for the number of MSU applications problem

Every MLP network has six distinct parts. Let's go through these parts using Figure 6.8,
as follows:

« Neurons: Each of the circles in Figure 6.8 is called a neuron. A neuron could be in
the input layer, output layer, and hidden layers. We will cover three tree types of
layers in the following section.

« Input layer: A layer of neurons from which values are inputted to the network.
In a prediction task, for as many as the number of independent attributes, we will
have neurons in the input layer. In Figure 6.8, you can see we have two neurons in
the input layer, one for each of our independent attributes.

o Output layer: A layer of neurons out of which the processed values of the network
come. In a prediction task, for as many as the number of dependent attributes,
we will have neurons in the output layer. More often than not, we only have one
dependent attribute. This holds true for Figure 6.8, as our prediction task only has
one dependent attribute and the network has only one neuron in the output layer.

« Hidden layers: One or more layers of neurons that come between the input and
output layers. The number of hidden layers and the number of neurons in each
hidden layer can be—and should be—adjusted for the desired level of model
complexity and computational cost. For example, Figure 6.8 only has one hidden
layer and six neurons in that hidden layer.

MLP 171

» Connections: The lines that connect the neurons of one layer to the next level are
called connections. These connections must exist exhaustively from one level to the
next; exhaustively means that all the neurons in a left layer are connected to all the
neurons to its right layer.

Now that you understand each part of the preceding MLP network, we will turn our
attention to how MLP goes about finding the relationship between the independent
attributes and the dependent attribute.

How does MLP work?

MLP works both similarly to and differently from linear regression. Let's first go over their
similarities, and then we will cover their differences. Their similarities are listed here:

« Linear regression relies on its structured equation to capture the relationships
between the independent attributes and the dependent attribute. MLP, too, relies on
its network structure to capture the same relationships.

 Linear regression estimates the s as a way to use its structured equation to fit itself
to the data and hence find the relationship between the independent attributes and
the dependent attribute. MLP, too, estimates a value for each of the connections on
its structure to fit itself to the data; these values are called the connection's weight.
So, both linear regression and MLP use the data to update themselves so that they
can explain the data using their predefined structures.

» Once the s for linear regression and the connections' weight for MLP are properly
estimated using the data, both algorithms are ready to be used to predict new cases.

We can see that both algorithms are very similar; however, they also have many
differences. Let's go over those now, as follows:

« While the linear regression algorithm's structured equation is fixed and simple,
MLP's structure is adjustable and can be set to be very complex. In essence, the
more hidden layers and neurons an MLP structure has, the more the algorithm
is capable of capturing more complex relationships.

« While linear regression relies on proven mathematical formulas to estimate the s,
MLP has to resort to heuristics and computations to estimate the best connections'
weights for the data.

172 Prediction

The most famous heuristic that is used to estimate the connections' weights for MLP is
called backpropagation. The heuristic is very simple in essence; however, coding it and
getting it to work can be tricky. The good news for us is that we do not have to worry
about coding it, as there are stable modules we can use. However, let's go through its
simple idea once before seeing how we can use the aforementioned modules.

Backpropagation

For backpropagation, each connection's weight is first assigned a random number
between -1 and 1. Yes—this is done completely randomly and it is called MLP's random
initialization.

After MLP's random initialization, the algorithm will be capable of predicting a value for

any inputted data object. Of course, these predictions will be erroneous. Backpropagation
uses these errors and the extent of these errors to learn.

Every time a data object is exposed to the MLP network, MLP expects its dependent
attribute. As mentioned, this expectation is wrong, at least in the beginning. So,
backpropagation calculates the error of the network for each exposure, moves backward
on the network, and updates the connection's weight in such a way that if the same data
object is exposed again, the amount of error will be a little less.

The network will be exposed to all data objects in the dataset more than once. Every
time all the data objects are exposed to the network, we call that one epoch of learning.
Backpropagation makes the network undergo enough epochs of learning so that the
collective amount of error for the network will be acceptable.

Now that we have this general understanding of MLP and its major heuristic to estimate
the connections' weights, let's together see an example of using the scikit-learn
module to perform a prediction task using MLP.

Example of applying MLP to perform regression
analysis
To implement MLP using the scikit-1learn module, we need to take the same four
steps that we took for linear regression. In short, these four steps are listed as follows.

1. Specifying our independent and dependent attributes

2. Creating two separate datasets: data X and data_y

3. Creating a model and introducing the data

4. Predicting

MLP 173

The following code snippet shows these four steps being applied to the number of MSU
applications problem. It shows the MLPRegressor class being imported from the
sklearn.neural network module first:

from sklearn.neural network import MLPRegressor

X = ['P_Football Performance', 'SMAn2']

y = 'N _Applications'

data X = msu_df [X]

data y = msu df [y]

mlp = MLPRegressor (hidden layer sizes=6, max iter=10000)
mlp.fit (data X, data_ y)

mlp.predict (newData)

The code is almost the same as the code that we used for linear regression, with some
minor changes. Let's go over those, as follows:

o Instead of creating 1m using LinearRegression (), we created mlp using
MLPRegressor ().

o The LinearRegression () function did not need any input, as linear regression
is a simple algorithm with no hyperparameters. But MLPRegressor () needed
at least two inputs, hidden layer sizes=6 andmax iter=10000. The first
input (hidden layer sizes=6) specifies the network structure. By inputting
only one number, we are indicating we only have one hidden layer, and by using
the number 6, we are indicating that the hidden layer has six neurons. This is
in line with the network design we saw in Figure 6.8. The second input (max_
iter=10000) specifies that you want at least 10,000 epochs of learning before the
module should give up on converging.

If you successfully run the preceding code a few times, you will observe the following two
general trends:

+ The code will output a somewhat different prediction for newData every time,
but the values are all around 18,000.

« On some runs, the code will also create a warning. The warning is that the MLP
algorithm was not able to converge even after 10,000 epochs of learning.

Now, let's discuss these two trends.

174 Prediction

MLP reaching different predictions on every run

Let's discuss the first observation: The code will output a somewhat different prediction for
newData every time, but the values are all around 18,000.

MLP is a random-based algorithm. If you remember from our backpropagation learning,
every time the network is initialized, a random number between -1 and 1 is assigned

to each of the connections. These values are then updated so that the network fits the
data better; however, the beginning is random, and therefore the results are going to

be different.

However, if you pay attention to these different conclusions the random-based model
reached, you will see that even though they are different, they are somewhat consistent.
They are all around 18,000. This shows that the random-based procedure is capable of
finding similar and meaningful patterns in the data.

MLP needing significant epochs of learning

Let's now discuss the second observation: On some runs, the code will also create
a warning. The warning is that the MLP algorithm was not able to converge even after
10,000 epochs of learning.

As we will never know when the random-based algorithm will converge, we will have to
put a cap on the number of epochs of learning. In fact, having 10,000 epochs of learning
is extravagantly high, and we can afford it only because the data has only 16 data objects.
The default value of max_iter for MLPRegressor () is 200. That means if we had not
specified max_iter=10000, the function would have assumed max_iter=200. In this
case, that would mean the algorithm would not converge more often, and its conclusions
would be less consistent. Give this a try and observe the aforementioned patterns.

Pay Attention!

MLP is a very complex and flexible algorithm; here, we only discussed two of
its hyperparameters (hidden layer sizesandmax iter), butithas
many more, and to successfully use MLP, you will need to tune it first. To tune
an algorithm is to find the hyperparameters that work best for a dataset. We
will not cover how MLP is tuned here, as we only need a basic understanding
of the algorithm so that it will support our data preprocessing journey.

Furthermore, just as with linear regression, MLP should be rigorously
evaluated for validity and reliability before implementation. We will not use
those concepts and techniques in this book either for the same reason.

Summary 175

Ssummary

Congratulations! You made really good progress in this chapter. Together, we learned
the fundamental concepts and techniques for using data to perform predictions.

We separated the predictions into predicting numerical values and predicting events
and labels. In data mining, the term prediction is used for predicting numerical values,
and we use classification for predicting events and labels. In this chapter, we covered
data mining task prediction, and in the next chapter, we will cover data mining

task classification.

Before moving forward and starting your journey to learn about classification and how
it can be done in the next chapter, spend some time on the following exercises and solidify
your learnings.

Exercises

1. MLP has the potential to create prediction models that are more accurate than
prediction models that are created by linear regression. This statement is generally
correct. In this exercise, we want to explore one of the reasons why the statement
is correct. Answer the following questions:

a) The following formula shows the linear equation that we used to connect the
dependent and independent attributes of the number of MSU applications
problem. Count and report the number of coefficients that linear regression can
play with to fit the equation to the data.

N_Applications = By + 1 X P_Football_Performance + 8, X SMA2

b) Figure 6.8 shows the MLP network structure we used to connect the dependent
and independent attributes of the number of MSU applications problem. Count
and report the number of connections' weights MLP can play with to fit the
network to the data.

c) Use your answers from a) and b) to state why MLP has more potential in terms
of creating prediction models with higher accuracy.

176 Prediction

2.

In this exercise, we will be using ToyotaCorolla_ preprocessed.csv.

This dataset has the following columns: Age, Mileage KM, Quarterly Tax,
Weight, Fuel Type CNG, Fuel Type Diesel, Fuel Type Petrol,and
Price. Each data object in this dataset is a used Toyota Corolla car. We would like
to use this dataset to predict the price of used Toyota Corolla cars.

a) Read the data into the car df pandas DataFrame.

b) Use the skills you picked up in the previous chapter to come up with data
visualizations that show the relationship between the attribute price and the rest
of the attributes.

c) Use the visuals in b) to describe the relationship each of the attributes has with
the attribute price.

d) Create a correlation matrix for all the attributes, and report the correlation values
for the relationship that you investigated in b) and c).

e) Were the visual investigations you performed in b) and ¢) confirmed in d)? For
which types of attributes were the conclusions for ¢) not confirmed in d)?

f) Perform linear regression to predict the attribute price. Use all the attributes that
you detect had a meaningful relationship with the attribute price as independent
attributes. Predict the price of a car with the following specifications: Age: 74
months, Mileage KM: 124,057, Quarterly Tax: 69, and Weight: 1,050. The
car fuel type is petrol.

g) Implement an MLP algorithm to predict the attribute price. Use all the attributes
that you used in f) and predict the price of the same new car presented in f).
Use 15 neurons in one hidden layer (hidden layer sizes), and set the
max_iter attribute as 100.

h) The actual price of the new car presented under f) is 7,950. Report which
algorithm performed a better prediction.

7
Classification

As you learned how to go about predicting numerical values in the previous chapter, in
this chapter, we will turn our attention to predicting categorical ones. Essentially, that

is what classification is: predicting future categorical values. While prediction focuses on
estimating what some numerical values will be in the future, classification predicts the
occurrence or non-occurrence of events in the future. For instance, in this chapter, we will
see how classification can predict whether an individual will default on their loan or not.

In this chapter, we will also discuss the procedural similarities and differences between
prediction and classification and will cover two of the most famous classification
algorithms: Decision Trees and K-Nearest Neighbors (KNN). While this chapter
provides a fundamental understanding of classification algorithms and also shows how
they are done using Python, this chapter cannot be looked at as a comprehensive reference
for classification. Rather, you want to focus on the fundamental concepts so that you will
be ready for your data preprocessing journey, which you will start in Chapter 9, Data
Cleaning Level I - Cleaning Up the Table.

These are the main topics that this chapter will cover:
o Classification models
« KNN

o Decision Trees

178 Classification

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in

a GitHub repository exclusively created for this book. To find the repository, click

on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. In this repository, you will find a folder titled
Chapter07, from which you can download the code and the data for better learning.

Classification models

In the previous chapter, we covered predictive modeling. Classification is a type of
predictive modeling; specifically, classification is a regression analysis where the
dependent attribute or the target is categorical instead of numerical.

Even though classification is a subset of predictive modeling, it is the area of data mining
that has received the most attention due to its usefulness. At the core of many machine
learning (ML) solutions in the real world today is a classification algorithm. Despite

its prevalent applications and complicated algorithms, the fundamental concepts of
classification are simple.

Just as with prediction, for classification, we need to specify our independent attributes
(predictors) and the dependent attribute (target). Once we are clear about these and we have
a dataset that includes these attributes, we are set to employ classification algorithms.

Classification algorithms, just as with prediction algorithms, seek to find the relationship
between independent attributes and the dependent attribute, so by knowing the values of
the independent attributes of the new data object, we can guess the class of (classify) the
new data object.

Let's now look at an example together so that these rather abstract concepts start making
more sense to you.

Example of designing a classification model

When you apply for a cash loan these days, make no mistake that a classification
algorithm is going to have a major role in deciding if you are going to get the loan or not.
The classification models that are used in real cases tend to be very complex with many
independent attributes. However, the two most important pieces of information these
algorithms rely on are your income and credit score.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Classification models 179

Here, we will present a simple version of these complex classifications. The classification
design shown in the following diagram uses Income and Credit Score as independent
attributes to classify if an applicant will default on an accepted loan or not. The Default?
binary attribute is the dependent attribute of the classification design:

Independent Attributes Dependent Attribute

Ll \

Credit Score /

Figure 7.1 - Classification design of loan application problem

Default?

If you compare Figure 6.4 from the previous chapter with the preceding diagram, you
might assert that there is no difference between prediction and classification; you would
not be completely wrong. Prediction and classification are almost identical but for one
simple distinction: a classification's dependent attribute is categorical, but a prediction's
dependent attribute is numerical. That small distinction amounts to lots of algorithmic
and analytic changes for these two data mining tasks.

Classification algorithms

There are many well-researched, -designed, and -developed classification algorithms. In
fact, there are more classification algorithms than there are prediction algorithms. To
name a few, we have KNN, Decision Trees, Multi-Layer Perceptron (MLP), Support
Vector Machine (SVM), and Random Forest. Some of these algorithms are listed for
both prediction and classification. For instance, MLP will always be listed for both;
however, MLP is inherently designed for the prediction task, but it can be modified so that
it can also successfully tackle classification. On the other hand, we have the Decision Trees
algorithm, which is inherently designed for classification, but it can also be modified to
address prediction.

In this chapter, we are going to be briefly introduced to two of these algorithms: KNN and
Decision Trees.

180 Classification

KNN

KNN is one of the simplest classification algorithms, and almost everything you need to
know about its mechanism is presented in its name. In simple terms, to classify a new data
object, KNN finds the K-nearest neighbors to the new data object from the training dataset
and uses the label of those data objects to assign the likely label of the new data object.

It might be the case that KNN is too simple, and because of that, you do not fully
understand its mechanism. Let's continue our learning, using the following example.

Example of using KNN for classification

We are going to continue working on the loan application problem that was introduced
earlier. After completing the classification design, we specified Income and Credit

Score as independent attributes and Default? as the dependent attribute. The following
screenshot shows a dataset that can support this classification design. The dataset is from
the CustomerLoan. csv file:

income score default

0 78479 800 NO

1 95483 801 NO
2 101641 815 NO
3 104234 790 NO
4 108726 795 NO
5 112845 750 NO
6 114114 799 NO
7 114799 801 NO
8 119147 805 NO
9 119976 790 NO
10 84519 740 Yes
1" 86504 753 Yes
12 89292 750 Yes
13 93941 706 Yes
14 97262 777 Yes
15 102658 680 Yes

16 103760 740 Yes
17 104451 730 Yes
18 107388 789 Yes

19 107400 690 Yes

Figure 7.2 - CustomerLoan.csv file

KNN 181

Now, let's assume that we want to use the preceding data to classify whether a customer
with a yearly income of US Dollars (USD) $98,487 and a credit score of 785 will default
on a loan or not.

As this example only includes three dimensions, we can use visualizations to perform
and understand the KNN algorithm. The following screenshot shows the classification
problem we would like to solve at one glance:

820 A
2’ e DefaultYES
8004 @ * q 8’ & Default-NO
0 1 * * 6 * v New Applicant
* y
780 ™ 3 18 9
14
760 -
v s L 2
Q
% 740 - ol 12 ° 5
10 16
720 1 17
&
700 1 13
@
680 - e Db
80000 90000 100000 110000 120000

income

Figure 7.3 - Visualization of the loan application problem

The first step in performing KNN is to decide on K. Basically, we need to decide the
number of nearest neighbors we would like to base our classification on. Let's assume we
would like to use K=4.

Tuning KNN

Similar to many other data mining algorithms, to successfully use KNN

for classification, you will need to tune the algorithm. Tuning KNN would
mean finding the best number of K that would allow KNN to reach its best
performance for every case study. In this book, we will not cover tuning as we
are learning about algorithms, mainly to help us perform more successful data
preprocessing.

So, when K=4, we can easily eyeball the preceding screenshot and see that the four nearest
neighbors of the new applicant are data objects 1, 2, 3, and 14. As three out of four nearest
data objects have a label of Default-NO, we will classify the new applicant as Default-NO.
That is it—it's as simple as that.

182 Classification

While KNN is that simple in terms of its mechanism, creating a computer program that
implements this algorithm is more difficult. Why is that? A few reasons are presented
as follows:

« Here, we learned the mechanism of KNN, using an example that only had three

dimensions. So, using a scatterplot and colors, we were able to display the problem
and summarize all the data that we need to work with. Real-world problems will
likely have more than just three dimensions.

While we were able to eyeball the visual and detect the nearest neighbors, computers
do not have the capability to just "see" which are the nearest neighbors. A computer
program would need to calculate the distance between the new data object with all
the data objects in the dataset so that it would find the K-nearest neighbors.

What will happen if there is a tie? Let's say we have selected K=4, and two of the
nearest neighbors are of one class and two others are from another.

The great news for us is that we don't need to worry about any of these challenges
because we can simply use a stable module that includes this algorithm. Let's import
KNeighborsClassifier from the sklearn.neighbors module and apply it
to our example here.

Before we can apply the algorithm, we need to take action about the following two matters:

1.

First, if you have never used the sklearn module on Anaconda Navigator, you
have to install it. Running the following code will install the module:

conda install scikit-learn

Next, we will need to normalize our data. This is a data preprocessing concept,
and we will cover it in depth when we get to it. However, let's briefly discuss its
necessity here.

The reason that we need normalization of the data before applying KNN is that normally,

the scale of the independent attributes are different from one another, and if the data

is not normalized, the attribute with the larger scale will end up being more important
in the distant calculation of the KNN algorithm, effectively canceling the role of other
independent attributes. In this example, income ranges from 78,479 to 119,976, while

score (for credit score) ranges from 680 to 815. If we were to calculate the distance between
the data objects using these scales, all that would matter is income and not credit score.

So, to avoid letting the scale of the attributes meddle with the mechanism of the algorithm,
we will normalize the data before using KNN. When an attribute is normalized, its values
are transformed so that the updated attribute ranges from 0 to 1 without influencing the
attribute's relative differentiation between the data objects.

KNN

183

The following code reads the CustomerLoan. csv file into the applicant df
DataFrame and creates two new columns in applicant df that are the normalization

transformation of the two columns in the original data:

applicant df = pd.read csv('CustomerLoan.csv')

applicant df['income Normalized'] = (applicant df.income

- applicant df.income.min())/(applicant df.income.max ()

applicant df.income.min())
applicant df['score Normalized']
- applicant df.score.min())/(applicant df.score.max()
applicant df.score.min())

= (applicant df.score

The preceding code has created two new columns by using the following formula:

Normalized Value =

The preceding code has used the formula to transform the income column to income_

Original Value — min

max —min

Normalized, and score to score_Normalized. The following screenshot shows the result

of this data transformation:

income

score default income_Normalized score_Normalized

0 78479
1 95483
101641
104234
108726
112845
114114
114799
119147

O o N o s W N

119976

-
o

84519
11 86504
12 89292
13 93941
14 97262
15 102658
16 103760
17 104451
18 107388
19 107400
20 98487

800
801
815
790
795
750
799
801
805
790
740
753
750
706
77
680
740
730
789
690
785

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
Yes
Yes

Yes

0.000000
0.409765
0.558161
0.620647
0.728896
0.828156
0.858737
0.875244
0.980023
1.000000
0.145553
0.193387
0.260573
0.372605
0.452635
0.582669
0.609225
0.625877
0.696653
0.696942

0.482155

0.888889
0.896296
1.000000
0.814815
0.851852
0.518519
0.881481
0.896296
0.925926
0.814815
0.444444
0.540741
0.518519
0.192593
0.718519
0.000000
0.444444
0.370370
0.807407
0.074074

0.777778

Figure 7.4 - Transformed applicant_df DataFrame

184 Classification

Take a moment to study the preceding screenshot; specifically, see the relationship
between the columns and their normalized version. You will notice that the relevant
distance and order between the values under the original attribute and its normalized
version do not change. To see this, find the minimum and maximum under both the
original attribute and its normalized version, and study those.

Pay attention to the fact that the last row of the data in the preceding screenshot is the new
applicant that we would like to classify.

Now that the data is ready, we can apply the KneighborsClassifier module from
sklearn.neighbors to do this. You can carry this out in four steps, as follows:

1. First, the KneighborsClassifier module needs to be imported. The following
code does the import:

from sklearn.neighbors import KNeighborsClassifier

2. Next, we need to specify our independent attributes and the dependent attribute.
The following code keeps the independent attributes in Xs and the dependent
attribute in y.

Pay attention to the fact that we are dropping the last row of the data, as this is the
row of the data we want to perform the prediction for. The . drop (index=[20])
part will take care of this dropping:

predictors = ['income Normalized', 'score Normalized']

target = 'default'

Xs = applicant df [predictors] .drop (index=[20])

y= applicant df [target] .drop (index=[20])

3. Next, we will create a KNN model and then fit the data into it. The following code
shows how this is done:

knn = KNeighborsClassifier (n neighbors=4)
knn.fit (Xs, vy)

4. Now, knn is ready to classify the new data objects. The following code shows how
we can separate the last row of the dataset and make a prediction for it using knn:

newApplicant = pd.DataFrame ({'income Normalized':
applicant df.iloc[20] .income Normalized, 'score
Normalized': applicant df.iloc[20] .score
Normalized},index = [20])

Decision Trees 185

predict y = knn.predict (newApplicant)
print (predict y)

If you put all the preceding four code snippets together, you will get the following
output, which also reports the prediction for newApplicant:

In [7]: M from sklearn.neighbors import KNeighborsClassifier

predictors = ['income_Normalized', 'score_Normalized']
target = 'default’

Xs = applicant_df[predictors].drop(index=[20])
y= applicant_df[target].drop(index=[20])

knn = KNeighborsClassifier(n_neighbors=4)
knn.fit(Xs, y)

newApplicant = pd.DataFrame({'income_Normalized':
applicant_df.iloc[20].income_Normalized,
'score_Normalized':
applicant_df.iloc[20].score_Normalized},
index = [20])
predict_y = knn.predict(newApplicant)
print(predict_y)

['NO"]
Figure 7.5 - Classification using sklearn.neighbors
The output in the preceding screenshot, which is the class for newApplicant, confirms

the conclusion we had already decided that KNN should arrive at.

So far in this chapter, you have learned about classification analysis, and you have also
learned how the KNN algorithm works and how to get KneighborsClassifier
from the sklearn.neighbors module to apply KNN to a dataset. Next, you will be
introduced to another classification algorithm: Decision Trees.

Decision Trees

While you can use the Decision Trees algorithm for classification, just like KNN, it
goes about the task of classification very differently. While KNN finds the most similar
data objects for classification, Decision Trees first summarizes the data using a tree-like
structure and then uses the structure to perform the classification.

Let's learn about Decision Trees using an example.

186 Classification

Example of using Decision Trees for classification

We will use DecisionTreeClassifier from sklearn. tree to apply the Decision
Trees algorithm to applicant df. The code needed to use Decision Trees is almost
identical to that of KNN. Let's see the code first, and then I will draw your attention to
their similarities and differences. Here it is:

from sklearn.tree import DecisionTreeClassifier
predictors = ['income', 'score']

target = 'default'

Xs = applicant df [predictors] .drop (index=[20])
y= applicant df [target] .drop (index=[20])
classTree = DecisionTreeClassifier ()
classTree.fit (Xs, y)

predict y = classTree.predict (newApplicant)

print (predict_ vy)

There are two differences between the preceding code and the KNN code. Here, we list
these differences:

« First, the decision tree, due to the way it works, does not need the data to be
normalized, so that is why the predictors = ['income', 'score'] line
of code uses the original attributes. We used the normalized version for KNN.

 Second, and obviously, we have used DecisionTreeClassifier () instead
of KneighborsClassifier (). We also named our classification model
classTree here, as opposed to knn, which we used for KNN.

Pay Attention!

As you probably have noticed, the code to use any predictive model (prediction
and classification) in Python is very similar. Here are the steps we take for every
single one of the models. First, we import the module that has the algorithm we
would like to use. Next, we separate the data into independent and dependent
attributes. After that, we create a model using the module we imported. Then,
we use the . £it () function of the model we created to fit the data into the
model. Lastly, we use the . predict () function to predict the dependent
attribute for the new data objects.

Decision Trees 187

If you successfully run the preceding code, you will see that the decision tree, unlike
KNN, classifies newApplicant as YES. Let's look at the tree-like structure that
DecisionTreeClassifier () created to come to this conclusion. To do this, we will
use the plot_tree () function from the sklearn. tree module. Try running the
following code to draw the tree-like structure:

from sklearn.tree import plot tree

plot tree(classTree,
feature names=predictors,
class names=y.unique(),
filled=True,
impurity=False)

The preceding code will output the following:

score <= 789.5
samples = 20
value = [10, 10]
class = NO

= N

Figure 7.6 - Classification using sklearn.neighbors

The output in the preceding screenshot will intuitively tell you why Decision Trees arrived
at a different conclusion from that of KNN. Starting from the top node, the dataset is
separated into two groups: data objects whose scores are greater than 789.5 and data
objects whose scores are lower than the cutoft value. All of the data objects with scores
higher than 789.5 are labeled NO-default; therefore, the decision tree has come to the
conclusion that if an applicant's score is higher than 789.5, they should be classified as NO.

188 Classification

Since the score of newApplicant is 785, this rule does not apply to this data object. To
find the class of the data object based on this tree-like structure. we need to go deeper.
From the tree-like structure, we see that the data object that has scores lower than 789.5
and an income lower than 110,122.5 has defaulted on the loan. So, again, Decision Trees
has reached the rule that when applicant scores are lower than 789.5 and 110,122.5, they
should be classified as YES. As the score and income of newApplicant are both lower
than these cutoff values, the decision tree has concluded YES for it.

Tuning Decision Trees

Just as with KNN, Decision Trees also needs tuning to reach its fullest
potential. In fact, Decision Trees requires even more tuning than what KNN
needs, as Decision Trees has more hyperparameters that could be adjusted.
However, for the same reasons mentioned for KNN, we will not cover the how-
to of the tunings in this book.

The way Decision Trees works is also simple—Decision Trees splits the dataset into two
segments again and again, at different stages, using one of the independent attributes until
all segments of the data are pure. Purity means that all of the data in the segment is of the
same class.

Before making our way to the end of this chapter, let's take a moment to discuss why the
two algorithms have reached a different conclusion. First, we need to understand that when
two distinct algorithms arrive at different conclusions about the same data object, this is

a sign that classification of that data object is difficult, meaning that there are different
patterns in the data that show the data object could be either of the classes. Second, as these
algorithms have various ways of pattern recognition and decision-making, the algorithms
that conclude differently may have prioritized the patterns in dissimilar ways.

Summary

Congratulations on your excellent progress in this chapter! Together, we learned the
fundamental concepts and techniques of classification analysis. Specifically, we understood
the distinction between classification and prediction, and we also learned about two
famous classification algorithms and used them on a sample dataset to understand

them even deeper.

In the next chapter, we will cover another important analytics task: clustering analysis.
We will use the famous K-Means algorithm to learn more about clustering and also run
a few experiments.

Before moving forward and starting your journey to learn about clustering, spend some
time on the following exercises and solidify your learning.

Exercises 189

Exercises

1.

The chapter asserts that before using KNN, you will need to have your independent
attributes normalized. This is certainly true, but how come we were able to get
away with no normalization when we performed KNN using visualization?

(See Figure 7.3.)

We did not normalize the data when applying Decision Trees to the loan application
problem. For practice and a deeper understanding, apply Decision Trees to the
normalized data, and answer the following questions:

a) Did the conclusion of Decision Trees change? Why do you think that is? Use the
mechanism of the algorithm to explain.

b) Did the Decision Trees tree-like structure change? In what ways? Did the change
make a meaningful difference in the way that the tree-like structure could be used?

For this exercise, we are going to use the Customer Churn.csv dataset. This
dataset is randomly collected from an Iranian telecom company's database over a
period of 12 months. A total of 3,150 rows of data, each representing a customer,
bear information for 9 columns. The attributes that are in this dataset are listed here:

Call Failures: Number of call failures

Complaints: Binary (0: No complaint; 1: complaint)
Subscription Length: Total months of subscription

Seconds of Use: Total seconds of calls

Frequency of Use: Total number of calls

Frequency of SMS: Total number of text messages

Distinct Called Numbers: Total number of distinct phone calls
Status: Binary (1: active; 0: non-active)

Churn: Binary (1: churn; 0: non-churn)—class label

All of the attributes except for attribute churn are the aggregated data of the first 9
months. The churn labels are the state of the customers at the end of 12 months. 3
months is the designated planning gap.

Using the preceding data, we would like to use this dataset to predict if the following
customer will churn in 3 months:

Call Failures: 8; Complaints: 1; Subscription Length: 40; Seconds of Use: 4,472;
Frequency of Use: 70; Frequency of SMS: 100; Distinct Called Numbers: 25; Status: 1.

190 Classification

To do this, perform the following steps:
a) Read the data into the pandas customer df DataFrame.

b) Use the skills you picked up in Chapter 5, Data Visualization, to come up with
data visualizations that show the relationship between the churn attribute and
the rest of the attributes.

c) Use the visuals in Step 2 to describe the relationship each of the attributes has
with the attribute Churn.

d) Perform KNN to predict if the aforementioned customer will be churned using
all of the attributes that had a meaningful relationship with churn. Do you need
to normalize the data first? Use K=5.

e) Repeat Step 4, but this time use K=10. Are the conclusions different?

f) Now, use the Decision Trees algorithm for classification. Do you need to
normalize the data? Use max depth=4. Is the conclusion of the Decision Trees
algorithm different from that of the KNN algorithm?

max_depth is a hyperparameter of the Decision Trees algorithm that controls
how deep the learning can be. The number that is assigned is the maximum
number of splits from the root of the tree.

g) Draw the tree-like structure of the decision tree and explain how the decision
tree came to the conclusion it did.

8
Clustering Analysis

Finally, you have made your way to the last chapter of the second part of this book.
Clustering analysis is another useful and popular algorithmic pattern recognition tool.
When performing classification or prediction, the algorithms find the patterns that help
create a relationship between the independent attributes and the dependent attribute.
However, clustering does not have a dependent attribute, so it does not have an agenda in
pattern recognition. Clustering is an algorithmic pattern recognition tool with no prior
goals. With clustering, you can investigate and extract the inherent patterns that exist in
a dataset. Due to these differences, classification and prediction are called supervised
learning, while clustering is known as unsupervised learning.

In this chapter, we will use examples to fundamentally understand clustering analysis.
Then, we will learn about the most popular clustering algorithm: K-Means. We will also
perform some K-Means clustering analysis and examine the clustering output using
centroid analysis.

In this chapter, we will cover the following topics:

+ Clustering model

+ K-Means algorithm

192 Clustering Analysis

Technical requirements

You can find all the code and the dataset for this book in this book's GitHub repository. To
find the repository, go to https://github.com/PacktPublishing/Hands-On-
Data-Preprocessing-in-Python. You can find Chapter08 in this repository and
download the code and the data for ease of learning.

Clustering model

Since you've already learned how to perform prediction and classification tasks in data
analytics, in this chapter, you will learn about clustering analysis. In clustering, we strive
to meaningfully group the data objects in a dataset. We will learn about clustering analysis
through an example.

Clustering example using a two-dimensional dataset

In this example, we will use WH Report preprocessed.csv to cluster the countries
based on two scores called Life Ladder and Perceptions of corruptionin2019.

The following code reads the data into report df and uses Boolean masking to
preprocess the dataset into report2019_df, which only includes the data of 201 9:

report df = pd.read csv('WH Report preprocessed.csv')
BM = report df.year == 2019
report2019 df = report df [BM]

The result of the preceding code is that we have a DataFrame, reprot1019_df, that
only includes the data of 2019, as requested by the prompt.

Since we only have two dimensions to perform the clustering, we can take advantage
of a scatterplot to visualize all the countries in relation to one another based on the two
attributes in question: Life Ladder and Perceptions of corruption.

The following code creates the scatterplot in two steps:

1. Create the scatterplot as we learned about in Chapter 5, Data Visualization.

2. Loop over all the data objects in report2019 df and annotate each point in the
scatterplot using plt .annotate ():

plt.figure (figsize=(12,12))

plt.scatter (report2019 df.Life Ladder,
report2019 df.Perceptions_of corruption)

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Figure 8.1 - Scatterplot of countries based on two happiness indices called Life_Ladder and

Perception_of_corruption in 2019

Clustering model 193
for , row in report2019 df.iterrows () :
_ P _
plt.annotate (row.Name, (row.Life Ladder,
row.Perceptions of corruption))
plt.xlabel ('Life Ladder')
lt.ylabel ('Perceptions of corruption')
Yy 9
plt.show ()
The output of the preceding code is as follows:
1.01
Sogni Herzegovina
. #ulgaria &roatia égﬁgm
@fghanistan @\bania gortugal
deb:
eierra Leone an‘&ms'aa‘]kr‘m Mﬁm tal
sritatka na éndo e%?ci %erce or¥bia fzech Republic
i bi h . osta Rica
ioasss: e Eroroan dhibgSGraotenedrogi i pargaesico
0.8 Sotswana @aklds(teanr?a ‘;h.na.é‘?&?&?\' ‘aﬁ’tﬁ%gm {'We"ia
éndia tanla 5 Hmroccoiurkmemstan omigitil ﬁm‘%\ Arabia iael
- |#|djaso epain
¢aiti adaga pal :(azakhstan &Jnited State:
&en 'oland iceland
Malawi @lyanmar ‘lbya &l Sa I%Elf?lum
‘Se()@%ngladesh
‘apa&licaragua
5061 danzania : @Jruguay
= érmenia - gqtonia
2 Kuwait grance
S $elarus
o . $ahrain
o, @/zbekistan
g gajikistan @/nited Kingdom
§ ézerbaijan EePRWia
§ é3paitralia
044 éuxembourg
eland
#nited Arab‘énmrlands
ewitzerlpnd
@lorway
eweden
élew Zealand
0.2 4 ginland
&wanda @enmark
eingapore
3 a 5 6 7 8
Life_Ladder

194 Clustering Analysis

As the data only has two dimensions, we can just look at the preceding figure and see the
groups of countries that have more similarities to one another based on Life Ladder
and Perceptions of corruption. For instance, the following figure depicts the
groups of countries based on the preceding scatterplot. The countries that are within the
boundaries of more than one cluster should be assigned to one of the clusters.

1.01
vina
@$ulgaria
@\Ibania
gunisia
eierra Leone rﬂa% rla‘Jkrv d O
%ga éndofegs; Wi zech Republic
. ambla ha o fadq Osta Rica
&imbabwe gambi gordan Wmateneg "
0.8 -

Sotswana

‘,akf:tea"ga Shinaglilidl dubi
ng,—occg;urkmenlsta
é{ir&geso
dlepal

yanmar ¢ éibya

endia
aiti

’éalzakhstan #/nited S'(ateic 1hnd

dalawi & Sal

elgium

gapalicaragua

S 0.6 @rmenia ity
E=1 !
stonia
5 f’(uwat érance
5 $elarus
o
I
ual @/zbekistan
g dajikistan nited Kingdom
é‘ Azerbaijan
§ é2pateralia
0.4 1 éuxembourg
dreland
@nited Arab Emilidgriands
ewitzerlp
@lorway
eweden
élew Zealand
0.24 o]
&wanda i
eingapore
3 4 5 6 7 8

Life_Ladder

Figure 8.2 — Scatterplot and clustering of countries based on two happiness indices called Life_Ladder

and Perceptions_of_corruption in 2019

Clustering model 195

Here, we see that we can meaningfully group all of the countries in the dataset into six
clusters. One of the clusters only has one data object, indicating that the data object is an
outlier based on the Life Ladder and Perceptions of corruption attributes.

The key term here is meaningful clusters. So, let's use this example to understand what
we mean by meaningful clusters. The six clusters shown in the preceding figure are
meaningful for the following reasons:

o The data objects that are in the same clusters have similar values under
Life Ladder and Perceptions of corruption.

+ The data objects that are in different clusters have different values under
Life Ladder and Perceptions of corruption.

In summary, meaningful clustering means that the clusters are grouped in such a way
that the members of the same clusters are similar, while the members of different clusters
are different.

When we cluster in two dimensions, meaning that we only have two attributes, the task
of clustering is simple, as shown in the preceding example. However, when the number of
dimensions increases, our ability to see patterns among the data using visualization either
decreases or becomes impossible.

For instance, in the following example, we will learn about the difficulty of visual
clustering when we have more than two attributes.

Clustering example using a three-dimensional dataset

In this example, we will use WH Report preprocessed.csv. Try to cluster the
countries based on the three happiness indexes, called Life Ladder, Perceptions
of corruption,and Generosity,in 2019.

The following code creates a scatterplot that uses color to add a third dimension:

plt.figure (figsize=(12,12))

plt.scatter (report2019 df.Life Ladder,
report2019 df.Perceptions of corruption,
c=report2019 df.Generosity,cmap='binary')

plt.xlabel ('Life Ladder')
plt.ylabel ('Perceptions of corruption')
plt.show ()

196 Clustering Analysis

Running the preceding code will create the following figure. The following figure
visualizes Life Ladder as the x dimension, Perceptions of corruptionas
the y dimension, and Generosity as color. The lighter the markers, the lower the
Generosity score, while the darker the markers the higher the Generosity score:

10
[
e
L]
. e ® . . L] °
[E °
(3 .
08 1 ° B
° L
° @ g
] 4 °
° L ° ® L]
L] . .
- [] ’ o
o
€]
S 06 °
=3
]
8
w! @
°I E2
w
s o
g K
§ ®e
041
E
° L]
o
[
@
L]
021
» L J
L J
T T T T T T
3 4 5 6 7
Life_Ladder

Figure 8.3 - Scatterplot of countries based on three happiness indices called Life_Ladder,

Perceptions_of_corruption, and Generosity in 2019

K-Means algorithm 197

Try to use the preceding visualizations to find the meaningful clusters of data objects
based on the three attributes all at once. This task will be overwhelming for us as

our brains aren't good at performing tasks where we need to process more than two
dimensions at once.

The preceding figure does not include the names of the countries because even without
them, we have difficulty using this figure for clustering. Adding the country label would
only overwhelm us further.

The purpose of this example was not to complete it, but the conclusion we arrived at is
very important: we need to rely on tools other than data visualization and our brains to
perform meaningful clustering when the data has more than two dimensions.

The tools that we use for higher-dimensional clustering are algorithms and computers.
There are many different types of clustering algorithms with various working mechanisms.
In this chapter, we will learn about the most popular clustering algorithm: K-Means. This
algorithm is simple, scalable, and effective for clustering.

K-Means algorithm

K-Means is a random-based heuristic clustering algorithm. Random-based means that the
output of the algorithm on the same data may be different on every run, while heuristic
means that the algorithm does not reach the optimal solution. However, from experience,
we know that it reaches a good solution.

198 Clustering Analysis

K-Means clusters the data objects using a simple loop. The following diagram shows the
steps that the algorithm performs, as well as the loop that heuristically finds the clusters

in the data:

Set k

|

Input the dataset

'

Randomly select k data objects from the
dataset as centroids of the k clusters

!

(re)assign the data objects to the clusters such
that they are closest to its centroid

Any
cluster
changed?

Update each centroid as the mean of its
members

Figure 8.4 - K-Means flowchart

As we can see, the algorithm starts by randomly selecting k data objects as the cluster
centroids. Then, the data objects are assigned to the cluster that is closest to its centroid.
Next, the centroids are updated via the mean of all the data objects in the clusters. As the
centroids are updated, the data objects are reassigned to the cluster that is closest to its
centroid. Now, as the clusters are updated, the centroids will be updated as the mean of all
the new data objects in the clusters. These last two steps keep occurring until there is no
change in the cluster after updating the centroids. Once this stability has been reached, the
algorithm terminates.

From a coding perspective, applying K-means is very similar to applying any of the
other algorithms that we have learned about so far. The following example shows how
we could have reached a similar result we reached using visualization. See Figure 8.2 for
more information.

K-Means algorithm 199

Using K-Means to cluster a two-dimensional dataset

Earlier in this chapter, we grouped the countries into six clusters using Life Ladder
and Perception of corruption. Here, we would like to confirm the same
clustering using K-Means.

The following code uses the KMeans function from the sklearn.cluster module to
perform this clustering:

from sklearn.cluster import KMeans

dimensions = ['Life Ladder', 'Perceptions_of corruption']
Xs = report2019 df [dimensions]

kmeans = KMeans (n clusters=6)

kmeans.fit (Xs)
The preceding code performs KMeans clustering in four lines:

1. dimensions = ['Life Ladder', 'Perceptions of corruption']:
This line of code specifies the attributes of the data we want to use for clustering.

2. Xs = report2019 df [dimensions]: This line of code separates the data we
want to use for clustering.

3. kmeans = KMeans (n clusters=6): This line of code creates a K-Means
model that is ready to cluster input data into six clusters.

4. kmeans.fit (Xs): This line of code introduces the dataset we want to be clustered
to the model we created in the previous step.

When we run the preceding code successfully, almost nothing happens. However,
clustering has been performed, and the cluster membership of every row can be accessed
using kmeans . labels_. The following code uses a loop, kmeans . labels ,and
Boolean masking to print the members of each cluster:

for 1 in range(6) :
BM = kmeans.labels ==i

print ('Cluster {}: {}'.format (
i,report2019 df [BM] .Name.values))

The following screenshot puts the two preceding codes together and shows the output of

the code as well. After running the code, you will probably get a different output from the
one shown in the following screenshot. If you run the same code a few times, you will get
a different output every time.

200 Clustering Analysis

The reason for this inconsistency is that K-Means is a random-based algorithm. Please
refer to the K-Means flowchart shown in Figure 8.4: K-Means starts by randomly selecting
k data objects as the initial centroids. As this initialization is random, the outputs are
different from one another.

Even though the outputs are different, the same countries are grouped under the same
cluster each time. For instance, notice that the United Kingdom and Canada are in the
same cluster every time. This is reassuring; it means that K-Means finds the same pattern
in the data, even though it follows a random procedure:

In [10]: M from sklearn.cluster import KMeans
dimensions = ['Life_Ladder', 'Perceptions_of_ corruption']
Xs = report2019_df[dimensions]
kmeans = KMeans(n_clusters=6)
kmeans.fit(Xs)

for i in range(6):
BM = kmeans.labels_==i
print('Cluster {}: {}'.format(i,report2019_ df[BM].Name.values))

Cluster @: ['Australia' 'Austria' 'Bahrain' 'Canada' 'Denmark' 'Finland' 'G

ermany’

"Iceland’ 'Ireland' 'Israel' 'Luxembourg' 'Netherlands' 'New Zealand'

"Norway' ‘'Sweden' 'Switzerland' 'United Kingdom']

Cluster 1: ['Albania' 'Algeria' 'Armenia’ 'Azerbaijan' 'Bangladesh' 'Benin'’
'Bulgaria’ 'Burkina Faso' 'Cambodia' 'Cameroon' 'China' 'Gabon' 'Georgia'
'Ghana' 'Guinea' 'Indonesia' 'Iraq' 'Liberia' 'Libya' 'Malaysia’ 'Mali’
'Mongolia' 'Montenegro' 'Morocco’ 'Nepal’' 'Niger' 'Senegal’

'South Africa' 'Tajikistan' 'Turkey' 'Turkmenistan' 'Uganda’ 'Vietnam']
Cluster 2: ['Argentina' 'Belarus' 'Bolivia' 'Bosnia and Herzegovina' 'Chil
e

'Colombia' 'Croatia' 'Cyprus' 'Dominican Republic' 'Ecuador' 'Estonia’

'Greece' 'Guatemala' 'Honduras' 'Hungary' 'Japan' 'Kazakhstan' 'Kuwait'

"Latvia' 'Lithuania' 'Moldova' 'Nicaragua' 'Panama’ 'Paraguay' 'Peru’

'Philippines’ 'Poland' 'Portugal’ 'Romania’ 'Serbia' 'Thailand'

'Uzbekistan']

Cluster 3: ['Afghanistan' 'Botswana' 'Haiti' 'India' 'Rwanda’ 'Sierra Leon

o'

'Tanzania' 'Zambia' 'Zimbabwe']

Cluster 4: ['Belgium' 'Brazil' 'Costa Rica' 'Czech Republic' 'E1l Salvador'

'France’

"Italy' 'Malta' 'Mexico' 'Saudi Arabia' 'Singapore’' 'Slovenia' 'Spain’

'United Arab Emirates' 'United States' 'Uruguay']

Cluster 5: ['Chad' 'Ethiopia' 'Jordan' 'Kenya' 'Lebanon' 'Madagascar' 'Mala

wi'

'"Mauritania' 'Myanmar' ‘'Nigeria’ 'Pakistan' 'Sri Lanka' 'Togo' 'Tunisia’

'Ukraine']

Figure 8.5 — K-Means clustering based on two happiness indices called Life_Ladder and

Perception_of_corruption in 2019 - Original data

K-Means algorithm 201

Now, let's compare the clusters we found using K-Means (Figure 8.5) and the clusters we
found using visualization (Figure 8.2). These clusters are different, even though the data
that was used for clustering was the same. For instance, while Rwanda was an outlier in
Figure 8.2, it is the member of a cluster in Figure 8.5. Why is this happening? Give this
question some thought before reading on.

The following code will output a visual that can help you answer this question:

plt.figure (figsize=(21,4))

plt.scatter (report2019 df.Life Ladder, report2019
df .Perceptions of corruption)

for , row in report2019 df.iterrows() :

plt.annotate (row.Name, (row.Life Ladder,
row.Perceptions of corruption),
rotation=90)

plt.xlim([2.3,7.8])
plt.xlabel ('Life Ladder')

plt.ylabel ('Perceptions of corruption')
plt.show ()

This code will produce the following output:

°
2
Righanistar
Pimbabye
fhai
;amb a
Borsligng eone
Pebarjon

Fanzallt

Pralawi
Rrael
Reland

Perceptions_of_corruption
-
fwanda
Sngapore
few
Steiyrempro
Benrfuwitzerland
.

5
Life_Ladder

Figure 8.6 — The resized version of Figure 8.1 and Figure 8.2

The only difference between the preceding output and Figure 8.1 and Figure 8.2 is that in
the preceding output, the numerical scale of Life Ladder and Perceptions of
corruption has been adjusted to be the same.

202 Clustering Analysis

Matplotlib automatically scaled both dimensions of Figure 8.1 and Figure 8.2 - Life
Ladder and Perceptions of corruptions - so that they appear to have a similar
visual range. This can be seen if you pay attention to the amount of visual space between

3 and 4 on the Life Ladder dimension, and then compare that to the amount of visual
space between 0.2 and 0.4 on the Perceptions of corruption dimension. So,
we can see that while the amounts of visual space are equal, the numerical values that
represent them are very different. This realization answers the question that was raised
earlier: why is the clustering outcome of Figure 8.5 entirely different from the one we
detected visually in Figure 8.22 The answer is that the two clusterings are not using the
same data. The clustering represented in Figure 8.2 uses a scaled version of the data, while
the clustering represented in Figure 8.5 (K-Means clustering) uses the original data.

Now, a second question we need to answer is, which clustering output should we use?
Let me help you come to the right answer. When we want to cluster our data objects
using two dimensions, Life Ladder and Perceptions of corruption, how
much weight do we want each dimension to play in the result of the clustering? Don't
we want both attributes to play an equal role? Yes, that is the case. So, we want to

choose the clustering that has given both dimensions equal importance. Since K-Means
clustering used the original data without scaling it, the fact that Life Ladder
happened to have larger numbers influenced K-Means to prioritize Life Ladder over
Perceptions of corruption.

To overcome this challenge, before applying K-Means or any other algorithm that uses the
distance between data objects as an important deciding factor, we need to normalize the
data. Normalizing the data means the attributes are rescaled in such a way that all of them
are represented in the same range. For instance, as you may recall, we normalized our
datasets before applying KNN in the previous chapter for the same reason.

The following screenshot shows the code and the clustering output when the dataset is
normalized before using K-Means. In this code, Xs = (Xs - Xs.min())/(Xs.

min () -Xs.max ()) is used to rescale all the attributes in Xs to be between zero and one.
The rest of the algorithm code is the same as the code we tried earlier in this chapter. Now,
you can compare the clustering outcome in the following screenshot and the one shown in
Figure 8.2 to detect that the two ways of clustering are achieving almost the same results:

K-Means algorithm 203

In [12]: M dimensions = ['Life_Ladder", 'Perceptions_of_corruption’]
Xs = report2019_df[dimensions]
Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())
kmeans = KMeans(n_clusters=6)
kmeans.fit(Xs)

for i in range(6):
BM = kmeans.labels_==i
print('Cluster {}: {}'.format(i,report2019_df[BM].Name.values))

Cluster @: ['Australia’ 'Austria' 'Canada' 'Denmark' ‘'Finland’' 'Germany' 'I
reland’
'Luxembourg' 'Netherlands' 'New Zealand' 'Norway' 'Singapore’ 'Sweden’
'Switzerland' 'United Arab Emirates' 'United Kingdom']
Cluster 1: ['Argentina' 'Bolivia' 'Bosnia and Herzegovina' 'Brazil' 'Chile’
‘Colombia’ 'Costa Rica' 'Croatia’ 'Cyprus' 'Czech Republic'’
‘Dominican Republic' 'Ecuador' 'Greece' 'Guatemala' 'Honduras' 'Hungary'
'Italy' 'Latvia' 'Lithuania' 'Mexico' 'Moldova' 'Mongolia' 'Panama’
'Paraguay’ 'Peru’ 'Philippines' 'Portugal' 'Romania' 'Saudi Arabia’
‘Serbia’ 'Slovenia' 'Thailand']
Cluster 2: ['Albania' 'Algeria' 'Bangladesh' 'Benin' 'Bulgaria' 'Burkina Fa
so'
'Cambodia’ 'Cameroon' 'China' 'Gabon' 'Georgia' 'Ghana' 'Guinea'
'Indonesia' 'Iraq' 'Jordan' 'Kenya' 'Liberia' 'Libya' 'Malaysia' 'Mali’
'Montenegro' 'Morocco' 'Myanmar' ‘Nepal' 'Niger' 'Pakistan' 'Senegal'’
'South Africa' 'Turkey' 'Turkmenistan' 'Uganda' 'Ukraine' 'Vietnam']
Cluster 3: ['Afghanistan' 'Botswana' 'Chad' 'Ethiopia' 'Haiti' 'India' 'Leb
anon’
'Madagascar' 'Malawi' 'Mauritania' 'Nigeria' 'Sierra Leone' 'Sri Lanka'
'Tanzania' 'Togo' 'Tunisia' 'Zambia' 'Zimbabwe']
Cluster 4: ['Armenia' 'Azerbaijan' 'Bahrain' 'Belarus' 'Belgium' 'El Salvad
or'
'Estonia’ 'France' 'Iceland' 'Israel' 'Japan' ‘'Kazakhstan' 'Kuwait'
'Malta' 'Nicaragua' 'Poland' 'Spain' 'Tajikistan' 'United States'
‘Uruguay’ 'Uzbekistan']
Cluster 5: ['Rwanda’]

Figure 8.7 — K-Means clustering based on two happiness indices called Life_Ladder and

Perceptions_of_corruption in 2019 — Normalized data

In this example, we saw how K-Means, when applied correctly, can produce a meaningful
clustering compared to what we had reached using data visualization. However, the
K-Means clustering in this example was applied to a two-dimensional dataset. In the next
example, we will see that, from a coding perspective, there is almost no difference between
applying K-Means to a two-dimensional dataset and applying the algorithm to a dataset
with more dimensions.

Using K-Means to cluster a dataset with more than
two dimensions

In this section, we will use K-Means and form three meaningful clusters of countries in
report2019 df based on all the Life Ladder,Log GDP per capita,Social
support,Healthy life expectancy at birth, Freedom to make life
choices, Generosity, Perceptions of corruption,Positive affect,
and Negative affect happiness indices.

204 Clustering Analysis

Go ahead and run the following code; you will see that it will form three meaningful
clusters and print out the members of each cluster:

dimensions = ['Life Ladder', 'Log GDP per capita', 'Social
support', 'Healthy life expectancy at birth', 'Freedom to_
make life choices', 'Generosity', 'Perceptions of corruption',
'Positive affect', 'Negative affect']
Xs = report2019 df [dimensions]
Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())
kmeans = KMeans (n _clusters=3)
kmeans.fit (Xs)
for i in range(3):

BM = kmeans.labels ==i

print ('Cluster {}: {}' .format (i,report2019 df [BM] .Name.
values))

Here, the only difference between the preceding code and the code presented in Figure 8.7
is the first line, where the dimensions of the data are selected. After this, the code is the
same. The reason for this is that K-Means can handle as many dimensions as inputted.

How Many Clusters?

Choosing the number of clusters is the most challenging part of performing
a successful K-Means clustering analysis. The algorithm itself does not
accommodate finding out how many meaningful clusters are in the data.
Finding the meaningful number of clusters in the data is a difficult task when
the dimensions of the data increase.

While there is no one perfect solution to go about finding the meaningful
number of clusters in a dataset, there are a few different approaches you can
adopt. In this book, we will not cover this aspect of clustering analysis as we
know enough about clustering analysis to perform effective data preprocessing.

So far, we have learned how to use K-Means to form meaningful clusters. Next, we are
going to learn how to profile these clusters using centroid analysis.

Centroid analysis

Centroid analysis, in essence, is a canonical data analytics task that is done once meaningful
clusters have been found. We perform centroid analysis to understand what formed each
cluster and gain insight into the patterns in the data that led to the cluster's formation.

K-Means algorithm 205

This analysis essentially finds the centroids of each cluster and compares them with one
another. A color-coded table or a heatmap can be very useful for comparing centroids.

The following code finds the centroids using a loop and Boolean masking and then uses
the sns.heatmap () function from the seaborn module to draw the color-coded table.

The following code must be run once you've run the preceding code snippet:

import seaborn as sns
clusters = ['Cluster {}'.format(i) for i in range(3)]

Centroids = pd.DataFrame (0.0, index = clusters, columns =
Xs.columns)

for i,clst in enumerate (clusters) :
BM = kmeans.labels ==i
Centroids.loc[clst] = Xs[BM] .median (axis=0)

sns.heatmap (Centroids, linewidths=.5, annot=True,
cmap='binary')
plt.show ()

The preceding code will output the following heatmap:

0.9
= 0.67 | 0.61 | 0.81 (O[3 0.22 [URpANN 0.8
g
w
= 0.7
(9]
0.6
— -0.38 0.25 0.33 JUET:H 0.37 [oR:)E
o
% -0.5
=]
(]
-0.4
[\JE 0.89|0.84(0.92(0.84 0.43 0.4
5 -0.3
g
w
>
] g 1 i i g { 1 i !
3 a Q o] = o B b= b=
© S = | e = 2 S 5
4 Y 32 + 5 9] 2 | I
o ¥ o 0 g & 5 £
£ 8 5 5 g 8 8 z z
- a! v} = = o! @ &4
=) o © o S} o =
] I 9 Ia 9]
o SR o z
o 3 € o
s) x | =]
4 o] o) [
o = 9]
£ E 5
> 3 a
< 9]
= 9]
s frs
T

Figure 8.8 - Using sns.heatmap() to perform centroid analysis

206 Clustering Analysis

Before we analyze the preceding heatmap, allow me to give you a heads up. As K-Means
is a random-based algorithm, your output may be different to the one printed here. We
would expect to see the same patterns emerge from the data, but the cluster names might
be different.

In the preceding heatmap, we can see that Cluster 0 has the best happiness scores
among all the clusters, so we may label this cluster as Very Happy. On the other hand,
Cluster 2 issecond bestin every index except for Generosity and Perception
of corruption, so we will label this cluster Happy but Crime-ridden. Finally, Cluster
1 has the lowest value for almost all of the happiness indices, but Geneoristy hasa
close second rank among all the centroids; we will call this cluster Unhappy but Generous.

Summary

Congratulations on your excellent progress in this chapter and this book! By finishing this
chapter, you have also finished the second part of this book. In this chapter, we learned
about clustering analysis and some techniques we can use to perform it. In this part of this
book, we learned about the four most in-demand data analytics goals: data visualization,
prediction, classification, and clustering.

In the first part of this book, you learned about data and databases, as well as
programming skills that allow you to effectively manipulate data for data analytics. In the
second part, which is the one you just finished, you learned about the four most important
data analytics goals and learned how they can be met using programming.

Now, you are ready to take on the next challenge: learning how to effectively preprocess
data for the data analytics goals you just learned about in the second part of this book
using your programming skills, your fundamental understanding of data, and your
appreciation of data analytics goals.

In the next part of this book, we will start our journey of data preprocessing. The next part
of this book is comprised of data cleaning, data fusion and integration, data reduction,
and data massaging and transformation. These processes are the pieces of a puzzle that,
when put together appropriately and effectively, improve data preprocessing and improve
the quality of data analytics.

Before you move on and start your journey on data cleaning, spend some time on the
following exercises and solidify what you've learned.

Exercises 207

Exercises

1.

In your own words, answer the following two questions. Use 200 words (at most) to
answer each question:

a) What is the difference between classification and prediction?
b) What is the difference between classification and clustering?

Consider Figure 8.6 regarding the necessity of normalization before performing
clustering analysis. With your new appreciation for this process, would you like to
change your answer to the first exercise question from the previous chapter?

In this chapter, we used WH Report preprocessed.csv to form meaningful
clusters of countries using 2019 data. In this exercise, we want to use the data from
2010-2019. Perform the following steps to do this:

a) Use the .pivot () function to restructure the data so that each combination of
the year and happiness index has a column. In other words, the data of the year is
recorded in long format, and we would like to change that into wide format. Name
the resulting data pvt _df. We will not need the Population and Continent
columns in pvt_df.

b) Normalize pvt _df and assign it to Xs.

c) Use K-Means and Xs to find three clusters among the data objects. Report the
members of each cluster.

d) Use a heatmap to perform centroid analysis. As there are many columns for this
clustering, you may have to resize the heatmap so that you can use it for analysis.
Make sure you've named each cluster.

For this exercise, we will be using the Mall Customers.x1lsx dataset to
form four meaningful clusters of customers. The following steps will help you do
this correctly:

a) Use pd.read excel () toload the data into customer df.

b) Set CustomerID as the index of customer df and binary code the Gender
column. This means replacing Male values with 0 and Female values with 1.

¢) Clean the names of the columns by using the following names: Gender, Age,
Annual income, and Spending score.

d) Normalize customer df and load it into the Xs variable.

208 Clustering Analysis

e) Use K-Means and Xs to find four clusters among the data objects. Report the
members of each cluster.

f) Use a heatmap to perform centroid analysis. Make sure you've named
each cluster.

g) Why did we binary code the Gender attribute in Step b?

Part 3:
The Preprocessing

In this part, you will learn how to use Python to perform data cleaning, data integration,
data reduction, and data transformation to prepare data for successful analytic purposes.

This part comprises the following chapters:

 Chapter 9, Data Cleaning Level I - Cleaning Up the Table

« Chapter 10, Data Cleaning Level II - Unpacking, Restructuring, and
Reformulating the Table

« Chapter 11, Data Cleaning Level III - Missing Values, Outliers, and Errors
 Chapter 12, Data Fusion and Data Integration
o Chapter 13, Data Reduction

+ Chapter 14, Data Transformation and Massaging

9

Data Cleaning
Level | - Cleaning
Up the Table

We are finally here! After making sure that we have the required technical skills (part 1 of
this book) and analytics skills (part 2 of this book), we can start discussing effective data
preprocessing. We will start this journey by looking at data cleaning. This chapter divides
data cleaning into three levels: levels I, II, and III. As you move up these levels, learning
about the concept of data cleaning will become deeper and more complex. We will talk
about what they are, how they are different, and what types of situations require us to
perform each level of data cleaning. Furthermore, for each level of data cleaning, we will
see examples of data sources that will require different levels of data cleaning.

In this chapter, we will focus on data cleaning level I - cleaning up the table. The next two
chapters are also dedicated to data cleaning but at levels II and III.

212 Data Cleaning Level I - Cleaning Up the Table

In this chapter, we're going to cover the following main topics:

+ The levels, tools, and purposes of data cleaning — a roadmap to Chapter 9, Data
Cleaning Level I - Cleaning Up the Table, Chapter 10, Data Cleaning Level 11 -
Unpacking, Restructuring, and Reformulating the Table, and Chapter 11, Data
Cleaning Level 111 - Missing Values, Outliers, and Errors

« Data cleaning level I - cleaning up the table

Technical requirements

You can find all of the code and the dataset for this book in this book's GitHub repository.
To find the repository, go to https://github.com/PacktPublishing/Hands-
On-Data-Preprocessing-in-Python. You can find Chapter09 in this repository
and download the code and the data to aid with your learning.

The levels, tools, and purposes of data
cleaning - a roadmap to chapters 9, 10, and 11

One of the most exciting moments in any data analytics project is when you have one
dataset that you believe contains all the data you need to effectively meet the goals of the
project. This moment comes normally in one of the following situations:

 You are done collecting data for the analysis you have in mind.

« You have done extensive data integration from different data sources. Data
integration is a very important skillset and we will cover it in Chapter 12, Data
Fusion and Data Integration.

+ The dataset is just shared with you and it contains everything that you need.

Regardless of how you got your hands on the dataset, this is an exciting moment. But
beware that more often than not, you still have many steps to take before you can analyze
the data. First, you need to clean the dataset.

To learn about and perform data cleaning, we need to fully understand the following
three aspects:

o Purpose of data analytics: Why are we cleaning the dataset? In other words, how
are we going to use the dataset once it has been cleaned?

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

The levels, tools, and purposes of data cleaning — a roadmap to chapters 9, 10,and 11 213

+ Tools for data analytics: What will be used to perform data analytics? Python
(Matplotlib/sklearn)? Excel? MATLAB? Tableau?

« Levels of data cleaning: What aspects of the dataset need cleaning? Is our cleaning
at the surface level, in that we are only cleaning up the name of the columns, or is
our cleaning deeper, in that we are making sure that the recorded values are correct?

In the next three subsections, we will look at each of these aspects in more detail.

Purpose of data analytics

While it might sound like data cleaning can be done separately without us paying too
much attention to the purpose of the analysis, in this chapter, we will see that more often
than not, this is not the case. In other words, you will need to know what analytics you
will be performing on the dataset when you are cleaning your data. Not only that, but you
also need to know exactly how the analytics and perhaps the algorithms that you have in
mind will be using and manipulating the data.

So far in this book, we have learned about four different data analytic goals: data
visualization, prediction, classification, and clustering. We learned about these analytics
goals and how data is manipulated to meet them. We needed a more profound level of
understanding and appreciation for these goals so that they can support our data cleaning.
By knowing how the data will be used after we have cleaned it, we are in a position to
make better decisions regarding how the data should be cleaned. In this chapter, we will
see that our deeper understanding of the analytic goals will guide us to perform more
effective data cleaning.

Tools for data analytics

The software tools you intend to use will also have a major role in how you will go about
data cleaning. For instance, if you intend to use MATLAB to perform clustering analysis
and you've completed data cleaning in Python and have the completed data in Pandas
DataFrame format, you will need to transform the data into a structure that MATLAB can
read. Perhaps you could use . to_csv () to save the DataFrame as a . csv file and open
the file in MATLAB since . csv files are compatible with almost any software.

214 Data Cleaning Level I - Cleaning Up the Table

Levels of data cleaning

The data cleaning process has both high-level goals and many nitty-gritty details. Not
only that but what needs to be done for data cleaning from one project to another can
be completely different. So, it is impossible to give clear-cut, step-by-step instructions on
how you should go about data cleaning. However, we can loosely place the data cleaning
procedure at three levels, as follows:

1. Level I: Clean up the table.
2. Level II: Unpack, restructure, and reformulate the table.

3. Level III: Evaluate and correct the values.

In this chapter and the next two, we will learn about various data cleaning situations that fall
under one of the preceding levels. While each of these levels will have a specific section in
this book, we will briefly go over what they are and how they differ from one another here.

Level I- cleaning up the table

This level of cleaning is all about how the table looks. A level I cleaned dataset has three
characteristics: it is in a standard data structure, it has codable and intuitive column titles,
and each row has a unique identifier.

Level lI- restructuring and reformulating the table

This level of cleaning has to do with the type of data structure and format you need your
dataset to be in so that the analytics you have in mind can be done. Most of the time, the
tools you use for analytics dictate the structure and the format of the data. For instance,
if you need to create multiple box plots using p1t .boxplot (), you need to separate
the data for each box plot. For instance, see the Comparing populations using box plots
example in the Comparing populations section of Chapter 5, Data Visualization, where we
restructured the data before using the function to draw multiple box plots.

Level lll- evaluating and correcting the values

This level of cleaning is about the correctness and existence of the recorded values in the
dataset. At this level of cleaning, you want to make certain that the recorded values are
correct and are presented in a way that best supports the analytics goals. This level of data
cleaning is the most technical and theoretical part of the data cleaning process. Not only
do we need to know how the tools we will be using need the data to be, but we also need
to understand how the data should be corrected, combined, or removed, as informed by
the goals of the analytics process. Dealing with missing values and handling outliers are
also major parts of this level of data cleaning.

The levels, tools, and purposes of data cleaning — a roadmap to chapters 9, 10,and 11 215

So far, we have looked at the three most important dimensions of data cleaning: the
purpose of data analytics, the tools for data analytics, and the three data cleaning levels.
Next, we will understand the roles these three dimensions - analytics purposes, analytic
tools, and the levels of data cleaning — play when it comes to effective data cleaning.

Mapping the purposes and tools of analytics to the
levels of data cleaning

The following diagram shows the map of these three dimensions. Having a dataset that
has been cleaned at level I is the very first step, and taking the time to make sure this level
of data cleaning has been performed will make the next data cleaning levels and the data
analytics process easier. While we can perform data cleaning level I without knowing

the analytics we have for the dataset, it would be unwise to do any level II or level IIT

data cleaning without knowing the software tools or the analytics you intend to employ.
The following diagram shows that level II data cleaning needs to be done while you're
informed about the tools and the analytic goals, while level III data cleaning needs to be
executed once you know about the data analytics goals:

A standard data structure
Level | - Attributes have intuitive and codable names
Rows have a unique identifier

Change data structure

Level I - Hestruchire s tataset Restructure the dataset

Deal with data errors
Level W - Deal with missing values
Detect and handle outliers

| ' '
Generals cleaning steps Steps for the analytic tools Steps for analytic goals

Figure 9.1 — Relevant amount of general and specific steps for three different levels of data cleaning

In the remainder of this chapter, we will cover data cleaning level I in more detail by
providing data cleaning examples that tend to occur frequently. In the next few chapters,
we will do the same thing for data cleaning levels I and III.

216 Data Cleaning Level I - Cleaning Up the Table

Data cleaning level | - cleaning up the table

Data cleaning level I has the least deep data preprocessing steps. Most of the time, you
can get away with not having your data cleaned at level I. However, having a dataset that
is level I cleaned would be very rewarding as it would make the rest of the data cleaning
process and data analytics much easier.

We will consider a level I dataset clean where the dataset has the following characteristics:

o Itisin astandard and preferred data structure.
o It has codable and intuitive column titles.

o Each row has a unique identifier.

The following three examples feature at least one or a combination of the preceding
characteristics for ease of learning.

Example 1 - unwise data collection

From time to time, you might come across sources of data that are not collected and
recorded in the best possible way. These situations occur when the data collection process
has been done by someone or a group of people who don't have the appropriate skills
regarding database management. Regardless of why this situation might have occurred,
you are given access to a data source that requires significant preprocessing before it can
be put in one standard data structure.

For instance, imagine that you have been hired by an election campaign to use the power
of data to help move the needle. Omid was hired just before you, and he knows a lot about
the political aspects of the election but not much about data and data analytics. You have
been assigned to join Omid and help process what he has been tasked with. In your first
meeting, you realize that the task is to analyze the speeches that have been made by the
45th President of the United States, Donald Trump. To bring you up to speed, he smiles
and tells you that he has completed the data collection process and that all that needs to
be done is the analysis now; he shows you a folder on his computer that contains text files
(.txt) for every one of Donald Trump's speeches made in 2019 and 2020. The following
screenshot shows this folder on Omid's computer:

Data cleaning level I - cleaning up the table 217
| s | Speeches — O X
Home Share View v o
<« v 4 « Previous Presidents » 45th > Speeches v o £ Search Speeches
~
¢ J BattleCreekDec19_2019.txt J BemidjiSep18_2020.txt J CharlestonFeb28_2020.txt
CharlotteMar2_2020.txt J CincinnatiAug1_2019.txt ColoradorSpringsFeb20_2020.txt
¥
DallasOct17_2019.txt DesMoinesJan30_2020.txt FayettevilleSep9_2019.txt
= FayettevilleSep19_2020.txt FreelandSep10_2020.txt GreenvilleJul17_2019.txt
9
J HendersonSep13_2020.txt HersheyDec10_2019.txt LasVegasFeb21_2020.txt
@ LatrobeSep3_2020.txt LexingtonNov4_2019.txt MilwaukeeJan14_2020.txt
9
.o MindenSep12_2020.txt MinneapolisOct10_2019.txt MosineeSep17_2020.txt
oL
P NewHampshireAug15_2019.txt NewHampshireAug28_2020.txt NewHampshireFeb10_2020.txt
w7 NewMexicoSep16_2019.txt OhioSep21_2020.txt PhoenixFeb19_2020.txt
5 PittsburghSep22_2020.txt TexasSep23_2019.txt ToledoJan9_2020.txt
[
TulsaJun20_2020.txt TupeloNov1_2019.txt WildwoodJan28_2020.txt
‘ Winston-SalemSep8_2020.txt J YumaAug18_2020.txt
d
=
v
35 items

Figure 9.2 — Example of unwise data collection

After viewing the folder, you instantly realize that data preprocessing must be done before

any analytics can be considered. In the interest of building a good working relationship

with Omid, you don't tell him directly that a huge data preprocessing task needs to be
done; instead, you comment on the aspects of his data collection that are great and can be
used as a cornerstone for data preprocessing. You mention that it is great that the naming
of these files follows a predictable order. The order is that city names come first, comes the
name of the month as three letters, then the day as one or two digits, and finally the year
as four digits.

As you are well-versed with Pandas DataFrame, you suggest that the data should be

processed into a DataFrame and Omid, eager to learn, accepts.

218 Data Cleaning Level I - Cleaning Up the Table

You can perform the following steps to process the data into a DataFrame:

1.

First, we need to access the filenames so that we can use them to open and read
each file. Pay attention: we can type the names of the files ourselves as there are only
35 of them. However, we must do this using programing as we are trying to learn
scalable skills; imagine that we have one million files instead of 35. The following
code shows how using the 1istdir () function from the os module can do that
for us very easily:

from os import listdir
FileNames = listdir('Speeches')

print (FileNames)

Next, we need to create a placeholder for our data. In this step, we need to

imagine what our dataset would look like after this data cleaning process has been
completed. We want to have a DataFrame that contains the names of each file and
its content. The following code uses the pandas module to create this placeholder:

import pandas as pd

speech df = pd.DataFrame (index=range (len (FileNames)),
columns=['File Name', 'The Content'])

print (speech df)

Lastly, we need to open each file and insert its content into speech_df, which

we created in the previous step. The following code loops through the elements of
FineNames. As each element is the name of one of the files that can be used to open
and read the file, we can use the open () and . readlines () functions here:

for i,f name in enumerate (FileNames) :

f = open('Speeches/' + f name, "r", encoding='utf-8')
f content = f.readlines()

f.close()

speech df.at[i,'File Name'] = £ name

speech df.at[i, 'The Content'] = £ content[0]

Once you have completed these three steps, run Print (speech df) and study it
before moving on. Here, you can see that speech_df has two of the three characteristics
of level I cleaned data. The dataset has the first characteristics as it is now one standard
data structure, which is also your preferred one.

Data cleaning level I - cleaning up the table 219

The dataset, after being processed into speech_df, also has the third characteristic
as each row has a unique index. You can run speech_df . index to investigate this.
You might be pleasantly surprised that we didn't do anything to acquire this cleaning
characteristic. This is automatically done for us by Pandas.

However, we could have done better regarding the second characteristic. The File Name
and The Content column names are intuitive enough, but they are not as codable

as they can be. We can access them using the df [' ColumnName '] method but not

df . ColumnName, as shown here:

1. First,run speech df['File Name'] and speech df ['The Content'];
you will see that you can easily access each column using this method.

2. Second, run speech df.File Name and speech df.The Content;you
will get errors. Why? To jog your memory, please go back to Chapter 1, Reviewing
the Core Modules of NumPy and Pandas, find the DataFrame access columns section,
and study the error shown in Figure 1.16. The cause of the error is very similar here.

So, to make the column titles codable when using a Pandas DataFrame, we only have to
follow a few guidelines, as follows:

o Try to shorten the column's titles as much as possible without them becoming
unintuitive. For instance, The Content can simply be Content.

 Avoid using spaces and possible programming operators such as -, +, =, %, and &
in the names of the columns. If you have to have more than one word as the
column's name, either use camel case naming (FileName) or use an underscore
(File Name).

You may have noticed in the second to last piece of code that I could have used more
codable column titles; I could have used columns=['FileName', 'Content ']
instead of columns=['File Name', 'The Content']. You are right. I should have
done this there; I only did this so I was able to make this point afterward. So, go ahead
and improve the code before moving on. Alternatively, you can use the following code to
change the column names to their codable versions:

speech df.columns = ['FileName', 'Content']

Now that we have completed this example, let's review the characteristics of Level I data
cleaning that the sources of data in this example needed. This source of data needed

all three characteristics of Level I data cleaning to be improved. We had to take action
explicitly to make sure that the data is in standard data structure and also has intuitive and
codable column names. Also, the tool we used, Pandas, automatically gave each row

a unique identifier.

220 Data Cleaning Level I - Cleaning Up the Table

Example 2 - reindexing (multi-level indexing)

In this example, we want to perform Level 1 data Cleaning on TempData.csv. The
following screenshot shows how to use Pandas to read the data into a DataFrame:

In [7]: M air_df = pd.read_csv('TempData.csv')

air_df
Out[7]:

Temp Year Month Day Time

0 79.0 2016 1 1 00:00:00

1 79.0 2016 1 1 00:30:00

2 79.0 2016 1 1 01:00:00

3 77.0 2016 1 1 01:30:00

4 78.0 2016 1 1 02:00:00
20448 77.0 2016 12 31 22:00:00
20449 77.0 2016 12 31 22:30:00
20450 77.0 2016 12 31 23:00:00
20451 77.0 2016 12 31 23:00:00
20452 77.0 2016 12 31 23:30:00

20453 rows x 5 columns

Figure 9.3 — Reading TempData.CSV into a Pandas DataFrame

Our first evaluation of the dataset reveals that the data is in one standard data structure,
the column titles are intuitive and codable, and each row has a unique identifier. However,
upon looking at this more closely, the default indices assigned by Pandas are unique but
not helpful for identifying the rows. The Year, Month, Day, and Time columns would
be better off as the indexes of the rows. So, in this example, we would like to reindex the
DataFrame using more than one column. We will use Pandas's special capability known as
multi-level indexing. We covered this in the Pandas multi-level indexing section Chapter
1, Reviewing the Core Modules of NumPy and Pandas.

This can be done easily by using the . set _index () function of a Pandas DataFrame.
However, before we do that, let's remove the Year column as its value is only 2016. To
check this, run air df.Year.unique (). In the following line of code, so that we don't
lose the information stating that this dataset is for 2016, we will change the DataFrame's
nametoair2016 df:

air2016 df = air df.drop (columns=['Year'])

Data cleaning level I - cleaning up the table 221

Now that the unnecessary column has been removed, we can use the . set _index ()
function to reindex the DataFrame:

air2016_df.set index(['Month', 'Day', 'Time'],inplace=True)

If you print air2016_df after running the preceding code, you will get the DataFrame
with a multi-level index, as shown in the following screenshot:

Temp

Month Day Time

1 1 00:00:00 79.0

00:30:00 79.0
01:00:00 79.0
01:30:00 77.0
02:00:00 78.0

12 31 22:00:00 77.0
22:30:00 77.0
23:00:00 77.0
23:00:00 77.0

23:30:00 77.0

20453 rows x 1 columns

Figure 9.4 - air2016_df with a multi-level index

Our achievement here is that not only does each row have a unique index but the
indices can be used to meaningfully identify each row. For instance, you can run
air2016 _df.loc[2,24,'00:30:00"'] to get the temperature value of February 24
at 30 minutes after midnight.

