

Hands-On Data
Preprocessing
in Python

Learn how to effectively prepare data for successful
data analytics

Roy Jafari

BIRMINGHAM—MUMBAI

Hands-On Data Preprocessing in Python
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Gebin George
Publishing Product Manager: Ali Abidi
Senior Editor: Roshan Kumar
Content Development Editor: Priyanka Soam
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Nilesh Mohite
Marketing Coordinator: Shifa Ansari

First published: January 2022
Production reference: 1161221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80107-213-7
www.packt.com

http://www.packt.com

To my parents,

Soqra Bayati

and

Jahanfar Jafari.

Contributors

About the author
Roy Jafari, Ph.D. is an assistant professor of business analytics at the University of Redlands.

Roy has taught and developed college-level courses that cover data cleaning, decision
making, data science, machine learning, and optimization.

Roy's style of teaching is hands-on and he believes the best way to learn is to learn by
doing. He uses active learning teaching philosophy and readers will get to experience
active learning in this book.

Roy believes that successful data preprocessing only happens when you are equipped
with the most efficient tools, have an appropriate understanding of data analytic goals, are
aware of data preprocessing steps, and can compare a variety of methods. This belief has
shaped the structure of this book.

About the reviewers
Arsia Takeh is a director of data science at a healthcare company and is responsible for
designing algorithms for cutting-edge applications in healthcare. He has over a decade of
experience in academia and industry delivering data-driven products. His work involves
the research and development of large-scale solutions based on machine learning, deep
learning, and generative models for healthcare-related use cases. In his previous role
as a co-founder of a digital health start-up, he was responsible for building the first
integrated -omics platform that provided a 360 view of the user as well as personalized
recommendations to improve chronic diseases.

Sreeraj Chundayil is a software developer with more than 10 years of experience. He is
an expert in C, C++, Python, and Bash. He has a B.Tech from the prestigious National
Institute of Technology Durgapur in electronics and communication engineering. He
likes reading technical books, watching technical videos, and contributing to open source
projects. Previously, he was involved in the development of NX, 3D modeling software,
at Siemens PLM. He is currently working at Siemens EDA (Mentor Graphics) and is
involved in the development of integrated chip verification software.

I would like to thank the C++ and Python communities who have made an immense
contribution to molding me into the tech lover I am today.

Table of Contents
Preface

Part 1: Technical Needs

1
Review of the Core Modules of NumPy and Pandas

Technical requirements� 4
Overview of the Jupyter Notebook�4
Are we analyzing data via
computer programming?� 6
Overview of the basic functions
of NumPy� 6
The np.arange() function� 8
The np.zeros() and np.ones() functions� 9
The np.linspace() function� 12

Overview of Pandas� 13

Pandas data access� 16
Boolean masking for filtering a
DataFrame� 24
Pandas functions for exploring a
DataFrame� 28
Pandas applying a function� 33
The Pandas groupby function� 37
Pandas multi-level indexing� 40
Pandas pivot and melt functions� 45

Summary� 48
Exercises� 48

2
Review of Another Core Module – Matplotlib

Technical requirements� 54
Drawing the main plots in
Matplotlib� 54
Summarizing numerical attributes
using histograms or boxplots� 54
Observing trends in the data using a
line plot� 56

Relating two numerical attributes
using a scatterplot� 58

Modifying the visuals� 58
Adding a title to visuals and labels to
the axis� 60
Adding legends� 60
Modifying ticks� 61

viii ﻿

Modifying markers� 64

Subplots� 65
Resizing visuals and saving them�67
Resizing� 67
Saving� 67

Example of Matplotilb assisting
data preprocessing� 67
Summary� 68
Exercises� 69

3
Data – What Is It Really?

Technical requirements� 72
What is data?� 72
Why this definition?� 73
DIKW pyramid� 74
Data preprocessing for data analytics
versus data preprocessing for
machine learning� 77

The most universal data
structure – a table� 79
Data objects� 79
Data attributes� 81

Types of data values� 81
Analytics standpoint� 81
Programming standpoint� 86

Information versus pattern� 86
Understanding everyday use of the
word "information"� 87
Statistical use of the word "information"� 87
Statistical meaning of the word "pattern"�90

Summary� 94
Exercises� 94
References� 98

4
Databases

Technical requirements� 99
What is a database?� 100
Understanding the difference between
a database and a dataset� 101

Types of databases� 102
The differentiating elements of
databases� 102
Relational databases (SQL databases)� 105
Unstructured databases (NoSQL
databases)� 105

A practical example that requires a
combination of both structured and
unstructured databases� 105
Distributed databases� 106
Blockchain� 106

Connecting to, and pulling data
from, databases� 107
Direct connection� 107
Web page connection� 109
API connection� 110

﻿ ix

Request connection� 114
Publicly shared� 114

Summary� 115
Exercises� 115

Part 2: Analytic Goals

5
Data Visualization

Technical requirements� 122
Summarizing a population� 122
Example of summarizing
numerical attributes� 122
Example of summarizing
categorical attributes� 124

Comparing populations� 125
Example of comparing populations
using boxplots� 126
Example of comparing populations
using histograms� 127
Example of comparing populations
using bar charts� 129

Investigating the relationship
between two attributes� 134

Visualizing the relationship
between two numerical attributes� 135
Visualizing the relationship
between two categorical attributes� 137
Visualizing the relationship between
a numerical attribute and a
categorical attribute� 140

Adding visual dimensions� 145
Example of a five-dimensional
scatter plot� 145

Showing and comparing trends� 153
Example of visualizing and
comparing trends� 153

Summary� 156
Exercise� 156

6
Prediction

Technical requirements� 160
Predictive models� 160
Forecasting� 160
Regression analysis� 162

Linear regression� 164
Example of applying linear regression
to perform regression analysis� 165

MLP� 170
How does MLP work?� 171
Example of applying MLP to perform
regression analysis� 172

Summary� 175
Exercises� 175

x ﻿

7
Classification

Technical requirements� 178
Classification models� 178
Example of designing a
classification model� 178
Classification algorithms� 179

KNN� 180

Example of using KNN for classification� 180

Decision Trees� 185
Example of using Decision Trees
for classification� 186

Summary� 188
Exercises� 189

8
Clustering Analysis

Technical requirements� 192
Clustering model� 192
Clustering example using
a two-dimensional dataset� 192
Clustering example using
a three-dimensional dataset� 195

K-Means algorithm� 197

Using K-Means to cluster a
two-dimensional dataset� 199
Using K-Means to cluster a dataset
with more than two dimensions� 203
Centroid analysis� 204

Summary� 206
Exercises� 207

Part 3: The Preprocessing

9
Data Cleaning Level I – Cleaning Up the Table

Technical requirements� 212
The levels, tools, and purposes
of data cleaning – a roadmap to
chapters 9, 10, and 11� 212
Purpose of data analytics� 213
Tools for data analytics� 213
Levels of data cleaning� 214
Mapping the purposes and tools of
analytics to the levels of data cleaning� 215

Data cleaning level I – cleaning
up the table� 216
Example 1 – unwise data collection� 216
Example 2 – reindexing (multi-level
indexing)� 220
Example 3 – intuitive but long
column titles� 222

Summary� 224
Exercises� 224

﻿ xi

10
Data Cleaning Level II – Unpacking, Restructuring, and
Reformulating the Table

Technical requirements� 228
Example 1 – unpacking columns
and reformulating the table� 228
Unpacking FileName� 229
Unpacking Content� 233
Reformulating a new table for
visualization� 235
The last step – drawing the visualization�238

Example 2 – restructuring
the table� 239

Example 3 – level I and II
data cleaning� 242
Level I cleaning� 244
Level II cleaning� 245
Doing the analytics – using linear
regression to create a predictive model� 252

Summary� 253
Exercises� 254

11
Data Cleaning Level III – Missing Values, Outliers, and Errors

Technical requirements� 258
Missing values� 258
Detecting missing values� 259
Example of detecting missing values� 260
Causes of missing values� 262
Types of missing values� 263
Diagnosis of missing values� 264
Dealing with missing values� 279

Outliers� 292

Detecting outliers� 292
Dealing with outliers� 302

Errors � 323
Types of errors� 324
Dealing with errors� 325
Detecting systematic errors� 325

Summary� 329
Exercises� 330

12
Data Fusion and Data Integration

Technical requirements� 336
What are data fusion and data
integration?� 336
Data fusion versus data integration� 337
Directions of data integration� 339

Frequent challenges regarding
data fusion and integration� 340
Challenge 1 – entity identification� 341
Challenge 2 – unwise data collection� 341

xii ﻿

Challenge 3 – index mismatched
formatting� 341
Challenge 4 – aggregation mismatch� 343
Challenge 5 – duplicate data objects� 344
Challenge 6 – data redundancy� 344

Example 1 (challenges 3 and 4)� 345
Example 2 (challenges 2 and 3)� 349
Example 3 (challenges 1, 3, 5,
and 6)� 355
Checking for duplicate data objects� 355

Designing the structure for the result
of data integration� 361
Filling songIntegrate_df from
billboard_df� 363
Filling songIntegrate_df from
songAttribute_df� 365
Filling songIntegrate_df from artist_df� 369
Checking for data redundancy� 373
The analysis� 376
Example summary� 379

Summary � 380
Exercise� 380

13
Data Reduction

Technical requirements� 384
The distinction between data
reduction and data redundancy�384
The objectives of data reduction� 385

Types of data reduction� 385
Performing numerosity data
reduction� 387
Random sampling� 387
Stratified sampling� 392
Random over/undersampling� 394

Performing dimensionality
data reduction� 397

Linear regression as a dimension
reduction method� 398
Using a decision tree as a dimension
reduction method� 403
Using random forest as a dimension
reduction method� 404
Brute-force computational dimension
reduction� 406
PCA� 409
Functional data analysis� 420

Summary� 437
Exercises� 437

14
Data Transformation and Massaging

Technical requirements� 444
The whys of data
transformation and massaging� 444
Data transformation versus data
massaging� 445

Normalization and
standardization� 446
Binary coding, ranking
transformation, and
discretization� 448

﻿ xiii

Example one – binary coding of
nominal attribute� 450
Example two – binary coding or ranking
transformation of ordinal attributes� 454
Example three – discretization of
numerical attributes� 456
Understanding the types of
discretization� 458
Discretization – the number of
cut-off points� 460
A summary – from numbers to
categories and back� 460

Attribute construction� 461
Example – construct one transformed
attribute from two attributes� 461

Feature extraction� 464
Example – extract three attributes
from one attribute� 464

Example – Morphological feature
extraction� 465
Feature extraction examples from the
previous chapters� 467

Log transformation� 468
Implementation – doing it yourself� 470
Implementation – the working module
doing it for you� 472

Smoothing, aggregation, and
binning� 473
Smoothing� 474
Aggregation� 479
Binning� 481

Summary� 483
Exercise� 483

Part 4: Case Studies
15
Case Study 1 – Mental Health in Tech
Technical requirements� 492
Introducing the case study� 492
The audience of the results of analytics� 492
Introduction to the source of the data� 494

Integrating the data sources� 495
Cleaning the data� 497
Detecting and dealing with outliers
and errors� 499
Detecting and dealing with
missing values� 502

Analyzing the data� 504

Analysis question one – is there a
significant difference between the
mental health of employees across the
attribute of gender?� 504
Analysis question two – is there a
significant difference between the
mental health of employees across the
Age attribute?� 507
Analysis question three – do more
supportive companies have mentally
healthier employees?� 509
Analysis question four – does the
attitude of individuals toward mental
health influence their mental health
and their seeking of treatments?� 512

Summary� 514

xiv ﻿

16
Case Study 2 – Predicting COVID-19 Hospitalizations

Technical requirements� 515
Introducing the case study� 516
Introducing the source of the data� 517

Preprocessing the data� 518

Designing the dataset to support
the prediction� 519
Filling up the placeholder dataset� 521
Supervised dimension reduction� 523

Analyzing the data� 526
Summary� 529

17
Case Study 3: United States Counties Clustering Analysis
Technical requirements� 532
Introducing the case study� 532
Introduction to the source of the data� 533

Preprocessing the data� 534
Transforming election_df to partisan_df�536
Cleaning edu_df, employ_df, pop_df,
and pov_df � 539
Data integration� 539

Data cleaning level III – missing values,
errors, and outliers� 540
Checking for data redundancy� 540

Analyzing the data� 543
Using PCA to visualize the dataset� 543
K-Means clustering analysis� 544

Summary� 546

18
Summary, Practice Case Studies, and Conclusions
A summary of the book� 547
Part 1 – Technical requirements� 548
Part 2 – Analytics goals� 548
Part 3 – The preprocessing� 549
Part 4 – Case studies� 549

Practice case studies� 550
Google Covid-19 mobility dataset� 550
Police killings in the US� 552
US accidents� 552

San Francisco crime� 553
Data analytics job market� 555
FIFA 2018 player of the match� 555
Hot hands in basketball� 556
Wildfires in California� 557
Silicon Valley diversity profile� 558
Recognizing fake job posting� 558
Hunting more practice case studies� 559

Conclusions� 559

Index
Other Books You May Enjoy

Preface
Data preprocessing is the first step in data visualization, data analytics, and machine
learning, where data is prepared for analytics functions to get the best possible insights.
Around 90% of the time spent on data analytics, data visualization, and machine learning
projects is dedicated to performing data preprocessing.

This book will equip you with the optimum data preprocessing techniques from
multiple perspectives. You'll learn about different technical and analytical aspects of
data preprocessing – data collection, data cleaning, data integration, data reduction, and
data transformation – and get to grips with implementing them using the open source
Python programming environment. This book will provide a comprehensive articulation
of data preprocessing, its whys and hows, and help you identify opportunities where data
analytics could lead to more effective decision making. It also demonstrates the role of
data management systems and technologies for effective analytics and how to use APIs to
pull data.

By the end of this Python data preprocessing book, you'll be able to use Python to
read, manipulate, and analyze data; perform data cleaning, integration, reduction, and
transformation techniques; and handle outliers or missing values to effectively prepare
data for analytic tools.

Who this book is for
Junior and senior data analysts, business intelligence professionals, engineering
undergraduates, and data enthusiasts looking to perform preprocessing and data cleaning
on large amounts of data will find this book useful. Basic programming skills, such as
working with variables, conditionals, and loops, along with beginner-level knowledge of
Python and simple analytics experience, are assumed.

What this book covers
Chapter 1, Review of the Core Modules of NumPy and Pandas, introduces two of three
main modules used for data manipulation, using real dataset examples to show their
relevant capabilities.

xvi Preface

Chapter 2, Review of Another Core Module – Matplotlib, introduces the last of the
three modules used for data manipulation, using real dataset examples to show its
relevant capabilities.

Chapter 3, Data – What Is It Really?, puts forth a technical definition of data and
introduces data concepts and languages that are necessary for data preprocessing.

Chapter 4, Databases, explains the role of databases, the different kinds, and teaches you
how to connect and pull data from relational databases. It also teaches you how to pull
data from databases using APIs.

Chapter 5, Data Visualization, showcases some analytics examples using data
visualizations to inform you of the potential of data visualization.

Chapter 6, Prediction, introduces predictive models and explains how to use Multivariate
Regression and a Multi-Layered Perceptron (MLP).

Chapter 7, Classification, introduces classification models and explains how to use
Decision Trees and K-Nearest Neighbors (KNN).

Chapter 8, Clustering Analysis, introduces clustering models and explains how to
use K-means.

Chapter 9, Data Cleaning Level I – Cleaning Up the Table, introduces three different levels
of data cleaning and covers the first level through examples.

Chapter 10, Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the
Table, covers the second level of data cleaning through examples.

Chapter 11, Data Cleaning Level III – Missing Values, Outliers, and Errors, covers the third
level of data cleaning through examples.

Chapter 12, Data Fusion and Data Integration, covers the technique for mixing different
data sources.

Chapter 13, Data Reduction, introduces data reduction and, with the help of examples,
shows how its different cases and versions can be done via Python.

Chapter 14, Data Transformation and Massaging, introduces data transformation and
massaging and, through many examples, shows their requirements and capabilities
for analysis.

Chapter 15, Case Study 1 – Mental Health in Tech, introduces an analytic problem and
preprocesses the data to solve it.

Chapter 16, Case Study 2 – Predicting COVID-19 Hospitalizations, introduces an analytic
problem and preprocesses the data to solve it.

Preface xvii

Chapter 17, Case Study 3 – United States Counties Clustering Analysis, introduces an
analytic problem and preprocesses the data to solve it.

Chapter 18, Summary, Practice Case Studies, and Conclusions, introduces some
possible practice cases that users can use to learn in more depth and start creating their
analytics portfolios.

To get the most out of this book
The book assumes basic programming skills such as working with variables, conditionals,
and loops, along with beginner-level knowledge of Python. Other than that, you can start
your journey from the beginning of the book and start learning.

The Jupyter Notebook is an excellent UI for learning and practicing programming and
data analytics. It can be downloaded and installed easily using Anaconda Navigator. Visit
this page for installation: https://docs.anaconda.com/anaconda/navigator/
install/.

While Anaconda has most of the modules that the book uses already installed, you will
need to install a few other modules such as Seaborn and Graphviz. Don't worry; when the
time comes, the book will instruct you on how to go about these installations.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

While learning, keep a file of your own code from each chapter. This learning repository
can be used in the future for deeper learning and real projects. The Jupyter Notebook is
especially great for this purpose as it allows you to take notes along with the code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-
Python. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://docs.anaconda.com/anaconda/navigator/install/
https://docs.anaconda.com/anaconda/navigator/install/
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/

xviii Preface

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801072137_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "To create this interactive visual, we have used the interact and
widgets programming objects from the ipywidgets module."

A block of code is set as follows:

from ipywidgets import interact, widgets

interact(plotyear,year=widgets.
IntSlider(min=2010,max=2019,step=1,value=2010))

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

Xs_t.plot.scatter(x='PC1',y='PC2',c='PC3',sharex=False,

 vmin=-1/0.101, vmax=1/0.101,

 figsize=(12,9))

x_ticks_vs = [-2.9*4 + 2.9*i for i in range(9)]

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "The missing
values for the attributes from SupportQ1 to AttitudeQ3 are from the same data objects."

Tips or Important Notes
Appear like this.

https://static.packt-cdn.com/downloads/9781801072137_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801072137_ColorImages.pdf

Preface xix

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Hands-On Data Preprocessing in Python, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-801-07213-2

After reading this part of the book, you will be able to use Python to effectively
manipulate data.

This part comprises the following chapters:

•	 Chapter 1, Review of the Core Modules of NumPy and Pandas

•	 Chapter 2, Review of Another Core Module – Matplotlib

•	 Chapter 3, Data – What Is It Really?

•	 Chapter 4, Databases

Part 1:
Technical Needs

1
Review of the

Core Modules of
NumPy and Pandas

NumPy and Pandas modules are capable of meeting your needs for the majority of data
analytics and data preprocessing tasks. Before we start reviewing these two valuable
modules, I would like to let you know that this chapter is not meant to be a comprehensive
teaching guide to these modules, but rather a collection of concepts, functions, and
examples that will be invaluable, as we will cover data analytics and data preprocessing in
proceeding chapters.

In this chapter, we will first review the Jupyter Notebooks and their capability as an
excellent coding User Interface (UI). Next, we will review the most relevant data analytic
resources of the NumPy and Pandas Python modules.

The following topics will be covered in this chapter:

•	 Overview of the Jupyter Notebook

•	 Are we analyzing data via computer programming?

•	 Overview of the basic functions of NumPy

•	 Overview of Pandas

4 Review of the Core Modules of NumPy and Pandas

Technical requirements
The easiest way to get started with Python programming is by installing Anaconda
Navigator. It is open source software that brings together many useful open source
tools for developers. You can download Anaconda Navigator by following this link:
https://www.anaconda.com/products/individual.

We will be using Jupyter Notebook throughout this book. Jupyter Notebook is one of the
open source tools that Anaconda Navigator provides. Anaconda Navigator also installs a
Python version on your computer. So, following Anaconda Navigator's easy installation,
all you need to do is open Anaconda Navigator and then select Jupyter Notebook.

You will be able to find all of the code and the dataset that is used in this book in a
GitHub repository exclusively created for this book. To find the repository, click on the
following link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. Each chapter in this book will have a folder that
contains all of the code and datasets that were used in the chapter.

Overview of the Jupyter Notebook
The Jupyter Notebook is becoming increasingly popular as a successful User Interface
(UI) for Python programing. As a UI, the Jupyter Notebook provides an interactive
environment where you can run your Python code, see immediate outputs, and take notes.

Fernando Pérezthe and Brian Granger, the architects of the Jupyter Notebook, outlines the
following reasons in terms of what they were looking for in an innovative programming UI:

•	 Space for individual exploratory work

•	 Space for collaboration

•	 Space for learning and education

If you have used the Jupyter Notebook already, you can attest that it delivers all these
promises, and if you have not yet used it, I have good news for you: we will be using
Jupyter Notebook for the entirety of this book. Some of the code that I will be sharing will
be in the form of screenshots from the Jupyter Notebook UI.