In this example, we focused on the third characteristic of level I data cleaning: each
row has a unique identifier. In the following example, we will focus on the second
characteristic: having a codable and intuitive column name.

222 Data Cleaning Level I - Cleaning Up the Table

Example 3 - intuitive but long column titles

In this example, we will be using OSMI Mental Health in Tech Survey 2019.
csv from https://osmihelp.org/research. The following screenshot shows the
code that reads the dataset into response_df, and then uses the . head () function to
show the first row of the data:

In [12]: M response_df = pd.read_csv('OSMI Mental Health in Tech Survey 2019.csv')
response_df.head(1)

Out[12]:
Do you
know the
Is your Does your options empl
primary employer for mental
“Are you :'n‘:wlé"zg‘s’ role provide health d
syelf- dopes your Is your employer within mental care men
employed? compar¥y or primarily a .tech your heal_th available (for ex
* organization company/organization? company benefits under
9 have? related as part of your
' to healthcare employer- ca
tech/IT? coverage? provided oth
health commun
coverage?
| don't
0 False 26-100 True True T No

1 rows x 82 columns

Figure 9.5 - Reading data into response_df and showing its first row

Working with a dataset that has very long column titles can be hard from a programing
and visualization perspective. For instance, if you would like to access the sixth column of
the dataset, you would have to type out the following line of code:

response df ['Do you know the options for mental health care
available under your employer-provided health coverage?']

For cases where we cannot have short and intuitive titles for the columns, we need to use
a column dictionary. The idea is to use a key instead of each full title of columns, which is
somewhat intuitive but significantly shorter. The dictionary will also provide access to the
tull title if need be through the relevant key.

The following code creates a column dictionary using a Pandas Series:

keys = ['Q{}'.format (i) for i in range(1,83)]
columns dic = pd.Series (response df.columns, index=keys)

https://osmihelp.org/research

Data cleaning level I - cleaning up the table 223

The preceding code breaks the process of creating the dictionary column into
two steps:

1. First, the code creates the keys variable, which is the list of shorter substitutes for
column titles. This is done using a list comprehension technique.

2. Second, the code creates a Pandas Series called columns_dic, whose indices are
keys and whose values are response df .columns.

Once the preceding code has been run successfully, the columns _dic Panda Series can
act as a dictionary. For instance, if you run columns_dic ['Q4 '], it will give you the
tull title of the fourth column (the fourth question).

Next, we need to update the columns of response df, which can be done with a simple
line of code: response _df.columns = keys. Once you've done this, response df
will have short and somewhat intuitive column titles whose full descriptions can easily be
accessed. The following screenshot shows the transformed version of response df once
the preceding steps have been performed:

In [17]: M response_df.head(1)

out[17]:
Q1 @2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 .. Q73 Q74 Q75 Q76 Q77

| |

0 False 263 True True don't No Yes Yes don't
100

know know

Very

... NaN NaN False 25 Male
easy

1 rows x 82 columns

Figure 9.6 — Showing the first row of the cleaned response_df

In this example, we took steps to ensure that the second characteristic of level I data
cleaning has been met since the dataset was in good shape in terms of the first and
third characteristics.

So far, you've learned and practiced, by example, some examples of data cleaning. In the
next chapter, we will learn about and see examples of level II data cleaning.

224 Data Cleaning Level I - Cleaning Up the Table

Summary

Congratulations on your excellent progress. In this chapter, we introduced you to three
different levels of data cleaning and their relevance, along with the goals and tools of
analytics. Moreover, we covered level I of data cleaning in more detail and practiced
dealing with situations where this type of data cleaning is needed. Finally, by looking at
three examples, we used the programming and analytics skills that we had developed in
the previous chapters to effectively preprocess example datasets and meet the examples'
analytical goals.

In the next chapter, we will focus on level II of data cleaning. Before moving forward and
starting your journey on data cleaning level II, spend some time on the following exercises
and solidify what you've learned.

Exercises

1. Inyour own words, describe the relationship between the analytics goals and data
cleaning. Your response should answer the following questions:

a) Is data cleaning a separate step of data analytics and can be done in isolation?
In other words, can data cleaning be performed without you knowing about the
analytics process?

b) If the answer to the previous question is no, are there any types of data cleaning
that can be done in isolation?

c) What is the role of analytic tools in the relationship between analytic goals and
data cleaning?

2. Alocal airport that analyzes the usage of its parking has employed a Single-Beam
Infrared Detector (SBID) technology to count the number of people who pass the
gate from the parking area to the airport.

As shown in the following diagram, an SBDI records every time the infrared
connection is blocked, signaling a passenger entering or exiting:

Figure 9.7 - An example of a Single-Beam Infrared Detector (SBID)

Exercises 225

Unfortunately, the person who installed the SBID was not up to date with the latest
and greatest database technology, so they have set up the system in a way that

the recorded date of each day is stored in an Excel file. The Excel files are named
after the days the records were created. You have been hired to help and analyze

the data. Your manager has given you access to a zipped file called SBID Data.
zip. This zipped file contains 14 files, each containing the data of one day between
October 12, 2020, and October 25, 2020. Your manager has informed you that due
to security reasons, she cannot share all 3,000 files with you. She has asked you to do
the following for the 14 files she has shared with you:

a) Write some code that can automatically consolidate all the files into one
Pandas DataFrame.

b) Create a bar chart that shows the average airport passenger traffic per hour.

c) Label and describe the data cleaning steps you did in this exercise.

10

Data Cleaning

Level II - Unpacking,
Restructuring,

and Reformulating
the Table

In level I data cleaning, we were only concerned about the neat and codable organization
of our dataset. As we mentioned previously, level I data cleaning can be done in isolation,
without having to keep an eye on what data will be needed next. However, level I data
cleaning is deeper. It is more about preparing the dataset for analysis and the tools for
this process. In other words, in level II data cleaning, we have a dataset that is reasonably
clean and is in a standard data structure, but the analysis we have in mind cannot be done
because the data needs to be in a specific structure due to the analysis itself, or the tool we
plan to use for the analysis.

228 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

In this chapter, we will look at three examples of level II data cleaning that tend to happen
frequently. Pay attention to the fact that, unlike level I data cleaning, where the examples
were merely a source of data, the examples for level I date cleaning must be coupled with
an analytical task.

In this chapter, we're going to cover the following main topics:

« Example 1 - unpacking columns and reformulating the table
« Example 2 - restructuring the table

« Example 3 - level I and II data cleaning

Technical requirements

You can find all the code and the dataset for this book in this book's GitHub
repository: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. You can find the Chapter10 directory in this
repository and download the code and the data for a better learning experience.

Example 1 - unpacking columns and
reformulating the table

In this example, we will use the level I cleaned speech_df dataset to create the following
bar chart. We cleaned this DataFrame in the Example 1 - unwise data collection section of
Chapter 9, Data Cleaning Level I — Cleaning Up the Table. The level I cleaned speech df
database only has two columns: FileName and Content. To be able to create the
following visual, we need columns such as the month of the speech and the number of
times the four words (vote, tax, campaign, and economy) have been repeated in each
speech. While the level I cleaned speech df dataset contains all this information, it is
somewhat buried inside the two columns.

The following is a list of the information we need and the column of speech_df that this
information is stored in:

o The month of the speech: This information is in the FileName column.

o The number of times the words vote, tax, campaign, and economy have been
repeated in each speech: This information is in the Content column:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Example 1 - unpacking columns and reformulating the table 229

0.00200 - EEN wte W campaign
N tax EEN economy
0.00175 A
>
%3
& 0.00150 -
=
£ 000125 -
g 0.00100 -
20
o
o 4
E 0.00075
Z 0.00050
0.00025 A
0.00000 -
S o Q o] >] c F=] -] [o =%
s % &% S 2 & 5 & = 3 3 &
— o')] o' o' = o = =] o' =
=1 - - (=] 1 1 N P ~ N ~ ~
] & &]]]] S] g S
Year_Month

Figure 10.1 - Average frequency of the words vote, tax, campaign, and economy per month

in speech_df

So, for us to be able to meet our analytic goal, which is to create the previous visualization,
we need to unpack the two columns and then reformulate the table for visualization.

Let's do this one step at a time. First, we will unpack FileName and then we bring

our attention to unpacking Content. After that, we will reformulate the table for the

requested visualization.

Unpacking FileName

Let's take a look at the values of the FileName column. To do this, you can run speech
df . FileName and study the values under this column. You will notice that the values
follow a predictable pattern. The pattern is CitynameMonthDD_YYYY.txt; Cityname is the
name of the city where the speech was given, Month is the three-letter version of the month
when the speech was given, DD is the one- or two-digit number that represents the day of
the month, YYYY is the four digits that represent the year during which the speech was
given, and .xt is the file extension, which is the same for all the values.

230 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

You can see that the FileName column contains the following information about the
speeches in the dataset:

o City: The city where the speech was given
o Date: The date when the speech was given
o Year: The year when the speech was given
« Month: The month when the speech was given

o Day: The day when the speech was given

In the following code, we will use our programming skills to unpack the FileName
column and include the preceding information as separate columns. Let's plan our
unpacking first and then put it into code. The following are the steps we need to take for
the unpacking process:

1. Extract City: Use Month from the CitynameMonthDD_YYYY.txt pattern to extract
the city. Based on this pattern, everything that comes before Month is Cityname.

2. Extract Date: Use the extracted Cityname to extract Date.

3. Extract Year, Month, and Day from Date.
Now, let's put these steps into code:

1. Extract City: The following code creates the SeparateCity () function and
applies it to the speech df.FileName Series. The SeparateCity () function
loops through the previously created Months list to find the three-letter word that
represents a month, which is used for each filename. Then, we can use the. find ()
function and the slicing capability of the Python strings to return the city's name:

Months = ['Jan', 'Feb', 'Mar', 'Apr', 'May','Jun', 'Jul', 'Aug’
,'Oct', 'Sep', 'Nov', 'Dec']
def SeperateCity(v) :
for mon in Months:
if (mon in Vv):
return v[:v.find (mon)]

speech df['City'] = speech df.FileName.apply (
SeperateCity)

Example 1 - unpacking columns and reformulating the table 231

Pay Attention!

Here, we had to use Month as the separator between Cityname and the date.

If the naming convention of the files was a bit more organized, we could have
done this a bit easier; in the speech df . FileName column, some days
are presented by one digit, such as LatrobeSep3 2020 . txt, while some
days are presented by two digits, such as Batt leCreekDecl9 2019.
txt. If all the days were presented with two digits, in that they used
LatrobeSep03 2020.txt instead of LatrobeSep3_2020.txt, the task of
unpacking the column, from a programming perspective, would have been
much simpler. For an example, see Exercise 2, later in this chapter.

Extract Date: The following code creates the SeparateDate () function and
applies it to speech df. This function uses the extracted city as the starting point,
and the . £ind () function to separate the date from the city:

def SeperateDate (r) :
return r.FileName[len(r.City) :r.FileName.find (
otext!')]

speech df['Date'] = speech df.apply(SeparateDate,axis=1)

Every time we work with date information, it is better to make sure that Pandas
knows the recording is a datetime programming object so that we can use its
properties, such as sorting by date or accessing the day, month, and year values. The
following code uses the pd.to_datetime () function to transform the strings
that represent the dates to datetime programming objects. To effectively use the
pd.to_datetime () function, you need to be able to write the format pattern
that the strings that represent dates follow. Here, the format pattern is ' $b%d_%Y"',
which means the string starts with a three-letter month representation (%b), then

a digit representation for the day (%d), followed by an underscore (_), and then a
four-digit year representation (%Y). To be able to come up with a correct format
pattern, you need to know the meaning of each of the directives, such as $b, %d,
and so on. Go to https://docs.python.org/3/library/datetime.
html#strftime-and-strptime-behavior to find a comprehensive list of
these directives:

speech df.Date = pd.to datetime (speech df.Date,
format="'%b%d %Y')

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

232

Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

Extract Year, Month, and Day from Date: The following code creates the
extractDMY () function and applies it to speech_df to add three new columns
to each row. Note that the code is taking advantage of the fact that the speech_df
column is a datetime programming object that has properties such as . day and
.month to access the day and the month for each date:

def extractDMY (r) :
r['Day'] = r.Date.day
r['Month'] = r.Date.month
r['Year'] = r.Date.year
return r

speech df = speech df.apply(extractDMY,axis=1)

After running the preceding code snippets successtully, you will have managed to
unpack the FileName column of speech df. Since all of the information that
was packed in FileName is not presented under other columns, we can go ahead
and remove this column by running the following command:

speech df.drop(columns=['FileName'], inplace=True)
Before unpacking the other column, Content, let's take a look at the state of the

data and enjoy looking at the progress we've made. The following screenshot shows
the first five rows of the data:

In [25]: M speech_df.head()

Out[25]:
Content City Date Day Month Year
0 Thank you. Thank you. Thank you to Vice Presid... BattleCreek 2019-12-19 19 12 2019
1 There's a lot of people. That's great. Thank y... Bemidji 2020-09-18 18 9 2020
2 Thank you. Thank you. Thank you. All | can say... Charleston 2020-02-28 28 2 2020
3 | want to thank you very much. North Carolina,... Charlotte 2020-03-02 2 3 2020
4 Thank you all. Thank you very much. Thank you ... Cincinnati 2019-08-01 1 8 2019

Figure 10.2 - speech_df after unpacking FileName

Example 1 - unpacking columns and reformulating the table 233

Now that we have unpacked FileName into five new columns called City, Date, Day,
Month, and Year, we have taken one step toward the end goal: we've got access to
create the x axis shown in Figure 10.1. Now, we need to pay attention to unpacking the
column Content.

Unpacking Content

Unpacking the column Content differs somewhat from unpacking FileName. As

the column FileName only had a limited amount of information, we were able to
unpack everything this column had to offer. However, the column Content has a lot of
information and it could be unpacked in many different ways. However, we only need to
unpack a small portion of what is under the column Content; we need to know about
the ratio of the usage of four words: vote, tax, campaign, and economy.

We can unpack what we need from the column Content in one step. The following code
creates the FindWordRatio () function and applies it to speech_df. The function
uses a for loop to add four new columns to the DataFrame, one column for each of the
four words. The calculation for each word is simple: the returning value for each word is
the total occurrence of the word in the speech (row. Content . count (w)), divided by
the total number of words in the speech (total n words):

Words = ['vote', 'tax',6 'campaign', 'economy']

def FindWordRatio (row) :
total n words = len(row.Content.split (' '))
for w in Words:

row['r {}'.format(w)] = row.Content.count (w)/total n
words

return row

speech df = speech df.apply(FindWordRatio,axis=1)

234 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

The resulting speech_df after running the previous code will have 10 columns, as

shown in the following screenshot:

In [27]:

Out[27]:
Content

M speech_df.head()

City

Date

Day Month

Year

r_vote

r_tax r_campaign

r_econon

Thank

you.

Thank

0 you.
Thank you

to Vice
Presid...

There's a
lot of
people.
That's
great.
Thank y...

-

Thank

you.

Thank

2 you.
Thank

you. All'l

can say...

| want to
thank you
very
much.
North
Carolina,...

Thank you
all. Thank
you very
much.
Thank you

I

BattleCreek

Bemidji

Charleston

Charlotte

Cincinnati

2019-
12-19

2020-
09-18

2020-
02-28

2020-
03-02

2019-
08-01

19 12

18 9

28 2

2019

2020

2020

2020

2019

0.000561

0.000710

0.000950

0.000750

0.001713

0.000505

0.000237

0.000317

0.001500

0.000857

0.000224

0.000533

0.000106

0.000150

0.001224

Figure 10.3 - speech_df after extracting the needed information from Content

0.0006

0.0000

0.0000

0.0004

0.0002

Example 1 - unpacking columns and reformulating the table 235

So far, we have restructured the table, so we are inching closer to drawing Figure 10.1;
we've got the information for both the x axis and y axis. However, the dataset needs to be
modified further before we can visualize Figure 10.1.

Reformulating a new table for visualization

So far, we have cleaned speech_df for our analytic goals. However, the table we need
for Figure 10.1 needs each row to be Donald Trump's speeches in a month while each of
the rows in speech_df is one of Donald Trump's speeches. In other words, to be able
to draw the visualization, we need to reformulate a new table so that the definition of our
data object is Donald Trump's speeches in a month instead of one Donald Trump speech.

The new definition of the Donald Trump's speeches in a month data object is an
aggregation of some of the data objects that are defined as Donald Trump's speeches. When
we need to reformulate a dataset so that its new definition of data objects is an aggregation
of the current definition of data objects, we need to perform two steps:

1. Create a column that can be the unique identifier for the reformulated dataset.

2. Use a function that can reformulate the dataset while applying the aggregate
functions. The pandas functions that can do this are . groupby () and
.pivot_table().

So, let's perform these two steps on speech_df to create the new DataFrame called
vis_ df, which is the reformulated table we need for our analytics goal:

1. The following code applies a lambda function that attaches the Year and Month
properties of each row to create a new column called Y M. This new column will be
the unique identifier of the reformulated dataset we are trying to create:

Months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug'
,'Oct','Sep', 'Nov', 'Dec']

lambda func = lambda r: '{} {}'.format (r.Year,Months[r.
Month-1])

speech df['Y M'] = speech df.apply(lambda func,axis=1)

The preceding code created the lambda function (1ambda_func) in a separate line
in the interest of making the code more readable. This step could have been skipped
and the lambda function could have been created "on the fly."

236 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

2. 'The following code uses the .pivot table () function to reformulate
speech df into vis_df. If you've forgotten how the.pivot table () function
works, please revisit the pandas pivot and melt functions section of Chapter 1,
Review of the Core Modules of NumPy and Pandas:

Words = ['vote', 'tax',6 'campaign', 'economy']

vis df = speech df.pivot table(index= ['Y M'],
values= ['r {}'.format(w) for w in Words],
aggfunc= np.mean)

The preceding code uses the aggfunc property of the .pivot table ()
function, which was not mentioned in Chapter 1, Review of the Core Modules of
NumPy and Pandas. Understanding aggfunc is simple; when index and values
of .pivot_table () are specified in a way that more than one value needs to

be moved into one cell in the reformulated table, the .pivot table () uses the
function that is passed for aggfunc to aggregate the values into one value.

The preceding code also uses a list comprehension to specify the values. The

list comprehensionis ['r {}'.format (w) for w in Words], whichis
essentially the list of four columns from speech df. Run the list comprehension
separately and study its output.

3. We could have also reformulated the data into vis_df using .groupby (). The
following is the alternative code:

vis df = pd.DataFrame ({
'r vote': speech df.groupby ('Y M').r vote.mean(),
'r tax': speech df.groupby ('Y M').r tax.mean(),
'r campaign': speech df.groupby ('Y M').r campaign.

mean () ,
'r economy': speech df.groupby ('Y M').r economy.
mean () })

While the preceding code might feel more intuitive since working with
.groupby () function might be easier than using .pivot table (), the first
piece of code is more scalable.

Example 1 - unpacking columns and reformulating the table

237

More Scalable Code

When coding, if possible, you want to avoid repeating the same line of code
for a collection of items. For example, in the second alternative in the two
preceding codee blocks, we had to use the . groupby () function four times,
one for each of the four words. What if, instead of 4 words, we needed to do
this analysis for 100,000 words? The first alternative is certainly more scalable
as the words are passed as a list and the code will be the same, regardless of the
number of words in the list.

At this point, you have created the reformulated vis_df, which we created to draw
Figure 10.1. The following screenshot shows vis_ df:

r_campaign r_economy r_tax r_vote
Y_M

2019_Aug 0.001499 0.000270 0.000872 0.001596
2019_Dec 0.000316 0.000665 0.000558 0.000739
2019_Jul 0.000283 0.000660 0.000660 0.001603
2019_Nov 0.000551 0.000333 0.000385 0.002048
2019_Oct 0.000533 0.000572 0.001340 0.001398
2019_Sep 0.000843 0.000448 0.000419 0.000409
2020_Aug 0.000428 0.000222 0.001189 0.001577
2020_Feb 0.000353 0.000224 0.000625 0.001206
2020_Jan 0.000299 0.000240 0.001331 0.001215
2020_Jun 0.000356 0.000267 0.000535 0.000713
2020_Mar 0.000150 0.000450 0.001500 0.000750
2020_Oct 0.000306 0.000386 0.000504 0.001235

Figure 10.4 - vis_df

Now that we have vis df, all that remains is to represent the information in vis_df in

the form of a bar chart. The following subsection shows how this is done.

238 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

The last step - drawing the visualization

Figure 10.4 and Figure 10.1 are essentially presenting the same information. While Figure
10.4 (vis_df) uses a table to present the information, Figure 10.1 used a bar chart. In
other words, we have almost made it and we need to perform one more step to create the
requested visualization.

The following code block shows the code that creates the visualization shown in Figure 10.1.
Pay attention before running the following code as you must import the matplotlib.
pyplot module first. You can use import matplotlib.pyplot as plt todo this:

column order = vis df.sum() .sort values (ascending=False) .index
row_order = speech df.sort values('Date') .Y M.unique ()

vis_ df [column order] .loc[row order] .plot.bar (figsize=(10,4))
plt.legend(['vote', 'tax', 'campaign', 'economy'],ncol=2)
plt.xlabel ('Year Month')

plt.ylabel ('Average Word Frequency')

plt.show ()

The preceding code creates two lists: column_order and row_order. As their names
suggest, these lists are the order in which the columns and rows will be shown on the visual.
The column_order is the list of words based on the summation of their occurrence ratio,
while row_order is the list of Y M based on their natural order in the calendar.

In this example, we learned about different techniques for level II data cleaning; we
learned how to unpack columns and reformulate the data for the analytics tools and goals.
The next example will cover data preprocessing to restructure the dataset.

What's the difference between restructuring and reformulating a dataset? We tend to use
reformulate when the definition of data objects needs to change for the new dataset. In
contrast, we use restructure when the table structure does not support our analytic goals
or tools, and we have to use alternative structures such as a dictionary. In this example, we
change the definition of a data object from one Donald Trump speech to Donald Trump's
speeches in a month so we called this a dataset reformulation.

Here, we are being introduced to the new materials while immersing ourselves in examples.
In this example, we learned about unpacking columns and reformulating the table. In the next
example, we will be exposed to a situation that requires restructuring the table.

Example 2 - restructuring the table 239

Example 2 - restructuring the table

In this example, we will use the Customer Churn.csv dataset. This dataset contains
the records of 3,150 customers of a telecommunication company. The rows are described
by demographic columns such as gender and age, and activity columns such as the
distinct number of calls in 9 months. The dataset also specifies whether each customer
was churned or not 3 months after the 9 months of collecting the activity data of the
customers. Customer churning, from a telecommunication company's point of view,
means the customer stops using the company's services and receives the services from the
company's competition.

We would like to use box plots to compare the two populations of churning customers
and non-churning customers for the following activity columns: Call Failure,
Subscription Length, Seconds of Use, Frequency of use, Frequency of SMS, and
Distinct Called Numbers.

Let's start by reading the Customer Churn.csv file into the customer df
DataFrame. The following screenshot shows this step:

In [34]: M customer_df = pd.read_csv('Customer Churn.csv')
customer_df.head(1)
Out[34]:
. Distinct
Call . Subscription Seconds Frequency Frequency
Failure Complains Length of Use of use of SMS Nug\al‘)lzcs’ Status Churn
0 8 0 38 4370 Il 5 17 1

Figure 10.5 - customer_df before level I cleaning

At first glance, we can see that this dataset needs some level I data cleaning. While the
column titles are intuitive, they can become more codable. The following line of code
makes sure that the columns are also codable:

customer df.columns = ['Call Failure', 'Complains',
'Subscription Length', 'Seconds of Use', 'Frequency of use',
'Frequency of SMS', 'Distinct Called Numbers', 'Status',
'Churn']

Before you move on, make sure that you study the new state of customer df after
running the preceding code.

Now that the dataset has been level I cleaned, we can pay attention to level II data cleaning.

240 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

This example needs us to draw six box plots. Let's focus on the first box plot; the rest will
follow the same data cleaning process.

Let's focus on creating multiple box plots that compare the Call Failure attribute of
churning customers with that of non-churning customers. A box plot is an analytic tool
that needs a simpler data structure than a dataset. A box plot only needs a dictionary.

What is the difference between a dataset and a dictionary? A dataset is a table that
contains rows that are described by columns. As described in Chapter 3, Data - What is
it Really?, in the The most universal data structure - a table section, we specified that the
glue of a table is the definition of the data objects that each row represents. Each column
also describes the rows. On the other hand, a dictionary is a simpler data structure where
values are associated with a unique key.

For the box plot we want to draw, the dictionary we need has two keys - churn and
non-churn - one for each population that will be presented. The value for each key is the
collection of Call Failure records for each population. Pay attention to the fact that,
unlike a table data structure that has two dimensions (rows and columns), a dictionary
only has one dimension.

The following code shows the usage of a pandas Series as a dictionary to prepare the data
for the box plot. In this code, box_sr is a pandas Series that has two keys called 0 and 1,
with 0 being non-churn and 1 being churn. The code uses a loop and Boolean masking to
filter the churning and non-churning data objects and record them in box_sr:

churn possibilities = customer df.Churn.unique ()
box sr = pd.Series('',6index = churn possibilities)
for poss in churn possibilities:

BM = customer df.Churn == poss

box sr[poss] = customer df[BM].Call Failure.values

Before moving on, execute print (box_ sr) and study its output. Pay attention to the
simplicity of the data structure compared to the data’s initial structure.

Now that we have restructured the data for the analytic tool we want to use, the data is
ready to be used for visualization. The following code uses p1t .boxplot () to visualize
the data we have prepared in box_sr. Don't forget to import matplotlib.pyplot as
plt before running the following code:

plt.boxplot (box sr,vert=False)
plt.yticks ([1,2], ['Not Churn', 'Churn'l])
plt.show ()

Example 2 - restructuring the table 241

If the preceding code runs successfully, your computer will show multiple box plots that
compare the two populations.

So far, we have drawn a box plot that compares Call Failure for churning and
non-churning populations. Now, let's create some code that can do the same process
and visualizations for all of the requested columns to compare the populations. As we
mentioned previously, these columns are Call Failure, Subscription Length,
Seconds of Use, Frequency of use, Frequency of SMS,andDistinct
Called Numbers.

The following code uses aloop and p1t . subplot () to organize the six required visuals
for this analytic so that they're next to one another. Figure 10.6 shows the output of the
code. The data restructuring that's required to draw the box plot happens for each box plot
shown in Figure 10.6. As practice, try to spot them in the following code and study them. I
recommend that you review Chapter 1, Review of the Core Modules - NumPy and pandas,
and Chapter 2, Review of Another Core Module — Matplotlib, if you don't know what the
enumerate (), plt.subplot (),andplt.tight layout () functions are:

select columns = ['Call Failure',6 'Subscription Length',
'Seconds_of Use', 'Frequency of use', 'Frequency of SMS',
'Distinct Called Numbers']

churn possibilities = customer df.Churn.unique ()
plt.figure(figsize=(15,5))
for i,sc in enumerate (select columns) :
for poss in churn possibilities:
BM = customer df.Churn == poss
box sr[poss] = customer df [BM] [sc] .values
plt.subplot(2,3,i+1)
plt.boxplot (box sr,vert=False)
plt.yticks ([1,2], ['Not Churn', 'Churn'])
plt.title(sc)
plt.tight layout ()
plt.show ()

242 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

The following diagram is what you will get once the preceding code has been
successfully executed:

Call_Failure Subscription_Length Seconds_of Use
Cwum{ T F——————10000000 Chum 1 ©ADCOOCOADO000 —L T Cum | T }+——e»
Not Churn { H Not Churn NotChum{ — T }————————— s
0 5 10 15 20 5 30 35 10 20 30 40 0 2500 5000 7500 10000 12500 15000 17500
Frequency_of use Frequency_of SMS Distinct_Called_Numbers
Cwum{ T }F—— Chum 1 [—ao @ CGum{ T }—o
Not Churn { —— Not Churn { H o | Not Churn { ——{ [}————Gmmmmm oo

0 50 100 150 200 250 0 100 200 300 400 500 0 20 40 60 80 100

Figure 10.6 - End solution for Example 2 - restructuring the table

In this example, we looked at a situation where we needed to restructure the data so that
it was ready for the analytic tool of our choice, the box plot. In the next example, we

will look at a more complicated situation where we will need to perform both dataset
reformulation and restructuring to make predictions.

Example 3 - level T and II data cleaning

In this example, we want to use Electric_Production.csv to make predictions. We
are specifically interested in being able to predict what the monthly electricity demand
will be 1 month from now. This 1-month gap is designed in the prediction model so that
the predictions that come from the model will have decision-making values; that is, the
decision-makers will have time to react to the predicted value.

We would like to use linear regression to perform this prediction. The independent and
dependent attributes for this prediction are shown in the following diagram:

Independent Attributes Dependent Attribute

Average demand of the
month over the years

Slope of change for the
demand of the month —— Demand of month t

over the years
Average demands of /

months t-2, t-3, and t-4

Figure 10.7 - The independent and dependent attributes needed for the prediction task

Example 3 - level I and IT data cleaning 243

Let's go through the independent attributes shown in the preceding diagram:

Demand

Average demand of the month over the years: For instance, if the month we want
to predict demands for is March 2022, we want to use the average of the demands
for every March in the previous years. So, we will collate the historical demands

of March from the beginning of the data collection process (1985) to 2021 and
calculate its average. This is shown in the following diagram.

Slope of change for the demand of the month over the years: For instance, if the
month we want to predict demands for is March 2022, we want to use the slope of
change in the demand in March over the years. As shown in the following diagram,
we can fit a line on the Demand in March data points across the years. The slope of
that fitted line will be used for prediction.

Average demands of months t-2, t-3, and t-4: In the preceding diagram, the t, t-2,
t-3, and t-4 notations are used to create a time reference. This time reference is that
if we want to predict the demand of a month, we want to use the average demand
of the following data points: the monthly demand of 2 months ago, the monthly
demand of 3 months ago, and the monthly demand of 4 months ago. For instance,
if we want to predict the monthly demand of March 2021, we'd want to calculate
the average of January 2021, December 2020, and November 2020. Note that we
skipped February 2021 as it was our planned decision-making gap.

Demands in March

110
Fitted regression ;
—:= Average i
s e
» Data points _o” B
100 A .
"i "'
» -
K
* ¥ *
*
%4
—————————————————————— ol o gl — ————— — — — — — — — —
* *
>
&
80 - * _w
-
o
70 A .
»
*

60 e B e e B e B e e B B B e e e e e e B NN B s e e e e
Moooooohogyohvoh oy YOy
ATJAJ2ATJA3J3JJ3RRRRARRRRRARKRKAKRKRKRR

Year

Figure 10.8 — Example of extracting the first two independent attributes for March

244 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

Now that we have a clear understanding of the data analytic goal, we will focus on
preprocessing the data. Let's start by reading the data and covering its level I data
cleaning process. The following screenshot shows the code that reads the Electric
Production.csv file intomonth df and shows its first five and last five rows:

In [39]: M month_df = pd.read_csv('Electric_Production.csv')

month_df
Out[39]:

DATE IPG2211A2N

0 1/1/1985 72.5052

1 2/1/1985 70.6720

2 3/1/1985 62.4502

3 4/1/1985 57.4714

4 5/1/1985 55.3151
392 9/1/2017 98.6154
393 10/1/2017 93.6137
394 11/1/2017 97.3359

395 12/1/2017 114.7212
396 1/1/2018 129.4048

397 rows x 2 columns

Figure 10.9 — month_df before level I data cleaning

At first glance, you can see that month_df can use some level I data cleaning.
Let's get started.

Level I cleaning
The month_df dataset could do with the following level I data cleaning steps:

o The title of the second column can be more intuitive.

 The data type of the DATE column can be switched to datetime so that we can take
advantage of datetime programming properties.

o The default index that's been assigned to the data by pandas can be improved as the
DATE column would provide a better and more unique identification.

Example 3 - level I and IT data cleaning 245

The following code takes care of the aforementioned level I data cleaning properties:

month df.columns = ['Date', 'Demand']
month df.set index(pd.to datetime (month df.Date,
format="'%m/%d/%Y"') , inplace=True)

month df.drop (columns=['Date'], inplace=True)

Print month_df and study its new state.

Next, we will learn what level II data cleaning we need to perform.

Level II cleaning

Looking at Figure 10.7 and Figure 10.9 may give you the impression that the prescribed
prediction model in Figure 10.7 is not possible as the dataset that's shown in Figure 10.9
only has one column, while the prediction model needs four attributes. This is both a
correct and incorrect observation. While it is a correct observation that the data has only
one value column, the suggested independent attributes in Figure 10.7 can be driven
from month_df by some column unpacking and restructuring. That is the level II data
cleaning that we need to do.

We will start by structuring a DataFrame that we want to restructure the current table
into. The following code creates predict_df, which is the table structure that we will
need for the prescribed prediction task:

attributes_dic:{'IAl':'Average demand of the month',

'TA2':'Slope of change for the demand of the month', 'IA3':
'Average demands of months t-2, t-3 and t-4', 'DA': 'Demand of
month t'}

predict df = pd.DataFrame (index=month df.iloc[24:].index,
columns= attributes dic.keys())

When creating the new table structure, predict_dt, the code is drafted while taking the
following into consideration:

o+ The preceding code uses the attributes_dic dictionary to create intuitive and

concise columns that are also codable. As predict df needs to include rather
long attribute titles, as shown in Figure 10.7, the dictionary allows the title columns
to be concise, intuitive, and codable, and at the same time, you will have access to
the title's longer versions through attributes_dic. This is a form of level I data
cleaning, as shown in Chapter 9, Data Cleaning Level I - Cleaning Up the Table, in
the Example 3 - intuitive but long column titles section. However, since we are the
ones creating this new table, why not start with a level I cleaned table structure?

246 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

o The table structure we have created, predict df, uses the indices of month_df,
but not all of them. It uses all of them except for the first 24 rows, as specified in
the code by month_df.iloc[24:] .index. Why are the first 24 indices not
included? This is due to the second independent attribute: Slope of change for the
demand of the month over the years. As the slope of demand change for each month
will be needed for the described prediction model, we cannot have a meaningful
slope value for the first 24 rows of month_df in predict_df. This is because we
at least need two historical data points for each month to be able to calculate a slope
for the second independent attribute.

The following diagram summarizes what we want to accomplish by level II data cleaning
month_df. The DataFrame on the left shows the first and last five rows of month_df,
while the DataFrame on the right shows the first and last five rows of predict_df. As
you already know, predict_df is empty as we just created an empty table structure that
supports the prediction task. The following diagram, in a nutshell, shows that we need to
fill predict_df using the data of month df:

Demand IA1 1A2 IA3 DA
Date Date
1985-01-01 72.5052 1987-01-01 NaN NaN NaN NaN
1985-02-01 70.6720 1987-02-01 NaN NaN NaN NaN
1985-03-01 62.4502 1987-03-01 NaN NaN NaN NaN
1985-04-01 57.4714 1987-04-01 NaN NaN NaN NaN
1985-05-01 55.3151 1987-05-01 NaN NaN NaN NaN
—
2017-09-01 98.6154 2017-09-01 NaN NaN NaN NaN
2017-10-01 93.6137 2017-10-01 NaN NaN NaN NaN
2017-11-01 97.3359 2017-11-01 NaN NaN NaN NaN
2017-12-01 114.7212 2017-12-01 NaN NaN NaN NaN
2018-01-01 129.4048 2018-01-01 NaN NaN NaN NaN
397 rows x 1 columns 373 rows x 4 columns

Figure 10.10 - Summary of data cleaning level II for Example 3

We will complete the depicted data processing and fill out the columns in predict df
in the following order: DA, IA1, IA2, and IA3.

Example 3 - level I and II data cleaning 247

Filling out DA

This is the simplest column filling process. We just need to specify the correct portion of
month df .Demand to be placed under predict_df .DA. The following screenshot
shows the code and its impact on predict df:

In [44]: M predict_df.DA = month_df.loc['1987-01-01':].Demand
predict_df

Out[44]:
1AM 1A2 |A3 DA

Date

1987-01-01 NaN NaN NaN 73.8152
1987-02-01 NaN NaN NaN 70.0620
1987-03-01 NaN NaN NaN 65.6100
1987-04-01 NaN NaN NaN 60.1586

1987-05-01 NaN NaN NaN 58.8734

2017-09-01 NaN NaN NaN 98.6154
2017-10-01 NaN NaN NaN 93.6137
2017-11-01 NaN NaN NaN 97.3359
2017-12-01 NaN NaN NaN 114.7212

2018-01-01 NaN NaN NaN 129.4048

373 rows x 4 columns

Figure 10.11 - Code for filling out predict_df.DA and its result

As we can see, predict_df .DA was filled out properly. Next, we will fill out
predict df.IAI.

Filling out 1A1

To compute IA1, which is the Average demand of the month over the years, we need to
be able to filter month_df using the value of the month. To create such a capability, the
following code maps a lambda function to month_df and extracts the month of each row:

month df ['Month'] = list (map(lambda v:v.month, month df.index))

Before you move on, print out month_df and study its new state.

248 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

The following code creates the ComputeIAl () function, which uses month_df to filter
out the data points needed for the correct value of each cell under predict df.IAl.
Once it's been created, the ComputeIAl () function is applied to predict df:

def ComputeIAl (r) :

row_date = r.name
wdf = month df.loc[:row date] .iloc[:-1]
BM = wdf.Month == row date.month

return wdf [BM] .Demand.mean ()

predict df.IAl1 = predict df.apply (ComputeIAl,axis=1)

The function ComputeIAl () that is written to be applied to the rows of predict_df,
performs the following steps:

1. First, it filters out month_df using the calculated row date to remove the data
points whose dates are after row date.

2. Second, the function uses a Boolean mask to keep the data points with the same
month as the row's month (row date.month).

3. Next, the function calculates the average demand of the filtered data points and
then returns it.

Note

Let me share a side note before moving on. The wd f variable that was created
in the preceding code is short for Working DataFrame. The abbreviation wd f
is what I use every time I need a DataFrame inside a loop or a function but
where I won't need it afterward.

After successfully running the preceding code, make sure that you print out
predict_df and study its new state before moving on.

So far, we have filled out DA and TA1. Next, we will fill out IA2.

Filling out 1A2

To fill out I1A2, we will follow the same general steps that we did for filling out IA1. The
difference is that the function we will create and apply to predict_df to calculate the
IA2 values is more complex; for IA1, we created and applied ComputeIAl (), while for
IA2, we will create and apply ComputeIA2 (). The difference is that ComputeIA2 () is
more complex.

Example 3 - level I and II data cleaning 249

The code that creates and applies the ComputeIA2 () function is shown here. Try to
study the code and figure out how it works before moving on:

from sklearn.linear model import LinearRegression
def ComputeIA2 (r) :

row_date = r.name
wdf = month df.loc[:row date] .iloc[:-1]
BM = wdf.Month == row date.month

wdf = wdf [BM]
wdf .reset index(drop=True, inplace=True)

wdf .drop (columns = ['Month'],inplace=True)
wdf ['integer'] = range (len (wdf))
wdf ['ones'] = 1

lm = LinearRegression ()
Im.fit (wdf.drop (columns=['Demand']), wdf.Demand)
return lm.coef [0]

predict df.IA2 = predict df.apply(ComputeIA2,axis=1)

The preceding code is both similar and different to the code we used to fill out IA1. It is
similar since both ComputeIAl () and ComputeIA2 () start by filtering out month df
to get to a DataFrame that only includes the data objects that are needed to compute the
value. You may notice that the three lines of code under def ComputeIAl (r) : and
def ComputeIA2 (r) : are the same. The difference between the two starts from there.
As computing IA1 was a simple matter of calculating the mean of a list of values, the rest
of ComputeIAl () was very simple. However, for ComputeIA2 (), the code needs to
fit a linear regression to the filtered data points so that it can calculate the slope of the
change over the years. The ComputeIA2 () function uses LinearRegression from
sklearn.linear model to find the fitted regression equation and then return the
calculated coefficient of the model.

After successfully running the preceding code, make sure that you print out
predict_df and study its new state before moving on.

250 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

To understand the way ComputeIA2 () finds the slope of change for each cell under
predict_df.IA2, see the following screenshot, which shows the code and its output
for calculating the slope for one cell under predict_df . IA2. The following screenshot
calculates the IA2 value for the row with an index of 2017-10-01:

In [51]: M row_date = '2017-10-01'
wdf = month_df.loc[:row_date].iloc[:-1]
BM = wdf.Month == 10
wdf = wdf[BM]
wdf.reset_index(drop=True,inplace=True)
wdf.drop(columns = ['Month'],inplace=True)
wdf['integer'] = range(len(wdf))
wdf['ones'] =1

1m = LinearRegression()

Im.fit(wdf.drop(columns=['‘Demand’]), wdf.Demand)

print('Slope =

wdf.

{}'.format(1m.coef_[0]))

plot.scatter(x="integer"',y="Demand',marker="*",
label="'Data points',c='Co")

b = Im.intercept_

a = 1lm.coef_[0]

X = wdf.integer

y = b + a*X

plt.plot(X,y,label = 'Fitted regression',linestyle="'--"',c="'Cl")
plt.show()

Slope = 1.1857728189149566

100
«» Data points
" v
% " ""
.
*
g] .
3 -
o »
L
70 aw ¥
w
-
-
m, -
-
-
0 5 10 15 20 P 0
integer

Figure 10.12 - A sample calculation of the slope (IA2) for one row of predict_df

So far, we have filled out DA, TA1, and IA2. Next, we will fill out IA3.

Example 3 - level I and II data cleaning 251

Filling out IA3

Among all the independent attributes, IA3 is the easiest one to process. IA3 is the Average
demands of months t-2, t-3, and t-4. The following code creates the ComputeIA3 ()
function and applies it to predict_df. This function uses the index of predict_ df to
find the demand values from 2 months ago, 3 months ago, and 4 months ago. It does this
by filtering out all the data that is after row_date using . loc [:row date], and then
by only keeping the fourth, third, and second rows of the remaining data from the bottom
using . iloc [-5:-2]. Once the data filtering process is complete, the average of three
demand values is returned:

def ComputeIA3 (r) :
row_date = r.name
wdf = month df.loc[:row date] .iloc[-5:-2]
return wdf.Demand.mean ()

predict df.IA3 = predict df.apply(ComputeIA3,axis=1)

Once the preceding code has been run successfully, we will be done performing level II
data cleaning on month_d£. The following screenshot shows the state of predict df
after the steps we took to create and clean it:

1A1 1A2 1A3 DA

Date

1987-01-01 72.905450 0.800500 59.291467 73.8152
1987-02-01 69.329450 -2.685100 61.669767 70.0620
1987-03-01 62.336150 -0.228100 67.097433 65.6100
1987-04-01 57.252150 -0.438500 70.670867 60.1586

1987-05-01 55.564400 0.498600 69.829067 58.8734

2017-09-01 86.105297 1.378406 102.129167 98.6154
2017-10-01 79.790228 1.185773 107.746067 93.6137
2017-11-01 82.692128 1.190510 106.566800 97.3359
2017-12-01 95.164994 1.421533 100.386767 114.7212

2018-01-01 101.272830 1.537419 96.521667 129.4048

373 rows x 4 columns

Figure 10.13 - Level II cleaned predict_df

252 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

Now that the dataset is level II cleaned and has been prepared for the prediction, we can
use any prediction algorithm to predict the future monthly demands. In the next section,
we'll apply linear regression to create a prediction tool.

Doing the analytics - using linear regression to create
a predictive model

First, we will import LinearRegression from sklearn.linear model to fit the
data to a regression equation. As we learned in Chapter 6, Prediction to apply prediction
algorithms to our data, we need to separate the data into independent and dependent
attributes. Customarily, we use X to denote independent attributes and y to denote the
dependent attribute. The following code performs these steps and feeds the data into
the model:

from sklearn.linear model import LinearRegression
X = predict df.drop(columns=['DA'])

y = predict df.DA

lm = LinearRegression/()

Im.fit (X,vy)

As we learned in Chapter 6, Prediction, once the preceding code has been executed, almost
nothing happens, but the analysis has been performed. We can use 1m to access the
estimated s and also perform prediction.

The following code extracts the fs from 1m:
print ('intercept (b0) ', lIm.intercept)
coef names = ['bl','b2', 'b3']
print (pd.DataFrame ({'Predictor': X.columns,

'coefficient Name':coef names,
'coefficient Value': lm.coef }))

Using the output of the preceding code, we can figure out the following regression equation:

DA = —25.75+ 1.29% [A1 + 1.43 * [A2 + 0.15 * [A3

Summary 253

To find out the quality of the prediction model, we can see how well the model has been
able to find the patterns in the dependent attribute, DA. The following screenshot shows
the code that draws the actual and fitted data of the linear regression model:

In [269]: M plt.figure(figsize=(10,4))
plt.plot(X.index,y, label='Actual')
plt.plot(X.index,1lm.predict(X),

label = 'Fitted',linestyle='--")
plt.legend()
plt.show()
130 1 — Actual
120 1 Fitted o .’
] ¢
110 A ! 1F
, | AiLAAAR
100 1 f]

1988 1992 1996 2000 2004 2008 2012 2016
Figure 10.14 - Comparing the actual and predicted values of predict_df using linear regression

From the preceding diagram, we can see that the model has been able to capture the trends
in the data very well and that it is a great model to be used to predict future data points.

Before moving on, take a moment to consider all we did to design and implement an
effective predictive model. Most of the steps we took were data preprocessing steps rather
than analytics ones. As you can see, being able to perform effective data preprocessing will
take you a long way in becoming more successful at data analytics.

Ssummary

Congratulations on your excellent progress. In this chapter and through three examples,
we were able to use the programming and analytics skills that we have developed
throughout this book to effectively preprocess example datasets and meet the example's
analytics goals.

In the next chapter, we will focus on level III data cleaning. This level of data cleaning is
the toughest data cleaning level as it requires an even deeper understanding of the analytic
goals of data preprocessing.

Before moving on and starting your journey regarding level III data cleaning, spend some
time on the following exercises and solidify what you've learned.

254 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

Exercises

1. This question is about the difference between dataset reformulation and dataset
restructuring. Answer the following questions:

a) In your own words, describe the difference between dataset reformulation and
dataset restructuring.

b) In Example 3 of this chapter, we moved the data from month_ df to
predict_df. The text described the level II data cleaning for both table
reformulation and table restructuring. Which of the two occurred? Is it possible
that the distinction we provided for the difference between table restructuring and
reformulation cannot specify which one happened? Would that matter?

2. For this exercise, we will be using LagnData . csv, which can be found on the
London Air website (https://www.londonair.org.uk/LondonAir/
Default.aspx) and includes the hourly readings of five air particles (NO,
NO2, NOX, PM2.5, and PM10) from a specific site. Perform the following steps
for this dataset:

a) Read the dataset into air df using pandas.

b) Use the .unique () function to identify the columns that only have one possible
value and then remove them from air df.

¢) Unpack the readingDateTime column into two new columns called Date
and time. This can be done in different ways. The following are some clues about
the three approaches you must take to perform this unpacking:

e Useair df.apply().
e Useair df.readingDateTime.str.split(' ', expand=true).
e Usepd.to datetime().

d) Use what you learned in this chapter to create the following visual. Each line in
each of the five line plots represents 1 day's reading for the plot's relevant air particle:

https://www.londonair.org.uk/LondonAir/Default.aspx
https://www.londonair.org.uk/LondonAir/Default.aspx

255

Exercises

r 00°€Z
r00-Zz
r 00-1Z
r 00-02
r 00-6L
r 00°81
r 00°LT
r 00°9T
r 00°ST
r 00-vT
I 00°€T
r 00-Z1
r 00°TT
r 00°0T
- 00°60

- 00-80

} I 00:20

r 00-90
r 00°S0
[00-+0
- 00°€0

I 00:Z0

| I 00:T0

[00:00

XON

600 -

400

0Tid

200 |

- air_df summary

Figure 10.15
e) Label and describe the data cleaning steps you performed in this exercise. For

example, did you have to reformulate a new dataset to draw the visualization?

Specify which level of data cleaning each of the steps performed.

256 Data Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table

3.

In this exercise, we will be using stock_index. csv. This file contains hourly data
for the Nasdag, S&P, and Dow Jones stock indices from November 7, 2019, until
June 10th, 2021. Each row of data represents an hour of the trading day, and each
row is described by the opening value, the closing value, and the volume for each of
the three stock indices. The opening value is the value of the index at the beginning
of the hour, the closing value is the value of the index at the end of the hour, and the
volume is the amount of trading that happened in that hour.

In this exercise, we would like to perform a clustering analysis to understand
how many different types of trading days we experienced during 2020. Using the
following attributes, which can be found in stock_df . csv, we'd like to use
K-Means to cluster the stock trading days of 2020 into four clusters:

a) nasdagChPe: Nasdaq change percentage over the trading day.

b) nasdagToVo: Total Nasdaq trading volume over the trading day.
¢) dowChPe: Dow Jones change percentage over the trading day.

d) dowToVo: Total Dow Jones trading volume over the trading day.
e) sNpChPe: S&P change percentage over the trading day.

f) sNpToVo: Total S&P trading volume over the trading day.

g) N_daysMarketClose: The number of days before the market closes for the
weekend; for Mondays, it is 5, for Tuesdays, it is 4, for Wednesdays, it is 3, for
Thursdays, it is 2, and for Fridays, it is 0.

Make sure that you finish the clustering analysis by performing a centroid analysis
via a heatmap and give each cluster a name. Once the clustering analysis is
complete, label and describe the data cleaning steps you performed in this exercise.

11

Data Cleaning Level
Il - Missing Values,
Outliers, and Errors

In level I, we cleaned up the table without paying attention to the data structure or

the recorded values. In level II, our attention was to have a data structure that would
support our analytic goal, but we still didn't pay much attention to the correctness or
appropriateness of the recorded values. That is the objective of data cleaning level III.

In data cleaning level III, we will focus on the recorded values and will take measures to
make sure that three matters regarding the values recorded in the data are addressed. First,
we will make sure missing values in the data have been detected, that we know why this
has happened, and that appropriate measures have been taken to address them. Second,
we will ensure that we have taken appropriate measures so that the recorded values are
correct. Third, we will ascertain that the extreme points in the data have been detected
and appropriate measures have been taken to address them.

Level III data cleaning is similar to level II in its relationship to data analytic goals and
tools. While level I data cleaning can be done in isolation without having an eye on

data analytics goals and tools, levels I and III data cleaning must be done while we are
informed by the analytic goals and tools. In examples 1, 2, and 3 in the previous chapter,
we experienced how level II data cleaning was performed for analytic tools. The examples
in this chapter are also going to be very well connected to analytical situations.

258 Data Cleaning Level III - Missing Values, Outliers, and Errors

In this chapter, we're going to cover the following main topics:

« Missing values
« Outliers

e Errors

Technical requirements

You will be able to find all of the code and the datasets that are used in this book in

a GitHub repository exclusively created for this book. To find the repository, click

on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. In this repository, you will find a folder titled
Chapter11, from where you can download the code and the data for better learning.

Missing values

Missing values, as the name suggests, are values we expect to have but we don't. In the
simplest terms, missing values are empty cells in a dataset that we want to use for analytic
goals. For example, the following screenshot shows an example of a dataset with missing
values—the first and third students' grade point average (GPA) is missing, the fifth
student's height is missing, and the sixth student's personality type is missing:

Gender Height' Year GPA | Personality

Type
190 Sophomore | IST]
189 | Freshman 3.81 ESN]
160 Freshman - IST)

181 | Sophomore 3.95 INTP
] Freshman @ 3.62 ’ IST]

184 Freshman | 3.87

172 Junior 331 ISTP

S oUW N e
=== ==

Figure 11.1 - A dataset example with missing values

In Python, missing values are not presented with emptiness—they are presented via NaN,
which is short for Not a Number. While the literal meaning of Not a Number does not
completely capture all the possible situations for which we have missing values, NaN is
used in Python whenever we have missing values.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Missing values 259

The following screenshot shows a pandas DataFrame that has read and presented the table
represented in Figure 11.1. After comparing the two screenshots, you will see that every
cell that is empty in Figure 11.1 has NaN in Figure 11.2.

Gender Height Year GPA Personality Type
0 1 190.0 Sophomore NaN ISTJ
1 1 189.0 Freshman 3.81 ESNJ
2 0 160.0 Freshman NaN ISTJ
3 1 181.0 Sophomore 3.95 INTP
4 1 NaN Freshman 3.62 ISTJ
5 0 184.0 Freshman 3.87 NaN
6 0 1720 Junior 3.31 ISTP

Figure 11.2 - A dataset example with missing values presented in pandas

We now know what missing values are and how they are presented in our analytic
environment of choice, Python. Unfortunately, missing values are not always presented
in a standard way; for example, having NaN on a pandas DataFrame is a standard way
of presenting missing values. However, someone who did not know any better may have
used some internal agreements to present missing values with an alternative such as Mv,
None, 99999, and N/A. If missing values are not presented in a standard way, the first
step of dealing with them is to rectify that. In such cases, we detect the values that the
author of the dataset meant as missing values and replace them with np . nan.

Even if missing values are presented in the standard way, detecting them might sometimes
be as easy as just eyeballing the dataset. When the dataset is large, we cannot rely on
eyeballing the data to detect and understand missing values. Next, we will turn our
attention to how we can detect missing values, especially for larger datasets.

Detecting missing values

Every Pandas DataFrame comes with two functions that are very useful in detecting
which attributes have missing values and how many there are: . info () and .isna().
The following example shows how these functions can be used to detect whether a dataset
has missing values and how many values are missing.

260 Data Cleaning Level III - Missing Values, Outliers, and Errors

Example of detecting missing values

The Airdata. csv air quality dataset comprises hourly recordings of the year 2020 from
three locations. The dataset—apart from NO2 readings for three locations 2, B, and c—
has DateTime, Temperature, Humidity, Wind Speed, and Wind Direction
readings. The following screenshot shows the code that reads the file into the air df
DataFrame and shows the first and last few rows of the dataset:

In [3]: M air_df = pd.read_csv('Airdata.csv"')

air_df
Out[3]:
DateTime Temperature Humidity Wind_Speed Wind_Direction NO2_Location_A NO2_
o V12920 2180529 87 1484318 75.963760 39.23
1 V12020 1490529 89 2741678 113.198590 38.30
2 VR 4690529 85 3.563818 135.000000 NaN
3 V12020 430529 84 2.811690 129.805570 37.28
a V2 0840529 86 1.800000 126.869896 29.97
gr79 1212020 4 920528 72 4553679 251565060 53.44
8780 12/31’2200:58 4.990529 74 3.259938 186.340200 49.80
gra1 12312020 4 36052 84 10.587917 252.181120 43.32
graz 1#P12020 382052 88 8.435069 219.805570 39.88
gras 12312920 3 170529 89 6.792466 212.005390 39.04

8784 rows x 8 columns

Figure 11.3 - Reading Airdata.csv into air_df

The first method we can use to detect whether any columns of the data have any
missing values is to use the . info () function. The following screenshot showcases the
application of this function on air df:

Missing values

261

In [4]: M air_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8784 entries, © to 8783

Data columns (total 8 columns):

Column Non-Null Count
© DateTime 8784 non-null
1 Temperature 8784 non-null
2 Humidity 8784 non-null
3 Wind_Speed 8784 non-null
4 Wind_Direction 8784 non-null
5 NO2_Location_A 8664 non-null
6 NO2_Location_B 8204 non-null

~N

NO2_Location_C 8652

non-null

object
float64
int64
float64
float64
float64
float64
float64

dtypes: float64(6), int64(1), object(1)

memory usage: 549.1+ KB

Figure 11.4 - Using .info() to detect missing values in air_df

As you can see in the preceding screenshot, air df has 8784 rows (entries) of data, but

the NO2 Location A,NO2 Location B,and NO2 Location C columns have
fewer non-null values, and that means these attributes have missing values.

A second method to figure out which attributes have missing values is to use the

.isnan () function of Pandas Series. Both Pandas DataFrames and Pandas Series have

the . isnan () function, and it outputs the same data structure with all the cells filled
with Booleans indicating whether the cell is NaN. The following screenshot uses the
.isnan () function to count the number of NaN entries in each attribute of air df:

In [5]: M print('Number of missing values:')
for col in air_df.columns:

n_MV = sum(air_df[col].isna())
print('{}:{}"'.format(col,n_MV))

Number of missing values:

DateTime:@
Temperature:0
Humidity:©
Wind_Speed:©
Wind_Direction:@
NO2_Location_A:120
NO2_Location_B:580
NO2_Location_C:132

Figure 11.5 - Detecting missing values in air_df

262 Data Cleaning Level III - Missing Values, Outliers, and Errors

In the preceding screenshot, we see that the NO2 readings in all three locations have
missing values. This only confirms the detection of missing values we performed in
Figure 11.4 using the . info () function.

Now that we know how to detect missing values, let's turn our attention to understanding
what could have caused these values to be missing. In our quest to deal with missing
values, we first and foremost need to know why this has happened. In the next subchapter,
we will focus on which situations cause missing values.

Causes of missing values

There can be a wide range of reasons as to why missing values may occur. As we will see
in this chapter, knowing why a value is missing is the most important piece of information
that enables us to handle missing values effectively. The following list provides the most
common reasons why values may be missing:

» Human error.

« Respondents may refuse to answer a survey question.

« The person taking the survey does not understand the question.
o The provided value is an obvious error, so it was deleted.

« Not enough time to respond to questions.

« Lost records due to lack of effective database management.

« Intentional deletion and skipping of data collection (probably with fraudulent
intent).

o Participant exiting in the middle of the study.

o Third-party tampering with or blocking data collection.

« Missed observations.

« Sensor malfunctions.

o Programing bugs.
When working with data as a data analyst, sometimes all you have is the data and you do
not have anyone to whom you can ask questions about the data. So, the important thing
here would be to be inquisitive about the data and imagine what could be the reasons
behind the missing values. Committing the preceding list to memory and understanding

these reasons will be beneficial to you when you have to guess what could have caused
missing values.

Missing values 263

It goes without saying that if you have access to someone who knows about the data, the
best course of action on finding out the causes of missing values is to ask the informant.

Regardless of what caused missing values, from a data analytic perspective, we can
categorize all the missing values into three types. Understanding these types will be very
important in deciding how missing values should be addressed.

Types of missing values

One missing value or a group of missing values in one attribute could fall under one of
the following three types: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). There is an ordinal relationship between
these types of missing values. Moving from MCAR to MNAR, the missing values become
more problematic and harder to deal with.

MCAR is used when we do not have any reason to believe the values are missing due to
any systematic reasons. When a missing value is classed as MCAR, the data object that has
a missing value could be any of the data objects. For instance, if an air quality sensor fails
to communicate with its server to save records due to random fluctuations in the internet
connection, the missing values are of the MCAR type. This is because internet connection
issues could have happened for any of the data objects, but it just happened to occur for
the ones it did.

On the other hand, we have MAR when some data objects in the data are more likely

to have missing values. For instance, if a high wind speed sometimes causes a sensor

to malfunction and renders it unable to give a reading, the missing values that have
happened in the high wind are classed as MAR. The key to understanding MAR is that the
systematic reason that leads to having missing values does not always cause missing values
but increases the tendency of the data objects to have missing values.

Lastly, MNAR happens when we know exactly which data object will have missing values.
For instance, if a power plant that tends to emit too much air pollutant tampers with the
sensor to avoid paying a penalty to the government, the data objects that are not collected
due to this situation would be classed as MNAR. MNAR missing values are the most
problematic ones, and figuring out why they happen and stopping them from happening
is often the priority of a data analytic project.

Next, we will learn how we can use data analytic tools to diagnose the types of missing
values. In the following section, we will see an example that showcases the three types of
missing values.

264 Data Cleaning Level III - Missing Values, Outliers, and Errors

Diagnosis of missing values

An attribute with missing values has, in fact, the information of two variables: itself, and a
hidden attribute. The hidden attribute is a binary attribute whose value is one when there
is a missing value, and zero otherwise. To figure out the types of missing values (MCAR,
MAR, and MNAR), all we need to do is to investigate whether there is a relationship
between the hidden binary variable of the attribute with missing values and the other
attributes in the dataset. The following list shows the kinds of relationships we would
expect to see based on each of the missing value types:

o MCAR: We don't expect the hidden binary variable to have a meaningful
relationship with the other attributes.

« MAR: We expect a meaningful relationship between the hidden binary variable and
at least one of the other attributes.

o MNAR: We expect a strong relationship between the hidden binary variable and at
least one of the other attributes.

The following subsections showcase three situations with different types of missing values,
and we will use our data analytic toolkit to help us diagnose them.

We will continue using the air df dataset that we saw earlier. We saw that NO2
Location A,NO2 Location B,andNO2 Location Chave120,560,and 176
missing values, respectively. We will tackle diagnosing missing values under each column
one at a time.

Diagnosing missing values in NO2_Location_A

To diagnose the types of missing values, there are two methods at our disposal: visual
and statistical methods. These diagnosis methods must be run for all of the attributes in
the dataset. There are four numerical attributes in the data: Temperature, Humidity,
Wind Direction,and Wind_ Speed. There is also one DateTime attribute in the
data that can be unpacked into four categorical attributes: month, day, hour, and
weekday. The way we need to run the analysis is different for numerical attributes than
for categorical attributes. So, first, we will learn about numerical attributes, and then we
will turn our attention to categorical attributes.

Let's start with the Temperature numerical attribute. Also, we'll first do the diagnosis
visually and then we will do it statistically.

Missing values 265

Diagnosing missing values based on temperature

The visual diagnosis is done by comparing the temperature values for the two populations:
first, data objects with missing values for NO2 Location A, and second, data objects
with no missing values for NO2_ Location_ A.In Chapter 5, Data Visualization,

under Comparing populations, we learned how we use data visualizations to compare
populations. Here, we will use those techniques. We can either use a boxplot or histogram
to do this. Let's use both—first, a boxplot, and then a histogram.

The following screenshot shows the code and the boxplot that compares the two
populations. The code is very similar to what we learned in Chapter 5, Data Visualization,
so we will just discuss the implications of the visualizations.

In [6]:

M BM MV = air_df.NO2_Location_A.isna()
labels = ['With Missing Values', 'Without Missing Values']

MV_

box

for

plt
plt

plt.

Without Missing Values

_sr = pd.Series('',index = BM_MV.unique())

poss in BM_MV.unique():
BM = BM_MV == poss
box_sr[poss] = air_df[BM].Temperature

.boxplot(box_sr,vert=False)
.yticks([1,2],MV_labels)
show()

With Missing Values D—':

T T T T T

0 5 10 15 20

the boxplots of temperature

Figure 11.6 — Code for the diagnosis of missing values in NO2_Location_A using

266 Data Cleaning Level III - Missing Values, Outliers, and Errors

Looking at the boxplot in the preceding screenshot, we can see that the value of
Temperature does not meaningfully change between the two populations. That shows
that a change in Temperature could not have caused or influenced the occurrence of
missing values under NO2_ Location A.

We could also have done this analysis using a histogram. This was also shown in Chapter
5, Data Visualization, under Comparing populations. The following screenshot shows the
code to create a histogram and compare the two populations:

In [7]: M BM_MV = air_df.NO2_Location_A.isna()
temp_range = (air_df.Temperature.min(),air_df.Temperature.max())
MV_labels = ['With Missing Values', 'Without Missing Values']

plt.figure(figsize=(10,4))

for i,poss in enumerate(BM_MV.unique()):
plt.subplot(1,2,i+1)
BM = BM_MV == poss
air_df[BM].Temperature.hist()
plt.x1lim = temp_range
plt.title(MV_labels[i])

plt.show()

With Missing Values Without Missing Values

1400 1

1200 1

1000 +

800 1

600 1

400 1

200 1

0 10 20 30 0 5 10 15 20 25 30

Figure 11.7 — The code for the diagnosis of missing values in NO2_Location_A using

the histogram of temperature

The preceding screenshot confirms the same conclusion we arrived at when using
boxplots. As we do not see a significant difference between the two populations, we
conclude that the value of Temperature could not have influenced or caused the
occurrence of missing values.

Missing values 267

Lastly, we would also like to confirm this using a statistical method: a two-sample t-test.
The two-sample t-test evaluates whether the value of a numerical attribute is significantly
different among the two groups. The two groups here are the data objects having missing
values under NO2_ Location A and the data objects without missing values under

NO2 Location A.

In short, the two-sample t-test hypothesizes that there is no significant difference between
the attributes' value among the two groups and then calculates the probability of the data
turning out the way it has if the hypothesis is correct. This probability is called the p-value.
So, if the p-value is very small, we have meaningful evidence to suspect the hypothesis of
the two-sample t-test could have been wrong.

We can easily do any hypothesis testing using Python. The following screenshot uses the
ttest ind function from the scipy.stats module to do a two-sample t-test:

In [8]: M from scipy.stats import ttest_ind
BM_MV = air_df.NO2_Location_A.isna()
ttest_ind(air_df[BM_MV].Temperature, air_df[~BM_MV].Temperature)

Out[8]: Ttest_indResult(statistic=0.05646499065315542, pvalue=0.9549726689684548)

Figure 11.8 — Using t-test to evaluate whether the value of temperature is different in NO2_Location_A

between data objects with missing values and without missing values

As you can see in the previous screenshot, to use the ttest ind () function, all we need
to do is to pass the two groups of numbers.

The p-value of the t-test is very large—0.95 out of 1, which means we do not have any reason
to suspect the value of Temperature can be meaningfully different between the two
groups. This conclusion confirms the one that we arrived at using boxplots and histograms.

Here, we showcased the code for diagnosing missing values based on only one numerical
attribute. The code and analysis for the rest of the numerical attributes are similar. Now
that you know how to do this for one numerical attribute, we will next create a code that
outputs all we need for missing value diagnosis using numerical attributes.

Diagnosing missing values based on all the numerical attributes

To do a complete diagnosis of missing values, a similar analysis to what we did for the
Temperature attribute needs to be done for all of the attributes. While each part of
the analysis is simple to understand and interpret, the fact that the diagnosis analysis has
many parts begs a very organized way of coding and analysis.

268 Data Cleaning Level III - Missing Values, Outliers, and Errors

To do this in an organized way, we will first create a function that performs all of the three
analyses that we showed can be done for Temperature. Apart from the dataset, the
function takes the name of the numerical attribute we want to perform the analysis and
the Boolean mask that is True for the data objects with missing values and False for the
data object without missing values. The function outputs boxplots, a histogram, and the
p-value of the t-test for the inputted attribute. The code in the following screenshot shows
how this function is created. The code is rather long; if you'd like to copy it, please find it
inthe Ch 11 Data Cleaning Level III - missing values, outliers,
and errors folder in the dedicated GitHub repository for this book.

In [10]: M from scipy.stats import ttest_ind
def Diagnose_MV_Numerical(df,str_att_name,BM_MV):
MV_labels = {True:'With Missing Values',False:'Without Missing Values'}

labels=[]
box_sr = pd.Series('',index = BM_MV.unique())
for poss in BM_MV.unique():
BM = BM_MV == poss
box_sr[poss] = df[BM][str_att_name].dropna()
labels.append(MV_labels[poss])

plt.boxplot(box_sr,vert=False)
plt.yticks([1,2],1labels)
plt.xlabel(str_att_name)
plt.show()

plt.figure(figsize=(10,4))
att_range = (df[str_att_name].min(),df[str_att_name].max())

for i,poss in enumerate(BM_MV.unique()):
plt.subplot(1,2,i+1)
BM = BM_MV == poss
df[BM][str_att_name].hist()
plt.xlim = att_range
plt.xlabel(str_att_name)
plt.title(Mv_labels[poss])

plt.show()

group_1_data
group_2_data

df[BM_MV][str_att_name].dropna()
df[~BM_MV][str_att_name].dropna()

p_value = ttest_ind(group_1_data,group_2_data).pvalue

print('p-value of t-test: {}'.format(p_value))

Figure 11.9 - Creating a Diagnose_MV_Numerical() function for diagnosing missing values based

on numerical attributes

Missing values 269

Simply put, the previous code is a parameterized and combined version of the code
presented in Figure 11.6, Figure 11.7, and Figure 11.8. After running the preceding code,
which creates a Diagnose MV _Numerical () function, running the following code
will run this function for all of the numerical attributes in the data, and it allows you

to investigate whether the missing values of NO2 Location A happen due to any
systematic reasons that are linked to numerical attributes in the dataset.

numerical attributes = ['Temperature', 'Humidity', 'Wind
Speed', 'Wind Direction']

BM MV = air df.NO2 Location C.isna()

for att in numerical attributes:

print ('Diagnosis Analysis of Missing Values for {}:'.
format (att))

Diagnose MV Numerical (air df,att,BM MV)

pring('- - - - - - - - - - divider - - - - - - - - - 1)

Running the preceding code will produce four diagnosis reports, one for each of the
numerical attributes. Each report has three parts: diagnosis using boxplots, diagnosis
using a histogram, and diagnosis using a t-test.

Studying the ensuing reports from the preceding code snippet shows that the tendency
of the missing value under NO2 Location A does not change based on values of either
numerical attribute in the data.

Next, we will do a similar coding and analysis for categorical attributes. Like what we did
for numerical attributes, let's do a diagnosis for one attribute first, and then we will create
code that can output all the analysis we need all at once. The first attribute that we will do
the diagnosis for is weekday.

Diagnosing missing values based on weekday

You may be confused that the air df dataset does not have a categorical attribute named
weekday, and you would be right, but unpacking the air df.DataTime attribute can
give us the following attributes: weekday, day, month, and hour.

If you are thinking that sounds like level II data cleaning, you are absolutely right. To be
able to do level III data cleaning more effectively, we need to do some level II data cleaning
first. The following code performs the described level II data cleaning:

air df.DateTime = pd.to datetime (air df.DateTime)
air df['month'] air df.DateTime.dt.month
air df['day'] = air df.DateTime.dt.day

air df['hour'] = air df.DateTime.dt.hour

air df['weekday'] = air df.DateTime.dt.day name ()

270 Data Cleaning Level III - Missing Values, Outliers, and Errors

After running the preceding code and before reading on, check the new state of air df
and study the new columns that are added to it. You will see that the month, day, hour,

and weekday categorical attributes are unpacked into their own attributes.

Now that this data cleaning level II is done, we can perform a diagnosis of missing values
intheair df.NO2 Location A column based on the weekday categorical attribute.
As we saw in Chapter 5, Data Visualization, a bar chart is a data visualization technique
to compare populations based on a categorical attribute. The following screenshot shows
a modification of what we learned in Chapter 5, Data Visualization, under the heading
Example of comparing populations using bar charts, the first way, for this situation:

In [14]: M BM_MV = air_df.NO2_Location_A.isna()

MV_labels = ['Without Missing Values', 'With Missing Values']

plt.figure(figsize=(10,4))

for i,poss in enumerate(BM_MV.unique()):
plt.subplot(1,2,i+1)
BM = BM_MV == poss
air_df[BM].weekday.value_counts().plot.bar()
plt.title(MV_labels[i])

plt.show()
Without Missing Values With Missing Values

1200

1000

ann

400

200

0
> > > > > > > > > > > > > >
§F§ 3% ¢ § g § £ 8 8 ¢ & ¢
& § &£ § § 3 & §¢ 53 § § & & §
5 F = 8 = = 8 = 5 =
2 2

Figure 11.10 - Using a bar chart to evaluate whether the value of weekday is different between data

objects in NO2_Location_A with missing values and without missing values

Looking at the preceding screenshot, we can see that the missing values could have happened
randomly and we don't have a meaningful trend to believe there is a systematic reason for
the missing values happening due to a change of the value of airt df .weekday.

We can also do a similar diagnosis using a chi-square test of independence statistical test.
In short and for this situation, this test hypothesizes that there is no relationship between
the occurrence of missing values and the weekday attribute. Based on this hypothesis,
the test calculates a p-value that is the probability of the data we have happening if the
hypothesis is true. Using that p-value, we can decide whether we have any evidence to

suspect a systematic reason for missing values.

Missing values 271

What Is a P-Value?

This is the second time we are seeing the concept of a p-value in this chapter.

A p-value is the same concept across all statistical tests and it has the same
meaning. Every statistical test hypothesizes something (which is called a null
hypothesis), and the p-value is calculated based on this hypothesis and the
observations (data). The p-value is the probability that the data that has already
happened is happening if the null hypothesis is true.

A popular rule of thumb for using p-value is to employ the famous 5%
significance level. A 0.05 significance level denotes that if the p-value turns out to
be larger than 0.05, then we don't have any evidence to suspect the null hypothesis
is not correct. While this is a fairly good rule of thumb, it is best to understand the
p-value and then complement the statistical test with data visualization.

The following screenshot shows a chi-square test of independence being performed using
chi2 contingency () from scipy.stats. The code first uses pd.crosstab ()

to create a contingency table that is a visualization tool, to investigate the relationship
between two categorical attributes (this was covered in the Visualizing the relationship
between two categorical attributes section in Chapter 5, Data Visualization). Then, the code
passes contigency table tothe chi2 contingency () function to perform the
test. The test outputs some values, but not all of them are useful for us. The p-value is the
second value, which is 0.4127.

In [15]: M from scipy.stats import chi2_contingency
BM_MV = air_df.NO2_Location_A.isna()
contigency_table = pd.crosstab(BM_MV,air_df.weekday)
contigency_table

Out[15]:
weekday Friday Monday Saturday Sunday Thursday Tuesday Wednesday

NO2_Location_A

False 1235 1229 1227 1229 1259 1226 1259

True 13 19 21 19 13 22 13

In [16]: M chi2_contingency(contigency_table)

Out[16]: (6.048964133655503,
0.41772751510388023,
6,
array([[1230.95081967, 1230.95081967, 1230.95681967, 1236.95081967,
1254.62295082, 1230.95081967, 1254.62295082],
[17.04918033, 17.04918033, 17.04918633, 17.04918033,
17.37704918, 17.04918033, 17.37704918]]))

Figure 11.11 - Using the chi-square test of independence to evaluate whether the value of weekday is

different between data objects in NO2_Location_A with missing values and without missing values

272 Data Cleaning Level III - Missing Values, Outliers, and Errors

Having a p-value of 0.4127 confirms the observation we made under Figure 11.10,
which is that there is no relationship between the occurrence of missing values in

air df.NO2 Location_A and the value of weekday, and the fact that the missing
values happened the way they did could have just been a random chance.

Here, we showcased the code for diagnosing missing values based on only one categorical
attribute. The code and analysis for the rest of the categorical attributes are similar. Now
that you know how to do this for one numerical attribute, we will next create a code that
outputs all we need for missing value diagnosis using categorical attributes.

Diagnosing missing values based on all the categorical attributes

To do a complete diagnosis of missing values, a similar analysis to what we did for the
Weekday attribute needs to be done for all of the other categorical attributes. To do this
in an organized way, we will first create a function that performs the two analyses that we
showed can be done for Weekday. Along with the dataset, the function takes the name
of the categorical attribute we want to perform the analysis and the Boolean mask, which
is True for the data objects with missing values and False for the data objects without
missing values. The function outputs bar charts, and the p-value of the chi-squared test
of independence for the inputted attribute. The following code snippet shows how this
function is created:

from scipy.stats import chi2 contingency
def Diagnose MV Categorical (df,str att name,BM MV) :

MV_labels = {True:'With Missing Values', False:'Without
Missing Values'}

plt.figure(figsize=(10,4))
for i,poss in enumerate (BM MV.unique()) :
plt.subplot(1,2,i+1)
BM = BM MV == poss
df [BM] [str _att name] .value counts () .plot.bar ()
plt.title (MV_labels [poss])
plt.show ()
contigency table = pd.crosstab(BM MV, df [str att name])
p_value = chi2 contingency (contigency table) [1]

print ('p-value of Chi squared test: {}' .format(p value))

Missing values 273

The preceding code snippet is a parameterized and combined version of the code
presented in Figure 11.10 and Figure 11.11. After running the preceding code, which
creates a Diagnose MV_Categorical () function, running the following code
will run this function for all of the categorical attributes in the data, and it allows you
to investigate whether the missing values of NO2 Location A happen due to any
systematic reasons that are linked to the categorical attributes in the dataset:

categorical attributes = ['month', 'day', 'hour',6 'weekday']
BM MV = air df.NO2 Location_ A.isna()
for att in categorical attributes:
print ('Diagnosis Analysis for {}:'.format (att))
Diagnose MV _Categorical (air df,att,BM MV)

print('- - - - - - - - - - divider - - - - - - - - -)

When you run the preceding code, it will produce four diagnosis reports, one for each of
the categorical attributes. Each report has two parts, as follows:

« Diagnosis using a bar chart

« Diagnosis using a chi-squared test of independence

Studying the reports shows that the tendency of the missing value under NO2
Location_ A does not change based on values of either categorical attribute in the data.

Combined with what we learned for numerical attributes earlier in this subchapter and
what we just learned about categorical attributes, we do see that none of the attributes

in the data—namely, Temperature, Humidity, Wind Speed, Wind Direction,
weekday, day, month, and hour—may have influenced the tendency of missing values.
Based on all the diagnoses that we ran for the missing values, we conclude that missing
values in NO2_Location_ A are of the MCAR type.