The UI design of the Jupyter Notebook is very simple. You can think of it as one column of
material. These materials could be under code chunks or Markdown chunks. The solution
development and the actual coding happens under the code chunks, whereas notes for
yourself or other developers are presented under Markdown chunks. The following
screenshot shows both an example of a Markdown chunk and a code chunk. You can see
that the code chunk has been executed and the requested print has taken place and the
output is shown immediately after the code chunk:

https://www.anaconda.com/products/individual
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Overview of the Jupyter Notebook 5

Figure 1.1 – Code for printing Hello World in a Jupyter notebook

To create a new chunk, you can click on the + sign on the top ribbon of the UI. The
newly added chunk will be a code chunk by default. You can switch the code chunk to a
Markdown chunk by using the drop-down list on the top ribbon. Moreover, you can move
the chunks up or down by using the correct arrows on the ribbon. You can see these three
buttons in the following screenshot:

Figure 1.2 – Jupyter Notebook control ribbon

You can see the following in the preceding screenshot:

•	 The ribbon shown in the screenshot also allows you to Cut, Copy, and Paste
the chunks.

•	 The Run button on the ribbon is to execute the code of a chunk.

•	 The Stop button is to stop running code. You normally use this button if your code
has been running for a while with no output.

•	 The Restart button wipes the slate clean; it removes all of the variables you have
defined so you can start over.

•	 Finally, the Restart & Run button restarts the kernel and runs all of the chunks of
code in the Jupyter Notebook files.

There is more to the Jupyter Notebook, such as useful short keys to speed up development
and specific Markdown syntax to format the text under Markdown chunks. However, the
introduction here is just enough for you to start meaningfully analyzing data using Python
through the Jupyter Notebook UI.

6 Review of the Core Modules of NumPy and Pandas

Are we analyzing data via computer
programming?
To benefit most from the two modules that we will cover in this chapter, we need to
understand what they really are and what we are really doing when we use them. I am
sure whoever is in the business of content development for data analytics using Python,
including me (guilty as charged), would tell you that when you use these modules to
manipulate your data, you are analyzing your data using computer programming. However,
what you are actually doing is not computer programming. The computer programming
part has already been done for the most part. In fact, this has been done by the top-notch
programmers who put together these invaluable packages. What you do is use their code
made available to you as programming objects and functions under these modules. Well, if
I am being completely honest, you are doing a tad bit of computer programming, but just
enough to access the good stuff (these modules). Thanks to these modules, you will not
experience any difficulty in analyzing data using computer programming.

So, before embarking on your journey in this chapter and this book, remember this: for
the most part, our job as data analysts is to connect three things – our business problem,
our data, and technology. The technology could be commercial software such as Excel or
Tableau, or, in the case of this book, these modules.

Overview of the basic functions of NumPy
In short, as the name suggests, NumPy is a Python module brimming with useful
functions for dealing with numbers. The Num in the first part of the name NumPy stands
for numbers, and Py stands for Python. There you have it. If you have numbers and you
are in Python, you know what you need to import. That is correct; you need to import
NumPy, simple as that. See the following screenshot:

Figure 1.3 – Code for importing the NumPy module

Overview of the basic functions of NumPy 7

As you can see, we have given the alias np to the module after importing it. You can
actually assign any alias that you wish and your code would function; however, I suggest
sticking with np. I have two compelling reasons for doing so:

•	 First, everyone else uses this alias, so if you share your code with others, they know
what you are doing throughout your project.

•	 Second, a lot of the time, you end up using code written by others in your projects,
so consistency will make your job easier. You will see that most of the famous
modules also have a famous alias, for example, pd for Pandas, and plt for
matplotlib.pyplot.

Good practice advice
NumPy can handle all types of mathematical and statistical calculations for a
collection of numbers, such as mean, median, standard deviation (std), and
variance (var). If you have something else in mind and are not sure whether
NumPy has it, I suggest googling it before trying to write your own. If it
involves numbers, chances are NumPy has it.

The following screenshot shows the mean, for example, applied to a collection of numbers:

Figure 1.4 – Example of using the np.mean() NumPy function and the .mean() NumPy array function

8 Review of the Core Modules of NumPy and Pandas

As shown in Figure 1.4, there are two ways to do this. The first one, portrayed in the top
chunk, uses np.mean(). This function is one of the properties of the NumPy module and
can be accessed directly. The great aspect of using this approach is that you do not need to
change your data type most of the time before NumPy honors your request. You can input
lists, Pandas series, or DataFrames. You can see on the top chunk that np.mean() easily
calculated the mean of lst_nums, which is of the list type. The second way, as shown in
the bottom chunk, is to first use np.array() to transform the list into a NumPy array and
then use the .mean() function, which is a property of any NumPy array. Before continuing
to progress with this chapter, take a moment and use the Python type() function to see the
different types of lst_numbs and ary_nums, as shown in the following screenshot:

Figure 1.5 – The application of the type() function

Next we will learn about four NumPy functions: np.arange(), np.zeros(),
np.ones(), and np.linspace().

The np.arange() function
This function, as shown in the following screenshot, produces a sequence of numbers with
equal increments. You can see in the figure that by changing the two inputs, you can get
the function to output many different sequences of numbers that are required for your
analytic purposes:

Figure 1.6 – Examples of using the np.arange() function

Overview of the basic functions of NumPy 9

Pay attention to the three chunks of code in the preceding figure to see the default
behavior of np.arange() when only one or two inputs are passed.

•	 When only one input is passed, as in the first chunk of code, the default of
np.arange() is that you want a sequence of numbers from zero to the input
number with increments of one.

•	 When two inputs are passed, as in the second chunk of code, the default of the
function is that you want a sequence of numbers from the first input to the second
input with increments of one.

The np.zeros() and np.ones() functions
np.ones() creates a NumPy array filled with ones, and np.zeros() does the same
thing with zeros. Unlike np.arange(), which takes the input to calculate what needs
to be included in the output array, np.zeros() and np.ones() take the input to
structure the output array. For instance, the top chunk of the following screenshot
specifies the request for an array with four rows and five columns filled with zeros. As you
can see in the bottom chunk, if you only pass in one number, the output array will have
only one dimension:

Figure 1.7 – Examples of np.zeros() and np.ones()

These two functions are excellent resources for creating a placeholder to keep the results
of calculations in a loop. For instance, review the following example and observe how this
function facilitated the coding.

10 Review of the Core Modules of NumPy and Pandas

Example – Using a placeholder to accommodate analytics
Given the grade data of 10 students, create a code using NumPy that calculates and reports
their grade average.

The data of the 10 students and the solution to this example are provided in the following
screenshots. Please review and try this code before progressing:

Figure 1.8 – Grade data for the example

Now that you've had a chance to engage with this example, allow me to highlight a few
matters about the provided solution presented in Figure 1.9:

•	 Notice how np.zeros() facilitated the solution by streamlining it significantly.
After the code is done, all of the average grades are calculated and saved already.
Compare the printed values before and after the for loop.

•	 The enumerate() function in the for loop might sound strange to you. What
that does is help the code to have both an index (i) and the item (name) from the
collection (Names).

•	 The .format() function is an invaluable property of any string variable. If there
are any symbols such as {} in the string, this function will replace them with what
has been input sequentially.

Overview of the basic functions of NumPy 11

•	 # better-looking report is a comment in the second chunk of the code.
Comments are not compiled and their only purpose is to communicate something
with whoever reads the source code.

Figure 1.9 – Solution to the preceding example

12 Review of the Core Modules of NumPy and Pandas

The np.linspace() function
This function returns evenly spaced numbers over a specified interval. The function takes
three inputs. The first two inputs specify the interval, and the third shows the number of
elements that the output will have. For example, refer to the following screenshot:

Figure 1.10 – Solution to the preceding example

In the first code block, 19 numbers are evenly spaced between 0 and 1, altogether creating
an array with 21 numbers. The second gives another example. After trying out the two
examples in the screenshot, try np.linspace(0,1,20) and after investigating the
results, think about why I chose 21 over 20 in my example.

np.linspace() is a very handy function for situations where you need to try out
different values to find the one that best fits your needs. The following example showcases
a simple situation like that.

Example – np.linspace() to create solution candidates
We are interested in finding the value(s) that holds the following mathematical statement:
𝑥𝑥2 − 5𝑥𝑥 + 6 = 0 .

Imagine that we don't know that the statement can be simplified easily to ascertain that
either 2 or 3 will hold the statement:

𝑥𝑥2 − 5𝑥𝑥 + 6 = (𝑥𝑥 − 2)(𝑥𝑥 − 3)

Overview of Pandas 13

So we would like to use NumPy to try out any whole numbers between -1000 and 1000
and find the answer.

The following screenshot shows Python code that provides a solution to this problem:

Figure 1.11 – Solution to the preceding example

Please review and try this code before moving on.

Now that you've had a chance to engage with this example, allow me to highlight a
couple of things:

•	 Notice how smart use of np.linspace() leads to an array with all of the
numbers that we were interested in trying out.

•	 Uncomment #print(Candidates) and review all of the numbers that were
tried out to establish the desired answers.

This concludes our review of the NumPy module. Next, we will review another very useful
Python module, Pandas.

Overview of Pandas
In short, Pandas is our main module for working with data. The module is brimming
with useful functions and tools, but let's get down to the basics first. The greatest tool of
Pandas is its data structure, which is known as a DataFrame. In short, a DataFrame is a
two-dimensional data structure with a good interface and great codability.

The DataFrame makes itself useful to you right off the bat. The moment you read a data
source using Pandas, the data is restructured and shown to you as a DataFrame. Let's give
it a try.

14 Review of the Core Modules of NumPy and Pandas

We will use the famous adult dataset (adult.csv) to practice and learn the different
functionalities of Pandas. Refer to the following screenshot, which shows the importing
of Pandas and then reading and showing the dataset. In this code, .head() requests that
only the top five rows of data are output. The .tail() code could do the same for the
bottom five rows of the data.

Figure 1.12 – Reading the adult.csv file using pd.read_csv() and showing its first five rows

The adult dataset has six continuous and eight categorical attributes. Due to print
limitations, I have only been able to include some parts of the data; however, if you pay
attention to Figure 1.12, the output comes with a scroll bar at the bottom that you can
scroll to see the rest of the attributes. Give this code a try and study its attributes. As you
will see, all of the attributes in this dataset are self-explanatory, apart from fnlwgt. The
title is short for final weight and it is calculated by the Census Bureau to represent the ratio
of the population that each row represents.

Overview of Pandas 15

Good practice advice
It is good practice to always get to know the dataset you are about to work on.
This process always starts with making sure you understand each attribute, the
way I just did now. If you have just received a dataset and you don't know what
each attribute is, ask. Trust me, you will look more like a pro than not.

There are other steps to get to know a dataset. I will mention them all here and
you will learn how to do them by the end of this chapter.

Step one: Understand each attribute as I just explained.

Step two: Check the shape of the dataset. How many rows and columns does
the dataset have? This one is easy. For instance, just try adult_df.shape
and review the result.

Step three: Check whether the data has any missing values.

Step four: Calculate summarizing values for numerical attributes such as
mean, median, and standard deviation, and compute all the possible values for
categorical attributes.

Step five: Visualize the attributes. For numerical attributes, use a histogram or a
boxplot, and for categorical ones, use a bar chart.

As you just saw, before you know it, you are enjoying the benefits of a Pandas DataFrame.
So it is important to better understand the structure of a DataFrame. Simply put, a
DataFrame is a collection of series. A series is another Pandas data structure that does not
get as much credit, but is useful all the same, if not more so.

To understand this better, try to call some of the columns of the adult dataset. Each
column is a property of a DataFrame, so to access it, all you need to do is to use
.ColumnName after the DataFrame. For instance, try running adult_df.age to see
the column age. Try running all of the columns and study them, and if you come across
errors for some of them, do not worry about it; we will address them soon if you continue
reading. The following screenshot shows how you can confirm what was just described for
the adult dataset:

Figure 1.13 – Checking the type of adult_df and adult_df.age

16 Review of the Core Modules of NumPy and Pandas

It gets more exciting. Not only is each attribute a series, but each row is also a series. To
access each row of a DataFrame, you need to use .loc[] after the DataFrame. What
comes between the brackets is the index of each row. Go back and study the output of
df_adult.head() in Figure 1.12 and you will see that each row is represented by an
index. The indices do not have to be numerical and we will see how indices of a Pandas
DataFrame can be adjusted, but when reading data using pd.read_csv() with default
properties, numerical indices will be assigned. So give it a try and access some of the
rows and study them. For instance, you can access the second row by running adult_
df.loc[1]. After running a few of them, run type(adult_df.loc[1]) to confirm
that each row is a series.

When accessed separately, each column or row of a DataFrame is a series. The only
difference between a column series and a row series is that the index of a column series
is the index of the DataFrame, and the index of a row series is the column names. Study
the following screenshot, which compares the index of the first row of adult_df and the
index of the first column of adult_df:

Figure 1.14 – Investigating the index for a column series and a row series

Now that we have been introduced to Pandas data structures, next we will cover how we
can access the values that are presented in them.

Pandas data access
One of the greatest advantages of both Pandas series and DataFrames is the excellent
access they afford us. Let's start with DataFrames, and then we will move on to series as
there are lots of commonalities between the two.

Pandas DataFrame access
As DataFrames are two-dimensional, this section first addresses how to access rows, and
then columns. The end part of the section will address how to access each value.

Overview of Pandas 17

DataFrame access rows
The only two keywords you will ever need to access the rows of a DataFrame are .loc[]
and .iloc[]. To understand the difference between them, you need to know that each
Pandas series or DataFrame carries two types of indices: default indices or assigned
indices. The default indices are the integer numbers that are automatically assigned to
your dataset upon reading. However, Pandas allows you to update them. The function that
you can use to do so is .set_index(). For instance, we would like to make sure all of
the indices in adult_df have five digits, so instead of indices between 0 and 32651 (run
len(adult_df) to see that this is the number of rows adult_df has), we want indices
to be from 10000 to 42651. The following screenshot uses np.arange() and .set_
index() to do this. In this code, inplace=True indicates to the .set_index()
function that you want the change to be applied to the DataFrame itself.

Why is it that when inplace=True is incorporated, there is no output, and when it is
included, Jupyter Notebook shows the updated DataFrame?

The answer is that the .set_index() function, by default, outputs a new DataFrame
that has the requested index unless inplace=True is specified, which requests the
change to be applied to the original DataFrame.

Figure 1.15 – Updating the index of adult_df as described

Now, each row of the DataFrame can be accessed by specifying the index in between
the brackets of .loc[]. For instance, running adult_df.loc[10001] will give you
the second row. This is how you would always access the DataFrame using the assigned
indices. If you started missing the default indices, as you often do when you go about
preprocessing your data, Pandas has you covered.

18 Review of the Core Modules of NumPy and Pandas

You can use .iloc[] to access the data using the default integer indices. For instance,
running adult_df.iloc[1] will also return the second row. In other words, Pandas
will change the index to your liking, but behind the scenes, it will also keep its integer
default index and also lets you use it if you so wish.

DataFrame access columns
As there are two ways to access each row, there are also two ways to access each column.
The easier and better way to access your columns is to know that each column is coded to
be a property of a DataFrame. So, you can access each column by using .ColumnName.
For instance, run adult_df.age, adult_df.occupation, and so on to see how easy
it is to access the columns in this way.

If you happened to run adult_df.education-number, you have already seen that
this gives you an error. If you haven't, go ahead and do so to study the error. Why does
this error happen?

Figure 1.16 – Running adult_df.education-number and its error

If you study the error message, it is prompting that 'num' is not defined. That is true; we do
not have anything named 'num'. That is the key to use this error to answer my question.

Python deciphers dashes as subtraction operators unless presented inside a quotation. So
it all comes down to this. Because of the way this variable is named, you cannot use the
.ColumnName method to access the variable. You either need to change the name of the
variable or use the second method to access the columns.

The second method passes the name as a string, or, in other words, inside a quotation. Try
running adult_df['education-num'] and this time you will not get an error.

Overview of Pandas 19

Good practice advice
If you are new to programming, one of the pieces of advice that I have for you
is not to be intimidated by errors, and not only that, welcome errors with open
arms because they are an excellent opportunity to learn. I just used an error to
teach you something.

DataFrame access values
Imagine you want to access the education value for the third row of adult_df. There
are so many ways you can go about this. You can start from the column and once you
get a column series, access the value, or you can go from the row, and once you get a row
series, access the value. Study the following screenshot; the first three chunks of code show
different possibilities of doing that. However, my favorite way to access the values is to use
.at[], shown in the last chunk.

Figure 1.17 – Four different methods of accessing the records of a Pandas DataFrame

Accessing values with .at[] is my favorite for two reasons. First, it is much neater and
more straightforward. Second, you can treat the DataFrame like a matrix as it is one, at
least visually.

20 Review of the Core Modules of NumPy and Pandas

Pandas series access
Access to the values of series is very similar to that of DataFrames, just simpler. You can
access the values of a series using all of the methods mentioned for DataFrames, except
for .at[]. You can see all of the possibilities in the following screenshot. If you were
to try the last line of the second chunk of code, Python would generate a syntax error as
numbers cannot be the name of programming objects. To use this method, you have to
make sure that the series indices are of the string type.

Figure 1.18 – Different methods of accessing the values of a Pandas series

Slicing
Slicing applies to both NumPy and Pandas; however, since this is a book about data
preprocessing, we will use it more often with a Pandas DataFrame. Let's begin by slicing
NumPy arrays to understand slicing and then apply it to a Pandas DataFrame.

Overview of Pandas 21

Slicing a NumPy array
We slice a NumPy array when we need access to more than one value of the data. For
instance, consider the code in the following screenshot:

Figure 1.19 – Examples of slicing NumPy arrays

Here, my_array, which is a 4 x 4 matrix, has been sliced in different ways. The second
chunk of code is not slicing; as you can see, only one value is accessed. What separates
normal access from slicing access is the presence of a colon (:) in any of the index inputs.
For instance, a colon in the third chunk of code means you are requesting all of the
columns, and the output includes all of the columns, but since only the second row
(index 1) is specified, the entirety of the second row is output. The fourth chunk of code is
the opposite; one column is specified and the whole rows are requested, so the entirety of
the second column is output.

22 Review of the Core Modules of NumPy and Pandas

You can also use a colon (:) to only specify access from a certain index to another
one. For instance, in the second chunk of the following code, while all the columns are
requested, only the second to fourth rows (1:3) are requested. The third chunk of code
shows that both columns and rows can be sliced at the same time. Finally, the last chunk
of code shows that you can pass a list of indices that you want to include in your slice.

Figure 1.20 – More complex examples of slicing

Slicing a Pandas DataFrame
Just like NumPy arrays, Pandas DataFrames can also be sliced both on the columns and
rows. However, the slicing function can only be done inside either .loc[] or .iloc[].
The access method, .at[], and the other ways of accessing data do not support slicing.
For instance, the following code slices adult_df to show all of the rows, but only the
columns from education to occupation. Running adult_df.iloc[:,3:6] will result
in the same output.

Figure 1.21 – Example of slicing a Pandas DataFrame

Overview of Pandas 23

You want to become comfortable with slicing a Pandas DataFrame. It is a very useful way
to access your data. See the following example, which showcases one practical way in
which you could use slicing.

Practical example of slicing
Run adult_df.sort_values('education-num'). You will see this code sort the
DataFrame based on the education-num column. In Jupyter Notebook output, you
only see the first five and the last five rows of this sorting. Slice the output of the rows from
across the DataFrame instead of just from the beginning and the end.

The following screenshot shows how slicing the DataFrame can make this happen:

Figure 1.22 – Solution to the practical example of slicing a Pandas DataFrame

24 Review of the Core Modules of NumPy and Pandas

Let's go over this code step by step:

•	 The first part, .sort_values('education-num'), as mentioned, sorts the
DataFrame by education-num. I hope you have given this a try before reading
on. Pay attention to the indices of the sorted adult_df. They look jumbled up, as
they should. The reason is that the DataFrame is now sorted by another column.

•	 If we want to have a new index that matches this new order, we can use .reset_
index(), as it has been used in the preceding screenshot. Go ahead and give this
a try as well. Run adult_df.sort_values('education-num').reset_
index(). You will see that the old index is presented as a new column and that the
new index looks as ordered as any newly read dataset.

•	 Adding .iloc[1:32561:3617] achieves what this example is asking. This
specific slice requests the first row and every 3,617th row after that until the end
of the DataFrame. The number 32561 is the number of rows in adult_df (run
len(adult_df)), and 3617 is the quotient of the division of 32561 by 9. This
division calculates the equal jumps that take us from row one to nearly the end of
adult_df. Pay attention if the division of 32561 by 9 didn't have a remainder; the
code would take you all the way to the end of the DataFrame.