Now that we have been able to determine the missing values of NO2 Location A, let's
also run the diagnosis that we learned so far for the missing values of NO2 Location B
and NO2_ Location_ C. We will do so in the following two subsections.

274 Data Cleaning Level III - Missing Values, Outliers, and Errors

Diagnosing missing values in NO2_Location_B

To diagnose missing values in NO2 Location B, we need to do exactly the same
analysis we did for NO2 Location A. The coding part is very easy as we have already
done this, for the most part. The following code uses the Diagnose MV Numerical ()
and Diagnose MV Categorical () functions that we already created to run all
needed diagnoses in order to figure out which types of missing values happen under

NO2 Location B:

categorical attributes = ['month', 'day', 'hour',6 'weekday']
numerical attributes = ['Temperature',6 'Humidity',
'Wind Speed', 'Wind Direction']

BM MV = air df.NO2 Location B.isna/()

for att in numerical attributes:

print ('Diagnosis Analysis for {}:'.format (att))
Diagnose MV _Numerical (air df,att,BM_MV)
print ('- - - - - - - - - divider - - - - - - - - 1)

for att in categorical attributes:
print ('Diagnosis Analysis for {}:'.format (att))
Diagnose MV _Categorical (air df,att,BM MV)

print('- - - - - - - - - divider - - - - - - - - -)

When you run the preceding code, this produces a long report that investigates whether
the tendency of missing values happening may have been influenced by the values of any
of the categorical or numerical attributes.

After studying the report, you can see that there are a couple of attributes that seem to
have a meaningful relationship with the occurrence of missing values. These attributes

are Temperature, Wind Speed, Wind Direction, and month. The following
screenshot shows a diagnosis analysis for Wind Speed that has the strongest relationship
with the missing values:

Missing values 275

Diagnosis Analysis of Missing Values for Wind_Speed:

With Missing Values { +—— | |——————@moo o®o o

Without Missing Values { —] | | ‘om——o ©

Wind_Speed

Without Missing Values With Missing Values

3000

2500 1

2000 A

1500 A

1000 A1

500 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Wind_Speed Wind_Speed

p-value of t-test: 1.3126894108159327e-85

Figure 11.12 - Diagnosis of missing values in NO2_Location_B based on the Wind_Speed attribute

In the preceding screenshot, you can see all three analytic tools are showing that there is a
significant difference in the value of Wind Speed between data objects that have missing
values under NO2_ Location B and data objects that don't have missing values. In short,
a higher Wind Speed value tends to increase the chance of NO2_ Location_ B having
missing values.

276 Data Cleaning Level III - Missing Values, Outliers, and Errors

After this diagnosis, the results were shared with the company that sold us the air quality
sensor. Here is the email that was sent to the company:

Dear Sir/Madam,

I am writing this email to share with you what seems to be a pattern
of malfunction with the electrochemical sensors with serial number
231703612 that we purchased from you. The sensor seems to skip recording
when the temperature is lower, and the wind speed is higher. We thought to
let you know and we would appreciate it if you could tell us what you make
of this pattern.

Sincerely,

Iman Ahmadian

After a few days, we received the following email:

Dear Analytic Team,

Thanks for sharing your concern and the information regarding the issues
with the electrochemical sensors.

What you shared with us is consistent with our recent findings. We have
understood that the model of the sensor that you have listed tends to
malfunction in high wind conditions.

For future cases, you would expect to experience similar issues with the
sensors whose serial numbers start with 2317.

We sincerely apologize for this inconvenience and would be more than
happy to accommodate you with a 50% discount on our brand-new sensors
that do not suffer from this malfunction. If you wish to use this discount,
please follow up with our sales department citing this email.

Best wishes

Nima Ghaderi

Missing values 277

There we have it—now we know why some of the missing values under NO2_Location B
occurred. As we know, the value of Temperature can cause an increase in the occurrence
of missing values, so we can conclude that the missing values under NO2 Location Bare
of the MAR type.

A good question to ask here is that if a high Wind Speed value is a culprit for the
missing values, how come the missing values also showed meaningful patterns with
Temperature, Wind Direction, and month? The reason is that Wind Speed
has a strong relationship with Temperature, Wind Direction, and month. Use
what you learned in Chapter 5, Data Visualization, in the Investigating the relationship
between two attributes section, to put this into an analysis. Due to those strong
relationships, it may look as though the other attributes also influence the tendency
of missing values. We know that is not the case from our communication with the
manufacturer of the sensor.

So far, we have been able to diagnose missing values under NO2_Location_Aand
NO2_ Location_B. Next, we will perform a diagnosis for NO2_ Location C.

Diagnosing missing values in NO2_Location_C

We only need to change one line in the code for the diagnosis of missing values in

NO2_ Location B so that we can diagnose missing values in NO2 Location C. You
need to change the third line of code from BM_ MV = air df.NO2 Location B.
isna() toBM MV = air df.NO2 Location C.isna ().Once that change is
applied and the code is run, you will get a diagnosis report based on all the categorical
and numerical attributes in the data. Try to go through and interpret the diagnosis report
before reading on.

278 Data Cleaning Level III - Missing Values, Outliers, and Errors

The diagnosis report shows a relationship between the tendency of missing values and
most of the attributes—namely, Temperature, Humidity, Wind_Speed, day, month,
hour, and weekday. However, the relationship with the weekday attribute is the
strongest. The following screenshot shows a missing value diagnosis based on weekday.
The bar chart in the screenshot shows that the missing values happen exclusively on

Saturdays. The p-value of the chi-square test is very small.

Diagnosis Analysis for weekday:

Without Missing Values With Missing Values

1200 - —
1000 - 100
800 - 80
600
400 - 40 1
200
0 0

> > S > > o= =
L}) o) ° o)
7 T T 2 7B P E

c 13 =] 5 5
- | § A e 2 = =
= R]

Wednesday

p-value of Chi_squared test: 1.554165460861991e-171

Figure 11.13 - Diagnosis of missing values in NO2_Location_C based on the weekday attribute

The diagnosis based on hour and day also shows meaningful patterns (the diagnosis
report for the hour and day attributes is not printed here, but please look at the report

you just created). The missing values happen equally only when the value of the hour
attribute is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20, or when the value of the day

attribute is 25, 26, 27, 28, and 29. From these reports, we can deduce that the missing
values happen predictably on the last Saturday of every month from 10 A.M. to 8 PM.
That is the pattern we see in the data, but why?

Missing values 279

After letting the local authority of location C know, it turned out that a group of employees at
the power plant in location C had been taking advantage of the resources of the power plant
to engage in the mining of various cryptocurrencies. This abuse of resources had happened
only on the last Saturday of the month as the power plant in question had a complete day

off for regular and preventive maintenance. As this group of employees had been under a lot
of stress to cover their tracks and avoid getting caught, they had decided to tamper with the
sensor that had been put in place to regulate the air pollution from the power plant. Little
did they know that tampering with data collection leaves a mark on the dataset that is not
easily hidden from the eyes of a high-quality data analyst such as yourself.

This last piece of information and the diagnosis brings us to the conclusion that the
missing value in NO2_Location_C is an MNAR value. Such values are missed due to

a direct reason as to why the data was being collected in the first place. A lot of times
when a dataset has a significant number of MNAR missing values, the dataset becomes
worthless and cannot be of value in meaningful analytics. A very first step in dealing with
MNAR missing values is to prevent them from happening ever again.

After learning how to detect and diagnose missing values, now is the perfect time to
discuss dealing with missing values. Let's get straight to it.

Dealing with missing values

As shown in the following list, there are four different approaches to dealing with
missing values:

+ Keep them as is.
« Remove the data objects (rows) with missing values.
» Remove the attributes (columns) with missing values.

» Estimate and impute a value.

Each of the previous strategies could be the best strategy in different circumstances.
Regardless, when dealing with missing values, we have the following two goals:

+ Keeping as much data and information as possible

« Introducing the least possible amount of bias in our analysis

280 Data Cleaning Level III - Missing Values, Outliers, and Errors

Simultaneously achieving these two goals is not always possible, and a balance often needs
to be struck. To effectively find that balance in dealing with missing values, we need to
understand and consider the following items:

« Our analytic goals
« Our analytic tools
o The cause of the missing values

o The type of the missing values (MCAR, MAR, MNAR)

In most situations when there is sufficient understanding of the preceding items, the
best course of action in dealing with missing values shows itself to you. In the following
subsection, we will first describe each of the four approaches in dealing with missing
values, and then we will put what we learn into practice, with some examples.

First approach - Keep the missing value as is

As the heading suggests, this approach keeps the missing value as a missing value and
enters the next stage of data preprocessing. This approach is the best way to deal with
missing values in the following two situations.

First, you would use this strategy in cases where you will be sharing this data with others
and you are not necessarily the one who is going to be using it for analytics. In this way,
you will allow them to decide how they should deal with missing values based on their
analytics needs.

Second, if both data analytic goals and data analytic tools you will be using can seamlessly
handle missing values, keep as is is the best approach. For instance, the K-Nearest
Neighbors (KNN) algorithm that we learned about in Chapter 7, Classification, can be
adjusted to deal with missing values without having to remove any data objects. As you
remember, KNN calculates the distance between data objects to find the nearest neighbors.
So, every time the distance between a data object with missing values and other data
objects is being calculated, a value will be assumed for the missing values. The assumed
values will be selected in such a way that the assumed values will not help, so the data
object with the missing value will be selected. In other words, a data object with missing
values will be selected as one of the nearest neighbors only if its non-missing values show
a very high level of similarity that cancels out the negative effect of the assumed values for
the missing values.

Missing values 281

You can see that if the KNN is adjusted in this way, then it would be best if we kept
the missing values as is so as to meet both of the listed goals in dealing with missing
values: keeping as much information as possible and avoiding the introduction of bias
in the analysis.

While the described modification to the KNN algorithm is an accepted approach in the
literature, it is not guaranteed that every analytic tool that features KNN has incorporated
the described modification so that the algorithm can deal with missing values. For
instance, KNeighborsClassifier that we used from the sklearn.neighbors
module will give you an error if the dataset has missing values. If you are planning to use
this analytics tool, then you cannot use a keep as is approach and have to use one of the
other approaches.

Second approach - Remove data objects with missing values

This approach must be selected with great care because it can work against the two goals
of successfully dealing with missing values: not introducing bias into the dataset, and not
removing valuable information from the data. For instance, when the missing values in

a dataset are of the type MNAR or MAR, we should refrain from removing data objects
with missing values. That is because doing so means that you are removing a meaningfully
distinct part of the population in the dataset.

Even if the missing values are of type MCAR, we should first try to find other ways of
dealing with missing values before turning toward removing data objects. Removing data
objects from a dataset should be considered as a last resort when there are no other ways
to deal with missing values.

Third approach - Remove the attributes with missing values

When most of the missing values in a dataset come from one or two attributes, we might
consider removing the attributes as a way of dealing with missing values. Of course, if the
attribute is a key attribute without which you cannot proceed with the project, facing too
many missing values in the key attribute means the project is not doable. However, if the
attributes are not absolutely essential to the project, removing the attributes with too many
missing values might be the right approach.

When the number of missing values in one attribute is large enough (roughly more
than 25%), estimating and inputting missing values becomes meaningless, and letting go
of the attribute is better than estimating missing values.

282 Data Cleaning Level III - Missing Values, Outliers, and Errors

Fourth approach - Estimate and impute missing values

In this approach, we would use our knowledge, understanding, and analytic tools to fill
missing values. The term imputing captures the essence of what this does to a dataset—we
put value instead of missing value while knowing that this could cause bias in our analysis.
If the missing values are of the MCAR or MAR type and the analytic we have chosen
cannot process the dataset with missing values, imputing the missing values might be the
best approach.

There are four general methods to estimate a replacement for missing values. The
following list outlines these methods:

« Impute with the general central tendency (mean, median, or mode). This is better
for MCAR missing values.

 Impute with the central tendency of a more relevant group of data to the missing
values. This is better for MAR missing values.

+ Regression analysis. Not ideal, but if we have to proceed with a dataset that has
MNAR missing values, this method is better for such a dataset.

+ Interpolation. When the dataset is a time series dataset and the missing values are
of the MCAR type.

A common misconception about the process of estimation and imputation is that we want
to impute missing values with the most accurate replacements. That is not correct at all.
When imputing, we do not aim to best predict the value of missing values but to impute
with values that would create the least amount of bias for our analysis. For instance, for
clustering analysis, if a dataset has MCAR missing values, imputing with the whole-
population central tendency is the best way to go. The reason is that the central tendency
value will act as a neutral vote in the process of grouping the data objects, and if the data
objects with missing values are pushed to be a part of one cluster, this is not due to the
imputed value.

Now that we have had a chance to understand the different approaches to dealing with
missing values, let's put things together and see a step-by-step decision-making process in
selecting the right strategy.

Choosing the right approach in dealing with missing values

The following diagram summarizes what we have discussed in dealing with missing values
so far. The diagram shows that the selection of the right approach in dealing with missing
values must be informed from four items: analytic goals, analytic tools, the cause of
missing values, and the type of missing values (MCAR, MAR, MNAR).

Missing values 283

Are there missing values of No V:ricl)lj"ellitstizj?:;:ii:}; ZZLV Yes .
Mgséz;;gfaﬁl:;zztaer;m this preprocessed version of Kee p as Is
’ the dataset?
Yes
No

Yes Can your analytic goals and

analytic tools handle missing

Ana|y5|s not values?

No
possible /

. What type of missing
N values?
. MCAR
/ MAR MNAR
b .
Do we have analytic reasons not N Is there a non-essential attribute
to remove the data objects? N that has most of the missing
. Yes values?
AN
NO Yes Do we have an essential ‘ No
attribute with too many Yes
missing values? ‘
No
Remove Data Remove
: Impute -
Objects P Attributes

What type of missing
values?

MNAR

Time series data?

Time seri

Yes

es data?

No

With a specific

. . With a predicted
Interpolation population
Central Tendency Central Tendency value

With general

Figure 11.14 — Diagram for choosing approaches and methods for dealing with missing values

Now, let's put what we have learned so far into practice and see some examples.

284 Data Cleaning Level III - Missing Values, Outliers, and Errors

Example 1

Using air_df, whose missing values we detected and diagnosed earlier in this chapter, we
would like to draw a bar chart that shows the average NO2 per hour value in Location A.

If you remember, the missing values in air df .NO2_ Location_A are of the MCAR
missing value type. Since the missing values are not of the MNAR type and a bar chart can
easily handle missing values, the strategy we chose to deal with the missing values

will be to keep them as it is. The following screenshot shows the code and the bar chart
that it creates:

In [22]: M air_df.groupby('hour').NO2_Location_A.mean().plot.bar()
plt.show()

e EEEETEEEELELT

hour

Figure 11.15 - Dealing with missing values of NO2_Location_A to draw an hourly bar chart

In the preceding screenshot, you observed that the . groupby () and .mean () functions
were able to handle missing values. When the data is aggregated and the number of
missing values is not significant, the aggregation of the data handles the missing values
without imputation. In fact, the . mean () function ignores the existence of attributes with
missing values and calculates the mean based on data objects that have a value.

Example 2

Using air_df, whose missing values we detected and diagnosed earlier in this chapter, we
would like to draw a line chart that compares the NO2 variation of the first day of each
month in Location A.

Missing values 285

We know that the missing values in air df .NO2 Location_ A are of the MCAR type;
however, assume that we don't know if a line plot can handle the missing values or not. So,
let's give it a try and see if the keep as is strategy will work. The following screenshot shows
the line plot we need without dealing with the missing values:

20

10

Figure 11.16 - Daily line plot of NO2_Location_A for the first day of every month

In the preceding screenshot, we see that the line plots are cut in between due to the
existence of missing values. If the £ igure meets our analytic need, then we are done and
there is no need to do anything further. However, if we would like to deal with the missing
values and remove the empty spots in the line plots, we would need to use interpolation

as the missing values are of the MCAR type and the data is time series data. The following
code snippet shows how to deal with the missing values and then draw complete line plots:

NO2 Location A noMV = air df.NO2 Location A.interpolate (
method="'1linear"')

month poss = air df.month.unique ()

hour poss = air df.hour.unique ()

plt.figure (figsize=(15,4))

for mn in month poss:
BM = (air df.month == mn) & (air df.day ==1)
plt.plot (NO2 Location A noMV[BM] .values, label=mn)

plt.legend (ncol=6)

plt.xticks (hour poss)

plt.show ()

The preceding code snippet uses the . interploate () function to impute the missing
values. When method="'1inear" is used, the function imputes with the average of the
data points before and after it. In our eyes, it will appear as though the empty spots are
connected with a ruler. Run the preceding code and compare its output with Figure 11.16.

286 Data Cleaning Level III - Missing Values, Outliers, and Errors

Example 3

Using air_df, we would like to draw a bar chart that compares the average NO2 per hour
value in Location A and Location B.

We remember that the missing values in air df .NO2 Location_ A are of the MCAR
type and that those in air df .NO2 Location_ B are of the MAR type. As neither of
the attributes has MNAR missing values and the bar chart can handle missing values, we
can use a keep as is strategy. The following screenshot shows the code needed to create a
bar chart for this situation:

In [25]: M air_df.groupby('hour')|
["NO2_Location_A', 'NO2_Location_B']].mean().plot.bar()
plt.show()

EEE NO2_Location_A
51 B NO2_Location_B

SrNmMTNOr®A oINS ARANR
hour

Figure 11.17 - Dealing with missing values of NO2_Location_A and NO2_Location_B to draw an
hourly bar chart

Example 4

Using air_df, we would like to draw a bar chart that compares the average NO2 per hour
value in Location A, Location B, and Location C.

We remember that the missing values are of types MCAR, MAR, and MNAR, respectively,
inNO2 Location A,NO2 Location B,and NO2 Location_ C.Aswe mentioned,
dealing with MCAR and MAR missing values is much easier than dealing with MNAR
missing values. For MCAR and MAR, we already saw that we can use a keep as is strategy.

Missing values 287

For MNAR, we need to answer the question: Are the MNAR missing values essential
attributes? Answering this question requires a deep understanding of the analytic goals. In
two different analytic situations, we may have to deal with the missing values differently.

In one analytic situation, a bar chart is requested from an air pollution regulatory
government body. In this situation, we cannot move past the MNAR missing values in
NO2 Location C,and instead of sending them what they have requested, we need to
reject their request and instead inform the regulatory body about the existence of missing
values. This is because a bar chart would be misleading, as the missing values are due to
data tampering, with the intention of downplaying air pollution data.

In another situation, a bar chart is requested from a researcher who would like to investigate
general air pollution in different regions. In this situation, even though the missing values
are of the MNAR type, the systematic reason behind them is not essential to our analytic
goals. Therefore, we can use a keep as is strategy for all three columns. Creating a bar chart
is very similar to what we did in Figure 11.17. Running air df.groupby ('hour')
[['NO2 Location A', 'NO2 Location B', 'NO2 Location C']].mean() .
plot.bar () will create the requested visual.

Example 5

We would like to use the kidney disease.csv dataset to classify between the
cases of chronic kidney disease (CKD) and those cases that are not CKD. The dataset
shows the data of 400 patients and has 5 independent attributes—namely, red blood
cells (rc), serum creatinine (sc), packed cell volume (pcv), specific gravity (sg),
and hemoglobin (hemo). Of course, the dataset also has a dependent attribute named
diagnosis whereby the patients are labeled with either CKD or not CKD. Decision
Tree is the classification algorithm we would like to use.

In our initial look at the dataset, we notice that the dataset has missing values, and after
using the code we learned under Detecting missing values, we conclude that the number
of missing values for rc, sc, pcv, sg, and hemo are 131, 17, 71, 47, and 52, respectively.
This means the percentage of missing values under rc, sc, pcv, sg, and hemo is 32.75%,
4.25%, 17.75%, 11.75%, and 13%, respectively.

Use what you've learned in this chapter to confirm the information in the previous
paragraph before reading on.

288 Data Cleaning Level III - Missing Values, Outliers, and Errors

When the number of missing values are across different attributes and are high (more
than 15%), it might be the case that most of the missing values happen for the same data
objects, and that could be very problematic for our analysis. So, before moving to the
diagnosis of missing values for each attribute, let's use the heatmap () function from the
seaborn module to visualize missing values across the dataset. The following screenshot
shows the code and the heatmap it produces:

In [29]: M patient_df = pd.read_csv('kidney disease.csv')
plt.figure(figsize=(4,7))
sns.heatmap(patient_df.isna())
plt.show()

-10

-08

°
E
2

diagnosis

Figure 11.18 - Using seaborn to visualize missing values in kidney_disease.csv

The heatmap in the preceding screenshot shows that the missing values are somewhat
scattered across the data objects, and it is certainly not the case that the missing values
under different attributes are only from specific data objects.

Missing values 289

Next, we turn our attention to the missing value diagnosis per attribute. After performing
what we've learned in this chapter, we can conclude that the missing values of the sc
attribute are of the type MCAR, and the missing values of rc, pcv, sg, and hemo are

of the type MAR. The tendency of all of the MAR missing values is highly linked to the
diagnosis dependent attribute.

Use what you've learned in this chapter to confirm the information in the previous
paragraph before reading on.

Now that we have a better idea of the types of missing values, we need to turn our focus

to the essence of analytic goals and tools. We want to perform classification using the
Decision Tree algorithm. When we want to deal with missing values, before using the
dataset in an algorithm, we need to first consider how the algorithm uses the data and then
try to choose a strategy that simultaneously optimizes the two goals of dealing with missing
values. Let's remind ourselves of the two goals of dealing with missing values, as follows:

» Keeping as much data and information as possible

« Introducing the least possible amount of bias in our analysis

We know that Decision Tree is not inherently designed to deal with missing values, and
the tool we know for the Decision Tree algorithm—the DecisionTreeClassifier ()
function from the sklearn. tree module—will give an error if the input data has
missing values. Knowing that will tell us that a keep as is strategy is not an option.

We also just realized that the tendency of some of the missing values can be a predictor
of the dependent attribute. This is important because if we were to impute the missing
values, that would remove this valuable information from the dataset; the valuable
information is that the missing values of some of the attributes (the MAR ones) predict
the dependent attribute. Therefore, regardless of the imputation method that we will use,
we will add a binary attribute to the dataset for every attribute with MAR missing values
that describes whether the attribute had a missing value. These new binary attributes
will be added to the independent attributes of the classification task to predict the
diagnosis dependent attribute.

The following code snippet shows these binary attributes being added to the
patient df dataset:

patient df['rc BMV'] = patient df.rc.isna() .astype (int)
patient df ['pcv BMV'] = patient df.pcv.isna() .astype (int)
patient df['sg BMV'] = patient df.sg.isna() .astype(int)

patient df ['hemo BMV'] = patient df.hemo.isna().astype (int)

290 Data Cleaning Level III - Missing Values, Outliers, and Errors

Run the preceding lines of code first and study the state of patient df before
reading on.

Let's now turn our attention to imputing missing values. If you do not remember how the
Decision Tree algorithm goes about the task of classification, please go back to Chapter

7, Classification, to jog your memory before reading on. The Decision Tree algorithm
consecutively splits data objects into groups based on the value of the attributes, and when
the data objects have values that are larger than or smaller than the central tendencies

of the attribute, they are more likely to be classified with a specific label. Therefore, by
imputing with the central tendency of the attributes, we will not introduce a bias into

the dataset, so the imputed value will not cause the classifier to predict one label over the
other more often.

Thus, we have concluded that imputing with the central tendency of attributes is a
reasonable way to address missing values. The question that we now need to answer is:
Which central tendency should we use—median or mean? The answer to that question is
that the mean is better if the attribute does not have many outliers.

After investigating the boxplots of the attributes with missing values, you will see that sc
has too many outliers, and the rest of the attributes are not highly skewed. Therefore, the
following code snippet shows the missing values of patient df.sc being imputed with
patient df.sc.median (), and the rest of the attributes with missing values with
their means:

patient df.sc.fillna(patient df.sc.median(),inplace=True)

patient df.fillna(patient df.mean(), inplace=True)

The preceding code snippet uses the . £illna () function, which is very useful when
imputing missing values. After running the preceding code, recreate the heatmap shown
in Figure 11.18 to see the state of missing values in your data.

Phew! The detection of, diagnosis of, and dealing with missing values have now been
completed. The dataset is now preprocessed for the classification task. All we need to do is
use the code we learned from Chapter 7, Classification, to run the Decision Tree algorithm.
The following code snippet shows the modified code from Chapter 7, Classification, for
this analytic situation:

from sklearn.tree import DecisionTreeClassifier, plot tree

predictors = ['rc', 'sc', 'pcv', 'sg', 'hemo', 'rc BMV', 'pcv_
BMV', 'sg BMV', 'hemo BMV']
target = 'diagnosis'

Xs = patient df [predictors]
y= patient df [target]

Missing values 291

classTree = DecisionTreeClassifier (min impurity decrease= 0.01,
min samples split= 15)
classTree.fit (Xs, vy)

The preceding code snippet creates a Decision Tree model and trains it using the data
we've preprocessed. Pay attention to the fact that min impurity decrease= 0.01
andmin samples split= 15 are hyperparameters of the Decision Tree algorithm
that are adjusted using a process of tuning.

The following code snippet uses the classTree trained decision tree model to visually
draw its tree for analysis and use:

from sklearn.tree import plot tree
plt.figure(figsize=(15,15))
plot tree(classTree,
feature names=predictors,
class names=y.unique(),
filled=True,
impurity=False)
plt.show ()

Successfully running the preceding code will create the following output:

hemo <= 13.05
samples = 400
value = [250, 150]
class = ckd

Figure 11.19 - Trained decision tree for the preprocessed kidney_disease.csv data source

292 Data Cleaning Level III - Missing Values, Outliers, and Errors

We can now use the preceding decision tree to make decisions regarding incoming patients.

You've made excellent progress so far in this chapter. You are now capable of detecting,
diagnosing, and dealing with missing values from both a technical and an analytic
standpoint. Next in this chapter, we will discuss the issue of extreme points and outliers.

Outliers

Outliers, a.k.a. extreme points, are data objects whose values are too different than the
rest of the population. Being able to recognize and deal with them is important from the
following three perspectives:

o Outliers may be data errors in data and should be detected and removed.

« Outliers that are not errors can skew the results of analytic tools that are sensitive to
the existence of outliers.

 Outliers may be fraudulent entries.

We will first go over the tools we can use to detect outliers, and then we will cover dealing
with them based on the analytic situation.

Detecting outliers

The tools we use for detecting outliers depend on the number of attributes involved. If

we are interested in detecting outliers only based on one attribute, we call that univariate
outlier detection; if we want to detect them based on two attributes, we call that bivariate
outlier detection; and finally, if we want to detect outliers based on more than two
attributes, we call that multivariate outlier detection. We will cover the tools we can use
for outlier detection for each of these mentioned categories. We will also cover detecting
outliers for time series data as there are better tools for this.

Univariate outlier detection

The tools we will use for univariate outlier detection depend on the attribute's type. For
numerical attributes, we can use a boxplot or the [QI-1.5*IQR, Q3+1.5*IQR] statistical
range. The concept of outliers does not have much meaning for a single categorical
attribute, but we can use tools such as a frequency table or a bar chart.

Outliers 293

The following two examples feature univariate outlier detection. In these examples, we
will use responses . csv and columns . csv files. The two files are used to record
the date of a survey conducted in Slovakia. To access the data on Kaggle, use this link:
https://www.kaggle.com/miroslavsabo/young-people-survey.

The dataset uses two files to keep the records due to a level I data cleaning reason— intuitive
and codable attribute names. The columns . csv file keeps the codable attribute titles

and their complete titles, and the file responses . csv has a table of data objects (survey
responses) whose attributes are named using the codable titles.

The following screenshot shows the reading of these two files into Pandas DataFrames and

the first two rows of both DataFrames:

In [42]: M column_df = pd.read_csv('columns.csv')
column_df.head(2)

Out[42]:
original short
0 | enjoy listening to music. Music
1 | prefer. Slow songs or fast songs

In [43]: M response_df = pd.read_csv('responses.csv')
response_df.head(2)

out[43]:
Slow
songs .
. Classical . Metal or
Music fa:: Dance Folk Country music Musical Pop Rock Hardrock ™ Age H

songs

0 50 3.0 20 10 2.0 20 1.0 50 5.0 1.0 ... 200

1 4.0 4.0 20 10 1.0 1.0 20 30 5.0 40 ... 190

2 rows * 150 columns

Figure 11.20 - Reading responses.csv and columns.csv into response_df and column_df and showing
them

Now, let's look at the first example of univariate outlier detection across one
numerical attribute.

https://www.kaggle.com/miroslavsabo/young-people-survey

294 Data Cleaning Level III - Missing Values, Outliers, and Errors

Example of detecting outliers across one numerical attribute

In this example, we would like to detect outliers in the response df .Weight
numerical attribute. There are two ways we can go about this; both ways will lead to the
same conclusion. The first way is visual; we will use a boxplot. The following screenshot
shows the code for creating a boxplot for response df .Weight:

In [44]: M fig = plt.boxplot(response_df.Weight.dropna(),vert=False)

T T T T T T T

40 60 80 100 120 140 160
Figure 11.21 - Creating a boxplot for response_df.Weight

The circles that come before the lower cap and and after the upper cap represent data
objects in the data that are statistically too different from the rest of the numbers. These
circles are called fliers in the context of boxplot analysis.

There are different ways we can access the data objects that are fliers in a boxplot.
First, we can do this visually. We can see that the fliers have a Weight value larger
than 105, so we can use a Boolean mask to filter out these data objects. Running
response df [response df.Weight>105] will list the outliers presented in
the preceding screenshot.

Second, we can access the fliers directly from the boxplot itself. If you pay attention to

the preceding screenshot, you will notice that for the first time in this book, the output

of a plot function—in this case, plt . boxplot () —is assigned to a new variable—in

this case, £ig. The reason for this is that up until now, the end goal of data visualization
was the visualization itself, and we did not need to access the details of the visualization.
However, here, we would like to access the fliers and find out their values to avoid possible
visual mistakes.

Outliers 295

We can access all aspects of every Matplotlib visualization similarly. If you run

print (£ig) and study its results, you will see that £ig is a dictionary whose keys are
different elements of the visualization. As the visualization in this case is a boxplot, the
elements are caps, whiskers, fliers, boxes, and median. Each key is associated
with a list of one or multiple matplotlib.lines.Line2D programming objects. This
is a programing object that Matplotlib uses in its internal processes, but here we want to
use this to give us the values of the fliers. Each matplotlib.lines.Line2D object
has the .get _data () function that gives you values that are shown on the plot. For
instance, running fig['fliers'] [0] .get_data () gives you the weight values that
are shown as fliers in Figure 11.21.

We didn't need to use a boxplot to find outliers. A boxplot itself uses the following
formulas to calculate the upper cap and lower cap of the boxplot. QI and Q3 are the first
and third quarters of the data:

Upper cap = Q3 + 1.5 *IQR
Lower cap = Q1 — 1.5+ IQR
IQR = Q3 —-Q1

Anything that is not between the upper cap and the lower cap will be marked as outliers.
The following code uses the . quantile () function and the preceding formulas to
output the outliers:

Q1 = response df.Weight.quantile (0.25)

Q3 = response df.Weight.quantile (0.75)

IQR = 0Q3-01

BM = (response df.Weight > (Q3+1.5 *IQR)) | (response df.Weight

< (Q1-1.5 *IQR))
response df [BM]

Using any of the two methods we covered in this example, you will realize that there are
nine data objects whose Weight values are statistically too different from the rest of the
data objects. The Weight values for these outliers are 120, 110, 111, 120, 113, 125, 165,
120, and 150. Make sure to confirm this using both methods before reading on.

Next, we will see an example that showcases detecting outliers based on one
categorical attribute.

296 Data Cleaning Level III - Missing Values, Outliers, and Errors

Example of detecting outliers across one categorical attribute

In this example, we would like to detect the outliers in the response df.Education
categorical attribute. For detecting outliers across one categorical attribute, we can use a
frequency table or a bar chart. As we learned in Chapter 5, Data Visualization, you may
run response df .Education.value counts () to geta frequency table, and
running response_df .Education.value counts () .plot.bar () will create a
bar chart. Run both lines of code to confirm that the data object whose Education value
is doctorate degree is an outlier across this one categorical attribute.

We are now equipped with the tools for univariate outlier detection. Let's turn our
attention to bivariate outlier detection.

Bivariate outlier detection

As univariate outlier detection was across only one attribute, bivariate outlier detection
is across two attributes. In bivariate outlier detection, outliers are data objects whose
combination of values across the two attributes is too different from the rest. Similar to
univariate outlier detection, the tools we will use for bivariate outlier detection depend
on the attributes' type. For numerical-numerical attributes, it is best to use a scatterplot;
for numerical-categorical attributes, it is best to use multiple boxplots; and for
categorical-categorical attributes, the tool we use is a color-coded contingency table.

Each of the following three examples features one of the three possible paired
combinations of categorical and numerical attributes.

Example of detecting outliers across two numerical attributes

In this example, we would like to detect outliers when they are described by two
numerical attributes, response df .Height and response df.Weight. When
detecting outliers across two numerical attributes, it is best to use a scatterplot. Running
response df.plot.scatter (x='Weight', y='Height') will resultin the
following output:

Outliers 297

40 60 80 100 120 140
Weight

Figure 11.22 - Scatterplot to detect outliers across response_df.Weight and response_df.Height

Based on the preceding screenshot, we can clearly see two outliers, one with a Weight
value larger than 120, and one with a Height value smaller than 70. To filter out these
two outliers, we can use a Boolean mask. The following code snippet shows how this can
be done:

BM = (response df.Weight>130) | (response df.Height<70)
response_ df [BM]

When the preceding code is run, you will see three data objects. If you check the Height
and Weight values of these data objects, you will see one of them has a missing value for
Height and therefore is not shown on the scatterplot.

This example featured a bivariate outlier detection when two attributes are numerical. The
next example will be a bivariate outlier detection when two attributes are categorical.

298 Data Cleaning Level III - Missing Values, Outliers, and Errors

Example of detecting outliers across two categorical attributes

In this example, we want to detect outliers across two categorical attributes,
response df.God and response_ df .Education. As the two attributes

are categorical, it is best to use a contingency table to detect outliers. Running
pd.crosstab (response df ['Education'],response df['God']) will
create a contingency table. To help see the outliers, you can turn the table into a heatmap
by using . heatmap () from the seaborn module. The code shown in the following
snippet will create a heatmap from the contingency table:

cont table = pd.crosstab (response df ['Education'],
response df ['God'])

sns.heatmap (cont table,annot=True, center=0.5 ,cmap="Greys")

The following screenshot shows the heatmap that the preceding code will produce:

college/bachelor degree

currently a primary school pupil 150
125
‘5 doctorate degree
o 100
5
] masters degree 75
primary school 50
25
secondary school
-0
10 20 30 40 5.0
God

Figure 11.23 — Color-coded contingency table to detect outliers across response_df.God and
response_df.Education

From the preceding screenshot, we can see that there are cases of one data object that
have some combinations of values across response df .God and response

df . Education. To filter out these outliers, we can also use a Boolean mask, but as there
will be a lot of typing due to the values of the categorical attributes, we might be better oft
using another Pandas DataFrame function. The . query () function, as its name suggests,
can also help us perform filtering of a DataFrame based on the values of the attributes.
Run the following lines of code one at a time to filter out each of the data objects we
spotted as outliers:

e response df.query('Education== "currently a primary school
pupil" & God==2")

Outliers 299

» response df.query('Education== "currently a primary school
pupil" & God==4")

e response df.query('Education== "doctorate degree" &
God==1")

o« response df.query('Education== "doctorate degree" &
God==2")

» response df.query('Education== "doctorate degree" &
God==3")

In this example, we covered categorical-categorical bivariate outlier detection. In the
example preceding this, we covered numerical-numerical bivariate outlier detection. Next,
we will feature numerical-categorical bivariate outlier detection.

Example of detecting outliers across two attributes - one categorical and
the other numerical

In this example, we want to detect outliers across two attributes, response

df .Education and response df.Age. Pay attention to the fact that
response df .Education is categorical and response df .Age is numerical.
When performing bivariate outlier detection across one numerical and one categorical
attribute, we use multiple boxplots. In essence, we will create one boxplot across the
numerical attribute for each of the categories of the categorical attribute. Running
sns.boxplot (x=response df.Age,y=response df.Education) will create
the following boxplot that can be used for outlier detection:

college/bachelor degree

secondary school 1

primary school 1

Education

masters degree

doctorate degree

currently a primary school pupil 1

% 18 20 2 24 2% 28 30
Age

Figure 11.24 - Multiple boxplots to detect outliers across response_df. Age and response_df.Education

300 Data Cleaning Level III - Missing Values, Outliers, and Errors

This is the first time we are using sns.boxplot () in this book. We did learn how we
would be able to do this using Matplotlib in Chapter 5, Data Visualization. Try to recreate
the boxplot using Matplotlib before reading on. You will see that using the seaborn
function is significantly easier.

Looking at the multiple boxplots, we can see that we have some fliers for Education
categories: college/bachelor degree, secondary school,and primary
school. To filter out the outliers, we can use Boolean masks or the query () function.
The following code shows how we can create one Boolean mask to include all the fliers:

BM1 = (response df.Education=='college/bachelor degree') &
(response df .Age>26)

BM2 = (response df.Education == 'secondary school') &
((response df.Age>24) | (response df.Age<16))

BM3 = (response df.Education == 'primary school') & ((response
df .Age>19) | (response df.Age<16))

BM = BM1 | BM2 | BM3

response_df [BM]

So far, we have managed to learn how to perform univariate and bivariate outlier
detection. Next, we will cover multivariate outlier detection.

Multivariate outlier detection

Detecting outliers across more than two attributes is called multivariate outlier detection.
The best way to go about multivariate outlier detection is through clustering analysis. The
following example features a case of multivariate outlier detection.

Example of detecting outliers across four attributes using clustering
analysis

In this example, we would like to see whether we have outliers based on the following four
attributes: Country, Musical,Metal or Hardrock, and Folk. If you check the
complete description of these attributes on columns_df, you will realize these attributes
describe the liking level of data objects for each of four kinds of music. As mentioned, the
best way to perform multivariate outlier detection is through cluster analysis. In Chapter 8,
Clustering Analysis, we learn about the K-Means algorithm, and here, we will use it to see
whether we have outliers.

Outliers 301

If K-Means groups one data object or only a handful of data objects in one cluster, that
will be our clue that there are multivariate outliers in our data. If you remember, the
one big weakness of the K-Means algorithm is that the number of clusters, k, must be
specified. To ensure the K-Means algorithm's weakness will not stand in the way of
effective outlier detection and to give the analysis the best chance of success, we will use
different k values: 2, 3, 4, 5, 6, and 7. We need to do this in multiple steps, as follows:

1. First, we will create an Xs attribute, which includes the attributes we want to be
used for clustering analysis. The following code snippet shows how this is done:

dimensions = ['Country', 'Metal or Hardrock',6 'Folk',
'Musical'l]

Xs = response df [dimensions]

2. Second, we need to check whether there are any missing values. You may use
Xs.info () for the quick detection of missing values.

3. [If there are missing values, we need to do a similar analysis to what we did in Figure
11.18 to check whether all the missing values are from one of the data objects. If that
is the case, the fact that one data object has more than two missing values could be a
reason for concern. However, if the missing values seem to be happening randomly
across Xs, we may impute them with Q3+1.5*IQR.

Why not impute them with a central tendency? The reason we don't is that we
would decrease the likelihood of a data object with a missing value being detected as
outliers if we imputed with a central tendency. We don't want to help a data object
that has the potential to be an outlier with our missing value imputation.

In this case, the missing values are spread across the data objects and the
dimensions of Xs. So, we can use the following line of code to impute the missing
values with Q3+IQR*1.5:

Q3 = Xs.quantile(0.75)

Q1 = Xs.quantile (0.25)

IOR = Q03 - Q1

Xs = Xs.fillna (Q3+IQR*1.5)

4. Next, of course, we will not forget to standardize the dataset using Xs = (Xs -
Xs.min())/ (Xs.max () -Xs.min()).

302 Data Cleaning Level III - Missing Values, Outliers, and Errors

5. Lastly, we can use a loop to perform clustering analysis for different Ks and report
its results. The following line of code shows how this can be done:

from sklearn.cluster import KMeans
for k in range(2,8) :
kmeans = KMeans (n clusters=k)
kmeans.fit (Xs)
print ('k={}'.format (k))
for i in range (k) :
BM = kmeans.labels ==i

print ('Cluster {}: {}'.format (i,Xs[BM] .index.
values))

prine('------—--- Divider ---------- ")

Once the preceding code is successfully run, you can scroll through its prints to see that
under none of the Ks, has K-Means grouped one data object or a handful of data objects
in one cluster. This will allow us to conclude that there is no multivariate outlier in Xs.

Time series outlier detection

Outliers in time series data are best detected using line plots, the reason being that between
consecutive records of a time series there is a close relationship, and using the close
relationship is the best way to check the correctness of a record. All you need is to evaluate
the value of the record against its closest consecutive records, and that is easily done using
line plots. We will see an example of time series outlier detection in this chapter—please see
the example under Detecting systematic errors toward the end of this chapter.

Now that we have covered all the three possible outlier detections—univariate, bivariate,
and multivariate—we can turn our attention to dealing with outliers.

Dealing with outliers

When we have detected outliers in a dataset we want to analyze, we also need to effectively
deal with outliers. The following list highlights the four approaches we can use to deal
with outliers:

« Do nothing
+ Replace with the upper cap or lower cap
 Perform alog transformation

« Remove data objects with outliers

Outliers 303

Next, we will talk more about each of the preceding approaches.

First approach - Do nothing

Although it may not feel like this, especially after going through so many hoops to detect
outliers, do nothing is the best strategy in most analytic situations. The reason for this is
that most analytic tools we use can easily handle outliers. In fact, if you know the analytic
tools you want to use can handle outliers, you might not perform outlier detection in the
first place. However, outlier detection itself may be the analytic you need, or the analytic

tool you need to use is prone to outliers.

The table shown in the following screenshot lists all the analytic tools/goals we have
covered in this book and specifies the best approach for dealing with outliers:

i Prone to . .
Analytic goals/tools R How best to deal with outliers?
outliers
Visualization: Summarizing a population/histogram | Yes Do nothing.

Remove data objects with outliers.

Visualization: Summarizing a population/boxplot No Do nothing.

Visualization: Summarizing a population/bar chart No Do nothing.

Visualization: Comparing populations No Do nothing.

Visualization: The relationship between two Could be Do nothing.

attributes/scatterplot Remove data objects with outliers.
Perform log transformation.

Visualization: The relationship between two No Do nothing.

attributes/contingency table

Visualization: Adding visual dimensions/adding size | Yes Replace with the upper cap or lower cap.

and color

Visualization: Visualizing and comparing trends/line | No Do nothing.

plots

Prediction: Regression Yes Remove data objects with outliers.
Replace with the upper cap or lower cap.

Prediction: MLP No Do nothing.

Classification: Decision Tree No Do nothing.

Classification: KNN Yes Replace with the upper cap or lower cap.

Clustering: K-Means Could be Do nothing.

Replace with the upper cap or lower cap.

Figure 11.25 - Summary table of analytic goals and tools and the best way to deal with

outliers if they exist

304 Data Cleaning Level III - Missing Values, Outliers, and Errors

As you can see in Figure 11.25, in most analytic situations, it will be better to adopt the
first approach: do nothing. Now, let's continue and learn about the next approaches.

Second approach - Replace with the upper cap or the lower cap

Applying this approach may be wise when the following criteria are met:

« The outlier is univariate.
« The analytic goals and/or tools are sensitive to outliers.
« We do not want to lose information by removing data objects.

« An abrupt change of value will not lead to a significant change in the
analytic conclusions.

If the criteria are met, in this approach the outliers are replaced with the correct upper or
lower cap. The upper and lower caps are statistical concepts we discussed earlier in this
chapter in the Univariate outlier detection section. They are also an essential part of any
boxplot. We replace the univariate outliers that are too much smaller than the rest of the
data object with the lower cap of the QI-1.5*IQR attribute, and replace the univariate
outliers that are too much larger than the rest of the data objects with the upper cap of the
Q3+1.5*IQR attribute.

Third approach - Perform a log transformation

This approach is not just a method to deal with outliers but is also an effective data
transformation technique that we will cover in the relevant chapter. As a method to deal
with outlier detection, it is only applicable in certain situations. When an attribute follows
an exponential distribution, it is only typical for some of the data objects to be very
different from the rest of the population. In those situations, applying a log transformation
will be the best approach.

Fourth approach - Remove data objects with outliers

When the other methods are not helpful or possible, we may be reduced to removing the
data objects with the outliers. This is our least favorite approach and should only be used
when absolutely necessary. The reason that we would like to avoid this approach is that the
data is not incorrect; the values of the outliers are correct but happen to be too different
from the rest of the population. It is our analytic tool that is incapable of dealing with the
actual population.

Outliers 305

Pay Attention!

As to when and whether you should adopt the approach of removing data
objects due to being outliers, I would like to share with you an important word
of advice. First, only apply this approach to the preprocessed version of the
dataset that you've created for the specific analysis and not to the source data.
The fact that this analysis needed the data objects with outliers to be removed
does not mean all the analysis will need that. Second, make it a priority to
inform the audience of the resulting analytic as they will be aware of this
invasive approach in dealing with outliers.

Now that we know all four approaches in dealing with outliers, let's spend some time
going over a summary of how best we should go about selecting the best one.

Choosing the right approach in dealing with outliers

The selection of the right approach in dealing with outliers must be informed from
analytic goals and analytic tools. As shown in Figure 11.25, in most situations, the best way
to deal with outliers is using a do nothing approach. When and if the other approaches are
necessary, make sure to only apply them to the preprocessed version of the data you are
creating for your analytics and refrain from changing the source dataset.

We now know everything we need to know about dealing with outliers, so let's see a
couple of examples to put what we learned into practice.

Example 1

We earlier saw that the response df .Weight attribute has some outliers. We would
like to use a histogram to draw the distribution of the population across this attribute.

As our analytic end goal is to visualize the population distribution, the existence of
outliers might consume some visualization space, and therefore removing them can open
the visualization space.

The following code snippet and its output show how to create both histogram versions for
response_df .Weight, one with outliers and the other without them:

response df .Weight.plot.hist (histtype="'step')
plt.show ()

BM = response df.Weight<105

response df .Weight [BM] .plot.hist (histtype="'step')
plt.show ()

306 Data Cleaning Level III - Missing Values, Outliers, and Errors

The preceding code will produce the following output:

400

350 4

300 |

&
S

200

Frequency

&
=]

100 A

40 60 80 100 120 140 160

25 1 li
0~ T T T T T T 1
40 50 60 70 80 90 100

Figure 11.26 - Histogram of response_df. Weight featuring two different approaches in

dealing with outliers

In the previous screenshot, from an analytic perspective, you may imagine situations
where either visual would be more appropriate. For instance, if we are interested in
seeing the frequency changes where most of the population is between 40 and 100, then a
histogram without outliers would be better. On the other hand, if a true representation of
the population is our end goal, then a histogram with outliers would be ideal.

In the previous screenshot, from a data preprocessing perspective, pay attention to the fact
that to create a histogram without outliers, we did not edit response df but created a
DataFrame on the fly just for the purpose of creating a histogram without outliers.

Now, let's consider another example.

Outliers 307

Example 2

We would like to visualize the relationship between two attributes, response df .Height
and response df. Weight. As the two attributes are both numerical, we do know the
best way to visualize this relationship is a scatterplot. We also would like to include a linear
regression (LR) line in the visualization so as to augment its analytic values.

We have been told that LR is prone to outliers. Let's use this opportunity to learn why. We

will first adopt a do nothing approach and create a visualization to see what would happen
if there were outliers in the data for regression analysis.

The following screenshot shows the application of the . regplot () function from the
seaborn module to create a scatterplot visualization:

In [70]: M sns.regplot(x='Height",

y="Weight',data=response_df)
plt.show()

150 A o

100 1

Weight

80 100 120 140 160 180 200
Height
Figure 11.27 - Scatterplot to visualize the relationship between response_df.Height and

response_df.Weight without dealing with outliers

You can see in the preceding screenshot that the outliers we detected in Figure 11.22 are
consuming the visualization space and do not allow the relationship to show itself fully.

308 Data Cleaning Level III - Missing Values, Outliers, and Errors

However, the following screenshot shows the code that removes the outliers at the last step
of the visualization:

In [71]: M BM = (response_df.Weight>130) | (response_df.Height<70)
sns.regplot(x="Height"',
y="Weight',data=response_df[~BM])
plt.show()

120

100 A1

Weight
8

150 160 170 180 190 200
Height

Figure 11.28 - Scatterplot to visualize the relationship between response_df. Height and
response_df.Weight after dealing with outliers

Comparing the last two screenshots, we can see how removing the two outliers allows the
visualization to show the relationship between the two variables much better. You can see
in the preceding screenshot how higher Height values can lead to higher Weight values.

Example 3

In this example, we would like to use regression to capture the linear relationship between
Weight, Height, and Gender to predict Weight, which we saw in the previous example.
In other words, we would like to find the 0 and f1 values in the following equation:

Weight = 5, + B; X Height + f, X Gender
As we saw in Figure 11.25, regression analysis is sensitive to outliers. We also observed in

Figure 11.28 that both Weight and Height have outliers. We also need to check whether
Gender has any outliers.

Outliers 309

This is going to be a long example, so please bear with me throughout. In this example, we
will go over the following steps, one by one:

Dealing with missing values

Detecting univariate outliers and dealing with them

1

2

3. Detecting bivariate outliers and dealing with them

4. Detecting multivariate outliers and dealing with them
5

Applying LR
Let's start with the first step.

Dealing with missing values

However, before doing that, we will first need to deal with the missing values in these
three attributes, as LinearRegression from sklearn.linear model gives an
error when the input data has missing values. The following code snippet shows how we
would start preprocessing the data for this example:

select attributes = ['Weight', 'Height', 'Gender']
pre_process_df = pd.DataFrame (response_ df [select attributes])
pre process df.info()

After running the previous code, you will be able to see that Weight and Height have
20 missing values, and Gender has 6 missing values. Assume that we know that the
missing values are of the MCAR type.

To deal with missing values for regression analysis, we cannot use a keep as is strategy, as
the tool we plan to use cannot handle outliers. Imputing values will not be a good option
either as this will create bias in the data. Therefore, the only doable option that remains
is dropping the data objects. The following line of code uses the . dropna () function to
remove the data objects with missing values:

pre process_df.dropna (inplace=True)

After running this code, rerun pre_process df.info () to confirm that
pre_process_df does not have missing values anymore.

Now that we are certain there are no missing values in pre_process_df, we can turn
our attention to detecting and dealing with outliers, as LR is prone to outliers. We need to
detect whether the data has univariate, bivariate, or multivariate outliers. In the following
subsections, we will do this one step at a time.

310 Data Cleaning Level III - Missing Values, Outliers, and Errors

Detecting univariate outliers and dealing with them

The following screenshot shows the code that has created boxplots for the numerical
attributes and a bar chart for the categorical attribute in this example:

In [75]: M num_attributes = ['Weight', 'Height']
for i,att in enumerate(num_attributes):
plt.subplot(1,3,i+1)
pre_process_df[att].plot.box()

plt.subplot(1,3,3)
pre_process_df.Gender.value_counts().plot.bar()
plt.tight_layout()

plt.show()
600
© 200
140 A |
180 - 500
120 8
] 160 - 400 -
8
100 A 140 1
300 -
120 1
g0 200 -
100 1
87 80 100 -
40 1 60 . 04
Weight Height

ﬁ

female

Figure 11.29 - Drawing boxplots of the numerical attributes and a bar chart of the categorical attribute

in the example

In the preceding screenshot, we can see that both Height and Weight have outliers,
but Gender does not. So, before moving on to the LR analysis, we need to deal with the
outliers. As suggested by Figure 11.25, we can use one of the following two approaches in
dealing with outliers:

« Remove these data objects

o Replace them with their statistical upper cap or lower cap

Outliers 311

But which approach is better? When the data objects are univariate outliers, it is better to
use the second approach, as replacing the statistical upper or the lower cap will help to
keep the data objects and at the same time mitigate the negative effect of the data object
with the outliers.

On the other hand—and this also applies generally—when the data objects are bivariate or
multivariate outliers, it would be better to remove them. This is because these outliers will
not allow the regression model to capture the patterns among the non-outlier data objects.
In the special case of bivariate outliers whereby the pair of attributes is categorical-
numerical, it might also be sensible to replace the outlier values with the upper or lower
caps of the specific population.

So, let's first deal with the univariate outliers by replacing them with the statistical lower
and upper caps. The following code replaces the fliers of pre process_df.Weight
with the statistical upper cap of the attribute:

Q3 = pre process_ df.Weight.quantile(0.75)
Q1 = pre process_df.Weight.quantile(0.25)
IOR = Q3 - Q1

upper cap = Q3+IQR*1.5

BM = pre process df.Weight > upper cap

pre process_df.loc[pre process df [BM] .index, 'Weight'] = upper
cap

After running the previous code, run pre_process_df.Weight.plot.box () to see
that the outliers are taken care of. Also, pay attention to two matters before moving on to
replace the flier in pre_process_df .Height, as follows:

« First, by looking at Figure 11.29, you will realize that pre process_ df.Weight
only has fliers that are larger than the statistical upper cap of the attribute. That
is why in the previous code, we don't have any replacement with the statistical
lower cap of the attribute. This will change when we do the same procedure for
pre process_df.Height.

« Second, we could have the boxplot itself extract the statistical upper caps and lower
caps of the attribute, but instead, we use the formulas QI-1.5*IQR and Q3+1.5*IQR,
respectively, to calculate the statistical lower and upper caps. This is because
we don't want to waste computational resources by having the computer draw
unnecessarily when we have the formula to calculate it ourselves.

312 Data Cleaning Level III - Missing Values, Outliers, and Errors

Next, we will do the same procedure for pre process_df .Height to deal with the
univariate outliers. The following code shows how this is done:

Q3
Q1
IOR = Q3 - Q1

lower cap = Q1-IQR*1.5
upper cap = Q3+IQR*1.5

pre process_df.Height.quantile (0.75)
pre process_df .Height.quantile (0.25)

BM = pre process df.Height < lower cap

pre process_df.loc[pre process df [BM] .index, 'Height'] = lower
cap

BM = pre process df.Height > upper cap

pre process df.loc[pre process df [BM].index, 'Height'] = upper
cap

After running the previous code successfully, run pre process df .Weight.plot.
box () to check the state of the outliers.

Now that the univariate outliers are taken care of, let's see whether we have bi- or
multivariate outliers.

Detecting bivariate outliers and dealing with them

Running pre_process_df.plot.scatter (x='Height', y='Weight') will
show that we don't have bivariate outliers based on the Height and Weight numerical
attributes. However, running the following code will tell us that we do have bivariate
outliers under Height and Gender, and under Weight and Gender:

plt.subplot(1,2,1)
sns.boxplot (y=pre process df.Height, x=pre process df.Gender)
plt.subplot(1,2,2)
sns.boxplot (y=pre process df.Weight, x=pre process df.Gender)
plt.tight layout ()

Outliers 313

Running the preceding code successfully will create the following output:

200 A [}
100 4
190 1
m p
180 A 80
) .
F =
= o
£ 170 - 2 701
60 4
160 -
m -
150 1
¢ 40
female male female male
Gender Gender

Figure 11.30 - Multiple boxplots to investigate bivariate outliers under numerical-categorical attributes
for Height-Gender and Weight-Gender
Given the recognized bivariate outliers in the preceding screenshot, we will need to deal

with them. As these outliers are bivariate in a pair of categorical-numerical attributes, we
may be replacing them with the specific population's upper or lower caps.

The following code replaces the outliers for the attribute pairs of Height-Gender:

for poss in pre process df.Gender.unique () :
BM = pre process df.Gender == poss
wdf = pre process df [BM]
Q03 = wdf.Height.quantile (0.75)
Q1 = wdf.Height.quantile (0.25)
IOR = Q03 - Q1
lower cap = Q1-IQR*1.5
upper cap = Q3+IQR*1.5

BM = wdf.Height > upper cap

314 Data Cleaning Level III - Missing Values, Outliers, and Errors

pre process_ df.loc[wdf [BM] .index, 'Height'] = upper cap

BM = wdf.Height < lower cap
pre process_df.loc[wdf [BM] .index, 'Height'] = lower cap

Very similar code will replace the outliers for the attribute pairs of Weight-Gender, as
illustrated here:

for poss in pre process df.Gender.unique() :
BM = pre process df.Gender == poss
wdf = pre process df [BM]
Q3 = wdf.Weight.quantile (0.75)
Q1 = wdf.Weight.quantile (0.25)
IOR = Q3 - Q1
lower cap = Q1-IQR*1.5
upper cap = Q3+IQR*1.5

BM = wdf.Weight > upper cap
pre process_df.loc[wdf [BM] .index, 'Weight'] = upper cap

BM = wdf.Weight < lower cap
pre process_df.loc[wdf [BM] .index, 'Weight'] = lower cap

After running the preceding codes successfully, running the code shown in the following
screenshot, which is the same code as under Detecting bivariate outliers and dealing with
them, will show us that the bivariate outliers are taken care of:

Outliers 315

In [84]: M plt.subplot(1,2,1)
sns.boxplot(y=pre_process_df.Height,x=pre_process_df.Gender)
plt.subplot(1,2,2)
sns.boxplot(y=pre_process_df.Weight, x=pre_process_df.Gender)
plt.tight_layout()

200 + —
100 A

190 - 90

m.
180 1
170 1

w-

160 1

Height

Weight
3

150 - 40 1

female male female male
Gender Gender

Figure 11.31 - Checking the state of bivariate outliers under numerical-categorical attributes for
Height-Gender and Weight-Gender

Next, we will need to see whether there are any multivariate outliers, and if there are, we
will see how we can deal with them.

Detecting multivariate outliers and dealing with them

To detect multivariate outliers, the standard method is to use clustering analysis; however,
when two of the three attributes are numerical and the other is categorical, we can do
outlier detection using a specific visualization technique.

The following code creates a scatterplot of Height and Weight for each possibility of the
Gender categorical attribute:

Cat attribute poss = pre process df.Gender.unique ()
for i,poss in enumerate(cat attribute poss) :
BM = pre process_ df.Gender == poss
pre process_df [BM] .plot.scatter (x='Height', y='Weight')
plt.title (poss)
plt.show ()

316 Data Cleaning Level IIT - Missing Values, Outliers, and Errors

Running the preceding code will create the following visualization:

female
.. . (A LR LN LN] ae e
75 . °*° *% o 8 o !
. ...' ® ..
70 4 L] e @ .. l':". o; L]
[] . . ' . .. ' .
65 1 § oo ! i
» . . slzg i.: :" i
& 60 1 B .o- ooo- ‘z ‘ T
x . .-o -
55 1 'u ! ih' ° eoo
‘ .. L] ..' '. .
50 4 3 B
.ll; o
[]
45 4 L
o 43
[]
404
155 160 165 170 175 180 185
Height
male
L] e 9 LR I N J L]
100 A . : . .
° . L] L]
*e o 8 o *
* 2 ®ecs, % 18 ;)
90 1 . o, 8¢ " ¥
@ .| ee o.o"o
. *e g o8 _jo 5
£ 80 %ol gooeo o Boflenf e o ®
2 s ol"..' '! l:.ooo
X = o o Bfegoe Beog®el®y o ®
- .o' l'lo.l 0,
70 e o g8 ool l .
® See "" o* b
se o® .8 %8 oo oo .
| ° *B* .*
60 4 . e, 08 o we .
B ® ¢ * o o *
.
165 170 175 180 185 190 195 200
Height

Figure 11.32 - Scatterplots of the numerical attributes per the possibilities of the Gender attribute

Based on the preceding screenshot, we can conclude that there are no multivariate outliers
in the data. If there were any, the only choice we would have would be to remove them, as
outliers can negatively impact LR performance. Also, as mentioned before, replacing the
outliers with upper and lower caps is not an option for multivariate outliers.

After dealing with the outliers and the missing values, we are finally ready to use LR to
estimate the relationship between Height, Gender, and Weight to predict Weight.

Outliers 317

Applying LR

Before applying LR to pre_process_df, we need to take another preprocessing step.
Pay attention to the fact that the Gender attribute is categorical and not numerical, and
LR can only work with numbers. So, the following code performs the data transformation
so that the attribute is binary coded:

pre process_ df.Gender.
replace ({ 'male':0, 'female':1},inplace=True)

The following code prepares the independent and dependent attributes, respectively,
indata_Xand data_Y, and then uses LinearRegression () from sklearn.
linear model to fit the preprocessed data into the model:

from sklearn.linear model import LinearRegression
X ['Height', 'Gender']

y 'Weight'

data X = pre process_ df [X]

data y = pre process df [y]
lm = LinearRegression ()
Im.fit (data X, data_y)

If the preceding code runs successfully, then we can run the code in the following
screenshot to access the estimated 8 values from the fitted 1m value:

In [88]: M print('intercept (bQ) ', 1lm.intercept)
coef_names = ['bl','b2"]
print(pd.DataFrame({ 'Predictor': data_X.columns,
‘coefficient Name':coef_names,
'coefficient Value': 1m.coef_}))

intercept (b®) -51.10382582783839

Predictor coefficient Name coefficient Value
0 Height bl 0.704025
1 Gender b2 -8.602017

Figure 11.33 - Extracted {3 values from the train Im value

Therefore, the following equation can be driven from the output in the preceding
screenshot. The equation can now predict the individual weight value based on their
Height and Gender values:

Weight = —51.1038 + 0.7040 X Height — 8.6020 X Gender

318 Data Cleaning Level III - Missing Values, Outliers, and Errors

For instance, my height is 189 centimeters (cm) and my gender is male (0). Using the
following equation, my weight can be predicted to be 82.895:

My Weight = —51.1038 + 0.7040 x 189.5 — 8.6020 x 0 = 82.3042

That's pretty good, but my current weight is 86 kilograms (kg), so there is an error of
around 4 kg.

Example 4

In this example, we would like to repeat the previous example, but this time, we would like
to use a multilayer perceptron (MLP) to predict weight based on gender and height.

The data preprocessing difference between this example and the previous one is that MLP
is resilient toward outliers, and we don't need to worry about the dataset having outliers.
However, we do need to take care of missing values and also binary code for the Gender
attribute. The following code recreates pre_process_df, deals with missing values, and
performs the binary coding transformation of the Gender attribute:

select attributes = ['Weight', 'Height', 'Gender']
pre process_df = pd.DataFrame (response df [select attributes])
pre_process_df.dropna(inplace=True)

pre process df.Gender.replace (
{'male':0, 'female':1}, inplace=True)

After running the preceding code, pre _process_df is ready to be used for MLP.
The following code prepares the independent and dependent attributes, respectively, in
data Xand data Y, and then uses MLPRegressor () from sklearn.linear
model to fit the preprocessed data into the model:

from sklearn.neural network import MLPRegressor
X ['Height', 'Gender']

y 'Weight'

data X = pre process df [X]

data y = pre process_ df [y]
mlp = MLPRegressor (hidden layer sizes=5, max iter=2000)
mlp.fit (data X, data y)

Outliers 319

Once the preceding code is run successfully, we can use the trained m1p attribute to
perform predictions. The following code snippet shows how to extract the prediction of
my Weight value based on my Height and Gender values using m1p:

newData = pd.DataFrame ({'Height':189.5, 'Gender':0}, index=[0])
mlp.predict (newData)

The prediction I received the last time I ran the preceding code was 80.0890. You will
remember that MLP is a random variable and that every time it is run, we expect a

new result. Anyhow, as my weight is 86, m1p is about 6 kg out. Does this mean that 1m
(previous example) is a predictor compared to m1p? Not necessarily—after all, I am only
one data point. More test data is needed to make that determination.

Let's look at another example that features dealing with outliers for the purpose of
applying clustering analysis, before moving on to the next item.

Example 5

In this example, we would like to use chicago population.csv. The data objects
in this dataset are communities in Chicago. These data objects are described by the
following attributes:

« population: The population of the community

« income: The median income of the community

» latino: The percentage of Latinos in the population
« Dblack: The percentage of blacks in the population

« white: The percentage of whites in the population

« asian: The percentage of Asians in the population

« other: The percentage of other races in the population

The mayor of Chicago would like to assign 5 communication liaisons for these 77
communities. The data analyst in the office suggests employing K-Means clustering to
group the communities into five groups and assigning the appropriate liaisons based on
the characteristics of clustered groups.

320 Data Cleaning Level III - Missing Values, Outliers, and Errors

First, we will read the file into the community df pandas DataFrame and check whether
there are missing values in the dataset. The following code shows how this is done:

community df = pd.read csv('chicago population.csv')

community df.info()

Reading the output of the previous code will show us that there are no missing values in
community df. Next, we will need to detect outliers and deal with them.

Detecting univariate outliers and dealing with them

The following code uses sns . boxplot () to create boxplots of all the numerical attributes:

numerical atts = ['population', 'income', 'latino', ‘'black',

'white', 'asian', 'other']

plt.figure (figsize=(12,3))

for i,att in enumerate (numerical atts):
plt.subplot (1, len(numerical atts),i+1)
sns.boxplot (y=community df [att])

plt.tight layout ()

plt.show ()

Running the preceding code will create the following output:

] 90000 T —— 10
e T 80000 08 08 o7y 00401 :
80000 . 08 06 0.035 1
06 06 05 0.030 4
60000 4 60000 06

population
income
black
white

0.025
e c 04 =
c 4 s o
50000 5 0 04 g .| ¢ 8 0020 {
40000 X 04 03
40000 3
. 0015
p— 30000 02 02 02 o 0.010
20000 -
- 00 00 00 00

0 - 10000 T T T T

Figure 11.34 - Boxplots of all the numerical attributes in community_df

In the preceding screenshot, we can see we have some univariate outliers in the
population, asian, and other attributes.

As we are using K-Means to cluster the communities into five homogenous groups to
assign communication liaisons, the best way to deal with the outliers is to replace them
with statistical lower or upper caps. We don't want the extreme values of the outliers to
impact the results of the clusters.

Outliers

321

Please pay attention to the fact this is not the only or the best way to deal with outliers
before applying cluster analysis. If we use clustering analysis to find out the inherent

pattern in the data, then the best way to deal with the outliers is to do nothing.

The following code uses similar code to what we used under Example 3 to filter the
outliers and then replace them with the appropriate cap. Notice that this code is a bit
smarter than what we saw in Example 3, as the process of dealing with the outliers is

parameterized in one loop:

pre process df = community df.set index('name')

candidate atts

['population', 'asian', 'other']
for att in candidate atts:
Q3 = pre process_df [att] .quantile(0.75)
Q1 = pre process_df [att] .quantile(0.25)
IOR = Q3 - Q1
lower cap = Q1-IQR*1.5
upper cap = Q3+IQR*1.5
BM = pre process_df [att] < lower cap
candidate index = pre process_ df [BM] .index
pre process_df.loc[candidate index,att] = lower cap
BM = pre process df[att] > upper cap
candidate index = pre process df [BM] .index

pre process_df.loc[candidate index,att] = upper cap

After running the preceding code, the univariate outliers will have been replaced with the

appropriate statistical cap.

Detecting bivariate and multivariate outliers and dealing with them

It adds no value to detect bivariate and multivariate outliers as the only strategy we can use

for them at this stage is to do nothing—we cannot replace them with the upper or lower

caps as there is more than one numerical attribute; neither can we remove the data objects

as we need all the data objects to be in at least one of the clusters. Therefore, the current
state of pre_process_df is the best possible it can be for the clustering analysis.

As the data preprocessing is complete, the only remaining step in this example is to

perform clustering. That is what we will do next.

322 Data Cleaning Level III - Missing Values, Outliers, and Errors

Applying K-Means

The following code snippet shows the adjusted version of the code for K-Means clustering
from Chapter 8, Clustering Analysis:

From sklearn.cluster import Kmeans

dimensions = ['population', 'income', 'latino', 'black’,
'white', 'asian', 'other']
Xs = pre process df [dimensions]

Xs = (Xs - Xs.min())/ (Xs.max () -Xs.min())
kmeans = Kmeans (n clusters=5)

kmeans.fit (Xs)

Once the preceding code is run successfully, clusters are formed. The following screenshot
shows the code we can use to extract the clusters and the code's output:

In [97]: M for i in range(5):
BM = kmeans.labels_==i
print('Cluster {}: {}'.format(i,pre_process_df[BM].index.values))

Cluster ©: ['Armour Square' 'Douglas' 'McKinley Park' 'Bridgeport']
Cluster 1: ['Montclare' 'Belmont Cragin' ‘Hermosa' 'Avondale' 'Logan Squar
o'
'"Humboldt Park' 'South Lawndale' 'Lower West Side' 'East Side'
'Hegewisch' 'Archer Heights' 'Brighton Park' 'New City' 'West Elsdon’
'Gage Park' 'Clearing' 'West Lawn' 'Chicago Lawn' 'Ashburn']
Cluster 2: ['Rogers Park' 'West Ridge' 'Uptown' 'Lincoln Square' 'North Par
K
'Albany Park' 'Irving Park' 'Near West Side' 'Loop' 'Near South Side’
'Hyde Park' 'Edgewater']
Cluster 3: ['Austin' 'West Garfield Park' 'East Garfield Park' 'North Lawnd
ale’
'Oakland’ 'Fuller Park' 'Grand Boulevard' 'Kenwood' 'Washington Park'
'Woodlawn' 'South Shore' 'Chatham' 'Avalon Park' 'South Chicago'
'Burnside’ 'Calumet Heights' 'Roseland’ 'Pullman’ 'South Deering’
'West Pullman' 'Riverdale’' 'West Englewood' 'Englewood’
'Greater Grand Crossing' 'Auburn Gresham' ‘Washington Heights'
'Morgan Park']
Cluster 4: ['North Center' 'Lake View' 'Lincoln Park' 'Near North Side' 'Ed
ison Park’
‘Norwood Park' 'Jefferson Park' 'Forest Glen' 'Portage Park' 'Dunning’
'West Town' 'Garfield Ridge' 'Beverly' 'Mount Greenwood' "O'Hare"]

Figure 11.35 - Extracting the clusters of data objects in community_df

Errors 323

We can also perform centroid analysis for the clusters that were just formed. The code for
centroid analysis was presented in Chapter 8, Clustering Analysis, in the Using K-Means
to cluster a dataset with more than two dimensions section. Find the code and adjust it to
confirm the following heatmap as a result of centroid analysis. Note that as K-Means is a
random algorithm, we do expect the heatmap to be different. At the same time, we expect
the patterns that emerge from the data to be similar:

Cluster0 - 021 | 025 0015 .0.0095 0.0096.

CIUSterl 004 [)49 0-17 .

Chstr ﬂﬂ. 002 012 o0ss 012
-0.2

asian -
other -

population -
income -
latino -
black -
white -

Figure 11.36 — Centroid analysis of the formed clusters

We can see in the preceding screenshot that the communities in each cluster are
distinctively different, and this result will be tremendously helpful in assigning
communication liaisons.

So far in this chapter, we have covered and seen examples of how to detect and deal with
missing values and outliers. Next, we will turn our attention to detecting errors and
dealing with them in the dataset.

Errors

Errors are an inevitable part of any data collection and measurement. The following
formula best captures this fact:

Data = True Signal + Error

324 Data Cleaning Level III - Missing Values, Outliers, and Errors

The True Signal is the reality we are trying to measure and present in the form of Data,
but due to the incapability of our measurement system or data presentation, we cannot
capture the True Signal. Therefore, Error is the difference between the True Signal and the
recorded Data.

For instance, let's say we have purchased seven thermometers and we would like to
accurately calculate the room temperature using these seven thermometers. At a given
point in time, we take the following readings from them:

Thermometer 1 70.16
Thermometer 2 69.94
Thermometer 3 70.35
Thermometer 4 69.83
Thermometer 5 70.01
Thermometer 6 70.38
Thermometer 7 70.12

Figure 11.37 — Seven thermometers' readings

Looking at the preceding screenshot, what would you say the temperature of the room—
the True Signal—is? The answer is that we cannot measure or capture the True Signal—in
this case, the exact temperature of the room. With seven thermometers, we may have been
able to come to a more accurate reading, but we cannot eliminate error.

Types of errors

There are two types of errors: random errors and systematic errors. The biggest
distinction between these two types of errors is that random errors are not avoidable, but
systematic errors are.

Random errors happen due to unavoidable inconsistencies and the limitations of our
measurement equipment. What we saw in the seven thermometers example was a case of
random errors. Another example is random errors that happen when measuring people's
opinions using surveys due to unavoidable miscommunications and misunderstandings.

On the other hand, systematic errors are avoidable inconsistencies that happen because
of a problem that persists throughout the entire data collection. Systematic errors happen
on top of random errors, meaning random errors are always present. For example, if an
uncalibrated thermometer is used for measuring a room temperature, we have random
errors due to the incapability of the device in capturing the true signal, and we also have a
systematic error due to failing to calibrate the thermometer before the act of measuring.

Errors 325

Dealing with errors

We will deal with errors differently based on their types. Random errors are unavoidable
and, at best, we may be able to mitigate them using smoothing or aggregation. These

are techniques that we will cover in one of the future chapters: Data Massaging and
Transformation.

However, systematic errors are avoidable, and once recognized, we should always take the
following steps in dealing with them:

1. Adjust and improve the data collection so that systematic errors will not happen in
the future.

2. Try to use other data resources if available to find the correct value, and if there are
none, we will regard the systematic error as a missing value.

From the second step onward, you would deal with systematic errors as missing values.
That is great, as we have already covered values and have got many powerful tools and
techniques in dealing with missing values.

Detecting systematic errors

Detecting systematic errors is not very easy, and it is likely that they go unnoticed

and negatively influence our analysis. The best chance we have in detecting systematic
errors is the techniques we learned in the Detecting outliers section. When outliers are
detected and there is no explanation why the value of the outliers are correct, then we can
conclude that outliers are systematic errors. The following example will help to shed light
on this distinction.

Example of systematic errors and correct outliers

In this example, we would like to analyze CustomerEntries.x1sx. The dataset
contains about 2 months of customer-visiting data from a local coffee shop between
October 1, 2020, and November 24, 2020. The goal of the analysis is to profile the hours of
the day to see at which times and days peak customer visits happen.

326 Data Cleaning Level III - Missing Values, Outliers, and Errors

The following screenshot shows the code to read the file into the hour df pandas
DataFrame and the use of the . info () function to evaluate the state of the dataset in
terms of the missing values:

In [99]: M hour_df = pd.read_excel('CustomerEnteries.x1lsx")
hour_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 495 entries, © to 494
Data columns (total 3 columns):

Column Non-Null Count Dtype
0 Date 495 non-null datetime64[ns]
1 Time 495 non-null inte4

2 N_Cusotmers 495 non-null inte4
dtypes: datetime64[ns](1), int64(2)
memory usage: 11.7 KB

Figure 11.38 - Reading CustomerEntries.xlsx into hour_df and using .info() function to check outliers

We can see in the preceding screenshot that the dataset does not have missing values. Next,
we will turn our attention to checking for outliers. As the dataset is essentially a time series,
it is best to use a line plot to see whether there are any outliers. The following screenshot
shows the output of running hour df.N Customers.plot () to create a line plot

In [100]: M hour_df.N_Customers.plot()
plt.show()

40
35 1
30 -
25 4
20 1

15 R

10 1
5

0.

T T T T

0 100 200 300 400 500

Figure 11.39 - Drawing a line plot of hour_df.N_Customers to check for outliers

Errors 327

In the preceding screenshot, we can see we have a clear case of an outlier between the 200
and 300 indexes. Running hour df [hour_ df.N Customers>20] will reveal that the
outlier happens in index 232, which is timestamped 2020-10-26 at 16.

To check whether this outlier is a case of a systematic error or not, we investigate using
our other sources and we realize that nothing out of the ordinary had happened during
that day, and this record could simply be a manual data entry error. This shows us that this
is a systematic error, and therefore we need to take the following two steps in dealing with
systematic errors:

1.

Step 1: We inform the entity who is in charge of data collection about this mistake
and ask them to take appropriate measures to prevent such a mistake from
happening in the future.

Step 2: If we do not have ways to find the correct value using other resources within
a reasonable time and effort, we regard the data entry as a missing value and replace
it with np . nan. The following code can take care of that:

err_index = hour df [hour df.N Cusotmers>20] .index

hour df.at[err index,'N Customers']=np.nan

After successfully running the previous code, you should rerun hour df .N_
Customers.plot () to check the status of day df regarding outliers. The
following screenshot shows the new line plot:

In [103]: M hour_df.N_Customers.plot()
plt.show()

14 A

10 A1

0 100 200 300 400 500

Figure 11.40 — Drawing a line plot of hour_df.N_Customers to check for outliers after dealing

with the systematic error

328 Data Cleaning Level III - Missing Values, Outliers, and Errors

You can see in the preceding screenshot that we do not see a univariate outlier anymore.

Although the time series looks like a univariate dataset, it is not univariate and we can
always perform level II data cleaning to unpack new columns such as month, day,
weekday, hour, and minute. In this dataset, time and data have already been separated,
so we can perform the following bivariate outlier detection.

As you remember, the best way to perform bivariate outlier detection for a pair of
numerical-categorical attributes is to use multiple boxplots. The following screenshot
shows the output of sns.boxplot (y=hour df .N Customers, x=hour

df . Time), which are multiple boxplots we need to see whether there are bivariate
outliers for the N_Customers and Time attributes:

In [104]: M sns.boxplot(y=hour_df.N_Customers,x=hour_df.Time)

plt.show()
'
14
12-
p 101
7]
E 8
2
-
Uls-
=
4
2- +
0 .
3 1 11 12 13 14 15 16 17

Figure 11.41 - Drawing multiple boxplots for the N_Customers and Time attributes to check for

bivariate outliers

Looking at the preceding screenshot, we do see that we have two other outliers that could
be systematic errors. The first one is the smallest value of N_Customers, which is zero,
under the Time value of 17. The value is consistent with the rest of the data. The Time
value of 17 (or 5 PM.) seems to be getting the least number of customers, and we can
imagine occasionally having no customers at that hour.

Summary 329

However, the second flier at the same hour (5 P.M.) seems more troubling. After running
hour df.query ("Time==17 and N _Customers>12"), which filters the flier, we
can see the outlier has happened on November 17, 2020. After investigation, it turns out
that on November 17, 2020 at 4:25, a biking club made a half hour stop for refreshment,
which was out of the ordinary for the store. Therefore the data entry was not erroneous
and just a correct outlier.

After preprocessing hour df, it now has a missing value (the systematic error that was
replaced with np . nan) and two bivariate outliers. Knowing this, we allow ourselves to
enter that last step: the analysis.

Drawing a bar chart that shows and compares the central tendency of N_Customers per
working hour of the coffee shop (Time) will be the visualization we need for this analysis.
The prescribed bar chart can easily deal with missing values as per the aggregation of the
data to calculate the central tendencies. As we have outliers in the dataset, we chose to use
median over mean as the central tendency for this analysis. Running the following line of
code will create the described bar chart:

hour df.groupby ('Time') .N_Customers.median () .plot.bar ()

As you experienced during this example, the techniques that we use for detecting and
dealing with systematic errors are already covered under the subsection on missing values
and outliers. In a nutshell, when we don't find any support to believe an outlier is a correct
value, we regard this as a systematic error and consequently a missing value.

Ssummary

Congratulations on your learning in this chapter. This chapter covered data cleaning

level III. Together, we learned how to detect and deal with missing values, outliers, and
errors. This may sound like too short of a summary for such a long chapter, but as we saw,
detection, diagnosis, and dealing with each of the three issues (missing values, outliers,
and errors) can have many details and delicacies. Finishing this chapter was a significant
achievement, and now you know how to detect, diagnose, and deal with all of these three
possible issues you may encounter when working with a dataset.

This chapter concludes our three-chapter-long data cleaning journey. In the next chapter,
we move to another important data preprocessing area, and that is data fusion and
integration. Before moving on to the next chapter, spend some time working on the
following exercises to solidify your learnings.

330 Data Cleaning Level III - Missing Values, Outliers, and Errors

Exercises

es

Spec

1.

Iris-setosa -+ 5 -64 Iris-setosa
-62

In this exercise, we will be using Temperature data.csv. This dataset has some
missing values. Do the following:

a) After reading the file into a pandas DataFrame, check whether the dataset is level
I clean, and if not, clean it. Also, describe the cleanings (if any).

b) Check whether the dataset is level II clean, and if not, clean it. Also, describe the
cleanings (if any).

¢) The dataset has missing values. See how many, and run a diagnosis to see which
types of missing values they are.

d) Are there any outliers in the dataset?

e) How should we best deal with missing values if our goal is to draw multiple
boxplots that show the central tendency and variation of temperature across the
months? Draw the described visualization after dealing with the missing values.

In this exercise, we are going to use the Iris_wMV. csv file. The Iris dataset
includes 50 samples of 3 types of iris flowers, totaling 150 rows of data. Each flower
is described by its sepal and petal length or width. The PetalLengthCm column
has some missing values.

a) Confirm that PetalLengthCm has five missing values.
b) Figure out the types of missing values (MCAR, MAR, MNAR).

¢) How would you best deal with missing values if your end goal was to draw the
following visualization? Comment on all four different approaches of dealing
with missing values in this chapter, citing why the approach would or wouldn't

be appropriate:
34 200
33 Iris-setosa 3 Iris-setosa AN 175
150
4

-60 32
b @ @ 125
Iris-versicolor - 5.9 -5.8 Iris-versicolor - RS 3.1Q Iris-versicolor g Iris-versicolor -JEENSE}
& & & 100
-56 30 3

-54 ' 075
Iris-virginica - 6.6 e Iris-virginica Iris-virginica - 5.6 2 Iris-virginica 2 050
28 025

l [1 [
SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

Figure 11.42 - Exercise 2

Exercises 331

d) Draw the preceding screenshot twice, once after adopting a keep as is approach,
and once after adopting an imputing with the central tendency of the appropriate iris
species approach. Compare the two outputs and comment on their differences.

In this exercise, we will be using imdb top 1000 .csv. More information
about this dataset may be found at this link: https: //www.kaggle.com/
harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-
shows. Perform the following steps for this dataset:

a) Read the file into movie df, and list the level I data cleaning steps that the
dataset needs. Implement the listed items, if any.

b) We want to employ a Decision Tree Classification algorithm using the following
columns to predict IMDB rating values: Certificate, Runtime, Genre, and
Gross. For this analytic goal, list the level II data cleanings that need to be done,
and then implement them.

c) Does the dataset have issues regarding missing values? If yes, which types are
they, and how best should we deal with them given the listed data analytic goals in
b)?

d) Use the following function from sklearn. tree to create RegressTree,
which will be a prediction model that can predict IMDB rating

values using Certificate, Runtime, Genre, and Gross attributes:
DecisionTreeRegressor (max depth=5, min impurity decrease=0,
min samples split=20, splitter='random'). The tuning parameters
have been set for you so that the DecisionTreeRegressor algorithm can
perform better. Once the model is trained, draw the trained tree and check whether
the Gross attribute is used for the prediction of IMDB_rating values.

e) Run the following code and then explain what summary df is:
dt predicted IMDB rating = RegressTree.predict (Xs)
mean predicted IMDB rating = np.ones(len(y))*y.mean/()

summary df = pd.DataFrame ({'Prediction by Decision Tree':
dt predicted IMDB rating, 'Prediction by mean': mean
predicted IMDB rating, 'Actual IMDB rating': y})

https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows

332 Data Cleaning Level III - Missing Values, Outliers, and Errors

f) Run the following code and explain the visualization it creates. What can you
learn from the visualization?
summary df ['Decision Tree Error'] = abs (summary

df ['Prediction by Decision Tree']- summary df ['Actual
IMDB rating'])

summary df ['Mean Error'] = abs(summary df['Prediction by
mean'] - summary df ['Actual IMDB rating'])

plt.figure (figsize=(2,10))
table = summary df[['Decision Tree Error', 'Mean Error']]

sns.heatmap (table, cmap='Greys')

4. In this exercise, we will be using two CSV files: responses.csv and columns.
csv. The two files are used to record the data of a survey conducted in Slovakia.
To access the data on Kaggle, use this link: https: //www.kaggle.com/
miroslavsabo/young-people-survey. Perform the following exercises for
this data source:

a) Are there respondents in this survey that are suspected to be outliers based on
their age? How many? List them in a separate DataFrame.

b) Are there respondents in this survey that are suspected to be outliers based on
their level of liking for country and hard rock music? How many? List them in a
separate DataFrame.

c) Are there respondents in this survey that are suspected to be outliers based
on their body mass index (BMI) or education level? How many? List them in a
separate DataFrame. BMI can be calculated using the following formula:

_ Weight

BMI = ————
Height?

The weight has to be in kg and height in meters (m) for the preceding formula.
In the dataset, weight is recorded in kg but height is recorded in cm and has to be
transformed to m.

d) Are there respondents in this survey that are suspected to be outliers based on
their BMI and age? How many? List them in a separate DataFrame.

e) Are there respondents in this survey that are suspected to be outliers based on
their BMI and gender? How many? List them in a separate DataFrame.

https://www.kaggle.com/miroslavsabo/young-people-survey
https://www.kaggle.com/miroslavsabo/young-people-survey

Exercises 333

One of the most common approaches for fraud detection is using outlier detection.
In this exercise, you will use creditcard.csv from https://www.kaggle.
com/mlg-ulb/creditcardfraud to evaluate the effectiveness of outlier
detection for credit card fraud detection. Note that most of the columns in this data
source are processed values to uphold data anonymity. Perform the following steps:

a) Check the state of the dataset for missing values and address them, if any.

b) Using the Class column, which shows whether a transaction has been fraudulent
or not, find out what percentage of the transactions in the dataset are fraudulent.

c) Using data visualization or the appropriate statistical set (and, if necessary, both),
specify which univariate outliers have a relationship with the Class column—

in other words, if the values of this column are outliers, then we may suspect
fraudulent activity. Which statistical test is appropriate here?

d) First, use the K-Means algorithm to group the transactions into 200 clusters by
the attributes that were found to have a relationship with the Class column in part
¢). Then, filter out the members of the clusters with fewer than 50 transactions. Do
any of them contain significantly fraudulent transactions?

e) If there are any clusters with significant fraudulent transactions, perform centroid
analysis for them.

In Chapter 5, Data Visualization, and Chapter 8, Clustering Analysis, we used

WH Report preprocessed.csv, which is the preprocessed version of WH
Report . csv. Now that you have learned numerous data preprocessing skills, you
will be preprocessing the dataset yourself. Proceed as follows:

a) Check the status of the dataset for missing values.
b) Check the status of the dataset for outliers.

c) We would like to cluster the countries based on their happiness indices over the
years. Based on these analytic goals, address the missing values.

d) Based on the listed goal in part c), address the outliers.

e) Does the data need any level I or level II data cleaning before clustering is
possible? If any, prepare the dataset for K-Means clustering.

f) Perform K-Means clustering to separate the countries into three groups, and do
all the possible analytics that we do when clustering.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

334 Data Cleaning Level III - Missing Values, Outliers, and Errors

7. Specify whether the following items describe random errors or systematic errors:

a) The data has these types of errors as the thermometer that the lab has purchased
can give precise readings to one-thousandth of a degree.

b) The data has these types of errors as the survey records were gathered by five
different surveyors who attended five rigorous training sessions.

c) The data has these types of errors because when asking for salary questions in a
survey, there were no options such as I would not like to share.

d) The data has these types of errors because the cameras were tampered with so
that the robbery would not be recorded.

8. Study Figure 11.14 one more time and run the first three exercises by this diagram,
noting down the path that led to your decisions regarding the missing values. Did
you take steps in dealing with missing values that were not listed in this diagram or
this chapter? Would it be better to have a more complex diagram so every possibility
would be included, or not? Why or why not?

9. Explain why the following statement is incorrect: a row may have a significant
number of MCAR missing values.

12

Data Fusion and
Data Integration

The popular understanding of data pre-processing goes hand in hand with data cleaning.
Although data cleaning is a major and important part of data preprocessing, there are
other important areas regarding this subject. In this chapter, we will learn about two

of those important areas: data fusion and data integration. In short, data fusion and
integration have a lot to do with mixing two or more sources of data for analytic goals.

First, we will learn about the similarities and differences between data fusion and data
integration. After that, we will learn about six frequent challenges regarding data fusion
and data integration. Then, by looking at three complete analytic examples, we will get to
encounter these challenges and deal with them.

In this chapter, we are going to cover the following main topics:

What are data fusion and data integration?

Frequent challenges regarding data fusion and integration
Example 1 (Challenges 3 and 4)

Example 2 (Challenges 2 and 3)

Example 3 (Challenges 1, 2, 3, 5, and 6)

336 Data Fusion and Data Integration

Technical requirements

You can find the code and dataset for this chapter in this book's GitHub repository,

which can be found at https://github.com/PacktPublishing/Hands-On-
Data-Preprocessing-in-Python. You can find chapter12 in this repository and
download the code and the data for a better learning experience.

What are data fusion and data integration?

In most cases, data fusion and data integration are terms that are used interchangeably,
but there are conceptual and technical distinctions between them. We will get to those
shortly. Let's start with what both have in common and what they mean. Whenever the
data we need for our analytic goals are from different sources, before we can perform the
data analytics, we need to integrate the data sources into one dataset that we need for our
analytic goals. The following diagram summarizes this integration visually:

Column 1 Column 2 . . . Column m

Row 1
Row 2

Row n

.
w—
w~

(((

Figure 12.1 - Data integration from different sources

In the real world, data integration is much more difficult than what's shown in the
preceding figure. There are many challenges that you need to overcome before integration
is possible. These challenges could be due to organizational privacy and security
challenges that restrict our data accessibility. But even assuming that these challenges

are not in the way when different data sources need to be integrated, they arise because
each data source is collected and structured based on the needs, standards, technology,
and opinions of the people who have collected them. Regardless of correctness, there

are always differences in the ways that the data is structured and because of that, data
integration becomes challenging.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

What are data fusion and data integration? 337

In this chapter, we will cover the most frequently faced data integration challenges and
learn how to deal with them. These challenges will be discussed in the next subchapter.
First, let's understand the difference between data fusion and data integration.

Data fusion versus data integration

As we implied previously, both data integration and data fusion are all about mixing
more than one source of data. With data integration, the act of mixing is easier as all the
data sources have the same definition of data objects, or with simple data restructuring
or transformation, the definitions of the data objects can become the same. When the
definitions of the data objects are the same and the data objects are indexed similarly
across the data sources, mixing the data sources becomes easy; it will be one line of code.
This is what data integration does; it matches the definitions of the data objects across the
data sources and then mixes the data objects.

On the other hand, data fusion is needed when the data sources do not have the same
definitions as the data objects. With restructuring and simple data transformation, we
cannot create the same definitions of data objects across the data sources. For data fusion,
we often need to imagine a definition of data objects that is possible for all the data
sources and then make assumptions about the data. Based on those assumptions, we must
restructure the data sources. So, again, the data sources are in states that have the same
definitions of data objects. At that point, the act of mixing the data sources becomes very
easy and can be done in one line of code.

Let's try and understand the differences between the two by using two examples: one that
needs data integration and one that needs data fusion.

Data integration example

Imagine that a company would like to analyze its effectiveness in how it advertises. The
company needs to come up with two columns of data — the total sales per customer and
the total amount of advertisement expenditure per customer. As the sales department and
marketing department keep and manage their databases, each department will be tasked
with creating a list of customers with the relevant information. Once they've done that,
they need to connect the data of each customer from the two sources. This connection
can be made by relying on the existence of real customers, so no assumptions need to be
made. No changes need to be made to connect this data. This is a clear example of data
integration. The definition of data objects for both sources is customers.

338 Data Fusion and Data Integration

Data fusion example

Imagine a technology-empowered farmer who would like to see the influence of irrigation
(water dispersion) on yield. The farmer has data regarding both the amount of water its
revolving water stations have dispensed and the amount of harvest from each point in the
farm. Each stationary water station has a sensor and calculates and records the amount

of water that is dispensed. Also, each time the blade in the combine harvester moves, the
machine calculates and record the amount of harvest and the location.

In this example, there is no clear connection between the sources of data. In the previous
example, the clear connection was the definition of data objects - customers. However,
we don't have that here, so we need to make assumptions and change the data so that a
connection is possible. The situation in this example could look like something like the
following figure. The blue dots represent the water stations, while the gray ones represent
harvest points:

O 8 & 208 0@ P S FE O EE OO S D B0 DO BN RS Y S B BB SO e e
® 8 6 680 00 0080000000800 000S00EE0000EE0000E0s0000SNSEESIBSISGESRSEOSEOSESEOOSOSS
LR RN B I B R A A B A A R I B B B AU I RN B N B R B N B BB N R B B R N B R B I AR B R NI A
L B B BB B B B B B B B B B B BN DR B B BN BN BN BN B RN N B BN RN B B BN BB B B B B BN N B B BN N B BN B BN B BN B BN BN B BN
B O 0 6§ 0005060 60056 06800 6g0 006 08g0 60080 000,060 @t o0 8tesgysossgessgesey
® 9 0 089 08 5SS 000 S0 0SSP 00 TS ES0 S0 S S80S EESSNeeSSSeESRSSESSEOSRSEBBROSS
L I I BB B B B B B B BB B B BN R B B BB B B BN B BB B BN B BN B R BN BN BN I RN BN B N B B B B BN BN BN BN BN
CRCEC N R IR IR R I I BN BN I NI B I B I I B B R B IS R I B R I R R
MO ORI BU I B IR B BC R R B I PO R BB PO R R I O N B RC I N B I SR BT I S BT I SR I S I I Y
L I B I B B B B BN B B B BB B B R B B BB B B B BN BB B BN B BN BN R RN BN BN I RN RN BN B B B B BN B BN BN BN BN BN
CRCEC R IR IR I I N R B IR BN IR B R N B B N I R B IS R I I R I B R I)
® 8 9 98900 0SS S S S0 E OSSP 00 TSNS OSSNSO 0SES SN0 SESssSSSRSESOSREBRS
R N N B R R R R R I I N R I I I I I I I I R I A I I I A I A N N R I I
H P S I T I T R T I
2 0 55900 0SS 0000 S0 00TESSS S0 S SN0EES SRS SsSES OSSR SESSIRSERORS
L L B B I I B B B B DL B B B B B BN B BN B BN DR BN BN BN B BN N BN B BN B B BN B B BN BN B B BN N BN BN BN BN B B B BN B B B BB B BN
® 9 0 58 0 00 9SS 0SSP0 SS 0SS S SES0 S SSSSI0SESSESeOSESEsSSSEsSESEBES
Seeelecetocet oeetoreoBoene® oce®ocec®oecieelecederodoeredoeelone?
L B B B B R B B BB B BB B B B B B B B BB B B B B B BN BN BN IR BB B N B B B B B BN B BN BN
® 8 8 080 00 0SS S0 E 0SS0 0SS SESS0 TS S OSSN0 SeSESS0SeSeEssOSSSSSSEBOESS
CECRC RN R AR BB R RN B B BN BN I B B BB I B I B BB B I B I BN I I I B B I
'..."'I‘.l."..‘...%.....'I...I.I.......'.alI'*...’..I'...'..l.
L I I R I R I R I I R I I I I R I R A A R R A A R N R A R
CRCEEC R R R R I I RN R R R BN IR B B A R B N I R R R IR R I I N I B R)
L I R B B I I B B I I B B I B I B N B B I B B B RN R B B I RN BB B I B B B B B B B B N
BoeeeBoeeVocee® seeB oo o e% e 0% o0 o e % e 0o Poos e PosePosoPoossloseh
CRCEC RN RN NI BN N IR R B N IR B R N R B N I R N B R I IR B IR I R B I)
LR B I I IR B B I R I I B BN L B IR B B B R B B I I B I BB B B B B
R I I R R R R R I I R R I I I R I I I I I R R R A R N R AR R R A R)
$ 5 0 680000 5600 5008 0 500000 8005 S80S0 S0 S P 0SS WP WESIBESIOBSS BSOS

Figure 12.2 — Water points and harvest points

To perform data fusion, we need different sets of assumptions and sets of preprocessing
that combine or fuse these data sources. Next, let us see how these assumptions to make
the fusion possible may look like.

What are data fusion and data integration? 339

How about if we defined our data objects as the pieces of land that are harvested? In other
words, we define our data objects as harvest points. Then, based on the proximity of the
revolving water station to each harvest point, we calculate a number that represents the
amount of water the point received. Each water point could be attributed a radius of reach.
The closer a harvest point is to the water point within this radius of reach, the more the
harvest point got from the amount of water that was dispensed from the water station.

We don't know how much water arrives at the harvest points, but we make assumptions
about it. These assumptions could be completely naive or based on some careful
experimentation or research.

In this example, we had to come up with a definition of data objects that did not exist
within both data sources. Then, we had to make many assumptions about the collected
data so that the data sources could be fused.

Good news! You will get to do this data fusion yourself in Exercise 8 at the end of
this chapter.

You will see the term data integration for both data integration and data fusion
throughout this chapter. When you need to be aware of the distinction between them, the
text will inform you of that.

You are almost ready to start seeing the frequent challenges that occur in these areas, as
well as some examples, but first, let's discuss one more thing. In the next section, we will
introduce two directions of data integration.

Directions of data integration

Data integration may happen in two different directions. The first is by adding attributes;
we might want to supplement a dataset with more describing attributes. In this direction,
we have all the data objects that we need, but other sources might be able to enrich our
dataset. The second is by adding data objects; we might have multiple sources of data with
distinct data objects, and integrating them will lead to a population with more data objects
that represent the population we want to analyze.

Let's look at two examples to understand the two directions of data integration better.

340 Data Fusion and Data Integration

Examples of data integration by adding attributes

The examples we saw earlier in the Data integration example and Data fusion example
sections were both data integration by adding attributes. In these examples, our aim was to
supplement the dataset by including more attributes that would be beneficial or necessary
for the analytic goals. In both examples, we looked at situations where we would need to
perform data integration by adding attributes. Next, we will examine situations that needs
data integration by adding data objects.

Examples of data integration by adding data objects

In the first example (Data integration example), we wanted to integrate customer data
from the sales and marketing departments. The data objects and customers were the
same, but different databases included the data we needed for the analytic goals. Now,
imagine that the company has five regional managing bodies and that each managing
body is in charge of keeping the data of their customers. In this scenario, data integration
will happen after each managing body has come up with a dataset that includes the total
sales per customer and the total amount of advertisement expenditure per customer. This
type of integration, where we're using five sources of data that include the data of distinct
customers, is known as performing data integration by adding data objects.

In the second example (Data fusion example), our goal was to fuse the irrigation and yield
data for one piece of land. Regardless of how we would define the data objects to serve the
purpose of our analysis, at the end of the day, we will have analyzed only one piece of land.
So, different sets of assumptions that would allow the data sources to be fused may have
led to different numbers of data objects, but the piece of land stays the same. However,
let's imagine that we had more than one piece of land whose data we wanted to integrate.
That would become data integration by adding data objects.

So far, we have learned about different aspects of data integration. We have learned what
it is and its goals. We've also covered the two directions of data integration. Next, we will
learn about the six challenges of data integration and data fusion. After that, we will look
at examples that will feature those frequent challenges.

Frequent challenges regarding data fusion and
integration

While every data integration task is unique, there are a few challenges that you will face
frequently. In this chapter, you will learn about those challenges and, through examples,
you will pick up the skills to handle them. First, let's learn about each. Then, through
examples that feature one or more of them, we will pick up valuable skills to handle them.

Frequent challenges regarding data fusion and integration 341

Challenge 1 - entity identification

The entity identification challenge - or as it is known in the literature, the entity
identification problem - may occur when the data sources are being integrated by adding
attributes. The challenge is that the data objects in all the data sources are the same real-
world entities with the same definitions of data objects, but they are not easy to connect
due to the unique identifiers in the data sources. For instance, in the data integration
example section, the sales department and the marketing department did not use a central
customer unique identifier for all their customers. Due to this lack of data management,
when they want to integrate the data, they will have to figure out which customer is which
in the data sources.

Challenge 2 - unwise data collection

This data integration challenge happens, as its name suggests, due to unwise data
collection. For instance, instead of using a centralized database, the data of different data
objects is stored in multiple files. We covered this challenge in Chapter 9, Data Cleaning
Level I - Cleaning Up the Table, as well. Please go back and review Example 1 - Unwise
data collection, before reading on. This challenge could be seen as both level I data
cleaning or a data integration challenge. Regardless, in these situations, our goal is to
make sure that the data is integrated into one standard data structure. This type of data
integration challenge happens when data objects are being added.

Challenge 3 - index mismatched formatting

When we start integrating data sources by adding attributes, we will use the pandas
DataFrame .join () function to connect the rows of two DataFrames that have the
same indices. To use this valuable function, the integrating DataFrames needs to have the
same index formatting; otherwise, the function will not connect the rows. For example,
the following figure shows three attempts of combining two DataFrames: temp df and
electric _df. temp df contains the hourly temperature (temp) of 2016, while
electric_ df carries the hourly electricity consumption (consumption) for the same
year. The first two attempts (the top one and the middle one) are unsuccessful due to
the index mismatched formatting challenge. For instance, consider the attempt at the
top; while both DataFrames are indexed with Date and Time and both show the same
Date and Time, attempting the . join () function will produce a "cannot join with

no overlapping index names" error. What is happening? The attempt to integrate was
unsuccessful because the index formatting from the two DataFrames is not the same:

342 Data Fusion and Data Integration

temp

Consumption
Date Time

Date Time
2016-01-01 00:00:00 79.0

1/1/2016 0:00 119052.0

01:00:00 79.0

10:00 101915.0
02:00:00 775

11:00 105796.0
03:00:00 79.0

12:00 109960.0

L Error

2018-12-31 19:00:00 79.0

o= 9/9/2016 5:00 77492.0 N 0 ove r| - p
6:00 84960.0
21:00:00 77.0
22:00:00 77.0 7:00 e
= 8:00 99795.0
9:00 104091.0
temp Consumption temp Consumption
Date Time Date Time Date Time
2016-01-01 00:00 79.0 2016-01-01 0:00 119052.0 2016-01-01 00:00 79.0 NaN
01:00 780 10:00 101915.0 01:00 79.0 NaN
02.00577.5 11:00 105796.0 02:00 775 NaN
03:00 79.0 12:00 109960.0 03:00 79.0 NaN
04:00 77.0 + 13:00 112189.0 04:00 77.0 NaN
2010 12-31918:00, §79.0 2016-12-31 5:00 128275.0 I 2016-12-31 19:00 79.0 154958.0
20.00; 774 6:00 130920.0 20:00 77.0 149484.0
21:00 770 7:00 134707.0 21:00 770 143693.0
22,00 770 8:00 139168.0 22:00 770 142717.0
CRALL AL 9:00 143965.0 23:00 77.0 150928.0
temp Consumption
Date Time Date Time temp Consumption
2016-01-01 00:00 79.0 D T i Date Time
01:00 79.0 p— ——— 20160101 00:00 79.0 119052.0
02:00 775 20 e 01:00 79.0 113138.0
03:00 79.0 3560 104508:0 02:00 775 111013.0
04:00 77.0 04:00 S 03:00 79.0 104808.0
+ 04:00 77.0 99552.0
2016-12-31 19:00 790 20164231 19:00 154958.0
20:00 77.0 S0%0, SONET 20161231 19:00 790 154958.0
21:00 770 21:00 1438030 20:00 77.0 149484.0
22:00 77.0 20:00 f4s7170 21:00 77.0 143693.0
23:00 77.0 23:00 150028.0 22:00 77.0 142717.0
23:00 770 150928.0

Figure 12.3 — Examples of index mismatched formatting when combining two data sources

Frequent challenges regarding data fusion and integration 343

In the preceding diagram, while the attempt in the middle is better than the one at the top,
it is still unsuccessful. Pay close attention and see if you can figure out why there are so
many NaNss in the output of the integration.

Challenge 4 - aggregation mismatch

This challenge occurs when integrating data sources by adding attributes. When
integrating time series data sources whose time intervals are not identical, this challenge
arises. For example, if the two DataFrames presented in the following figure are to be
integrated, not only do we have to address the challenge of index mismatch formatting,

but we will also need to face the aggregation mismatch challenge. This is because temp_df
carries the hourly temperature data but electric_df carries the electricity consumption of
every half an hour:

Timestamp temp Date Time Consumption

0 2016-01-01T00:00:00 79.0 0 12/1/2017 0:00:00 72650.0

1 2016-01-01T01:00:00 79.0 1 12/1/2017 0:30:00 70553.0

2 2016-01-01T02:00:00 77.5 2 12/1/2017 1:00:00 68277.0

3 2016-01-01T03:00:00 79.0 3 12/1/2017 1:30:00 67611.0

4 2016-01-01T04:00:00 77.0 4 12/1/2017 2:00:00 67388.0
8726 2016-12-31T19:00:00 79.0 19051 1/1/2016 21:30 56059.0
8727 2016-12-31T20:00:00 77.0 19052 1/1/2016 22:00 55107.0
8728 2016-12-31T21:00:00 77.0 19053 1/1/2016 22:30 556609.0
8729 2016-12-31T22:00:00 77.0 19054 1/1/2016 23:00 58199.0
8730 2016-12-31T23:00:00 77.0 19055 1/1/2016 23:30 57539.0

Figure 12.4 - Example of an aggregation mismatch when combining two data sources

To deal with this challenge, we will have to restructure one source or both sources to get
them to have the same level of data aggregation. We will see this shortly, so now, let's cover
another challenge.

344 Data Fusion and Data Integration

Challenge 5 - duplicate data objects

This challenge occurs when we're integrating data sources by adding data objects. When
the sources contain data objects that are also in the other sources, when the data sources
are integrated, there will be duplicates of the same data objects in the integrated dataset.
For example, imagine a hospital that provides different kinds of healthcare services. For

a project, we need to gather the socioeconomic data of all of the patients in the hospital.
The imaginary hospital does not have a centralized database, so all of the departments are
tasked with returning a dataset containing all the patients they have provided services for.
After integrating all of the datasets from different departments, you should expect that
there are multiple rows for the patients that had to receive care from different departments
in the hospital.

Challenge 6 - data redundancy

This challenge's name seems to be appropriate for the previous challenge as well, but in

the literature, the term data redundancy is used for a unique situation. Unlike the previous
challenge, this challenge may be faced when you're integrating data sources by adding
attributes. As the name suggests, after data integration, some of the attributes may be
redundant. This redundancy could be shallow as there are two attributes with different titles
but the same data. Or, it could be deeper. In deeper data redundancy cases, the redundant
attribute does not have the same title, nor is its data the same as one of the other attributes,
but the values of the redundant attribute can be derived from the other attributes.

For example, after integrating data sources into a dataset of customers, we have the
following seven attributes: age, average order $, days from the last visit, weekly visit
frequency, weekly $ purchase, and satisfaction score. If we use all seven attributes to cluster
customers, we have made a mistake regarding data redundancy. Here, the weekly visit
frequency, weekly $ purchase, and average order $ attributes are distinct but the value of
weekly $ purchase can be derived from weekly visit frequency and average order $. By doing
so, inadvertently, we will have given the information regarding the customer's visit and
their purchase amount more weight in the clustering analysis.

We should deal with data redundancy challenges that are informed by the analytic goals
and data analysis tools. For instance, if we were employing the decision tree algorithm
to predict the satisfaction score of the customers, we needn't have worried about data
redundancy. This is because the decision tree algorithm only uses the attributes that help
its performance.

Example 1 (challenges 3 and 4) 345

However, if the same task were to be done using linear regression, you would have a
problem if you didn't remove weekly $ purchase. This is because the same information
being in more than one attribute would confuse the linear regression. There are two
reasons for this:

o First, the linear regression algorithm will have to use all the independent attributes
as they are inputted.

« Second, the algorithm needs to come up with a set of weights that works for all the
data objects for all the independent attributes, all at the same time. In regression
analysis, this situation is referred to as collinearity and it should be avoided.

Now that we've learned about these six common challenges of data integration, let's look
at some examples that feature one or some of these challenges.

Example 1 (challenges 3 and 4)

In this example, we have two sources of data. The first was retrieved from the local
electricity provider that holds the electricity consumption (Electricity Data 2016_2017.

csv), while the other was retrieved from the local weather station and includes temperature
data (Temperature 2016.csv). We want to see if we can come up with a visualization that can
answer if and how the amount of electricity consumption is affected by the weather.

First, we will use pd.read csv () to read these CSV files into two pandas DataFrames
called electric df and temp_ df. After reading the datasets into these DataFrames, we
will look at them to understand their data structure. You will notice the following issues:

o The data object definition of electric_df is the electric consumption in 15
minutes, but the data object definition of temp df is the temperature every 1
hour. This shows that we have to face the aggregation mismatch challenge of data
integration (Challenge 4).

o temp df only contains the data for 2016, while electric df contains the data
for 2016 and some parts of 2017.

o Neither temp_df nor electric_df has indexes that can be used to connect the
data objects across the two DataFrames. This shows that we will also have to face the
challenge of index mismatched formatting (challenge 3).

346 Data Fusion and Data Integration

To overcome these issues, we will perform the following steps:

1. Remove the 2017 data objects from electric_df. The following code uses
Boolean masking and the . drop () function to do so:

BM = electric df.Date.str.contains('2017')
dropping index = electric_ df [BM] .index

electric df.drop(index = dropping index, inplace=True)

Check the state of electric_df after successfully running the preceding code.
You will see that electric_df in 2016 is recorded every half an hour.

2. Add a new column titled Hour to electric_ df from the Time attribute. The
following code manages to do this in one line of code using the . apply () function:

electric df['Hour'] = electric df.Time.apply (lambda v:

'{}:00'.format (v.split (':') [0]))

3. Create a new data structure whose definition of the data object is hourly electricity
consumption. The following code uses the . groupby () function to create
integrate sr.The Pandas integrate sr series is a stopgap data structure
that will be used for integration in the later steps:

integrate sr = electric df.groupby(['Date', 'Hour']) .
Consumption.sum()

One good question to ask here is this, why are we using the . sum () aggregate function
instead of . mean () ? The reason is the nature of the data. The electricity consumption
of an hour is the summation of the electricity consumption of its half-hour pieces.

4. In this step, we will turn our attention to temp_df. We will add the Date and

Hour columns to temp_df from Timestamp. The following code does this by
applying an explicit function:
First, we will create the function:
def unpackTimestamp (r) :
ts = r.Timestamp
date,time = ts.split('T')
hour = time.split(':'") [0]
year,month,day = date.split('-"')
r['Hour'] = '{}:00'.format (int (hour))

r('Date'] = '{}/{}/{}".

format (int (month) , int (day) , year)

return (r)

Example 1 (challenges 3 and 4) 347

Then, we will apply the function to the temp_df DataFrame:
temp df = temp df.apply(unpackTimestamp,axis=1)
Check the status of temp_df after successfully running the preceding code block
before moving to the next step.
For temp_df, set the Date and Hour attributes as the index and then drop the

Timestamp column. The following code does this in one line:

temp df
columns

temp df.set index(['Date', 'Hour']) .drop (
['Timestamp'])

Again, check the status of temp_df after successfully running the preceding code
before moving on to the next step.
After all this reformatting and restructuring, we are ready to use . join () to

integrate the two sources. The hard part is what comes before using . join ().
Applying this function is just as easy as applying it. See for yourself:

integrate df =temp df.join(integrate sr)

Note that we came to integrate sr as a stopgap data structure from Step 3.

As always, take a moment to investigate what integrate df looks like before
reading on.

Reset the index of integrate df as we no longer need the index for integration

purposes, nor do we need those values for visualization purposes. Running the
following code will take care of this:

integrate df.reset_index(inplace=True)

Create a line plot of the whole year's electricity consumption, where the dimension
of temperature is added to the line plot using color. This visualization is shown in
Figure 12.5 and was created using the tools we have learned about in this book. The
following code creates this visualization:

days = integrate df.Date.unique ()

max temp, min temp = integrate df.temp.max(), integrate
df .temp.min ()

green =0.1
plt.figure(figsize=(20,5))
for d in days:
BM = integrate df.Date ==
wdf = integrate df [BM]

348 Data Fusion and Data Integration

average temp = wdf.temp.mean ()

red = (average temp - min temp)/ (max temp - min
temp)

blue = 1-red

clr = [red,green, bluel]

plt.plot (wdf.index,wdf.Consumption,c = clr)
BM = (integrate df.Hour =='0:00') & (integrate df.Date.
str.contains ('/28/"'))
plt.xticks (integrate df [BM] .index, integrate df [BM] .
Date, rotation=90)
plt.grid()
plt.margins (y=0,x=0)
plt.show ()

The preceding code brings many parts together to make the following visualization
happen. The most important aspects of the code are as follows:

o The code created the days list, which contains all the unique dates from
integrate_ df. By and large, the preceding code is a loop through the days list,
and for each unique day, the line plot of electricity consumption is drawn and added
to the days before and after. The color of each day's line plot is determined by that
day's temperature average, that is, temp . mean ().

 The colors in the visualization are created based on the RGB color codes. RGB
stands for Red, Green, and Blue. All colors can be created by using a combination
of these three colors. You can specify the amount of each color you'd like and
Matplotlib will produce that color for you. These colors can take values from 0 to 1
for Matplotlib. Here, we know that when green is set to 0. 1, and the red and blue
haveablue = 1 - red relationship with one another, we can create a red-blue
spectrum of color that can nicely represent hot and cold colors. The spectrum can
be used to show hotter and colder temperatures. This has been done by calculating
the maximum and minimum of the temperature (using max_temp and min_
temp) and calculating the three red, green, and blue elements of c1r at the
right time to pass as the color value to the p1t .plot () function.

Example 2 (challenges 2 and 3) 349

o A Boolean Mask (BM) and plt.xticks () are used to include the 28th of each
month on the x axis so that we don't have a cluttered x axis:

160000

140000

120000

100000 |

80000

60000

112812016
2/28/2016
3/28/2016
4/28/2016
5/28/2016
6/28/2016
7/28/2016
8/28/2016
9/28/2016
10/28/2016
11/28/2016
12/28/2016

Figure 12.5 - Line plot of electricity consumption color-coded by temperature

Now, let's bring our attention to the analytic values shown in the preceding diagram. We
can see a clear relationship between temp and Consumpt ion; as the weather becomes
colder, the electricity consumption also increases.

We would not be able to draw this visualization without integrating these two data
sources. By experiencing the added analytic values of this visualization, you can also
appreciate the value of data integration and see the point of having to deal with both
Challenge 3 - index mismatched formatting and Challenge 4 — aggregation mismatch.

Example 2 (challenges 2 and 3)

In this example, we will be using the Taekwondo_Technique_Classification_Stats.

csv and tablel.csv datasets from https://www.kaggle.com/ali2020armor/
taekwondo-techniques-classification. The datasets were collected by 2020
Armor (https://2020armor.com/), the first ever provider of e-scoring vests and
applications. The data includes the sensor performance readings of six taekwondo athletes,
who have varying levels of experience and expertise. We would like to see if the athlete's
gender, age, weight, and experience influence the level of impact they can create when
they perform the following techniques:

+ Roundhouse/Round Kick (R)
« BackKick (B)

e Cut Kick (C)

e Punch (P)

https://www.kaggle.com/ali2020armor/taekwondo-techniques-classification
https://www.kaggle.com/ali2020armor/taekwondo-techniques-classification
https://2020armor.com/

350 Data Fusion and Data Integration

The data is stored in two separate files. We will use pd.read csv () toread tablel.
csvinto athlete df and Taekwondo Technique Classification Stats.
csv into unknown_df. Before reading on, take a moment to study athlete df and
unknown_df and evaluate their state to perform the analysis.

After analysis, it will be obvious that the data structure that's been chosen for athlete_
df is simple to understand. The data object's definition of athlete df is athletes, which
means that each row represents a tackwondo athelete df. However, the unknown df
data structure is not readily understandable and is somewhat confusing. The reason

for this is that even though a very common data structure - a table - is being used, it

is not appropriate. As we discussed in Chapter 3, Data - What Is It Really?, The most
universal data structure - a table, we know that the glue that holds a table together is an
understandable definition of data objects. Therefore, the major data integration challenge
we will face in this example is Challenge 2 — unwise data collection.

To integrate the data when we face unwise data collection challenges, similar to what we did
in Chapter 9, Data Cleaning Level I - Cleaning Up the Table, in Example 1 — unwise data
collection, we need the data structure and its design to support the following two matters:

o The data structure can include the data of all the files.

o The data structure can be used for the mentioned analysis.

As we've discussed, the athlete df dataset is simple and easy to understand, but what
does the information in unknown_df include? After putting two and two together, we
will realize that the sensor readings from the performance of six tackwondo athletes are
inathlete df. From studying unknown df, we also realize that each athlete has
performed each of the four aforementioned techniques five times. These techniques are
coded in unknown_df using the letters R, B, C, and P; R stands for roundhouse, B stands
for back kick, C stands for cut kick, and P stands for punch. Furthermore, we can see that
each technique is performed five times by each athlete.

Running the following code will create an empty pandas DataFrame called
performance_df. This dataset has been designed so that both athlete df and
unknown_df can be integrated into it.

The number of rows (n_rows) we have designed for performance df is one minus the
number of columns in unknown df: len (unknown df.columns) -1. We will see
why that is the case when we are about to fill up performance df:

designed columns = ['Participant id', 'Gender', 'Age',
'Weight', 'Experience', 'Technique id', 'Trial number',
'Average read']

Example 2 (challenges 2 and 3) 351

n rows = len(unknown df.columns) -1

performance df = pd.DataFrame (index=range (n_rows) ,columns
=designed columns)

The following table shows performance_df, which the preceding code creates:

Participant_id Gender Age Weight Experience Technique_id Trial_number Average_read

0 NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN
15 NaN NaN NaN NaN NaN NaN NaN NaN
116 NaN NaN NaN NaN NaN NaN NaN NaN
117 NaN NaN NaN NaN NaN NaN NaN NaN
118 NaN NaN NaN NaN NaN NaN NaN NaN
19 NaN NaN NaN NaN NaN NaN NaN NaN

Figure 12.6 — The empty performance_df DataFrame before being filled in

Because the dataset has been collected unwisely, we cannot use simple functions such as
.Join () for data integration here. Instead, we need to use a loop to go through the many
records of unknown_df and athlete df and fill out performance df row by row
and, at times, cell by cell.

The following pieces of code will use both athlete df and unknown_df to fill
performance df. Let's get started:

1. First, we need to perform some level I data cleaning for athlete df so that
accessing this DataFrame within the loop becomes easier. The following code takes
care of these cleaning steps for athlete df:

athlete df.set index('Participant ID', inplace=True)
athlete df.columns = ['Sex', 'Age', 'Weight',
'Experience', 'Belt']
Study the state of athlete df after running the preceding code and make sure
that you understand what each line of code does before reading on.

352

Data Fusion and Data Integration

Now that athlete df is cleaner, we can create and run the loop that will fill up
performance_df. As shown in the following screenshot, the loop goes through
all of the columns in unknown_df. Except for the first column in unknown_df,
each column contains information for one of the rows in performance df. So,
in each iteration of looping through the columns of unknown_df, one of the rows
of performance_df will be filled. To fill up each row in performance df,
the data must come from both athlete df and unknown df. We will use the
structures we know about from athlete df and unknown df:

In [23]: M techniques = ['R','B','C','P']

index = @
for col in unknown_df.columns:
if(col[@] in techniques):
performance_df.loc[index, 'Technique_id'] = col[@]
performance_df.loc[index, 'Trial_number'] = unknown_df[col][1]

P_id = unknown_df[col][@]
performance_df.loc[index, 'Participant_id'] = P_id
performance_df.loc[index, 'Gender'] = athlete_df.loc[P_id].Sex
performance_df.loc[index, 'Age'] = athlete_df.loc[P_id].Age
performance_df.loc[index, 'Weight'] = athlete_df.loc[P_id].Weight
performance_df.loc[
index, 'Experience'] = athlete_df.loc[P_id].Experience
BM = unknown_df[col][2:].isna()
performance_df.loc[
index, 'Average_read'] = unknown_df[
col][2:][~BM].astype(int).mean()
index +=1

Figure 12.7 - The code that fills performance_df

Attention!

In this chapter, there are going to be a few instances of very large code, such

as that shown in the preceding screenshot. Because of the size of this code, we
had to include a screenshot instead of a copiable code block. To copy this code,
please see the chapter12 folder in this book's GitHub repository.

After successfully running the code in the preceding screenshot, performance df
will be filled up. Print performance_df to check its status before reading on.

Now that data integration has been performed, we can bring our attention to the
data analytic goals. The following code creates a box plot of Average read based
on Gender, Age, Weight, and Experience:

select attributes = ['Gender', 'Age',6 'Experience',
'Weight']

Example 2 (challenges 2 and 3) 353

for i,att in enumerate (select attributes):
plt.subplot (2,2,1+1)
sns.boxplot (data = performance df,
y='Average read',6 x=att)
plt.tight layout ()
plt.show ()

After running the preceding code, the following visualization will be created:

1027.5 1027.5
i) h=]
2 ! 3
£ 1027.0 £ 10270
1] Y] .
o o
C 10265 - © 10265 +§
z 2 *@
1026.0 ' ' 0601 %
M F 7 9 13 14 16
Gender Age
1027.5 ' 10275
i =] . b=
o o
<, 1027.0 <,1027.0
L] LY
: : :
1026.5 C 10265
L] v
2 *i* 2 **
1026.0 - w01 __ ¥
1 2 6 B8 13 23 25 39 43 54 72
Experience Weight

Figure 12.8 — A box plot of Average_read based on Gender, Age, Experience, and Weight

In the preceding diagram, we can see meaningful relationships between Average_read
and Gender, Age, Experience, and Weight. In a nutshell, these attributes can change the
impact of the techniques that are performed by the athletes. For example, we can see that
as the experience of an athlete increases, the impact of the techniques that are performed
by the athlete increases.

We can also see a surprising trend: the impact of the techniques that are performed by
female athletes is significantly higher than the impact of male athletes. After seeing this
surprising trend, let's look back at athlete df. We will realize that there is only one
female athlete in the data, so we cannot count on this visualized trend.

354 Data Fusion and Data Integration

Before we move on to the next data integration example, let's have some fun and create
visualizations with higher dimensions. The following code creates multiple box plots that
include the Average read, Experience, and Technique id dimensions:

sns.boxplot (data = performance df, y= 'Average read',6 x=
'Experience', hue='Technique id')

The following diagram will be created after running the preceding code:

1027.6 { Echnique_id ¢
= R
IV i —
102721 E=C
s

§ 1027.0 -

|
¥ 1026.8 - 2
©
g 1026.6

10264 -

4
1026.2 - .h‘
10260 - ¢
2 6 8 13
Experience

Figure 12.9 — A three-dimensional box plot of Average_read, Experience, and Technique_id
Before reading on, look at the preceding diagram and see if you can detect more
relationships and patterns.

Now, let's bring our attention to the next example. Buckle up - the next example is going
to be a complex one with many different aspects.

Example 3 (challenges 1, 3, 5,and 6) 355

Example 3 (challenges 1, 3, 5, and 6)

In this example, we would like to figure out what makes a song rise to the top 10 songs on
Billboard (https://www.billboard.com/charts/hot-100) and stay there for at
least 5 weeks. Billboard magazine publishes a weekly chart that ranks popular songs based
on sales, radio play, and online streaming in the United States. We will integrate three CSV
files - billboardHot100 1999-2019.csv, songAttributes 1999-2019.csv,
and artistDf.csvfromhttps://www.kaggle.com/danield2255/data-on-
songs-from-billboard-19992019 to do this.

This is going to be a long example with many pieces that come together. How you organize
your thoughts and work in such data integration challenges is very important. So, before
reading on, spend some time getting to know these three data sources and form a plan.
This will be a very valuable practice.

Now that you've had a chance to think about how you would go about this, let's do this
together. These datasets seem to have been collected from different sources, so there may
be duplicate data objects among any or all of the three data files. After reading the files into
billboard df, songAttributes df,and artist df, respectively, we will check
if there are duplicate data objects in them. This is dealing with Challenge 5 - duplicate

data objects.

Checking for duplicate data objects

We will have to do this for every file. We will start with billboard df before doing the
same for songAttributes df and artist df.

Checking for duplicates in billboard_df

The following code reads the billboardHot100 1999-2019.csv file into
Billboard df and then creates a pandas series called wsr. The name wsr is short
for Working SeRies. As I've mentioned previously, I tend to create a wdf (Working
DataFrame) or wsr when I need a temporary DataFrame or series to do some analysis.
In this case, wsr is used to create a new column that is a combination of the Artists,
Name, and Week columns, so we can use it to check if the data objects are unique.

https://www.billboard.com/charts/hot-100
https://www.kaggle.com/danield2255/data-on-songs-from-billboard-19992019
https://www.kaggle.com/danield2255/data-on-songs-from-billboard-19992019

356 Data Fusion and Data Integration

The reason for this multi-column checking is obvious, right? There might be different
unique songs with the same name from different artists; every artist may have more
than one song; or, the same song may have a different weekly report. So, to check for the
uniqueness of the data objects across billboard df, we need this column:

billboard df = pd.read csv('billboardHot100 1999-2019.csv')
wsr = billboard df.apply(lambda r: '{}-{}-{}'.format (zr.
Artists,r.Name, r.Week) ,axis=1)

wsr.value counts ()

After running the preceding code, the output shows that all the data objects appear once
except for the song Outta Control by 50 Cent in week 2005-09-14. Running
billboard df.query("Artists == '50 Cent' and Name=='Outta
Control' and Week== '2005-09-14'") will filter out these two data objects. The
following screenshot displays the outcome of running this code:

In [27]: M billboard_df.query("Artists == '50 Cent' and Name=='Outta Control' \
and Week== '2005-09-14"'")
out[27]:
U““ame"é Artists Name Weekly.rank Peak.position Weeks.on.chart Week Date
August
50 Outta 2005-
67588 67589 Lot contrcl 25 25.0 9.0 5914 6, |
2005
August
67647 67643 0 outa 92 NaN NaN 2005 6 |
ent Control 09-14 2005

Figure 12.10 - Filtering the duplicates in bilboard_df

Here, we can see that the two rows are almost identical and that there is no need to have
both of them. We can use the.drop () function to delete one of these two rows. This is
shown in the following line of code:

billboard df.drop(index = 67647,inplace=True)

After running the preceding line of code successfully, it seems that nothing has happened.
This is due to inplace=True, which makes Python update the DataFrame in place
instead of outputting a new DataFrame.

Example 3 (challenges 1, 3,5,and 6) 357

Now that we are certain about the uniqueness of each row in bilboard df, let's move
on and do the same thing for songAttributes df.

Checking for duplicates in songAttributes_df

We will use a very similar code and approach to see if there are any duplicates in
songAttributes_ df. The following code has been altered for the new DataFrame.

First, the code reads the songAttributes 1999-2019.csv file into
songAttributes df, then creates the new column and checks for the duplicates
using .value counts (), which is a function of every pandas Series:

songAttribute df = pd.read csv('songAttributes 1999-2019.csv')

wsr = songAttribute df.apply(lambda r: '{}---{}'.format (r.
Artist,r.Name) ,axis=1)

wsr.value counts ()

After running the preceding code, we will see that many songs have duplicate rows in
songAttributes df.

We need to find out the causes of these duplicates. We can filter out the duplicates of a few
songs and study them. For instance, from the top, we can run the following lines of codes
separately to study their output:

e songAttribute df.query("Artist == 'Jose Feliciano' and
Name == 'Light My Fire'")

» songAttribute df.query("Artist == 'Dave Matthews Band' and

Name == 'Ants Marching - Live'")

After studying the output of these codes, we will realize that there are two possible reasons
for the existence of duplicates:

« First, there might be different versions of the same song.

« Second, the data collection process may have been done from different resources.

Our study also shows that the attributes' value of these duplicates, while not identical, are
very similar.

358 Data Fusion and Data Integration

To be able to do this analysis, we need to have only one row for each song. Therefore, we
need to either remove all but one row for the songs with duplicates or aggregate them.
Either might be the right course of action, depending on the circumstances. Here, we will
drop all the duplicates except for the first one. The following code loops through the songs
with duplicate data objects in songAttributes df and uses .drop () to delete all the
duplicate data objects, except for the first one. First, the code creates doFrequencies
(do is short for data object), which is a pandas series that shows the frequencies of each
song in songAttributes_df, and loops through the elements of doFrequencies
whose frequency is higher than 1:

songAttribute df = pd.read csv('songAttributes 1999-2019.csv')
wsr = songAttribute df.apply(lambda r: '{}---{}'.format (r.
Name,r.Artist) ,axis=1)
doFrequencies = wsr.value counts ()
BM = doFrequencies>1
for i,v in doFrequencies[BM] .iteritems () :
[name,artist] = i.split('---")
BM = ((songAttribute df.Name == name) & (songAttribute
df .Artist == artist))
wdf = songAttribute df [BM]

dropping index = wdf.index[1:]

songAttribute df.drop (index = dropping index, inplace=True)

If you try running the preceding code, you will see that it will take a long time. It took
around 30 minutes on my computer. In these situations, it is nice to add some elements

to the code that give users some idea of how much the code has run and how much more
time will be needed. The following code is the same as the preceding one, but some more
elements have been added to create a mechanism for reporting the progress of the runtime.
I would suggest running the following code instead. But before doing so, compare the two
options and study how the reporting mechanism is added. Do not forget that you will need
to import the t ime module before you can run the following code. The t ime module is an
excellent module that allows us to work with time and time differences:

Example 3 (challenges 1, 3,5, and 6) 359

In [34]: M songAttribute_df = pd.read_csv('songAttributes_1999-2019.csv"')
wsr = songAttribute_df.apply(lambda r: "{}---{}'
.format(r.Name,r.Artist),axis=1)
doFrequencies = wsr.value_counts()

BM = doFrequencies>1
n_totalSongs = sum(BM)
print('Total processings: ' + str(n_totalSongs))

t = time.time()
i_progress = 0
for i,v in doFrequencies[BM].iteritems():
[name,artist] = i.split('---")
BM = ((songAttribute_df.Name == name) &
(songAttribute_df.Artist == artist))

wdf = songAttribute_df[BM]
dropping_index = wdf.index[1:]
songAttribute_df.drop(index = dropping_index, inplace=True)

i_progress +=1
if(i_progress%500==0):

print('Processed: ' + str(i_progress))
process_time = time.time() - t
print('Elapsed: ' + str(round(process_time,1)) + ' s')

estimate_finish = round((n_totalSongs-i_progress) *
(process_time/500)/60,1)
print('To finish: '
t = time.time()
print('-------- e D)

+ str(estimate_finish)+ 'mins')

Figure 12.11 - Dropping the duplicates that were added with code to report progress
Once you've successfully run the preceding code, which will take a while,
songAttributes df will not suffer from duplicate data object problems.

Next, we will check if artist df contains duplicates and address them if it does.

Checking for duplicates in artist_df

Checking the uniqueness of the data objects in artisit df is easier than it was for
the two DataFrames we looked at previously. The reason for this is that there is only one
identifying column in artist_df. There were two and three identifying columns for
songAttribute df andbillboard df.

360 Data Fusion and Data Integration

The following code reads artistDf . csvinto artisit df and uses the
.value counts () function to check if all the rows in artisit df are unique:

artist df = pd.read csv('artistDf.csv')

artist df .Artist.value_ counts()

After running the preceding code and studying its results, you will see that two rows
represent the artist Reba McEntire. Running artist df.query ("Artist == 'Reba
McEntire'") will filter out these two rows. The following screenshot displays the
outcome of running this code:

In [37]: M artist_df.query("Artist == 'Reba McEntire'")
out[37]:
X Artist Followers Genres NumAlbums YearFirstAloum Gender Gr
Reba contemporary
398 398 McEntire 974392 country,country,country 40 1977 F
dawn
Reba contemporary
716 716 McEntire 974392 country,country,co(;lanvtvrﬁ 40 1977 F

Figure 12.12 - Filtering the duplicates in artist_df

Here, we can see that the two rows are the same and that there is no need to have both
of them. The following line of code uses the . drop () function to delete one of these
two rows:

artist df.drop(index = 716, inplace=True)

After running the preceding line of code successfully, it seems that nothing has happened.
This is due to inplace=True, which makes Python update the DataFrame in place
instead of outputting a new DataFrame.

Well done! Now, we know that all of our DataFrames only contain unique data objects. We
can use this knowledge to tackle the challenging task of data integration.

We are better off if we start with the end in sight. In the next section, we will envision
and create the structure of the DataFrame we would like to have at the end of the data
integration process.

Example 3 (challenges 1, 3, 5,and 6) 361

Designing the structure for the result of data
integration

As there are more than two data sources involved, it is paramount that we have a vision in
sight for the result of our data integration. The best way to do this is to envision and create
a dataset whose definition of data objects and its attribute have the potential to answer our
analytic questions and, at the same time, can be filled by the data sources that we have.

The following screenshot shows the code that can create a dataset that contains the listed
characteristics. The definition of the data objects is songs, while the attributes can be filled
in using one of three DataFrames. Once songIntegrate df has been filled, it can help
us answer the question of what makes a song go all the way up to the top 10 on Billboard
and stay there for at least 5 weeks:

In [39]: M songIntegrate_df = pd.DataFrame(
columns = ['Name', 'Artists', 'Top_song', 'First_date_on_Billboard',
'Acousticness', 'Danceability', 'Duration', 'Energy’,
"Explicit', 'Instrumentalness', 'Liveness', 'Loudness',
'Mode', 'Speechiness', 'Tempo', 'TimeSignature', 'Valence',
'"Artists_n_followers', 'n_male_artists', 'n_female_artists',
'n_bands', 'artist_average_years_after_first_album’,
'artist_average_number_albums'])
songIntegrate_df

Out[39]:
Name Artists Top_song First_date_on_Billboard Acousticness Danceability Duration Ene

0 rows x 23 columns

Figure 12.13 - Designing and creating the result of data integration for songIntegrate_df

Most of the envisioned attributes in songIntegrate_ df are intuitive. Let's go over the
ones that might not be as obvious:

« Top_song: A binary attribute that describes if the song has been in the top 10
songs of Billboard for at least 5 weeks.

« First date on Billboard: The first date that the song was on Billboard.

e Acousticness,Danceability,Duration, Energy, Explicit,
Instrumentalness, Liveness, Loudness, Mode, Speechiness, Tempo,
TimeSignature, and Valence are the artistic properties of songs. These attributes
will be integrated into songIntegrate df from songAttribute df.

o Artists n followers: The artist's or artists' number of followers on social
media. If there is more than one artist, the summation of their number of followers
will be used.

362

Data Fusion and Data Integration

n male artistsandn female artists are the attributes that show the
gender of the artists. If one female artist has produced the song, their values will be
0 and 1, respectively. If two male artists have produced the song, their values will be
2 and 0, respectively.

n_bands: The number of bands that have been involved in producing the song.

artist average years after first album tries to capture the
experience of the artists in the business. If one artist has created the song, then a
single value will be used, and when more than one artist is involved, an average value
is used. These values will be calculated based on First date on Billboard.

artist average number albums also attempts to capture the experience

of the artists in the business. Similar to the previous attribute, if one artist has
created the song, then a single value will be used, while when more than one artist is
involved, an average value will be used.

The first four attributes will be filled using billboard_ df, the last six attributes will be
filled using artist df, and the rest will be filled using songAttribute df.

Note that the First date on Billboard attribute will be created temporarily. It will
be filled from billboard df so that when we get around to filling from artist df,
we can use First date on Billboard to calculate artist average years
after first album.

Before we start filling up songIntegrate df from the three sources, let's go over the
possibility of having to remove some songs from songIntegrate df. This might become
inevitable because the information we may need for every song on file may not exist in the
other resource. Therefore, the rest of the subsections in this example will be as follows:

Filling songIntegrate df frombillboard df
Filling songIntegrate df from songAttribute df
Removing data objects with incomplete data

Filling songIntegrate df from artist df

Checking the status of songIntegrate df

Performing the analysis

It seems that we've got a lot of ground to cover, so let's get to it. We will start by using
billboard df tofill songIntegrate df.

Example 3 (challenges 1, 3, 5,and 6) 363

Filling songintegrate_df from billboard_df

In this part of filling songIntegrate df, we will be filling the first four attributes:
Name, Artists, Top song,and First date on Billboard. Filling the first
two attributes is simpler; the latter two need some of the rows in billboard df to be
calculated and aggregated.

The challenge of filling data from billboard_ df into songIntegrate df is
two-fold. First, the definitions of the data objects in the two DataFrames are different. We
have designed the definition of the data objects in songIntegrate df to be songs,
while the definition of the data objects in billboard df is the weekly reports of songs'
billboard standings. Second, as billboard df hasa more complex definition of data
objects, it will also need more identifying attributes to distinguish between unique data
objects. For billboard df, the three identifying attributes are Name, Artists, and
Week, but for songIntegrate df, we only have Name and Artists.

The songIntegrate df DataFrame is empty and contains no data objects. Since the
definition of data objects we have considered for this DataFrame is songs, it is best to
allocate a new row in songIntegrate df for all the unique songs in billboard df.

The following code loops through all the unique songs in billboard df using nested
loops to fill songIntegrate dEf. The first loop goes over all the unique song names, so
each iteration will be processing one unique song name. As there might be different songs
with the same song name, the code does the following within the first loop:

1. First, it will filter all the rows with the song name of the iteration.

2. Second, it will figure out all Art i sts who have had a song with the song name of
the iteration.

3. 'Third, it will go over all Artists we recognized in the second step and as per each
iteration of this second loop, we will add a row to songIntegrate df.

To add a row to songIntegrate df, the following code has used the . append ()
function. This function either takes a pandas Series or a Dictionary to add it to a
DataFrame. Here, we are using a dictionary; this dictionary will have four keys, which are
the four attributes — Name, Artists, Top song, First date on Billboard - of
songIntegrate df that we intend to fill from billboard df. Filling Name and
Artists is easy as all we need to do is insert the values from billboard_df. However,
we need to make some calculations to figure out the values of Top_song and First
date on Billboard.

364 Data Fusion and Data Integration

Study the following code and try to understand the logic behind the parts of the code
that try to calculate these two attributes. For Top_song, try to see if you can connect
the logic to what we are trying to do. Go back to the very first paragraph in this
example. For First date on Billboard, the code has assumed something about
billboard df. See if you can detect what that assumption is and then investigate if
that assumption is reliable.

Now, it is time for you to give the code a try. Just a heads-up before you hit run: it might
take a while to finish. It will not be as lengthy as the preceding code to run, but it won't be
instantaneous either:

SongNames = billboard df.Name.unique ()
for i, song in enumerate (SongNames) :
BM = billboard df.Name == song
wdf = billboard df [BM]
Artists = wdf.Artists.unique ()
for artist in Artists:
BM = wdf.Artists == artist
wdf2 = wdf [BM]
topsong = False
BM = wdf2['Weekly.rank'] <=10
if (len(wdf2 [BM]) >=5) :
topsong = True
first date on billboard = wdf2.Week.iloc[-1]
dic_append = {'Name':song, 'Artists':artist, 'Top
song':topsong, 'First date on Billboard': first date
on_billboard}

songIntegrate df = songIntegrate df.append(dic_append,
ignore index=True)

After successfully running the preceding code, print songIntegrate df to study the
state of the DataFrame.

Example 3 (challenges 1, 3, 5,and 6) 365

The challenge we just faced and addressed here can be categorized as Challenge 3 - index
mismatched formatting. This particular challenge is more difficult as not only do we have
different index formatting but also we have different definitions of data objects. To be able
to perform data integration, we had to refrain from declaring the identifying attributes as
indexes. Why? Because that would not help our data integration goal. However, having

to do that also forced us to take things into our hands and use loops instead of simpler
functions such as . join (), as we saw in Example 1 (challenges 3 and 4) and Example 2
(challenges 2 and 3).

Next, we will fill in some of the remaining attributes of songIntegrate df from
songAttribute df. Doing this will challenge us somewhat differently; we will have to
deal with Challenge 1 - entity identification.

Filling songintegrate_df from songAttribute_df

The challenge we have to reckon with in this part of data integration is entity identification.
While the definitions of the data objects for both songIntegrate df and
songAttribute df are the same - that is, songs — the way the unique data objects are
distinguished in the two DataFrames is different. The crux of the difference goes back to
the songIntegrate df.Artistsand songAttribute df.Artist attributes; pay
attention to the plural of Artists and the singular of Artist. You will see that the songs
that have more than one artist are recorded differently in these two DataFrames. However,
in songIntegrate df, all of the artists of a song are included in the songIntegrate
df .Artists attribute, separated by commas (,); in songAttribute df, only the
main artist is recorded in songAttribute df.Artist and if other artists are involved
in a song, they are added to songAttribute df.Name. This makes identifying the
same songs from the two DataFrames very difficult. So, we need to have a plan before we
approach data integration here.

The following table shows the five different situations where the same songs entered our
two sources. Let's answer two questions about these five situations.

First, how did we come up with these five situations? That is an excellent question. When
dealing with the entity identification challenge, you will need to study the sources of the
data and figure out how to work with the identifying attributes in the sources. Then, you
can use a computer to connect the rows that are for the same entity but not coded the
same way. So, the answer to this question is that we just studied the two sources enough to
realize that these five situations exist.

366 Data Fusion and Data Integration

Second, what do we do with these situations? Answering this question is simple. We will
use them to draft some code that will connect the identifiable songs from both sources to
connect and integrate the datasets:

Situations Description Example

Artists Name

songIntegrate df
- 16 Taylor Swift You Need To Calm Down

Situation | - Songs with only one artist
1 - Songs with unique song names Artist Name
songAttribute df
- 154047 Taylor Swift You Need To Calm Down
- Songs with only one artist Artists Name
- Songs with non-unique song names songIntegrate df
To see the difference between situations 1and - 9 Jonas Brothers Sucker
Situation | 2,run and compare the following code: Artist Name
2 - songAttribute_ df.query("Name ==
'Sucker'") songAttribute df 21644 New Found Glory Sucker

- songAttribute df.query("Name ==

"You Need To Calm Down'") 154557 Jonas Brothers Sucker

Artists Name
. . songIntegrate df
Situation Songs with more than one artist - 6 Ed Sheeran, Justin Bieber | Don't Care
3 Both artists are recognized in both sources but Artist Name
in different ways songAttribute df
- 154921 Ed Sheeran | Don't Care (with Justin Bieber)
Artists Name
5 . songIntegrate df N N
Situation Songs with more than one artist but only - 12 Chris Brown No Guidance
songAttribute df recognizes the second
4 artist - Artist Name
! songAttribute df
- 154214 Chris Brown No Guidance (feat. Drake)
Artists Name
songIntegrate df
Situation Songs with more than one artist but only 137 DJ Sammy, Yanou Heaven
5 songIntegrate_df recognizes the second Artist Name
artist songAttribute df

22487 DJ Sammy Heaven

Figure 12.14 - Five situations in the integration of songIntegrate_df with songAttribute_df due to the

entity identification challenge

The following code, which is rather long, uses the five extracted situations from the
preceding diagram and all the other coding capabilities we've picked up in this book to
perform the integration task. The code loops through the rows of songIntegrate df
and searches for any rows in songAttribute_df that have listed the song. The code
employes the five situations we've extracted to create the preceding diagram as a guideline
to search for songAttribute df.

Before you look at the following code, allow me to bring your attention to a quick matter.
Since the code is lengthy, it's been commented to help you decipher it. Python line
comments can be created using #, so, for example, when you see # Situation 1, that
means what's coming has been created by our understanding of situation 1.

Example 3 (challenges 1, 3,5, and 6) 367

Now, spend some time using the preceding diagram and the code in the following
screenshot to understand how the connection between songIntegrate df and
songAttribute df has been made:

In [42]: M adding_columns = ['Acousticness','Danceability"’,'Duration’,'Energy"', 'Explicit’,'Instrumentalness’,
‘Liveness', 'Loudness', 'Mode', 'Speechiness', 'Tempo', 'TimeSignature', 'Valence']
template = 'Index= {} - The song {} by {} was integrated using sitution {}.°'
for i, row in songIntegrate_df.iterrows():
filled = False
Artists = row.Artists.split(',")
Artists = list(map(str.strip,Artists))
Situation 1
BM = songAttribute_df.Name == row.Name
if(sum(BM) == 1):
for col in adding_columns:
songIntegrate_df.loc[i,col]= songAttribute_df[BM][col].values[0@]
filled = True
print(template.format(i,row.Name,row.Artists,1))
Situation 2
elif(sum(BM) > 1):
wdf = songAttribute_df[BM]
if(len(Artists)==1):
BM2 = wdf.Artist.str.contains(Artists[0])
if(sum(BM2)==1):
for col in adding_columns:
songIntegrate_df.loc[i,col]= wdf[BM2][col].values[@]
filled = True
print(template.format(i,row.Name,row.Artists,2))
Situation 3
if((not filled) and len(Artists)»>1):
BM2= (songAttribute_df.Name.str.contains(row.Name)&songAttribute_df.Artist.isin(Artists))
if(sum(BM2)==1):
for col in adding_columns:
songIntegrate_df.loc[i,col]= songAttribute_df[BM2][col].values[@]
filled = True
print(template.format(i,row.Name,row.Artists,3))
if(not filled):
Situation 4
BM2 = songAttribute_df.Name.str.contains(row.Name)
if(sum(BM2)==1):
for artist in Artists:
if(artist == songAttribute_df[BM2].Artist.iloc[0]):
for col in adding_columns:
songIntegrate_df.loc[i,col]= songAttribute_df[BM2][col].values[0@]
filled = True
print(template.format(i,row.Name,row.Artists,4))
Situation 5
if(sum(BM2)>1):
wdf2 = songAttribute_df[BM2]
BM3 = wdf2.Artist.isin(Artists)
if(sum(BM3)>0):
wdf3 = wdf2[BM3]
for i3, row3 in wdf3.iterrows():
if(row3.Name == row.Name):
for col in adding_columns:
songIntegrate_df.loc[i,col]= row3[col]
filled = True
print(template.format(i,row.Name,row.Artists,5))

Figure 12.15 - Creating the connection between songlIntegrate_df and songAttribute_df

368 Data Fusion and Data Integration

After successfully running the preceding code, which might take a while, spend some
time studying the report it provided. If you have paid attention, then you'll know that the
code is printed out every time a connection between songs is found. This also happens if
the connection was possible. Study the printout to see the frequencies of the situations.
Answer the following questions:

o Which situation was the most frequent?
o Which situation was the least frequent?

o Were all of the rows in songIntegrate df filled in with the values found in
songAttribute df?

The answer to the last question is no - running songIntegrate df.info () will
only show you that 4,045 out of 7,213 rows were filled from songAttribute df. A
critical question to answer regarding this data not being filled completely is to see if there
is meaningful discrimination between the top songs and not the top song. If there is any
meaningful discrimination, then the values listed in songAttribute_ df become much
less valuable. This is because our goal is to study the impact that the song attributes have
on the song becoming a top song. So, let's study this before moving on to the next filling.

The following screenshot shows the contingency table for the two binary variables,
songIntegrate df.Top_ song, and the missing values. It also shows the p-value of
the chi-square test of association:

In [45]: M B_MV = songlIntegrate_df.Acousticness.isna()
B_MV.rename('Missing Values',inplace=True)
contigency_table = pd.crosstab(songIntegrate_df.Top_song,B_MV)
contigency_table

Out[45]:
Missing Values False True

Top_song

False 3618 2874
True 427 294

In [46]: M from scipy.stats import chi2_contingency
p_value = chi2_contingency(contigency_table)[1]
p_value

Out[46]: ©.07952275342130063

Figure 12.16 - The code and their output for studying if missing values in songIntegrate_df after
integrating with songAttribute_df are meaningfully connected to songIntegrate_df.Top_song

Example 3 (challenges 1, 3,5, and 6) 369

After studying the preceding screenshot, we can conclude that there is not enough
evidence for us to reject the hypothesis that the missing values don't have a relationship
with the songs being a top song or not.

This makes our job easier as we won't need to do anything but remove the rows that

don't contain values before we start using artist df to fill songIntegrate df. The
following code uses the . drop () function to delete the rows in songIntegrate df
that songAttribute df failed to fill. Note that the B MV variable comes from the code
in the preceding screenshot:

dropping index = songIntegrate df[B MV] .index

songIntegrate df.drop (index = dropping index, inplace=True)

Successfully running the preceding code and before moving on to the next step, which
isusing artist df to fill the rest of songIntegrate df,run songIntegrate
df.info () to evaluate the state of the DataFrame and ensure that the drops went

as planned.

Filling songintegrate_df from artist_df

The last six attributes of songIntegrate df, whichareArtists n followers,

n male artsits,n female artsits,n bands,artist average years
after first album,and artist average number albums, will be filled

from artist_df. The entity identification challenge that we face here is much simpler
than what we did when integrating songIntegrate df and songAttribute df.
The definitions of the data objects in artist df are artists, and that is only one part of
the definition of the data objects in songIntegrate df. All we need to do is find the
unique artist or artists of each song of songIntegrate df inartist df and then fill
in songIntegrate df.

All of the attributes we need to fill in here need information from artist_df, but there
will be no direct filling. All of the aforementioned attributes will need to be calculated
using the information from artist_df.

370 Data Fusion and Data Integration

Before data integration is possible, we will need to perform one pre-processing task on
artist df. We need to make artist df searchable by the name of the artist; that
is, we must set the index of artist df as Artist. The following line of code makes
sure that happens. The following code also drops the X column, which will not serve any
purpose at this point:

artist df = artist df.set index('Artist') .drop(columns=['X"'])

Now, before moving on to the data integration part, give the searchable artist df a
chance to show you how easy it can gather the information of each artist. For example, try
artist df.loc['Drake'] or any other artist you may know of.

The code in the following screenshot loops through all the rows of songIntegrate df
to find the needed information about the songs' artists and fill up the last six attributes

of songIntegrate df.In each iteration, the code separates the artists of the songs

in songIntegrate df and checksifartists df contains the information of all

of the song's artists. If not, the code terminates as there is not enough information in
artist_df to fill out the six attributes. If this information exists, the code assigns zero to
all six new attributes and then, within some conditional and logical calculations, updates
the zero values.

Before you get your teeth into this rather large piece of code, a few words of caution. First,
the lines of code are rather long, so they may have been cut into more than one line. There
are two different ways to cut a line of code into more lines. The better method is called
implicit line continuation; whenever the line breaks after a parenthesis, (, a curly brace,

{, or square bracket, [, Python assumes there is more to come and automatically goes to
the next line while looking for it. The other method - the one we try to avoid if we can - is
known as explicit line continuation and is where Python will not go looking for more in
the next line unless we explicitly request this by using a backslash, \, at the end of the line.

The second word of caution is that the code uses what is called augmented arithmetic
assignment to save space when writing code. These types of assignments are used to
avoid writing the same variable twice when the calculation of the new value of the variable
involves the old value of the variable. For instance, you can write x+=1 instead of x = x
+1, or you can write y/=5 instead of y = y/5. Augmented arithmetic assignment has
been used in multiple places throughout the following code:

Example 3 (challenges 1, 3, 5,and 6) 371

In [52]: M for i,row in songIntegrate_df.iterrows():
Artists = row.Artists.split(',")
Artists = list(map(str.strip,Artists))
ArtistsIn_artist_df = True
for artist in Artists:
if(artist not in artist_df.index.values):
ArtistsIn_artist_df= False
break
if(not ArtistsIn_artist_df):
continue

songIntegrate_df.loc[i, "‘Artists_n_followers'] = @
songIntegrate_df.loc[i, 'n_male_artists'] = @

songIntegrate_df.loc[i, 'n_female_artists'] = @
songIntegrate_df.loc[i, 'artist_average_years_after_first_album'] = @
songIntegrate_df.loc[i, 'artist_average_number_albums'] = @
songIntegrate_df.loc[i, 'n_bands'] = @

for artist in Artists:
songIntegrate_df.loc[i, ‘Artists_n_followers'] += artist_df.loc[artist].Followers
if(artist_df.loc[artist]['Group.Solo']=="Solo"):

if(artist_df.loc[artist].Gender == 'M"):
songIntegrate_df.loc[i, 'n_male_artists'] += 1
if(artist_df.loc[artist].Gender == 'F'):

songIntegrate_df.loc[i, 'n_female_artists'] += 1

if(artist_df.loc[artist]['Group.Solo']=="Group"'):

if(artist_df.loc[artist].Gender == 'M'):
songIntegrate_df.loc[i, 'n_male_artists'] += 2
if(artist_df.loc[artist].Gender == 'F'):

songIntegrate_df.loc[i, 'n_female_artists'] += 2
songIntegrate_df.loc[i, 'n_bands'] += 1
First_date_on_Billboard = int(row.First_date_on_Billboard[:4])
songIntegrate_df.loc[i, 'artist_average_years_after_first_album'] += \
(First_date_on_Billboard - int(artist_df.loc[artist].YearFirstAlbum))

songIntegrate_df.loc[i,
‘artist_average_number_albums'] += int(artist_df.loc[artist].NumAlbums)

songIntegrate_df.loc[i, 'artist_average_years_after_first_album'] /= len(Artists)
songIntegrate_df.loc[i, 'artist_average_number_albums'] /= len(Artists)

Figure 12.17 - Filling up the last six attributes of songIntegrate_df

You may have noticed that the code adds 2 ton_male artists when the song's artist
is a group and the gender is listed as male, while it adds 2 ton_female artists when
the song's artist is a group and the gender is listed as female. This includes the assumption
that all the groups have only two artists. As we don't have other sources so that we can be
more accurate about these situations, this is a reasonable assumption that lets us continue
while avoiding the infliction of too much bias in the data. However, this assumption must
be communicated if the results are going to be presented to any interested decision-maker.