Good practice advice
Being able to slice DataFrames this way is advantageous in the initial stages
of getting to know a dataset. One of the disadvantages of data manipulations
using programming instead of spreadsheet software such as Excel is that you
cannot scroll through the data as you would in Excel. However, slicing the data
this way can allow you to somehow mitigate this shortcoming.

Now that we have learned how to access and slice a dataset, we need to learn how to filter
the data based on our needs. To do that, next we will learn about Boolean masking, which
is a powerful filtering technique.

Boolean masking for filtering a DataFrame
One of the simplest and yet most powerful tools of working with data is Boolean
masking. When you want to filter a DataFrame using a Boolean mask, you need a
one-dimensional collection of Boolean values (True or False) that has as many Boolean
values as the number of rows of DataFrames you want to filter.

Overview of Pandas 25

The following screenshot shows an example of Boolean masking:

Figure 1.23 – Example of Boolean masking

The code portrays Boolean masking in three steps:

1.	 The code first creates the Pandas series twopowers_sr, which contains the values
of 2 to the power of 0 through 10 (20, 21, 22, ..., 210).

2.	 Then, a Boolean mask is set up. Pay attention as twopowers_sr has 11 numerical
values, while BM also has 11 Boolean values. From now on in this book, every time
you see BM, you can safely assume it stands for Boolean mask.

3.	 The last line of code filters the series using the mask.

The way a Boolean mask works is straightforward. If the counterpart of the numerical
value from twopowers_sr in the Boolean mask (BM) is False, the mask blocks the
number, and if it is True, the mask lets it through. Check whether that has been the case
regarding the output of the preceding code. This is shown in the following figure:

Figure 1.24 – Depiction of Boolean masking

What is great about Pandas is that you can use the DataFrame or series themselves to
create useful Boolean masks. You can use any of the mathematical comparison operators
to do this. For instance, the following screenshot first creates a Boolean mask that would
only include True for numbers greater than or equal to 500. Then, the Boolean mask is
applied to twopowers_sr to filter out the numbers in two ways.

26 Review of the Core Modules of NumPy and Pandas

Both of these ways are legitimate, correct, and they work. On the first one, you still give
the Boolean mask a name. We use the name BM to do this as mentioned earlier. Then, we
use BM to apply the Boolean mask. On the second one, you create and use the Boolean
mask on the fly, as programmers say. That means you do everything in one line of code.
I use the first one more often than not as I believe it makes the code more readable.

Figure 1.25 – Example of Boolean masking to filter data

You might be asking from the preceding code, so what if we can filter the data using
Boolean masking? That is a legitimate question. Boolean masks come into their own
when you use them on DataFrames for analytics. The following two examples will clarify
this for you.

Overview of Pandas 27

Analytic example 1 that uses Boolean masking
We are interested in calculating the mean and median age of people with preschool
education in adult_df.

This can be easily done using Boolean masking. The following screenshot first creates BM
using the series adult_df.education.

Figure 1.26 – Solution to the preceding example

Since the BM series has as many elements as the adult_df DataFrame (why?), BM can be
applied to filter it. Once the DataFrame is filtered using adult_df[BM], it only contains
rows that their education is 'Preschool'. So now you can easily use np.mean()
and np.median() to calculate the mean and median of age for these filtered rows.

Analytic example 2 that uses Boolean masking
We are interested in comparing the Capital Gain of individuals with less than 10 years'
education with individuals with more than 10 years' education.

Figure 1.27 – Solution to the preceding example

Again, Boolean masks can help us immensely here. Two of them, BM1 and BM2, are
first created based on what we are interested in calculating. Then, two calculations and
reports show the mean of the capital gain for people with more than, and less than, 10
years of education.

28 Review of the Core Modules of NumPy and Pandas

Pandas functions for exploring a DataFrame
When you compare spreadsheet software such as Excel with coding, one of the stark
disadvantages of coding is that you cannot create as tangible a relationship with your data
as you would with Excel. That is a fair comparison as Excel lets you scroll up and down on
your data and so allows you to get to know it. While coding does not grant you this privilege,
Pandas has a handful of useful functions that help you to familiarize yourself with the data.

Getting to know a dataset has two aspects. The first is to get to know the structure of the
data, such as the number of rows, columns, and the name of columns. The second one
is to get to know the values under each column. So we first cover getting to know the
structure of the dataset and then we will focus on the values under each column.

Getting to know the structure of a dataset
You can use three useful properties of a Pandas Dataframe to study the structure of a
dataset. These are .shape, .columns, and .info(). In the following sections, we will
go over them one by one.

The .shape property
.shape is the property of any Pandas DataFrame. It tells you how many rows and columns
the DataFrame has. So, once you apply this to adult_df, as executed by the code in the
following screenshot, you can see that the DataFrame has 32,561 rows and 15 columns:

Figure 1.28 – Example of using the .shape property of a DataFrame to get to know the dataset

The .columns property
.columns allows you to see and edit the column names in your DataFrame. In the
following code, you can see that adult_df.columns resulted in the output of all
the column names of adult_df. Of course, you could have scrolled to see all of the
columns when you read the dataset; however, this is not possible when the data has
more than 20 columns.

Overview of Pandas 29

Figure 1.29 – Example of using the .columns property of a DataFrame to get to know the dataset

Furthermore, .columns can be used to update the columns' names. This has been
shown in the following screenshot. After running the following code, you can safely
use adult_df.education_num to access the relevant attribute. We just change the
attribute name from 'education-num' to 'education_num' and now the attribute
can be accessed using the .columnName method. Refer to Figure 1.16, which showed the
error you'd get if you were to run adult_df.education-num.

Figure 1.30 – Example of updating the column titles of a DataFrame

The .info() function
This function provides information about both the shape and the columns of the
DataFrame. If you run adult_df.info(), you will see other information, such as
the number of non-null values and also the type of data under each column that will
be reported.

Getting to know the values of a dataset
The functions that Pandas has to get to know the numerical columns are different than
those of categorical columns. The difference between numerical and categorical columns
is that categorical columns are not represented by numbers or, more accurately, do not
carry numerical information.

To get to know numerical columns, the .describe(), .plot.hist(), and
.plot.box() functions are very useful. On the other hand, the .unique() and
.value_counts() functions are instrumental for categorical columns. We will cover
these one by one.

30 Review of the Core Modules of NumPy and Pandas

The .describe() function
This function outputs many useful statistical metrics that are meant to summarize data for
each column. These metrics include Count, Mean, Standard Deviation (std), Minimum
(min), first quartile (25%), second quartile (50%) or median, third quartile (75%), and
Maximum (max). The following screenshot shows the execution of the function for
adult_df and its output:

Figure 1.31 – Example of using the .describe() function to get to know a dataset

The metrics that the .describe() function outputs are very valuable summarizing
tools, especially if these metrics are meant to be used for algorithmic analytics. However,
studying them all at once still overwhelms our human comprehension. To summarize data
for human comprehension, there are more effective tools, such as visualizing data using
histograms and boxplots.

Histograms and boxplots to visualize numerical columns
Pandas makes drawing these visuals very easy. Each Pandas series has a very useful
collection of plot functions. For instance, the following screenshot shows how easy it is to
draw the histogram for the age column. To create the boxplot for the age column, all you
need to change is the last part of the code: adult_df.age.plot.box(). Give it a try.
Also, draw the boxplot and histogram for all of the other numerical attributes and see for
yourself how much easy it is to understand each column using visualization.

Overview of Pandas 31

Figure 1.32 – Drawing the histogram of the adult_df.age column

Let's move on to the functions that we will use for categorical attributes. We will start with
.unique().

The .unique() function
If the column is categorical, our approach to get to know it would be completely different.
First, we need to see what are all the possibilities for the column. The .unique() function
does just that. It simply returns all the possible values of the columns. See the following
screenshot, which is an example of all the possible values of the relationship column
in adult_df:

Figure 1.33 – Example of using the .unique() function to get to know a dataset

Now that we have covered the .unique() function, we will cover the .value_counts()
function next.

32 Review of the Core Modules of NumPy and Pandas

The .value_counts() function
The next step in getting to know a categorical column is realizing how often each
possibility happens. The .value_counts() function does exactly that. The following
screenshot shows the outcome of this function on the column's relationship:

Figure 1.34 – Example of using the .value_counts() function to get to know a dataset

The output of the .value_counts() function is also known as the frequency table.
There is also the relative frequency table, which shows the ratio of occurrences
instead of the number of occurrences for each possibility. To get the relative frequency
table, all you need to do is to specify that you want the table to be normalized:
.value_counts(normalize=True). Give it a try!

Barcharts for visualizing numerical columns
To draw the bar chart of a categorical attribute, even though you might be tempted to try
out something like adult_df.relationship.plot.bar(), it won't work. Give it a
try and study the error.

To create the bar chart, you would have to first create the frequency table. As the
frequency table is a Pandas series itself, you can then draw the bar chart using that. The
following screenshot shows how we can draw the bar chart for the relationship column
using the functions .value_counts() and .plot.bar():

Overview of Pandas 33

Figure 1.35 – Drawing the bar chart of the adult_df.relationship column

In this part, we learned how we can take advantage of Pandas resources to get to know
new datasets. Next, we will learn about a Pandas function that is a game-changer in
analyzing and preprocessing data using programming.

Pandas applying a function
There are a lot of instances where we will want to do the same calculations for each row
in a dataset. The traditional approach to going about such calculations is to loop through
the data and, on every iteration of the loop, perform and save the calculations. Python and
Pandas have changed this paradigm by introducing the concept of applying a function.
When you apply a function to a DataFrame, you request Pandas to run it for every row.

You can apply a function to a series or a DataFrame. Since applying a function to a series
is somewhat easier, we will learn about that first and then we will move on to apply
a function to a DataFrame.

34 Review of the Core Modules of NumPy and Pandas

Applying a function to a series
Let's say we want to multiply the series adult_df.age by 2. First, you need to write a
function that assumes one input as a number, multiply the input by 2, and then output the
result. The following screenshot shows this. First, the MutiplyBy2() function is defined,
and then, using adult_df.age.apply(MutiplyBy2), is applied to the series.

Figure 1.36 – Example of using the .apply() function

Now, let's see an analytic example where the .apply() function can be instrumental.

Applying a function – Analytic example 1
Not only does the series adult_df.fnlwgt not have an intuitive name, but also its values
are not easily relatable. As mentioned earlier, the values are meant to be the ratio of the
population that each row represents. As the numbers are neither percentages nor the actual
number of people that each row represents, these values are neither intuitive nor relatable.

Now that we know how to do a calculation for each value in a series, let's fix this with
a simple calculation. How about we divide every value by the sum of all the values in
the series?

The following screenshot shows the steps for going about this:

1.	 First, total_fnlwgt, which is the sum of all the values in the fnlwgt column,
is calculated.

2.	 Second, the CalculatePercentage function is defined. This function outputs
the input values divided by total_fnlwgt and multiplied by 100 (to develop
a percentage).

Overview of Pandas 35

3.	 Third, the CalculatePercentage function is applied to the series
adult_df.fnlwgt.

Now, pay attention! Instead of just seeing the results of the calculations, the following code
has assigned the result to adult_df.fnlwgt itself, which substitutes the original values
with the newly calculated percentages. The following code does not show the output of the
code, but give it a try on your Jupyter notebook and study the output on your own:

total_fnlwgt = adult_df.fnlwgt.sum()

def CalculatePercentage(v):

 return v/total_fnlwgt*100

adult_df.fnlwgt = adult_df.fnlwgt.apply(
CalculatePercentage)

adult_df

Applying a Lambda function
A lambda function is a function that is expressed in one line. So, a lot of the time,
applying a lambda function may make coding easier and perhaps help our code become
a bit more readable at times. For instance, if you wanted to answer the preceding
calculations "on the fly," you could simply apply a lambda function instead of an explicit
function. See the following code and compare the simplicity and conciseness of using a
lambda function instead of an explicit function:

total_fnlwgt = adult_df.fnlwgt.sum()

adult_df.fnlwgt = adult_df.fnlwgt.apply(lambda v: v/total_
fnlwgt*100)

adult_df

It is important to understand that the right choice between a lambda function or an explicit
function depends on the situation. Sometimes, having to jam a perhaps complicated
function into a line causes coding to become more difficult and renders the code less
readable. This will be the case if the function has more than one conditional statement.

Applying a function to a DataFrame
The major difference between applying a function to a DataFrame and a series is when
you are defining the function. While, for a series, we had to assume that one value would
be input in the function, for a DataFrame, we have to assume that a row series will be
input. So, when you are defining a function to apply to a DataFrame, you can engage any
column that you need.

36 Review of the Core Modules of NumPy and Pandas

For instance, the following code has defined and applied a function that subtracts
education_num from age for every column. Pay attention to three aspects:

1.	 First, when defining the CalcLifeNoEd() function, the input row was assumed
to be a row series of adult_df. In other words, the CalcLifeNoEd() function
is tailored just for application to adult_df or any DataFrame that has age and
eduction_num as columns.

2.	 Second, the .apply() function comes right after the DataFrame itself instead of
after any columns. Compare the code for applying a function to a DataFrame to that
of a series. Compare the last two code snippets with the following code snippet.

3.	 Third, the inclusion of axis=1 is necessary, and what this means is that you want
to apply the function to every row and not every column. You could also apply a
function to every column. That almost never happens for analytics, but if you ever
needed to, you would have to change it to axis=0.

I have not included the output of this executed code. Give the code a try and study
its output:

def CalcLifeNoEd(row):

 return row.age - row.education_num

adult_df.apply(CalcLifeNoEd,axis=1)

This could have easily been done using the lambda function as well. The code that you will
need to run is the following. Give it a try:

adult_df.apply(lambda r: r.age-r.education_num,axis=1)

Applying a function – Analytic example 2
Which one is more important in terms of your financial success: education or life experience?

To answer this question, we could use adult_df as a sample dataset and extract some
insight from the population of people in 1966. The code in the following screenshot first
creates two new columns in the data:

•	 lifeNoEd: The number of years for which you have lived without formal education

•	 capitalNet: The subtraction of capitalLoss from capitalGain

Overview of Pandas 37

To answer this question, we can check which one of education_num or lifeNoEd
has a higher correlation with capitalNet. Doing this is very easy using Pandas,
as each Pandas DataFrame comes with a function, .corr(), which calculates the
Pearson correlation coefficient for all the combinations of the numerical attributes in the
DataFrame. As we are only interested in the correlations between education_num,
lifeNoEd, and capitalNet, the last line of the code has removed other columns
before running the .corr() function.

Figure 1.37 – Solution to the preceding example

From the output, you can see that while the correlation between lifeNoEd and
capitalNet is 0.051490, the correlation between education_num and capitalNet
is higher, at 0.117891. So we have some evidence that education has a more effective role
in financial success than just life experience.

Now that you've learned how to effectively apply a function for analytics purposes, we
can move on to learn about another very powerful and useful function in Pandas that is
invaluable for data analytics and preprocessing.

The Pandas groupby function
This is one of the most useful analytics and preprocessing tools of Pandas. As the name
Groupby suggests, it groups your data by something. Normally, you would want to group
your data by categorical attributes.

If you are familiar with SQL queries, Pandas groupby is almost identical to SQL groupby.
For both SQL queries and Pandas queries, grouping your data by itself will not have any
added value or any output, unless it is accompanied by an aggregate function.

38 Review of the Core Modules of NumPy and Pandas

For instance, if you want to count the number of rows per marital_status category,
you can use the Groupby function. See and try the following code:

adult_df.groupby('marital_status').size()

You can group the DataFrame by more than one column as needed. To do so, you will
have to introduce the columns you are grouping the DataFrame by in the form of a list
of column names. For instance, the following code groups the data based on both the
marital_status and sex columns:

adult_df.groupby(['marital_status','sex']).size()

Pay attention that the two columns are introduced to the function as a list of string values.

The only aggregate function that works without having to specify a column of interest
is .size(), as seen above. However, once you specify the column of interest that you
want to aggregate the data of, you could use any aggregate function that you can use on a
Pandas series or DataFrame. The following table shows a list of all the aggregate functions
that you can use:

Figure 1.38 – List of Pandas aggregate functions

Overview of Pandas 39

For instance, the following shows the code to group adult_df by martial_status
and sex, and calculates the median of each group:

adult_df.groupby(['marital_status','sex']).age.median()

As you study the code and its output, you can start appreciating the analytic value of the
.groupby() function. Next, we will look at an example that will help you appreciate this
valuable function even further.

Analytic example using Groupby
Were the race and gender of individuals in 1966 influential in their financial success?

Incidentally, adult_df was collected in 1966, so we can use it to provide some insight
into this question. You may take different approaches in going about this. One approach,
as depicted in the following screenshot, is to group the data by race and sex and then
calculate the mean of capitalNet for the groups and study the differences.

Figure 1.39 – Solution to the preceding example

Another approach would be to group the data based on race, sex, and income and
then calculate the mean of fnlwgt. Give this one a try and see whether you come to
a different conclusion.

40 Review of the Core Modules of NumPy and Pandas

Pandas multi-level indexing
Let's first understand what multi-level indexing is. If you look at the output of grouping
a DataFrame by more than one column, the indexing of the output looks different than
normal. Although the output is a Pandas series, it looks different. The reason for this
dissimilarity is multi-level indexing. The following screenshot shows you the index of the
.groupby() output for the previous screenshot. You can see that the index of the series
has two levels, specifically, race and sex:

Figure 1.40 – An example of multi-level indexing

Now, let's learn a few useful and relevant functions that can help us with data analytics
and preprocessing. These functions are .stack() and .unstack().

The .unstack() function
This function pushes the outer level of the multi-level index to the columns. If the
multi-level index only has two levels, after running .unstack(), it will become
single-level. Likewise, if the .unstack() function is run for a series with a multi-level
index, the output will be a DataFrame whose columns are the outer level index that was
pushed. For instance, the following screenshot demonstrates the change in appearance
and structure of the output when the .unstack() function is executed:

Overview of Pandas 41

Figure 1.41 – Example of the .unstack() function

If there are more than two levels, executing .unstack() more than once will, one by
one, push the outer level of the index to the columns. For instance, you can see in the
following screenshot that the code in the first chunk results in grb_result, which is a
series with a three-level index. The second chunk of code executes .unstack() once
and the outer level of the index in grb_result, which is income, is pushed to the
columns. The third chunk of code, however, executes .unstack() twice, and the second
outer level of the index in grb_result, which is sex, joins income in the columns.

42 Review of the Core Modules of NumPy and Pandas

Figure 1.42 – Another example of the .unstack() function with two levels of indexing

Overview of Pandas 43

As an index can be multi-level in Pandas, columns can also have multiple levels. For
instance, in the first chunk of the following screenshot, you can see that the output
DataFrame has two levels. The second chunk of code outputs the columns of the
DataFrame. You can see that the columns have the two levels that were pushed from the
index using .unstack():

Figure 1.43 – An example of multi-level columns

The .stack() function
The opposite of .unstack() is .stack(), where the outer level of the columns
is pushed to be added as the outer level of the index. For example, in the following
screenshot, you can see that mlt_df, which we saw has two-level columns, has
undergone .stack() twice. The first .stack() function pushed the income level to
the index, and the second .stack() function pushed the sex level to the index. This
made the data be presented as a series as there is only one column of data.

44 Review of the Core Modules of NumPy and Pandas

Figure 1.44 – Example of the .stack() function

Overview of Pandas 45

Multi-level access
The value access in series or DataFrames with multi-level indexes, or DataFrames with
multi-level columns, is slightly different. Exercise 2 at the end of this chapter is designed to
help you learn that.

In this subsection, we gathered sizable exposure to multi-level indexing and columns.
Now we are moving on to another set of functions that are somewhat similar to the
.stack() and .unstack() functions, but different at the same time. These functions
are .pivot() and .melt().

Pandas pivot and melt functions
In a nutshell, .pivot() and .melt() help you to switch between two forms of
two-dimensional data structures: wide form and long form. The following figure depicts
the difference between the two forms. The wide form is what you are typically used to if you
are a spreadsheet user. The wide form uses many columns to introduce new dimensions in
the dataset. The long form, however, uses a different logic of data structure and uses one
index column to include all the relevant dimensions. The .melt() function, as you may
picture it in your mind based on the meaning of the word melt, can easily reshape a dataset
from the wide form to the long form. The .pivot() function can do the opposite.

To practice and learn these two functions, we will read wide.csv using Pandas into
wide_df, and read long.csv using Pandas into long_df.

Figure 1.45 – Comparison of the long and wide forms

46 Review of the Core Modules of NumPy and Pandas

To switch between the long and the wide format, all you need to do is to provide the right
input to these functions. The following screenshot shows the application of .melt() on
wide_df, reshaping it into a long format. In the second chunk of code, you can see that
.melt() requires four inputs:

•	 id_vars: This input takes the identifying columns.

•	 value_vars: This input takes the columns that hold the values.

•	 var_name: This input takes the name you would like to give to the identifying
column that will be added to the long format.

•	 value_name: This input takes the name you would like to give to the new value
column that will be added to the long format.

The following screenshot shows an example of using the .melt() function to switch the
data from wide format to long format:

Figure 1.46 – Example of using the .melt() function to switch the data from wide format to long format

Overview of Pandas 47

The .pivot() function reshapes a DataFrame from the long form to the wide form. For
instance, the following screenshot shows the application of the function on long_df.
Unlike, .melt(), which requires four inputs, .pivot() needs three:

•	 index: This input takes what will be the index of the wide form.

•	 columns: This input takes the columns of the long form that will be expanded to
create the columns for the wide form.

•	 values: This input takes the column in which the long form keeps the values.

Figure 1.47 – Example of using the .pivot() function to switch the data from the long format
to the wide format

48 Review of the Core Modules of NumPy and Pandas

Summary
Congratulations on your excellent progress so far! In this chapter, you first learned about the
Jupyter Notebook, which is the UI we will be using throughout this book. Then, you learned
about the most important functions of the two Python core modules for data analytics and
data preprocessing. In the next chapter, you will learn about the functions of another core
module: Matplotlib. This module will be our core module for visualization needs.

Before moving on to the next chapter, I highly encourage you to spend some time and
meaningfully engage with the following exercises.

Exercises
1.	 Use the adult.csv dataset and run the code shown in the following screenshots.

Then, answer the questions that follow:

Figure 1.48 – Exercise 1
a) Use the output to answer what is the difference in behavior of .loc and .iloc
when it comes to slicing?

b) Without running, but just by looking at the data, what will be the output of
adult_df.loc['10000':'10003', 'relationship':'sex']?

c) Without running, but just by looking at the data, what will be the output of
adult_df.iloc[0:3, 7:9]?

Exercises 49

2.	 Use Pandas to read adult.csv into adult_df and then use the .groupby()
function to run the following code and create the multi-index series mlt_sr:

import pandas as pd

adult_df = pd.read_csv('adult.csv')

mlt_seris =adult_df.groupby(['race','sex','income']).
fnlwgt.mean()

mlt_seris

a) Now that you have created a multi-index series, run the following code, study the
outputs, and answer the following questions:

Run the following code first and then answer this question: When we use .iloc[]
for a multi-index series or DataFrame, what should we expect?

print(mlt_seris.iloc[0])

print(mlt_seris.iloc[1])

print(mlt_seris.iloc[2])

b) Run the following code first and then answer this question: When we use
.loc[] to access the data of one of the innermost index levels of the multi-index
series, what should we expect?

mlt_seris.loc['Other']

c) Run the following code first and then answer this question: When we use
.loc[] to access the data of one of the non-innermost index levels of a multi-
index series, what should we expect?

When you run either line of the following code, you will get an error, and that is the
point of this question. Study the error and try to answer the question:

mlt_seris.loc['Other']

mlt_seris.loc['<=50K']

d) Run the following code first and then answer this question: How does the use of
.loc[] or .iloc[] differ when working with a multi-index series or a DataFrame?

print(mlt_seris.loc['Other']['Female']['<=50K'])

print(mlt_seris.iloc[12])

50 Review of the Core Modules of NumPy and Pandas

3.	 For this exercise, you need to use a new dataset: billboard.csv. Visit
https://www.billboard.com/charts/hot-100 and see the latest song
rankings of the day. This dataset presents information and rankings for 317 song
tracks in 80 columns. The first four columns are artist, track, time, and
date_e. The first columns are intuitive descriptions of song tracks. The date_e
column shows the date that the songs entered the hot 100 list. The rest of the 76
columns are song rankings at the end of each week from "w1" to "w76". Download
and read this dataset using Pandas and answer the following questions:

a) Write one line of code that gives you a great idea of how many null values each
column has. If any columns have no non-null values, drop them.

b) With a for loop, draw and study the values in each of the remaining W columns.

c) The dataset is in wide format. Use an appropriate function to switch to a long
format and name the transformed DataFrame mlt_df.

d) Write code that shows mlt_df every 1,200 rows.

e) Run the following code first and answer this question: Could this also have been
done by using Boolean masking?

mlt_df.query('artist == "Spears, Britney"')

f) Use either the approach in e or the Boolean mask to extract all the unique songs
that Britney Spears has in this dataset.

g) In mlt_df, show all of the weeks when the song "Oops!.. I Did It Again" was in
the top 100.

4.	 We will use LaqnData.csv for this exercise. Each row of this dataset shows an
hourly measurement recording of one of the following five air pollutants: NO, NO2,
NOX, PM10, and PM2.5. The data was collected in a location in London for the
entirety of the year 2017. Read the data using Pandas and perform the following tasks:

a) The dataset has six columns. Three of them, named 'Site', 'Units', and
'Provisional or Ratified' are not adding any informational values as they are
the same across the whole dataset. Use the following code to drop them:

air_df.drop(columns=['Site','Units','Provisional or
Ratified'], inplace=True)

b) The dataset is in a long format. Apply the appropriate function to switch it to the
wide format. Name the transformed Dataframe pvt_df.

c) Draw and study the histogram and boxplots for columns of pvt_df.

https://www.billboard.com/charts/hot-100

Exercises 51

5.	 We will continue working with LaqnData.csv:

a) Run the following code, see its output, and then study the code to answer what
each line of this code does:

air_df = pd.read_csv('LaqnData.csv')

air_df.drop(columns=['Site','Units','Provisional or
Ratified'], inplace=True)

datetime_df = air_df.ReadingDateTime.str.split('
',expand=True)

datetime_df.columns = ['Date','Time']

date_df = datetime_df.Date.str.split('/',expand=True)

date_df.columns = ['Day','Month','Year']

air_df = air_df.join(date_df).join(datetime_df.Time).
drop(columns=['ReadingDateTime','Year'])

air_df

b) Run the following code, see its output, and then study the code to answer what
this line of code does:

air_df = air_df.set_
index(['Month','Day','Time','Species'])

air_df

c) Run the following code, see its output, and then study the code to answer what
this line of code does:

air_df.unstack()

d) Compare the output of the preceding code with pvt_df from Exercise 4. Are
they the same?

e) Explain what the differences and similarities are between the pair
.melt()/.pivot() and the pair .stack()/.unstack()?

f) If you were to choose one counterpart for .melt() between
.stack()/.unstack(), which one would you choose?

2
Review of

Another Core
Module – Matplotlib

Matplotlib is our go-to module for creating visualizations from data. Not only can this
module draw many different plots, but it also gives us the capability to design and tailor
the plots to our needs. Matplotlib will serve our data analytics and data preprocessing
journey by providing a great number of functions for effective visualizations.

Before we start reviewing this valuable module, I would like to let you know that this
chapter is not meant to be a comprehensive teaching guide for Matplotlib, but rather
a collection of concepts, functions, and examples that will be invaluable as we cover data
analytics and data preprocessing in future chapters.

We have actually started using this module in the previous chapter. The Pandas plot
functions that we introduced in Chapter 1, Review of the Core Modules of NumPy
and Pandas, under the Pandas functions to explore a DataFrame are section, actually
Matplotlib visuals that Pandas uses internally.

54 Review of Another Core Module – Matplotlib

In this chapter, I will first introduce the main plots that Matplotlib can draw. Following
that, I will cover some design and altering functionalities of the visuals. Then, we will
learn about the invaluable subplotting capability of Matplotlib that will allow us to create
more complex and effective visualizations.

The following topics will be covered in this chapter:

•	 Main plots

•	 Modifying the visuals

•	 Subplots

•	 Resizing visuals and saving them

Technical requirements
You will be able to find all of the code and the dataset that is used in this chapter in this
book's GitHub repository:

https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python

Each chapter in this book will have a folder that contains all of the code and datasets used.

Drawing the main plots in Matplotlib
Drawing visuals with Matplotlib is easy. All you need is the right input and a correct
understanding of the data. The main five visuals that we use in Matplotlib to draw are
histograms, boxplots, bar charts, line plots, and scatterplots. Let's introduce them with
the following examples.

Summarizing numerical attributes using histograms
or boxplots
We already draw histograms using Pandas, which we learned about in the Pandas
functions to explore a DataFrame section in the previous chapter. However, the same plot
can also be drawn using Matplotlib. The following screenshot shows the best and most
common way to import Matplotlib. There are two points here:

1.	 First, you want to use the plt alias, as everyone else uses that.
2.	 Second, you want to import matplotlib.pyplot instead of just matplotlib,

as everything we will need from matplotlib is under .pyplot.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Drawing the main plots in Matplotlib 55

The second chunk of code in the following screenshot shows how easy it is to draw a
histogram using Matplotlib. All you need to do is input the data you want to be plotted
into plt.hist(). The last line of code, plt.show(), is what I always add to force
Jupyternotebook to only show the plot I want without the rest of the outputs that
come with the plot. Run plt.hist(adult_df.age) by itself to see the difference.

Figure 2.1 – Drawing the histogram of adult_df.age using Matplotlib

56 Review of Another Core Module – Matplotlib

The following screenshot, in turn, shows the boxplot of the same data using plt.
boxplot(). I have also requested the boxplot to be drawn horizontally by specifying
vert=False so the boxplot and the preceding histogram can be compared visually.

Figure 2.2 – Drawing the box plot of adult_df.age using Matplotlib

So far, we've learned two of the main plots of the Matplotlib module. Next, we will cover
the line plot.

Observing trends in the data using a line plot
A line plot, not exclusively, but very often, is applied to time series data to show trends.
A great example of time series data is stock prices. For instance, the stock price of the
company Amazon changes minute by minute, and if someone is interested to see the
trend of changes in these stock prices, they can use a line plot to do that.

Drawing the main plots in Matplotlib 57

We are going to use Amazon and Apple stock prices to showcase the application of line
plots in illustrating trends. The following code shows the loading of that data with the
Amazon Stock.csv and Apple Stock.csv files using the pd.read_csv()
function. These files contain the stock prices of Amazon and Apple from 2000 to 2020:

amz_df = pd.read_csv('Amazon Stock.csv')

apl_df = pd.read_csv('Apple Stock.csv')

The following screenshot shows us using the plt.plot() function to draw the line plot
of the closing prices of the stocks:

Figure 2.3 – Drawing the line plots of Amazon and Apple stock trends

Next, we are going to learn about scatterplots.

58 Review of Another Core Module – Matplotlib

Relating two numerical attributes using a scatterplot
Scatterplots can be drawn using the plt.scatter() function. This function is great
for examining the relationship between numerical attributes. For instance, the following
screenshot shows us the relationship between the prices of Amazon and Apple stocks in
the years from 2000 to 2020. Each dot in this scatterplot represents one trading day from
2000 to 2020.

Figure 2.4 – Drawing the scatterplots of Amazon and Apple stock trends

So far in this chapter, we have been introduced to the main plots of Matplotlib and their
analytics functionalities. Next, we will learn how to edit the visuals in simple but effective
ways.

Modifying the visuals
The Matplotlib module is great at allowing you to modify the plots so that they serve your
needs. The first thing you need before modifying a visual is to know the name of the part
of the visual that you are intending to modify. The following figure shows you the anatomy
of these visuals and is a great reference to find the name of the part you intend to modify.

Modifying the visuals 59

In the following examples, we will see how to modify the title and markers of the visuals,
and the labels and the ticks of the axes of the visuals. These are the most frequent
modifications that you will need. If you found yourself in situations where you need to
modify other parts too, how you would go about those are very similar, and so long as you
know the name of what you plan to modify, you are one Google search away from finding
how it is done.

Figure 2.5 – Anatomy of Matplotlib visuals

60 Review of Another Core Module – Matplotlib

Adding a title to visuals and labels to the axis
To modify any part of a Matplotlib visual, you need to execute a function that can do the
modifying trick. For instance, to add a title to a visual, you need to use plt.title()
after a visual is executed. Also, to add a label to the x axis or the y axis, you can employ
plt.xlabel() or plt.ylabel().

The following screenshot shows the application of plt.title() and plt.ylabel()
to add a title to the visual and add a label to the y axis respectively:

Figure 2.6 – Example of adding a title and label to a Matplotlib visual

Having learned how to add titles and labels, we will now turn our attention to learn how
to add and modify legends.

Adding legends
For adding legends to a Matplotlib visual, there are two steps:

1.	 First, you need to add a relevant label as you introduce each segment of the data
to Matplotlib.

2.	 Second, after executing the visuals, you need to execute plt.legend().

Modifying the visuals 61

The following screenshot depicts how these two steps are taken to add a legend to the
line plot:

Figure 2.7 – Example of adding a legend to a Matplotlib visual

Next, we will learn about how to edit the xticks or the yticks.

Modifying ticks
Modifying the ticks is perhaps the most complex of all modifications of Matplotlib visuals.
Let's discuss how this is done as it pertains to a line plot, and you can extrapolate that to
the other visuals easily.

You need to know a little about the workings of the plt.plot() function before you
can successfully modify the ticks. When a line plot is first introduced, you either explicitly
introduce the x axis to the plt.plot()function, or the function assumes integer values
starting from zero to the number values inputted for plotting minus one. As we did not
explicitly introduce the x values in the past couple of line plots (see previous), the plt.
plot() function has assumed the integer values for the x axis. However, pay attention to
the outputted visuals where only x values of 0, 1000, 2000, 3000, 4000, and 5000 are
being represented.

62 Review of Another Core Module – Matplotlib

The following screenshot shows how instead of representing all the trading days with six
integers, you could represent them with as many as you want. The integers you want to be
represented in the ticks are simply introduced to the plt.xticks() function. Also, you
can use the property rotation to change the angle of the ticks, so they are more legible.

Figure 2.8 – Example of modifying the ticks of a Matplotlib visual – level 1

How about if we want to re-represent these integers that represent trading days with their
trading day's actual dates? This can easily be done using the plt.xticks() function.
After introducing the integers that you want to be represented, you need to also introduce
the replacing counterparts of these integers to the function.

The code in the following screenshot provides an example of how this can be done:

1.	 First, the integers that we want represented are inputted as
np.arange(0,len(amz_df),250). Pay attention to the fact that instead
of typing the integers, the code has used the np.arange() function to produce
those integers. Run np.arange(0,len(amz_df),250) separately and study
the output.

Modifying the visuals 63

2.	 Second, the replacing counterparts, which are the dates of these trading days,
are also introduced to plt.xticks(). They are introduced using the column
Date in amz_df. The amz_df.Date[0:len(amz_df):250] code ensures
that the replacing representations are their relevant counterparts in the integer
representation. Pay attention – we have used amz_df, as we know the column date
for amz_df and apl_df are identical.

Figure 2.9 – Example of modifying the ticks of a Matplotlib visual – level 2

Pay attention to the fact that the number 250 in the preceding code had been reached
by trial and error. We were looking for an increment that would not make the xticks too
crowded or too sparse. Try running the code with alternative increments and study the
behavior of the visual.

64 Review of Another Core Module – Matplotlib

Modifying markers
The only visuals that we presented here that use markers are scatterplots. To modify the
color and the shape of the markers, all you need to do is specify them when executing
plt.scatter(). This function takes two inputs that it uses to draw the visual the way
you would like. The marker input takes the shape of the marker you intend to draw, and
the color input takes its color. The following screenshot shows how to change the default
blue dots of Matplotlib scatterplots to green crosses by inputting marker='x' and
color='green'. You cannot see the change of the colors in print as the book is
printed in grayscale, but you will see the change in color if you try out the code yourself.
The code also shows another example of using plt.title(), plt.xlabel(), and
plt.ylabel() to modify the title of the visual and the labels of its axes.

Figure 2.10 – Example of modifying the markers in a Matplotlib visual

Subplots 65

There are many marker shapes and marker color options that you can use. To study these
options, visit the following web pages from the Matplotlib official website:

•	 Markers: https://matplotlib.org/stable/api/markers_api.html

•	 Colors: https://matplotlib.org/stable/gallery/color/named_
colors.html

So far, we have learned how to create visuals and modify them using Matplotlib. Next,
we will learn another useful function that allows us to organize multiple visuals next to
one another.

Subplots
Drawing a subplot can be a very useful data analytics and data preprocessing tool. We use
subplots when we want to populate more than one visual and organize them next to one
another in a specific way.

The following screenshot shows an example of subplotting. The logic of creating subplots
in Matplotlib is unique and interesting. To draw a subplot, you first need to plan and
decide the number of visuals you intend to have and their matrix-like organization. For
instance, the following example has two visuals, and the visuals are organized in a matrix
with two rows and one column. Once you know that, you can start coding.

Let's do this together step by step:

1.	 The logic of Matplotlib subplots is that you use a line of code to announce you are
about to start giving the code for each specific visual. The plt.subplot(2,1,1)
line says that you want to have a subplot with two rows and one column, and you
are about to run the code for the first visual.

2.	 Once you are done with the first visual, you run another plt.subplot(), but this
time you announce your intention to start another visual. For instance, by running
plt.subplot(2,1,2), you are announcing that you are done with the first
visual, and you are about to start introducing the second visual.

Pay attention to the fact that the first two inputs of plt.subplot() stay the same
throughout subplotting, as they specify the matrix-like organization of the subplots and
they should be the same throughout.

https://matplotlib.org/stable/api/markers_api.html
https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/named_colors.html

66 Review of Another Core Module – Matplotlib

The plt.tight_layout() function is best used after you are done with all the visuals
and are about to show the whole subplots. This function makes sure that each visual
fits within its own boundaries and there are no overlaps. Run the following code block
without plt.tight_layout() and study the differences:

Figure 2.11 – Example of using subplots

So far, we have learned how to draw and design the visuals and then modify them.
However, we have yet to learn how to resize them so we can fit them for our needs. Next,
we will learn how to resize and save them on our computers.

Resizing visuals and saving them 67

Resizing visuals and saving them
It is very simple to save Matplotlib visuals with any resolution that you would like.
However, before adjusting the resolution and saving the visuals, you might want to resize
the visual. Let's first take a look at how we can resize the visuals and then see how we can
save the visuals with specific resolutions.

Resizing
Matplotlib uses a default visual size (6x4 inches) for all its visual output, and from time
to time, you may want to adjust the size of the visuals (especially if you have subplots as
you may need a larger output). To adjust the visual size, the easiest way is to run plt.
figure(figsize=(6,4)) before starting to request any visuals. Of course, adding
the mentioned code will not change the size as the inputted values are the same as the
Matplotlib default size. To observe the difference, add plt.figure(figsize=(9,6))
to the code in the previous screenshot and run it to study the differences. Also, change the
values a few times to find the values that work best for you.

Saving
All you need to use to save and adjust the resolution of the output figures is the
plt.savefig() function. This function takes the name of the file you would like to
create for saving the visual and also its resolution in terms of dots per inch (DPI). The
higher the DPI value of a figure, the higher its resolution. For instance, running plt.
savefig('visual.png',dpi=600) saves the visual in a file named visual.png
in your computer under the same directory where your Jupyter Notebook file is located.
Of course, the DPI resolution of the saved visual will be 600.

Example of Matplotilb assisting data
preprocessing
A great way to get to know a new dataset is to visualize its columns. The numerical
columns are best visualized using either histograms or boxplots. However, the
combination of the two is the best, especially when the boxplot is drawn vertically. Use
the subplot function of Matplotlib to draw the histogram and boxplot of all the numerical
columns of adult_df in a 2x5 matrix-like visual. Make sure that the histogram and the
boxplot of each column are in the same subplot column. Also, save the visual in a file
named ColumnsVsiaulization.png with a resolution of 900 DPI.

68 Review of Another Core Module – Matplotlib

The following code shows the solution for this example:

Numerical_colums = ['age', 'education_num', 'capitalGain',
'capitalLoss', 'hoursPerWeek']

plt.figure(figsize=(20,5))

for i,col in enumerate(Numerical_colums):

 plt.subplot(2,5,i+1)

 plt.hist(adult_df[col])

 plt.title(col)

for i,col in enumerate(Numerical_colums):

 plt.subplot(2,5,i+6)

 plt.boxplot(adult_df[col],vert=False)

 plt.yticks([])

plt.tight_layout()

plt.savefig('ColumnsVsiaulization.png', dpi=900)

After running the code, if it is successfully executed, check the directory that your Jupyter
Notebook file is in, and the ColumnsVisualization.png file must be added there.
Open the file and enjoy the high-quality visual that was created by Matplotlib.

Figure 2.12 – Histogram and boxplot of the numerical attributes of adult_df

Congratulations on successfully finishing this chapter! Now you are equipped with
visualization tools that will prove very handy for data analytics and data preprocessing.

Summary
In this chapter, you learned how to create the five main Matplotlib visuals and design
them for your needs. You also learned how to create more complex visuals by organizing
them in one visual using the Matplotlib subplot functionality. Ultimately, you also learned
how to resize the visuals and save them with your desired resolution for later use.