372 Data Fusion and Data Integration

After successfully running the preceding code, run songIntegrate df.info () to
investigate how many of the rows in songIntegrate df were completed using the
information from artist _df. You will see that 3,672 out of 4,045 songs were completed.
While this is the major portion of songIntegrate_ df, we still need to make sure that
there are no missing values due to reasons connected to the songs being top songs or not.
So, we will do a similar analysis to what we did for Figure 12.16. The following screenshot
shows the result of the same analysis with the updated songIntegrate df:

In [54]: M B_MV = songIntegrate df.Artists_n_followers.isna()
B_MV.rename('Missing Values',inplace=True)
contigency_table = pd.crosstab(songIntegrate_df.Top_song,B_MV)
contigency_table

Out[54]:
Missing Values False True

Top_song

False 3280 338

True 392 35

In [55]: M from scipy.stats import chi2_contingency
p_value = chi2_contingency(contigency_table)[1]
p_value

Out[55]: ©.4931640410927335

Figure 12.18 - The code and their output for studying if missing values in songIntegrate_df after

integrating with artist_df are meaningfully connected to songIntegrate_df. Top_song

After studying the preceding screenshot, we can see that there is no meaningful pattern
that points to the possible connection between a song being a top song and its tendency to
have missing values at this juncture. So, we can comfortably remove the rows with missing
values and proceed. The following line of code does the prescribed removal:

droping indices = songIntegrate df [B_MV].index.values
songIntegrate df.drop(index = droping indices, inplace=True)

The preceding code uses the .drop () function to delete the rows in songIntegrate
df that artist df failed to fill. Note that the B MV variable comes from the code in the
preceding screenshot.

Example 3 (challenges 1, 3, 5,and 6) 373

Congratulations - you have integrated these three data sources! This was due to your
excellent understanding of data structures and your capability to see the definitions of
data objects in each of these sources. Furthermore, you were able to envision a dataset that
could house the information from all the sources and, at the same time, be useful for your
analytic goals.

Before we proceed to the analysis, we need to tackle another challenge. Whenever we
bring data together from different sources, we may have inadvertently created a case that
we called data redundancy earlier (Challenge 6 — data redundancy). As we mentioned
previously, data redundancy is where you repeat the same attribute but where you repeat
the same information.

Checking for data redundancy

As we mentioned previously, this part deals with Challenge 6 - data redundancy. Even
though we've never dealt with this challenge before in this book, we've seen many
examples of investigating the relationships between attributes. If there are attributes in
songIntegrate df that have a strong relationship with each other, that can be our red
flag for data redundancy. It's as simple as that!

So, let's get to it. First, we will use correlation analysis to investigate the relationship
between the numerical attributes. Then, we will use box plots and t-tests to investigate the
relationship between numerical attributes and categorical ones.

We would have investigated the relationships between categorical attributes as well if

we didn't only have one categorical attribute. If you do have more than one categorical
attribute, to evaluate data redundancy, you would need to use contingency tables and the
chi-squared test of independence.

Checking for data redundancy among numerical attributes

As we mentioned previously, to evaluate the existence of data redundancy, we will use
correlation analysis. If the correlation coeflicient between two attributes is two high (we
will use the rule thumb of 0.7), then this means that the information presented in the two
attributes is too similar and there might be a case of data redundancy.

374 Data Fusion and Data Integration

The following code uses the . corr () function to calculate the correlation between

the numerical attributes that are explicitly listed in num_atts. The code also uses a
Boolean mask (BM) to help our eyes find the correlation coefficient that is either greater
than 0.7 or smaller than -0.7. Pay attention to the reason why the code had to include
.astype (float): during the data integration process, some of the attributes may have
been carried over as strings instead of numbers:

num atts = ['Acousticness', 'Danceability', 'Duration',
'Energy', 'Instrumentalness', 'Liveness',6 'Loudness', 'Mode',
'Speechiness', 'Tempo',6 'TimeSignature',6 'Valence', 'Artists n
followers', 'n male artists', 'n female artists', 'n bands',
'artist average years after first album', 'artist average
number albums']

corr Table = songIntegrate df [num atts] .astype (float) .corr()

BM = (corr Table > 0.7) | (corr Table<-0.7)

corr Table [BM]

After running the preceding code successfully, a correlation matrix will appear that has
NaN for most of the cells, but only for the ones that have had a correlation coefhicient
that's either greater than 0. 7 or smaller than - 0. 7. You will notice that the only flagged
correlation coefficient is between Energy and Loudness.

It makes sense that these two attributes have a relationship with one another. As these
attributes come from the same source, we will put our confidence in the creators of these
attributes that they do show different values and that around 30% of the information that
is different between the two is worth keeping.

Here, we can conclude that there are no issues regarding data redundancy between the
numerical attributes. Next, we will investigate whether the relationships between the
categorical attributes and the numerical attributes are too strong.

Checking for data redundancy between numerical and categorical
attributes

To evaluate if there is data redundancy, similar to what we did for the numerical attributes,
we need to examine the relationship between the attributes. As the attributes are of
different natures - that is, numerical and categorical — we need to use boxplots and t-tests.

Example 3 (challenges 1, 3, 5,and 6) 375

The only categorical attribute that has been integrated and has analytic values at this point
is the Explicit attribute. Why not the top_song attribute? The top song does have

an analytic value for us - in fact, it is the hinge of our analysis - but it was not integrated
from different sources. Instead, was calculated for our analysis. Once we get to the analysis
part of this example, we will look at the relationship between this attribute and all the
other ones. Why not Name or Artists? These are merely identifying columns. Why not
First date on Billboard? This was a temporary attribute to allow us to perform
calculations where we needed information from more than one source of data. This
attribute will be dropped before the analysis.

The following code creates the box plots that show the relationship between the numerical
attribute and the categorical attribute; that is, Explicit. Furthermore, the code uses the
ttest ind() function from scipy.stats to run the t-test:

from scipy.stats import ttest ind

for n att in num atts:
sns.boxplot (data=songIntegrate df, y=n att,x='Explicit!')
plt.show ()
BM = songIntegrate df.Explicit == True

print (ttest ind(songIntegrate df [BM] [n_att],
songIntegrate df [~BM] [n_att]))

After running the preceding code, per each numerical attribute, a box plot and the

result of the t-test that evaluates the relationship between the Explicit attribute

and the numerical attribute will appear. After studying the output, you will realize that
the Explicit attribute has a relationship with all the numerical attributes except for
Loudness, Mode, and Valence. As it is very unlikely that the Explicit attribute will
contain any new information that has not already been included in the data, we will flag
Explicit for possible data redundancy.

Note that we will not necessarily need to remove Explicit at the data preprocessing
stage. How we will deal with data redundancy will depend on the analytic goals and the
tools. For instance, if we intend to use a decision tree to see the multivariate patterns
that lead to a song being a top song or not, then we won't need to do anything about the
data redundancy. This is because the decision tree has a mechanism for selecting the
features (attributes) that help with the success of the algorithm. On the other hand, if we
are using K-means to group the songs, then we would need to remove Explicit as the
information has already been introduced in the other attributes. If we include it twice,
then it will create bias in our results.

376 Data Fusion and Data Integration

The analysis

Finally, the data sources are appropriately integrated into songIntegrate df and

the dataset is ready for analysis. Our goal is to answer the question of what makes a song
become a top song. There is more than one approach we can adopt here to answer this
question, now that the data has been preprocessed. Here, we will use two of them. We will
use data visualization to recognize the univariate patterns of top songs, and we will use a
decision tree to extract the multi-variate patterns.

We will start with the data visualization process.

Before we start, there is no need to remove the Explicit attribute for any of the
aforementioned analytic tools due to the attribute being flagged as redundant. As we
mentioned previously, the decision tree has a smart mechanism for feature selection, so
for data visualization, keeping Explicit will only mean one more simple visualization
that does not interfere with the other visualizations.

The data visualization approach to finding patterns in top songs

To investigate what makes a song become a top song, we can investigate the relationship
that all the other attributes in songIntegrate df have with the Top song attribute
and see if any meaningful pattern emerges.

The following code creates a box plot for each of the numerical attributes in
songIntegrate df to investigate if the value of the numerical attribute changes in two
populations: top songs and not top songs. The code also outputs the result of a t-test that
answers the same question statistically. Furthermore, the code outputs the median of the
two populations in case it is hard to recognize the minute comparisons between the values
of the two populations in the box plots:

from scipy.stats import ttest ind

for n _att in num atts:
sns.boxplot (data=songIntegrate df, y=n att,x='Top song')
plt.show ()
BM = songIntegrate df.Top song == True

print (ttest ind(songIntegrate df [BM] [n_att], songIntegrate
df [~BM] [n_att]))

dic = {'not Top Song Median': songIntegrate df [~BM] [n att].
median (), 'Top Song Median': songlIntegrate df [BM] [n_att].
median () }

print (dic)

Example 3 (challenges 1, 3,5, and 6) 377

Moreover, the following code outputs a contingency table that shows the relationship
betweenn the two categorical attributes; that is, songIntegrate df.Top_ songand
songIntegrate df.Explicit.Italso prints out the p-value of the chi-squared test
of independence for these two categorical attributes:

from scipy.stats import chi2 contingency

contingency table = pd.crosstab (songIntegrate df.Top song,
songIntegrate df.Explicit)

print (contingency table)

print ('p-value = {}'.format (chi2 contingency (contingency table)
[11))

After studying the outputs of the two preceding pieces of code, we may come to the
following conclusions:

o There is no evidence to reject the null hypothesis that the Top song attribute does
not have a relationship with the Duration, Energy, Instrumentalness,
Liveness, Loudness, Mode, Speechiness, Explicit, and TimeSignature
attributes. This means that the top songs cannot be predicted by looking at the values
of these attributes.

+ The top songs tend to have smaller values on the Acousticness, Tempo,
n male artists,n bands,artist average years after first
album,and artist average number albums attributes.

« The songs that have greater values for the Danceability, Valence,
Artists n followers,n female artists attributes tend to become top
songs more often.

Of course, these patterns sound too general, and they should be; this is because they
are univariate. Next, we will apply a decision tree to figure out the multivariate patterns,
which may help us understand how a song becomes a top song.

The decision tree approach to finding multivariate patterns in
top songs

As we discussed in Chapter 7, Classification, decision trees are famous for being
transparent and being able to render useful multivariate patterns from the data. Here, we
would like to use the decision tree algorithm to see the patterns that lead to a song raising
to the top 10 list of the billboard.

378 Data Fusion and Data Integration

The following code uses DecisionTreeClassifier from sklearn. tree to create a
classification model that aims to find the relationships between the independent attributes
and the dependent attribute; that is, Top_song. Once the model has been trained using
this data, the code will use graphvi z to visualize the trained decision tree. At the end

of the code, the extracted graph will be saved in a file called TopSongDT . pdf. After
successfully running this code, you should be able to find the file in the same folder where
you have the Jupyter Notebook file.

Attention!

If you have never used graphvi z on your computer before, you may have to
install it first.

To install graphviz, all you need to do is run the following piece of code. After successfully
running this code once, graphviz will be installed on your computer for good:

pip install graphviz

Before running the following code, note that the decision tree model that is used in the
following code has already been tuned. In Chapter 7, Classification, we mentioned that
tuning decision trees is very important. However, we have not covered how to do it in this
book. The hyperparameters and their tuned values are criterion= 'entropy',
max_depth= 10,min samples split= 30,and splitter= 'best'

from sklearn.tree import DecisionTreeClassifier, export
graphviz

import graphviz

y = songIntegrate_df.Top_song.replace({True:'Top
Song',False: 'Not Top Song'})

Xs = songIntegrate df.drop(columns = ['Name', 'Artists', 'Top
song', 'First date on Billboard'l])

classTree = DecisionTreeClassifier (criterion= 'entropy', max
depth= 10, min samples split= 30, splitter= 'best')
classTree.fit (Xs, y)

dot data = export graphviz(classTree, out file=None, feature
names=Xs.columns, class names=['Not Top Song', 'Top Song'l],
filled=True, rounded=True, special characters=True)

graph = graphviz.Source (dot data)
graph.render (filename="'TopSongDT')

Example 3 (challenges 1, 3,5, and 6) 379

After successfully runing the preceding code, the TopSongDT . pdf file will be saved

on your computer, which contains the visualized decision tree. This tree is shown in the
following diagram. In this instance, this diagram has not be shared with you so that you
can study it; as you can see, the decision tree is rather large and our space is very small.
However, you can see that there are a lot of meanigful multi-variate patterns forming the
data, which can help us predict the top songs:

Figure 12.19 - A decision tree that visualizes the multivariate patterns of the top songs

Open TopSongDT . pdf on your own and study it. For instance, you will see that the
most important attribute for a distinction between top songs and non-top songs is
Artists n followers. For another example, if the song does not have artists with
high followings, the best shot the song has at becoming a top song is that the song is
explicit, danceable, and from artists with less experience. There are many more useful
patterns like this in the decision tree. Continue studying TopSongDT . pdf to find them.

Example summary

In this example, we performed many steps to get to a point where songIntegrate df
was in a state where we were able to perform analysis and find useful information. To jog
our memory, these are the steps that we took:

Checked for duplicates in all three data sources

Designed the structure of the final and integrated dataset

Integrated the data sources in three steps

Checked for data redundancy

A

Performed analysis

Now, let's summarize the chapter.

380 Data Fusion and Data Integration

Summary

Congratulations on your excellent progress in this chapter. First, we learned the difference
between data fusion and data integration before becoming familiar with six common

data integration challenges. Then, through three comprehensive examples, we used the
programming and analytic tools that we've picked up throughout this book to face these
data integration challenges and preprocess the data sources so that we were able to meet
the analytic goals.

In the next chapter, we will focus on another data preprocessing concept that is crucial,
especially for algorithmic data analytics due to the limitations of computational resources:
data reduction.

Before you start your journey on data reduction, take some time and try out the following
exercises to solidify your learning.

Exercise

1. Inyour own words, what is the difference between data fusion and data integration?
Provides examples other than the ones given in this chapter.

2. Answer the following question about Challenge 4 - aggregation mismatch. Is this
challenge a data fusion one, a data integration one, or both? Explain why.

3. How come Challenge 2 — unwise data collection is somehow both a data cleaning
step and a data integration step? Do you think it is essential that we categorize an
unwise data collection under data cleaning or data integration?

4. In Example 1 of this chapter, we used multi-level indexing using Date and Hour
to overcome the index mismatched formatting challenge. For this exercise, repeat
this example but this time, use single-level indexing using the Python DataTime
object instead.

5. Recreate Figure 5.20 from Chapter 5, Data Visualization, but instead of using WH
Report_ preprocessed.csv, integrate the following three files yourself first: WH
Report.csv, populations.csv, and Countries.csv. Hint: information
about happiness indices come from WH Report . csv, information of the
countries comes from Countries.csv, and population information comes from
populations.csv.

6. In Chapter 6, Prediction, Exercise 2, we used ToyotaCorolla preprocessed.
csv to create a model that predicts the price of cars. In this exercise, we want to
do the preprocessing ourselves. Use ToyotaCorolla.csv to answer the
following questions:

Exercise 381

a) Are there any concerns regarding level I data cleaning? If so, address them
if necessary.

b) Are there any concerns regarding level II data cleaning? If so, address them
if necessary.

c) Are there any concerns regarding level III data cleaning? If so, address them
if necessary.

d) Are there any attributes in ToyotaCorolla.csv that can be considered
redundant?

e) Apply LinearRegression from sklearn.linear model. Did you have
to remove the redundant attributes? Why/why not?

f) Apply MLPRegressor from sklearn.neural network. Did you have to
remove the redundant attributes? Why/why not?

We would like to use the Universities.csv file to put the universities into
two meaningful clusters. However, the data source has many issues, including data
cleaning levels I - IIT and data redundancy. Do the following:

a) Deal with data cleaning issues.
b) Deal with data redundancy issues.

c¢) Use any column necessary except for State and Public (1)/ Private
(2) to find the two meaningful clusters.

d) Perform centroid analysis and name each cluster.

e) Find out if the newly created categorical attribute cluster has a relationship with
either of the two categorical attributes we intentionally did not use for clustering:
Stateor Public (1)/ Private (2).

In this exercise, we will see an example of data fusion. The case study that we will
use in this exercise was already introduced in the data fusion example for this
chapter, so please go back and read it again before continuing with this exercise.

In this example, we would like to integrate Yield.csv and Treatment.csv to
see if the amount of water can impact the amount of yield.

Do the following to make this happen:

a) Usepd.read csv () toread Yield.csvtoyield df,and read
Treatment.csvinto treatment df.

b) Draw a scatterplot of the points in treatment df. Use the dimension of color
to add the amount of water that has been dispensed from each point.

382 Data Fusion and Data Integration

c) Draw a scatterplot of the points in yield df. Use the dimension of color to add
the amount of harvest that has been collected from each point.

d) Create a scatterplot that combines the visual in Steps b and c.

e) From the scatterplots in the preceding steps, we can deduce that the water
stations are equidistant from one another. Based on this realization, calculate the
distance between the water points, and call it radius. We are going to use this
variable in the following set of calculations.

e) First, use the following code to create the calculateDistance () function:
import math
def calculateDistance(xl,yl,x2,y2) :
dist = math.sqrt ((x2 - x1)**2 + (y2 - yl)**2)

return dist

Then, using the following code and the preceding function we just created, create
the waterRecieved () function so that we can apply it to the function for the
rows of treatment df:
def WaterReceived(r) :
w =20
for i, rr in treatment df.iterrows():

distance = calculateDistance (rr.longitude,
rr.latitude, r.longitude, r.latitude)

if (distance< radius) :
w= W + rr.water * ((radius-distance) /radius)

return w

a) Apply waterRecieved () to the rows of yield df and add the newly
calculated value for each row to the water column.

b) Study the newly updated yield df. You just fused these two data sources. Go
back and study these steps, especially the process of creating the waterRecieved ()
function. What are the assumptions that made this data fusion possible?

c) Draw a scatterplot of the yield df.harvest andyield df.water attributes.
Do we see any impact that yield df.waterhasonyield df.harvest?

d) Use the correlation coefficient to confirm your observation from the previous step.

13
Data Reduction

We have come to yet another important step of data preprocessing that is not concerned
with data cleaning; this is known as data reduction. To successfully perform analytics, we
need to be able to recognize situations where data reduction is necessary and know the
best techniques and the how-to of their implementation. In this chapter, we will learn what
data reduction is. Let's put this another way: we will learn what the data pre-processing
steps are that we call data reduction. Furthermore, we will cover the major reasons and
objectives of data preprocessing. Most importantly, we will look at a categorized list of
data reduction tools and learn what they are, how they can help, and how we can use
Python to implement them.

In this chapter, we are going to cover the following main topics:

The distinction between data reduction and data redundancy
Types of data reduction
Performing numerosity data reduction

Performing dimensionality data reduction

384 Data Reduction

Technical requirements

You can find the code and dataset for this chapter in this book's GitHub repository
athttps://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. You can find Chapter13 in this repository and
download the code and data for a better learning experience.

The distinction between data reduction and
data redundancy

In the previous chapter, Chapter 12, Data Fusion and Data Integration, we discussed

and saw an example of the data redundancy challenge. While data redundancy and
data reduction have very similar names and their terms use words that have connected
meanings, the concepts are very different. Data redundancy is about having the same
information presented under more than one attribute. As we saw, this can happen when
we integrate data sources. However, data reduction is about reducing the size of data due
to one of the following three reasons:

« High-Dimensional Visualizations: When we have to pack more than three to five
dimensions into one visual, we will reach the human limitation of comprehension.

« Computational Cost: Datasets that are too large may require too much
computation. This might be the case for algorithmic approaches.

o Curse of Dimensionality: Some of the statistical approaches become incapable of
finding meaningful patterns in the data because there are too many attributes.

In other words, data redundancy is a characteristic that a dataset may have. This
characteristic is about having redundant data in the dataset, so we may have to take some
actions. On the other hand, data reduction is a set of actions that we can take to reduce
the size of data due to the aforementioned reasons.

When we remove some part of a dataset due to its data redundancy, can we call the
removal part data reduction? After all, we are removing and reducing the dataset. In

the general sense of the term reduction, yes, the dataset is being reduced, but in the
context of data mining, the terms data reduction and data redundancy have specific
meanings. And based on those specific meanings, as described previously, the answer to
the question is no.

Now that we've learned about the distinction between data redundancy and data
reduction, let's learn how to assess the success of a data reduction operation.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Types of data reduction 385

The objectives of data reduction

Successful data reduction seeks to achieve the following two objectives at the same time.
First, data reduction seeks to obtain a reduced representation of the dataset that is much
smaller in volume. Second, it tries to closely maintain the integrity of the original data,
which means making sure that data reduction will not lead to including bias and critical
information being lost in the data.

As shown in the following diagram, these two objectives can be contradictory and when
performing data reduction actions, the two objectives must be taken into consideration at
the same time so that one is not overshadowed by the other:

Obtain a reduced representation
of the dataset that is much
smaller in volume

/

Closely maintain the integrity
of the original dataset

Figure 13.1 - The counterbalancing objectives of data reduction

With these two objectives in mind, we will look at examples of data reduction and how
we can ensure both objectives are met. However, before we do that, let's categorize the
different methods of data reduction so that we can give our content a nice structure.

Types of data reduction

There are two types of data reduction methods. They are called numerosity data
reduction and dimensionality data reduction. As their names suggest, the former
performs data reduction by reducing the number of data objects or rows in a dataset,
while the latter performs data reduction by reducing the number of dimensions or
attributes in a dataset.

386 Data Reduction

In this chapter, we will cover three methods for numerosity reduction and six methods
for dimensionality reduction. The following are the numerosity reduction methods we
will cover:

« Random Sampling: Randomly selecting some of the data objects to avoid
unaffordable computational costs.

« Stratified Sampling: Randomly selecting some of the data objects to avoid the
unaffordable computational costs, all the while maintaining the ratio representation
of the sub-populations in the sample.

« Random Over/Under Sampling: Randomly selecting some of the data objects
to avoid the unaffordable computational costs, all the while creating a prescribed
representation of the sub-populations in the sample.

The following are the dimensionality reduction methods we will cover:

 Linear Regression: Using regression analysis to investigate the predictive power
of independent attributes to predict a specific dependent attribute

« Decision Tree: Using the decision tree algorithm to investigate the predictive power
of the independent attributes to predict a specific dependent attribute

« Random Forest: Using the random forest algorithm to investigate the predictive
power of the independent attributes to predict a specific dependent attribute

+ Brute-force Computational Dimension Reduction: Computational
experimentations to figure out the best subset of independent attributes that leads
to the most successful prediction of the dependent attribute

« Principal Component Analysis (PCA): Representing the data by transforming
the axes in such ways that most of the variation in the data is explained by the first
attributes and the attributes are orthogonal to one another

« Functional Data Analysis (FDA): Representing the data using fewer points using
functional representation

Some of these explanations may have gone over your head here. Don't worry; next, we will
learn about each of these using analytic examples, so the context of those examples will
help you understand all of these techniques.

First, we will look at the three numerosity reduction methods, after which we will cover
the dimensionality reduction ones.

Performing numerosity data reduction 387

Performing numerosity data reduction

When we need to reduce the number of data objects (rows) as opposed to the number
of attributes (columns), we have a case of numerosity reduction. In this section, we
will cover three methods: random sampling, stratified sampling, and random over/
undersampling. Let's start with random sampling.

Random sampling

Randomly selecting some of the rows to be included in the analysis is known as random
sampling. The reason we are compelled to accept random sampling is when we run into
computational limitations. This normally happens when the size of our data is bigger than
our computational capabilities. In those situations, we may randomly select a subset of the
data objects to be included in the analysis. Let's look at an example.

Example - random sampling to speed up tuning

In this example, we are using Customer Churn.csv to train a decision tree so that it
can predict (classify) what customer will be churning in the future.

Before reading on, please go back and study Example 2 - restructuring the table in Chapter
10, Cleaning Level II - Unpacking, Restructuring, and Reformulating the Table. In that
example, we used visualization - specifically, box plots - to figure out which attributes
have the potential to give us an insight into the customer's future decisions regarding
churning. In this example, we want to do the same thing but this time, we want to take

a multi-variate approach where the interactions of these attributes are also considered.
This can be done using a well-tuned decision tree algorithm.

In this book, we have not covered the techniques of algorithm tuning. But we'll get

a glimpse of them here. One of the standard ways of tuning an algorithm is to take a
brute-force approach where we use all the possible combinations of hyperparameters and
see which one leads to the best outcome. The following code uses the GridSearchcCV ()
function from sklearn.model selection to experiment with all the combinations
of the listed possibilities for the criterion, max_depth,min samples split,
andmin_impurity decrease hyperparameters. These hyperparameters are the
DecisionTreeClassifier () model's from sklearn.tree:

from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import GridSearchCV
y=customer df ['Churn']

Xs = customer df.drop (columns=['Churn'])

388 Data Reduction

param grid = { 'criterion':['gini', 'entropy'], 'max depth':
[10,20,30,40,50,60], 'min samples split': [10,20,30,40,50],
'min impurity decrease': [0,0.001, 0.005, 0.01, 0.05, 0.11}
gridSearch = GridSearchCV (DecisionTreeClassifier(), param grid,
cv=3, scoring='recall',6 verbose=1)

gridSearch.fit (Xs, y)

print (Best score: ', gridSearch.best score)

print (Best parameters: ', gridSearch.best params)

Run the preceding code before reading on. Upon running this code, it will report that
there are 360 candidate models, and each will be fitted three times on different subsets
of the input dataset, totaling 1,080 fittings. The 360 model candidate comes from the
multiplication of 2,6, 5, and 6, which are the number of possibilities that the preceding
code has listed for the mentioned hyperparameters, respectively.

The code will take a while to run. It took my computer, with a CPU speed of 1.3 GHz,
around 26 seconds to finish. This may not sound like a very significant amount of time, but
the dataset only contains around 3,000 customers. Imagine if the number of customers
was 30 million, which is not unimaginable for today's telecommunication companies.
Here, this 26 seconds would probably be 26,000 seconds, which is equivalent to 7 hours,
just to tune the algorithm. That is no good.

One of the approaches we can take to reduce this amount of time is random sampling.
The following code has implemented random sampling by using the pandas DataFrame
.sample () function, which takes the number of random samples you'd like from the
DataFrame:

customer df rs = customer df.sample (1000, random state=1)
y=customer df rs['Churn']

Xs = customer df rs.drop (columns=['Churn'])

gridSearch = GridSearchCV (DecisionTreeClassifier(), param grid,
cv=3, scoring='recall',6 verbose=1)

gridSearch.fit (Xs, y)

print (Best score: ', gridSearch.best score)

print (Best parameters: ', gridSearch.best params)

As you can see, first, 1,000 of the data objects have been randomly selected and then the
same tuning code has been applied. After running this code, you will see that the amount
of time it takes for the code to finish will drop significantly. On my computer, it dropped
from 26 seconds to 18 seconds.

Performing numerosity data reduction 389

What is random_state=1 in the preceding code? This is the ingenious way of sklearn
modules controlling randomness for better experimentations. What that means for us is
that if you run the preceding code multiple times, even though you have included some
randomness in the code, you will get the same result every time. Even better, by assigning
the same number to random_state, you can also get the same results that I am getting,
even though we are experimenting with randomness.

You won't have to include random_state=1 in your code, but if you have, you will get the
following parameters as the best ones: { 'criterion': 'entropy', 'max depth':
10, 'min impurity decrease': 0.005, 'min samples split': 10}.

Now that we know the optimized hyperparameters, we can use them to draw the decision
tree and evaluate the multi-variate patterns that lead to customer churning in this dataset.
The following code uses all the data objects to train DecisionTreeClassifier (),
which includes the optimized hyperparameters we found earlier, to find the multi-variate
relationships between the independent attributes and the dependent attribute; that is,
Churn. Once the model has been trained using this data, the code uses graphviz to
visualize the trained decision tree. At the end of the code, the extracted graph will be
saved in the ChurnDT . pdf file.

Attention!

If you have never used garaphvis on your computer before, you may have
to install it first. To install graphvis, all you need to do is run the following
one-line piece of code. After successfully running this code, graphvis will
be installed on your computer for good.

Run the following one-line piece of code to install graphvis on your computer:
pip install graphviz

After successfully running the following code, you should be able to find the ChurnDT.
pdf file in the same folder where you have your Jupyter Notebook file:

from sklearn.tree import export graphviz
import graphviz

y=customer df ['Churn']

Xs = customer df.drop (columns=['Churn'])

classTree = DecisionTreeClassifier(criterion= 'entropy',K max
depth= 10, min samples split= 10, min impurity decrease= 0.005)

classTree.fit (Xs, y)

390 Data Reduction

dot data = export graphviz(classTree, out file=None, feature
names=Xs.columns, class names=['Not Churn', 'Churn'],
filled=True, rounded=True, special characters=True)

graph = graphviz.Source (dot data)
graph.render (filename="'ChurnDT')

The following diagram shows the content of ChurnDT . pdf that will be saved on your
computer after running the preceding code successfully:

Seconds of Use <22425
ntropy 8

val 3]
class = Not Churn

Figure 13.2 - The trained decision tree showing the multivariate patterns of customer

churning in customer_df

Performing numerosity data reduction 391

As we can see, random sampling is useful when we don't have the computational
capability to include all of the data objects. It is debatable if random sampling maintains

a good balance of the two counterbalancing objectives of successful data reduction shown
in Figure 13.1. Due to its limited computational capabilities, we do need a smaller version
of the dataset. By incorporating complete randomness, we give all of the data objects the
same chance to be selected, so to some extent, we are maintaining the integrity of the
dataset and avoiding introducing any bias by arbitrarily selecting a subset of the dataset.

In this example, we could have maintained the integrity of the dataset better. When it
comes to binary classification, most of the time, one of the classes is significantly less
frequent. In the case of churn_df, there are 495 Churn=1 cases and 2,655 Churn=0 cases;
that is, approximately 15.7% of cases are churn cases and 84.3% are non-churn cases. You
can see this by running customer_df .Churn.value_counts (normalize=True).

Now, let's see what happens to these ratios when we take samples from customer df.
The following screenshot shows the ratios of churn and non-churn for three experiments
of sampling from customer_ df:

In [7]: M for i in range(3):
print(customer_df.sample(1000).Churn.value_counts(normalize=True))

2] 0.865

1 0.135

Name: Churn, dtype: float64
7] 0.85

1 0.15

Name: Churn, dtype: float64
] 0.835

1 0.165

Name: Churn, dtype: float64

Figure 13.3 - Three sampling experiments on churn_df to see the ratios of

churn and non-churn in the samples

In the preceding screenshot, we can see that after every three experiments, the ratios do
not match the original dataset's. This begs the question, are there sampling methods that
make sure these ratios match the original dataset? The answer is yes. One such method is
stratified sampling. We will look at this in the next section.

392 Data Reduction

Stratified sampling

Stratified sampling, also known as proportional random sampling, is a numerosity data
reduction method. The similarity between random sampling and stratified sampling is
that in both samplings, all the data objects have some chance to be selected in the sample.
The distinction is that stratified sampling makes sure that the selected data objects show
the same representation of the groups in the original dataset. The distinction between
these methods is shown in the following diagram:

Stratified Sampling Random Sampling

e

N

I
1
1
I
1
I
1
1
I
S\ I F 4
\
I
1
1
1
1
I
!

ok 2 ok * * *

=

~

'S 1 * ok

Figure 13.4 - Stratified sampling versus random sampling

Performing numerosity data reduction 393

The preceding diagram shows a dataset in the middle, five instances of random sampling
on the right, and five instances of stratified sampling on the left. The dataset contains 30
data objects: six stars (*) and 24 pluses (+). Each of the 10 samples selects 15 data objects
out of the 30 data objects. Before reading on, investigate the preceding diagram and try to
figure out the difference between random sampling and stratified sampling.

What jumps out from this diagram is that while all of the stratified samplings have three
stars, the instance of random sampling has stars ranging from two to four. This is because
stratified sampling has maintained the ratio of the data between the groups, while random
sampling does not have such restrictions; 20% (6/30) of the data objects in the original
data are stars, while 20% (3/15) of the data objects in the stratified samples are stars.
However, such restrictions have not been put in place for the random sampling instance.

Example - stratified sampling for an imbalanced dataset

In the previous example, we saw that customer df is imbalanced as 15.7% of its cases
are churn, while the rest, which is 84.3%, are non-churn. Now, we want to come up with
some code that can perform stratified sampling.

The following code will be able to get a stratified sample of customer_ df that

contains 1000 data objects out of the 3,150 data objects. In the end, the code will

print the ratios of churn and non-churn data objects in the sample using .value
counts (normalize=True). Run the code a few times. You will see that even though
the process is completely random, it will always lead to the same ratios of churn and
non-churn cases:

n,s=len(customer df),1000

r = s/n

sample df = customer df.groupby ('Churn', group keys=False)
.apply (lambda sdf: sdf.sample(round(len(sdf)*r)))

print (sample df.Churn.value counts (normalize=True))

394 Data Reduction

The preceding code may have gone over your head in terms of its way of using the
.groupby () and .apply () functions. This is the first time we have had to use this
combination in this book. This is as good an opportunity as any to learn about this
combination. When we want a specific set of operations to be performed on multiple
subsets of a DataFrame, we will specify the subsets by the . groupby () function first.
After this, using the . apply () function opens the door for us to be able to perform
operations on those subsets created by . groupby (). Here, sdf stands for Subset
DataFrame.

Before moving on to the next section, let's discuss how stratified sampling approaches

the two objectives of data reduction presented in Figure 13.1. As we implied previously,
stratified sampling puts more effort into the objective of maintaining the integrity of the
original data. Of course, when we have different populations in the same dataset and we
want to make sure the representation ratios are intact, stratified sampling helps us achieve
this goal.

Random over/undersampling

Unlike random sampling and stratified sampling, where the chance of objects being
selected in the sample is dictated by the dataset, random over/undersampling due to the
needs of analytic gives more or less chance of being selected to certain data objects.

To understand random over/undersampling, let's compare it to stratified sampling. When
we perform stratified sampling, we calculate the ratio of the sub-populations based on the
important attribute and then perform a controlled random sampling, where the ratios are
maintained in the sample. On the other hand, in random over/undersampling, we have a
prescribed ratio that we want our sample to have; that is, we decide what ratios we want
based on our analytic needs.

To illustrate this, the following diagram compares two instances of stratified sampling
from customer_df with two instances of over/undersampling, with a 50-50% (1:1)
prescribed ratio between churning and non-churning customers. All the samples contain
500 data objects from the 3,150 data objects in the original dataset. If you study the four
samples in the following diagram, you will notice a few patterns. First, you will see that
all of them are different, which they should be due to the randomized nature of both
sampling methods. Second, you will see that the ratio of churn and non-churn customers
in the two instances of over/undersampling has been shifted, as described previously:

Performing numerosity data reduction

395

Over/Under-Sampling
(Equal ratios)

x
500 { Chum e Exg kXX
e 1 ,xx}l:!!~
= 0 Rl
400 4 w*E FwygunX
- xngnEERECRECS
= e EREERRR"
X
5, 300 | o o R AL
> it x,guif-’;‘!agu'
wxXy - x XX
g T El o -
1 uix ExxX
S NN = [1L
@ X WEXRCCRCEGHNN
= ny* iii;;éﬁgézq,;-:'
100 A 53:5‘;;;;:!!' xxnERRERE B
EEN SRy x ¥ = 'i' xX
R T R li l 'i‘ i
, T zx
o RO
. -

Subscription_Length

500 0‘““‘1 xx
. x
=z 0 =
400 x
vl » = x %
= ®
l'nl x
5300 -
> Ko
x x
3 200 ” . *" a.. gou
g Chal- 1 ©
= xx xEH
100 & . W <% ¥
s " ux " e g
il
01 o ofefeBtel *%xx iIE, ;i.ms I
10 20 30 40
Subscription_Length
=0 nl X Chum
o 1
x
400 . s 0
x x
2 S
i, 300 " x
5 o wxy
> x *
é . . . x xx
5200 XN ek ® -y
& il ¥ Hxx
- x - x;‘ %X
100 x %
" Tus =
N xx ot 11
- Eu X z X
01 esccsbaeter ¥1% 3%, B18: miliim lt N

10

20
Subscnptlon_Length

500 { chum ox x W oxE
e 1
x 0 o
400 HyxKx
x xx ¥ 5 x
7] & HxX®
- X
5 a Ma N
aI . X X
e % - x ®x %%
3 200 o ¥ x *x Xk wx x X
Bl T
H N R
It « WEE Ny e
100 ¥ xx XX

Subscription_Length

2z
=1
=]
H
3

Subscription_Length

Figure 13.5 - Stratified sampling versus random over/undersampling using customer_df

X x xx X
° 1 * Yo
400 = 0 x
L
0 xgx ¥ X 3 *
@, 3
~5|30(] o ii-“ ®
z * o
g0 x x % J L Pl T L S
x xX =
g R . -t
= =5 Tn BERR
100 ¥ xn RE i
Rguxy
« % 3 !!. E.K 5 e - ,] ;.E’:
xxq teyd Bxl .i E2xe.x
o o wex ¥R <Txiii x'li“‘b't" 0878
10 20 0 40

396 Data Reduction

The most common analytic situation that might require over/undersampling is binary
classification using an imbalanced dataset. An imbalanced dataset is a table that has
been prepared for classification and its dependent attribute has two characteristics. First,
the dependent attribute is binary, meaning that it only has two class labels. Second, there
are significantly more of one class label than the other. For example, the customer churn
prediction that we discussed earlier in this chapter uses an imbalanced dataset. To check
this, you can run customer df.Churn.value counts (normalize=True) .
plot.bar (), which will create a bar chart that shows the frequency of each label in the
customer df.Churn attribute. You will see that there are around five times more cases
of 0 (non-churn customers) and cases of 1 (churn customers).

Too Specific to Matter?

Binary classification using an imbalanced dataset might sound too specific
to matter. However, the most important classification tasks are binary, and in
almost all of them, the dataset is imbalanced. To name a few very common
and important examples of binary classification that have to use imbalanced
datasets, we can mention online fraud detection, machinery fault detection
using sensor data, and automatic disease detection using radiology images.

The reason that we might want to perform over/undersampling is that it has been seen time
and again that the classification algorithm, by default, might overemphasize learning from
the less frequent class label, and unfortunately, often, the case that matters more for us is
the less frequent one. For example, in the example of churn prediction, it is more important
for us to recognize who will be churning, rather than who will not be churning. So, when
developing an algorithmic solution, we might choose to perform over/undersampling. This
is done to give the algorithm a greater opportunity to learn from the less frequent cases.

The code that we use to apply randomly over/undersampling is very similar to and
simpler than stratified sampling. The following code will be able to get a sample of
customer df that contains 500 data objects out of the 3,150 data objects. There will be
250 data objects from both the churning and non-churning customers. In the end, the
code will print the ratios of the churn and non-churn data objects in the sample using
.value_ counts (normalize=True). This code is a copy of the preceding code with
a few changes; to help you see them, the updated parts are highlighted. Before running the
following code, first, compare it with the preceding one to study the changes. Then, run
the code a few times. You will see that even though the process is completely random, it
will always lead to the same and equal ratios of churn and non-churn cases:

n,s=len(customer df), 500

sample df = customer df.groupby ('Churn', group keys=False)
.apply (lambda sdf: sdf.sample (250))

print (sample df.Churn.value counts (normalize=True))

Performing dimensionality data reduction 397

Before switching gears from numerosity data reduction to dimensionality data reduction,
let's discuss how random over/undersampling approaches the two objectives of data
reduction presented in Figure 13.1. This approach intentionally disrupts the integrity of the
original dataset due to analytic reasons. However, as the sampling is performed randomly,
the randomness helps keep the integrity of the dataset to some degree. The fact that we
committed to this transgression here is that, at times, random over/undersampling happens
both as a data reduction strategy and as a data transformation strategy. This is the mixing
that allowed us to do this. As we will learn in the next chapter, data transformation does
inflict changes on the data for analytic purposes.

Over/undersampling is more of a data transformation technique, though, at times, it gets
mixed with data reduction. Also, from a technical perspective, it is very similar to random
sampling and stratified sampling, as we learned about here. As a data transformation
technique, oversampling could also mean having repetitions of data objects with the less
frequent class label or even having simulated data objects that we would predict having
the less frequent class label.

Attention!

We will not discuss over/undersampling beyond this point in this book.

This is because successful over/undersampling is highly relevant to the
classification algorithm of choice and you could see it as a hyperparameter
of any classification algorithm. This means that one algorithm's performance
might improve using oversampling, while the other may suffer. Therefore,
oversampling is the content that a book with more emphasis on teaching
algorithms should cover. In this book, our focus is on data preprocessing.

Now, it is time to switch gear! Dimensionality data reduction, here we come!

Performing dimensionality data reduction

When we need to reduce the number of attributes (columns) as opposed to the number

of data objects (rows), we have a case of dimensionality reduction. This is also known as
dimension reduction. In this section, we will cover six methods: regression, decision tree,
random forest, computational dimension reduction, functional data analysis (FDA),
and principal component analysis (PCA).

398 Data Reduction

Before we talk about each of them, we must note that there are two types of dimension
reduction methods: supervised and unsupervised. Supervised dimension reduction
methods aim to reduce the dimensions to help us predict or classify a dependent attribute.
For instance, when we applied a decision tree algorithm to figure out which multi-variate
patterns can predict customer churning, earlier in this chapter, we performed a supervised
dimensionality reduction. The attributes that did not show up on the tree in Figure 13.2
are not important for predicting (classifying) customer churn.

On the other hand, when dimension reduction is performed without paying attention to
the task of prediction or classification, and data reduction is done only to reduce the data
size or perhaps data transformation and massaging, then we have unsupervised dimension
reduction. If the terms data transformation and data massaging are not familiar to you,
don't worry. We will discuss these in the next chapter.

Now, let's look at each of the six methods. I will refrain from mentioning if each method is
supervised or unsupervised so that you can think about them on your own. Exercise 4, at
the end of this chapter, will ask you to answer that for each method.

Linear regression as a dimension reduction method

We learned about linear regression as a prediction model in Chapter 6, Prediction.
Linear regression is a very well-researched and integrated statistical method. As such,
the libraries that package this method normally come with many built-in metrics and
hypothesis testings that can be very useful for analyzing the dataset. A group of such
hypothesis testing is very useful in deciding if each independent attribute is playing a
significant role in predicting a dependent attribute.

Therefore, linear regression can be used as a dimension reduction method by looking

at the resulting p-value of those hypothesis testings. The p-values that do not show that
there is a meaningful relationship between the relevant independent attributes and the
dependent attribute can be used as evidence, to help remove those independent attributes
from the analysis. Let's look at an example to understand this better.

Example - dimension reduction using linear regression

In this example, we would like to use amznStock . csv, which contains some calculated
metrics from the historical data of Amazon stock that's was collected and computed on
January 11, 2021, to predict the next day percentage of change of the Amazon stock. The
dependent attribute in this dataset is today changeP. The independent attributes are
as follows:

« yes_changeP: Amazon's stock price change in the previous day

« lastweek changeP: Amazon's stock price change in the previous week

Performing dimensionality data reduction 399

« dow_yes_ changeP: Dow Jones change in the previous day
+ dow_ lastweek_ changeP: Dow Jones change in the previous week
« nasdaq yes_changeP: NASDAQ 100 change in the previous day

« nasdaqg lastweek changeP: Last week's NASDAQ 100 change in the
previous week

I created this dataset on January 11, 2021, to create the YouTube video A Taste of
Prediction (https://youtu.be/ z0oHuTnMKc). To find out more about this dataset
and the logic behind it, please see the YouTube video.

Now that I am looking at the name of the attributes, I think the attribute names can
become much more intuitive. So, let's start by doing some level I data cleaning; that is,
creating concise and intuitive attribute titles. The attribute titles are concise but they can
be more intuitive.

The following code reads the dataset into amzn_df, sets t as the index of amzn_df, and
changes the attribute titles:

amzn df = pd.read csv('amznStock.csv')

amzn df.set index('t', drop=True, inplace=True)

amzn df.columns = ['pd changeP', 'pw changeP', 'dow pd
changeP', 'dow_pw_changeP', 'nasdag pd changeP',6 'nasdaqg pw_
changeP', 'changeP']

Changing the attribute titles in the previous code followed three simple patterns. The
yes title segment, which was meant to represent yesterday, was updated with _pd
which is meant to present the previous day. Moreover, the lastweek title segment was
updated with _pw_, which is meant to present the previous week. Lastly, the today title
segment was eliminated from the dependent attribute.

Now, let's bring our attention to dimension reduction using linear regression. To use linear
regression as a dimension reduction method, we have to perform linear regression as
though we are going to train the prediction model. The following is the linear regression
equation for this amzn_df:

Changep = ,80 + ﬁl X pdchangeP + ,82 X chhangeP + ﬁ3 X dow_pd_changeP
+ B4 X dow_pw_changeP + f5 X nasdaq_pd_changeP
+ f¢ X nasdaq_pw_changeP

https://youtu.be/_z0oHuTnMKc

400 Data Reduction

To practice and review this, before reading on, refer back to the Example of applying
linear regression to perform regression analysis section of Chapter 5, Data Visualization,
and estimate the values of the Ps in the preceding linear regression equation using
LinearRegression () from sklearn.linear model.

Even though LinearRegression () is a great and stable function to use for linear
regression, unfortunately, this function does not include the hypothesis testings that are
necessary for applying linear regression as a dimension reduction method. That is why the
following code uses the OLS () function, from statsmodels.api, to import a linear
regression module that outputs the results of the hypothesis testing we discussed earlier:

import statsmodels.api as sm

Xs = amzn df.drop (columns=['changeP'], index =['2021-01-12'])
Xs = sm.add constant (Xs)

y = amzn_df.drop(index =['2021-01-12"']) .changeP

sm.OLS (y, Xs).fit () .summary ()

Let's go over a few things about the preceding code that might have become a question for
you before we analyze its output:

o Why are we dropping the data object with an index of 2021-01-12? If you print
amzn_df, you will see that this data object is presented as the last row of this
DataFrame and that there is no value for the dependent attribute; that is, changeP.
Do you remember that the dataset was collected and computed on January 11,
20217 At that time, we did not know what changeP of January 12 will be. The
dataset was put together to try to predict this value.

o What is the purpose of Xs = sm.add constant (Xs) ? This line of code adds a
column whose value for all the rows is 1. The reason for this addition is to make sure
OLS () will include a constant coefficient, which is what linear regression models
have. Why did we not have to include this when we used LinearRegression ()
from sklearn.linear model? Thatis a good question and the answer is that
the developer of each module may choose to create their module based on what
they think is a better approach. As users, we need to learn how and when we should
use what module.

Now that we understand the code, let's pay attention to its output. After successfully
running the preceding code, you will get the following output:

Performing dimensionality data reduction

401

Figure 13.6 - The result of the OLS() function on the described linear regression model

Dep. Variable: changeP R-squared:
Model: OoLS Adj. R-squared:
Method: Least Squares F-statistic:
Date: Fri, 27 Aug 2021 Prob (F-statistic):
Time: 15:156:50 Log-Likelihood:
No. Observations: 349 AlC:
Df Residuals: 342 BIC:
Df Model: 6
Covariance Type: nonrobust
coef stderr t P>t
const 0.2342 0.122 1.926 0.055
pd_changeP -0.0804 0.112 -0.719 0.473
pw_changeP 0.0665 0.044 1.499 0.135
dow_pd_changeP -0.2888 0.151 -1.914 0.056
dow_pw_changeP 0.0866 0.066 1.316 0.189
nasdaq_pd_changeP 0.0919 0.210 0.438 0.661
nasdaq_pw_changeP -0.1403 0.098 -1.433 0.153
Omnibus: 25.863 Durbin-Watson: 1.936
Prob(Omnibus): 0.000 Jarque-Bera (JB): 97.802
Skew: -0.036 Prob(JB): 5.79e-22
Kurtosis: 5.592 Cond. No. 17.6

0.061
0.044
3.678
0.00149
-750.72
1515.

1542.

[0.025
-0.005
-0.300
-0.021
-0.586
-0.043
-0.321

-0.333

0.975]
0.473
0.140
0.154
0.008
0.216
0.505

0.052

Before reading on, go back to the s you estimated using LinearRegression (). The
B values must be the same as the values you can see in the preceding diagram, under the

coef column.

In the same table, in the P>|t| column, you can find the p-values of the hypothesis
test of the independent attribute's significance for predicting the dependent attribute.

You can see that most of the p-values are way larger than the cut-off point of 0.05, except

for dow_pd_changeP, which is slightly larger than the cut-oft point. Based on our

understanding of the p-value, we can see that we don't have enough evidence to reject the
null hypothesis that most of the independent attributes are not related to the dependent
attribute - that is, except for dow_pd_changeP, which has a rather small probability that

this attribute is not related to the dependent attribute. So, if we were going to keep any

attribute, we would keep dow_pd_changeP and remove the rest.

402 Data Reduction

In this example, we used linear regression to turn a prediction model with six independent
attributes into a prediction model with only one independent attribute. The following is a
simplified version of the linear equation:

changeP = [, + ; X dow_pw_changeP

If you modify the preceding code so that the OLS () functions will run the new model,
you will get the following output:

Dep. Variable: changeP R-squared: 0.053
Model: OLS Adj. R-squared: 0.050
Method: Least Squares F-statistic: 19.40

Date: Fri, 27 Aug 2021 Prob (F-statistic): 1.42e-05

Time: 15:16:47 Log-Likelihood: -752.14
No. Observations: 349 AlC: 1508.
Df Residuals: 347 BIC: 1516.
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

const 0.1975 0.112 1.761 0.079 -0.023 0.418
dow_pd_changeP -0.2470 0.056 -4.404 0.000 -0.357 -0.137

Omnibus: 26.140 Durbin-Watson: 1.984
Prob(Omnibus): 0.000 Jarque-Bera (JB): 99.897
Skew: -0.037 Prob(JB): 2.03e-22

Kurtosis: 5.620 Cond. No. 2.00

Figure 13.7 — The result of the OLS() function on the reduced linear regression model

Comparing the adjusted R* (Adj. R-squared), which is a reliable metric for the quality
of linear regression, in Figure 13.6 and Figure 13.7 shows that data reduction helped with
the success of the model. Even though the model in Figure 13.7 has fewer independent
attributes, it is more successful than the model in Figure 13.6.

Performing dimensionality data reduction 403

The shortcoming of linear regression as a dimension reduction method is that the

model takes a univariate approach in deciding if an independent attribute helps predict
the dependent attribute. In many situations, it might be the case that an independent
attribute is not a good predictor of the dependent attribute but its interaction with other
independent attributes might be helpful. That is why, when we want to perform dimension
reduction before capturing multi-variate pattern recognition, linear regression is not a
good method of choice. For those cases, we should use one of the other methods, such

as decision tree, random forest, or computational dimension reduction. We will

be learning about each of these methods in this section. Next up, we'll look at using a
decision tree as a dimension reduction method.

Using a decision tree as a dimension reduction

method

Throughout this book, we have learned that the decision tree algorithm can handle both
prediction and classification data mining tasks. However, here, we want to see how a
decision tree can be used as a method for dimension reduction. The logic is simple: if an
attribute was a part of a tuned and trained final decision tree, then the attribute must have
helped predict or classify the dependent attribute.

For example, in the tuned and trained decision tree for predicting customer churn, as
shown in Figure 13.2, all of the eight attributes were used in the final decision tree. This
shows that we would not want to remove any of the independent attributes for multi-
variate pattern recognition.

The decision tree algorithm is an effective way to see if an attribute has the potential to
predict or classify a dependent attribute in a multi-variate way, but it does have some
shortcomings. First, the decision tree makes a binary decision about whether each attribute
should be included or not, and we do not have a way to see how valuable each dependent
attribute is. Second, it might be the case that an attribute is excluded - not because it does
not play a role in any multivariate pattern, which can help predict the dependent attribute —
but because the attribute can be beneficial but the structure and/or the logic of the decision
tree fails to capture the specific patterns that the attribute plays a role in.

Next, we will learn about the random forest algorithm, which rectifies the first
shortcoming of the decision tree. After that, we will learn about brute-force computational
dimension reduction, which can deal with the second shortcoming.

404 Data Reduction

Using random forest as a dimension reduction method

We have not been introduced to the random forest algorithm before in this book. This
algorithm is similar to the decision tree algorithm and can handle both classification
and prediction data mining tasks. However, its unique design makes the random forest
a prime candidate to be used as a dimension reduction method.

Random forest, as the name suggests, instead of just relying on one decision tree to
perform classification or prediction, uses many decision trees in a randomized way. The
decision trees that the random forest uses are random and have fewer levels. These smaller
decision trees are called weak predictors or classifiers. The logic behind random forest is
that instead of using an opinionated decision tree (one strong predictor) to give us one
prediction, we can employ multiple, more flexible, decision trees (weak predictors) and
consolidate their predictions into a final class or a value.

As a dimension reduction method, we can just look at the number of times each attribute
appeared in the multiple weak decision trees and arrive at a percentage of decision trees
that each attribute was employed by. This will be invaluable information regarding our
choice to keep or remove attributes.

Let's look at an example.

Example - dimension reduction using random forest

In this example, we would like to use random forest to come to the relative importance of
each attribute in the classification of customer churn using the Customer Churn.csv
file. We saw the influence that each attribute has on one tuned and trained decision tree
in Figure 13.2. However, here, we are more interested in coming to a numerical value that
shows the importance of each attribute.

The following code uses RandomForestClassifier () from sklearn.ensemble
to train a random forest model that uses 1000 weak decision trees:

from sklearn.ensemble import RandomForestClassifier
y=customer df['Churn']

Xs = customer df.drop (columns=['Churn'])

rf = RandomForestClassifier(n estimators=1000)
rf.fit (Xs, y)

Performing dimensionality data reduction 405

After successfully running the preceding code, which might take a few seconds to

run, nothing will happen. But don't worry - the magic has happened; we just need to
access what we are looking for. Print rf . feature importances_ and look at the
numerical values that show the importance of the independent attributes. The code
shown in the following screenshot creates a pandas Series, sorts the attributes based on
their importance, and then creates a bar chart that shows the relative importance of each
attribute to classify customer churn:

In [17]: M dimportance_sr = pd.Series(rf.feature_importances_,index =Xs.columns)
importance_sr.sort_values(ascending=False).plot.barh()
plt.show()

Call Failure

Frequency of SMS
Distinct Called Numbers
Subscription Length
Status

Frequency of use
Seconds of Use

Complains

0000 0025 0050 0075 0100 0125 0150 0175 0200

Figure 13.8 — Creating a bar chart using a pandas Series and Matplotlib to show the relative importance

of independent attributes to classify customer churn in customer_df

The information shown in the preceding screenshot, other than the valuable implications
for dimension reduction, may also be used for direct analysis. For instance, we can see
that the complaints attribute has floated to the top of the list. This means that customer
complaints have very important implications for customer churn and that the decision-
makers of the telecommunication company that this data was collected from may be able
to use that for positive change.

While random forests do not suffer from the first shortcoming of decision trees regarding
dimension reduction, they do suffer from the second shortcoming. That is, we cannot be
certain that if an attribute does not show enough importance through the fandom forest,
it will not be valuable for predicting the dependent attribute in other algorithms. The
next dimension reduction method that we will learn about, brute-force computational
dimension reduction, does not have this shortcoming. However, this method is
computationally very expensive. Let's learn more about it.

406 Data Reduction

Brute-force computational dimension reduction

This method uses a brute-force approach where all the different subsets of independent
attributes are used in an algorithm to predict or classify the dependent attribute. After
this brute-force experimentation, we will know which combination of the independent
attributes can best predict the dependent attribute.

The Achilles heel of this method is that it can become computationally very expensive,
especially if the algorithm of choice is also computationally expensive. For instance,

using computational dimension reduction to find the best subset of independent attributes
using an artificial neural network (ANN) will probably have a higher chance of leading
to the optimum predictor, but at the same time, it will probably take a significant amount
of time to run.

On the other hand, this approach does not suffer from the shortcomings of the other
dimension reduction methods we have learned about so far. Brute-force computational
dimension reduction can be coupled with any prediction or classification algorithms,
thus removing our method-specific results concern we had with the decision tree and
random forest.

Now, let's look at an example and see what brute-force computational dimension
reduction would look like.

Example - finding the best subset of independent attributes for
a classification algorithm

In this example, we would like to find the best subset of independent attributes that would
lead to the best performance of K-Nearest Neighbors (KNN) in predicting customer
churn in the Customer Churn.csv file.

We learned about KNN in Chapter 7, Classification, and, as you may recall, to successfully
implement KNN, we need to have tuned the number of neighbors (K). So, if we want to
check which subset will lead to the best KNN performance, we will need to tune KNN
once for every combination of the independent attributes. This will make the process even
more computationally expensive.

The following code has put all these pieces together so that we can experiment with every
combination of independent attributes after tuning KNN for them. This code has many
parts and we will go over them later in the chapter.

Performing dimensionality data reduction 407

This code has been presented in the form of a screenshot because it is rather large. If you
wish to copy the code instead of typing it, please see the Chapter13 file in this book's
GitHub repository:

In [18]:

M import itertools

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import recall_score
from sklearn.model_selection import GridSearchCV

in_atts = ['Call Failure', 'Complains', 'Subscription Length',
'Seconds of Use', 'Frequency of use', 'Frequency of SMS',
'Distinct Called Numbers', 'Status']

n_in_atts = len(in_atts)

result_df = pd.DataFrame(columns = ['subset_candidate’, 'best k',

"performance'])
customer_df_std = (customer_df - customer_df.min())/(
customer_df.max() - customer_df.min())

for n in range(1,n_in_atts+1):
for atts in itertools.combinations(in_atts, r=n):
atts = list(atts)
Xs = customer_df_std[atts]
y= customer_df['Churn']

Tune KNN
param_grid = {
'n_neighbors':[1,3,5,7]}
gridSearch = GridSearchCV(KNeighborsClassifier(),
param_grid, cv=2, scoring='recall')
gridSearch.fit(Xs, y)
best_k= gridSearch.best_params_['n_neighbors']

Train the tuned KNN
knn = KNeighborsClassifier(best_k)
knn.fit(Xs, y)

Prediction
y_predict = knn.predict(Xs)

Performance evaluation
dic_append = {'subset_candidate':atts, 'best_k': best_k,
'performance’: recall_score(y,y_predict)}

Recording and Reporting
result_df = result_df.append(dic_append, ignore_index=True)
print(dic_append)

Figure 13.9 - Brute-force dimensionality reduction to optimize KNN's performance

when predicting customer churn

Let's go over the different parts of the code in the form of the questions you might have
about it. Before reading on, try running and also understanding the code.

408 Data Reduction

As the code will be computationally expensive, it might be smart to let your computer run
the code while you try to understand it:

What is itertools and why do we need it? It is a very useful module when we
need a complex web of nested loops to get our task done. To create every possible
combination of the independent attributes, we need to have various number of
nested loops under the main loop, and that is not possible to do using the regular
iteration functionality of Python. If the previous sentence didn't make sense and
you are adamant about understanding it, try to write some code that prints all the
combinations of the independent attributes; then, you will understand.

By using itertools . combinations (), we were able to create all the combinations
in a two-level nested loop.

What is result_df and why do we need it? This is a pandas DataFrame that
this code uses as a placeholder, in which we will record the records of all the
brute force experimentations.

What is recall and why are we evaluating our method using recall instead of
accuracy? Recall is a specific evaluation metric of binary classification tasks, and in
this case study, having a better recall is more important than better accuracy. I'd say
Google it and learn more about it, but if you are not interested in learning about
what recall is at this point in your data analytics career, I think just looking at it
as an appropriate evaluation metric would do for now.

Why are we only experimenting with the four possible values of [1,3,5, 7] for K?
This is a measure that's used to cut the computational costs because without it, the
code would take a very long time to run.

Once you have fully understood the preceding code and your computer has finished
running it, you should sort the pandas DataFrame, result_df, by the performance
column and see the results of your experimentation. result df.sort

values ('performance',ascending=False) does this, and studying its output
will help you realize that the following two combinations will lead to a very successful
KNN classification with recall scores of 0.99596:

Complains, Seconds of Use, Frequency of use, Distinct Called Numbers
Seconds of Use, Frequency of SMS, Distinct Called Numbers

Performing dimensionality data reduction 409

Comparing the final results of this example with Figure 13.8, which was the final result of
the random forest on the same case study, can teach us a lot about the advantages of the
brute-force computational dimension reduction method:

« First, we can see that what was important for the random forest is not necessarily
important for KNN. For instance, while for the random forest, Distinct Called
Numbers was not very important, we can see that KNN can use it to get its
best performance.

« Second, while the random forest gave us a good visualization about the importance
of the attributes after we received these results, we will still need to make decisions
as to what attributes we need to exclude or include. However, brute-force
computational dimension reduction will tell us exactly what attributes to include.

While these advantages of brute-force computational dimension reduction sound very
impressive, I'd hesitate to write this method up as the best. The computational cost of this
method is a real concern.

So far in this chapter, we've learned about two numerosity reduction methods and four
dimensionality reduction methods. The dimensionality reduction methods we've learned
about so far are specific to prediction or classification. We will learn about two more
dimensionality reduction methods that are more general and can be used as one of the
preprocessing steps before any task, including classification and prediction. These two
methods are principal component analysis (PCA) and functional data analysis (FDA).
Let's start with PCA.

PCA

This dimension reduction method is the most famous general and non-parametric
dimension reduction method in the literature. There are rather complex mathematical
formulas if we raise the hood of the method and take a look at how the method works.
However, we are not going to get bogged down in the mathematical complexities. Instead,
we are going to learn about PCA by using two examples: one containing a toy dataset and
one containing a real example. So, let's dive into the first example and learn about PCA.

Example - toy dataset

In this example, we are going to use the PCA_toy dataset .x1sx file. The following
screenshot, which is in a dashboard-style, shows five items:

o The code to read the file into toy df
o The Jupyter Notebook representation of toy df

410 Data Reduction

o The scatterplot of the two dimensions of toy df
o The calculated variance of both attributes in toy df and their summation (Total)

o The correlation matrix of toy df:

In [18]: M toy_df = pd.read_excel('PCA_toy dataset.xlsx')

toy_df
Out[18]:
Dimension_1 Dimension_2 °
100 A @
0 41 52 @
[]
1 50 64 @ .
2 64 52 -':, .o ®
S -
3 37 51 @ g i
o
4 91 % £ o ° 3
5 66 78 40 bt
L]
6 43 19 o
x{ *®
7 84 103 L . .‘ ' . . : :
8 64 4 20 30 40 50 60 70 80 %0
Dimension_1
9 88 94
10 44 42 Variance
1 59 50 index
12 92 88 - -
Dimension_1 415.315789
13 31 32
14 20 3 Dimension_2 611.673684
15 52 73 Total 1026.989474
16 43 29
17 73 73 Dimension_1 Dimension_2
18 50 69 Dimension_1 1.000000 0.859195
19 58 58

Dimension_2 0.859195 1.000000

Figure 13.10 - A dashboard containing information and visuals for toy_df

Using the preceding screenshot, we can gain a lot of insight into toy df. What jumps
out right off the bat is that Dimension_1 and Dimension_2 are strongly correlated. We
can see this both in the scatterplot and the correlation matrix; the correlation coefficient
between Dimension_1 and Dimension_2 is 0.859195. We can also see that there is a total
of 1026.989474 variations in toy df; Dimension_1 contributes 415.315789 of the total
variation, while Dimension_2 contributes the rest.

Performing dimensionality data reduction 411

The way PCA looks at any data is in terms of variations. For PCA, there is this much
(1026.989474) information presented in toy df. Yes, PCA considers variations across
different data attribute information. For PCA, the way that the information is presented
across the two attributes is troublesome. PCA doesn't like the fact that some of the
information that is presented by Dimension_1 is the same as some of the information
presented by Dimension_2, and vice versa. PCA has a non-parametric view of the data.
For PCA, the attributes are simply the holders of information in form of numerical
variations. Thus, PCA sees it as fitting to transform the data so that the dimensions do not
show similar information.

Before discussing what transformations PCA applies to a dataset, let's go ahead and
apply them to toy df and see its results. The following screenshot shows another
dashboard-style visual that shows the information about the PCA-transformed toy df.
This screenshot contains five items that are similar to the ones shown in Figure 13.11.
This screenshot also contains the code that uses the PCA () function from sklearn.
decomposition to transform toy df:

In [23]: M from sklearn.decomposition import PCA
pca = PCA()
pca.fit(toy_df)

toy_t_df = pd.DataFrame(pca.transform(toy_df))
toy_t_df.columns = ['PC1",'PC2']

toy_t_df
Qut[23]:
PCA pPC2 15 m

0 16469846 -7.962674 ®
10 = °

1 1476788 -8.418973 . &

2 2116506 10.009016 5 .

3 19747457 -10464127 °® o &

g 0

4 51457824 1.775480 3
- L2

5 19447434 -4.653743 51 o i

6 41.007198 14.194004 e *
-10 °

7 50214928 -6.190398 a®

8 4460840 11.881191 -40 -20 pgl 20 20

9 45678760 2551638 Vafiaice

10 22411449 0622042 —

11 6.799553 7.350243 T
PC1 957.537176

12 -43486726 9421498
PC2 69.452298
13 38.337985 -3.295288

Total 1026.989474
14 52235026 -6.273919

15 -6.803729 -12.472741
PC1 PC2
16 33.193419 7.953421

PC1 1.000000e+00 -2.682793e-17
17 -19.908952 3.936193

18 -2.430101 -11.539264 PC2 -2.682793e-17 1.000000e+00

19 1.172589 1.576400

Figure 13.11 - A dashboard containing information and visuals for the PCA transformed toy_df dataset

412 Data Reduction

In the preceding screenshot, we can see the information and visualizations of the
PCA-transformed toy df, which is called toy t df. We call the new columns of a
PCA-transformed dataset principal components (PCs). Here, you can see that since
toy df has two attributes, toy t df has two PCs called PC1 and PC2.

After taking a cursory look at the preceding screenshot and comparing it with Figure
13.11, it might feel like there's no points of similarity between the two DataFrames: the
original toy df dataset and its PCA-transformed version, toy t df. However, you'll
be surprised to know that there are lots of commonalities between the two. First, look at
the total amount of variance in both figures. They are both exactly 1026.989474. So, PCA
does not add information to and remove information from the dataset, it just moves the
variations from one attribute to the other.

A second similarity will show itself when we rotate the scatterplot of Dimension_1 and
Dimension_2 in Figure 13.11. This can be seen in the following diagram, and you can see
that the data presented in Figure 13.12 is the same as that shown in Figure 13.11 after some
axis transformation:

1 .
.
10 - .
® L]
5 -
L
~N L] L]
g 0 =
>
= .
. .
* L]
-10 .
.®
-40 -20 0 0]

Figure 13.12 — A comparison between the PCA-transformed toy_df dataset
and the visually rotated toy_df dataset

Now, let's talk about what PCA does to a dataset. In plain English, PCA transforms the
axes of a dataset in such a way that the first PC - in this example, PC1 - carries the

maximum possible variation, and the correlation between the PCs - in this example,
PC1 and PC2 - will be zero.

Performing dimensionality data reduction 413

Now, let's compare Figure 13.11 and Figure 13.12 again. While Dimension_1 only
contributes 415.315789 to the total 1026.989474 variations in Figure 13.11, PC1
contributes 957.53716 to the total 1026.989474 variations in Figure 13.12. So, we can
see that the PCA transformation has successfully pushed most of the variations into the
first PC, PC1. Moreover, looking at the scatterplot and the correlation matrix in Figure
13.12, we can see that PC1 and PC2 have no relationship with one another and that the
correlation coeflicient is zero (-2.682793e-17). However, we do remember from Figure
13.11 that the relationship between Dimension_1 and Dimension_2 was rather strong
(0.859195). Again, we can see that PCA has been successful in making sure there is no
correlation between PC1 and PC2 in this example. When two attributes are poised to have
zero correlation with one another, it is said that they are orthogonal to one another.

There is more to learn about PCA, but now, you are ready to learn via a real data analytic
application. Let's look at the next example.

Example - non-parametric dimension reduction

Go back to Chapter 8, Clustering Analysis, the Using K-Means to cluster a dataset with
more than two dimensions section and review the clustering we performed there. We
employed K-Means to cluster the countries in WH Report preprocessed.csv based
on their data from 2019 into three groups. In this example, instead of using only 2019
data, we want to use all of the data in the file. Also, instead of using clustering analysis, we
want to use PCA to visualize the inherent patterns in the data.

In Chapter 8, Clustering Analysis, we used the following nine attributes to cluster

the countries: Life Ladder,Log GDP per capita,Social support,

Healthy life expectancy at birth, Freedom to make life choices,
Generosity, Perceptions of corruption,Positive affect, and
Negative affect. Asthere are more than three attributes, we were unable to use the
visualization methods to visualize a complete representation of the dataset. With the help
of PCA, we can push most of the variations in the data into the first few PCs and visualize
them instead, which will help us get some insight into the general trends in the dataset.

The following code reads the WH Report preprocessed.csv fileinto report df
and then uses the pandas.pivot () function to create country df:

report df = pd.read csv('WH Report preprocessed.csv')

country df = report df.pivot (index='Name', columns='year',
values=['Life Ladder', 'Log GDP per capita', 'Social support',
'Healthy life expectancy at birth', 'Freedom to make life
choices', 'Generosity',6 'Perceptions of corruption', 'Positive
affect', 'Negative affect'])

414 Data Reduction

After running the preceding code and studying country df, you will see that the
dataset has been restructured so that the definitions of the data objects are for each
country, while all the happiness indices of all the 10 years from 2010 to 2019 are included.
Therefore, in total, country df has 90 attributes now.

After data restructuring, the following code creates Xs and standardizes it. To be specific,

Xs = (Xs - Xs.mean())/Xs.std() standardizes the Xs DataFrame:
Xs = country df
Xs = (Xs - Xs.mean()) /Xs.std()

Xs

We already know how to normalize a dataset. Here, we are using another data
transformation technique: standardization. What distinguishes these two data
transformation methods is why they are used. For clustering, we use normalization
as it makes sure the scale of all the attributes is the same, so each attribute will have
equal weight in the clustering analysis. However, it is essential to standardize the data
before applying PCA. That is because standardization transforms the attributes, so

all of the transformed attributes will have an equal standard deviation: one. After
successfully running the preceding code, run either Xs.var () or Xs.std () to see
that standardizing the data ensures each attribute has the same variance across the
data objects.

Why is standardization necessary before applying PCA? If you remember from what we
have been learning about PCA, this method looks at each attribute as a carrier of some
variation of the total variation. If one attribute happens to have a significantly larger
variance, it will just dominate the PCA's attention. Therefore, to ensure each attribute will
get fair and equal attention from PCA, we will standardize the dataset.

Now that the dataset is ready, let's apply PCA. The following code uses the PCA ()
function from sklearn.decomposition to PCA-transform Xs into Xs_t:

from sklearn.decomposition import PCA

pca = PCA()

pca.fit (Xs)

Xs t = pd.DataFrame (pca.transform(Xs), index = Xs.index)
Xs_t.columns = ['PC{}'.format (i) for i in range(1,91)]

After successfully running the preceding code, print the transformed dataset, Xs_t, and
investigate its state.

Performing dimensionality data reduction 415

Attention!

You might be confused about ['PC{}'.format (i) for i in
range (1, 91)] in the preceding code. The technique that was used in

this line of code is called list comprehension. Whenever we want to fill a
collection with iterable items, instead of using traditional loops, we can use list
comprehensions. For instance, if you were to run this line of code separately, it
would printout ['PC1', 'PC2', 'PC3', .., 'PC90'].

The question we should be asking ourselves now is, was PCA successful? We can do better

than asking -

we can check. By simply running Xs t.var (), we can see the amount

of variations that are explained by each PC. After running this, we can see that most of
the variations are explained by the first PCs, but we don't know by exactly how much.
Normally, after performing PCA, we perform cumulative variance explanation analysis

on the PCs.

The following screenshot shows the code for creating explanation df, whichis
a reporting DataFrame that was created to show the variance percentage of each PC,
as well as the cumulative variance percentage up until each PC, starting from PCI:

In [37]: M total_variance = Xs_t.var().sum()

Oout[37]:

dic = {'variance_percentage':Xs_t.var()/total_variance,
'cumulative_variance_percentage':
Xs_t.var().cumsum()/total_variance}

explanation_df = pd.DataFrame(dic)
explanation_df

variance_percentage cumulative_variance_percentage

PC1 4.775917e-01 0.477592
PC2 1.609550e-01 0.638547
PC3 7.197769e-02 0.710524
PC4 6.833512e-02 0.778860
PC5 5.290713e-02 0.831767
PC86 4.023476e-08 1.000000
PC87 6.144899%e-11 1.000000
PC88 2.005157e-31 1.000000
PC89 1.969081e-33 1.000000
PC90 2.021922e-33 1.000000

90 rows x 2 columns

Figure 13.13 - Creating explanation_df from Xs_t

416 Data Reduction

In the preceding screenshot, we can see that the first three PCs account for 71% of the
total variation in data. We would roughly need 64 out of 90 attributes to be able to account
for around 71% of the variations in a dataset with 90 attributes. However, thanks to PCA,
we have transformed the dataset into a state where we can show 71% of the variations in
the dataset only using three attributes.

Next, we will use our visualization skills to draw a three-dimensional scatterplot. Running
Xs t.plot.scatter(x='PCl', y='PC2', c='PC3', sharex=False) will
ouput the following 3D scatterplot:

8
10 1 .
6
¢ .
51 o . ¢ 4
% e . . . * 5
~ L ¥ e’ "
g o ° o 4
B ° 0
e
o e ° -2
-5 Fl " °
.. Y _4
_10 1 T T T T T T _6
-10 -5 0 5 10 15
PC1

Figure 13.14 - Visualizing 71% of the variations in country_df using PC1, PC2, and PC3

The preceding visualization now has the advantage of having visualized 71% of

the information in country df, which is an excellent achievement. However,

the disadvantage of creating visualizations using PCs is that the dimensions in the
visualization will not have the intuitive meaning that they would if we were to use the
original attributes for visualization. For instance, compare the preceding diagram with
Figure 8.3 of Chapter 8, Clustering Analysis. In Figure 8.3, you will see that the x-axis
shows Life_Ladder, whereas the y-axis shows Perception_of _corruption, and the color
shows Generosity. When we look at the visualization, we have an understanding of what
intuitive values change while moving from one dot to the other. However, in the preceding
diagram, PCI, PC2 and PC3 are simply capsules of variations; we have no intuitive
understanding of what they show.

And that's not where things end. When looking at a regular scatterplot, we would
intuitively assume that the x-axis and y-axis have equal weight and importance. However,
we should try to beat that second nature when looking at the scatterplots of PCs. The
reason for this is that the first PCs have more importance as they carry more variations.
We also need to keep in mind that the representation of color only carries about 10.1% of
the total variations shown by the visualization; 10.1% was calculated using the formula
7.197769e-02/0.710524; both numbers are from Figure 13.13.

Performing dimensionality data reduction 417

In any case, beating our perception by paying attention to the relevancy and ratios of PCs
all at once is a tall order, especially for untrained eyes. The good news is that we can use
other visualization techniques to somewhat guide our eyes. The following code uses a few
strategies to help us see the relative relationship that the data points have to one another
regarding the PCs:

Xs t.plot.scatter(x='PCl',y='PC2',c='PC3',sharex=False, vmin=-
1/0.101, vmax=1/0.101)

x ticks vs = [-2.9*4 + 2.9*1 for 1 in range(9)]
for v in x ticks vs:
plt.axvline (v,c='gray',6K linestyle='--"',linewidth=0.5)
plt.xticks (x ticks vs)
y ticks vs = [-8.7,0,8.7]
for v in y ticks vs:
plt.axhline (v,c="'gray',6 linestyle='--"',linewidth=0.5)
plt.yticks (y ticks vs)
plt.show ()

Before we look at how the strategies were translated into the preceding code, let's look at
the result and use that as a lead-in to learning about those strategies. After running the
preceding code, Python will produce the following diagram:

.
87 - 75
o . 5.0
L J) N
. L J
A . ° 25
' » L - »
~ ks oo b .' K 4 Loo M
£ 001 e . Wb &
. L J
o . --2.5
.. r .
a u
= o ° --5.0
.. =
o --7.5
-8.7

-116-8.7-58-29 00 29 58 87 116
PC1

Figure 13.15 — A repeat of Figure 13.13 but with new details to guide our eyes regarding
the relevance and ratios of PC1, PC2, and PC3

418 Data Reduction

In the preceding diagram, you can see that two changes have been adopted. Let's go
through them one by one and explain them:

« x-ticks of the plot has been updated, and vertical lines have been added
accordingly. These changes are adopted using the amount of variations PC1 offers.
Likewise, y-ticks of the plot has also been updated, and horizontal lines have
been added accordingly.

The numbers 2. 9 and 8 . 7 have been calculated by trial and error and the
information taken from Figure 13.13; first, we can calculate 67.21682870670097%
and 22.652999757925132% as the percentages that PC1 and PC2 are representing in
the diagram, respectively. Then once 1 is divided by each of these values we get 2.9
and 8.7 for PC1 and PC2. Where did being divided by 1 come from? Think about it.

 The color spectrum changes as it represents PC3, which has been widened. We
use the range of -1/0.101 to 1/0.101 here. Earlier, we calculated 11.1% as the
percentage amount of variations that PC3 carries. This change, as you can observe
in the preceding diagram, helps us not give undue importance to the changes of
PC3 among the data objects.

Before we move on, let's do one last thing to enrich the visualization.

We want to annotate the dots in the preceding diagram with the names of the countries.
Since annotating all of the countries would probably make the visual cluttered and
unreadable, we will only add 50 countries; these 50 counties will be selected randomly
using the pandas DataFrame. sample () function. We will also make the scatterplot

a bit larger. The following code will do this for us. The changes that we've made to the
preceding code are in bold so that you can easily find them:

Xs t.plot.scatter(x='PCl',y='PC2',c="'PC3"',sharex=False, vmin=-
1/0.101, vmax=1/0.101, figsize=(12,9))

x ticks vs = [-2.9*4 + 2.9*1 for i in range(9)]
for v in x ticks vs:
plt.axvline(v,c="'gray',6 linestyle='--"',linewidth=0.5)
plt.xticks (x _ticks vs)
y ticks vs = [-8.7,0,8.7]
for v in y ticks vs:
plt.axhline(v,c='gray',6 linestyle='--"',linewidth=0.5)
plt.yticks(y ticks vs)
for i, row in Xs t.sample(50).iterrows():

Performing dimensionality data reduction 419

plt.annotate(i, (row.PCl, row.PC2),
rotation=50,c="gray',size=8)

plt.show ()

The following diagram will be produced after successfully running the preceding code:

. 75
87
B 5.0
. “‘
3 ® .
¢ & \ 3 & » &9 o
N g ! PIE g 25
¢ "gf’ R “ &7 .\.-; .
[) A L o5 . é [. . .
® 2
o ;o L3
~N s i -’ © ¢ m
& ® e . o v . 0.0 o
00 . e s ;7» . &
é e 3 "1;" é
. R g $ 2.5
v & T, #
¥ . 5
”~ &
‘ . & » --5.0
L] o
N - .‘ .
.
. F—-71.5
-8.7 ,
.\'
-116 -87 -58 -29 00 29 58 87 16
PC1

Figure 13.16 - The annotated and enlarged version of Figure 13.15

Now, instead of having to rely on a clustering algorithm to extract and give us the
inherent multi-variate patterns in a dataset, we can visualize them. This visualization, to a
decision-maker whose eyes have been trained, can be invaluable as 71% of the variations
in the dataset are presented in this visualization.

The next dimensionality reduction method we will learn about is functional data
analysis (FDA); however, let's discuss the advantages and disadvantages of PCA first. As
we saw in this example, PCA may be able to push most of the variations across all the
attributes of a dataset into the first PCs. This is great as we can present more information
using fewer dimensions.

420 Data Reduction

This can have two distinct positive impacts. First, as we saw in this example, we can
visualize more information using fewer visual dimensions. Second, we may use PCA as
a way to help with computational costs for algorithmic decision-making. For instance,
instead of having to have 90 independent attributes, we may be able to have only three
attributes with only a minimal loss of information.

On the other hand, there is a very significant negative impact that comes with using PCA.
By pushing the variations around, PCA effectively makes the new dimensions of the
transformed data meaningless, which can deprive us of some analytical capabilities.

The next strength/weakness of PCA is also the weakness/strength of the next method we
will learn about, which is FDA. PCA is a non-parametric method, which means it can be
applied to any dataset and it may be able to transform the data into a new space where
fewer dimensions are necessary to present much of the variations. However, FDA is not a
method that can be applied to any data. FDA may be applicable or not - it all depends on
if we can find a mathematical function that can imitate our data to an acceptable degree.
That being said, if we do manage to find that function and apply FDA, then dimension
reductionality will not transform the data into a new space where the dimensions are
meaningless. However, this is what PCA does.

Is PCA Applicable to Any Dataset?

Actually, no. If the attributes of a dataset form non-linear relationships whose
inclusion is important for the analytic goals, PCA should be avoided. However, in
most everyday datasets, the assumption that attributes have a linear relationship
with one another is safe. On the other hand, if capturing the non-linear
relationships between data attributes is essential, you should stay away from PCA.

At this point, I hope you are very excited to learn about FDA. You should be since FDA is
a very powerful and exciting method.

Functional data analysis

As the name suggests, functional data analysis (FDA) involves applying mathematical
functions to data analytics. FDA can be a standalone analytic tool, or it can be used for
dimension reduction or data transformation. Here, we will discuss how it can be used as
a dimension reduction method. In the next chapter, we will discuss how FDA can be used
for data transformation.

Simply put, as a dimension reduction method, FDA finds a function that can imitate
the data well enough so that we can use the parameters of the function instead of the
original data.

As always, let's look at an example to understand this better.

Performing dimensionality data reduction 421

Example - parametric dimension reduction

In the preceding example, Example — non-parametric dimension reduction, we used
PCA to transform country df so that most of the variations — 71%, to be exact —
were presented in only three dimensions; that is, PC1, PC2, and PC3. Here, we want to
approach the same problem but use a parametric approach instead.

Before moving on, get Jupyter Notebook to show country df and study its structure.
Its structure is also shown in the following diagram. You can see that each country has 90
records from nine happiness indices over 10 years:

Life_Ladder Log_GDP_per_capita Positive_Affect Negative_Affect
2010]2011[2012] 2013] 2014] 2015, 2016|2017 2018] 2018) 2010] 2011 2012] 2013| 2014 2015| 2016 2017 2018|2019 .. | 2010] 2011 2012] 2013] 2014] 2015] 2016| 2017] 2018] 2019 2010[2011] 2012/ 2013 2014] 2015 2016] 2017 2018 2019

1 Afghanistan
2 Albania

3 Algeria

4 Argentina

5 Armenia

6 Australia

7 Azerbaijan
8 Bahrain

115 UAE

116 United Kingdom
117 United States
118 Uruguay

119 Uzbekistan

120 Vietnam
121 Zambia
122 Zimbabwe

Figure 13.17 - The structure of country_df

To gauge if FDA can help us transform this dataset, let's visualize the 10-year trend of each
happiness index per country.

The following code populates 1,098 (122*9) line plots. As you hit run in Jupyter Notebook,
line plots will start to appear. You will not have to let your computer populate all the
visuals. Once you feel like you have grasped what these plots look like, you can interrupt
the kernel. If you don't know how to stop your kernel, go back to Figure 1.2:

happines index = ['Life Ladder', 'Log GDP_per capita', 'Social
support', 'Healthy life expectancy at birth', 'Freedom to

make life choices', 'Generosity', 'Perceptions of corruption',
'Positive affect', 'Negative affect']

for i,row in country df.iterrows() :
for h i in happines index:
plt.plot (row[h 1i])
plt.title('{} - {}'.format(i,h 1))
plt.show ()

422 Data Reduction

After this exercise, you might be convinced that a linear equation might be able to
summarize the trends in all of the visualizations. The general linear equation looks
like this:

Happiness_index =a+ b *t

In this equation, t represents time, and in this example, it can take any one of the values

in thelist [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. For each of the visualizations we saw after running the
preceding code, we strive to estimate the a and b parameters so that the function shown in
the preceding formula can represent all the points fairly.

Before making any final decisions, let's test the applicability of this function, both visually
and statistically. However, as this is our first time fitting a function to a data, let's perform
curve fitting for some sample data and then use loops to apply that to all of our data.

The sample data we will be using will be Life Ladder of Afghanistan - the very first
visualization the preceding code created.

We will be using the curve fit () function from scipy.optimize to estimate the
a and b parameters for Life Ladder of Afghanistan. To apply this function, other than
importing it (from scipy.optimize import curve fit), we need to perform
the following steps:

1. First, we need to define a Python function for the mathematical function we want
to use to fit the data.
The following code creates 1inearFunction (), as we described previously:
def linearFunction(t,a,b):
y = a+ b*t
return y
We will be using 1inearFunction () shortly.
2. Second, prepare the data for the curve_fit () function by organizing it into
x dataandy data.
The following code shows how this is done for Life Ladder of Afghanistan:
x data = range(10)
y data = country df.loc['Afghanistan', 'Life Ladder']

Performing dimensionality data reduction 423

3. Pass the function and the data into the curve fit () function.

The following code shows how this can be done for the sample data:

from scipy.optimize import curve fit

p, ¢ = curve fit(linearFunction, x data, y data)

After running the three preceding code blocks, the p variable will have the
estimated a and b parameters. Printing p will show you that a is estimated to be
4.37978182, while b is estimated to be -0.19528485.

To evaluate the goodness of this estimation, we can use both visualization and statistics.
The following screenshot shows the code to create the analyzing visualization, its result,
the code for calculating r2, and its result:

In [44]: M fit_y = linearFunction(x_data,p[@],p[1])

plt.
plt.
plt.
plt.
plt.

45

40

35

30

25

plot(x_data,y_data,label="data")
plot(x_data, fit_y, '--', label="fit")
xticks(x_data,y_data.index)

legend()

show()

- data
fit

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

In [45]: M from sklearn.metrics import r2_score
print("r2_score",r2_score(y_data,fit_y))

r2_score 0.5954935497933329

Figure 13.18 - The code and the result of using visualization and statistics to evaluate the curve

for fitting goodness-of_fit

Statistically speaking, r2 is the ideal metric for capturing and summarizing the goodness
of fit for data one number. The metric can take any value between 0 and 1 and the higher
values show a better fit. The value of 0.59 in this example is not a value that would make
you say "phew! I've found the perfect fit," but it is also not terrible.

424 Data Reduction

In any case, we want to combine visualization with statistics for the best interpretation and
decision-making. Visually speaking, the fitted data nicely shows where the country started
in 2010 (a) and the average slope of change the country has had over the years (b). Even
though r2 does not show the perfect fit, the visualization shows that the function tells a
perfect story of the data with only two parameters. When you're dealing with FDA, being
able to capture what is essential to our analysis is more important than having a perfect fit.
Sometimes, the perfect fit shows we are capturing the noise over the generalizable trend.

The Meaning behind the Parameters of a Linear Function

Similar to any other famous function, the parameters of the linear function
(y=a+b*x) have intuitive meanings. The a parameter is known as an intercept
or constant; in this example, the intercept represents where the country started.
The b parameter is known as the slope, and it represents the rate and direction
of change. In this example, b represents exactly that — the rate and direction of
change a country has gone through over the years.

So, every time you perform FDA, one of the must-do activities is
understanding the meaning of the parameters of the function that can capture
the essential information of the dataset.

Of course, we don't stop here before finalizing the linear function — we must test how well the
function can capture the essence of information for the happiness indices of each country.

The following code fits the linear function 1,098 times — one per combination of happiness
indices - and the countries (122 countries and 9 happiness indices). For every curve fitting,
the line plot shows the actual data and the fitted function is presented. r2 of the fit is also
reported. Moreover, all calculated r2 values are recorded in rSqured_df for future analysis:

happines index = ['Life Ladder',6 'Log GDP_per capita', 'Social
support', 'Healthy life expectancy at birth', 'Freedom to_

make life choices', 'Generosity', 'Perceptions of corruption',
'Positive affect', 'Negative affect']

rSqured df = pd.DataFrame (index=country df.index,
columns=happines index)

for i,row in country df.iterrows() :
for h i in happines index:
x data = range(10)
y data = rowl[h i]
p,c= curve fit (linearFunction, x data, y data)

fit y = linearFunction(x data,p[0],p[1])

Performing dimensionality data reduction

425

iaS)

r2 score(y data,fit y)

rSqured df.at[i,h i] = rS

plt
plt

plt.
plt.
plt.

.plot (x_data,y data,label='data')

.plot (x_data, fit y, '--', label='fit"')
xticks (x data,y data.index)

legend ()

title('{} - {} - r2={}'

.format (i,h i, str(round(rsS,2))))

plt.

show ()

Spend some time and review the visuals that the preceding code populates. You will see
that while the r2 values of some of the visualization and the fit of the linear function

are not statistically high, for almost all of the visualizations, the story about the linear

function state makes sense.

To investigate this further, let's create a box plot of all of the r2 values per happiness
index. The following screenshot uses the seaborn . boxplot () function to do this:

In [47]:

M sns.boxplot(data=rSqured_df)
plt.xticks(rotation=90)

plt.show()
H T
06
04 ‘ P
02 ¢
00]
Pl é M d . d - -
! il R
5 5 5 ' g s 8,
o' g = [g 2
¥ 8 = & ., B B
8 3§ ' £ g
o ! 2
o
5

Perceptions_of corruption

Freedom_to_make_life_choices

Healthy_life_expectancy_at_birth

Figure 13.19 - The box plots of 2 per happiness index

426 Data Reduction

After studying the box plot in the preceding screenshot, we can see that the curve fitting
for Log_ GDP_per_capita and Healthy_life_expectancy_at_birth have had very good
fits. This shows that the trends of these two happiness indices have been the most linear.

From the preceding screenshot, we could conclude that the linear function is not the
appropriate function to transform the other happiness indices and recommend going to
the drawing board to find a more suitable function for them. While that is also a valid
direction, continuing with the linear function for all of the happiness indices is also valid.
This is because linear functions tend to capture the essence of what is important for this
analysis, and having a lower goodness-of-fit does not mean the parameters will not be able
to show the trends of the data.

The following code creates a code function to be applied to country df. The
linearFDA () function, when applied to a row, loops through all the hapiness indices,
fits the linear function to the 10 values, and returns the estimated parameters, a and b:

happines index = ['Life Ladder',6 'Log GDP per capita',
'Social support', 'Healthy life expectancy at birth',
'Freedom to make life choices', 'Generosity', 'Perceptions of
corruption', 'Positive affect', 'Negative affect']

ml index = pd.MultiIndex.from product ([happines index,
['a','b']], names=('Hapiness Index', 'Parameter'))

def linearFDA (row) :

output sr = pd.Series (np.nan,index = ml index)

for h i in happines index:
x _data = range (10)
y data = rowl[h i]
p,c= curve fit (linearFunction, x data, y data)
output sr.loc[(h i,'a')] =pl0]
output sr.loc[(h i,'b')] =pl[1]

return (output sr)

Once the function has been created, you can use the following code to create
country t df, which is the FDA-transformed version of country df.

However, there is a caveat before running the code. Once run, the code will provide a
warning regarding covariance not being able to estimate. That's nothing to worry about:

country df t=country df.apply(linearFDA,axis=1)

Performing dimensionality data reduction 427

Once the code has been run, get Jupyter Notebook to show you country df_t and
study the transformed dataset. The following diagram shows the extent and structure of
change that was applied to country df to shape country df t:

Life_Ladder Log_GDP_per_capita Positive_Affect Negative_Affect
2010 2013 2012[2013] 2014] 2015 2016] 2017] 2018 2019 2010] [20142015 2016] 2017] 2018] 2019, 2012] 2013/ 2014] 2015 2016] 2017] 2018 2019 2010] 2011] 2012 2013] 2014] 2015 2016 2017 2018[2018

1
2 Albania

3 Algeria

4 Argentina
5 Armenia
6 Australia
7 2
8 Bahrain

]

115 UAE

116 United Kingdom
117 United States |
118 Uruguay |
119 Uzbeki [
120 Vietnam [|
121 Zambia | |
1222 | |

Life_Ladder Log_GDP_per_capita Pasitive_Affect Negative_Affect
a b a b a | b a b

1 |
2 Albania |
3 Algeria |
4 Argentina |
5 Armenia I
|
|
|

6 Australia
7 Azerbaijan
8 Bahrain

115 UAE |
116 United Kingdom |
117 United States [
118 Uruguay |
\
|
|
L

119 L
120 Vietnam
121 Zambia
122 Zimbabwe

Figure 13.20 - The original structure of country_df and its FDA-transformed one

In the preceding code, we can see that country df t now only uses 18 attributes
instead of the 90 attributes of country df. Here, FDA has done more than just data
reduction. FDA, along with the linear function, has transformed the data so that its
key features — the starting point and the slope of change of the happiness indices - are
massaged to the surface.

428 Data Reduction

Before moving on, let's compare the FDA approach and PCA approach that we applied to
the same data. There are a few key points here:

« Extension of Reduction: PCA was able to reduce the data into only three attributes,
while FDA reduced the data into 18 attributes.

+ Loss of Information: Both approaches removed some variations from the data.
We know that PCA kept 71% of the variation, but we don't know exactly how
many variations were kept by FDA. However, we did have control over what kind
of variations we were interested in using with the FDA. PCA does not offer this
kind of control.

o Parametricality: While there were fewer new dimensions for PCA, they did not
have an intuitive meaning. However, FDA's reduced parameters did have meaning,
and those were even more useful for analysis than the original attributes.

Next, we are going to learn about a few possible useful functions that are frequently used
when transforming data sources with FDA.

Prominent functions to use for FDA

In this section, we will learn about a few functions that are frequently used for FDA.

Before we look at this list of functions, let's reiterate that the functions can be anything
that has the potential to capture the trends in the data. However, the functions we will go
over here are famous and frequently used for curve fitting.

When you have data and want to apply it to FDA, you can experiment with one of the four
functions - exponential, Fourier, sinusoidal, and Gaussian - to see which one works best
for the analytic goals.

Now, let's learn a little bit about each of them. We will start with exponential. Before
moving on, please pay close attention to the following caveat.

Caveat!

There is a lot to be said about each of these functions; in a book dedicated

to functional data analysis, each of these functions could take up one whole
chapter. However, here, we only get a very brief introduction to each of these
functions. These instructions will be enough for you to have a good guess if a
function will be applicable for a dataset or not. If and when you have a function
candidate for a dataset, I highly encourage you to read more about the function
to understand its possible variations and the meanings of its parameters. This
will be essential if you wish to succeed with functional data analysis.

Performing dimensionality data reduction 429

Now, let's learn a little bit about these functions. We will start with the exponential function.

Exponential function

This function can capture what is characterized as exponential growth or decay. For
instance, what we know as exponential growth is a growth that is slow at first but whose
rate of growth rapidly increases. The following equation shows the exponential function:

y=a*eb*x

The parameters of these functions are a and b. Here, e is a constant known as Euler's
number, which is a constant that is approximately 2.71. To get an accurate value of e, run
np.exp (1) in your Jupyter Notebook after having imported NumPy as np.

For example, the following code uses the GoogleStock. csv file, which contains the
daily stock prices of Google from the day it went public until September 3, 2021, which is
the day this content is being developed. This code uses everything we have learned about
in this chapter on how to fit a function to a dataset:

def exponantial (x,a,b):
y = a*np.exp (b*x)
return y
price df = pd.read csv('GoogleStock.csv')
price df.set index('t',inplace=True)
y data = price df.Price
x data = range(len(y data))
p,c= curve fit (exponantial, x data, y data,p0=[50,0])
fit y = exponantial (x_data,p[0],p[1])
plt.plot (x data,y data,label='Google Stock Price Data')
plt.plot(x_data, fit y, '--', label='fit')

plt.xticks (np.linspace(1l,len(y data),15),y data.iloc[1::300].
index, rotation=90)

plt.legend ()
plt.show ()

430 Data Reduction

Running the preceding code will create the following output:

3000 4
- (Google Stock Price Data

fit
2500 A

2000

1500 H

1000 H

500 1

2004-08-20 -
2005-10-27 4
2007-01-09 -
2008-03-19
2009-05-28
2010-08-05 -
2011-10-12 -
2012-12-21 -
2014-03-05 A
2015-05-13 4
2016-07-21 -
2017-09-28 -
2018-12-07
2020-02-19 1
2021-04-28 4

r2_score 0.9448509203130201

Figure 13.21 - The output of fitting the exponential function to GoogleStock.csv

Before moving on to the next function, allow me to share with you a rather disappointing
reality about the curve fit () function from scipy.optimize. While this is a great
and useful function, it is not fully integrated and the most powerful it can be. For more
complex functions, for curve fit () to estimate the best possible parameters, the
function needs a leg-up. This small act of help must come from us as a first guess

about what we think the parameters should be. For example, in the preceding code,
p0=[50, 0] is that leg-up. For us to be able to have good educated guesses so that we
can help curve fit (), we need to have a good understanding of what the parameters
of the function mean. For instance, in the case of the exponential function, a is known as
the intercept and b is known as the base. To get curve fit () going, we have helped the
function by stating that the intercept will be around the number 50. The number 50 is the
price of Google stocks for the first few days.

Now, let's move at the Fourier function.

Performing dimensionality data reduction 431

Fourier function

This function is a valid candidate for capturing vibrational signals such as noise and voice
data. These vibrational signals are characterized by oscillating, reciprocating, or periodic,
and the Fourier function can capture these periodic oscillations and reciprocations. The
following equation shows the Fourier function. The parameters of the Fourier function are
a0, al, a2, and w:

y = a0 + al xcos(x *w) + bl *sin(x xw)

For example, the following code uses the Noise data.csv file, which contains 200
milliseconds of vibrational signals collected from a car engine for health diagnosis. Similar
to the preceding code, it uses everything we have learned about in this chapter on how to
fit a function to a dataset:

def fourier(x,al0,al,bl,w):

y = a0 + al*np.cos(x*w) + bl*np.sin(x*w)
return y
noise df = pd.read csv('Noise data.csv')

noise df.set index('t',inplace=True)

y_data

noise df.Signal

x_data = range(len(y data))

p,c= curve fit (fourier, x data, y data,p0=[10,1000,-400,0.3])
fit y = fourier(x data,pl0],pl[1],p[2],p[3])

plt.figure (figsize=(15,4))

plt.plot (x data,y data,label='Noise Data')

plt.plot (x_data, fit y, '--', label='fit')

plt.legend ()

plt.show ()

print ("r2 score",r2 score(y data,fit y))

432 Data Reduction

Running the preceding code will create the following output:

1500 — Noise Data

fit

1000

500

=500

-1000

-1500

0 P s0 7 100 125 150 175 200
r2_score 0.8770501065480368

Figure 13.22 - The output of fitting the Fourier function to Noise_data.csv

Before moving on to the next function, Sinusoidal, note that the curve fit () function
needed even a stronger leg-up (p0=[10,1000,-400, 0.3]) to be able to fit the data.

Sinusoidal function

This function, which is similar to the Fourier function, can capture oscillations and
reciprocations, and similarly, the function could be a candidate for capturing noise and
voice data. The following equation shows the sinusoidal function. The parameters of the
sinusoidal function are al, b1, and cI:

y =al*sin(bl*x +cl)

For example, the following code uses the same data as in the previous example, which
is contained in the Noise data.csv file, to see whether the function can simulate
the data:

def sinusoidal (x,al,bl,cl):

y = al*np.sin(bl*x+cl)

return y
noise df = pd.read csv('Noise data.csv')
noise df.set index('t', inplace=True)
y_data = noise_df.Signal
x data = range (len(y data))
p,c= curve fit (sinusoidal, x data, y data,p0=[1000,0.25,2.5])
fit y = sinusoidal (x data,p[0],p[1],p[2])
plt.figure(figsize=(15,4))
plt.plot (x data,y data,label='Noise Data')

Performing dimensionality data reduction 433

plt.plot (x data, fit y, '--', label='fit"')
plt.legend ()

plt.show ()

print ("r2 score",r2 score(y data,fit y))

Running the preceding code will create the following output:

1500 —— Noise Data
fit

1000

500

=500

-1000

-1500

0 s s 7 100 125 150 175 200
r2_score 0.8768630893287543

Figure 13.23 - The output of fitting the sinusoidal function to Noise_data.csv

Again, note that the curve_fit () function needed even a more significant leg-up
(p0=[1000,0.25,2.5]) to be able to fit the data. These leg-ups can only be given to
the curve_fit () function if we have a good understanding of the parameters of the
sinusoidal function.

Gaussian function

This function is famous for Gaussian or normal distribution from probability and
statistics. The functionality behind the normal distribution that we use to summarize,
analyze, and compare many populations with comes from the Gaussian function. The
general Gaussian function has three parameters called al, b1, and c1. The following
equation shows its formula:

y = alx* e(x—b1)2/2c12

The density function of a normal distribution is a specific variation of the preceding
formula with only two parameters, where bl1=y and c1=4, and al is calculated as 1/6v2m .
If you don't know about the normal distribution, just ignore this paragraph and move on.
You can just treat this function as another famous function you just became aware of.

The Gaussian function is famous for being a bell-shaped figure, and each of the three
parameters shows the characteristics of the shape of a bell. Let's look at an example.

434 Data Reduction

We will use the covidl9hospitalbycounty.csv file here, which contains the daily
COVID hospitalization data of all the counties in California, as collected on September
4, 2021. The following code reads the file into covid_county day df and then uses
the . groupby () function to aggregate all of the counties' data by summing them, thus
creating covid_day d£. The code also plots the trend of daily hospitalizations:

covid county day df = pd.read csv('covidlShospitalbycounty.
csv')

covid day df = covid county day df.groupby ('todays_date') .
hospitalized covid patients.sum()

covid day df.plot ()

plt.xticks (rotation=90)

plt.show ()

Running the preceding code will create the following output:

20000 A
15000 A
10000 -
5000 A
0 B

N r~ [*a} m m ~

~ o - ~ o -

m ~ =) P~ h 0

o (=] — o o o

o o) — — —

™~ ~ ~ ~ ~ ™~

& R (] R | |

todays_date

Figure 13.24 - California COVID hospitalizations until September 4, 2021

Performing dimensionality data reduction 435

We can see a few bell-shaped figures in the trend of the data. Each of these waves can be
summarized and captured using the Guassian function. For example, let's capture the one
from 2020-10-15 to 2021-05-03. The following code does that just like all the previous
curve fittings do:

def gaussian(x,al,bl,cl):
y= al*np.exp (- ((x-bl) **2/2%*cl**2))
return y
y data = covid day df.loc['2020-10-15':'2021-05-03"]
x _data = range(len(y data))
p,c= curve fit (gaussian, x data, y data)
fit y = gaussian(x data,pl0],p[1],p[2])
plt.plot (x data,y data,label='Hospitalization Data')
plt.plot (x data, fit y, '--', label='fit"')
plt.legend ()
plt.show ()
print ("r2 score",r2 score(y_data,fit y))

Running the preceding code will create the following output:

- Hospitalization Data
20000 - s
15000 A
10000 -
5000 A
0 - a T

T

0 25 50 5 100 125 150 175 200

r2_score 0.9668373070226166

Figure 13.25 - The output of fitting the Gaussian function to a part of covid_day_df

436 Data Reduction

While the preceding diagram shows a great fit, you may be wondering how this can be of
any analytics value. This is an excellent question. Let's consider an analytics project where
we want to predict the number of COVID deaths in the next month using the historical
data. You could create a prediction model that connects the number of COVID deaths on
any given day (the dependent attribute) to the total number of hospitalizations 2 weeks
before that day (the independent attribute). Such a model can achieve a certain level of
success in prediction. However, there are ways to improve that. For instance, we could add
more independent attributes, such as the rate of COVID test positivity a month before
that day, or the rate of vaccination 2 months before that day. This approach uses more
data sources to enrich the prediction model. A second approach, which can use FDA, is to
enrich the independent attributes that come from the same source of data. For instance,
instead of just extracting one value from the hospitalization data from 3 weeks ago, we
might be able to use the parameters of the function we used to fit the data. Doing this is
certainly trickier than adding more data sources, but this might just be the improvement
a model needs to reach even better predictions. See Chapter 16, Case Study 2 - Predicting
COVID 19 Hospitalization, for great data integration/reduction examples of using FDA.

As we get closer to the end of this chapter, let us first go over a quick summary of the
FDA, and after that, we will have another quick summary of the whole chapter.

Final notes on FDA

There is a lot to be said and covered in FDA. It has its own world. What we covered here
should just be looked at as an introduction and a springboard for a possible deep dive into
this world for more learning.

As we finish learning about FDA, we will provide a few notes and considerations:

« Any function, even one that has just been created, can be used as the function for
FDA. The advantage of using these famous functions is that they are well known
and there are lots of resources for them to support your learning and your data
analytic projects.

« Most functions have variations and they can become more complex for more
complicated datasets. If a function kind of works for a dataset but not perfectly, maybe
one of its variations will. For instance, the sinusoidal function, when used with two
terms, can accommodate more complex oscillations. See the following equation:

y =al*sin(bl*x+cl) + a2 *sin(b2 * x + c2)

« Knowing the meaning of the parameters is essential in understanding the
transformed data. Also, as we saw, you may have to tap into that knowledge in
giving a leg-up to the function curve fit ().

Summary 437

e FDA can be used as a dimension reduction method. However, FDA can be looked at
as a data analytics tool. Furthermore, as we will see in the next chapter, FDA can be
a data transformation method.

Now, let's summarize this chapter.

Summary

Congratulations on your excellent progress on yet another exciting and important chapter.
In this chapter, we learned about the concept of data reduction, its uniqueness, the
different types, and saw a few examples of how knowing about the tools and techniques
we can use for data reduction can be of significant value in our data analytic projects.

First, we understood the distinction between data redundancy and data reduction and
then continued to learn about the overarching categories of data reduction: numerosity
data reduction and dimensionality data reduction. For numerosity data reduction, we
covered two methods and an example to showcase when and where they could be of value.
For dimensionality reduction, we covered two categories: supervised and unsupervised
dimension reduction.

Supervised dimension reduction is when we pick and choose the independent attributes
for prediction or classification data mining tasks, while unsupervised dimension
reduction is when we reduce the number of dimensions with a more general outlook.

The next chapter is going to be the last one in Part 3 of this book: preprocessing. We are
going to learn about data transformation and massaging. In this chapter, we sometimes
had to talk a little about data transformation as well. Some of the techniques that were
covered in this chapter can also be used as data transformation techniques.

The next chapter is going to be another exciting chapter. However, before we learn about
data transformation and data massaging, take advantage of the learning opportunities that
the following exercises provide.

Exercises

1. Inyour own words, describe the similarities and differences between data reduction
and data redundancy from the following angles: the literal meanings of the terms,
their objectives, and their procedures.

2. If you decide to include or exclude independent attributes based on the correlation
coeflicient value of each independent attribute with the dependent attribute in a
prediction task, what would you call this type of preprocessing? Data redundancy
or data reduction?

438 Data Reduction

3.

In this example, we will be using new_train.csvfrom https://www.
kaggle.com/rashmiranu/banking-dataset-classification. Each
row of the data contains customer information, along with campaign efforts
regarding each customer, to get them to subscribe for a long-term deposit at the
bank. In this example, we would like to tune a decision tree that can show us

the trends that lead to successful subscription campaigning. As the only tuning
process we know about will be computationally very expensive, we have decided to
perform one of the numerosity data reductions we've learned about in this chapter
to ease the computation for the tuning process. Which method would fit this data
better? Why? Once you have arrived at the data reduction method you want to use,
apply the method, tune the decision tree, and draw the final decision tree. Finally,
comment on a few interesting patterns you found in the final decision tree.

In this chapter, we learned about six dimensionality reduction methods. For each of
these six methods, specify if the method is supervised or unsupervised, and why.

We would like to continue working on new_train.csv from Excercise 3. Use
a decision tree and a random forest to evaluate the usefulness of the independent
attributes in new_train.csv. Report and compare the results using both
dimension reduction methods.

Use brute-force computational dimension reduction to figure out the optimum
subset of independent attributes that the KNN algorithm needs for the classification
task described in Exercise 3. If the task is computationally too expensive, what is
one strategy that we learned about that can curb that? If you did end up using that
strategy, could you say the subset you've found is still optimum?

In this exercise, we will use the data in ToyotaCorolla.csv to create a
prediction model using MLP that can predict car prices. Do the following:

a) Deal with all the data cleaning issues, if any.

b) Apply linear regression, a decision tree, and a random forest to evaluate the
usefulness of the independent attributes in the dataset. Use all the results of the
evaluations to come to the top eight independent attributes that can support
MLP prediction best. Which three dimension reduction methods should be given
the least priority and why?

¢) Use similar code to the code we used in this chapter to tune the decision tree to
tune MLP for the prediction task of connecting the top eight independent attributes
from the previous step to the dependent attribute. In this tuning experiment, use
the following two hyperparameters and the values given in the list:

i hidden layer sizes:[5,10,15,20,(5,5),(5,10),(10,10),(5,5,5),(5,10,5)]
ii. max_iter: 50, 100, 200, 500]

https://www.kaggle.com/rashmiranu/banking-dataset-classification
https://www.kaggle.com/rashmiranu/banking-dataset-classification

Exercises 439

If the computation takes too long, feel free to use the computational cost-cutting
strategy you have learned about in this chapter.

d) In this step, we would like to use brute-force computational dimension reduction
to find the best subset of independent attributes out of the eight independent
attributes. Can we use the tuning parameters we found from the previous step
or, when using the brute-force dimension reduction method, does it have to be
mixed with parameter tuning? Why/why not? Apply the best approach. Again,
feel free to use the computational cost-cutting strategy you learned about in
this chapter.

In this exercise, we would like to use the Cereals. csv dataset. This dataset
contains rows of information about different cereal products. We would like to
perform clustering analysis on this dataset, first using K-Means and then using
PCA. Do the following:

a) Impute a central tendency of the attribute for all the missing values.
b) What central tendency did you choose and why?

¢) Why did we impute using the central tendency? Why not use other methods?
Answer by commenting on how the data will be used next.

d) Remove the categorical attribute from the data.

e) Should the data be normalized or standardized for clustering? Why?
t) Apply K-Means with K=7 and report the resulting clustering.

g) Perform centroid analysis and name each cluster.

h) Investigate the relationship between the clusters and the two categorical
attributes that you removed. Which cluster has both hot and cold kinds of cereal?
Which company only creates popular cereals that are not very nutritious?

i) The elementary public schools would like to choose a set of cereals to include in
their cafeterias. Every day, a different cereal is offered, but all the cereals should be
healthy. Which members from which cluster should be used here? Explain why.

j) Now, we want to complement this analysis using PCA. Before applying PCA,
should we standardize or normalize the dataset?

k) Using the first few PCs, come up with an annotated three-dimensional scatterplot
that shows most of the variation in the data. How much variation is shown? Make
sure that the figure contains the necessary element to explain to the audience the
importance of each PC.

440 Data Reduction

1) Looking at the three-dimensional scatterplot, would you say the choice of K=7
for K-Means was good?

m) Can you spot the members of the cluster you found in Step i in the
three-dimensional scatterplot you created in Step k? Are they all together?

9. In this exercise, we will use Stocks 2020 . csv, which contains the daily stock
prices of 4,154 companies in 2020. Remember that 2020 is the year that the
COVID-19 pandemic happened. During this year, the stock market experienced a
sudden crash and also a quick recovery. We want to use the data reduction methods
that we know of to see if we can capture this from the data. Do the following:

a) Use the k-means algorithm to cluster the data into 27 groups. Also, use the
module time to capture the amount of time it took the algorithm to run.

b) What are the outliers in the data based on the clustering results?
c) Draw line plots for all the outliers and describe the trends you see.

d) Draw line plots for all the members of the clusters where there are less than 10
members and describe the trends.

e) Apply PCA to the data and report the number of variations that the first three
PCs account for. Also, draw an annotated scatterplot that includes the three PCs
with all the necessary visual guides.

f) Using the visual from the previous step, count and report the outliers. Are they
the same outliers that we found using k-means clustering?

g) Cluster the stocks into 27 groups again using the most significant PCs. Also,
report the amount of time it took for K-means to complete the task. See how
much faster K-means was compared to how fast it was in Step a.

h) Draw a visual that compares the clusterings in Steps a and g. Describe your
observations.

i) We would like to extract the following features from the data:
» General_Slope: The slope of the linear regression line fitted to the data of the stock.

« Sellout_Slope: The slope of the linear regression line fitted to the data of the stock
from Feb 14 — March 19 (stock sell-out period due to COVID).

o Rebound_Slope: The slope of linear regression line fitted to the data of the stock
from March 21 — December 30 (Stock rebound after COVID sell-out).

We will do this in a few steps. First, create a placeholder DataFrame (£da_df) where
its index is the stock symbols and its columns are the features mentioned previously.

Exercises 441

10.

11.

j) Find General Slope and fill the placeholder using a linear regression model.
k) Find Sellout_Slope and fill the placeholder using a linear regression model.
1) Find Rebound_Slope and fill the placeholder using a linear regression model.

m) Draw a three-dimensional scatterplot for fda_df. Use x_axis for
Sellout Slope and y-axis for Rebound Slope.

n) Cluster the stocks into 27 groups again using the three attributes of fda_df.
Then, compare the clustering outcomes with the clusterings from Steps a and g
and describe your observations.

0) Among the three preprocessing approaches (no preprocessing, PCA-transformed,
and FDA-transformed) you experimented with in this exercise, which one was
able to help in capturing the patterns we were interested in?

Figure 13.2 was created using a decision tree after random sampling. Recreate this
figure but this time, use random over/undersampling, where the sample has 500
churning customers and 500 non-churning customers. Describe the differences in
the final visual.

Figure 13.7 shows the result of dimension reduction for the task of predicting

the next day's amazon Stock prices using linear regression. Perform dimension
reduction using a decision tree and compare the results. Don't forget that to do so,
you will need to tune DecisionTreeRegressor () from sklearn.tree. You
can use the following code for this tuning process:

from sklearn.tree import DecisionTreeRegressor

from sklearn.model selection import GridSearchCV
y=amzn_df.drop (index=['2021-01-12"']) ['changeP']

Xs = amzn_df.drop (

columns=['changeP'], index=['2021-01-12"'])

param grid = { 'criterion':['mse', 'friedman mse', 'mae'],
'max depth': [2,5,10,20], 'min samples split':
[10,20,30,40,50,100], 'min impurity decrease': [0,0.001,
0.005, 0.01, 0.05, 0.1]}

gridSearch = GridSearchCV (DecisionTreeRegressor (), param
grid, cv=2, scoring='neg mean squared error', verbose=1)
gridSearch.fit (Xs, y)

print ('Best score: ', gridSearch.best score)

print ('Best parameters: ', gridSearch.best params)

14

Data Transformation

and Massaging

Congratulations, you've made your way to the last chapter of the third part of the book
— The Preprocessing. In this part of the book, we have so far covered data cleaning, data
integration, and data reduction. In this chapter, we will add the last piece to the arsenal
of our data preprocessing tools — data transformation and massaging.

Data transformation normally is the last data preprocessing that is applied to our datasets.
The dataset may need to be transformed to be ready for a prescribed analysis, or a specific
transformation might help a certain analytics tool to perform better, or simply without a
correct data transformation, the results of our analysis might be misleading.

In this chapter, we will cover when and where we need data transformation. Furthermore,
we will cover the many techniques that are needed for every data preprocessing situation.
In this chapter, we're going to cover the following main topics:

The whys of data transformation and data massaging
Normalization and standardization

Binary coding, ranking transformation, and discretization
Attribute construction

Feature extraction

444 Data Transformation and Massaging

+ Log transformation

« Smoothing, aggregation, and binning

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub
repository exclusively created for this book. To find the repository, go to: https://
github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-
Python. You can find this chapter in this repository and download the code and the data
for better learning.

The whys of data transformation and
massaging
Data transformation comes at the very last stage of data preprocessing, right before

using the analytic tools. At this stage of data preprocessing, the dataset already has the
following characteristics.

« Data cleaning: The dataset is cleaned at all three cleaning levels (Chapters 9-11).

« Data integration: All the potentially beneficial data sources are recognized and
a dataset that includes the necessary information is created (Chapter 12, Data
Fusion and Integration).

« Data reduction: If needed, the size of the dataset has been reduced (Chapter 13,
Data Reduction).

At this stage of data preprocessing, we may have to make some changes to the data
before moving to the analyzing stage. The dataset will undergo the changes for one of the
following reasons: we will call them necessity, correctness, and effectiveness. The following
list provides more detail for each reason.

o Necessity: The analytic method cannot work with the current state of the data. For
instance, many data-mining algorithms, such as Multi-Layered Perceptron (MLP)
and K-means, only work with numbers; when there are categorical attributes, those
attributes need to be transformed before the analysis is possible.

o Correctness: Without the proper data transformation, the resulting analytic will
be misleading and wrong. For instance, if we use K-means clustering without
normalizing the data, we think that all the attributes have equal weights in the
clustering result, but that's incorrect; the attributes that happen to have a larger scale
will have more weight.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

The whys of data transformation and massaging 445

o Effectiveness: If the data goes through some prescribed changes, the analytics will
be more effective.

Now that we have a better understanding of the goals and reasons for data transformation
and massaging, let's learn what is the difference between data transformation and
data massaging.

Data transformation versus data massaging

There is more similarity between the two terms than difference. Therefore, using them
interchangeably would not be incorrect in most situations. Both terms describe changes
that a dataset undergoes before analytics for improvement. However, there are two
differences that it will be good for us know.

o First, the term data transformation is more commonly used and known.

« Second, the literal meanings of transforming and massaging may be used for
drawing a conclusive difference between the two terms.

The term transformation is more general than massaging. Any changes a dataset undergoes
can be called data transformation. However, the term massaging is more specific and does
not carry the neutrality of transformation, but it carries the meaning of doing more for
getting more. Therefore, as the following figure suggests, data massaging can be interpreted
as changing the data when we are trying to improve the effectiveness of data analytics,
whereas data transformation is a more general term. So, some could argue that all data
massaging is also data transformation, but not all data transformation is also data massaging:

Correctness Effectiveness

Figure 14.1 - Data transformation versus data massaging

446 Data Transformation and Massaging

The preceding figure shows the three reasons for data transformation that we discussed
earlier: Necessity, Correctness, and Effectiveness. Furthermore, the figure shows that
while data transformation is a more general term used to refer to the changes a dataset
undergoes before the analysis, data massaging is more specific and can be used when the
goal of transforming the dataset is for effectiveness.

In the rest of this chapter, we will cover some data transformation and massaging tools
that are commonly used. We will start by covering normalization and standardization.

Normalization and standardization

At different points during our journey in this book, we've already talked about and used
normalization and standardization. For instance, before applying K-Nearest Neighbors
(KNN) in Chapter 7, Classification, and before using K-means on our dataset in Chapter
8, Clustering Analysis, we used normalization. Furthermore, before applying Principal
Component Analysis (PCA) to our dataset for unsupervised dimension reduction in
Chapter 13, Data Reduction, we used standardization.

Here is the general rule of when we need normalization or standardization. We need
normalization when we need the range of all the attributes in a dataset to be equal. This
will be needed especially for algorithmic data analytics that uses the distance between the
data objects. Examples of such algorithms are K-means and KNN. On the other hand, we
need standardization when we need the variance and/or the standard deviation of all the
attributes to be equal. We saw an example of needing standardization when learning about
PCA in Chapter 13, Data Reduction. We learned standardization was necessary because
PCA essentially operates by examining the total variations in a dataset; when an attribute
has more variations, it will have more say in the operation of PCA.

The following two equations show the formula we need to use to apply normalization and
standardization. The following list defines the variables used in the equations:

« A:The attribute
o i: The index for the data objects
o Ai: The value of data object i in attribute A

o NA: The normalized version of attribute A

Normalization and standardization 447

o SA: The standardized version of attribute A

NA, = A; —min (4)
©™ max(4) — min (4)
SA. = A; —mean (4)
i std(A)

Let's see an example. The following figure shows a small dataset of employees that are
described by only two attributes, Salary and GPA. Naturally, the numbers we use for salary
are larger than GPA, as you can see in the original attributes, Salary and GPA. The preceding
two equations have been used to apply normalization and standardization transformation
respectively. The middle table is the normalized version of the dataset showing N_Salary
and N_GPA. You can see that after normalization, the transformed versions of the attributes
have the same range from zero to one. The right table is the standardized version of the
dataset featuring S_Salary and S_GPA. You can see in the standardized version that the
standard deviation (STD) of the two attributes are both equal to one:

Salary GPA N_Salary N_GPA S Salary S_GPA

A B _NA_ _NB_ _SA__SB__

1 92000 3.25 0.75 0.339806| | 0.817616 -0.57477

2 83000 3.36 0.5 0.446602| | -0.00919 -0.15882

3 83000 3.16 0.5 0.252427| | -0.00919 -0.91509

4 72000 3.45| | 0.194444 0.533981| | -1.01972 0.181506

5/ 101000 3.32 1 0.407767| | 1.644418 -0.31007

6 85000 3.57| | 0.555556 0.650485| | 0.174547 0.635271

7 74000 3.93 0.25 1) | -0.83599 1.996565

8 65000 3.61 0 0.68932| | -1.66279 0.786526

9 98000 3.47| | 0.916667 0.553398| | 1.368817 0.257133

10 78000 2.9|| 0.361111 0| | -0.46852 -1.89825
Max=| 101000 3.93 1 1| | 1.644418 1.996565
Min= 65000 2.9 0 0| | -1.66279 -1.89825
Mean= 83100 3.402| | 0.502778 0.487379 0 0
STD=| 10885.31 0.264454| | 0.30237 0.256752 1 1

Figure 14.2 - An example of normalization and standardization

448 Data Transformation and Massaging

Upon further study of the preceding figure, you may observe two interesting trends:

« First, even though the goal of normalization is equalizing the range (Max and Min),
the standard deviations (STD) of the normalized attributes have become much
closer to one another too.

« Second, even though the goal of standardization is equalizing the standard deviation
(STD), the Max and Min values of the two standardized attributes are much closer
to one another too.

These two observations are the main reason in many resources standardization and
normalization are introduced as two methods that can be used interchangeably.
Furthermore, I have seen all too often that the choice of applying standardization or
normalization is set in a supervised tuning. That means the practitioner experiments with
both normalizing the data and then standardizing it, and then selects the one that leads to
better performance on the prime evaluation metric. For instance, if we want to apply KNN
on the data, we might see the choice between normalization or standardization of the
attribute as a tuning parameter next to K and the subset of the independent attributes (see
the Example - finding the best subset of independent attributes for a classification algorithm
subsection in the Brute-force computational dimension reduction section in Chapter 13,
Data Reduction) and experiment with both to see which one works best for the case study.

Before moving to the next group of data transformation methods, let's discuss whether
normalization and standardization fall under data massaging or not. Most of the time,
the reason we would apply these two transformations are that without them, the results
of our analysis would be misleading. So, the best way to describe the reason behind
applying them is correctness; therefore, we cannot refer to standardization or
normalization as data massaging.

In the course of this book, we have seen many examples of applying normalization and
standardization, so we will skip giving a practical example on these data transformation
tools and go straight to the next group of methods: binary coding, ranking transformation,
and discretization.

Binary coding, ranking transformation, and
discretization

In our analytics journey, there will be many instances in which we want to transform
our data from numerical representation to categorical representation, or vice versa. To
do these transformations, we will have to use one of three tools: binary coding, ranking
transformation, and discretization.

Binary coding, ranking transformation, and discretization = 449

As the following figure shows, to switch from Categories to Numbers, we either have
to use Binary Coding or Ranking Transformation, and to switch from numbers to
categories, we need to use Discretization:

Ranking Transformation

Binary Coding

Numbers -« Categories

Discretization
Figure 14.3 - Direction of application for binary coding, ranking transformation, and discretization

One question that the preceding figure might bring to mind is, how do we know which
one we choose when we want to move from categories to numbers: binary coding or
ranking transformation? The answer is simple.

If the categories are nominal, we can only use binary coding; if they are ordinal, both may
be used, but each method has its pros and cons. We will talk about those using examples.

Before moving on to see examples of applying these transformations, let's discuss why we
may need these data transformations, in two parts:

« First, why we would transform the data into numerical form

« Second, why we would transform data into categorical form

We generally transform categorical attributes to numerical ones when our analytics tool of
choice can only work with numbers. For instance, if we would like to use MLP

for prediction and some of the independent attributes are categorical, MLP will not be
able to handle the prediction task unless the categorical attributes are transformed into
numerical attributes.

Now, let's discuss why we would transform numerical attributes into categorical ones.
Most often, this is done because the resulting analytics output will become more intuitive
for our consumption. For instance, instead of having to deal with a number that shows
the GPA, we may be more comfortable dealing with categories such as excellent, good,
acceptable, and unacceptable. This will become the case, especially if we want to use our
attention to understand the interactions between attributes. We will see an example of this
in a few pages.

450 Data Transformation and Massaging

Furthermore, in some analytics situations, the types of attributes must be the same. For
instance, when we want to examine the relationship between a numerical attribute and a
categorical one, we may decide to transform the numerical attribute to a categorical attribute
to be able to use a contingency table for the analysis (see Visualizing the relationship between
a numerical attribute and a categorical attribute in Chapter 5, Data Visualization).

Now, let's start looking at some examples to understand these transformation tools.

Example one - binary coding of nominal attribute

In Chapter 8, Clustering Analysis, in the Using K-means to cluster a dataset with more
than two dimensions section, we did not use the Cont inent categorical attribute for
the clustering analysis using K-means. This attribute indeed has information that can
add to the interestingness of our clustering analysis. Now that we have learned about the
possibility of transforming categorical attributes into numerical ones, let's try to enrich
our clustering analysis.

As the attribute continent is nominal, we only have one choice and that is to use binary
coding. In the following code, we will use the pd.get dummies () pandas function to
binary-code the Cont inent attribute. Before doing that, we need to load the data as we
did in Chapter 8, Clustering Analysis. The following code takes care of that:

report df = pd.read csv('WH Report preprocessed.csv')
BM = report df.year == 2019

report2019 df = report df [BM]

report2019 df.set index('Name', inplace=True)

After running the preceding code, we are set to give pd.get dummies () a try. The
following screenshot shows how this function is used and the first five rows of its output.
The bc_Continent variable name is inspired by be, as in binary coded:

In [3]: M bc_Continent = pd.get_dummies(report2019_df.Continent)
bc_Continent.head(5)

ouelzs Africa Antarctica Asia Europe North America Oceania South America
Name

Afghanistan 0 0 1 0 0 0 0

Albania 0 0 0 1 0 0 0

Algeria 1 0 0 0 0 0 0

Argentina 0 0 0 0 0 0 1

Armenia 0 0 0 1 0 0 0

Figure 14.4 - Screenshot of report2019_df.Continent using pd.get_dummies() binary coding

Binary coding, ranking transformation, and discretization 451

The preceding screenshot shows exactly what binary coding does. For each possible
categorical attribute, a binary attribute will be added. The combination of all the binary
attributes will present the same information.

Next, we will run a very similar code to what we ran in Chapter 8, Clustering Analysis.
Only one part of the following code has been updated, and the updated part is highlighted
for your attention:

from sklearn.cluster import KMeans

dimensions = ['Life Ladder', 'Log GDP per capita', 'Social
support', 'Healthy life expectancy at birth', 'Freedom to
make life choices', 'Generosity', 'Perceptions of corruption',
'Positive affect', 'Negative affect']

Xs = report2019 df [dimensions]
Xs
Xs = Xs.join(bc_ Continent/7)

(Xs - Xs.min())/(Xs.max()-Xs.min())

kmeans = KMeans (n clusters=3)
kmeans. fit (Xs)
for 1 in range(3) :
BM = kmeans.labels ==i
print ('Cluster {}: {}'.format (i,Xs[BM].index.values))

After running the preceding code successfully, you will see the result of the clustering
analysis.

The only noticeable difference between the preceding code and the one we used in
Chapter 8, Clustering Analysis, is the addition of Xs = Xs.join(bc_Continent/7),
which adds the binary coded version of the Cont inent attribute (bc_Continent)

to Xs after Xs is normalized, and before it is fed into kmeans . £it (). There is another
question — why didn't we add bc_ Cont inent without dividing it by 7?

Let's try to dispel all the confusion before moving on to centroid analysis. The reason

we added bc_Continent to our code at a specific point in a specific manner is that we
wanted to control how much this binary coding would affect our results. If we had added
without dividing it by 7, bc_Continent would have dominated the clustering result

by clustering the countries mostly based on their continent. To see this impact, remove
the division by 7, run the clustering analysis, and create the heatmap of the centroid
analysis to see this. Why does this happen? Isn't it obvious? The Cont inent attribute has
information worth only one attribute, and not 7.

452 Data Transformation and Massaging

Furthermore, if we had added bc_Cont inent /7 before the normalization, the
division by 7 would not be meaningful, as the code we run for normalization, which is
Xs = (Xs - Xs.min())/(Xs.max () -Xs.min ()), would have canceled out the
division by 7.

So, now we understand why we added the binary-coded data the specific way that we did.
Now, let's perform the centroid analysis. The following code will create the heatmap for
centroid analysis for this specific situation. The code is very similar to any other centroid
analysis that we have performed so far in this book but for a small change. Instead of
having one heatmap, we will have two - one for the regular numerical attributes and one
for the binary-coded attribute. The reason for this twofold visual is that the normalized
numerical values are between 0 and 1, and the binary-coded values are between 0 and 0.14;
without the separation, the heatmap would only show the normalized numericals, as those
values have a larger scale. Run the normal non-separated heatmap and see that for yourself:

clusters = ['Cluster {}'.format (i) for i in range (3)]

Centroids = pd.DataFrame (0.0, index = clusters, columns =
Xs.columns)

for i,clst in enumerate (clusters) :
BM = kmeans.labels ==i
Centroids.loc[clst] = Xs[BM] .mean (axis=0)
plt.figure (figsize=(10,4))
plt.subplot(1,2,1)
sns.heatmap (Centroids [dimensions], linewidths=.5, annot=True,
cmap="'binary')
plt.subplot(1,2,2)
sns.heatmap (Centroids [bc_Continent.columns], linewidths=.5,
annot=True, cmap='binary')

plt.show ()

As described, the preceding code will create a twofold heatmap. To compare the results
we arrived at in Chapter 8, Clustering Analysis, with what we have arrived at here with the
preceding code block, we have put these two results in the following figure for comparison:

453

Binary coding, ranking transformation, and discretization

w -
M - Joaye aaneban

I - yuIg e Aduedadxa ay| AuljeaH
«©

Bl
~ u
=]
a

VRT] 0.3

033

04335n) 1330

z 30

a) Clustering Analysis without Continent

0.10
0.08
0.06
0.04
-0.02
-0.00

0

-0 0 (I.OISIOOGD.OIQJ 0062

- eJUAWY WINOS

- elueax

- eauaWY YUoN

£0019 0 0019

0 00038 0

- adoun3
<) - eJnaiejuy

SESC Vs IR SE3E1 T

o 0.0070.002

z 12150

09

08

0

0

0.
-03

3

Zg

- aye aaineban

R0 21

, - 1930 aAQIsod

m - uondnuod Jo suondadiad

- Aysaiauan)

- S32I0YD 2yI| 2)ew 0] wopaaly

- yuIg e Aduepadxa 2| Ayljesy
- poddns”|jeos

=u34ml

u m - eydes sad ggo 6o
~ -
Bl opeon
||

04335n])

12350])

Z421snD

b) Clustering Analysis with bc Continent

Figure 14.5 - Clustering analysis of countries based on their happiness indices with and without the

inclusion of the Continent categorical attribute

454 Data Transformation and Massaging

The comparison of the heatmaps from the preceding figure clearly shows the successful
enrichment of the clustering analysis by the inclusion of a categorical attribute after binary
coding. Note that the clustering results of a) and b) in the preceding figure are largely the
same, except for Cluster 0 and Cluster 2 having switched places.

Next, let's see an example where our categorical attribute is not nominal but ordinal and
see how we should decide between binary coding and ranking transformation.

Example two - binary coding or ranking
transformation of ordinal attributes

Transforming ordinal attributes into numbers is a bit tricky. There is no perfect solution;
we either have to let go of the ordinal information in the attribute, or assume some
information into the data. Let's see what that means in an example.

The following figure shows the transformation of an example ordinal attribute into
numbers by three methods: Binary Coding, Ranking Transformation, and Attribute
Construction. Spend some time studying this figure before moving on to the next
paragraph:

Education High School Bachelor Masters Doctorate Education Education
level Rank Years
1

High School 1 0 0 0 12
Bachelor 0 1] 0 2 16
High School 1 0 0 0 1 12
Masters 0 0 1 0 3 18
Doctorate 0 0 o 2§ 4 21
Bachelor 0 1 0 0 2 16
Masters 0 0 1 0 3 18
High School 1 0 0 0 1 12
High School 1 0] 0 1 12
Bachelor Binary 0 1 0 0 2 16

Coding

Ranking Transformation |

Attribute Construction

Figure 14.6 — An example showing three ways of transforming an ordinal attribute into numbers

Binary coding, ranking transformation, and discretization = 455

Now, let's discuss why none of the transformations are perfect. In the case of Binary
Coding, the transformation has not assumed any information into the result, but the
transformation has stripped the attribute from its ordinal information. You see, if we
were to use the binary-coded values instead of the original attribute in our analysis, the
data does not show the order of the possible values of the attribute. For example, while
the binary-coded values make a distinction between High School and Bachelor, the data
does not show that Bachelor comes after High School, as we know it does.

The next transformation, Ranking Transformation, does not have this shortcoming;
however, it has other cons. You see, by trying to make sure that the order of the possible
values is maintained, we had to engage numbers by ranking transformation; however, this
goes a little bit overboard. By engaging numbers, not only have we successfully included
order in between the possible values of the attribute but we have also collaterally assumed
information that does not exist in the original attribute. For example, with the ranking
transformed attribute, we are assuming there is one unit difference between Bachelors
and High School.

The figure has another transformation, Attribute Construction, which is only possible

if we have a good understanding of the attribute. What Attribute Construction tries

to fix is the gross assumptions that are added by Ranking Transformation; instead,
Attribute Construction uses the knowledge about the original attribute to assume more
accurate information into the transformed data. Here, for example, as we know, achieving
any of the degrees in the Education Level attribute takes a different number of years of
education. So, instead, Attribute Construction uses that knowledge to assume more
accurate assumptions into the transformed data.

We will learn more about Attribute Construction in a few pages in this chapter. Now, we
want to see an example of transforming numerical attributes into categories.

456 Data Transformation and Massaging

Example three - discretization of numerical attributes

For this example, let's start from the ending. The following figure shows what
discretization can achieve for us. The top plot is a box plot that shows the interaction
between three attributes, sex, income, and hoursPerWeek, from adult df (adult.csv).
We had to use a box plot because hoursPerWeek is a numerical attribute. The bottom
plot, however, is a bar chart that has the interaction with the same three attributes, except
that the hoursPerWeek numerical attribute has been discretized. You can see the magic
that the discretization of this attribute has done for us. The bottom plot tells the story of

the data far better than the top one:

Male 1

i 409

sex

fotnnse o 0 we
income

El <=50K

H >50K

Female -

looumnins ome o o

e 0 ¢ LI

a 80 80 100
hoursPerWeek

_________ L

Discretize hoursPerWeekj

.

(Male, >50K)

(Male, <=50K)

sex,income

(Female, >50K)

(Female, <=50K)

discretized_hoursPerWeek
. <40
40
- 40

0 1000 2000

3000 4000 5000 6000 7000

Figure 14.7 — Example of discretization to show the simplifying benefit of the transformation

Binary coding, ranking transformation, and discretization =~ 457

Now, let's look at the code that we used to make the two plots happen. The following code
creates the top plot using sns.boxplot ():

adult df = pd.read csv('adult.csv')

sns.boxplot (data=adult df, y='sex',6 x='hoursPerWeek',
hue="'income')

To create the bottom plot, we first need to discretize adult df .hoursPerWeek. The
following code uses the . apply () function to transform the numerical attribute to a
categorical attribute with the three possibilities of >40, 40, and <=40:

adult df['discretized hoursPerWeek']= adult df.hoursPerWeek.
apply (lambda v: '>40' if v>40 else ('40' if v==40 else '<40'))

A good question here is, why are we using 40 as the cut-off point? In other words, how

did we come to use this cut-oft? To best answer this question and, in most cases, find the
appropriate cut-off point, you'd want to study the histogram of the attribute you intend to
discretize. So, you will know the answer to this question after drawing the histogram of
adult_df.hoursPerWeek. The following screenshot shows the code and the histogram:

In [10]: M adult_df.hoursPerWeek.plot.hist()
plt.show()

17500 A

15000 -

12500 -

10000 -

o
]

Frequency

5000 -

2500

0 20 40 60 80 100

Figure 14.8 - Creating the histogram for adult_df.hoursPerWeek

458 Data Transformation and Massaging

After discretizing adult df .hoursPerWeek, running the following code will create

the bottom plot in Figure 14.7. The following code is a modified version of the code that we
learned in Chapter 5, Data Visualization, under Example of comparing populations using bar
charts, which is part of the Comparing populations subsection; this specific code is from The
fifth way of solving in the example. We have added [['<40','40', '>40']] to make
sure that these values appear in the order that they make the most sense:

adult df.groupby(['sex', 'income']) .discretized hoursPerWeek.
value counts () .unstack() [['<40','40', '>40']] .plot.barh()

This example served well to showcase the possible benefits of discretization. However,
there is more to learn about discretization. Next, we will learn about the different types
of discretization.

Understanding the types of discretization

While the best tool to guide us through finding the best way to discretize an attribute is a
histogram, as we saw in Figure 14.8, there are a few different approaches one might adopt.
These approaches are called equal width, equal frequency, and ad hoc.

As the name suggests, the equal width approach makes sure that cut-off points will lead to
equal intervals of the numerical attribute. For instance, the following screenshot shows the
application of the pd. cut () function to create 5 equal-width bins from adult_df.age:

In [13]: M pd.cut(adult_df.age, bins = 5).value_counts().sort_index().plot.bar()
plt.show()

12000

10000 A
8000 A
6000 A
4000
2000 -
A [

(16.927, 31.6]
(31.6, 46.2]
(46.2, 60.8]
(60.8, 75.4]
(75.4, 90.0] 4

Figure 14.9 - Using pd.cut() to create equal width binning

Binary coding, ranking transformation, and discretization 459

On the other hand, the equal frequency approach aims to have an equal number of data
objects in each bin. For instance, the following screenshot shows the application of the
pd.gcut () function to create 5 equal-frequency bins from adult_ df.age:

In [14]: M pd.qcut(adult_df.age,q=5).value_counts().sort_index().plot.bar()
plt.show()

7000

6000 -
5000 1
4000 A
3000 4
2000 A
1000 A

o

Figure 14.10 - Using pd.qcut() to create equal frequency binning

(16.999, 26.0]
(26.0, 33.0]
(33.0,41.0]
(41.0,50.0]
(50.0, 90.0]

As you can see in the preceding figure, the absolute equal frequency binning may not
be feasible. In these situations, pd. gcut () gets us as close as possible to equal
frequency binning.

Lastly, the ad hoc approach prescribes the whereabouts of cut-off points based on the
numerical attribute and other circumstantial knowledge about the attribute. For instance,
we decided to cut adult df . hoursePerWeek in Example 3 - discretization of numerical
attributes ad hoc after having consulted the histogram of the attribute (Figure 14.8) and the
circumstantial knowledge that most employees work 40 hours a week in the US.

In these examples, especially Figure 14.9 and Figure 14.10, one matter we did not talk
about is how we got to the number 5 for the number of bins. That's all right, because that
is the topic of what we will cover next.

460 Data Transformation and Massaging

Discretization - the number of cut-off points

When we discretize a numerical attribute with one cut-off point, the discretized attribute
will have two possible values. Likewise, when we discretize with two cut-off points,

the discretized attribute will have three possible values. The number of possible values
resulting from k cut-off points during discretization of a numerical attribute will be k+1.

Simply put, the question we want to answer here is how to find the optimum number for
k. There is no bulletproof procedure to follow, so you will get the same answer every time.
However, there are a few important guidelines that, when understood and practiced, make
finding the right k less difficult. The following lists these guidelines:

o Study the histogram of the numerical attribute you intend to discretize and keep an
open mind about what will be the best number of cut-off points.

« Too many cut-off points are not desirable, as one of the main reasons we would like
to discretize a numerical attribute is to simplify it for our own consumption.

o Study the circumstantial facts and knowledge about the numerical attribute and see
if they can lead you in the right direction.

« Experiment with a few ideas and study their pros and cons.

Before ending our exploration of discretization, I would like to remind you that we've
already used discretization in our journey in this book. See the Example of examining the
relationship between a categorical attribute and a numerical attribute section in Chapter 5,
Data Visualization, for another example of discretization.

A summary - from numbers to categories and back

In this subsection, we learned about the techniques to transform categorical attributes into
numerical ones (binary coding, ranking transformation, and attribute construction), and we
also learned how to transform numerical attributes into categorical ones (discretization).

Before ending this subsection and moving to learn even more about attribute
construction, let's discuss whether any of what we see could be labeled as data massaging.
As we discussed in Figure 14.1, anything we are doing in this chapter is indeed data
transformation; however, a data transformation can be labeled as data massaging when
the transformation has been performed as a way to increase the effectiveness of the
analysis. Most of the time when we transform an attribute from categorical to numerical
or vice versa, it is done out of necessity; however, in the preceding few pages, there are two
instances where the transformation could be labeled as data massaging because we did it
for improving effectiveness. It will be your job to figure out which those are in Exercise 2 at
the end of the chapter.

Attribute construction 461

Now, let's continue our journey of data transformation — next stop: attribute construction.

Attribute construction

We've already seen an example of this type of data transformation. We saw that we could
employ it to transform categorical attributes into numerical ones. As we discussed, using
attribute construction requires having a deep understanding of the environment that the
data has been collected from. For instance, in Figure 14.6, we were able to construct the
Education Years attribute from Education level because we have a pretty good idea of the
working of the education system in the environment the data was collected from.

Attribute construction can also be done by combining more than one attribute. Let's see
an example and learn how this could be possible.

Example - construct one transformed attribute from

two attributes

Do you know what Body Mass Index (BMI) is? BMI is a result of attribute construction
by researchers and physicians, who were looking for a healthiness index that takes both
the weight and height of individuals into account.

We are going to use 500 Person Gender Height Weight Index.csv from
https://www.kaggle.com/yersever/500-person-gender-height-
weight -bodymassindex. Let's first read the data and do some level one data cleaning.
The following code does that:

person df = pd.read csv('500 Person Gender Height Weight Index.
csv')

person df.Index = person df.Index.replace({0:'Extremely Weak',
1: 'Weak',2: 'Normal',63:'Overweight', 4:'Obesity',5:'Extreme
Obesity'})

person df.columns = ['Gender', 'Height', 'Weight', 'Condition']

After running the preceding code, get Python to show you person_df and evaluate its
state before reading on.

Next, we will leverage . scatterplot () of the seaborn module (sns) to create a 4D
scatter plot. We will use the x axis, y axis, color, and marker style to respectively represent
Height, Weight, Condition, and Gender. The following screenshot shows the code
and the 4D scatterplot:

https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex
https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex

462 Data Transformation and Massaging

Attention

If you are reading the print version of this book, you will not see the colors,
which are an essential aspect of the visualization, so make sure to create the
visual before reading on.

In [17]: M sns.scatterplot(data = person_df, x='Height',y='Weight',
hue="'Condition',style="'Gender")
plt.legend(bbox_to_anchor=(1.05, 1))

plt.show()
160 - x ® x P*es e - x Condition
o [®aex e®x - = "ﬁ . Lex® :
& ..' x J.. ‘. X e :l e ! . . e Ohbesity
140 - % "o o o> g ¢, L e Normal
x5 ® "% a0 . o x @ ov ight
.‘0 . o%x - x .p‘ = xe '0" !x,' . .' L] : x:zzrwelg()bes":y
o % % o e a0 A ° reme
120 ® .. x ® L4 l' ™ *xo" x o
£ ..*-"':'“" '.’.!'°:"'. i e 5 ‘::tar:mel Weak
& o Mtuee 08, 00 N e o ¥
£ 100 . ‘;.' o ®*x Nxp '.-"x.d' P Gender
O.. x¥®, * X, fe X ox ° ® Male
o o I = * xo‘.. % o. F
80 ” o o'. of He e X Exxenld, o % Female
. ”w x* . e -
] - “.-' ox N 0‘ X o= : .x. . Py
J ux® ** og® x" o o oiX
60 ot 'x ®x Xy X% Eo*
B * x xex x o ®Teo aux "% 0
140 150 160 170 180 190 200
Height

Figure 14.11 - Using sns.scatterplot() to create a 4D visualization of person_df

Our observation from the preceding plot is obvious. The two Height and Weight
attributes together can determine a person's healthiness. This is what the researchers and
physicians must have seen before having arrived at the BMI formula. BMI is a function
that factors in both weight and height to create a healthiness index. The formula is as
follows. Be careful - in this formula, weight is in kilograms and height is in meters:

BMI = Weight
" Height?

This begs the question, why this formula? We literally could have used an infinite number
of possibilities to come up with a transformed attribute that is driven by both weight and
height. So, why this one?

The answer goes back to the most important criteria of being able to apply attribute
construction — deep knowledge of the environment from which the data is collected.
Therefore, on this one, we have to trust that the researchers and physicians that have chosen
this formula did possess such depth of knowledge and appreciation for the human body.

Attribute construction 463

Let's go ahead and construct the new attribute for person_df. The following code uses
the formula and the knowledge that the recorded weight and height in person_df are
respectively in kilograms and meters to construct person_df ['BMI']. Of course, this
has been done using the powerful . apply () function:

person df ['BMI'] = person df.apply(lambda r:r.Weight/ ((r.
Height/100) **2) ,axis=1)

After constructing the new person_df . BMI attribute, study it a bit, maybe create its
histogram and box plot to see its variation. After that, try to create the following figure.
Having reached this part of the book, you have all the skills to be able to create it. Anyhow,
you have access to the code that has created the visual in the dedicated GitHub repository
file of this chapter:

- o Obesity
o Weey o [g* o s o
he .:,;S' 9::': Ul ;.’*s. :.-. :‘*.. .: ’:;‘:o':o.'." 5. :‘ X " ® : ?;:::leight

£ . o e o, % & {O. 'i.‘}.{ @ %0 g *e .

E L PO L - o, 3.0 % Seee o 1P 3 0a e o B o o o @ ® Extreme Obesity
-] L] of'.. ¢ :;,’ '.'.’%‘V @, ofw 'o:: o, o e 17 %el® o .2 ® Weak

L o’ 2 (8% :';::'.. - .::‘0-\‘_-;..-,4: ."" - 9 Yo b = . ® Extremely Weak

L L]
‘te 03'"«".*'-'- %0 & e g0 o * e e T el . "
10 15) P 0 B 0 45 50 55 60 & 70 3 80

BMI

Figure 14.12 - Visualization of interaction between BMI and condition

The preceding figure shows the interaction between the constructed attribute, BMI, and the
Condition attribute. The y axis in the preceding scatterplot has been used to disperse the
data points so we can appreciate the number of data objects on the x axis (BMI). The trick
to make the dispersion effect is to assign a random number to each data object.

In any case, what the interaction between the two attributes shows is the main point;
that is, we can almost give out a set of cut-oft points that tell us whether a person is
healthy or not; BMI smaller than 15 indicates Extremely Weak, BMI between 15 and

19 shows Weak, BMI between 19 and 25 signifies Normal, BMI between 25 and 30

tells us the person is in the Overweight category, BMI between 30 and 40 is a case of
Obesity, and finally, BMI larger than 40 is a sign that the person is Extremely Obese. Do
a quick Google search to see whether what we've managed to find is the same as what is
recommended regarding BMI.

In this example, we managed to construct one attribute by combining two attributes. There
are cases where we can construct more than one attribute from a single attribute or source
of data. However, while that can also be thought of as attribute construction, in the relevant
literature, doing that is referred to as feature extraction. We will look into that next.

464 Data Transformation and Massaging

Feature extraction

This type of data transformation is very similar to attribute construction. In both, we use
our deep knowledge of the original data to drive transformed attributes that are more
helpful for our analysis purposes.

In attribute construction, we either come up with a completely new attribute from scratch
or combine some attributes to make a transformed attribute that is more useful; however,
in feature extraction, we unpack and pick apart a single attribute and only keep what is
useful for our analysis.

As always, we will go for the best way to learn what we just discussed — examples! We will
see some illuminative examples in this arena.

Example - extract three attributes from one attribute

The following figure shows the transformation of the Email attribute into three binary
attributes. Every email ends with @a WebAddress; by looking at the website address
providing the email service, we have extracted the three Popular Free Platform, .edu,

and Others features. While Email may sound like just a meaningless string as regards
being able to derive information about an individual, this example shows a smart feature
extraction can derive valuable information from email addresses. For instance, here we
can detect individuals who would like to use more popular services. Moreover, we can
distinguish the individual that uses emails provided by educational institutions; this shows
perhaps they work for academia or they are students:

Popular Free .edu Others
Lkjds.fds@gmail.com 1 0 0
om21sdfds@gmail.com 1 0 0
89u43g@yahoo.com 1 0 0
Ikdsifa@redlands.edu 0 1 0
84utfd@gmail.com > 1 0 0
iowjlk@msstate.edu 0 1 0
5431sldojk@yahoo.com 1 0 0
39dfoiuy@outlook.com 0 0 1
klied@att.org 0 0 1
Lks321ld@calpoly.edu 0 1 0
jdsfl@gmail.com 1 0 0

Figure 14.13 - Feature extraction from the Email attribute

Let's look at another example.

Feature extraction 465

Example - Morphological feature extraction

The following figure shows 100 milliseconds of vibrational signals collected from a
car engine for health diagnosis. Furthermore, the figure shows the extraction of three
morphological features.

Before getting more into these three features and what they are, let's discuss what the word
morphological means. The Oxford English Dictionary defines it as "connected to shape and
form." As a feature extraction approach, morphological feature extraction is employing
the common shape and form of the data to get to new features.

The following figure serves as an excellent example. We have extracted three
morphological features. Simply, in the line plot of the vibration signal, we have counted
the number of peaks (n_Peaks), the number of valleys (n_Valleys), and the extent of
oscillation during the 100 milliseconds (max_Oscillate):

B _A
noA

1000 -

A n_Peaks = 4

500 4

v n_Valleys =5

=500 1

-1000 -

5 R
W W Y $ max_0Oscillate= 2735.8
' 80 100

-1500 T T T

Figure 14.14 - Morphological feature extraction of vibrational signals

466 Data Transformation and Massaging

The value of doing such feature extraction will show itself when we see them in
comparison between a few data objects. The preceding figure is the feature extraction
of only one data point. However, the following figure has put together five distinct data
points that are from engines with five different states: Healthy, Fault 1, Fault 2, Fault 3,
and Fault 4:

n_Peaks | n_Valleys | max_Oscillate

> 20

: []

= 4 5 2735.8
© ~s00

w 1000

I 1500

- .

= . 4 4 2931.0
=]
m -500

m -1000

I —

P

> ’ 2 1 1331.5
o | -

(WS 400

oo

= ' 4 4 2530.8
3 00
©

|

q 500

= .

S 5 5 2422.0
T | -

u -1000

Figure 14.15 - Morphological feature extraction of vibrational signals for five instances of data objects

Contemplating the preceding figure shows us that with simple morphological feature
extraction, we might be able to accurately distinguish between different types of fault and the
healthy engine. You will have the opportunity to create the classification model after doing
morphological feature extraction on similar data in Exercise 5 at the end of this chapter.

Feature extraction 467

In our journey throughout this book, we have already seen other instances of feature
extraction without referring to it as such. Next, we are going to discuss those instances
and how we had gotten ahead of ourselves.

Feature extraction examples from the previous
chapters

In this book, we have dissected data preprocessing into different stages. These stages are
Data Cleaning (Chapters 9-11), Data Fusion and Integration (Chapter 12), Data Reduction
(Chapter 13), and Data Transformation (this chapter). However, in many instances of
data preprocessing, these stages may be done in parallel or at the same time. This is a
great achievement from a practical perspective and we should not force ourselves to take
apart these stages in practice. We've only discussed these stages separately to aid our
understanding, but once you feel more comfortable with them, it is recommended to do
that at the same time if it's possible and useful.

That is the reason that we've already seen feature extraction in the other stages of data
preprocessing. Let's go over these examples and see why they are both feature extraction
and also other things.

Examples of data cleaning and feature extraction

In Chapter 10, Data Cleaning Level II - Unpacking, Restructuring, and Reformulating

the Table, during the solution for the Example 1 - Unpacking columns and reformulating
the table section, which was cleaning speech_df, a dataset that had a few of President
Trump's speeches, we unwittingly performed some feature extraction under the name of
unpacking the Content column. The Content attribute had each of the speeches in
text, and the solution unpacked these long texts by counting the number of times the vote,
tax, campaign, and economy terms had been used.

This is both data cleaning and data transformation (feature extraction). From the
perspective of data cleaning, there was so much fluff in the data that we did not need and
got in the way of our visualization goals, so we removed the fluff to bring what's needed to
the surface. From a data transformation perspective, we extracted four features that were
needed for our analysis.

Next, let's see how data reduction and feature extraction are sometimes done at the
same time.

468 Data Transformation and Massaging

Examples of data reduction and feature extraction

In Chapter 13, Data Reduction, we learned two unsupervised dimension reduction
techniques. We saw how a non-parametric method (that is, PCA) and a parametric
method (that is, FDA) reduced the dimension of country df, a dataset of countries
with 10 years of 9 happiness indices (90 attributes). From a data reduction perspective,
the data was reduced by reducing the number of attributes. However, after learning about
data transformation and feature extraction, we can see that we transformed the data by
extracting a few features.