Exercises 69

In the next chapter, you will be given some essential lessons about data, along with
concepts that are necessary for successful data preprocessing. However, before moving
on to the next chapter, take some time and solidify and improve your learning using the
following exercises.

Exercises
1.	 Use adult.csv and Boolean masking to answer the following questions:

a. Calculate the mean and median of education-num for every race in the data.

b. Draw one histogram of education-num that includes the data for each race in
the data.

c. Draw a comparative boxplot that compares the education-num for each race.

d. Create a subplot that puts the visual from b) on top of the one from c).
2.	 Repeat the analysis on 1, a), but this time use the groupby function.

a. Compare the runtime of using Boolean masking versus groupby (hint: you can
import the module time and use the .time() function).

3.	 If you have not already done so, solve Exercise 4 in the previous chapter. After you
have created pvt_df for Exercise 4, run the following code:

import seaborn as sns

sns.pairplot(pvt_df)

The code outputs what is known as a scatter matrix. This code takes advantage
of the Seaborn module, which is another very useful visualization module. To
practice subplots and resizing, recreate what Seaborn was able to do with sns.
pairplot() using Matplotlib (hint: doing this with plt.subplot() might be
a bit too challenging for you. First, give it a try and figure out what the challenge is,
and then Google plt.subplot2grid()).

Pay attention – if you have never used the Seaborn module before, you may have
to install it on your Anaconda first. It is easy – just run the following code in your
Jupyter notebook:

conda install seaborn

3
Data – What Is It

Really?
This chapter presents a conceptual understanding of data and introduces data concepts,
definitions, and theories that are essential for effective data preprocessing. First, the chapter
demystifies the word "data" and presents a definition that best serves data preprocessing.
Next, it puts forth the universal data structure, table, and the common language everyone
uses to describe it. Then, we will talk about the four types of data values and their
significance for data preprocessing. Finally, we will discuss the statistical meanings of the
terms information and pattern and their significance for data preprocessing.

The following topics will be covered in this chapter:

•	 What is data?

•	 The most universal data structure: a table

•	 Types of data values

•	 Information versus pattern

72 Data – What Is It Really?

Technical requirements
You will be able to find all of the code examples that are used in this chapter, as well as the
dataset, in Chapter 3's GitHub repository:

https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python/tree/main/Chapter03

What is data?
What is the definition of data? If you ask this question of different professionals in various
fields, you will get all kinds of answers. I always ask this at the beginning of my data-
related courses, and I always get a wide range of answers. The following are some of the
common answers that my students have given when this question was asked:

•	 Facts and statistics

•	 Collections of records in databases

•	 Information

•	 Facts, figures, or information that's stored in or used by a computer

•	 Numbers, sounds, and images

•	 Records and transactions

•	 Reports

•	 Things that computers operate on

All of the preceding answers are correct, as the term data in different situations could
be used to refer to all of the preceding. So, next time someone says we came to XYZ
conclusions after analyzing the data, you know what your first question should be, right?
Yes, the next question would be to understand exactly what they mean by "data."

So, let me try and answer this question, What is meant by data?, with regards to this book,
Hands-On Data Preprocessing Using Python.

From a data preprocessing perspective, we need to step back and provide a more general
and all-encompassing definition. Here, we define data as symbols or signs representing a
measurement or model of reality. These symbols and signs are in themselves useless until
used with regard to higher-level conventions and understandings (HLCUs).

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter03

What is data? 73

I like two things about the previous definition:

•	 First, the definition is universal and encompasses all of the kinds of data you can
imagine, including the ones my students offered.

•	 Second, it verbalizes an implicit assumption in all the other definitions – the
existence of HLCUs.

Without HLCUs, data is a pile of meaningless symbols and signs.

Note:
A quick note before moving forward – I am going to use "HLCU" a lot in this
chapter, so maybe read its definition a few more times to commit it to memory.

Before the advent of AI, we could safely say the HLCU is almost always human language
and comprehension. However, now algorithms and computers are becoming a legitimate,
and in some aspects more powerful, HLCU of data.

Why this definition?
For data preprocessing, the very first thing you want to decide is the HLCU you will be
using. That is, what HLCU are you preparing your data for? If the data is being prepared
for human comprehension, the result will be very different than when the data is prepared
for computers and algorithms. Not only that, the HLCU might be different from one
algorithm to another.

One of the stark differences between human comprehension and computers as HLCUs
is that humans cannot digest more than two to three dimensions at a time. Being able to
process data with larger dimensions and size is the hallmark of algorithms and computers.

There is an important and distinctive relationship between the two HLCUs that needs to
be understood for effective data preprocessing. Let's learn about the DIKW pyramid first,
and I will use this to discuss that distinction.

74 Data – What Is It Really?

DIKW pyramid
Data, Information, Knowledge, and Wisdom (DIKW), also known as the wisdom
hierarchy or data pyramid, shows the relative importance and abundance of each of these
four elements. The following figure shows transactional steps between the stages, namely
processing, cognition, and judgment. Moreover, the figure specifies that only wisdom,
which is the rarest and most important element, is of the future, and the three other
elements, namely knowledge, information, and data, are of the past.

Figure 3.1 – DIKW pyramid

The definition of the four elements is presented as follows:

•	 Data: A collection of symbols – cannot answer any questions.

•	 Information: Processed data – can answer the questions who, when, where,
and what.

•	 Knowledge: Descriptive application of Information – can answer the question how.

•	 Wisdom: Embodiment of Knowledge and appreciation of why.

While the DIKW pyramid is referenced again and again in many data analytics books and
articles, you can see that the pyramid's HLCU is human language and comprehension.
That is why even though the pyramid makes a lot of sense, it is still not completely
applicable to data analytics.

What is data? 75

An update to DIKW for machine learning and AI
I have updated the DIKW pyramid to Data, Dataset, Pattern, and Action (DDPA) as I
believe it pertains better to Machine Learning (ML) and artificial intelligence.

Figure 3.2 – DDPA pyramid

The definitions of all four elements of DDPA are presented as follows:

•	 Data: All possible data from across all the data resources

•	 Dataset: A relevant collection of data selected from all the available data sources,
cleaned and organized for the next step

•	 Patterns: The interesting and useful trends and relationships within the dataset

•	 Action: The decision made, which is informed by the recognized patterns

Let's go through the three transactional steps between the four elements of the
DDAP pyramid:

1.	 Preprocess is to select the relevant data and prepare it for the next step.
2.	 Mine is applying data mining algorithms to the data in search of patterns.
3.	 Lastly, risk analysis is the step to consider the uncertainty of the recognized

patterns and arrive at a decision.

76 Data – What Is It Really?

The DDPA pyramid shows the pivotal role of data preprocessing as the goal of being able
to drive action from data. Preprocessing of the data is perhaps the most important step
from D to A (Data to Action). Not all the data in the world will be useful for driving action
in specific cases, and the data mining algorithms that are developed are not capable of
finding patterns in all types of data.

An update to DIKW for data analytics
It is important to remember that data preprocessing in no way pertains only to ML and
artificial intelligence. When analyzing data using data visualization, data preprocessing
also has a pivotal but slightly different role.

Neither the DIWK nor the DDPA pyramid can be applied well to data analytics. As
mentioned earlier, DIWK was designed for human language and comprehension, and I
created DDPA for algorithms and computers, so it is better suited for machine learning
and artificial intelligence. However, data analytics falls between the two ends of this
spectrum, where both humans and computers are involved.

I have designed another pyramid specifically for data analytics and its unique HLCUs. As the
HLCUs of data analytics are both humans and computers, the Data, Dataset, Visualization,
and Wisdom (DDVW) pyramid is a combination of the other two pyramids.

Figure 3.3 – DDVW pyramid

What is data? 77

The definitions of all four elements of DDVW are presented as follows:

•	 Data: All possible data from across all the data resources

•	 Dataset: A relevant collection of data selected from all the available data sources
and organized for the next step

•	 Visualization: The comprehensible presentation of what has been found in the
dataset (similar to Knowledge in DIKW – descriptive application of Information)

•	 Wisdom: Embodiment of Knowledge and appreciation of why (the same as Wisdom
in DIKW)

While the first transactional step of DDVW is similar to that of DDPA (both are
preprocessing), the second and third are different. The second transactional step of DDVW
is to analyze. That is what a data analyst does – use technology to do the following:

1.	 Explore the dataset.
2.	 Test the hypothesis.
3.	 Report the relevant findings.

The most understandable way to report the findings for the decision-maker is
visualization. A decision-maker will understand the visualization and use judgment (the
third transaction step of DDVW) to develop wisdom.

Data preprocessing for data analytics versus data
preprocessing for machine learning
Data preprocessing is a pivotal step for both data analytics and machine learning.
However, it is important to recognize the preprocessing that is done for data analytics is
very different from that of machine learning.

As seen in DDPA, the only HLCU for machine learning is computers and algorithms.
However, as shown in DDVW, the HLCU of data analytics is first computers and then it
switches over to humans. So, in a sense, the data preprocessing that is done for machine
learning is simpler, as there is only one HLCU to consider. However, when the data is
preprocessed for data analytics, both HLCUs need to be considered.

Now that we have a good understanding of what we mean by data, let's switch gears and
learn some important concepts surrounding data. The next concept we will discuss helps
us distinguish between data analytics and machine learning even further.

78 Data – What Is It Really?

The three Vs of big data
A very useful concept that helps to distinguish between machine learning and data
analytics is the three Vs of big data. The three Vs are volume, variety, and velocity.

The general rule of thumb is that when your data has high volume, high variety, and high
velocity, you want to consider machine learning and AI over data analytics. As a general
rule, this could be true, but if and only if you have high volume, high variety, and high
velocity after appropriate data preprocessing. So, data preprocessing plays a major role, and
that will be explained in more detail after going over the three Vs:

•	 Volume: The number of data points that you have. You can roughly think of data
points as rows in an Excel spreadsheet. So, if you have many occurrences of the
phenomena or entities that you have collected, your data is of high volume. For
example, if Facebook was interested in studying its users in the US, the volume of
this data would be the number of Facebook users in the US. Pay attention – the data
point in this study of Facebook is US users of the platform.

•	 Variety: The number of different sources of data you have that give you fresh new
information and perspective about the data points. You can roughly think of the
variety of your data as the number of columns you have in an Excel spreadsheet.
Continuing the Facebook example – Facebook has information such as the name,
date of birth, and email of its users. But Facebook could also add variety to this data
by including behavior columns, such as the number of visits in the last week, the
number of posts, and many more. The variety does not stop there for Facebook,
as it also owns other services that users may be using, such as Instagram and
WhatsApp. Facebook could add variety by including the behavior data of the same
users from the other services.

•	 Velocity: The rate at which you are getting new data objects. For instance, the
velocity of Facebook US users' data is much higher than the velocity of Facebook's
employees' data. But the velocity of Facebook US users' data is much lower than
Facebook's US post's data. Pay attention to what changes the velocity of data – it is
how often the phenomena or the entities you are collecting happen.

The importance of the three Vs for data preprocessing
Data analytics that heavily involves human comprehension cannot accommodate data
that has high volume, high variety, and high velocity. However, sometimes the high Vs
are happening due to the lack of proper data preprocessing. One important element of
successful data preprocessing is to include data that is relevant to the analysis. Just because
you have to dig through data with high Vs to prepare a dataset, that is not enough of a
reason to give up on data analytics in favor of machine learning.

The most universal data structure – a table 79

Next, we will move on from pure concepts to begin talking about the data itself and the
way we normally organize it.

The most universal data structure – a table
Regardless of the complexity and high Vs of your data, and even regardless of you wanting
to do data visualization or machine learning, successful data preprocessing always leads
to one table. At the end of successful data preprocessing, we want to create a table that
is ready to be mined, analyzed, or visualized. We call this table a dataset. The following
figure shows you a table with its structural elements:

Figure 3.4 – Table data structure

As shown in the figure, for data analytics and machine learning, we use specific keywords
to talk about the structure of a table: data objects and data attributes.

Data objects
I'm sure you have seen and successfully made sense of so many tables and created so many
of them as well. I bet many of you would have never paid attention to the conceptual
foundations of the table that allows you to create them and make sense of them. The
conceptual foundation of a table is its definition of the data object.

Data objects are known by many different names, such as data points, rows, records,
examples, samples, tuples, and many more. However, as you know for a table to make
sense, you need the conceptual definition of data objects. You need to know for what
phenomena, entity, or event the table is presenting values.

The definition of the data object is the entity, concept, phenomena, or event that all of
the rows share. For instance, the entity that holds a table of information about customers
together is the concept of the "customer." Each row of the table represents a customer and
gives you more information about them.

80 Data – What Is It Really?

The definition of the data object for some tables is straightforward, but not always. The
very first concept you want to figure out when reading a new table is what the assumed
definition of data objects for the table is. The best way you can go about this is to ask the
following question: what is the one entity that all of the columns in the table describe? Once
you have found that one entity, bingo! You have found the definition of the data object.

Emphasizing the importance of data objects
For data preprocessing, the definition of the data objects becomes more important. A lot
of the time, the data analyst or machine learning engineer is the one that needs to first
envision the end table that data needs to be preprocessed into. This table needs to be both
realistic and useful. In the following two paragraphs I will address what I mean by realistic
and useful:

•	 Realistic: The table needs to be realistic in the sense that you have the data,
technology, and access to create the table. For instance, I can imagine if I had a
table of data about newly married couples, with columns for the first month of their
marriage such as the number of times they kissed, or the number of times they were
passive-aggressive toward each other, I could build a universal model that could tell
couples whether their marriage was going to be successful or not. In this case, the
definition of data objects is newly married couples, and all of the imagined columns
describe this entity. However, realistically coming up with such a table is very
difficult. Incidentally, John Gottman from the University of Washington and James
Murry from Oxford University did create this model, but only with 700 couples who
were willing to be recorded while they were discussing contentious topics and were
willing to share the updates on their relationship with the researchers.

•	 Useful: The imagined table also needs to be useful for analytics goals. For instance,
suppose that somehow we have access to the video recordings of the first month
of all of the newly married couples. These recordings are stored in separate files,
organized by day. So, we set out to preprocess the data and count the number of
kisses and the number of passive-aggressive incidents for each recording and store
them in a table. This table's data object definition is the video recording of one day of
a newly married couple. Is this data object definition useful for the analytics goals of
predicting the success of couples? No, the data needs to be collated differently so the
data objects are the newly married couples.

Types of data values 81

Data attributes
As shown in Figure 3.4, the columns of a table are known as attributes. Different names
such as columns, variables, features, and dimensions might be used instead of attributes.
For example, in math, you are more likely to refer to "variables" or "dimensions," whereas,
in programming, you more often refer to "variables."

Attributes are describers of the data objects in a table. Each attribute describes something
about all of the data objects. For instance, in the table we envisioned for the newly married
couples, the number of kisses and the number of passive-aggressive incidents are the
attributes of that table.

Types of data values
For successful data preprocessing, you need to know the different types of data values from
two different standpoints: analytics and programming. I will review the types of data values
for both standpoints and then share with you their relationships and their connections.

Analytics standpoint
There are four major types of values from analytics standpoints: nominal, ordinal,
interval-scaled, and ratio-scaled. In the literature, these four types of values are under
four types of data attributes. The reason is that the types of values for each attribute must
remain the same, therefore, you can extrapolate value types to attribute types.

Figure 3.5 – Types of data attributes

82 Data – What Is It Really?

The preceding figure shows the tree of attribute types. The four mentioned types are in the
middle. As you can see in the tree, Nominal and Ordinal attributes are called Categorical
(or qualitative) attributes, whereas Interval-Scaled and Ratio-Scaled attributes are called
Numerical (or quantitative).

Nominal attributes
As the name suggests, this type of attribute refers to the naming of objects. There is no
other information that this attribute describes apart from a simple set of letters and
symbols that act as a name of the object or a category of the object.

A prominent example of a nominal attribute is gender when data objects are individuals.
While this attribute may be shown differently, the information it contains is a simple name
for two categories of humans. I have seen this information represented in many ways. The
following table shows all the different ways the nominal attribute gender can be presented.
Regardless of how the categories are presented, the information that is gathered by this
category is that an individual is either male or female.

Figure 3.6 – Different presentations of the nominal attribute gender

Other examples of nominal attributes when the data objects are individuals are hair color,
skin color, eye color, marital status, or occupation. What is important to remember about
nominal attributes is that they do not contain any other information than just names.

Ordinal attributes
On the other hand, ordinal attributes, as the name suggests, contain more information
that pertains to some types of order. For instance, when the data objects are individuals,
the level of education is a prime example of an ordinal attribute. While high school,
bachelor's, master's, and doctoral are names that refer to the names of education degrees,
there is a well-recognized order between all of them.

No one could logically give any order to the importance, value, or recognition between the
values of a nominal attribute such as gender. However, it is quite acceptable to assume the
number of resources (time, money, energy) someone has spent to get a bachelor's degree
is more than a high school degree.

Types of data values 83

Other examples of ordinal attributes are course letter grades (A, B, C, D), professional
rankings (Assistant Professor, Associate Professor, and Full Professor), and survey rates
(highly agree, agree, neutral, disagree, highly disagree).

So far, we know that ordinal attributes can contain more information than nominal
attributes. At the same time, ordinal attributes are themselves limited in the sense that
they do not contain how much each possible value of an ordinal attribute is different from
the other. For instance, we know that Individual A, who has a doctorate, might be able to
deal with research projects better than Individual B, who has a bachelor's degree. However,
we cannot say Individual A will finish a research task 20 hours faster than Individual B.
Simply put, ordinal attributes do not contain information that allows for interval
comparison between data objects.

Interval-scaled attributes
These attributes contain more information than ordinal attributes, as they allow for
interval comparison between data objects. By moving from ordinal attributes to interval
attributes, we also move from symbols and categories to numbers (categorical attributes to
numerical attributes). With numbers comes the capability to know how much difference
exists between data objects. For instance, when data objects are individuals, height is an
interval attribute. For instance, Roger Federer's height is 6'1", and everyone will agree that
he is shorter than Juan Martín del Potro by 5", as del Potro's height is 6'6".

Another example of an interval attribute when the data objects are individuals is weight.
The measurement of temperature in Fahrenheit or Celcius when the data objects are days
is also an example of an interval-scaled attribute.

The limitation of interval attributes is that we cannot use them for a ratio-based
comparison. For instance, will we ever be able to say an individual is twice as tall as the
other individual? You might be thinking yes. But the answer is no. The reason is that
there is no meaningful zero for the concept of human tallness. That is to say, there is no
individual whose height is zero.

84 Data – What Is It Really?

The shortest man in the world is documented to have been Chandra Bahadur Dangi and
his height was 1'10". Also, Robert Wadlow, with a height of 8'3", is reported to have been
the tallest man in the world. To put things into perspective, consider the following figure,
where you can compare the average heights with the recorded extremes:

Figure 3.7 – The spectrum of men's heights

Looking at the two extremes might challenge our preconceptions about height. However,
if you remove the two extremes, you will start feeling more comfortable. The reason for
this discomfort is that tallness is an interval attribute for our brain. We do not come across
very tall people or very short people in our daily lives. Although it will completely make
sense to most people if you say you are 2 inches taller than another person, it would not
make sense if you were to claim you are more than 3 times taller than the shortest man in
the world.

For instance, since I am 6'3", you will believe I am 3.41 times taller than the shortest
man in the world. While the mathematics of this calculation is correct ((6*12+3) /
(6*1+10) = 3.41), you cannot say I am 3.41 times taller than the shortest man in the
world, because the shortest man in the world is the zero in the concept of human tallness.
At best, you can say I am 3.41 times taller an object than Chandra Bahadur Dangi. But to
be able to do that, you had to change the definition of the data object from an individual
to an object.

Even if you have a roommate that is a very short person and you see him every day,
mathematically, it does not make sense to have a multiplication of tallness as there is no
absolute zero. There is no individual you could ascribe the value zero to for their tallness.

Types of data values 85

Ratio-scaled attributes
When we move to ratio-scaled attributes, the last limitation, which was the incapability
to multiply or divide values for interval-scaled attributes, is also removed, as we can find
an inherent zero for them. For instance, when our data objects are individuals, monthly
income is an example of a ratio-scaled attribute. We can imagine an individual with no
monthly income. For instance, it completely makes sense if you were to report that your
dad makes twice what you make every month. Another example of a ratio-scaled attribute
is the temperature in kelvin when the definition of data object is a day.

Binary attributes
Binary attributes are nominal attributes with only two possibilities. For instance, the
gender you are assigned at birth is either male or female, so Sex Assigned At Birth
(SAAB) is a binary attribute.

There are two types of binary attributes: symmetric and asymmetric. Symmetric binary
attributes, such as SAAB, are where either of the two possibilities happens as frequently
and carries the same level of importance for our analysis.