Almost always any unsupervised dimension reduction effort can also be referred to as
feature extraction. More interestingly, this type of data reduction/dimension reduction
can also be seen as data massaging, because we are extracting features and reducing the
size of the data solely to improve the effectiveness of the analysis.

The gear shift from attribute construction to feature extraction was very smooth as the
two data transformations are very similar and, in most cases, we can think of them as
data massaging. These two types of data transformation are also very general and can
be employed in a wide range of ways, and for their successful implementation, they
require the resourcefulness of the analyst. For instance, the analyst must be able to find
appropriate functions to use FDA for parametric feature extraction, which requires
high-level resourcefulness.

However, the next data transformation technique we will learn is going to be very
specific and is only applicable in certain situations. Next, we will learn about
log transformation.

Log transformation

We should use this data transformation when an attribute experiences exponential
growth and decline across the population of our data objects. When you draw a box plot
of these attributes, you expect to see fliers, but those are not mistaken records, nor are
they unnatural outliers. Those significantly larger or smaller values come naturally from
the environment.

Attributes with exponential growth or decline may be problematic for data visualization
and clustering analysis; furthermore, they can be problematic for some prediction

and classification algorithms where the method uses the distance between the data
objects, such as KNN, or where the method drives its performance based on collective
performance metrics, such as linear regression.

469

Log transformation

//data.worldbank.org/indicator/NY.GDP.

Original 2020 WOrld GDP -—--rcroeroeroereeee .

lel3

20
05
00

]

s pauu o i saess pany

Toedzss " : Toeands "N

eipul H eipu|

Aiey] H ey

Iizeig 1zeig

ureds H ureds

eISaUOpPY| 1 eISauopu|

puepazImMS H PURLIAZIMS

eiqesy 1pnes H eigery ipnes

uapans i uapane

pueeyl H

euysny H

12els| '

Aemioy :

yewusq H

erseien H

LY 1nos

eIquojo) [a

ueisied

eiuewoy ()

ebnuog w

nuag o - O

ueisyyezey

auiesn he]

Jee) —

230100 reg

o ouang

Sopenss o

211gnday uearuwo

B =

erobuy.

3110ALD 3100 o 221000 230

uesniaaz) ~ ueisHiaaz

ewenyi H] ewenyi]

RIQIR s o e1gI%

st 2 N euaros

ueps

B f 2 ° o

Aenbeseg S Aenbeeq

eme (] eme

£

e6au: [ebuas

Seinpuoy = Seinpuo

e3uing man ended (@] eauing may endeg

ueisiieubl [y ueEIRUCH

eW

amgequiz v amqequiz

euemsiog C euensog

uuag ©

e ey

Shbigezon — anbiquiezopy

Jedsebepepy [._nwmnmnua:

ey

eluswy 3 oo ewawy

iweiep o el

W~ g -

pep o . e

usssbnle : ueisbife

eljew H eijeluos

mac!hwm 8 ' wmumean.mw.m

e B

euaqn 2 euagn

Yy ‘eiques Wﬂﬁmm_nsmu
nessig-eauing
SaRUAIS
menu

° g
3 njeary
2 - o P < P
R 82 % % & & &

log transformation. In short, instead of using the attribute, you calculate the logarithms of
all of the values and use them instead. The following figure shows how this transformation

looks using the Gross Domestic Product (GDP) data of the world's countries in 2020.

These attributes may sound very hard to deal with, but there is a very easy fix for them -
The data is retrieved from https

MKTP . CD and preprocessed into GDP 2019 2020.csv:

Country Name
——— @ 00@00 @ O
101 102 103

10° 100

10°

2020

Figure 14.16 - Before and after log transformation — the GDP of the countries in the world

https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

470 Data Transformation and Massaging

We can see in the preceding figure that the line plot of the original data shoots up; that

is what we earlier described as exponential growth. We also see in the box plot of the
original data that there are outliers with unrestrictedly high values compared to the rest
of the population. You can imagine how these types of outliers can be problematic for our
analytics, such as data visualization and clustering analysis.

Now, pay attention to the log-transformed version of the visualization. The data objects
still have the same relationships with one another from the perspective of being more
or less; however, the exponential growth has been tamped down. We can see in the box
plot of the log-transformed data that we still have fliers, but those fliers' values are not
unrestrictedly higher.

The preceding figures are created using GDP 2019 2020 .csv, and you can find the
code that created them in the dedicated GitHub repository file of this chapter.

There are two approaches in applying log transformation - doing it yourself or the
working module doing it for you. Let's see these two approaches in the following section.

Implementation - doing it yourself

In this approach, you take matters into your own hands and first add a log-transformed
attribute to the dataset and then use that transformed attribute. For example, the following
screenshot shows doing the attribute for country df['2020'].

Pay attention — before running the code presented in the following screenshot, you
need to first run the following code that reads the GDP 2019 2020.csv file into
country df:

country df = pd.read csv('GDP 2019 2020.csv')

country df.set index('Country Name', inplace=True)

Log transformation 471

After running the preceding code, you can run the code presented in the
following screenshot:

In [26]: M country df['log 2020'] = np.log(country_df['2020'])
country_df.log 2020.sort_values().plot()
plt.xticks(rotation=90)
plt.show()

Tuvalu 4
Barbados -
Madagascar -
Senegal -
Lithuania
Qatar -
Denmark -
Brazil 4

Country Name

Figure 14.17 - Log transformation - doing it yourself

Next, let's cover the approach of the working module doing it for you.

472 Data Transformation and Massaging

Implementation - the working module doing it for you

As log transformation is a very useful and well-known data transformation, many modules
provide the option for you to use the log transformation. For instance, the code in the

following screenshot uses logy=True, which is a property of the . plot () Pandas Series
function, to do the log transformation without having to add a new attribute to the dataset:

In [27]: M country_df['2020'].sort_values().plot(logy=True)
plt.xticks(rotation=90)

plt.show()
10131
10121
1011.
10101
107 §
10° §
= - — - -
s & & 3 €& 5 % 3§
= B o e 3 3 E @
= o = c
@ A T
@ B 5 o
=

Country Name
Figure 14.18 - Log transformation — the working module doing it for you

The disadvantage of this approach is that the module you are using may not have
this accommodation, or you may not be aware of it. On the other hand, if such
accommodation is provided, it makes your code much easier to read.

Furthermore, the result of the working module doing it for you might be even more
effective. For instance, compare the y axis in Figure 14.15 with that of Figure 14.16.

Before moving to the next data transformation tools, let me remind you that we have
already used log transformation in our data analysis in the course of this book. Remember
the WH Report preprocessed.csvand WH Report.csv datasets, which are

the two versions of the World Health Organization reports on the happiness indices of
122 countries? One of the attributes in these datasets is Log GDP_per capita. As

GDP_per capita experiences exponential growth, for clustering analysis, we used its
log-transformed version.

Smoothing, aggregation, and binning 473

The next group of data transformation tools is going to be used for dealing with noisy
data, and sometimes to deal with missing values and outliers. They are smoothing,
aggregation, and binning.

Smoothing, aggregation, and binning

In our discussion about noise in data in Chapter 11, Data Cleaning Level 111 - Missing
Values, Outliers, and Errors, we learned that there are two types of errors — systematic
errors and unavoidable noise. In Chapter 11, Data Cleaning Level I1I - Missing Values,
Outliers, and Errors, we discussed how we deal with systematic errors, and now here
we will discuss noise. This is not covered under data cleaning, because noise is an
unavoidable part of any data collection, so it cannot be discussed as data cleaning.
However, here we will discuss it under data transformation, as we may be able to

take measures to best handle it. The three methods that can help deal with noise are
smoothing, aggregation, and binning.

It might seem surprising that these methods are only applied to time-series data to deal
with noise. However, there is a distinct and definitive reason for it. You see, it is only in
time-series data, or any data that is collected consistently, consecutively, and with ordered
intervals, that we can detect the presence of noise. It is this unique data collection that
allows us to be able to detect the existence of noise. In other forms of data collection, we
cannot detect the noise, and therefore there will be nothing we can do. Why is that? The
answer is in the consistent, consecutive, and ordered intervals. Due to this unique data
collection, we can pick apart patterns from noise.

The three methods that can help deal with noise are smoothing, aggregation, and
binning. Each of these three methods to deal with noise operate under a specific set of
assumptions. In the following three sections, we will first learn about these assumptions
and then we will see examples of how they are implemented.

One last word before seeing the sections - strictly speaking, missing values and outliers
are types of noise, and if they are non-systematic and a natural part of the data collection,
either of these three methods could also be applied to deal with them.

Now, let's look at the smoothing approach in dealing with noise.

474 Data Transformation and Massaging

Smoothing

The following screenshot uses the Noise data.csv file, which is 200 milliseconds of
vibrational signals collected from a car engine for health diagnosis. The screenshot shows
the line plot of these vibrational signals:

In [28]: M | signal_df = pd.read_csv('Noise_data.csv')
signal_df.drop(columns="'t"',inplace=True)
signal_df.Signal.plot(figsize=(15,5))
plt.show()

1500

1000

500

©

=500

-1000

-1500

o r=} 50 B 100 125 150 175 200
Figure 14.19 - Line plot of Noise_data.csv

In the preceding figure, you can sense what we meant by time-series data allowing
us to distinguish between patterns and noise. Now, let's use this data to learn more
about smoothing.

By and large, there are two types of smoothing — functional and rolling. Let's learn about
each of them one by one.

Functional data smoothing

Functional smoothing is the application of Functional Data Analysis (FDA) for the
purpose of smoothing the data. If you need to refresh your memory on FDA, which we
covered in Chapter 13, Data Reduction, go back and review it before reading on.

When we used FDA to reduce the size of the data, we were interested in replacing the
data with the parameters of the function that simulate the data well. However, when
smoothing, we want our data with the same size, but we want to remove the noise. In
other words, regarding how FDA is applied, it is very similar to both data reduction and
smoothing; however, the output of FDA is different for each purpose. For smoothing, we
expect to have the same size data as the output, whereas for data reduction, we expect to
only have the parameters of the fitting function.

Smoothing, aggregation, and binning 475

There are many functions and modules in the space of the Python data analysis
environment that use FDA to smooth data. A few of them are savgol filter from
scipy.signal; CubicSpline, UnivariateSpline, splrep, and splev from
scipy.Interpolate; and KernelReg from statsmodels.nonparametric.
kernel regression. However, none of these functions works as well as it should, and
I believe there is much more room for the improvement of smoothing tools in the space
of Python data analytics. For instance, the following figure shows the performance of the
.KernelReg () function on part of the data (50 numbers) versus its performance on the

whole Noise data.csv file (200 numbers):

1500 A

1000 -

500 1

=500 4

-1000 A

1500 |

1000 -

500 1

At

+
+ +

B+

++

+ +
+++++

+ +

=500 1

—1000 1

-1500 1

+H+
+ 4+ +4+

v

+ + |t
+

++ +

¥

+ +H|+
+ + 4

+

T
100

125

T
150

T
175

T
200

Figure 14.20 - The performance of .KernelReg() on part of signal_df and all of it

476 Data Transformation and Massaging

We can see in the preceding figure that the . KernelReg () function is successful in part
of the data, but it crumbles as the complexity of the data increases.

The code to create each of the plots in the preceding figure is very similar. For instance,
to create the top plot, you can use the following code. I am certain you are capable of
modifying it to create the bottom one as well:

from statsmodels.nonparametric.kernel regression import
KernelReg

X = np.linspace(0,50,50)

y = noise df.Signal.iloc[:50]
plt.plot(x, vy, '+')

kr = KernelReg(y,x,'c")

y pred, y std = kr.fit(x)
plt.plot (x, y pred)
plt.show ()

What was covered here in terms of functional data smoothing can only be looked at as an
introduction to this complex data transformation tool. There is a lot that can be said about
functional data smoothing, enough for an entire book. However, what you learned here
can be a great foundation for you to go off on your own and learn more.

Now, let's bring our attention to rolling data smoothing.

Rolling data smoothing

The biggest difference between functional data smoothing and rolling data smoothing is
that functional data smoothing looks at the whole data as one piece and then tries to find
the function that fits the data. In contrast, rolling data smoothing works on incremental
windows of the data. The following figure shows what rolling calculation and the
incremental windows are using in the first 10 rows of singnal df:

Smoothing, aggregation, and binning 477

o
-200 \
—400 \
-600 \
-B00 \—-——/\\
-1000

1
Window 1
Window 2
Window 3
Window 4
Window 5 |

Figure 14.21 - Visual explanation of rolling calculations and the window

In the preceding figure, the width of each window is 5. As shown, the window rolling
calculation happens by picking the first 5 data points. After performing the prescribed
calculations, the window rolling calculation moves on to the next window by one
increment jump.

For instance, the following code uses the . rolling () function of a Pandas DataFrame
to calculate the mean of every window of singnal df in a rolling window calculation
where the width of each window is 5. The code also creates a line plot to show how this
specific window rolling calculation manages to smooth the data:

signal df.Signal.plot (figsize=(15,5),label="'Signal')

signal df.Signal.rolling(window=5) .mean () .plot (label="'Moving
Average Smoothed')

plt.legend ()
plt.show ()

478 Data Transformation and Massaging

After running the preceding code successfully, the following plot will be created.
Theoretically, what we just did is called Moving Average Smoothing, which is calculating
the moving average of the time-series data:

1500 — Signal
~— Moving Average Smoothed

1000

500

0 3 50 75 100 125 150 175 200
Figure 14.22 - Moving Average Smoothing using window rolling calculations
As you can see, Moving Average Smoothing has smoothed the data pretty nicely, but
it has a distinct disadvantage - the data seems to have been shifted. Naively, you may
think that you can simply shift the plot a bit to the left and all will be okay. However, the

following figure, the first seven rows of Signal and Moving Average Smoothed shows you
that a perfect match will never be possible:

Signal Moving Average Smoothed

0 605.340308 NaN
1 267.958658 NaN
2 304.652019 NaN
3 51.297364 NaN
4 -297.546288 186.340412
5 -520.492600 -38.826169
6 -719.919832 -236.401867
7 -866.546219 -470.641515
8 -807.907263 -642.482441
9 -925.817440 -768.136671

Figure 14.23 - Comparing the Signal and Moving Average Smoothed columns

Smoothing, aggregation, and binning 479

It is no surprise that the first four values for Moving Average Smoothed are NaN, right? It
is due to the nature of rolling window calculations. Always, when the width of windows is
k, the first k-1 rows will have NaN.

Rolling window calculations provide the opportunity to use simple or complex
calculations to smooth. For instance, you might want to try other time-series methods,
such as simple exponential smoothing. The following code uses the mechanism of the
rolling window calculations to apply exponential smoothing.

Before running the following code, pay attention to the way the code uses the
.rolling () and .apply () functions to implement simple exponential smoothing that
was first defined as a function:

def ExpSmoothing(v) :
a=0.2
vhat = v.iloc[0]
for 1 in range(len(v)) :
vhat = a*v.iloc[i] + (1-a)*yhat

return yhat

signal df.Signal.plot (figsize=(15,5),label="'Signal')

signal df.Signal.rolling(window=5) .apply (ExpSmoothing) .plot (
label = 'Exponential Smoothing')

plt.legend ()
plt.show ()

Running the preceding code creates a figure similar to Figure 14.20, but this time, the
smoothed values have used the simple exponential smoothing formulas.

Now, let's bring our attention to the next tool that we will learn to deal with
noise — aggregation.

Aggregation
Data aggregation is a specific type of rolling data smoothing. With aggregation, we do not

use any window's width, but we aggregate the data points from smaller data objects to
wider data objects, for example, from days to weeks, or from seconds to hours.

480 Data Transformation and Massaging

For example, the following figure shows the line plot of daily COVID-19 cases and deaths,
and then its aggregated version — weekly COVID-19 cases and deaths for California and

the US:
New Case
090001 ¥ + USA Daily
. —— USA Weekly
250000 + . + CA Daily
200000
150000 1
100000 -
50000 -
0
Apr Jul Oct Jan Apr Jul
2021
New Death
4000 - M. + USA Daily
O USA Weekly
.. e + CA Daily
3000 - . —— CA Weekly

2000 1

1000 A

Date

Figure 14.24 — Example of aggregation to deal with noise - COVID-19 new cases and deaths

The operation of aggregating a dataset to create a dataset with a new definition of data
objects is not new to us. Through the course of this book, we've seen many examples of it.
For instance, see the following items:

Example 1 - unpacking columns and reformulating the table in Chapter 10, Data
Cleaning Level IT - Unpacking, Restructuring, and Reformulating the Table - in this
example, speech df was aggregated to create vis_df, whose definition of data
objects is speeches in a month.

Smoothing, aggregation, and binning 481

o Example 1 (challenges 3 and 4) in Chapter 12, Data Fusion and Integration — in this
example, we had to aggregate electric_df, whose definition of a data object was
the electricity consumption of half an hour, to create a new dataset whose definition
of data object was hourly electricity consumption. This was done so electric_df
could be integrated with temp_df.

In any case, Exercise 12 will provide the opportunity for you to practice aggregation to
deal with noise. You will be able to create Figure 14.24 yourself.

Lastly, we will discuss binning as a method to transform the data to deal with noise.

Binning
It may seem that this is a new method, but binning and discretization are technically the
same type of data preprocessing. When the process is done to transform a numerical

attribute to a categorical one, it is referred to as discretization, and when it is used as a way
to combat noise in numerical data, we call the same data transformation binning.

Another possibly surprising fact is that we have done binning so many times before in this
book. Every time we created a histogram, binning was done under the hood. Now, let's
raise that hood and see what's happening inside.

The very first histogram we ever created in this book was shown in Figure 2.1 in Chapter
2, Review of Another Core Module — Matplotlib. In that figure, we created the histogram of
the adult df.age attribute. Go back and review the histogram.

The following screenshot shows how it would have looked if we had created the bar chart
of adult df.age, instead of its histogram:

In [35]: M adult_df.age.value_counts().sort_index().plot.bar()
plt.show()

800

600

400

Figure 14.25 - Creating the bar chart of adult_df.age

482 Data Transformation and Massaging

Comparing the preceding visualization with Figure 2.1 allows us to see the value of the
histogram and how it can help us with smoothing the data so that we can get a better
understanding of the variation among the population.

We can also create the same shape as the histogram by binning the attribute first and then
creating the bar chart. The code in the following screenshot uses the pd . cut () pandas
function to bin adult_df.age and then create its bar chart. Compare the bar chart in
the following screenshot with Figure 2.1; they are showing the same patterns:

In [36]: M adult_df['age binned']=pd.cut(adult_df.age,10)
adult_df.age_binned.value_counts().sort_index().plot.bar()

Out[36]: <AxesSubplot:>

6000 4

5000 1

4000 A

3000

2000 -

1000 A

(16.927, 24.3]
(24.3, 31.6]
(31.6, 38.9]
(38.9, 46.2]
(46.2, 53.5]
(53.5, 60.8]
(60.8, 68.1]
(68.1, 75.4]
(75.4, 82.7]
(82.7, 90.0]

Figure 14.26 — Creating the histogram of adult_df by pd.cut() and .bar() instead of .hist()

If you are concerned about the preceding figure not looking exactly like the one in Figure
2.1, all you need to change is the width of the bar. Replace .bar (width=1) with
.bar () in the code of the preceding screenshot and you will manage that.

In this section, we learned three ways to deal with noise in the data: smoothing,
aggregation, and binning. We are getting closer to the end of this chapter. Next, we will go
over a summary of the whole chapter and wrap up our learning.

Summary 483

Ssummary

Congratulations to you for completing this chapter. In this chapter, we added many
useful tools to our data preprocessing armory, specifically in the data transformation
area. We learned how to distinguish between data transformation and data massaging.
Furthermore, we learned how to transform our data from numerical to categorical, and
vice versa. We learned about attribute construction and feature extraction, which are very
useful for high-level data analysis. We also learned about log transformation, which is one
of the oldest and most effective tools. And lastly, we learned three methods that are very
useful in our arsenal for dealing with noise in data.

By finishing this chapter successfully, you are also coming to the end of the third part

of this book — The Preprocessing. By now, you know enough to be very successful at
preprocessing data that leads to effective data analytics. In the next part of the book, we
will have three case studies (Chapters 15-17), into which we will put our learning from
across the book into use and have culminating experience of data preprocessing and
effective analytics. We will end the book with Chapter 18, Summary, Practice Case Studies,
and Conclusions. This chapter will provide learning opportunities for you to put what you
have learned into real use and to start creating your portfolio of data preprocessing and
data analytics.

Before all that real, practical, and exciting learning, do not miss out on the learning
opportunity that the exercises at the end of this chapter provide.

Exercise

1. Inyour own words, what are the differences and similarities between normalization
and standardization? How come some use them interchangeably?

2. There are two instances of data transformation done during the discussion of binary
coding, ranking transformation, and discretization that can be labeled as massaging.
Try to spot them and explain how come they can be labeled that way.

484 Data Transformation and Massaging

3. Of course, we know that one of the ways that the color of a data object is presented
is by using their names. This is why we would assume color probably should be
a nominal attribute. However, you can transform this usually nominal attribute
to a numerical one. What are the two possible approaches? (Hint: one of them is
an attribute construction using RGB coding.) Apply the two approaches to the
following small dataset. The data shown in the table below is accessible in the
color nominal.csv file:

Index | Color index Color Index Color

1 Blue 11 White 21 Orange
2 Blue 12 Orange 22 Black

3 Black 13 White 23 Yellow
4 White 14 Black 24 Black
5 Green 15 Yellow 25 Orange
6 Orange 16 Yellow 26 White
7 White 17 Blue 27 Blue

8 Blue 18 Green 28 Orange
9 Brown 19 Orange 29 Orange
10 Yellow 20 Green 30 Yellow

Figure 14.27 - color_nominal.csv
Once after binary codding and once after RGB attribute construction, use the
transformed attributes to cluster the 30 data objects into 3 clusters. Perform
centroid analysis for both clusterings and share what you learned from this exercise.

4. You've seen three examples of attribute construction so far. The first one can be
found in Figure 14.6. The other one was in the Example - Construct one transformed
attribute from two attributes section, and the last one was the previous exercises. Use
these examples to argue whether attribute construction is data massaging or not.

5. In this exercise, you will get to work on a dataset collected for research and
development. The dataset was used in a recent publication titled Misfire and
valve clearance faults detection in the combustion engines based on a multi-sensor
vibration signal monitoring to show that high-accuracy detection of engine
failure is possible using vibrational signals. To see this article, visit this link:
https://www.sciencedirect.com/science/article/abs/pii/
S0263224118303439.

https://www.sciencedirect.com/science/article/abs/pii/S0263224118303439
https://www.sciencedirect.com/science/article/abs/pii/S0263224118303439

Exercise 485

The dataset that you have access to is Noise Analysis.csv. The size of the file
is too large and we were not able to include it on the GitHub Repository. Please

use this link (https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise
Analysis.csv?dl=1) to download the file. This dataset has 7,500 rows, each
showing 1 second (1,000 milliseconds) of the engine's vibrational signal and the
state of the engine (Label). We want to use the vibrational signal to predict the state
of the engine. There are five states: H — Healthy, M1 - Missfire 1, M2 — Missfire 2,
M1I2 - Missfire 1 and 2, and VC - Valve Clearance.

To predict (classify) these states, we need to first perform feature extraction from
the vibrational signal. Extract the following five morphological features and then
use them to create a decision tree that can classify them:

a) n_Peaks — the number of peaks (see Figure 14.13)

b) n_Valleys — the number of valleys (see Figure 14.13)

¢) Max_Oscilate — the maximum oscillation (see Figure 14.13)

d) Negative_area — the absolute value of the total sum of negative signals
e) Positive_area — the total sum of the positive signals

Make sure to tune the decision tree to come to a final tree that can be used for
analysis. After creating the decision tree, share your observations. (Hint: to find
n_Peaks and n_Valleys, you may want to use the scipy.signal.find peaks
function.)

In this chapter, we discussed the possible distinction between data massaging and
data transformation. We also saw that FDA can be used both for data reduction and
data transformation. Review all of the FDA examples you have experienced in this
book (Chapter 13, Data Reduction, and this chapter) and use them to make a case
regarding whether FDA should be labeled as data massaging or not.

Review Exercise 8 in Chapter 12, Data Fusion and Integration. In that exercise, we
transformed the attribute of one of the datasets so that the fusion of the two sources
became possible. How would you describe that data transformation? Could we call
it data massaging?

In this exercise, we will use BrainAllometry Supplement Data.csv from
a paper titled The allometry of brain size in mammals. The data can be accessed
from https://datadryad.org/stash/dataset/doi:10.5061/
dryad.2r62k7s.

https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise_Analysis.csv?dl=1
https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise_Analysis.csv?dl=1
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2r62k7s
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2r62k7s

486

Data Transformation and Massaging

10.

11.

The following scatterplot tries to show the relationship between mean body
mass and mean brain mass of species in nature. However, you can see that the
relationship is not very well shown. What transformation could fix this? Apply it
and then share your observations:

8000 -

9

60001 ® ¢

8
s

Mean_brain_mass
L]

[\
o
(=]
[=]
.l‘ ..

4 6 8
Mean_body mass_g 1le7

(=
~N

Figure 14.28 - Scatter plot of Mean_body_mass_g and Mean_brain_mass_g

In this chapter, we learned three techniques to deal with noise: smoothing,
aggregation, and binning. Explain why these methods were covered under data
transformation and not under data cleaning - level III.

In two chapters (Chapter 13, Data Reduction, and this chapter) and under three
areas of data preprocessing, we have shown the applications of FDA: data reduction,
feature extraction, and smoothing. Find examples of the FDA in these two chapters,
and then explain how FDA manages to do all these different data preprocesses.
What allows FDA to be such a multipurpose toolkit?

In Figure 14.18, we saw that . KernelReg () onall of signal df did not
perform very well, but it did perform excellently on part of it. How about trying
to smooth all of signal_df with a combination of rolling data smoothing

and functional data smoothing? To do this, we need to have window rolling
calculations with a step size. Unfortunately, the . rol1ling () Pandas function
only accommodates the step size of one, as shown in Figure 14.18. So, take matters
into your hands and engineer a looping mechanism that uses . KernelReg () to
smooth all of signal df.

Exercise 487

12. Use United States COVID-19 Cases_and Deaths by State over_

13.

Time.csv to recreate Figure 14.24. You may want to pull the most up-to-date data
from https://catalog.data.gov/dataset/united-states-covid-
19-cases-and-deaths-by-state-over-time to develop an up-to-date
visualization. (Hint: you will need to work with the two new_case and
new_death columns.)

It may seem like that binning and aggregation are the same method; however, they
are not. Study the two examples in this chapter and explain the difference between
aggregation and binning.

https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-over-time
https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-over-time

Part 4;
Case Studies

In this part, you will see three real cases of data preprocessing for analytics that you can
read to shadow a real project before you pick up your own project. Some suggestions are
also provided.

This part comprises the following chapters:
+ Chapter 15, Case Study 1 - Mental Health in Tech
 Chapter 16, Case Study 2 - Predicting COVID-19 Hospitalizations
« Chapter 17, Case Study 3 — United States Counties Clustering Analysis

 Chapter 18, Summary, Practice Case Studies, and Conclusions

15

Case Study 1 -
Mental Health
in Tech

In this chapter and the two upcoming ones, we are going to put the skills that we have
picked up in the course of this book into practice. For this case study, we are going to

use data collected by Open Sourcing Mental Illness (OSMI) (https://osmihelp.
org/), which is a non-profit corporation dedicated to raising awareness, educating, and
providing resources to support mental wellness in the tech and open source communities.
OSMI conducts yearly surveys that "aim to measure attitudes towards mental health in
the tech workplace and examine the frequency of mental health disorders among tech
workers." These surveys are accessible to the public for participation and can be found at
https://osmihelp.org/research.

In this chapter, we're going to learn about mental health in tech case study by covering
the following:

+ Introducing the case study
« Integrating the data sources
+ Cleaning the data
 Analyzing the data

https://osmihelp.org/
https://osmihelp.org/
https://osmihelp.org/research

492 Case Study 1 - Mental Health in Tech

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in

a GitHub repository exclusively created for this book. To find the repository, click

on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. You can find this chapter's materials in this repository
and can download the code and the data for better learning.

Introducing the case study

Mental health disorders such as anxiety and depression are inherently detrimental to
people's well-being, lifestyles, and ability to be productive in their work. According to
Mental Health America, over 44 million adults in the US have a mental health condition. The
mental health of employees in the tech industry is of great concern due to the competitive
environments often found within and among these companies. Some employees at these
companies are forced to work overtime simply to keep their jobs. Managers of these types of
companies have good reason to desire improved mental health for their employees because
healthy minds are productive ones and distracted minds are not.

Managers and leaders of tech and non-tech companies must make difficult decisions
regarding whether or not to invest in the mental health of their employees and, if so,
to what degree. There is plenty of evidence that poor mental health can have a negative
impact on workers' well-being and productivity. Every company has a finite amount of
funds that it can invest in the physical health of its employees, let alone mental health.
Knowing where to allocate resources is of great importance.

This serves as a general introduction to this case study. Next, we will discuss a very
important aspect of any data analysis — who is the audience of our results?

The audience of the results of analytics

Always, the main audience of the results of any analytics is decision-makers; however, it
is important to be clear about who exactly are those decision-makers. In real projects, this
should be obvious, but here in this chapter of the book, as our goal is to practice, we need
to imagine a specific decision-maker and tailor our analysis for them.

The decision-makers that we will focus on are the managers and the leaders of tech
companies who are in charge of making decisions that can impact the mental health

of their employees. While mental health should be looked at as a priority, in reality,
managers have to navigate a decision-making environment that has many competing
priorities, such as organizational financial health, survival, profit maximization, sales, and
customer service, as well as economic growth.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Introducing the case study 493

For instance, the following simple visualization created by OSMI (available at
https://osmi.typeform.com/report/A7mlxC/it VHRYbNRnPgDIOC) tells us
that while mental health support in tech companies is not terrible, there remains a large
gap for improvement:

Overall, how well do you think the tech industry supports employees with
mental health issues?

180 out of 180 answered

* 2.7 Average rating

12.2% 27.2% 41.7% 15.0% 3.9%

22resp. 49 resp. 75 resp. 27 resp. T resp.

—
1 2 3 4 5

Figure 15.1 — A simple visualization from the 2020 OSMI mental health in tech survey

Our goal in this case study is to dig a bit deeper than the basic report provided by OSMI
and see the interactions between more attributes, which can be informative and beneficial
to the described decision-makers.

Specifically, for this case study, we will try to answer the following Analytic Questions
(AQs) that can inform the described decision-makers about the attitude and importance
of mental health in their employees:

« AQI: Is there a significant difference between the mental health of employees across
the attribute of gender?

o AQ2:Is there a significant difference between the mental health of employees across
the attribute of age?

« AQ3: Do more supportive companies have healthier employees mentally?

o AQ4: Does the attitude of individuals toward mental health influence their mental
health and their seeking of treatments?

https://osmi.typeform.com/report/A7mlxC/itVHRYbNRnPqDI9C

494 Case Study 1 - Mental Health in Tech

Now that we are clear about how we are analyzing this data and what AQs we want to
answer, let's roll up our sleeves and start getting to know the source of the data.

Introduction to the source of the data

OSMI started conducting the mental health in tech survey in 2014, and even though the
rate of participation in their surveys has dwindled over the years, they have continued
collecting data until now. At the time of developing this chapter, the raw data for 2014 and
2016 to 2020 is accessible at https: //osmihelp.org/research.

Get to Know the Sources of Data

Go ahead and download the raw data from 2014 to the most recent version,
and use the tools you've picked up in your journey in this book to get to know
these files. Continue reading once you have a good grasp of these datasets.

At the time of developing this chapter, only six raw datasets from 2014, 2016, 2017, 2018,
2019, and 2020 were collected and available. Only the five datasets from 2016 to 2020 are
used in this chapter, so there is continuity in the data.

As we move along in this chapter, feel free to add the most recent versions, if they are
available at the listed address, and update the code accordingly.

Now, let's get started. We will have to start with data integration and then data cleaning.

Attention!

You are going to experience a shift in the way code is represented in this
chapter. From Chapter 1 to Chapter 14, almost all of the code that was used
for analytics and preprocessing was shared both during the chapter and also
in a dedicated file in the GitHub repository. However, in this chapter, and in
the following two chapters, Chapters 16, Case Study 2 - Predicting COVID
Hospitalization, and Chapter 17, Case Study 3 — United States Counties
Clustering Analysis, the code will be presented mainly in the dedicated file for
this chapter in the GitHub repository. So, while studying this chapter, make
sure you also have the code in the GitHub repository handy so that you can go
back and forth and learn.

https://osmihelp.org/research

Integrating the data sources 495

Integrating the data sources

As discussed, five different datasets need to be integrated. After having seen these five
datasets that collected data of OSMI mental health in tech surveys across five different
years, you will realize that the survey throughout the years has undergone many changes.
Also, while the collected datasets are about mental health in tech, the wordings of the
questions and sometimes the nature of these questions have changed. Therefore, the
figurative funnel in the following figure serves two purposes. First, it lets the parts of the
data from each dataset come through that are common among all six datasets. Second, the
funnel also filters out the data that is not relevant to our AQs:

Column 2

Column1l [Column2 . . . Column m

Row 1
Row 2

-
e

0o
| =]

Row n

Figure 15.2 — The schematic of the integration of five datasets into one

496 Case Study 1 - Mental Health in Tech

While the preceding figure makes the integration of these five datasets seem simple, there
are meaningful challenges ahead of us. The very first one is knowing what the common
attributes are among all these five datasets if there is no consistent wording among them.
Do we need to do it manually? While that is certainly one way of doing it, it would be a
very long process. We can use SequenceMatcher from the diff1ib module to find
the attributes that are similar to one another.

After doing the filtering based on what is common among all five datasets, we still need
to only keep the attributes that are relevant to our AQs. The following list is the collection
of the attributes that are both common among all five datasets and are relevant to our
AQs. To make cleaner-looking data, each long attribute name that is a question on the
survey has been assigned a name. These names are used to create an attribute dictionary;,
Column_ dict, so the attribute names are codable and intuitive, and the complete
questions are also accessible:

« SupportQl: Does your employer provide mental health benefits as part of
healthcare coverage?

« SupportQ2: Has your employer ever formally discussed mental health (for
example, as part of a wellness campaign or other official communication)?

o SupportQ3: Does your employer offer resources to learn more about mental
health disorders and options for seeking help?

o SupportQ4: Is your anonymity protected if you choose to take advantage of
mental health or substance abuse treatment resources provided by your employer?

o SupportQ5: If a mental health issue prompted you to request medical leave from
work, how easy or difficult would it be to ask for that leave?

o AttitudeQl: Would you feel comfortable discussing a mental health issue with
your direct supervisor(s)?

o AttitudeQ2: Would you feel comfortable discussing a mental health issue with
your coworkers?

o AttitudeQ3: How willing would you be to share with friends and family that you
have a mental illness?

Cleaning the data 497

« SupportEx1: If you have revealed a mental health disorder to a client or business
contact, how has this affected you or the relationship?

« SupportEx2: If you have revealed a mental health disorder to a coworker or
employee, how has this impacted you or the relationship?

« Age: What is your age?

« Gender: What is your gender?

+ ResidingCountry: What country do you live in?

» WorkingCountry: What country do you work in?

« Mental Illness: Have you ever been diagnosed with a mental health disorder?

« Treatment: Have you ever sought treatment for a mental health disorder from a
mental health professional?

o Year: The year that the data was collected.

After removing the other attributes, renaming the long attribute names with their key
in the dictionary, the five datasets can be easily joined using the pd. concat () pandas
function. I have named the integrated DataFrame in df.

Cleaning the data

While going about data integration, we took care of some level I data cleaning as well,
such as the data being in one standard data structure and the attributes having codable
and intuitive titles. However, because in_df is integrated from five different sources, the
chances are that different data recording practices may have been used, which may lead to
inconsistency across in_df.

498 Case Study 1 - Mental Health in Tech

For instance, the following figure shows how varied data collection for the Gender
attribute has been:

1400

1200

1000

25

2 B

o = SE
i 25 =

v el SRHE

identily 5

genden

far
Non binary and g‘ETa%

g

z i

- Ty

o £ 28 5 2

E S £ kS

£ 2 Bim] ig ; E

= W EGE 2 2 Z @

£ 5 (=T B s 2

£ o o g Eu H 2

£] 8 - & =

= a 2 T; il i

£ g ER & H
£ 8 o

5 3 & w

=

5

tmale {hey Lhis is the Lech industry you're

5
H
=
2
&

female-b
' & man why didin™t yau make this a drom down question. You should of asker sexT And | would of mnswered yes please oataaTe i

Figure 15.3 - The state of the Gender attribute before cleaning

We need to go over every attribute and make sure that there is no repetition of the same
possibilities in a slightly different wording due to varying data collection or misspellings.

Cleaning the data 499

Detecting and dealing with outliers and errors

As our AQs are only going to rely on data visualization for answers, we don't need to
detect outliers, as our addressing them would be adopting the "do nothing” strategy.
However, as we use outlier detection to also find possible systematic errors in the data, we
can visualize all of the attributes in the data and spot inconsistencies, and then fix them.

The following figure shows the box plot and histogram of the Age attribute, and we can
see there are some mistaken data entries. The two unreasonably high values and the one
unreasonably low value were changed to NaN:

What is your age?

Frequency

(=]
g S G
o (==} o

[=]
f

50 100 150 200 250 300

rge { @ {[|-emo o o

0 50 100 150 200 250 300

Figure 15.4 - The box plot and histogram of the Age attribute before cleaning

500 Case Study 1 - Mental Health in Tech

After the prescribed transformation, the box plot changed to more healthy-looking data
distribution, as shown in the following figure. There are still some fliers in the data, but,
after further investigation of these entries, it was concluded these values are correct, and
the individuals who responded to the survey just happened to be older than the rest of the
respondent population:

What is your age?

a
=]

Frequency
(=]

B B
(=]

(=)

Age-l—'El: | 0OCOO00000000 © O

T T L) T T T

20 30 40 50 60 70

Figure 15.5 - The box plot and histogram of the Age attribute after cleaning

The visualization of another two attributes showed that they need our attention -
ResidingCountry and WorkingCountry. The following figure shows the bar chart
of the WorkingCountry attribute. The visuals of the two attributes are very similar,
which is why we have shown only one of them:

Cleaning the data 501

2000

1750

1500

1250

1000

Canada
Germany fmm
Netherlands {m
Brazi 48
france
Spain
Sweden

Turkey
Pakistan
Sti Lanka
Hong Kong

Bosnia and Herzegovina
Hungary

Ireland
Portugal
Bulgaria
Belgium

Ausiria
Denmark
Romania
Vietnam
Luxembourg

Switzerland
New Zealand

United Kingdor -jummms
Saudi Arabia

Caech Republic

United States of America
United Arab Emi

Figure 15.6 — The box plot and histogram of the WorkingCountry attribute before transformation

Considering the bar charts of these two attributes, we do know that the issue with this
data is not mistaken data entries; however, the fact that there are just more data entries
from the US than the other countries is not because the US only has tech companies,
but, at a guess, because the survey participation was more encouraged in the US. To deal
with this situation, the best way is to focus our analysis on the US respondents instead of
the whole data. Therefore, we remove all the rows, except for the ones that have United
States of America under both WorkingCountry and ResidingCountry.

After implementing this data transformation, the values under WorkingCountry and
ResidingCountry will only have one possible value; therefore, they are not adding any
information to the population of the transformed dataset. The best way to move forward
would be to remove these two attributes.

Next, let's deal with the missing values in the dataset.

502 Case Study 1 - Mental Health in Tech

Detecting and dealing with missing values

After investigation, we realize that except for AttitudeQ3, Age, Gender, Mental
Illness, Treatment, and Year, the rest of the attributes do have missing values. The
first thing we check is to make sure the missing values are all from the same data objects.
The following figure was created so that we can see the assortment of missing values
across the population of the dataset:

1 - 1.0
100
171
266
368
454
527
620
698
783
870
965

1067

1149

1224

1313

1391

1483

1572

1664

1735

1838

1921

1986

2047

2118

2178

2260

2336

2397

2455

2519

2592

2663

2751

2831

2935

3064

-0.8

P AP U

Mental lliness | |lf

Age

SupportQl
SupportQ2
SupportQ3
SupportQ4
SupportQ5
AttitudeQl
AttitudeQ?2
AttitudeQ3

SupportEx1 -

SupportEx2 -
Gender
Treatment
Year

Figure 15.7 — Assortment of missing values across the population of the dataset

Cleaning the data 503

Considering the preceding figure, the answer to our wondering is yes, some data objects
have missing values on more than one attribute. The missing values for the attributes from
SupportQ1 to AttitudeQ3 are from the same data objects. However, the preceding figure
brings our attention to the fact that the missing values under SupportEx1 and SupportEx2
are much more troublesome, as the majority of the data objects have missing values under
these two attributes. The best way of moving forward in these situations is to forego having
these attributes. So these two attributes have been removed from the analysis.

Now, let's bring our attention back to the common missing values among the data objects
for the attributes from SupportQ1 to AttitudeQ3.

The common missing values in attributes from SupportQ1 to
AttitudeQ3

We need to diagnose these missing values to figure out what type they are before we

can deal with them. After running the diagnosis, we can see these missing values have a
relationship with the Age attribute. Specifically, the older population in the dataset has
left these questions unanswered. Therefore, we can conclude that these missing values

are of the Missing At Random (MAR) type. We will not deal with these missing values
here because our decision regarding them depends on the analysis. However, we'll keep in
mind that these missing values are of the MAR type.

Next, let's diagnose the missing values on the other attributes — next stop: the Mental
Illness attribute.

The missing values in the Mentallllness attribute

The Mental Illness attribute has 536 missing values. The missing value ratio is
significant at 28%. To investigate why these missing values happen, we compare the
pattern of the occurrence of these missing values with the distribution of the whole data.
In other words, we diagnose these missing values, and after the diagnosis, it will become
apparent that missing values under this attribute are closely connected with the Age,
Treatment, and Year attributes. It is apparent that these missing values are also of the
MAR type, and we will not deal with them before the analysis.

Lastly, we need to address the three missing values in the Age attribute.

504 Case Study 1 - Mental Health in Tech

The missing values in the Age attribute

The Age attribute has three missing values. These are missing values that were imputed
from the extreme point analysis. We decided these attributes were mistake data entries. As
we know where they come from and that there are only three of them, we can assume that
they are of the Missing Completely At Random (MCAR) type.

Now that the dataset is clean and integrated, let's move our attention to the analysis part.

Analyzing the data

As we have seen in our journey in this book, data preprocessing is not an island and the
best data preprocessing is done by being informed about the analytics goals. So we will
continue preprocessing the data as we go about answering the four questions in this case
study. Let's progress in this subsection one AQ at a time.

Analysis question one - is there a significant difference
between the mental health of employees across the
attribute of gender?

To answer this question, we need to visualize the interaction between three attributes:
Gender, Mental Illness,and Treatment. We are aware that the Mental

I1llness attribute has 536 missing MAR values and those missing values have a
relationship with the Treatment attribute. However, as the goal of the analysis is to

see the mental health across Gender, we can avoid interacting with Treatment and
Mental Illness and bring the focus of our analysis to the interaction of the Gender
attribute with both of these two attributes. With this strategy, we can adopt the do-nothing
approach for the missing values in Mental Illness.

Analyzing the data 505

Using the skills that we have picked up in the course of our learning in this book, we can
come up with the following two bar charts that meaningfully show the interactions in the

data that can help us answer this AQ:

Mental lliness
E No
Other BN Yes
5]
2 Male
[
)
Female
0 100 200 300 400 500 600 700 800
Treatment
E No
Other B Yes
5]
2 Male
[
O]
Female

0 100 200 300 400 500 600 700 800

Figure 15.8 — Bar charts for AQ1

506 Case Study 1 - Mental Health in Tech

The preceding figure shows that the Gender attribute does have a meaningful impact on
the mental health of tech employees. So the answer to this question is yes. However, while
the ratio of not having a mental illness compared to having a mental illness is higher for
Male than Female, there is also a much higher "never having sought professional mental
health help” ratio among Male. These observations suggest that there is a population of
male employees in tech that are not aware of their mental health and have never sought
professional help. Based on these observations, it should be recommended to target male
employees for mental health awareness.

Another important observation from the preceding figure is that there seem to be many
more mental health concerns for the individuals who have not chosen Male or Female for
their gender. However, the preceding figure does not show what the difference is because
this segment of the population has much smaller data objects than Male and Female.
Therefore, to tease out the portion of these individuals with mental health concerns and
compare them with the other two subpopulations, the following two heat maps were created:

08
' 0.18 033 0.053
& 06
=
2 -04
2
-02
Female Male Other
Gender
08
- o- 022 04 014
=
E 0.6
E -04
-0.2
Female Male Other
Gender

Figure 15.9 - Heat maps for AQ1

Analyzing the data 507

In the preceding figure, we can see that indeed the subpopulation that did not identity

as Male or Female has a much larger percentage of people with mental illnesses than the
other two populations. However, we can that see this population, similar to the population
of Female, has a higher percentage of having sought treatment.

Now, let's discuss AQ2.

Analysis question two - is there a significant difference
between the mental health of employees across the
Age attribute?

To answer this question, we need to visualize the interaction between three attributes:
Age,Mental Illness,and Treatment. We are aware that the Mental Illness
attribute has 536 missing MAR values and those missing values have a relationship with
the Treatment and Age attributes. Moreover, we are aware that Age has three missing
MCAR values.

Dealing with the missing MCAR values is simple, as we know these missing values are
completely random. However, we cannot adopt the approach of leaving them as they are
because to be able to visualize these relationships, we need to transform the Age attribute
from categorical to numerical. Therefore, for this analysis, we have removed the data
objects with missing values under the Age attribute.

508 Case Study 1 - Mental Health in Tech

We cannot take the same approach we took in AQ1 to deal with the missing MAR values
of Mental Illness because this attribute has a relationship with both the Age and
Treatment attributes. Therefore here we have added a third category to Mental
I1lness - MV-MAR. The following figure shows the bar charts that visualize the
relationships that we are interested in investigating:

Mental lliness
Em MV_MAR
>38 = No
N Yes
Qo
3
& 31-37
&
@
<30
0 100 200 300 400 500

Treatment
. No

>38 B Yes

31-37

ageGroup

<30

100 200 300 400 500

O -

Figure 15.10 - Bar chart for AQ2

Studying the preceding figure, we can see that there seem to be some patterns in the
data; however, they are not as pronounced as they were under AQ1, so before discussing
these patterns, let's see whether these patterns are significant statistically. We can use
the chi-square test of association for this purpose. As seen in Chapter 11, Data Cleaning
Level I1I - Missing Values, Outliers, and Errors, the scipy . stats module has this test
packaged in the chi2 contingency function.

Analyzing the data 509

After calculating the p-values of the test for both bar charts in the preceding figure, we
come to 0.0022 and 0.5497 respectively. This tells us that there are no significant
patterns in the second bar chart, but the patterns in the first bar chart are significant.
Using this information, we can conclude that while age does have an impact on mental
health concerns, it does not impact the behavior of individuals in seeking treatment.

Moreover, the significant pattern in the first bar chart tells us that as the Age attribute
increases, the answer no to the question "Have you ever been diagnosed with a mental
health disorder?” also increases. Surprisingly, the answer yes to the same question also
increases. It is surprising because we would expect these two to counteract with one
another. The reason for this surprising observation is also shown in this bar chart; as
the age increases, the number of individuals who have not answered the question has
also increased. This could be because older individuals do not have as much trust in the
confidentiality of the data collection.

The conclusion that is drawn from this observation is that older tech employees may
need to build more trust for them to open up about their mental health concerns than
younger employees.

Next, we will discuss AQ3.

Analysis question three - do more supportive
companies have mentally healthier employees?

To answer this question, we first need to perform some data transformation, specifically
attribute construction. We have constructed thePerceivedSupportScore attribute,
which is a column that indicates how supportive the participant's employer is of mental
health. The SupportQ1, SupportQ2, SupportQ3, SupportQ4, and SupportQs
attributes were used to calculate SupportScore. The +1 or +0. 5 values were added to
PerceivedSupportScore where the answers to these attributes indicated support,
whereas the -1 or -0 .5 values were subtracted from PerceivedSupportScore
where the answers to these attributes indicated a lack of support. For instance, for
SupportQ5, the +1, +0.5,-0.5, -0.75, and -1 values were added/subtracted
respectively for Very easy, Somewhat easy, Somewhat difficult, Somewhat difficult, and Very
difficult. The question that SupportQ5 asked was "If a mental health issue prompted you
to request medical leave from work, how easy or difficult would it be to ask for that leave?”

510 Case Study 1 - Mental Health in Tech

The following figure shows the histogram of the newly constructed column:

Constructed Attribute: PerceivedSupportScore

500 1

&
5

Frequency
=]
(=]

S
(=]

100 A

-4 -2 0 2 4

Figure 15.11 - Histogram of the newly constructed attribute for AQ3

We certainly do not forget that all of the ingredients of the newly constructed
SupportQ1l and SupportQ2 attributes have 228 missing MAR values. These missing
MAR values showed a relationship with the Age attribute. As for answering AQ3, we need
to visualize the relationship between the newly constructed attribute and the Mental
Illness and Treatment attributes; we can adapt the approach of "leaving as is" for
these missing values. The reason is that neither the Mental Illness attribute nor the
Treatment attribute influenced the missing values on the ingredient attributes.

Before doing the visualization, as the newly constructed attribute is numerical and both
Mental Illness and Treatment are categorical, we need to first discretize the
attribute. Scores higher than 1 were labeled as Supportive and scores lower than -0.5
were labeled as Unsupportive. The results are presented in the following bar chart:

Analyzing the data

511

Figure 15.12 - Bar chart of the newly constructed attribute after discretization for AQ3

800

700

600

500

400

300

200

100

e
5
>
[}
z

Supportive

perceivedSupportGroup

Unsupportive

The following figure shows the interaction between the three Mental Illness, Treatment,

and pereceivedSupportGroup attributes. As a visualization with three dimensions is

going to be somewhat overwhelming, we can make a strategic decision to only include the
two extreme categories, Supportive and Unsupportive, and leave out Neutral:

perceivedSupportGroup

Supportive

Unsupportive

Mental lliness, Treatment

(No, No)

(No, Yes)
(Yes, No)
(Yes, Yes)

T T T T
100 150 200 250

Figure 15.13 — Bar chart for AQ3

T
300

T
350

400

512 Case Study 1 - Mental Health in Tech

Studying the patterns shown in the preceding figure, we realize that
perceivedSupportScore influences the employee's behavior in seeking professional
help for mental health concerns. The number of respondents that have answered Yes to
both "Have you ever been diagnosed with a mental health disorder?” and "Have you ever
sought treatment for a mental health disorder from a mental health professional?” questions
is significantly higher in the Supportive category. Likewise, the number of respondents
that have answered No to both questions is significantly lower in the Supportive category.

Based on these observations, we can recommend investing in creating trust and
employees' perception of support in tech companies.

Next, we will address the last AQ.

Analysis question four - does the attitude of
individuals toward mental health influence their
mental health and their seeking of treatments?

Similar to AQ3, to answer this question, we first need to construct a new attribute;
AttitudeScore will be a column that indicates the participant's attitude toward
sharing mental health issues. The AttitudeQl, AttitudeQ2, and AttitudeQ3
attributes are used to construct AttitudeScore. The +1 or +0 . 5 values were added
to AttitudeScore where the answers to these attributes indicated openness, whereas
the -1 or -0.5 values were subtracted from At titudeScore where the answers to
these attributes indicated a lack of openness. For instance, for AttitudeQ3s, the +1,
+0.5, -0.5,and -1 values were added/subtracted respectively for Very open, Somewhat
open, Somewhat not open, and Not open at all; the question that AttitudeQ3 asked was
"Would you feel comfortable discussing a mental health issue with your coworkers?”

Analyzing the data 513

The following figure shows the histogram of the newly constructed attribute:

Constructed Attribute: AttitudeScore

Frequency
8 B
(=] o

&G
=)

100 A

-3 -2 -1 0 1
Figure 15.14 - Histogram of the newly constructed attribute for AQ4

Similar to perceivedSupportScore in AQ3, before doing the visualization, as the
newly constructed attribute is numerical and both Mental Illnessand Treatment
are categorical, we need to first discretize the attribute. Scores higher than 0. 5 were
labeled as OpenAttitude, scores lower than -0 .5 were labeled as ClosedAttitude, and
scores between -0.5 and 0. 5 were labeled as Neutral. The results are presented in the
following bar chart:

700 1

600 1

500 1

400 A

300

200

100 A1

™
-
=
-
[V]
=

ClosedAttitude
OpenAttitude

Figure 15.15 - Bar chart of the newly constructed attributes after discretization for AQ4

514 Case Study 1 - Mental Health in Tech

The following stacked bar chart is created to show the interaction between the three
Mentallllness, Treatment, and attitudeGroup attributes. We use a similar strategy to the
one used in Figure 15.13 to avoid overwhelming our sensory faculty:

Mental lliness, Treatment

mm (No, No)

. m (No, Yes)

OpenAttitude B (Yes, No)

o B (Yes, Yes)
<
0]
[}
kel
2
B
©

ClosedAttitude

0 100 200 300 400
Figure 15.16 - Stacked bar chart for AQ4

The preceding visualization provides an answer for AQ4. There seems to be a meaningful
improvement in employees seeking treatment if they have an open attitude toward
sharing mental health issues. These observations suggest that tech companies should

see the education of employees in their attitude toward mental health as a sensible
investment option.

summary

In this chapter, we got to practice what we have learned during our journey in this
book. We did some challenging data integration and data cleaning to prepare a dataset
for analysis. Furthermore, based on our analytics goals, we performed specific data
transformations so that the visualization that answers our AQs becomes possible and, at
times, more effective.

In the next chapter, we will practice data preprocessing on another case study. In this case
study, the general goal of the analysis was data visualization; however, the preprocessing in
the next case study will be done to enable predictive modeling.

16

Case Study 2 -
Predicting COVID-19
Hospitalizations

This chapter is going to provide an excellent learning opportunity to perform a predictive
analysis from scratch. By the end of this chapter, you will have learned a valuable lesson
about preprocessing. We will take the COVID-19 pandemic as an example. This is a good
case study because there is lots of data available about different aspects of the pandemic
such as covid hospitalizations, cases, deaths, and vaccinations.

In this chapter, we're going to cover the following:

+ Introducing the case study
« Preprocessing the data

+ Analyzing the data

Technical requirements

You will be able to find all of the code examples and the dataset that is used in this chapter
in this book's GitHub repository at https: //github.com/PacktPublishing/
Hands-On-Data-Preprocessing-in-Python/tree/main/Chapterils.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter16
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter16

516 Case Study 2 - Predicting COVID-19 Hospitalizations

Introducing the case study

As the world started grappling with the ramifications of COVID-19, healthcare systems
across the globe started dealing with the new overwhelming burden of caring for the
people infected with the disease. For instance, in the US governments, all levels — Federal,
State, and local, had to make decisions so they can help the hospitals as they struggled to
shoulder the crisis. The good news is that database and data analytics technologies were
able to create real value for these decision-makers. For instance, the following figure shows
a dashboard that monitors the COVID-19 situation for Los Angeles County in the State of
California in the United States. The figure was collected from http://publichealth.
lacounty.gov/media/coronavirus/data/index.htm on October 4, 2021.

LA County Daily COVID-19 Data

View Other Data Pages s

Data through 6:00pm 10/02/2021

Cases Testing Testing Positivity Rate

1,032

New Cases Reported (10/03)*

1,463,039

Total Cases Reported*®

*including cases reported by Long Beach and Pasadena

Health Departments
7-Day Daily Average: 135,294 7-Day Daily Average: 1.19%

Total Number of People Tested: 8,683,814 What This Means ©
What This Means @

Deaths Death Rate Hospitalizations

Age-Adjusted Dea COVID-19 per 100K
2,2021

New Deaths Reported (10/03)*: 10 by Race, Ethnicity and Poverty Level Current Hospitalizations (10/1): 825

Total Deaths Reported*: 26,153

*including deaths reported by Long Beach and

Pasadena Health Departments

What This Means @

Figure 16.1 - An LA County COVID-19 data dashboard

http://publichealth.lacounty.gov/media/coronavirus/data/index.htm
http://publichealth.lacounty.gov/media/coronavirus/data/index.htm

Introducing the case study 517

In this case study, we are going to see an example of data analytics that can be of
meaningful value to a local government department. We are going to focus on the
government of Los Angeles County (LA), California. This county is the most populated
in the US, with approximately 10 million residents. We are going to use historical data
to predict the number of patients that will need hospitalization in the near future;
specifically, we will create a model that can predict the number of hospitalizations in LA
County two weeks from the present moment.

Now that we have a general understanding of this case study, let's get to know the datasets
that we will use for our prediction model.

Introducing the source of the data

When we create a prediction model, one of the first things we need to do is to imagine
what kind of data can be useful for predicting our target. In this example, our target is
the number of hospitalizations. In other words, we want to imagine what the independent
attributes could be for predicting this specific dependent attribute.

Go back to Chapter 3, Data — What Is It Really?, and study the DDPA pyramid in Figure
3.2. When we imagine what data resources could be useful for the prediction of our target,
we are exploring the base of the DDPA pyramid. The base of the pyramid represents all of
the data that is available to us. Not everything is going to be useful at this point, but that

is the beginning of the data preprocessing journey. We start by considering what could be
useful, and by the end of the process, we should have a suitable dataset that can be useful
for pattern recognition.

The following list shows four sources of data that can be useful for predicting
hospitalizations:

« Historical data of LA County COVID-19 hospitalizations (https://data.
chhs.ca.gov/dataset/covid-19-hospital-data)

 Historical data of COVID-19 Cases and Deaths in LA County (https://data.
chhs.ca.gov/dataset/covid-19-time-series-metrics-by-
county-and-state)

« Historical data of COVID-19 Vaccinations in LA County (https://data.chhs.
ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-
by-zip-code)

o The dates of US public holidays (these can be accessed via Google)

https://data.chhs.ca.gov/dataset/covid-19-hospital-data
https://data.chhs.ca.gov/dataset/covid-19-hospital-data
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code

518 Case Study 2 - Predicting COVID-19 Hospitalizations

You can download the latest versions of these datasets from the provided links. The

three datasets that we use in this chapter, covidl9hospitalbycounty.csv,
covidl9cases test.csv, and covidl 9vaccinesbyzipcode test.csv, were
collected on October 3, 2021. You must keep this date in mind as you go through this
chapter, as the time range of our prediction is an important feature. I strongly encourage
you to download the latest version of these files and update the analysis and do some
actual predictions. Better yet, if the same datasets are available where you live, do the
predictive analysis for your local government.

The fourth data source is a simple one - the US public holidays are, well, public
knowledge, and some simple Googling can provide these.

Attention!

I strongly encourage you to open each of these datasets on your own and scroll
through them to get to know them before continuing. This will enhance
your learning.

Now that we have the datasets, we need to perform some data preprocessing before we get
to the data analytics. So, let's dive in.

Preprocessing the data

The very first step in preprocessing data for prediction and classification models is to be
clear about how far in the future you are planning to make predictions. As discussed, our
goal in this case study is to make a prediction for two full weeks (that is, 14 days) in the
future. This is critical to know before we start the preprocessing.

The next step is to design a dataset that has two characteristics:

« First, it must support our prediction needs. For instance, in this case, we want to use
historical data to predict hospitalizations in two weeks.

o Second, the dataset must be filled with all of the data we have collected.
In this example, the data includes covid19hospitalbycounty.csv,
covidl9cases_ test.csv,covidl9vaccinesbyzipcode test.csv, and

the dates of US public holidays.

Preprocessing the data 519

One of the very first things we will do codewise, of course, is to read these datasets into
pandas DataFrames. The following list shows the name we used for the pandas DataFrames:

e covidl9hospitalbycounty.csv:day hosp df
e covidl9cases_test.csv:day case df

e covidl9vaccinesbyzipcode test.csv:day vax df

Now, let's discuss the steps for designing the dataset, which needs to have the two
characteristics we previously described.

Designing the dataset to support the prediction

While designing this dataset to possess the two characteristics that were mentioned
earlier, we basically try to come up with possible independent attributes that can have
meaningful predictive values for our dependent attribute. The following list shows the
independent attributes that we may come up with for this prediction task.

In defining the attributes in the following list, we have used the ¢ variable to represent
time. For instance, t 0 shows =0, and the attribute shows information about the same
day as the row:

+ n Hosp tO0:The number of hospitalizations at t=0

e s Hosp_ tn7_0: The slope of the curve of hospitalizations for the period t=-7
to t=0

e Bn_days_MajHol: The number of days from the previous major holiday

« av7_Case_ tné_0: The seven-day average of the number of cases for the period
t=-6 to t=0

o s Case tnl4 0: The slope of the curve of cases for the period t=-14 to t=0

e av7_Death tné_ 0:The seven-day average of the number of deaths for the
period t=-6 to t=0

o s Death tnl4 O0:The slope of the curve of deaths for the period ¢t=-14 to t=0
o p_ FullVax tO: The percentage of fully vaccinated people at t=0

e s FullVax tnl4 O0: The slope of the curve of the percentage of fully vaccinated
people for the period t=-14to t=0

520 Case Study 2 - Predicting COVID-19 Hospitalizations

Note!

A great question to ask about these suggested independent attributes is how
did we come up with them. There is no step-by-step process that can guarantee
the perfect set of independent attributes, but you can learn the relevant skills to

position you for more success.

These independent attributes are the byproduct of the creative mind of a
person that has the following characteristics: 1) they understand the prediction
algorithms, 2) they know the types of data that are collected, 3) they are
knowledgeable about the target attribute and the factors that can influence it,
and 4) they are equipped with data preprocessing tools such as data integration

and transformation that enable effective data preprocessing.

After reviewing these potential attributes, you realize the importance of functional

data analysis (FDA), which we learned about in different parts of this book. Most of
these attributes will be the outcome of the FDA for data integration, data reduction, and

data transformation.

The dependent attribute (or our target) is also coded similarly asn Hosp t14, which is
the number of hospitalizations at t=14.

The following figure shows the placeholder dataset that we have designed so that we can

fill it up using the data resources we have identified:

t0 n_Hosp_t0 s_Hosp_tn7_0 n_days_MajHol av7_Case_tn6_0 s_Case_tn14_0 av7_Death_tn6_0 s_Death_tn14_0 p_FullVax_t0 s_FullVax_tn14_0 n_Hosp_t14

549

550

551

552

553

2020-
03-29

2020-
03-30

2020-
03-31

2020-
04-01

2020-
04-02

2021-
09-29

2021-
09-30

2021-
10-01

2021-
10-02

2021-
10-03

NaN

NaN

NaN

NaN

NaN

554 rows x 11 columns

NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN

Figure 16.2 — The placeholder for the designed dataset

Preprocessing the data 521

Filling up the placeholder dataset

The following figure tells a simple story of how we will be filling up the placeholder dataset.
Of course, the data comes from the four data sources that we have identified; however, the
ingenuity and the skills that we need to integrate, transform, reduce, and clean the data so it
can fill up the placeholder will come from our knowledge and creativity.

Data Cleaning

c
o
=
©
£
S
N
(%]
c
(0]
S
-
L]
-
1]
(a]

10 n_Hosp_to s_Hosp_tn7_0 n_days_MajHol av7_Case_tn6_0 s_Case_tn14_0 av7_Death_tn6_0 s_Death_tn14_0 p_FullVax_t0 s_FullVax_tn14_0 n_Hosp_ti4

2020-

0 0320 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

1 0330 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

2 Ga'ay NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

3 Q401 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

04-02

Figure 16.3 — A schematic of filling up the placeholder dataset

522 Case Study 2 - Predicting COVID-19 Hospitalizations

Attention!

It is important to remember that we learned about each of the data
preprocessing steps in isolation. We first learned about data cleaning, then

data integration, and after that data reduction, and at the end came data
transformation. However, now that we are starting to feel more comfortable
with these stages, there is no need to do these in isolation. In real practice, they
can and should be done at the same time very regularly. In this case study, you
are seeing an example of this.

So, as shown in the preceding figure, we will be using the data from the four sources to
fill the columns, one by one, in the designed placeholder dataset. However, to make the
connections between the data sources, some data cleaning is needed. The main priority is
to make sure all of the rows in day hosp df,day case df,day vax_df, and even
the placeholder day df are indexed with the datetime version of the dates. These dates
will provide seamless connections between the data sources. After that, we will use what
we have learned in this book to fill the columns in the placeholder day df DataFrame.
The following figure shows the day df DataFrame rows after having been filled:

t0 n_Hosp_t0 s_Hosp_tn7_0 n_days_MajHol av7_Case_tn6_0 s_Case_tn14_0 av7_Death_tn6_0 s_Death_tn14_0 p_FullVax_t0 s_FullVax_tn14_0 n_Hosp_t14

2020- 2020-

B B 489.0 NaN 67 NaN NaN NaN NaN 0000000 0.000000 1433.0
2020- 2020-
Ry o9 601.0 NaN 68 NaN NaN NaN NaN 0000000 0.000000 1501.0
2020- 2020-
Gl s 713.0 NaN 69 NaN NaN NaN NaN 0000000 0.000000 1587.0
2020~ 2020-
T oaon 739.0 NaN 70 NaN NaN NaN NaN 0000000 0.000000 1624.0
2020- 2020-
ity 818.0 NaN 7 NaN NaN NaN NaN 0000000 0.000000 1679.0
2021 2021-

8720 -16.928571 21 970.285714 34732143 13.000000 0528571 0712213 0.000669 NaN
09-29 09-29
2021 2021-
B 2 8620 -13.773810 2 954.142857 21414284 11857143 0814286 0712213 0.000623 NaN
2021 2021-
A G 8250 -14.380952 23 897.857143 25339285 9.714286 1021429 0712213 0.000566 NaN
2021- 2021 790.0 15.750000 24 804.571429 42.971429 7.857143 1.078571 0712213 0.000503 NaN
1002 1002 - 15 : -42. : EX : . a
2021 2021-
el B 7680 -19.500000 25 737.285714 -67.714286 6.000000 1228571 0712213 0.000437 NaN

554 rows % 11 columns

Figure 16.4 — The placeholder dataset after being filled

You may be wondering why some of the rows still contain NaN. That's a great question and
I am confident you can figure out the answer on your own. Just go back to the definition
of each of these independent attributes we designed earlier. Give this some thought before
reading on.

Preprocessing the data 523

The answer to the question is simple. The reason that there are still NaN values on some
of the rows is that we did not have the information in our data sources to calculate them.
For instance, let's consider why s Hosp tn7 0 isNaN in the 2020-03-29 row. We
have to go back to the definition of s Hosp_tn7_0, which is the slope of the curve of
hospitalizations for the period t=-7 to t=0. As 2020-03-29 is t=0 for this row, we will
need to have the data of the following dates to calculate s Hosp tn7_ 0, and we don't
have them in our data sources:

e t=-1: 2020-03-28
e t=-2: 2020-03-27
e t=-3: 2020-03-26
e t=-4: 2020-03-25
e t=-5: 2020-03-24
e t=-6: 2020-03-23
e t=-7: 2020-03-22

The dataset that we are using in this case study has data from 2020-03-29. This almost
always happens when creating a dataset for future prediction with a decision-making
gap. The reason we included the 14 days' difference between the sources of data we use
for calculating the independent attributes and computing the dependent attribute is for
our prediction to have decision-making values. Of course, we can have a more accurate
prediction if the decision-making gap is shorter, but at the same time, these predictions
will have fewer decision-making values, as they may not allow for the decision-maker to
process the situation and make the decision that can have a positive impact.

As you will see in the following sections, we will have to eliminate the rows that contain
NaN. But that's okay, as we have enough data for our algorithm to still be capable of
finding patterns.

Next, let's see whether the independent attribute we imagined would have predictive
values has them. We will do that with supervised dimension reduction during our
data preprocessing.

Supervised dimension reduction

In Chapter 13, Data Reduction, we learned a few supervised dimension reduction
methods. Here, we want to apply three of them before moving to the data analysis part of
the case study. These three methods are linear regression, random forests, and decision
trees. Before reading on, make sure to revisit Chapter 13, Data Reduction, to freshen

up your understanding of the strengths and weaknesses of each of these methods. The
following figures show the results of each of these three methods.

524 Case Study 2 - Predicting COVID-19 Hospitalizations

In the following figure, we see that linear regression deems all of the independent
attributes significant for the prediction of n_Hosp t14, exceptforn days MajHol
and s_FullVax_ tnl4 0. Pay attention to the P> |t | column, which shows with

the p-value of the test on the null hypothesis that the relevant dependent attribute

is not capable of predicting the target in this model. The p-values for all of the other
independent attributes — exceptn_days MajHol and s FullVax_tnl4 0 - arevery
small, indicating the rejection of the null hypothesis.

OLS Regression Results

Dep. Variable: n_Hosp_t14 R-squared: 0.981
Model: OoLS Adj. R-squared: 0.981
Method: Least Squares F-statistic: 2937.
Date: Mon, 04 Oct 2021 Prob (F-statistic): 0.00
Time: 10:03:07 Log-Likelihood: -3653.5
No. Observations: 525 AlC: 7327.
Df Residuals: 515 BIC: 7370.
Df Model: 9
Covariance Type: nonrobust
coef std err t P>t [0.025 0.975]
const 316.7108 35.260 8.982 0.000 247439 385.983
n_Hosp_t0 0.6368 0.053 12.043 0.000 0.533 0.741
s_Hosp_tn7_0 8.7896 0.643 13.672 0.000 7.527 10.053
n_days_MajHol 0.6326 0.422 1.499 0.135 -0.197 1.462
av7_Case_tn6_0 0.2514 0.017 14.956 0.000 0.218 0.284
s_Case_tn14_0 0.5128 0.130 3.932 0.000 0.257 0.769
av7_Death_tn6_0 -5.3348 1.324 -4.030 0.000 -7.935 -2.734
s_Death_tn14_0 -132.9086 12.351 -10.761 0.000 -157.172 -108.645
p_FullVax_t0 -496.0640 57.139 -8.682 0.000 -608.319 -383.809
s_FullvVax_tn14_0 -7834.8102 8950.211 -0.875 0.382 -2.54e+04 9748.603
Omnibus: 27.076 Durbin-Watson: 0.168
Prob(Omnibus): 0.000 Jarque-Bera (JB): 67.116
Skew: 0.213 Prob(JB): 2.67e-15
Kurtosis: 4.699 Cond. No. 4.00e+06

Figure 16.5 — The output of linear regression for supervised dimension reduction

Preprocessing the data 525

We should remember to take the conclusion from the preceding figure with the caveat
that linear regression is only capable of checking the linear relationships for us, and that
these two attributes may have non-linear relationships that could be useful in a more
complex model.

This is shown in the second supervised dimension reduction method: the random forest.
The following figure visualizes the importance that the Random Forest has given to each
independent attribute, and we do see, unlike our conclusion we arrive at under Linear
Regression, only four independent attributes are among the most important attributes,
and the rest has not given any sizable share of importance.

s FullVax_tn14 0 1
av7_Death_tn6_0 -
p_FullVax_t0 1

s Case_tnl4 0 1
n_days_MajHol 1

s Hosp_tn7_0 1

s Death_tn14 0

n Hosp_t0

av/_Case_tné 0

0.0 0.2 04 0.6 0.8

Figure 16.6 — The output of a random forest for supervised dimension reduction

The following figure shows the final decision tree after being tuned for the successful
prediction of n_Hosp t14. The resulting decision tree has many levels, and you will not
be able to see the splitting attributes. However, you can see the complete decision tree via
the HospDT . pdf file in this book's GitHub repository, or you can create it yourself to
investigate it.

Figure 16.7 — The output of a decision tree for supervised dimension reduction

526 Case Study 2 - Predicting COVID-19 Hospitalizations

The data preprocessing is almost done. However, because we are going to use different
algorithms in the next section, we will leave some of the last preprocessing steps to be
performed immediately before applying each prediction algorithm.

Analyzing the data

Now that the data is almost ready, we get to reap the rewards of our hard work by being
able to do what some may consider magic - predict the future. However, our prediction
is going to be even better than magic. Our prediction will be reliable, as it is driven by
meaningful patterns within historical data.

Throughout this book, we have got to know three algorithms that can handle prediction:
linear regression, multilayer perceptrons (MLPs), and decision trees.

To be able to see the applicability of the prediction models, we need to have a meaningful
validation mechanism. We haven't covered this in this book, but there is a well-known
and simple method normally called the hold-out mechanism or the train-test procedure.
Simply put, a small part of the data will not be used in the training of the model, and
instead, that small part will be used to evaluate how well the model makes predictions.

Specifically, in this case study, after removing the rows that have any missing values,
we have 525 data objects that can be used for prediction. We will use 511 of these data
objects for training, specifically, the data objects from 2020-04-12t02021-09-04
(which would include 507 data objects). The rest, which are 14 data objects from two
weeks of the data (that is, the data objects from 2021-09-05to 2021-09-18), will
be used for testing our models. Using these dates, we will separate our data into train
and fest sets. We will then train the algorithms using the train set and evaluate them
using the test set.

Analyzing the data 527

The following figure shows how well the three models — namely linear regression, the
decision tree, and the MLP - were able to fit themselves to the training data. With the
decision tree and MLP, we should not trust a good fit between the training data and the
model, as these algorithms can easily overfit the training data. Therefore, it is important to
also see the performance of these algorithms on the test data.

Linear Regression

oA — train Data
R - Hodel

Jul et zlg;l Apr Jut
L]
Decision Tree
BO0O — train Data:
oo T Mesel
GO0G

5000
4000
3000

2000
| —— - /_"-..‘_
1000 -
‘\-"_"_‘—‘—h-—_,_._.. -
o

Bt Ot Jai A Jl
2021
0

Multi-Layered Perceptran (MLP)

— train Data
—- Mool

2 ot Jar
2021

]

Figure 16.8 — The train dataset versus the fitted model for the linear regression, decision tree,
and MLP models

528 Case Study 2 - Predicting COVID-19 Hospitalizations

The following figure shows how the trained models were able to predict the test data. The
figure also shows what the prediction of actual future values looks like. Remember that
this content was created on October 3, 2021.

Linear Regression

— test data
10001 —==- test prediction
—-+= Future prediction
900 4
800 1
N
700 - .
~, e
~._) ’ s
600 T 7 S
i, —_— ~
20 27 ' 04 1
Qct
2021
Decision Tree
1300
— test data
1200 1 ——- test prediction
1100 —-= Future prediction
| e —_
1000 - !
900 - \
B00 ‘
1
700 4 \
1
600 4 H
!
500 4]
20 27 ' 04 11

Oct
2021

Multi-Layered Perceptron (MLP)

— test data
—==- test prediction
—-= Future prediction

1400 4

1200 4

1000 A
800 4
__.__'__‘_/—__.-"'"-..__ _______ .
- I“"--..
-
600 4 .
20 27 04 11
Oct
2021

Figure 16.9 — The test data, test prediction, and future prediction of the linear regression,

decision tree, and MLP models

Summary 529

Comparing the performance of these three models on the test data is rather difficult due
to the way the preceding figure is set up. The following figure shows the prediction of
all three models on the test data and also the test data itself in one chart. The following
visualization will allow us to find the best algorithm for the job:

— test data

—s— Regression test prediction
=== DT test prediction

—— mlp prediction

1400 +

1200 4

1000 4

800 A

600 4
19 20 21 22 23 24 25 26 27 28 29 30 01 02

Oct
2021

Figure 16.10 — Comparing the performance of the linear regression, decision tree, and MLP models on
the test set

In the preceding figure, we can see that while the MLP model performs slightly better
than the other two, the three models are largely comparable in performance, and they are
all successful.

Well done, we were able to complete the prediction task and also validate it. Let's wrap up
this chapter with a summary.

Summary

In this chapter, we got to see the real value of data preprocessing in enabling us to perform
predictive analytics. As you saw in this chapter, what empowered our prediction was not
an all-singing, all-dancing algorithm - it was our creativity in using what we learned
during this chapter to come to a dataset that could be used by standard prediction
algorithms for prediction. Furthermore, we got to practice different kinds of data cleaning,
data reduction, data integration, and data transformation.

In the next chapter, we will get to practice data preprocessing on another case study. In
this case study, the general goal of the analysis was prediction; however, the preprocessing
in the next case study will be done to enable clustering analysis.

17

Case Study 3: United
States Counties
Clustering Analysis

This chapter is going to provide another excellent learning opportunity to showcase the
process of data preprocessing for high-stakes clustering analysis. We will practice all the
four major steps of data preprocessing in this chapter—namely, data integration, data
reduction, data transformation, and data cleaning. In a nutshell, in this part of the book,
we are going to form meaningful groups of United States (US) counties based on different
sources of information and data. By the end of this chapter, we are going to have a much
better understanding of the different types of counties that are in the US.

In this chapter, we're going to extract information from this case study using the following
main subchapters:

+ Introducing the case study
« Preprocessing the data

+ Analyzing the data

532 Case Study 3: United States Counties Clustering Analysis

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub
repository exclusively created for this book. To find the repository, click on this link:
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-
in-Python/tree/main/Chapterl7. In this repository, you will find Chapter17
folder from which you can download the code and the data for better learning.

Introducing the case study

During the 2020 US presidential election, the world and America alike were reminded
that where an individual lives can best predict what they will decide for their future (that
is, how they vote). This may be a sobering realization at an individual level, but this is

a billion-dollar understanding for national businesses such as Starbucks, Walmart, and
Amazon. Furthermore, for federal, state, and local politicians, this realization can be
monumentally useful both at election time and when drafting legislation.

All these benefits may be available to these entities if they are capable of doing meaningful
locational analyses of groups of people. In this case study, we are going to analyze the
differences and the similarities between US counties. In the following screenshot, we

can see that the US has many counties; there are 3,006, to be exact. The color-coded map
shows the county-level relative population density:

WA ND. y o

mT ‘ 8 X . 59 /4_\

13

R = Sl
. R f ~ BT I

ﬂf\w”‘\ v
P 7,
=
A
F |
> B
_l

NV s
! () E

) =
E ! Ll

-

s
|
Al

Figure 17.1 — US demographic data map at a county level

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter17
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter17

Introducing the case study 533

Note!

The source of the US demographic data map at a county level can

be found at the following link: https://mtgis-portal.
geo.census.gov/arcgis/apps/MapSeries/index.
html?appid=2566121a73de463995ed2b2fd7ffeeb7.

What is the first step in being able to meaningfully analyze the differences and similarities
between all the counties shown in the preceding screenshot? The answer is, of course, data
preprocessing. I hope you didn't hesitate to give this answer at this point in the book.

In this chapter, specifically, we are going to integrate a few sources of data, and then
perform the necessary data reduction and data transformation before the analysis.
There will be lots of data cleaning that needs to be done across different steps of data
preprocessing; however, at this point in your learning about data preprocessing, your
skillset for data cleaning should have sufficiently developed that you will not need
reminding to recognize these steps.

Now that we have a general understanding of this case study, let's get to know the datasets
that will be used for this clustering analysis.

Introduction to the source of the data

We will use the following two sources of data to create a dataset that allows us to perform
county clustering analysis:

o The four files Education.xls, PopulationEstimates.xls,
PovertyEstimates.xls, and Unemployment .x1sx from the US
Department of Agriculture Economic Research Service (USDA ERS) (https://
www.ers.usda.gov/data-products/county-level-data-sets/)

o US election results from Massachusetts Institute of Technology (MIT)
election data (https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/VOQCHQ)

Across the preceding two sources, we've got five different files that we need to integrate.
The files from the first source are easily downloaded; however, the one file from the
second source will need to be unzipped after being downloaded. After downloading
dataverse files.zip file from the second source, and unzipping it, you will get
countypres 2000-2020.csv, which is the file we want to use.

https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7
https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7
https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7
https://www.ers.usda.gov/data-products/county-level-data-sets/
https://www.ers.usda.gov/data-products/county-level-data-sets/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ

534 Case Study 3: United States Counties Clustering Analysis

We will eventually integrate all this data into a county df pandas DataFrame; however,
we will need to read them into their own Pandas DataFrames first and then go about

the data preprocessing. The following list shows the names we will use for those Pandas
DataFrames per file:

¢ Education.xls:edu df

e PopulationEstimates.xls:pop df
e PovertyEstimates.xls:pov_df

¢ Unemployment.xlsx:employ df

e countypres 2000-2020.csv:election df

Attention!

I highly encourage you to open each of these datasets on your own and scroll
through them to get to know them before continuing to read on, as this will
enhance your learning.

Now that we know the data sources, we need to go through some meaningful data
preprocessing before we get to the data analytics part. Let's dive in.

Preprocessing the data

The very first step in preprocessing for clustering analysis is to be clear about which

data objects will be clustered, and that is clear here: counties. So, at the end of the data
preprocessing, we will need to have a dataset whose rows are counties, and with columns
based on how we want to group the counties. As shown in the following screenshot, which
is a summary of the data preprocessing that we will perform during this chapter, we will
get to county df, which has the characteristics that were just described.

Preprocessing the data 535

Column1 |[Column2 |. . . Column m
Row 1 x -

Rown |

Data

Transformation
K ~ _—
¢ Column1 |Column2 |. R . n /

[[Column1 [Column2 |. I. I. | Column m
Row 1
Row 2

Figure 17.2 - Schematic of the data preprocessing

As shown in the preceding summarizing screenshot, we will first transform election
df into partisan df, and then integrate the partisan df, edu df,pov_df, pop
df, and employ df DataFrames. Of course, there will be more detail to all of these

steps than the preceding screenshot shows; however, this serves as a great summary and

a general map for our understanding.

536 Case Study 3: United States Counties Clustering Analysis

Let's roll up our sleeves, then. We will start by transforming election_df into
partisan_ df.

Transforming election_df to partisan_df

With a first glance at the election df dataset, we should realize that the definition of
data objects for this dataset is not counties, and instead, it is the county-candidate-election-
mode in each presidential election. While counties are indeed a part of the definition, we
only need to have county as the definition of the data object. This very fact can be our
guiding principle in the data transformation process.

Let's work our way back from mode to county. Mode refers to the different ways that
individuals had been able to participate in the election. By recognizing the fact that
election df also has the mode of ' TOTAL ', which is the sum of all the other modes,
we can simply drop all the other rows that have modes other than ' TOTAL' to simplify
the definition of data objects to county-candidate-election.

To simplify from county-candidate-election to county for the definition of data objects,
we will first use attribute construction, and then functional data analysis (FDA).

Constructing the partisanism attribute

The partisanismattribute is meant to capture the level of uniformity in individuals'
votes in electing a democrat or a republican in each election. The following formula shows
how this constructed attribute can be calculated:

votes for Republicans — votes for Democrats

artisanism = -
P votes for Republicans + votes for Democrats
If a county in an election has a large positive partisanism value, it shows the county in that
election has swung largely toward republicans; if it has a large negative value, it shows
a great swing toward democrats.

The following screenshot shows a small portion of the partisanElection df
DataFrame, which is the result of calculating a partisan value for each election and county:

Preprocessing the data 537

partisanism

state_po county_name year

AK DISTRICT 1 2000 0.510367
2004 0.253528
2008 0.222669
2012 0.56734
2016 0.0914432

WYy WESTON 2004 0.636498
2008 0.574107
2012 0.714201
2016 0.775383
2020 0.771629

18050 rows x 1 columns

Figure 17.3 — A portion of partisanElection_df

By constructing the new partisanism attribute and calculating it for every county and
election, we managed to move from the definition of data objects being county-candidate-
election to county-election. Next, we will use FDA to have the definition of data objects as
only county.

FDA to calculate the mean and slope of partisanism

Looking at Figure 17.3, you may notice that we have the partisanism value of
presidential elections 2000, 2004, 2008, 2012, 2016, and 2020 for every county—in
other words, for every county, we have a time series of partisanism values. Therefore,
instead of having to deal with 6 values, we can use FDA to calculate the mean and slope of
partisanismacross elections over 20 years.

After doing this FDA transformation and creating a partisan_df DataFrame whose
definition of data objects is county, we will make sure to also perform a necessary data
cleaning step. Specifically, we will transform the County Name column so that its
characters are presented in lowercase. This data cleaning is performed for future data
integration purposes. As the name of counties may have been written in different formats
that are understandable for human comprehension but not for a computer, we thus need
to make sure the county names are all in lowercase in all of the data sources so that the
data integration will go smoothly.

538 Case Study 3: United States Counties Clustering Analysis

The following screenshot shows the partisan_df attribute:

Mean_Partisanism Slope_Partisanism

State County_Name

AK district 1 0.274999 -0.0762906
district 10 0.404606 0.0388433

district 11 0.429907 0.00906478

district 12 0.417909 0.0196095

district 13 0.28947 0.00391493

WYy sweetwater 0.379123 0.0557874
teton -0.155271 -0.086146

uinta 0.540841 0.0254894

washakie 0.573747 0.0170218

weston 0.69149 0.0294079

3151 rows x 2 columns

Figure 17.4 - A portion of partisan_df

Note that the definition of data objects for the DataFrame shown in Figure 17.4 is
county. If you go back to the beginning of this subchapter (Transforming election_df to
partisan_df), our goal was to transform the election df dataset, whose definition
of data objects is county-candidate-election-mode, into partisan_ df. We saw that the
definition of data objects for partisan df is county.

Next, we will perform the necessary data cleaning on edu_df, employ df, pop_ df,
and pov_df.

Preprocessing the data 539

Cleaning edu_df, employ_df, pop_df, and pov_df

To take another step toward the preprocessed county df dataset, we will need to
perform some data cleaning on edu_df, employ df, pop df,and pov_df. The
steps will be very similar for all these datasets. These include removing unwanted
columns, transforming the index attributes, and renaming the attribute titles for brevity
and intuitiveness.

Data integration

By the time we arrive at this step, the hardest part of data integration—preparing the
DataFrames for integration—has already been done. Because we took our time preparing
each one of the DataFrames, doing the data integration is as simple as one line of code, as
shown in the following snippet:

county df = pop df.join(edu df) .join(pov_df) .join (employment
df) .join(partisan df)

Once the code is successfully run, we will get the following DataFrame that is almost
ready for analysis:

g y i 1 _Percent_of_State_Total Mean_Partisanism Slope_Partisanism

State County_Name

autauga 54571 26.5716 121 58233 27 112.482 0.467068 0.00184533

baldwin 182265 31.8625 10.1 59871 2.8 115.646 0.532724 0.0128458

AL barbour 27457 11.5787 271 35972 38 69.4829 0.0342589 0.00718466
bibb 22915 10.3785 203 47918 3.1 92.5576 0.453212 0.0603812

blount 57322 13.0934 16.3 52902 27 102.185 0.683058 0.0702235

sweetwater 43806 22.4984 8.3 80639 4 121.9 0.379123 0.0557874

teton 21294 57.0051 6 98837 28 149.409 -0.155271 -0.086146

wy uinta 21118 16.029 8.5 70756 4 106.96 0.540841 0.0254894
washakie 8533 23.3862 1.1 55122 4.1 83.3263 0.573747 0.0170218

weston 7208 19.9725 10.5 59410 3 89.8083 0.69149 0.0294079

3007 rows x 8 columns

Figure 17.5 - A portion of preprocessed county_df

Now, we need to perform the next important data preprocessing steps: Level III data
cleaning—missing values, errors, and outliers.

540 Case Study 3: United States Counties Clustering Analysis

Data cleaning level Il - missing values, errors, and
outliers

After investigation, we realize that there are a handful of missing values under seven
out of eight of the attributes in county d£. If this were a real government project,
these missing values would need to be tracked down before we moved forward with the
analysis; however, as this is practice analysis and there are not too many missing values,
we adopt a strategy of dropping the missing values.

Furthermore, when investigating outliers, we will see that all of the attributes in county
df have fliers in their boxplots. However, the extreme values under the Population

and UnemploymentRate attributes are too different than the rest of the population, so
much so that the extreme values can easily impact the clustering analysis. To mitigate their
impact, we will use log transformation on these two attributes.

Regarding the possibility of having errors in the data, there are two matters we need to pay
attention to, as follows:

o First, as all of the attributes do have actual extreme values, our tools for possibly
detecting univariate errors become ineffective.

 Second, the clustering analysis that we will be doing eventually will show us the
outliers, and at that point, we can investigate whether those outliers are possible errors.

One last data preprocessing step and we will then be set for the analysis—we need to
check for data redundancy.

Checking for data redundancy

Data redundancy is very possible for county df as we have brought together different
sources of data to create this dataset. As clustering analysis is very prone to be heavily
impacted by data redundancy, this step becomes very important. We will use two effective
tools for this goal: a scatter matrix and correlation analysis.

The following screenshot shows a scatter matrix, which is very useful for seeing the
possible relationship between the attributes and assessing whether the assuming linear
relationship between the attributes is reasonable:

Preprocessing the data 541

HigherEqzercert
5

MedHHI~come_Perten_of_Sta

Siape_Patizanism

Ioq_ieoulatio

an & RORE L I 5000 00007 1SOCOm SO 100 IS0 200 -ns oo s -3l on a1 o2 i 1 15 d 1 2 3
Haherkebercant Hovertyberse tage MecianFHincame MecHHIncome_bercent_of State_lotal Mean_Parisanis Sleoe_iarsisznism 2 l'op Jation 29U7emp symentHzte

Figure 17.6 — Scatter matrix of county_df

In the preceding screenshot, we can see that while there is somewhat of a non-linear
relationship between PovertyPercentage and MedianHHIncome, assuming a linear
relationship between the rest of the attributes does sound reasonable.

542 Case Study 3: United States Counties Clustering Analysis

The following screenshot shows a correlation matrix of county df:

HigherEdPercent

PovertyPercentage -

MedianHHIncome

MeaHHIncome_Percent_of_State_Total

Mean_Partizanism = -0.31

Slepe_Partisanism - -0.61

log_Populatian

log_UnemploymentRate = -0.37

log_Population

HigherEdPercant -

PovertyPercentage
MedianHHIncome -
Mean_Partisanism -
Slope_Partisanism

log_UnemploymentRate

MedHHInceme_Percent_of State_Total -

Figure 17.7 — Correlation matrix of county_df

We can see in the preceding screenshot that MedianHHIncome has a strong relationship
with PovertyPercentage and MedianHHIncome Percent of State Total.
This is a concerning data redundancy for clustering analysis as there seems to be a
repetition of information in these three attributes. To rectify this, we will remove
MedianHHIncome from the clustering analysis.

Now, we are set to begin the analysis part of this case study.

Analyzing the data 543

Analyzing the data

In this part, we will do two types of unsupervised data analysis. We first use principal
component analysis (PCA) to create a high-level visualization of the whole data. Next,
after having been informed how many clusters are possibly among the data objects, we
will use K-Means to form the clusters and study them. Let's start with PCA.

Using PCA to visualize the dataset

As we already know, PCA can transform the dataset, so most of the information is
presented in the first few principal components (PCs). Our investigation showed that the
majority of relationships between the attributes, including county_df, is linear, which

is allowing us to be able to use PCA; however, we won't forget about the few non-linear
relationships as we move ahead with PCA, and we will not rely too much on the results of
the PCA.

The following screenshot shows a three-dimensional (3D) scatterplot of PC1, PC2,

and PC3. PC1 and PC2 are visualized using the x and y axes, whereas PC3 is visualized
using color. From the PCA analysis, we learned that PC1 to PC3 account for almost 80%
of the variations in the whole data, so the following screenshot is illustrating 80% of the
information in the data. To get a better insight into what we see in this scatterplot, the
counties that are at the extreme end of PC1 and PC2 are annotated.

(X, "loving’)

{'NM', lof alamos')
J'VA', 'loudpun')

PC2
PC3

RGN T
(K "haplgnilakey ,
('KY", "elliott’) o .

(kY 'magoffip)

LWa2fiXGton|) 0

-2

'SD', 'ziebach’)

(
(99, ‘Refiglshar)

—a4

* . ms X)
(5D, ‘ogibla MR claiborne)

-4 -2 0 2 4 6 8
PC1

Figure 17.8 - 3D scatterplot of PC1, PC2, PC3 PCA for transformed county_df

544 Case Study 3: United States Counties Clustering Analysis

Now, let's look at our K-Means clustering analysis. Pay attention to the fact that we
standardize the data before performing PCA and normalize the data before performing
clustering analysis.

K-Means clustering analysis

After our investigation of Figure 17.8, which shows a 3D scatterplot of the PCs and some
computational experimentations, we will conclude that the best K value for K-Means
clustering is 5. The computational experimentation method to find K is not covered in this
book; however, the code that is used for this step is included in the file dedicated to this
chapter in the book's GitHub repository.

The following screenshot shows the result of the K-Means clustering (K=5) using PC1
and PC2. This screenshot is advantageous for two reasons—first, we can see the
relationship between the clusters, and second, the dispersion between the members of the
clusters is depicted.

6 * * Cluster 0
® Clusterl
4 e Cluster 2
A Cluster 3
+ Cluster4
27 A
0 A 4 A‘
A As
-2 L] A i
_4 -
_6 L T T T T T T T
-4 -2 0 2 4 6 8

Figure 17.9 - Visualization of the result of clustering county_df using PC1 and PC2

Analyzing the data 545

To understand the patterns among the data objects and also know more about
the relationship between the clusters, we can view the following centroid analysis
using heatmaps:

08

HigherEdPercent - 0.27 0.2 031 022
PovertyPercentage - 021 033 0.19 0.16
MedHHIncome_Percent_of State Total - 0.25 0.21 0.28 0.15 06
Siope_Partisanism mm 03 04

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster size “ 412 302 k238
Population - 11e+04 26e+04 69e+04 [EEEENENN ese+os 308868
HigherEdPercent - 21 15 17 ‘: 3

- $ooo
m 4le+04 L ga009

PovertyPercentage -
MedianHHIncome LTS0S 4 6e+04

UnemploymentRate - 3 m “ tf 3
MedHHIncome _Percent of State Total _ 80 “ & k 5%:
Mean_Partisanism _“ 0. 043 ‘0..11 L 00
Slope_Partisanism 0.077 0.027 0.0015 E 883
log_Population - 3:7 9;9 -I_ L1
log_UnemploymentRate - 11 11 £330

Cluster0 Clusterl Cluster2 Cluster3 Cluster 4

Figure 17.10 — Heatmaps of the clusters' centroid for centroid analysis

From studying Figure 17.9 and Figure 17.10, we can see the following patterns
and relationships:

o Clusters 0, 1, and 2 are Republican-leaning, and clusters 3 and 4 are
Democrat-leaning.

o Cluster 2 is the one that has the most in common with all the rest of the clusters.
This cluster is the best characterized to be the most moderate and affluent among
all the Republican-leaning counties.

o Cluster 0 only has a relationship with clusters 2 and 3 and is completely cut oft from
clusters 4 and 5, which are the only Democrat-leaning clusters. This cluster is best
characterized by the most Republican-leaning cluster with the lowest unemployment
rate and population among all the clusters.

546 Case Study 3: United States Counties Clustering Analysis

o Cluster I has a relationship with all the clusters except cluster 3. This cluster is
best characterized as having the lowest HigherEdPercent value among all the
clusters, and the lowest MedianHHIncome and highest PovertyPercentage
and UnemploymentRate values among the Republican-leaning clusters.

« Another interesting pattern about cluster 1 is that this cluster has the fastest
movement toward becoming more Republican-leaning among all the clusters.

o Cluster 4, which is a Democrat-learning cluster, has more in common with two
Republican-leaning clusters, clusters 1 and 2. This cluster is best characterized as
having the highest PovertyPercentage and UnemploymentRate values and
the lowest MedianHHIncome value among all clusters.

« Another interesting pattern about cluster 4 is that while this cluster is the most
Democrat-leaning cluster, it is the only cluster that has been moving in the opposite
direction in terms of partisanism.

o Cluster 3 has more of a relationship with cluster 2, which is a Republican-leaning
cluster, than cluster 4, which is the only other Democrat-leaning cluster. Among all
the clusters, this cluster seems to be a unique one. This cluster is best characterized
by the highest Population and HigherEdPercent values and the lowest
PovertyPercentage value.

 Another interesting pattern about cluster 3 is that it is the only cluster that has a
movement toward becoming more Democrat-leaning; however, its movement is the
slowest among all the clusters:

Well done! We were able to complete the clustering analysis and visualize very interesting
and meaningful patterns. What enabled this visualization was partly the existence of
great tools such as PCA and K-Means; however, what made this analysis happen was our
ingenuity during the data preprocessing step that allowed us to create a dataset that would
lead to the presented meaningful outcome.

Summary

In this chapter, we got to experience the essential role of effective data preprocessing in
enabling us to perform meaningful clustering analytics. Furthermore, we got to practice
different kinds and types of data cleaning, data reduction, data integration, and data
transformation situations.

This was the last case study that we have in this book. The next and final chapter will
provide some directions for more learning and some practice case studies.

18

Summary, Practice
Case Studies, and
Conclusions

This chapter will provide a summary of the book, some practice case studies, and lastly
offer some concluding remarks.

In this chapter, we're going to cover the following main subchapters:

« A summary of the book
o Practice case studies

o Conclusions

A summary of the book

Congratulations on your excellent journey of learning through the course of this book;
you've acquired invaluable skills. You learned various skills in the four parts of this book.
In the following subchapter, we will go over what we learned in each part of this book.

548 Summary, Practice Case Studies, and Conclusions

Part 1 - Technical requirements

In this part of the book, which lasted from Chapter 1, Review of the Core Modules of NumPy
and Pandas through Chapter 4, Databases, we covered all the technical and foundational
concepts, techniques, and technologies that you will need for effective data preprocessing.
Specifically, in Chapter 1, Review of the Core Modules of NumPy and Pandas, and Chapter

2, Review of Another Core Module — Matplotlib, we picked up all the foundation Python
programming skills that we will need for data preprocessing. In Chapter 3, Data - What

Is It Really? we acquired a fundamental understanding of data and the different analytics
paths that have implications for our data preprocessing. Finally, in Chapter 4, Databases, we
learned about the technological backbone of data analytics, which is databases, and got to
understand their role in effective analytics and preprocessing.

Part 2 - Analytics goals

While the first part of the book was meant to give you a technological and foundational
background for effective data preprocessing, the second part of the book, which we will
cover next, was meant to provide a deep enough understanding of data analytics goals.

It may sound counterintuitive for The preprocessing, which is the third part of the book to
come after Analytics goals, but that is actually a common misunderstanding regarding data
preprocessing and data cleaning. In many resources, data cleaning is presented as

a stage of data analytics that can be done in isolation; however, as you have experienced in
this book, most of the data cleaning and the rest of the data preprocessing steps must be
done to support the analytics. That is to say, without a proper understanding of what the
analytics goals are, we cannot prepare the data through effective data preprocessing.

To best prepare you for your hands-on learning of data preprocessing, this part of the
book provided learning opportunities for you to know the four most data analytics goals:
data visualization, prediction, classification, and clustering analysis. These goals are the
titles of Chapters 5 through 8. Under each chapter and through examples, we formed

a deeper understanding of each of these analytics goals and we got to employ various
analytics tools to realize these goals.

In this stage of your learning, the datasets that you worked on were mostly cleaned and
prepared to best support your learning. However, the datasets you used after that had
different issues and challenges that you learned how to deal with. You learned most of this
in Part 3 and Part 4 of the book. Let's now go over our learning in Part 3.

A summary of the book 549

Part 3 - The preprocessing

This part of the book is indeed the meat of our learning. Our learning happened in six
chapters. The first three chapters, Chapters 9 through 11, covered data cleaning. Specifically,
in these three chapters, we learned about three different levels of data cleaning. In Chapter
12, Data Fusion and Data Integration, we covered data integration. As you experienced, data
integration is one of the simplest data preprocessing steps to understand but one of the most
challenging parts to implement. In Chapter 13, Data Reduction, we got to learn about data
reduction, which is a necessary step for many analytics projects, for many reasons. Lastly,
Chapter 14, Data Transformation and Massaging provided a learning opportunity about data
transformation, which can be thought of as the very last step of data preprocessing.

So, the four major data preprocessing steps that we learned during the course of this part
of the book are data cleaning, data integration, data reduction, and data transformation.
While we went about learning them in isolation in these six chapters, in real practice, you
will more often perform some of them at once.

Let me use an analogy to explain that better. Imagine we wanted to learn how to effectively
play soccer. In this scenario, we would have to know how to kick the ball, pass the ball,
control the ball, and so on; our coach would probably give us lessons and let us practice
each skill. However, when you are put to play in a real soccer game, you would not be
allowed to just show your competence in one skill but would have to be relatively good at
all skills to be considered a decent soccer player. Moreover, at some points during a game,
you might have to combine skills and perform them either at the same time or one after
the other in a split second.

The same is true regarding data preprocessing skills: data cleaning, data integration, data
reduction, and data transformation. We learned them first in isolation, but real learning
happens when you can perform them at the same time, in tandem, or in a smooth sequence.
The next part of the book, Part 4 - Case studies, provides just that learning opportunity.

Part 4 - Case studies

In this part of the book, including the current chapter, we have culminating experiences so
that we can see how the data preprocessing tools that we picked up in the previous parts of
the book are used in concert with each other.

Specifically, the first three chapters, Chapters 15 through 17, were three complete case studies
that showcased three real analytics examples that required significant data preprocessing. As
you experienced in these three chapters, the order in which we performed the preprocessing
steps was very different. Not only that—the steps were not done in complete isolation, and
some data preprocessing was performed at the same time too.

550 Summary, Practice Case Studies, and Conclusions

In this current chapter, which is the last chapter of Part 4 of the book, besides a book
summary and conclusion, you will also be provided with more culminating experiences
and learning opportunities. In the next subchapter, you will be introduced to 10 case
studies that can be used for more practice. As we discussed, learning each skill in isolation
is great but your data preprocessing will become more effective when they are performed
in tandem with one another.

Practice case studies

This subchapter introduces 10 practice case studies. Each case study introduces a dataset
and provides an analytics goal that can be achieved by preprocessing and analyzing the
dataset. While each case study comes with a few analytics questions (AQs), don't allow
them to close your mind to other possibilities. The suggested AQs are only meant to get
you started.

We will start with a very meaningful and valuable case study that can provide real value to
many levels of decision makers.

Google Covid-19 mobility dataset

Since the beginning of the recent COVID 19 pandemic, the United States (US) had
various responses to combat Covid-19, varying from state to state. Each state implemented
different health and safety precautions and followed different timeframes when shutting
down the state. Many factors contributed to each state's health regulations, such as the
number of Covid-19 cases, population density, and healthcare systems; however, most
states issued stay-at-home orders, asking citizens to stay in their houses.

To aid public health officials in combating the virus and learn whether techniques

such as social distancing were working, Google put forth a database called the Global
Mobility Report. The data was put together to give insights into how different regions

of the world were responding to the Covid-19 crisis. The report breaks down changes in
people's movements in parks, grocery stores, and pharmacies; retail and recreation; and
workplaces. For instance, the following screenshot portrays changes in people's behavior
in San Luis Obispo County, California from the baseline during September 12 to October
24, 2021, for each movement category:

Practice case studies 551

San Luis Obispo County

Retail & recreation

-7% compared to baseline

Grocery & pharmacy

-2% compared to baseline

Parks

-16% compared to baseline

+80% +80% +80%

+40% +40%

Baseline s s

+40%

Baseline WW

-40%

Baseline o~~~
-40% -40%

-80%
Sun, Sep 12

-80%
Sun, Sep 12

-80%

Sun, Oct 3 Sun, Oct 24 Sun, Oct 3 Sun, Oct 24 Sun, Sep 12 Sun, Oct 3 Sun, Oct 24

Transit stations Workplaces Residential

-42% compared to baseline -19% compared to baseline +3% compared to baseline

+80% +80% +80%
+40%

Baseline

40% A A~A N\

-80%
Sun, Sep 12

+40%
Baseline

NN NN NN
-40%

+40%
Baseline e —— —
-40%

-80%
Sun, Sep 12

-80%

Sun, Oct 3 Sun, Oct 24 Sun, Oct 3 Sun, Oct 24 Sun, Sep 12 Sun, Oct 3 Sun, Oct 24

Figure 18.1 — Sample from Global Mobility Report: San Luis Obispo County, California

This data was collected from the users of Google Maps by using aggregated, anonymized
data, and seeing how frequently people traveled around during the ongoing pandemic.
To ensure the privacy of all users of Google Maps, the company used an anonymization
technology called differential privacy. This technology adds artificial noise to datasets to
not allow the system to identify an individual.

The latest version of the dataset can be accessed at https://www.google.com/
covidl9/mobility/. We could define many analytics questions that can be answered
using this rich dataset; however, to get you started, please see the following two AQs:

« AQ1: Did people's behavior change after the government's stay-at-home order? This
can be answered at different levels: counties, state, country.

o AQ2: Was the degree of change to stay-at-home orders different state by state and
county by county?

The next practice case study is also going to be very meaningful for federal, state, and even
individual decision makers.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/

552 Summary, Practice Case Studies, and Conclusions

Police killings in the US

There are a lot of debates, discussions, dialogues, and protests happening in the US
surrounding police killings. In the past 5 years, The Washington Post has been collecting
the data of all fatal police shootings in the US. The dataset available to the government
and the public alike has data regarding age, gender, race, location, and other situational
information of these fatal police shootings. You can download the dataset from
https://github.com/washingtonpost/data-police-shootings.

Again, while the dataset has the potential to answer many valuable questions, the
following two AQs are provided to get you started:

o AQI: Would the suspect's race increase the chance of being fatally shot at?
o AQ2: Can wearing a body camera help decrease the number of fatal police

shootings?

The next case study will feature a dataset regarding automobile accidents in the US.

US accidents

Not all roads are the same; there is a much higher risk of weather conditions causing an
accident during winter in Chicago versus a summer in San Jose. Data analysis can shed
so much light on hazardous roads and weather conditions—for instance, in the following
screenshot, we can see that the frequency of accidents varies significantly across states.
However, we must pay attention to the fact that the population of the states might be
causing this variation more than the difference in driving habits and road conditions:

Frequency Distribution of US-Accidents (Dec 2020)
(Hover for breakdown)

Total Frequency
800k
600k
400k

200k

Figure 18.2 — Sample visualization from the US-Accidents dataset

https://github.com/washingtonpost/data-police-shootings

Practice case studies 553

Note

The preceding screenshot is sourced from https://smoosavi.org/
datasets/us_accidents.

You can download the dataset from the following link: https: //www.kaggle.com/
sobhanmoosavi/us-accidents. The following list provides two possible AQs that
can get you started:

« AQ1: Is there a discernable difference between the frequency of accidents per capita
across different states?

» AQ2: Does a specific type of road become more prone to a fatal accident in rainy
weather conditions?

The next case study will be another form of data analytics for the greater good; we will use
the power of data analytics to investigate crime patterns.

San Francisco crime

San Francisco experiences a somewhat higher crime rate than other parts of the US. On
average, 19 crimes happen per 100,000 people, and in a year, every person hasa 1 in 15
chance of being mugged. While these statistics are staggering, data analytics might be
able to help by showing crime patterns. These patterns can help decision makers to first
understand the cause of the much higher crime rate and then try to address them using
sustainable measures.

https://smoosavi.org/datasets/us_accidents
https://smoosavi.org/datasets/us_accidents
https://www.kaggle.com/sobhanmoosavi/us-accidents
https://www.kaggle.com/sobhanmoosavi/us-accidents

554 Summary, Practice Case Studies, and Conclusions

The following screenshot shows that data analytics is already being used in the San
Francisco Police Department. It is greatly encouraging to see that the tools you know are
being actively used and that you could be contributing to these efforts.

SAN FRANCISCO POLICE DEPARTMENT
Crime Data

Comparing a Date Range within One Year to Its Prior Year

Please select: All

District 1/1/2020 - 12/30/2020

o HUMAN

::r:‘w HOMICIDE RAPE ROBBERY ASSAULT TRAFFICKING - ?I;J/]A\/lliﬁz\é BURGLARY VEH"["C?EOT';EFT ARSON LAT'ECEEF"T‘V
Ingleside SEXACT

Mission 41,936
Northern 40,000
Park

Richmond
Southern

Taraval
Tenderloin
Courtesy Reports

30,000

20,000

Number Of Incidents

Type Of Crime) 7,537

[(anmy 2398 3093 2172 2,540

4,95
PARTlPROPERTYCR\MES 48 411 221 399 - - s . 24 51 1 . -
PART 1 VIOLENT CRIMES

1 6066 o,

-

Crime Selected Date Range Selected Date Range, Prior Year Year-to-Year % Decrease or Increase
Start Date (1/1/2017 onward)
11/2020 HOMICIDE 48 41 17.1%
RAPE 221 399 -44.6%
End Date ROBBERY 2,398 3,093 -22.5%
ASSAULT 2,172 2,540 14.5%
HUMAN TRAFFICKING - SEX ACT 24 51 -52.9%
I selected Date Range HUMAN TRAFFICKING - INV SERV 1 -100.0%
[selected Date Range, Prior Year BURGLARY 537 4051 500,
MOTOR VEHICLE THEFT 6,066 4,434 36.8%
Crime data updated weekly and ARSON 318 227 40.1%
valid through October 24, 2021 LARCENY THEFT 25,610 41,936 -38.9%
TOTAL 44,304 57,673 -23.0%

Figure 18.3 — San Francisco Police Department Crime dashboard

Note

The preceding screenshot is sourced from https: //www.
sanfranciscopolice.org/stay-safe/crime-data/crime-
dashboard.

You can access a rather large dataset that is ripe for data preprocessing practice via
https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset.
This dataset includes the records of crimes in San Francisco in 2016. The following two
AQs can get you started:

o AQI: Are there times of the day during which the frequency of assaults increases?
o AQ2: Are there locations in the city that see more theft?

In the last four case studies, we focused on the greater good by studying cases that can
benefit society. Let's shift gear and look at a case study that can empower an individual—
in this case, to become smarter in the data analytics job market.

https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset

Practice case studies 555

Data analytics job market

The job market for data analysts and data science has not yet taken a stable shape. There

is a wide range of variations experienced by people who try to find jobs in this market.
This dataset provides an opportunity to discover some of the patterns in the job market.
The dataset can be downloaded via https://www.kaggle.com/andrewmvd/data-
analyst-jobs. The following two AQs can get you started:

« AQ1: Does the location of the data analytics job influence the amount of
compensation?
« AQ2: Does the company rating influence the amount of compensation?

The next two practice case studies relate to sports analytics. I am glad you are already
excited.

FIFA 2018 player of the match

20 minutes after each international soccer game, the player of the match is recognized. For
instance, the following screenshot shows a YouTube video honoring Antoine Greizmann
who was recognized as the player of the match for the 2018 FIFA World Cup™ final after
helping his team to beat Croatia and become the 2018 FIFA World Cup champions:

R mocnser
&/ RUSSIA
}ﬁ ! 2018

4 "]

i

3 b

3 v %
. 1

. OF THE
~ MATCH

CI} 7. Antoine GRIEZMANN

Figure 18.4 - Player of the Match: 2018 FIFA World Cup™ final

https://www.kaggle.com/andrewmvd/data-analyst-jobs
https://www.kaggle.com/andrewmvd/data-analyst-jobs

556 Summary, Practice Case Studies, and Conclusions

Note

The preceding screenshot is sourced from https://youtu.be/-5k-
vggHO2T.

While knowing the player of the match is peripheral to the main soccer competition,
knowing who will be the winner beforehand can be of much value to gambling
professionals. This dataset contains the data of all of the games in FIFA 2018. You can
access the data via https://www.kaggle.com/mathan/fifa-2018-match-
statistics. The following two AQs can get you started to preprocess and analyze this
exciting dataset:

o AQ1I: Can the ball position predict the team from which the man of the match will
be selected?

« AQ2: Can a combination of the number of attempts and passing accuracy predict
the team from which the man of the match will be selected?

The next practice case study is going to relate to sports analytics too, but this time, the
sport is going to be basketball.

Hot hands in basketball

Basketball is a very exciting game in that the winning and losing teams may switch
places in a matter of seconds, and there is a lot of common sense and theories around
this captivating game. One of them is the Hot Hand theory, which is about a successful
sequence of three-point shots. As the theory goes, if a player has a hot hand, if they have
made some consecutive successful shots, they will continue to make more successful
shots. While behavioral economists have long rejected the Hot Hand theory, citing
representativeness heuristic bias, I bet it will be fun to let the data speak and see whether
the historical data supports the theory. I am more excited for you to do an analysis
using the dataset on this Kaggle page: https://www.kaggle.com/dansbecker/
nba-shot-1logs. The following two AQs can get you started on preprocessing and
analyzing this dataset:

« AQ1I: Does the historical data support the Hot Hand theory?

« AQ2: Does being against a "good" defender dampen the success rate of a
"good" shooter?

https://youtu.be/-5k-vgqHO2I
https://youtu.be/-5k-vgqHO2I
https://www.kaggle.com/mathan/fifa-2018-match-statistics
https://www.kaggle.com/mathan/fifa-2018-match-statistics
https://www.kaggle.com/dansbecker/nba-shot-logs
https://www.kaggle.com/dansbecker/nba-shot-logs

Practice case studies 557

After having some fun with sports analytics, let's turn our attention to more high-stakes
analysis. The next case study is going to have both environmental and societal analysis
value. We are going to analyze wildfires in California.

Wildfires in California

California saw two of its worst wildfire seasons in 2020 and 2021, and the ecological
predictions all point to the hypothesis that these are not just some outliers in the historical
data but are long-term shifts in trend. This dataset provides the opportunity for you to
analyze firsthand the pattern of California wildfires from 2013 to 2020. You can access
this dataset from the Kaggle web page: https://www.kaggle.com/ananthu017/
california-wildfire-incidents-20132020.

This dataset can both support data visualization and clustering analysis. An example
of data visualization is used by BLM California Wildfire Dashboard (Public), and the
following screenshot shows the dashboard information collected on October 28, 2021:

%7 BLM California Wildfire Dashboard (Public)

s designed t eal-time fire information and aggregate data.

Lo |

ONGOING INCIDENTS
2 185,861

Large Fires Total Acres
Current Large Fires*

Select to Zoom In / Deselect to Zoom Back
Out

A KN npl 69%
C ned

A Contained

>>#@@}}@}§'.‘

New Starts - Last 24 Hours
*Only Displays Fires over 100 Acres

Figure 18.5 - BLM California Wildfire Dashboard (Public)

Note

The preceding screenshot was sourced from
https://www.arcgis.com/apps/
dashboards/1c4565c092da44478befcl12722cf0486 on
October 28, 2021.

https://www.kaggle.com/ananthu017/california-wildfire-incidents-20132020
https://www.kaggle.com/ananthu017/california-wildfire-incidents-20132020
https://www.arcgis.com/apps/dashboards/1c4565c092da44478befc12722cf0486
https://www.arcgis.com/apps/dashboards/1c4565c092da44478befc12722cf0486

558 Summary, Practice Case Studies, and Conclusions

I highly suggest practicing data preprocessing for the purpose of clustering analysis on
this dataset first, and then turn your attention to more data visualization. The first AQ
listed here can only be answered using clustering analysis:

« AQI: Do the fires from 2013 to 2020 form meaningful clusters? What are their
patterns?

o AQ2: Are there more large fires in specific years?

We are going to see some more societally meaningful data analysis next. The following
case study is going to provide an opportunity to analyze the diversity profile of 23 top tech
companies in Silicon Valley.

Silicon Valley diversity profile

This Kaggle web page, https://www.kaggle.com/rtatman/silicon-valley-
diversity-data, has three datasets, and you want to focus on Reveal EEO1

for 2016.csv for this case study. Many meaningful AQs can be designed that this dataset
can help provide an answer to; however, the following two AQs are meant to get you started.

The first AQ listed here can only be answered using clustering analysis:

o AQI: Is there a relationship between the attribute gender and job category? In other
words, does the gender of an individual influence their job category?

» AQ2:Is there a noticeable difference between the Silicon Valley companies
concerning employee diversity profiles?

In the next case study, we are going to have an opportunity to practice our preprocessing
for prediction models.

Recognizing fake job posting

There is nothing worse than spending hours on a job application only to realize the job
posting is fake. In this practice case study, you will get to see whether prediction models
can help us weed out fake job postings. Furthermore, we can see which characteristics
tend to give away a fake posting.

The dataset that provides this learning opportunity is accessible on the Kaggle web page
athttps://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-
prediction. This dataset supports many possible AQs; however, the following will get
you started:

« AQ1: Can Decision Tree meaningfully predict fake postings?
o AQ2: What are the characteristics that fake posts share?

https://www.kaggle.com/rtatman/silicon-valley-diversity-data
https://www.kaggle.com/rtatman/silicon-valley-diversity-data
https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction
https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction

Conclusions 559

The 10 listed practice case studies in this chapter of the book are excellent sources to
continue learning; however, there are more potential learning opportunities out on the
internet that you can find on your own. Before ending this subchapter, we will go over
a list of possible resources that you may use to hunt for more datasets.

Hunting more practice case studies

The following two resources are excellent for finding datasets to practice your newly
acquired data preprocessing and analytics skills.

Kaggle.com

This website is the best resource for finding more case study projects. Throughout this
book, you may have noticed that most of the datasets we used were sourced from this
website. The Kaggle website has done a great job of creating a community of developers
with different skill levels who have come together to share knowledge and datasets.

I highly encourage you to join this community to find more learning and practice
resources.

The next resource is not as vibrant a community as Kaggle; however, it is the oldest most
well-known machine learning (ML) dataset repository.

University of California Irvine Machine Learning Repository

Very well known by the term UCI ML Repository, this repository has been collecting
datasets for research purposes since 1987. A great feature of this repository is that you can
see datasets based on the analytics goals; all the datasets are filterable by four associated
tasks: classification, regression (prediction), clustering, and others. You can access this
repository at https://archive.ics.uci.edu/ml/index.php.

In this subchapter, you were introduced to 10 possible case studies and 2 sources that have
many more possible practice case studies. The next subchapter offers some conclusions to
this chapter and the whole book.

Conclusions

Allow me to start concluding this book by congratulating you on having gone through
this journey of learning about data analytics and data preprocessing. I am confident that
your learning about data analytics and data preprocessing does not end here, and you are
already planning to learn more useful tools and pick up valuable skills. So, how about

we conclude this book by examining a few routes for learning and improvement?

https://archive.ics.uci.edu/ml/index.php

560 Summary, Practice Case Studies, and Conclusions

My first suggestion would be to cover your base and take advantage of all of the learning
resources that this book has to offer so that you can deepen your learning and bring

your skill level closer to second nature. The end of most chapters provides exercises for
exactly this purpose. Furthermore, the three case studies in Chapters 15 through 17 can be
expanded upon and improved; doing that would be a great way to improve your learning.
Lastly, this current chapter provided many starting points and case studies to practice the
skills you've picked up during your journey in this book and make them second nature.

Besides solidifying what you learned in this book, there are a few distinct learning routes
you may consider. For organization, I call these routes data visualization and storytelling,
algorithms, technology, and mathematics. Let's go over these routes one by one.

Chapter 5, Data Visualization, provided a brief but fundamental understanding of data
visualization. The material was provided to support our learning for data preprocessing.
There is much more to learn about data visualization as far as techniques and technology
go, but also from the perspective of storytelling. You might be good at the technical
aspect of coming up with visualization, but this visualization must be prescribed before
you can create it. In other words, if you are the one deciding what kind of visualization
is needed to convince an audience, you might not be the best person to go to. If that's
the case, I'd highly recommend that you consider reading Storytelling with Data: A Data
Visualization Guide for Business Professionals, by Cole Nussbaumer Knaflic, and Effective
Data Visualization: The Right Chart for the Right Data, by Stephanie Evergreen. Not only
do these books help to kindle your curiosity and creativity regarding data visualization,
but they will also guide you through the actual storytelling part that is bound to come
with effective data visualization.

In this book, we only scratched the surface of algorithmic analytics. In Chapters 6 through
8, we briefly learned about some classification, prediction, and clustering algorithms.

Not only are there more algorithms for each of the three mentioned data analytics tasks,
but there are also more analytics tasks that need an algorithmic approach for effective
solutions. You may want to invest in these to deepen your learning and pick up more skills
in this area, and if you become proficient with all these algorithms, you'd become a highly
attractive hire for ML engineer roles.

Conclusions 561

While this route of learning sounds very promising, I would like to offer a few notes

of caution. First, for this route, you want to have good programming skills or at least
enjoy programming; I am not talking about the type of programming we did during this
book. In this book, we only learned enough programming to use modules and functions
created by real programmers. I mean that you need enough programming skills so that
you would be able to create those modules and functions. My second note of caution
regards the future of algorithmic analytics. I surmise that out of all the four routes of
learning that I am discussing here, this route is the one that is the most automatable. That
means in the near future, the cost of hiring an ML engineer to develop an algorithmic
solution becomes higher than subscribing to Artificial Intelligence as a Service (AIaaS)
or Machine Learning as a Service (MLaa$S) solutions provided by tech giants such as
Amazon (Amazon Web Services (AWS)), Microsoft (Azure), and Google (Google Cloud
Platform (GCP)). Unless you are the best of the best in these areas and hirable by these
companies, you might end up needing to reskill.

Next, let's talk about the technology route of learning and improvement. For better or
worse, many organizations and companies think of effective data analytics as visualization
dashboards that are effectively connected to their relevant databases. For these
organizations, the skill in drafting effective queries that pull the appropriate data from the
databases that create and enliven the graphics on the dashboard is what they will look for
in their analytics professionals. This is the simple reality of the data analytics job market:
companies are not looking for hires that have more technical and conceptual knowledge,
but they are looking to hire people who can work most effectively with the technologies
that they have already adopted. Granted—being able to work with those technologies
requires its own specific knowledge and skillset, but they may be rather different.

If today's most adopted technology that allows survival and competitiveness is databases,
in the near future, it is my humble prediction that most companies will take the next
technological leap and adopt cloud computing. This exciting trend in technological
improvement is a world in itself. Not only has it streamlined and improved database
technologies and the current mass technological adoption, but it also has a lot more to
offer, including Platform as Service (PaaS), Supply Chain as Service (SCaaS), MLaaS,
Alaa$ technologies, and more.

While cloud computing platforms such as Amazon's AWS, Microsoft's Azure, and
Google's GCP will provide all these solutions under various payment schemes, these
services will have many variations that are designed for different needs and companies.
Knowing these variations and being able to select the correct one for a company can save
a meaningful amount of money for companies. Not only that—to be able to adopt AlaaS
solutions such as natural language translators, the solution needs to be appropriately
linked to the databases of the companies. Being able to effectively put together these pieces
of technologies and cater them to the needs of a company will be a very valuable skill.

562 Summary, Practice Case Studies, and Conclusions

We are already seeing pioneer companies having developed roles such as development-
operations (DevOps) engineer, cloud engineer, and cloud architect whose responsibilities
are to recognize and adapt different pieces of cloud technology and streamline them for
their needs. It is my humble prediction that for a good while, we will see a rise in the
demand for these roles, while we will see a decline in demand for roles that were meant

to develop analytics, AI, and ML solutions from scratch, such as data scientists and ML
engineers. This trend will continue until the cloud computing adoption rate becomes high
enough that companies cannot remain competitive and survive just by being able to use
this technology, and they will need to adopt the new hot one. So, right now, it lays before
us as a golden opportunity to break into a high-paying future tech role. Granted—you
would still need to understand the business, computer programing, data preprocessing,
and algorithmic data analytics to some extent, but in these roles, you would most
contribute by knowing the ins and outs of the solutions that cloud computing has to offer.

Last but not least, let's talk about the learning route of mathematics. Toward the end of this
book—specifically, in Chapter 13, Data Reduction, and Chapter 14, Data Transformation
and Massaging—we started to talk about functional data Analysis (FDA). As you
experienced during these two chapters, FDA can be a very powerful analytics and
preprocessing tool if you have a solid mathematical understanding of various functions.
Improving your understanding of various mathematical functions can give you an
untouchable edge when it comes to the effectiveness of data preprocessing. After all, if
other analysts don't know the mathematical function that can capture the most important
information in the data, they are reduced to using a noisy dataset whose patterns are not
brought to the surface and hope the algorithm will be able to pick up on them.

All of the four learning routes that I have provided here could be the right one for you,
and the correct decision as to which one hinges on your personality and the types of daily
activities you would enjoy doing. If you are more interested in inspiring people and would
like to be more effective at persuading people, data visualization and storytelling may be
the right route for you. If you enjoy computer programming and take pleasure from the
thrill of zoning out into the third or fourth nested loop, the algorithms route might be it.
If you enjoy being up to date with technology and enjoy debating what will happen if

a new piece of technology is adopted, the technology route could be for you. Lastly, if you
are good at math and can envision functions in your mind, and are fast at simulating data
with various functions, the FDA route could help you in your tech career.

Lastly, I would like to say that I hope you learned many things of value in this book.
I enjoyed the journey of writing this book, and I hope you enjoyed it as much as I did.
Happy learning, everyone!

Symbols

.unstack() function 40, 41

A

adjusted R2 (Adj. R-squared) 402
aggregation 473, 479-481
aggregation mismatch 345-349
analytics standpoint

about 81

attribute types 85

binary attribute 85

interval-scaled attribute 83, 84

nominal attribute 82

ordinal attribute 82, 83

ratio-scaled attribute 85
anonymization technology 551
API connection

about 110

data, accessing 111

data, restructuring 112, 114

data, using 111

used, for connecting data 110, 111

used, for pulling data 110, 111
Apple stock prices 57
artificial intelligence 75

Index

artificial neural network (ANN) 406
artist_df
songlntegrate_df, filling 369-373
assigned indices 17
asymmetric binary attribute 85
attribute construction 461
attributes
relationship, investigating 134
removing, with missing values 281
augmented arithmetic assignment 370

backpropagation 172
bar chart 54, 122
billboard_df

songlntegrate_df, filling 363, 365
binary attribute

about 85

extracting, from Email attribute 466
binary attribute, types

asymmetric binary attribute 85

symmetric binary attribute 85
binary coding

about 448, 449

of nominal attribute 450-454

of ordinal attribute 454, 455

564 Index

binning 473
bivariate outlier detection
about 292, 296
to two attributes 299, 300
to two categorical attributes 298
to two numerical attributes 296, 297
bivariate outliers
dealing with 312-315, 321
detecting 312-315, 321
Blockchain 106
Body Mass Index (BMI) 461
Boolean mask (BM)
about 349, 374
for filtering DataFrame 25, 26
Boolean masking
about 24, 205
analytic example 27
for filtering DataFrame 24
boxplot
about 54, 122
used, for comparing data object
population 126, 127
used, for summarizing numerical
attributes 54, 56
brute-force computational
dimension reduction
about 406
independent attributes, finding for
classification algorithm 406-409

C

categorical attributes
contingency table, using to
investigate relationships between
binary attributes 137-139

contingency table, using to
investigate relationships between
non-binary attributes 139, 140
relationship between, visualizing 137
summarizing example 124, 125
versus numeric attributes 140-144
centroid analysis
about 204
performing 204-206
using, for profiling clusters 204
chi-square test of independence 270
classification 160, 178
classification algorithms
about 178,179
Decision Trees 185
K-nearest neighbors (KNN) 180
classification models
about 178
example, of designing 178, 179
clustering analysis
about 191
used, for detecting multivariate
outlier to attributes 300-302
clustering model
about 192
example, with three-dimensional
dataset 195-197
example, with two-dimensional
dataset 192-195
collinearity 345
column
unpacking 228, 229
comma-separated values (CSV) 293
connections 171
Content column
unpacking 233, 234
contingency table 137
correlation analysis 540

Index 565

correlation coefficient 90
COVID-19
data analysis 526-529
data source 517, 518
healthcare systems 516, 517

D

data
about 72,73
analyzing, via computer programming 6
connecting, to database 107
defining 73
pulling, from database 107
trends, observing with line plot 56, 57
data analysis
about 376, 504
AttitudeScore attribute,
constructing 512-514
data transformation,
performing 509-512
mental health of employees, versus
Age attribute 507, 509
mental health of employees, versus
attribute of gender 504, 506
data analytics
goals 548
purpose 213
tools 213
data attributes 81
database
about 100
data, connecting to 107
data, pulling from 107
versus dataset 101
database, connecting methods
API connection 110
direct connection 107

publicly shared 114
request connection 114
SQL learning 108, 109
web page connection 109
database elements
about 102
authority 104
level of data structure 103, 104
storage location 104
database, types
about 102
Blockchain 107
distributed databases 106
relational databases 105
unstructured databases 105
data cleaning
about 444, 494-498
example 467
missing values, dealing with 502, 503
missing values, detecting with 502, 503
outliers and errors, dealing
with 499, 500, 501
outliers and errors, detecting
with 499, 500
data cleaning level I
about 216
long column titles 222, 223
reindexing 220, 221
unwise data collection 216-219
data cleaning, levels
about 214
purposes and tools of analytics,
mapping to 215
table, cleaning up 214
table, reformulating 214
table, restructuring 214
values, correcting 214
values, evaluating 214

566 Index

data collection 349-354
Data Dataset Pattern Action (DDPA)
about 75
elements 75
transactional steps 75
Data Dataset Visualization and
Wisdom (DDVW)
about 76
elements 77
DataFrame
about 13

filtering, with Boolean masking 24-26
used, for exploring pandas function 28

DataFrame, dataset structure
about 28
.columns property 28, 29
.info() function 29
.shape property 28
DataFrame, dataset values
about 29
.describe() function 30
numerical columns, visualizing
with barcharts 32, 33
numerical columns, visualizing
with boxplots 30
numerical columns, visualizing
with histograms 30
.unique() function 31
.value_counts() function 32
data fusion
about 336
example 338,339
versus data integration 337
data fusion, challenges
about 340
aggregation mismatch 343
data collection 341
data objects, duplicating 344

data redundancy 344, 345
entity identification 341
index mismatched formatting 341
Data, Information, Knowledge,
and Wisdom (DIKW) 74
data integration
about 336, 444, 494
example 337
structure, designing 361, 362
versus data fusion 337
data integration, challenges
about 340
aggregation mismatch 343
data collection 341
data objects, duplicating 344
data redundancy 344, 345
entity identification 341
index mismatched formatting 341
data integration, directions
about 339
example, by adding attributes 340
example, by adding data objects 340
data massaging
about 444
versus data transformation 445, 446
data object population
comparing 125
comparing, with boxplot 126, 127
comparing, with histogram 127-129
summarizing 122
data object population, with bar chart
comparing example 129
fifth way of problem solving 133
first way of problem solving 130
fourth way of problem solving 132
second way of problem solving 130
sixth way of problem solving 134
third way of problem solving 131, 132

Index 567

data objects
about 79
defining 80
duplicating 355
removing, with missing values 281
removing, with outliers 304
data preprocessing
about 518,519, 549
case studies 549
characteristics 518
dataset, designing 519, 520
placeholder dataset, filling up 521-523
supervised dimension
reduction 523-525
technologies 548
Three Vs of big data 78, 79
data preprocessing for data analytics
versus data preprocessing for
machine learning 77
data preprocessing for machine learning
versus data preprocessing
for data analytics 77
data reduction
about 444
example 468
objectives 385
types 385, 386
versus data redundancy 384
data redundancy
about 89, 355
checking 373
checking, between numerical and
categorical attributes 374, 375
checking, in numerical
attributes 373, 374
correlation coeflicient, using 90
versus data reduction 384

dataset

about 101

case studies 550-559

versus database 101
dataset, changes

correctness 444

effectiveness 445

necessity 444
dataset, characteristics

data cleaning 444

data integration 444
data source

integrating 495-497
data transformation

about 444

versus data massaging 445, 446
data values, types

about 81

analytics standpoint 81

programming standpoint 86
data visualization approach

for finding patterns 376, 377
decision tree

about 179, 185, 523

for classification, example 186-188

using, as dimensionality data

reduction methods 403

decision tree algorithm 287, 290, 344
decision tree approach

for finding multivariate

patterns 377-379

decision tree regression 163
default indices 17
dependent attribute 162
differential privacy 551
DIKW pyramid

about 74

elements 74

568 Index

for data analytics 76, 77
for machine learning and AI 75, 76
dimensionality data reduction
performing 397
types 385
dimensionality data reduction, methods
brute-force computational
dimension reduction 386, 406
decision tree 386
decision tree, using 403
functional data analysis (FDA) 386, 420
linear regression 386, 398-403
principal component analysis
(PCA) 386, 409
random forest 386
random forest, using 404, 405
direct connection 107
discretization
about 448, 449
numerical attributes, with
cut-off points 460
of numerical attributes 456-458
types 458, 459
distributed databases 106
do nothing approach 303, 304
dots per inch (DPI) 67
duplicate data objects
checking 355
checking, in artist_df 359, 360
checking, in billboard_df 355, 356
checking, in songAttributes_df 357, 358

E

Email attribute

used, for extracting binary attribute 466
entity identification 355
epoch of learning 172

errors
about 323, 324
dealing with 325
types 324

Exponential function 429, 430

F

FDA approach
key points 428
feature extraction
about 464
example 467, 468
FileName column
unpacking 229-233
Finnhub Stock API
reference link 110
five-dimensional scatter plot
example 145-149
fifth dimension 151-153
fourth dimension 149, 150
fliers 294
forecasting
about 160
example 161, 162
Fourier function 431, 432
functional data analysis (FDA)
about 409, 419, 420, 474, 520, 536
overview 436, 437
parametric dimension reduction,
example 421-427
prominent functions 428
functional smoothing 474-476

G

Gaussian function 433-436
Global Mobility Report 550

Index 569

Gross Domestic Product (GDP) 469 K
H K-Means
about 197
higher-level conventions and applying 198, 322, 323
understandings (HLCUs) 72 flowchart 198
histogram using, for clustering
about 54,122 multi-dimensional dataset 203, 204
used, for comparing data object using, for clustering two-dimensional
population 127-129 dataset 199-203
used, for summarizing numerical K-Nearest Neighbors (KNN)
attributes 54, 56 about 179, 180, 280, 406, 446

for classification, example 180-185

L

imbalanced dataset 396

implicit line continuation 370 lambda function 35
independent attribute 163 level I data cleaning 242-244
index mismatched formatting 345-355 level II data cleaning
information about 242-246
defining 87 predict_df.DA 247
versus pattern 86 predict_df.IA1 247,248
information, statistical use predict_dfIA2 248-250
about 87 predict_df.IA3 251, 252
data redundancy 89 linear regression (LR)
for categorical attributes 88 about 163, 164, 242, 523
for numerical attributes 88 applying 317
interpolation 282 applying, to perform regression
interval-scaled attribute 83, 84 analysis 165-168
using, as dimensionality data
J reduction methods 398-403
using, to create predictive
Jupyter Notebook model 252,253
about 4, 67, 123 line plot
overview 4, 5 about 54

used, for observing trends in data 56, 57
list comprehension 415

570 Index

log transformation ticks, modifying 61-63
about 468, 470 title, adding to axis 60
implementing 470, 471 mental health disorders
performing 304 case study 492
working module 472 data analysis 492-494
long form 45 data source 494
missing at random (MAR) 263, 264
M missing completely at random
(MCAR) 263, 264
machine learning (ML) 75 missing not at random (MNAR) 263, 264
machine learning (ML) repository 559 missing values
main plots about 258,259
drawing, in Matplotlib 54 approaches 279
MATLAB 213 causes 262
Matplotilb data assist preprocessing dealing with 279, 280, 309
example 67, 68 detecting 259
Matplotlib detecting, example 260-262
main plots, drawing 54 diagnosing 264
numerical attributes, summarizing diagnosing, in NO2_Location_A 264
with boxplot 54, 56 diagnosing, in NO2_
numerical attributes, summarizing Location_B 274-277
with histogram 54, 56 diagnosing, in
trends, observing in data NO2_Location_C 277-279
with line plot 56, 57 goals 289
two numerical attributes, relating in Age attribute 504
with scatterplot 58 in attributes, from SupportQ1
Matplotlib, marker color to AttitudeQ3 503
reference link 65 in Mental Illness attribute 503
Matplotlib, marker shapes types 263
reference link 65 missing values, approaches
Matplotlib visuals attributes, removing 281
labels, adding to axis 60 data objects, removing 281
legends, adding 60, 61 estimation methods 282
markers, modifying 64, 65 example 284-292
modifying 58 imputing 282
resizing 67 keep as is approach 280, 281

saving 67 selecting 282

Index 571

missing values, diagnosing
in NO2_Location_A
about 264
based on categorical attributes 272, 273
based on numerical attributes 267-269
based on Temperature 265-267
based on weekday 269-272
Mississippi State University (MSU) 161
MLP's random initialization 172
morphological feature extraction 465, 466
moving average (MA) 161
multilayer perceptron (MLP)
about 170, 179, 318, 444, 526
applying, to perform regression
analysis 172,173
connections 171
epochs of learning 174
hidden layer 170
input layer 170
neuron 170
output layer 170
prediction 174
working 171
multi-level indexing 40, 220
multivariate outlier detection
about 292, 300
example, with clustering
analysis 300-302
multivariate outliers
dealing with 315, 316, 321
detecting 315, 316, 321

N

nominal attribute 82
non-parametric method 468
normalization 88, 446-448

NoSQL databases 105
Not a Number (NaN) 258
np.arange() function 8,9
np.linspace() function
about 12
used, for creating solution
candidates 12, 13
null hypothesis 271
numerical attributes
relating, with scatterplot 58
relationship between, visualizing 135
scatter plot, using to investigate
relationships between 135, 136
summarizing example 122-124
summarizing, with boxplot 54, 56
summarizing, with histogram 54, 56
transforming, into categorical ones 460
versus categorical attributes 140-144
numerosity data reduction
performing 387
types 385
numerosity data reduction, methods
random over/under sampling
386, 394-397
random sampling 386, 387
stratified sampling 386, 392, 393
NumPy 6
NumPy functions
np.arange() function 8,9
np.linspace() function 12
np.ones() function 9
np.zeros() function 9
overview 6-8
placeholder, using to
accommodate analytics 10

572 Index

o)

Open Sourcing Mental Illness (OSMI)
URL 491
ordinal attribute 82, 83
outlier detection
bivariate 296
multivariate 300
time-series data 302
univariate 292
outliers
about 292
approaches 302
detecting 292
example 325-329
perspectives 292
outliers, approaches
data objects, removing 304
do nothing 303, 304
example 305-308, 318, 319
log transformation, performing 304
selecting 305
upper and lower caps,
replacing with 304

P

pandas
about 13-16
overview 13
pandas data access 16
pandas DataFrame access
about 16
columns 18
rows 17
values 19

pandas function
analytic example 34-37
applying 33
applying, to DataFrame 35, 36
applying, to series 34
for exploring DataFrame 28
lambda function, applying 35
pandas Groupby function
about 37, 39
analytic example 39
pandas melt function 45-47
pandas multi-level indexing
about 40
multi-level access 45
.stack() function 43
.unstack() function 40-43
pandas pivot function 45-47
pandas series access 20
parametric method 468
pattern
defining 90
employing 91
finding 91
seaborn module, installing 92, 93
versus information 86
PCA approach
key points 428
prediction 160
predictive model
about 160

creating, with linear regression 252, 253

regression analysis 162
predictor attribute 162
principal component analysis (PCA)
about 409, 543
non-parametric dimension
reduction, example 413-420
toy dataset, example 409-413

Index 573

principal components (PCs) 412, 543

programming standpoint 86

prominent functions, for FDA
about 428
exponential function 430
Exponential function 429, 430
Fourier function 431, 432
Gaussian function 433-436
Sinusoidal function 432, 433

proportional random sampling 392

publicly shared 114

p-value 267,271

R

random errors 324
random forest

about 179, 523

using, as dimensionality data

reduction methods 404, 405

random over/under sampling 394-397
random sampling

about 387

to speed up tuning 387-391
ranking transformation

about 142, 448, 449

of ordinal attributes 454, 455
ratio-scaled attribute 85
regression analysis

about 160, 162, 282

example 163, 164

performing, by applying linear

regression 165-168

performing, to apply MLP 172,173
relational databases 105
request connection 114
rolling data smoothing 476-479

S

scatter matrix 135, 540
scatter plot
about 54, 135
used, for relating two numerical
attributes 58
seaborn module
about 92
installing 92, 93
series 15
Sex Assigned At Birth (SAAB) 85
simple exponential smoothing 479
simple linear regression 92
simple moving average (SMA) 160
Sinusoidal function 432, 433
slicing
about 20
example 23,24
slicing NumPy array 21
slicing pandas DataFrame 22
smoothing 473, 474
smoothing, types
functional smoothing 474-476
rolling data smoothing 476-479
songAttribute_df
songlntegrate_df, filling 365-369
songIntegrate_df
filling, from artist_df 369-373
filling, from billboard_df 363, 365

filling, from songAttribute_df 365-369

summary example 379
SQL learning 108, 109
SQL Server Management
Studio (SSMS) 108
stacked bar chart 134
standard deviation (STD) 7, 447
standardization 414, 446-448

574 Index

stratified sampling

about 392

for imbalanced dataset 393, 394
structured databases

about 105

versus unstructured databases 105, 106
Structured Query Language (SQL) 107
subplot

drawing 65, 66
supervised dimensionality

data reduction 398

supervised dimension reduction 523
supervised learning 191
Support Vector Machine (SVM) 179
symmetric binary attribute 85
systematic errors

about 324

detecting 325

example 325-329

steps, in dealing with 325, 327

T

table
reformulating 228, 229
reformulating, for visualization 235-237
restructuring 239-242
table data structure
about 79
data attributes 81
data objects 79
target attribute 162
Three Vs of big data
about 78
for data preprocessing 78, 79
time series data 153
time-series outlier detection 302

trained regression equation

using, for prediction 168, 169
transformed attribute

constructing, by combining

two attributes 461-463

trends

about 153

comparing 153

displaying 153

example 153-155

observing, in data with line plot 56, 57
True Signa 324
two-sample t-test 267

U

Unified Modeling Language (UML) 108
United States Counties Clustering
Analysis, case study
about 532,533
data, analyzing 543
data cleaning 540
data integration 539
data preprocessing 534, 535
data redundancy, checking 540-542
data sources 533, 534
edu_df, cleaning 539
election_df, transforming
to partisan_df 536
employ_df, cleaning 539
FDA, to calculate mean and slope
of partisanism 537, 538
K-Means clustering analysis 544, 545
partisanism attribute, constructing 536
PCA, using to visualize dataset 543
pov_df, cleaning 539

Index 575

univariate outlier detection

about 292, 293

to one categorical attribute 296

to one numerical attribute 294, 295
univariate outliers

dealing with 310-312, 320, 321

detecting 310-312, 320, 321
unstructured databases

about 105

versus structured databases 105, 106
unsupervised dimensionality

data reduction 398

unsupervised learning 191
upper and lower cap approach

replacing with, outliers 304
User Interface (UI) 4, 108

\"

variance (var) 7
variety 78
velocity 78
visual dimensions
adding 145
visualization
drawing 238
volume 78

W

web page connection 109
wide form 45
Working SeRies (wsr) 355

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

+ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

 Improve your learning with Skill Plans built especially for you
+ Geta free eBook or video every month
« Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

578 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

‘Aimézon SageMaker

A guide to building, training, and deploying machine
learning models for developers and data scientists

Learn Amazon SageMaker - Second Edition

Julien Simon

ISBN: 978-1-80181-795-0
o Become well-versed with data annotation and preparation techniques
o Use AutoML features to build and train machine learning models with AutoPilot
o Create models using built-in algorithms and frameworks and your own code

o Train computer vision and natural language processing (NLP) models using
real-world examples

« Cover training techniques for scaling, model optimization, model debugging, and
cost optimization

« Automate deployment tasks in a variety of configurations using SDK and several
automation tools

https://www.packtpub.com/product/learn-amazon-sagemaker-second-edition/9781801817950

Other Books You May Enjoy 579

ANTHONY SO | THOMAS V. JOSEPH
ROBERT THAS JOHN | ANDREW WORSLEY
DR. SAMUEL ASARE

THE

DATA
SCIENGE

WORKSHOP

SECOND EDITION

LEARN HOW YOU CAN BUILD MACHINE LEARNING MODELS AND
CREATE YOUR OWN REAL-WORLD DATA SCIENCE PROJECTS

Packt>

DATA SCIENCE & ARTIFICIAL INTELLIGENCE

The Data Science Workshop - Second Edition

Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

ISBN: 978-1-80056-692-7

« Explore the key differences between supervised learning and unsupervised learning

« Manipulate and analyze data using scikit-learn and pandas libraries

» Understand key concepts such as regression, classification, and clustering

« Discover advanced techniques to improve the accuracy of your model

« Understand how to speed up the process of adding new features

« Simplify your machine learning workflow for production

https://www.packtpub.com/product/the-data-science-workshop-second-edition/9781800566927

580

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Hands-On Data Preprocessing in Python, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07213-2
https://packt.link/r/1-801-07213-2

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
Technical Needs
	Chapter 1: Review of the
Core Modules of NumPy and Pandas
	Technical requirements
	Overview of the Jupyter Notebook
	Are we analyzing data via computer programming?
	Overview of the basic functions of NumPy
	The np.arange() function
	The np.zeros() and np.ones() functions
	The np.linspace() function

	Overview of Pandas
	Pandas data access
	Boolean masking for filtering a DataFrame
	Pandas functions for exploring a DataFrame
	Pandas applying a function
	The Pandas groupby function
	Pandas multi-level indexing
	Pandas pivot and melt functions

	Summary
	Exercises

	Chapter 2: Review of
Another Core Module – Matplotlib
	Technical requirements
	Drawing the main plots in Matplotlib
	Summarizing numerical attributes using histograms
or boxplots
	Observing trends in the data using a line plot
	Relating two numerical attributes using a scatterplot

	Modifying the visuals
	Adding a title to visuals and labels to the axis
	Adding legends
	Modifying ticks
	Modifying markers

	Subplots
	Resizing visuals and saving them
	Resizing
	Saving

	Example of Matplotilb assisting data preprocessing
	Summary
	Exercises

	Chapter 3: Data – What Is It Really?
	Technical requirements
	What is data?
	Why this definition?
	DIKW pyramid
	Data preprocessing for data analytics versus data preprocessing for machine learning

	The most universal data structure – a table
	Data objects
	Data attributes

	Types of data values
	Analytics standpoint
	Programming standpoint

	Information versus pattern
	Understanding everyday use of the word "information"
	Statistical use of the word "information"
	Statistical meaning of the word "pattern"

	Summary
	Exercises
	References

	Chapter 4: Databases
	Technical requirements
	What is a database?
	Understanding the difference between a database and a dataset

	Types of databases
	The differentiating elements of databases
	Relational databases (SQL databases)
	Unstructured databases (NoSQL databases)
	A practical example that requires a combination of both structured and unstructured databases
	Distributed databases
	Blockchain

	Connecting to, and pulling data from, databases
	Direct connection
	Web page connection
	API connection
	Request connection
	Publicly shared

	Summary
	Exercises

	Part 2:
Analytic Goals
	Chapter 5: Data Visualization
	Technical requirements
	Summarizing a population
	Example of summarizing numerical attributes
	Example of summarizing categorical attributes

	Comparing populations
	Example of comparing populations using boxplots
	Example of comparing populations using histograms
	Example of comparing populations using bar charts

	Investigating the relationship between two attributes
	Visualizing the relationship between two numerical attributes
	Visualizing the relationship between two categorical attributes
	Visualizing the relationship between a numerical attribute and a categorical attribute

	Adding visual dimensions
	Example of a five-dimensional scatter plot

	Showing and comparing trends
	Example of visualizing and comparing trends

	Summary
	Exercise

	Chapter 6: Prediction
	Technical requirements
	Predictive models
	Forecasting
	Regression analysis

	Linear regression
	Example of applying linear regression to perform regression analysis

	MLP
	How does MLP work?
	Example of applying MLP to perform regression analysis

	Summary
	Exercises

	Chapter 7: Classification
	Technical requirements
	Classification models
	Example of designing a classification model
	Classification algorithms

	KNN
	Example of using KNN for classification

	Decision Trees
	Example of using Decision Trees for classification

	Summary
	Exercises

	Chapter 8: Clustering Analysis
	Technical requirements
	Clustering model
	Clustering example using a two-dimensional dataset
	Clustering example using a three-dimensional dataset

	K-Means algorithm
	Using K-Means to cluster a two-dimensional dataset
	Using K-Means to cluster a dataset with more than two dimensions
	Centroid analysis

	Summary
	Exercises

	Part 3:
The Preprocessing
	Chapter 9: Data Cleaning
Level I – Cleaning
Up the Table
	Technical requirements
	The levels, tools, and purposes of data cleaning – a roadmap to chapters 9, 10, and 11
	Purpose of data analytics
	Tools for data analytics
	Levels of data cleaning
	Mapping the purposes and tools of analytics to the levels of data cleaning

	Data cleaning level I – cleaning up the table
	Example 1 – unwise data collection
	Example 2 – reindexing (multi-level indexing)
	Example 3 – intuitive but long column titles

	Summary
	Exercises

	Chapter 10: Data Cleaning
Level II – Unpacking, Restructuring,
and Reformulating the Table
	Technical requirements
	Example 1 – unpacking columns and reformulating the table
	Unpacking FileName
	Unpacking Content
	Reformulating a new table for visualization
	The last step – drawing the visualization

	Example 2 – restructuring the table
	Example 3 – level I and II data cleaning
	Level I cleaning
	Level II cleaning
	Doing the analytics – using linear regression to create a predictive model

	Summary
	Exercises

	Chapter 11: Data Cleaning Level III – Missing Values, Outliers, and Errors
	Technical requirements
	Missing values
	Detecting missing values
	Example of detecting missing values
	Causes of missing values
	Types of missing values
	Diagnosis of missing values
	Dealing with missing values

	Outliers
	Detecting outliers
	Dealing with outliers

	Errors
	Types of errors
	Dealing with errors
	Detecting systematic errors

	Summary
	Exercises

	Chapter 11: Data Fusion and Data Integration
	Technical requirements
	What are data fusion and data integration?
	Data fusion versus data integration
	Directions of data integration

	Frequent challenges regarding data fusion and integration
	Challenge 1 – entity identification
	Challenge 2 – unwise data collection
	Challenge 3 – index mismatched formatting
	Challenge 4 – aggregation mismatch
	Challenge 5 – duplicate data objects
	Challenge 6 – data redundancy

	Example 1 (challenges 3 and 4)
	Example 2 (challenges 2 and 3)
	Example 3 (challenges 1, 3, 5, and 6)
	Checking for duplicate data objects
	Designing the structure for the result of data integration
	Filling songIntegrate_df from billboard_df
	Filling songIntegrate_df from songAttribute_df
	Filling songIntegrate_df from artist_df
	Checking for data redundancy
	The analysis
	Example summary

	Summary
	Exercise

	Chapter 13: Data Reduction
	Technical requirements
	The distinction between data reduction and data redundancy
	The objectives of data reduction

	Types of data reduction
	Performing numerosity data reduction
	Random sampling
	Stratified sampling
	Random over/undersampling

	Performing dimensionality data reduction
	Linear regression as a dimension reduction method
	Using a decision tree as a dimension reduction method
	Using random forest as a dimension reduction method
	Brute-force computational dimension reduction
	PCA
	Functional data analysis

	Summary
	Exercises

	Chapter 14: Data Transformation and Massaging
	Technical requirements
	The whys of data transformation and massaging
	Data transformation versus data massaging

	Normalization and standardization
	Binary coding, ranking transformation, and discretization
	Example one – binary coding of nominal attribute
	Example two – binary coding or ranking transformation of ordinal attributes
	Example three – discretization of numerical attributes
	Understanding the types of discretization
	Discretization – the number of cut-off points
	A summary – from numbers to categories and back

	Attribute construction
	Example – construct one transformed attribute from two attributes

	Feature extraction
	Example – extract three attributes from one attribute
	Example – Morphological feature extraction
	Feature extraction examples from the previous chapters

	Log transformation
	Implementation – doing it yourself
	Implementation – the working module doing it for you

	Smoothing, aggregation, and binning
	Smoothing
	Aggregation
	Binning

	Summary
	Exercise

	Part 4:
Case Studies
	Chapter 15: Case Study 1 – Mental Health
in Tech
	Technical requirements
	Introducing the case study
	The audience of the results of analytics
	Introduction to the source of the data

	Integrating the data sources
	Cleaning the data
	Detecting and dealing with outliers and errors
	Detecting and dealing with missing values

	Analyzing the data
	Analysis question one – is there a significant difference between the mental health of employees across the attribute of gender?
	Analysis question two – is there a significant difference between the mental health of employees across the Age attribute?
	Analysis question three – do more supportive companies have mentally healthier employees?
	Analysis question four – does the attitude of individuals toward mental health influence their mental health and their seeking of treatments?

	Summary

	Chapter 16: Case Study 2 – Predicting COVID-19 Hospitalizations
	Technical requirements
	Introducing the case study
	Introducing the source of the data

	Preprocessing the data
	Designing the dataset to support the prediction
	Filling up the placeholder dataset
	Supervised dimension reduction

	Analyzing the data
	Summary

	Chapter 17: Case Study 3: United States Counties Clustering Analysis
	Technical requirements
	Introducing the case study
	Introduction to the source of the data

	Preprocessing the data
	Transforming election_df to partisan_df
	Cleaning edu_df, employ_df, pop_df, and pov_df
	Data integration
	Data cleaning level III – missing values, errors, and outliers
	Checking for data redundancy

	Analyzing the data
	Using PCA to visualize the dataset
	K-Means clustering analysis

	Summary

	Chapter 18: Summary, Practice Case Studies, and Conclusions
	A summary of the book
	Part 1 – Technical requirements
	Part 2 – Analytics goals
	Part 3 – The preprocessing
	Part 4 – Case studies

	Practice case studies
	Google Covid-19 mobility dataset
	Police killings in the US
	US accidents
	San Francisco crime
	Data analytics job market
	FIFA 2018 player of the match
	Hot hands in basketball
	Wildfires in California
	Silicon Valley diversity profile
	Recognizing fake job posting
	Hunting more practice case studies

	Conclusions

	Index
	Other Books You May Enjoy