However, one of the two possibilities of asymmetric binary attributes happens less
frequently and is normally more important. For instance, the result of a COVID test is
an asymmetric binary attribute, where the positive results happen less often but are more
important in our analysis.

You might think that symmetric binary attributes are more common than asymmetric
binary attributes, however, that is far from the reality. Try to think of other symmetric
binary attributes, and email them to me if you find a few good ones.

Conventionally, the rarer possibility of a binary attribute is denoted by a positive (or one),
whereas the more common possibility is denoted by a negative (or zero).

Understanding the importance of attribute types
As analytic methods become more complex, it will become easier to make mistakes and
never know about them. For instance, you might inadvertently input an integer-coded
nominal attribute into an algorithm that regards these values as real numbers. What you
have done is to input randomly assumed relationships between the data objects that have no
basis in reality to a model that cannot think for itself. See Exercise 5 for an example of this.

86 Data – What Is It Really?

Programming standpoint
By and large, values are either known as numbers, strings, or Booleans for computers.
Numbers might be recognized as integers or floating points, but that is it.

Integers are whole numbers from zero to infinity. For instance, 0, 1, 2, 3, and so on are
all integer values. Floating points are numbers. They can be positive or negative and have
decimal points. For instance, 1.54, -25.1243, and 0.1 are all floating points.

I hope you see the challenge here – from an analytics perspective, you may have
nominal or ordinal attributes but computers can only show them as strings. Similarly,
from an analytics perspective, you may have ratio-scaled or interval-scaled attributes
but computers can only show them as numbers. The only complete match between
programming value types and analytics value types is binary attributes that can be
presented completely with Boolean values.

The following table presents a mapping of attribute (value) types between analytics and
programming perspectives. As you are developing skills to effectively preprocess data, this
mapping should become second nature to you. For instance, you want to understand your
options of presenting an ordinal attribute with Booleans, strings, or integers, and what
each option would entail (see exercise 6 in the Exercise section).

Figure 3.8 – Mapping of value types between analytics and programming

So far in this chapter, we covered the definition of data and also the types of data
attributes. Now, we are going to talk about two high-level and important concepts that are
essential for successful data preprocessing: information and pattern.

Information versus pattern
Before finishing this chapter, which aims to arm you with all the necessary definitions and
concepts needed for data preprocessing, we need to cover two more concepts: information
and pattern.

Information versus pattern 87

Understanding everyday use of the word "information"
First, I need to bring your attention to two specific and yet very different functions of the
term information. The first one is the everyday use of "information," which means "facts
or details about somebody or something." This is how the Oxford English Dictionary
defines information. However, while statisticians also employ this function of the word,
sometimes the term information serves another purpose.

Statistical use of the word "information"
The term "information" could also refer to the value variation of one attribute across
the population of a data object. In other words, information is used to refer to what an
attribute adds to space knowledge of a population of data objects. Let's explore an example
dataset, customer_df, as shown in the following screenshot. The dataset is pretty small
and has 10 data objects and 4 attributes. The definition of the data object for the following
dataset is customers.

Figure 3.9 – Reading Customer Dataset.xlsx and seeing its records

We will talk about this dataset as we go over the following subsections.

88 Data – What Is It Really?

Statistical information for categorical attributes
Customer Name is a nominal attribute, and the value variation this attribute adds to the
space knowledge of this dataset is the maximum possible for a nominal attribute. Each
data object has a completely different value under this attribute. Statistically speaking, the
amount of information this attribute has is very high.

The case of the attribute store is the opposite. This attribute adds the minimal possible
information a nominal attribute may add – that is, the value for every data object under
this attribute is the same. When this happens, you should remove the attribute and see
whether you can perhaps update the definition of the data objects. If we change the
definition of the data objects to Starbucks customers of Claremont Village
store, we have retained the information and we can safely remove the attribute.

Statistical information for numerical attributes
The matter of statistical information for numerical attributes is a little bit different. For
numerical attributes, you can calculate a metric called variance to drive how much
information each numerical attribute has. Variance is a statistical metric that captures the
spread between a collection of numbers. It is calculated by the summation of the squared
distances of each number from the mean of all the numbers. The higher the variance of an
attribute, the more information the attribute has. For instance, the variance for the Last
week number of visits attribute is 3.12, and the variance for the Last week
Purchase $ attribute is $109.63. Calculating the variance using Pandas is very easy. See
the following screenshot:

Figure 3.10 – Calculating the variance for the numerical attributes of customer_df

We would be able to say the Last week Purchase $ attribute has more information
than the Last week number of visits attribute if the attributes had a similar
range. However, the attributes have a completely different range of values, and it makes
the two variance values incomparable. There is a way to get around this issue – we can
normalize both the attributes and then calculate their variance. Normalization is a
concept that we will cover later in this book.

Information versus pattern 89

Data redundancy – attributes presenting similar information
We call an attribute redundant if the variation of its value across the data objects of a
dataset is too similar to that of another attribute. To check data redundancy, you can draw
a scatterplot for the variables you suspect are presenting similar information. For instance,
the following screenshot has drawn the scatterplot of the two numerical attributes of
customer_df:

Figure 3.11 – Drawing the scatterplots for the two attributes, Last week number of visits and
Last week Purchase $

You can see that it seems that with the increase in the number of visits, the purchase has
also increased.

90 Data – What Is It Really?

Correlation coefficient to investigate data redundancy
You can also use the correlation coefficient to investigate data redundancy. A correlation
coefficient value falls between -1 and 1. When the value is close to zero, it means the two
attributes are not showing similar information. When the correlation coefficient between
two numerical attributes is closer to both ends of the spectrum (-1 or +1), it shows that
the two attributes are showing similar statistical information and perhaps one of them
is redundant. When two attributes have a significant and positive correlation coefficient
(greater than 0.7), that means if the value of one attribute increases the value of the other
attribute will also increase. On the other hand, when two attributes have a significant
and negative correlation coefficient (smaller than -0.7), that means the increase of one
attribute leads to the decrease of the other.

The following screenshot has used .corr() to calculate the correlation coefficient
between the numerical attributes in customer_df:

Figure 3.12 – Finding the correlation coefficients for the pairs of numerical attributes in customer_df

The correlation coefficient is 0.82, which is considered high, indicating one of the two
numerical attributes might be redundant. The cut-off rule of thumb for high correlation is
0.7 – that is, if the correlation coefficient is higher than 0.7 or lower than -0.7, there might
be a case of data redundancy.

Now that we have a good understanding of the term information, let's turn our attention
to the term pattern.

Statistical meaning of the word "pattern"
While the statistical meaning of "information" is the value variation of one attribute
across the data objects of a dataset, the statistical meaning of "pattern" is about the value
variation of more than one attribute across the data objects. Every specific value variation
of more than one attribute across the data objects of a dataset is called a pattern.

It is important to understand that most patterns are neither useful nor interesting. It is the
job of a data analyst to find interesting and useful patterns from the data and present them.
Also, it is the job of an ML engineer to streamline a model that collects the expected and
useful patterns from the data and makes calculated decisions based on the collected patterns.

Information versus pattern 91

Example of finding and employing a pattern
The relationship we found between the two numerical attributes of customer_df in the
following situation could be considered as useful.

The manager of the Starbucks store in Claremont Village made a huge blunder and
accidentally removed the values of Last week Purchase $ for 10 customers from
the records, but luckily she knows about the power of data analytics, and the Last week
number of visits attribute is intact. The following screenshot shows the second part
of this data:

Figure 3.13 – Reading Customer Dataset 2.xlsx and seeing its records

The manager of the store, after having seen the high correlation between Last week
number of visits and Last week Purchase $, can use simple linear regression
to extract, formulate, and package the pattern from the 10 customers with all of the data.
After the regression model is trained, the manager can use it to estimate the purchase $ for
the customers that have missing values.

92 Data – What Is It Really?

Simple linear regression is a statistical method where the values of one numerical
attribute (X) are linked to the values of another numerical attribute (Y). In statistical
terms, when we observe a close relationship between two numerical attributes, we may
investigate to see whether X can predict Y.

The following screenshot illustrates the application of .regplot() from the Seaborn
module to visualize the linear regression line that has fitted to the data of the first 10
customers in customer_df:

Figure 3.14 – Using .regplot() to show the regression line between the two attributes, Last week number
of visits and Last week Purchase $

Installation of the Seaborn module
If you have never used the Seaborn module, you have to install it first.
Installing it on Anaconda is very simple. Open a chunk of code in your Jupyter
notebook and run the following line of code:

conda install seaborn

Information versus pattern 93

The equation of the fitted regression model is shown as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 $ = 1.930 + 4.867 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

Now, this equation allows us to estimate the missing values of customer2_df. The
following screenshot shows the preceding equation is applied to customer2_df to
calculate the missing values:

Figure 3.15 – Using the extracted pattern (regression equation) and .apply() function to estimate and
replace the missing values

So, this way the manager of the Starbucks store in Claremont Village was able to save
the day and replace the missing values with estimated values that are based on a reliable
pattern found in the data.

Before moving on, let me acknowledge that we have not yet covered linear regression in
this book (we will do this in Chapter 6, Prediction). However, in this example, we used
linear regression to showcase an instance of extracting and using the pattern in a dataset
for an analytic situation. We did this in the interest of understanding what we mean by
"useful patterns," and extracting and packaging patterns for later use.

94 Data – What Is It Really?

Summary
Congratulations on finishing this chapter. You have now equipped yourself with an
essential understanding of data, data types, information, and pattern. Your understanding
of these concepts will be vital in your journey to successful data preprocessing.

In the next chapter, you will learn about the important roles databases play for data
analytics and data preprocessing. However, before moving on to the next chapter, take
some time and solidify and improve your learning using the following exercises.

Exercises
1.	 Ask five colleagues or classmates to provide a definition for the term data.

a) Record these definitions and notice the similarities among them.

b) In your own words, define the all-encompassing definition of data put forth in
this chapter.

c) Indicate the two important aspects of the definition in b).

d) Compare the five definitions of data from your colleagues with the
all-encompassing definitions and indicate their similarities and differences.

2.	 In this exercise, we are going to use covid_impact_on_airport_traffic.
csv. Answer the following questions. This dataset is from Kaggle.com – use this
link to see its page:

https://www.kaggle.com/terenceshin/covid19s-impact-on-
airport-traffic

The key attribute of this dataset is PercentOfBaseline, which shows the ratio
of air traffic in a specific day compared to a pre-pandemic time range (February 1 to
March 15, 2020).

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique()
function to check. If there are, remove them from the data and update the definition
of the data object.

c) What type of values do the remaining attributes carry?

d) How much statistical information does the PercentOfBaseline attribute have?

https://www.kaggle.com/terenceshin/covid19s-impact-on-airport-traffic
https://www.kaggle.com/terenceshin/covid19s-impact-on-airport-traffic

Exercises 95

3.	 For this exercise, we are going to use US_Accidents.csv. Answer the following
questions. This dataset is from Kaggle.com – use this link to see its page:

https://www.kaggle.com/sobhanmoosavi/us-accidents

This dataset shows all the car accidents in the US from February 2016 to
December 2020.

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique()
function to check. If there are, remove them from the data and update the definition
of the data object.

c) What type of values do the remaining attributes carry?

d) How much statistical information do the numerical attributes of the dataset carry?

e) Compare the statistical information of the numerical attributes and see whether
any of them are a candidate for data redundancy.

4.	 For this exercise, we are going to use fatal-police-shootings-data.csv.
There are a lot of debates, discussions, dialogues, and protests happening in the
US surrounding police killings. The Washington Post has been collecting data on
all fatal police shootings in the US. The dataset available to the government and
the public alike has date, age, gender, race, location, and other pieces of situational
information related to these fatal police shootings. You can download the last version
of the data from https://github.com/washingtonpost/data-police-
shootings.

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique()
function to check. If there are, remove them from the data and update the definition
of the data object.

c) What type of values do the remaining attributes carry?

d) How much statistical information do the numerical attributes of the dataset carry?

e) Compare the statistical information of the numerical attributes and see whether
any of them are a candidate for data redundancy.

https://www.kaggle.com/sobhanmoosavi/us-accidents
https://github.com/washingtonpost/data-police-shootings
https://github.com/washingtonpost/data-police-shootings

96 Data – What Is It Really?

5.	 For this exercise, we will be using electricity_prediction.csv. The
following screenshot shows the five rows of this dataset and a linear regression
model created to predict electricity consumption based on the weekday and daily
average temperature:

Figure 3.16 – Screenshot for Exercise 5
a) The regression model that is derived from the data is presented as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 3074181.5 − 55710.1 × 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 − 3476.4 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

b) What is the fundamental mistake in this analysis? Describe it and provide
possible solutions for it.

Exercises 97

6.	 For this exercise, we will be using adult.csv. We used this dataset extensively in
Chapter 1, Review of the Core Modules NumPy and Pandas and Chapter 2, Review
of Another Core Module – Matplotlib. Read the dataset using Pandas and call it
adult_df.

a) What type of values does the education attribute carry?

b) Run adult_df.education.unique(), study the results, and explain what
the code does.

c) Based on your understanding, order the output of the code you ran for b).

d) Run pd.get_dummies(adult_df.education), study the results, and
explain what the code does.

e) Run adult_df.sort_values(['education-num']).
iloc[1:32561:1200], study the results, and explain what the code does.

f) Compare your answer to c) and what you learned from e). Was the order you
came up with in c) correct?

g) The education attribute is an ordinal attribute – translating an ordinal attribute
from an analytic perspective to a programming perspective involves choosing
between Boolean representation, string representation, and integer representation.
Choose which choice has been made for the three following representations of the
education attribute:

adult_df.education

pd.get_dummies(adult_df.education)

adult_df['education']

h) Each choice has some advantages and some disadvantages. Select which
programing data representation each following statement describes:

If an ordinal attribute is presented using this programming value representation, no
bias or assumptions are added to the data, but algorithms that work with numbers
cannot use the attribute.

If an ordinal attribute is presented using this programming value representation,
the data can be used by algorithms that only take numbers, but the size of the data
becomes bigger and there may be concerns for computational costs.

If an ordinal attribute is presented using this programming value representation,
there will be no size or computational concerns, but some statistical information
that may not be true is assumed and it may create bias.

98 Data – What Is It Really?

References
John M. Gottman, James D. Murray, Catherine C. Swanson, Rebecca Tyson, and Kristin R.
Swanson. The Mathematics of Marriage: Dynamic Nonlinear Models. MIT Press, 2005.

4
Databases

Databases play a major technological role in data preprocessing and data analytics.
However, time and again, I have seen plenty of misunderstandings surrounding their
role in analytics. While it is possible to do simple analytics and data preprocessing using
databases themselves, these tasks are not what databases are designed for. In contrast,
databases are technological solutions to record and retrieve data effectively and efficiently.

In this chapter, we will first discuss the technological role of databases in effective
analytics and preprocessing. We will then enumerate and understand the different types
of databases. Finally, we will cover five different methods of connecting to, and pulling
data from, databases.

The following topics will be covered in this chapter:

•	 What is a database?

•	 Types of databases

•	 Connecting to, and pulling data from, databases

Technical requirements
You will be able to find all of the code and the dataset that is used in this book in a GitHub
repository exclusively created for this book. To find the repository, click on this link,
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-
in-Python, find chapter 04 in this repository, and download the code and the data for
better learning.

100 Databases

What is a database?
There may be a handful of different definitions of a database, all of which might be correct,
but there is one definition that best serves the purpose of data analytics. A database is a
technological solution to store and retrieve data both effectively and efficiently.

While it is true that databases are the technological foundations of data analytics, effective
analytics do not happen inside them and that is a great thing. We want databases to be
good at what they are meant to do: the effective and efficient storage and retrieval of data.
We want a database to be fast, accurate, and secure. We also want a database to be able to
serve our needs as regards quick sharing and synching.

When we want to get some data from databases for analytics purposes, it is easy to forget
that databases are not designed to serve our analytics purposes. So, it should not be a
surprise that the data in the database is organized in a way that serves its functions – the
effective and efficient storage and retrieval of data – rather than being organized for our
analytics purposes.

One of the very first steps of data analytics is to locate and collect data from various
databases and sources, and reorganize it into a dataset that has the potential to answer
questions about our decision-making environment. The following diagram illustrates this
important step of data analytics:

Figure 4.1 – From databases to a dataset

What is a database? 101

At times, the data might be coming from one database but, all the same, the data needs
to be reorganized into a dataset that is designed for our analytics needs. When we are
reorganizing the data into a dataset, we need to pay close attention to the dataset's
definition of the data objects. We define the data object of a dataset so that the dataset
serves the needs of our analytics.

Understanding the difference between a database and
a dataset
A database and dataset are not the same concepts, but are often and incorrectly used
interchangeably. We did define a database as a technological solution for storing and
retrieving data both effectively and efficiently. However, a dataset is a specific organization
and presentation of some data for a specific reason.

For data analytics, while the data comes from databases, it is eventually reorganized into
a dataset. The "specific reason" for such a dataset is the analytics goals and the "specific
organization and presentation" of that dataset is to support those goals.

For instance, we want to use weather data such as temperature, humidity, and wind speed
to predict the hourly electricity consumption of the city of Redlands. For such analytics, we
need a dataset whose definition of the data object is an hour in the city of Redlands. The
attributes will be average temperature, average humidity, average wind speed, and electricity
consumption. Pay attention that all of these attributes describe the data object – an hour
in the city of Redlands. That is the design of the dataset that supports the analytical goal of
predicting hourly electricity consumption in the city of Redlands based on weather data.

In the city of Redlands, the weather data and electricity data come from different
databases. The weather data comes from 5 databases that collect data from 5 locations
across the city, and each database records the weather data of its surroundings every
15 minutes. The electricity data comes from the city's only electricity supplier and its
database records the amount of electricity consumption in the city every 5 minutes.

The data in these six databases needs to be collated and reorganized into the described
dataset so that the prediction of hourly electricity consumption based on weather is possible.

102 Databases

Types of databases
Mainly there are four types of databases:

•	 Relational databases (or SQL databases)

•	 Unstructured databases (NoSQL)

•	 Distributed databases

•	 Blockchain

The distinctions between these databases are not cut and dried technologically and in
practice. For instance, distributed databases are essentially a combination of different
types of databases in multiple locations. Here, we will discuss these types of databases to
develop a better appreciation for the way databases organize data according to a situation's
needs. We will also briefly talk about the differences and similarities, as well as the
advantages and disadvantages, of the types of databases.

Why do we need to know the types of databases for data preprocessing?
Each of the four types of databases organizes and stores the data differently.
As our data analytics journey always involves locating and collecting data
from various databases, knowing different kinds of databases serves two
important purposes.

First, by knowing what is possible, we may be able to envision what could be
out there when we look for data.

Second, and more importantly, as we want to reorganize the relevant data into
our designed dataset, we need to understand the organization and structure of
its source first.

The differentiating elements of databases
Before discussing the four types of databases, let's first talk about what are the elements
that may require using various kinds of databases. These elements are the level of
structure, storage location, and authority.

Types of databases 103

Level of data structure
Data with no structure is a pile of signs and symbols with no use or meaning. So do not let
the term "unstructured databases" fool you since every piece of usable data needs at least
some structure. The more data is structured, the less processing it will need when using it.
However, structuring data is expensive and not always sensible.

When data is structured, not only does it potentially take up more space, but it also needs
resources to preprocess and handle data before it is recorded. On the other hand, when
the data is sufficiently structured on one occasion, it can then be used again and again. So,
the way to determine how much structure data needs is to factor in the costs and benefits
of structuring.

For example, while the benefits of structuring the basic customer data that is the core
asset of many businesses easily outweigh its costs, in many cases, the costs of structuring
customer emails, voice, and social media data may seem too overwhelming for small and
medium organizations.

The following diagram shows the interaction between costs and benefits of structuring
data. As the data is more structured, naturally, the cost of structuring it goes up. But in
return, the cost of having to deal daily with unstructured data goes down until the benefits
of structuring the data plateau. By considering the costs and benefits, we can find the
appropriate level of data structure.

Figure 4.2 – Interaction between costs and benefits of structuring data – a general case

104 Databases

The best level of structuring data will vary from situation to situation and also from data
to data. For instance, some data, such as video, sound, and social media data, may need
specific preprocessing every time it is used for different purposes. That means every
time it is used, it needs to go through data restructuring in any case, so structuring the
data will not bestow any benefit and it does not make economical sense. Furthermore,
these types of data tend to be large, and only a unique segment of them are needed to be
structured from time to time without us not knowing which segment in advance. In such
cases, structuring the whole data in advance does not make economical sense as we do not
know what segment of the data we will need to be structured in the future. The following
diagram shows this specific situation:

Figure 4.3 – Interaction between costs and benefits of structuring data – a specific situation

Storage location
The geographical location that the databases are located in is also important for a variety
of reasons, including data security, data availability, data accessibility, and, of course,
operation costs.

Authority
There are two key questions under authority that are very important to consider when
choosing what type of database is appropriate:

1.	 Who does that data belong to?
2.	 Who should have the authority to update it?

Types of databases 105

Relational databases (SQL databases)
Relational databases, or structured databases, are an ecosystem of data collection
and management in which both the collected data and the incoming data must conform
with a pre-defined set of relationships between the data. For relational databases, if
incoming data is not expected in a relational database, the data cannot be stored. Until the
database ecosystem is updated in such ways, those types of incoming data are expected in
the new ecosystem.

Some types of data are so different that updating the ecosystem of the database so
that they are expected will only impede the database's goals. Furthermore, for some
types of data, we may not be certain if we want to invest in them enough to change the
ecosystem for them. This is often the case for video, voice, text, and social media data that
tends to have a large size. For these types of data, we give up on changing the relational
databases to accommodate them and store them in types of databases that do not require
as much structuring.

Unstructured databases (NoSQL databases)
NoSQL, or unstructured databases, are precisely the solution for the problem of wanting
to store data that we are unable to structure, or are ambivalent to do so. Furthermore,
unstructured databases can be used as an interim house for data we do not have the
resources to structure just now.

The term "unstructured databases" is not literal of course. Fully unstructured data is a
pile of signs and symbols with no values. The term "unstructured databases" comes up
against relational databases to create a distinction. The following example demonstrates
a practical distinction between structured and unstructured data and their different
applications for a law firm.

A practical example that requires a combination of
both structured and unstructured databases
Seif and Associates law firm has been active in the area of civil and criminal law since
1956. Back in the day, the firm kept a paper copy of every legal document, every memo,
every appeal, every invoice, and so on. In 1998, the firm went through a major IT overhaul
and created a relational database that keeps track of all of the legal and business activities.
The relational database that supports the firm is highly structured and allows the firm four
different types of reports, that only such a highly structured database would allow. For
instance, the database could report the monthly assigned legal tasks of every paralegal.

106 Databases

All of the documents that are sent out to the courts and the invoices that are sent to
customers are not data objects in the database, but are produced on demand from the
database. For instance, an invoice is produced every time by checking the invoice number
in the database reading the items and prices associated with the invoice. Once all this data
is found in the database, a piece of software puts them together and prints out an invoice
every time.

As the major IT overhaul in 1998 was a significant undertaking by itself, the firm never
had the chance to digitalize the paper copies from 1956 to 1998. However, 1 year ago,
the firm decided to unburden itself from having to carry all those physical copies. Now,
the firm keeps a scanned version of these documents on an unstructured database. Even
though the data is all in the unstructured database, detailed reports from this database are
not possible.

An AI company has recently approached the firm and suggested that they have the
technology to go through the digital copies of the documents from 1956 to 1998 and include
them in the structured database. The firm concluded that the cost of structuring that data
(the AI company's price quote) does not meet or exceed the possible benefits of structuring
it. Therefore, the firm decided that an unstructured database for those records will suffice
as they are only recorded for legal purposes and if any of those documents are needed, the
unstructured database has enough indexing, so the documents are found in 5 to 10 minutes.

Distributed databases
When we think of structured or unstructured databases, we normally assume that each
database is located physically at one site or one computer. However, this can easily be
an incorrect assumption. There are many reasons for having multiple locations/sites/
computers for a database, such as higher data availability, lower operational costs, and
superior data safety. Simply put, a distributed database is a collection of databases
(structured, unstructured, or a combination of the two) whose data is physically stored in
multiple locations. To the end user, however, it feels like just one database.

The foundation of cloud computing is distributed databases. For instance, Amazon Web
Services (AWS) is a masterfully connected web of distributed databases across the world
that offers database space with high availability and safety and bills its customers based on
their actual usage.

Blockchain
We normally assume that a database is owned by one person or one organization. While
this is a correct assumption in many cases, Blockchain is the solution when central
ownership and authority are not advantageous.

Connecting to, and pulling data from, databases 107

For instance, this is one of the many reasons that Bitcoin has become a competitive
option for digital money. While banks' central authority of the databases provides some
assurances for data safety, the banks will also have the technological authority to cut
customers off from their money if they deem this necessary. However, Blockchain is a
database alternative that does not have a central authority while providing data safety.

The downside of Blockchain is that all of its data is stored in blocks and each block can
only hold a small amount of information. Furthermore, the complex and detailed reports
that are easily produced by relational databases cannot be created by Blockchain.

So far, we have covered some important topics:

•	 What are databases?

•	 Different types of databases

•	 Why we need various types of databases

Now, we turn our attention to how we can create and connect to databases and get the
data we want.

Connecting to, and pulling data from,
databases
For data analytics and data preprocessing, we need to have the skillset to connect to
databases and pull the data we want from them. There are a few ways you can go about
this. In this section, we will cover these ways, share their advantages and disadvantages,
and, with the help of examples, we will see how this is done.

We will cover five methods of connecting to a database: direct connection, web page
connection, API connection, request connection, and publicly shared.

Direct connection
When you are allowed access to a database directly, it means you can pull any data you
want from the database. This is a great method of pulling data from databases, but there
are two major disadvantages. First, you are rarely given direct access to databases unless
you are completely trusted by the owner of the database. Second, you need to have the
skillset to interact with a database to pull the data from it. The script you need to know
for connecting to relational databases is called Structured Query Language (SQL). In
SQL, every time you want to pull data from a database, you write a query using the SQL
language. A great resource for learning SQL is available for free at W3Schools.com:
https://www.w3schools.com/sql/.

http://W3Schools.com:
https://www.w3schools.com/sql/

108 Databases

Advice to beginners about learning SQL
If you are not familiar with SQL, make certain to at least know the following
concepts: SQL table, primary keys, and foreign key, and the following
operators: SELECT, DISTINCT, WHERE, AND, OR, ORDER BY, LIKE,
JOIN, GROUP BY, COUNT(), MIN(), MAX(), AVE(), SUM(),
HAVING, and CASE. https://www.w3schools.com/sql/ can help
you learn the topics mentioned.

When you have written a correct query, you need to somehow send it to the database and
be able to get back the results, and for that, you need a connection to the database. There
is no one way to create a connection to the database. There is software with an interactive
User Interface (UI) that can do that for you. Examples of such software are Microsoft
Access, SQL Server Management Studio (SSMS), and SQLite.

The good news is that we can also create a connection to a database using the Python
module sqlite3. We will be using the Chinook sample database to practice connecting
to databases using Python and the module sqlite3. The following diagram shows the
Chinook database using the Unified Modeling Language (UML). This sample database
has 11 tables that are connected to one another by their primary keys to create a database
that is designed to support a small/medium-sized business that sells music tracks. The
UML of a database helps to understand the connections between tables and to design
queries to pull data from a database.

Figure 4.4 – UML of the Chinook database (source: sqlitetutorial.net)

https://www.w3schools.com/sql/

Connecting to, and pulling data from, databases 109

The following screenshot shows the combined use of pandas and sqlite3 modules
to create a connection to a database and read the data from the database into a pandas
DataFrame. The code employs the function pd.read_sql_query() for this purpose.
This function requires two inputs: a query in the form of a string and a connection. The
code uses the sqlite3.connect() function to create a connection, and then passes
Connection and query_txt into pd.read_sql_query() to have the requested
data in a DataFrame.

Figure 4.5 – Creating a connection to chinook.db using the sqlite3 module

So far, we have covered one of the five methods of connecting to databases: direct
connection. Next, we will look at the four remaining methods: web page connection, API
connection, request connection, and publicly shared.

Web page connection
Sometimes, the owner of the database only wishes to give you controlled access to their
database. As these types of access are controlled, data sharing happens on the owner's
terms. For instance, the owner might wish to give you access to a certain part of their
database. Furthermore, the owner might not wish you to be able to pull all the data you
need at once, but in timed portions.

A web page connection is one of the methods that database owners can use when offering
controlled access to their database. A great example of a web page connection can be seen
and interacted with at londonair.org.uk/london/asp/datadownload.asp.
After you open this page, you can either pick a specific location or a specific measurement.
Regardless of your choice, the page takes you to another page and takes more input from
you before showing you a graph and providing you with a CSV dataset. Go to this web
page and try different inputs and download some datasets before reading on.

http://londonair.org.uk/london/asp/datadownload.asp

110 Databases

API connection
The second method for giving out controlled access to databases is providing an API
connection. However, unlike the web page connection method, where a web page would
navigate and respond to your request, with API connections, a web server handles your
data requests. A great example of data sharing through an API connection is data of the
stock market. Different web services provide free and or subscription-based APIs for users
to get access to live stock market data.

An example of connecting and pulling data using an API
The Finnhub Stock API (finnhub.io) is a great example of such a web service. Finnhub
provides both free and subscription-based access to its databases. You can access and use
their basic stock market data, such as daily, hourly, and minute by minute, of US stock
prices. With their free version access, you can request their basic data, such as stock prices
and you may send up to 60 requests per minute. If you need to process more than 60
requests per minute, or you want data that is not included in the free access, you will have
to subscribe.

The Finnhub free version is enough for us to practice accessing data through APIs. First,
on the first page of finnhub.io, click on Get a Free API Key and get yourself an API key.
Second, type the following code into your Jupyter notebook and change API_Key from
the arbitrary 'abcdefghijklmnopq' to the free API key you got from finnhub.io.
If you have done every step correctly, you will get <Response [200]> printed out, which
means everything went well. Via this code, you connected to the Finnhub web server and
collected some data:

import requests

stk_ticker = 'AMZN'

data_resolution = 'W'

timestamp_from = 1577865600

timestamp_to = 1609315200

API_Key = 'abcdefghijklmnopq'

Address_template = 'https://finnhub.io/api/v1/stock/
candle?symbol={}&resolution={}&from={}&to={}&token={}'

API_address = Address_template.format(stk_ticker, data_
resolution, timestamp_from, timestamp_to, API_Key)

r = requests.get(API_address)

print(r)

http://finnhub.io
http://finnhub.io
http://finnhub.io

Connecting to, and pulling data from, databases 111

Now, let's dissect this code together. Every API request needs to be expressed in a web
address. This is universally true; the way you should translate your request into a web
address might be somewhat different for different web servers, but they are very similar. If
you have already run the proceeding code, when you execute print(API_address),
as realized in the following screenshot, you will see the web address that claims to have
the API key of abcdefghijklmnopq and requests the weekly Amazon stock price from
January 1 to December 30, 2020. Study the web address and find out each segment of the
address before reading on.

Figure 4.6 – Printing API_address

The following bullet points list and explain the different parts of the web address:

•	 symbol=AMZN specifies that you want the prices with the stock ticker AMZN,
which indicates Amazon.

•	 resolution=W specifies that you want the weekly prices. You could request minute
by minute, every 5 minutes, every 15 minutes, every half an hour, hourly, daily,
weekly, and monthly prices by using, respectively, 1, 5, 15, 30, 60, D, W, and M.

•	 from=1577865600 specifies the time from which you want data. The weird-
looking number is a timestamp for January 1, 2020.

•	 to=1609315200 specifies the time up to which you want data. The weird-looking
number is a timestamp for December 30, 2020.

•	 token=abcdefghijklmnopq specifies the API key for this address.

What is next?
Now that you understand the preceding code and you have got the <Response [200]>
message, we need to access and use the data. Let's do this step by step. First, run and study
the output of the following code:

print(r.json())

The output is a JSON formatted string that has the following structure: {'c': a list
with 51 numbers, 'h': a list with 51 numbers, 'l': a list with
51 numbers, 'o': a list with 51 numbers, 's': 'okay', 't: a
list with 51 numbers, 'v': a list with 51 numbers}.

112 Databases

The output basically shows the 51-week data of Amazon stock prices. The following list
shows what each letter stands for.

•	 'c': the closing price for the period

•	 'h': the highest price during the period

•	 'l': the lowest price during the period

•	 'o': the opening price for the period

•	 's': the status of the stock

•	 't': the timestamp showing the end of the period

•	 'v': the trading volume in the period

Working with the stock data when presented with this format is not easy. However,
transforming it to a format that you are used to is easy. Run the following code and study
the output:

AMZN_df = pd.DataFrame(r.json())

AMZN_df

After running the code, the data will be presented in AMZN_df, which is a pandas
DataFrame. A pandas DataFrame is a data structure that we like as we know how to
manipulate the data using multiple pandas functions.

Putting it all together
The following screenshot shows all the preceding code that created AMZN_df and another
six lines of code that are added to restructure the data into a more presentable and
codeable format:

Connecting to, and pulling data from, databases 113

Figure 4.7 – An example of using an API connection to connect and pull data

The following list indicates how each added line of code contributes to this goal.

•	 inplace=True: When this is added to a pandas function, you mean to specify
that you want the requested change to be applied to the DataFrame itself. The
alternative is to have the function output a new DataFrame that has the requested
change. This code is added to two of the following lines of code.

•	 AMZN_df.drop(columns=['s'],inplace=True): This line of code drops
the column s as this column only has one value across all the data objects.

114 Databases

•	 AMZN_df.t = AMZN_df.t.apply(datetime.fromtimestamp): This line
of code applies the datetime.fromtimestamp function from the datatime
module to the column t. This function takes a timestamp and transforms it into a
DateTime object. Run datetime.fromtimestamp(1609315200) to see the
workings of this function.

•	 AMZN_df.t = AMZN_df.t.apply(lambda v:v.date()): This line of code
applies a lambda function to only keep the date part of a DataTime object as the
time for all the data objects is 16:00.

•	 AMZN_df.set_index('t',drop=True,inplace=True): This line of code
sets the column t as the index of the DataFrame. The part drop=True indicates
that you want the original index to be dropped.

•	 AMZN_df.columns =
['Closing','High','Low','Opening','Volume']: This line of code
changes the name of AMZN_df columns.

•	 AMZN_df.head(): This line of code outputs a DataFrame with only the first five
rows of the AMZN_df DataFrame.

So far, we have covered three of the five methods of connecting to databases: direct
connection, web page connection, and API connection. Next, we will look at the
remaining two methods: request connection and publicly shared.

Request connection
This type of connection to a database happens when you do not have any access to the
database of interest under any of the three preceding methods, but you know someone
who has access and is authorized to share some parts of the data with you. In this method,
you need to clearly explain what data you need from the database. This method of
accessing the database has some pros and cons. See Exercise 4 to figure out what they are.

Publicly shared
This method of connecting to databases is the least flexible. Under the publicly shared
method, the owner of the database has extracted one dataset out of the databases they
owned and has provided access to that one dataset. For instance, almost all of the datasets
that you find on kaggle.com fall under this method of connecting to a database.
Furthermore, most of the data access that is provided under data.gov also falls under
this inflexible access to the databases.

http://kaggle.com
http://data.gov

Summary 115

Summary
Congratulations on successfully finishing this chapter! Now you are equipped with a
powerful understanding of databases and it will pay dividends in your quest for effective
data preprocessing.

In this chapter, you learned the technological role of databases in data analytics and data
preprocessing. You also learned about different kinds of databases and how they should
be chosen for different situations. Specifically, you understood how you would decide
about the level of data structures in their databases. Last but not least, you learned the five
different methods of connecting to, and pulling data from, databases.

This chapter concludes your learning of part 1 of this book: Technical needs. Now
you are ready to start learning about analytics goals, which is the second part of this
book. The technical needs will empower you to use technology to effectively read and
manipulate data. The analytics goals will give you a foundational understanding so that
you know for what purposes you will need to manipulate the data.

The next part of the book will be an exciting one as we will see examples of what can be
done with data. However, before moving on to the next part, take some time and solidify
and improve your learnings by completing the following exercises.

Exercises
1.	 In your own words, describe the difference between a dataset and a database.
2.	 What are the advantages and disadvantages of structuring data for a relational

database? Mention at least two advantages and two disadvantages. Use examples
to elucidate.

3.	 In this chapter, we were introduced to four different types of databases: relational
databases, unstructured databases, distributed databases, and Blockchain.

a. Use the following table to specify a ranking for each of the four types of databases
based on the criteria presented in the table.

b. Provide reasoning for your selections.

116 Databases

The table already has some of the rankings to get you started. N/A stands for
Not applicable. Study the ranking provided and give your reasoning as to why they
are correct.

Figure 4.8 – Database type ranking

4.	 In this chapter, we were introduced to five different methods for connecting to
databases: direct connection, web page connection, API connection, request
connection, and publicly shared. Use the following table to indicate a ranking for
each of the five methods of connecting to databases based on the specified criteria.
Study the rankings and provide reasoning as to why they are correct.

Exercises 117

Figure 4.9 – Ranking of database connection methods

5.	 Using the Chinook database as an example, we want to investigate and find an
answer to the following question: Do tracks that are titled using positive words sell
better on average than tracks that are titled with negative words. We would like to
focus solely on the following words in the investigations:

List of negative words: ['Evil', 'Night', 'Problem', 'Sorrow', 'Dead', 'Curse', 'Venom',
'Pain', 'Lonely', 'Beast']

List of positive words: ['Amazing', 'Angel', 'Perfect', 'Sunshine', 'Home', 'Live', 'Friends']

a. Connect to the Chinook database using Sqlite3 and execute the following query:
SELECT * FROM tracks join invoice_items on tracks.TrackId
= invoice_items.TrackId

118 Databases

b. Use the skills you learned in previous chapters (applying a function, group by
function, and so on) to come up with a table that lists the average total sales for
tracks containing good words and the same for tracks containing bad words. Here is
what the table will look like:

Figure 4.10 – Table report from the Chinook database for Exercise 5
c. Report your conclusions.

6.	 In the year 2020, which of the following 12 stocks experienced the highest growth.

Stocks: ['Baba', 'NVR', 'AAPL', 'NFLX', 'FB', 'SBUX', 'NOW', 'AMZN', 'GOOGL',
'MSFT', 'FDX', and 'TSLA']

For a good estimate of growth, use both formula 1 and formula 2 on the weekly
closing stock prices. (a) Formula1: (a-b), and (b) Formula2: (a-b)/c

In these formulas, a, b, and c are, respectively, the stock closing price for 2020, the
median of stock prices during 2020, and the mean of stock prices during 2020.

Based on each formula, what is the stock with the highest growth, and what is the
difference between the outcome of each formula?

After reading this part, you will be able to perform popular analytics using cleaned and
issue-free data.

This part comprises the following chapters:

•	 Chapter 5, Data Visualization

•	 Chapter 6, Prediction

•	 Chapter 7, Classification

•	 Chapter 8, Clustering Analysis

Part 2:
Analytic Goals

5
Data Visualization

Being able to visualize data is the backbone of data analysis. The area of data visualization
is very exciting, as there are endless possibilities for novelty and creativity in drawing
visualizations that tell better stories about your data. However, the core mechanisms
of even the most innovative graphs are similar. In this chapter, we will cover these
fundamental mechanisms of visualizations that give life to the data and allow us to
compare, analyze, and see patterns in it.

As you will learn these fundamental mechanisms, you will also be developing a better
backbone/skillset for your data preprocessing goals. If you can fully understand the
connection between the data and its visualizations, you will be more effective at
preprocessing data for effective visuals. In this chapter, you will work with the data that I
have already preprocessed, but in later chapters, we will cover the concepts and techniques
that lead to these preprocessed datasets.

This chapter will cover the following main topics:

•	 Summarizing a population

•	 Comparing populations

•	 Investigating the relationship between two attributes

•	 Adding visual dimensions

•	 Showing and comparing trends

122 Data Visualization

Technical requirements
You will be able to find the codes and dataset for this chapter in the book's GitHub
repository in the Chapter05 folder:

https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python

Summarizing a population
You can use simple tools such as the histogram, boxplot, or bar chart to visualize the
variations in the values of one column of a dataset across the populations of the data
object. These visualizations are immensely useful, as they help you to see the values of one
attribute at a glance.

One of the most common reasons for using these visuals is to familiarize yourself with
a dataset. The term getting to know your data is famous among data scientists and is said
time and again to be one of the most necessary steps for successful data analytics and
data preprocessing.

What we mean by getting to know a dataset is understanding and exploring the statistical
information for each attribute of the dataset. That is, we want to know what types of values
each attribute has and how the values vary across the population of the datasets.

For this purpose, we use data visualization tools to summarize the data object population
per attribute. Numerical and categorical attributes require different tools for each type
of attribute. For numerical attributes, we can use either the histogram or boxplot to
summarize the attribute, whereas for categorical attributes, it is best to use bar charts. The
following examples walk you through how this can be done all at once for any dataset.

Example of summarizing numerical attributes
Write some code that does the following:

1.	 Reads the adult.csv dataset into the adult_df pandas DataFrame
2.	 Creates a histogram and boxplots for the numerical attributes of adult_df
3.	 Saves the figure for each attribute with a 600 mpi resolution in a separate file

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Summarizing a population 123

Give the preceding example a try before looking at the following code:

1.	 First, we will import the modules that we will use throughout this chapter:
import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

2.	 Then, we start working on the problem:
adult_df = pd.read_csv('adult.csv')

numerical_attributes = ['age', 'fnlwgt', 'education-num',
'capitalGain', 'capitalLoss', 'hoursPerWeek']

for att in numerical_attributes:

 plt.subplot(2,1,1)

 adult_df[att].plot.hist()

 plt.subplot(2,1,2)

 adult_df[att].plot.box(vert=False)

 plt.tight_layout()

 plt.show()

 plt.savefig('{}.png'.format(att), dpi=600)

When you run this code, the Jupyter notebook will show you all 12 charts. Each
numerical attribute will have one histogram and one boxplot. The code will also save a
.png file on your computer for each attribute that saves the histogram and boxplot of the
attribute. For example, the following figure shows the education-num.png file that
was saved on my computer after running the preceding code:

Figure 5.1 – education-num.png

124 Data Visualization

Where Are the Files on My Computer?
If you have difficulty finding the files on your computer, you need to
understand the difference between an absolute file path and a relative file path.
The absolute file path includes the root element and the complete directory
path. However, the relative path is given with an understanding that you are
already in a specific directory.

In the preceding code, we did not include the root element in the file path
when using plt.savefig(), so Python correctly read this as a relative
path and assumed that you want the files to be saved in the same directory as
the one you have in your Jupyter notebook file.

In this example, you saw the application of boxplots and histograms to summarize the
numerical attributes of a dataset. Now, let's look at another example that shows you
similar steps for categorical attributes. For categorical attributes, we always use bar charts.

Example of summarizing categorical attributes
Write some code that does the following:

1.	 Creates bar charts for the categorical attributes of adult_df
2.	 Saves the figure for each attribute with a 600 mpi resolution in a separate file

Give the preceding example a try before looking at the following code:

categorical_attributes = ['workclass', 'education',
'marital-status', 'occupation', 'relationship', 'race',
'sex','nativeCountry','income']

for att in categorical_attributes:

 adult_df[att].value_counts().plot.barh()

 plt.title(att)

 plt.tight_layout()

 plt.savefig('{}.png'.format(att), dpi=600)

 plt.show()

When you run this code, the Jupyter notebook will show you all nine charts. Each
categorical attribute will have one bar chart. The code will also save a .png file on your
computer for each attribute that saves the bar chart of the attribute. For example, the
following figure shows the education.png file that was saved on my computer after
running the preceding code:

Comparing populations 125

Figure 5.2 – education.png

Good Practice Advice
Technically, you could also use a pie chart to summarize a categorical attribute.
However, I advise against it. The reason is that pie charts are not as easily
digested by our human brains as bar charts. It has been shown we do much
better in appreciating differences in length than the difference in chunks of pies.

So far, you were able to create visualizations that are meant to summarize a population.
There are other advantages of being able to do this. Now that we can create these
visualizations, we can also create more than one of them and put them next to one another
for comparison. The next section will teach you how to do this.

Comparing populations
Putting these kinds of summarizing visualizations of different populations next to one
another will be useful to create visuals that help us compare those populations. This can
be done with histograms, boxplots, and bar charts. Let's see how this is done using the
following three examples.

126 Data Visualization

Example of comparing populations using boxplots
Write some code that creates the following two boxplots next to one another:

•	 A boxplot of education-num for data objects with an income value that
is <=50K

•	 A boxplot of education-num for data objects with an income value that is >50K

Give the preceding example a try on your own before looking at the following code:

income_possibilities = adult_df.income.unique()

for poss in income_possibilities:

 BM = adult_df.income == poss

 plt.hist(adult_df[BM]['education-num'], label=poss,
 histtype='step')

plt.boxplot(dataForBox_dic.values(),vert=False)

plt.yticks([1,2],income_possibilities)

plt.show()

Once you run this code, the Jupyter notebook will display the following figure:

Figure 5.3 – Boxplots of education-num for two populations of income <=50K and >50K

Comparing populations 127

Let's first go through the code before discussing the preceding visual. To completely
understand the functioning of the preceding code, you will need to understand
three concepts:

1.	 The code first loops through all the populations that we want to be included in the
visual. Here, we have two populations: data objects with an income <=50K and
data objects with an income >50K. In each iteration of the loop, the code uses
Boolean masking to extract each specific population from adult_df.

2.	 The code uses dataForBox_dic, which is a dictionary data structure, as a
placeholder. On each iteration of the loop, the code adds a new key and its specific
value. In the case of this code, there are two iterations. The first iteration adds
'<=50K ' as the first key and all the education-num values of the specific
population as the value of the key. All those values are assigned to each key as a
Pandas Series. On the second iteration, the code does the same thing for '>50K '.

3.	 After the loop is completed, the dataForBox_dic is full with the necessary
data, so plt.boxplot() can be applied to create the visuals with two
boxplots. The reason that dataForBox_dic.values() is passed instead of
dataForBox_dic is that plt.boxplot() requires the dictionary that is passed
for drawing only has strings as keys and lists of numbers as values of the keys. Add
print(dataForBox_dic) and print(dataForBox_dic.values())
before and after the loop to see all these differences on your own.

Now, let's bring our attention to the merit of the output of the preceding code, which is
shown in Figure 5.3. As you can see, the visual clearly tells the story of how education is
important for higher income.

Example of comparing populations using histograms
Write some code that creates the following two histograms in the same plot:

•	 A histogram of education-num for data objects with an income value that
is <=50K

•	 A histogram of education-num for data objects with an income value that
is >50K

Give the preceding example a try on your own before looking at the following code:

income_possibilities = adult_df.income.unique()

for poss in income_possibilities:

 BM = adult_df.income == poss

128 Data Visualization

 plt.hist(adult_df[BM]['education-num'],
 label=poss, histtype='step')

plt.legend()

plt.show()

Once you run this code, the Jupyter notebook will display the following figure:

Figure 5.4 – Histograms of education-num for two populations of income <=50K and >50K

The code for creating histograms is less complicated than the code for creating boxplots.
The major difference is that for histograms, you do not need to use a placeholder to
prepare the data for plt.boxplot(). With plt.hist(), you can just call it as
many times as you need and Matplotlib will put these visuals on top of one another.
The code, however, uses two of the plt.hist() properties: label=poss and
histtype='step'. The following explains the necessity of both:

•	 label=poss is added to the code so that plt.legend() can add the legends
to the visual. Remove label=poss from the code and study the warning that
running the update code gives you.

•	 histtype='step' is setting the type of histogram. There are two
different histograms that you can choose from: 'bar' or 'step'. Change
histtype='step' to histtype='bar' and run the code to see the
difference between them.

The following figure is created by using plt. subplot() to put Figure 5.3 and
Figure 5.4 together. I have not shared the code here, so challenge yourself to create it
before reading on:

Comparing populations 129

Figure 5.5 – Histograms and boxplots of education-num for two populations of income
<=50K and >50K

These two visuals next to one another can help us see the differences and similarities
between the two populations easily, and that is the value we get from creating them and
meaningfully organizing them together.

So far, we have learned how to compare populations that are described by numerical
attributes. Now, let's look at an example that will teach us how we can compare populations
that are described by categorical attributes. For this purpose, we will use bar charts.

Example of comparing populations using bar charts
Create a visualization that uses bar charts to compare the categorical attribute race for
the two following populations:

•	 Data objects with an income value that is <=50K

•	 Data objects with an income value that is >50K

Give this a try on your own before reading on.

You can do this in six different but meaningful ways. Let's go through all of the possible
ways that this can be done.

130 Data Visualization

The first way of solving the problem
The following screenshot shows the code and its output for the first way. In this way of
solving the problem, we have used plt.subplot() to put the bar charts of the two
populations on top of one another:

Figure 5.6 – The first way of solving the problem (screenshot of the code and its output)

While this way of solving the problem is legitimate and valuable, bar chats are capable
of fusing the chart of the two populations at different levels. The five other ways show
these levels.

The second way of solving the problem
The following screenshot shows the code and its output for the second way. In this way
of coding it, we have merged the two visuals we saw in Figure 5.6 and we only have one
bar chart that contains all the information. However, this merging has come at the price
of having to make the y-ticks of the chart more complicated. Take a moment to compare
Figure 5.6 and Figure 5.7 before reading on:

Comparing populations 131

Figure 5.7 – The second way of solving the problem (screenshot of the code and its output)

So far, we have managed to somewhat fuse the bar charts of the two populations. Let's take
another step by using a legend and colors to make the resulting chart a bit stronger.

The third way of solving the problem
The following screenshot shows the code and its output for the third way. In this way, we have
used a legend and different colors to represent each possibility under the race attribute.
Compared to the fusion in Figure 5.7, the fusion in the following figure is more effective:

Figure 5.8 – The third way of solving the problem (screenshot of the code and its output)

132 Data Visualization

While the comparison of the two populations based on income is possible with all three
preceding figures, the comparison of each possibility of the race attribute is not easily
done. The next three ways of solving this problem will highlight visualizations that make
that easier.

The fourth way of solving the problem
The following screenshot shows the code and its output for the fourth way. In this approach,
we have coded the visual so that the two possibilities of the income attribute are next to
one another for each possibility of the race attribute. This way allows us to compare both
income group populations (income <=50K and income >50K) against each race attribute.

Figure 5.9 – The fourth way of solving the problem (screenshot of the code and its output)

The fusion level of the preceding visual can be improved, and the next way of solving this
problem will do this.

Comparing populations 133

The fifth way of solving the problem
The following screenshot shows the code and its output for the fifth way. The only
difference between this and the previous way is the use of a legend and colors to make the
visual more presentable and neater. Without reservations, we can claim that Figure 5.10 is
more effective in solving this problem than Figure 5.9. Why?

Figure 5.10 – The fifth way of solving the problem (screenshot of the code and its output)

The last way of presenting this data is to stack the two bars under each race category,
instead of having them next to one another. The next way of solving the problem will show
how that can be done.

134 Data Visualization

The sixth way of solving the problem
The following screenshot shows the code and its output for the sixth way. The visual
created from this code is called a stacked bar chart.

Figure 5.11 – The sixth way of solving the problem (screenshot of the code and its output)

We prefer a stacked bar chart to a typical bar chart when we know the total number of
data objects under each possibility is more important than the comparison between
populations. In this case, as we are creating this visual to compare the two income group
populations, using a stacked bar chart is not very wise.

So far in this chapter, we have learned how we can summarize and compare populations
of data objects based on one attribute. Next, we are going to learn how we can see if two or
more attributes have specific relationships with one another.

Investigating the relationship between two
attributes
The best way to investigate the relationships between attributes visually is to do it in pairs.
The tools we use for investigating the relationship between a pair of attributes depends
on the type of attributes. In what follows, we will cover these tools based on the following
pairs: numerical-numerical, categorical-categorical, and categorical-numerical.

Investigating the relationship between two attributes 135

Visualizing the relationship between two numerical
attributes
The best tool for portraying the relationship between two numerical attributes is the
scatter plot. In the following example, we will use a tool called scatter matrix that creates
a matrix of scatterplots for a dataset with numerical attributes.

Example of using scatterplots to investigate relationships between
numerical attributes
In this example, we will use a new dataset, Universities_imputed_reduced.csv.
This dataset's definition of data objects is Universities in the USA, and these data
objects are described using the following attributes: College Name, State, Public/
Private, num_appli_rec, num_appl_accepted, num_new_stud_enrolled,
in-state tuition, out-of-state tuition, % fac. w/PHD, stud./fac.
Ratio, and Graduation rate. The naming of these attributes is very intuitive and
does not need further description.

To practice, apply the techniques that you have learned so far to get to know this new
dataset before reading on. It will help your understanding immensely.

The following code uses the pariplot() function of the seaborn module to create
a scatter plot for every pair combination of the numerical attributes in the uni_df
DataFrame. If you have never used the seaborn module before, you need to install it
first. How to install seaborn is shown in Chapter 4, Databases, in the Statistical meaning
of the word pattern section:

import seaborn as sns

uni_df = pd.read_csv('Universities_imputed_reduced.csv')

sns.pairplot(uni_df)

After running the preceding code, the Jupyter notebook will show you Figure 5.12. Using
this figure, you can investigate the relationship between any two attributes in uni_df. For
instance, you can see that there is a strong relationship between num_appl_accepted
and num_new_stud_enrolled, which makes sense. As the number of accepted
applications increases, we would expect the number of new enrollments to increase.

136 Data Visualization

Furthermore, by studying the last column or the last row of the scatter matrix in the
following figure, you can study the relationship between graduation and all the other
attributes one by one. After doing so, you can see that, surprisingly and interestingly, the
graduation rate attribute's strongest relationship is with in-state tuition and
out-of-state tuition. Interestingly, graduation does not have a strong relationship
with other attributes, such as num_new_stud_enrolled, % fac. w/PHD, and
stud./fac. Ratio.

Figure 5.12 – Scatter matrix of the uni_df DataFrame

Investigating the relationship between two attributes 137

Now that we have practiced making visuals to investigate the relationship between
numerical attributes, next, we will do the same for categorical attributes.

Visualizing the relationship between two categorical
attributes
The best visual tool for examining the relationship between two categorical attributes
is the color-coded contingency table. A contingency table is a matrix that shows the
frequency of data objects in all the possible value combinations of two attributes. While
you could create a contingency table for numerical attributes, doing so in most cases
will not lead to effective visualizations; contingency tables are almost always used for
categorical attributes.

Example of using a contingency table to examine the relationship
between two categorical (binary) attributes
In this example, we are interested to see if there is a relationship between two categorical
attributes, sex and income, among the data objects in adult_df. To examine this
relationship, we will use a contingency table. The following screenshot shows how this can
be done using the pd.crosstab() pandas function. This function gets two attributes
and outputs the contingency table for them:

Figure 5.13 – The code and output of creating a contingency table for two categorical attributes,
adult_df.sex and adult_df.income

138 Data Visualization

You can see in the outputted contingency table in the preceding screenshot that, while
around 11% of female data objects have an income >50K, around 30% of male data objects
have an income >50K. To derive such conclusions from a contingency table we normally
do some simple calculations, such as the one we did just now; we calculated the relative
percentages of the income totals for each gender. However, we could color code the
contingency table so that these extra steps are not be needed. The following screenshot
displays a two-step process for doing this by using the sns.heatmapt() function from
the seaborn module:

Figure 5.14 – Transforming the contingency table from Figure 5.13 into a heatmap

The two steps to create the color-coded contingency table from the original contingency
table are as follows:

1.	 Create a probability table from the contingency table by dividing the values of each
column by the sum of all the values in the column.

2.	 Use sns.heatmap() to create the color-coded contingency table. Apart
from inputting the calculated probability table (probablity_tbl) from the
previous step, three more inputs are added: annot=True, center=0.5, and
cmap="Greys". Remove them one by one and run the same code shown in the
preceding screenshot to understand what each addition does.

Investigating the relationship between two attributes 139

Now, by simply looking at the color-coded contingency table in the preceding screenshot,
we can see that while among both males and females, more data objects earn <=50K, data
objects that are male are more likely to earn >50K than female data objects. Therefore, we
can conclude that sex and income do have a meaningful and visualizable relationship
with one another.

This example examines the relationship between two binary attributes. When the
attributes are not binary, the steps we take to create a color-coded contingency table are
identical. Let's see this in an example.

Example of a using contingency table to relationship between two
categorical (non-binary) attributes
Create a visualization that examines the relationship between the race and occupation
attributes for the data objects in adult_df.

Give this a try on your own before reading on.

The following screenshot displays the code and the correct output for this example:

Figure 5.15 – Creating a contingency heatmap for the two categorical attributes,
adult_df.race and adult_df.occupation

140 Data Visualization

In the color-coded table, you can clearly see the following patterns:

•	 Data objects with the race attribute value of white are more likely to have the
occupation attribute values of Craft-repair, Exec-managerial, or
Prof-specialty

•	 Data objects with the race attribute value of black are more likely to have the
occupation attribute values of Adm-clerical and Other-service

•	 Data objects with the race attribute value of Asian-Pac-Islander are more
likely to have the occupation attribute value of Prof-specialty

•	 Data objects with the race attribute value of Amer-Indian-Eskimo are more
likely to have the occupation attribute value of Craft-repair.

Again, using the contingency table we can see that there is a visualizable and meaningful
relationship between race and occupation among the data object in adult_df.

So far, we have learned how to visualize the relationships between pairs of attributes of the
same type, namely, numerical-numerical and categorical-categorical. Next, we will tackle
visualizing the relationship for the non-matching pairs, specifically, numerical-categorical.

Visualizing the relationship between a numerical
attribute and a categorical attribute
What makes this situation more challenging is obvious: the types of the attributes are
different. To be able to visualize the relationship between a categorical attribute and
a numeric attribute, one of the attributes has to be transformed into the other type of
attribute. Almost always, it is best to transform the numerical attribute into a categorical
one, and then use a contingency table to examine the relationship between the two
attributes. The following example shows how this can be done.

Example of examining the relationship between a categorical
attribute and a numerical attribute
First, create a visualization that examines the relationship between the race and age
attributes for the data objects in adult_df.

The Age attribute is numerical and the race attribute is categorical. So first, we need
to transform age into a categorical attribute. Then, we can use a contingency table to
visualize their relationship. The following screenshot shows these steps:

Investigating the relationship between two attributes 141

Figure 5.16 – Creating a contingency heatmap for a categorical attribute (adult_df.race) and
a numerical attribute (adult_df.age)

The solution showed in the preceding screenshot has the following three steps:

1.	 Use the pd.cut() pandas function to transform adult_df.age into a
categorical attribute with five possibilities. Choosing 5 bins is arbitrary, but it is
a good number unless there are good reasons to group the data into a different
number of bins. Discretization is what we call the transformation of a numerical
attribute into a categorical one; that is why we have used age_discretized as
the name for the transformed adult_df.age attribute.

2.	 Create a contingency table for age_discretized and adult_df.race using
the pd.crosstab() pandas function.

3.	 Create a probability table using the contingency table created in the previous step
and then use sns.heatmap() to create the color-coded contingency table.

142 Data Visualization

The output visual shows that there is a meaningful and visualizable relationship between
the two attributes. Specifically, the data objects that have other for the race attribute
are younger than the data objects where the race attributes are white, black,
asian-Pac-Islander, and Amer-Indian-Eskimo.

This example demonstrated the common scenario where the numerical attribute will be
transformed into a categorical attribute to examine its relationship with another categorical
attribute. While this is will be the best way to go about this in almost all cases, there are cases
where it is advantageous to transform the categorical attribute into a numerical one. The
following example shows a rare situation where this transformation is preferred.

Another example of examining the relationship between a
categorical attribute and a numerical attribute
First, create a visualization that examines the relationship between the education and
age attributes for the data objects in adult_df.

Again, we have a categorical attribute and a numerical attribute. However, this time, the
categorical attribute has two characteristics that make it possible for us to choose the less
common way to approach this situation. These two characteristics are as follows:

•	 Education is an ordinal categorical attribute and not a nominal categorical attribute.

•	 The attribute can be made into a numeric attribute with a few reasonable assumptions.

The default method to transform an ordinal attribute to a numerical one is ranking
transformation. For instance, you can perform a ranking transformation on the
education attribute and replace each of the possibilities under adult_df.education
with an integer number. Interestingly, the adult_df dataset already has another attribute
that is the rank transformation of the education attribute, and that transformed attribute
is called education-num. The following figure shows the one-to-one relationship
between these two attributes:

Figure 5.17 – The one-to-one relationship between the education and education-num
attributes in adult_df

Investigating the relationship between two attributes 143

You can see the relationship between the two attributes portrayed in the preceding figure
yourself by running the following code:

adult_df.['education','education-num']).size()

When you run this code, you will see that the .groupy() function does not split per
possibilities of education-num for education; the reason for this is that there is a
one-to-one relationship between these two attributes.

Now that we have the numerical version of the education attribute, we can use a scatter
plot to visualize the relationship between education and age. The following screenshot
shows the code and the visualization:

Figure 5.18 – Creating a scatter plot for a categorical attribute (adult_df.education) and
a numerical attribute (adult_df.age)

144 Data Visualization

Using the visualized relationship, we can see that the two attributes, age and education,
are not related. For the sake of practice, let's also do this analysis the other way around; let's
discretize age and create a contingency table to see if we will get to the same conclusion.
The following screenshot shows the code and the output visual for this analysis:

Figure 5.19 – Creating a contingency heatmap for a categorical attribute (adult_df.education)
and a numeric attribute (adult_df.age)

We can see that this visual also gives the impression that the two attributes, age and
education, are not related to one another.

So far in this chapter, we have learned how to summarize a population, compare
populations, and just now, we learned how to visualize the relationship between all kinds
of attributes. Now, let's begin another data visualization aspect – next, we will learn about
adding dimensions to our visualizations.

Adding visual dimensions 145

Adding visual dimensions
The visualizations that we have created so far have only two dimensions. When using
data visualization as a way to tell a story or share findings, there are many good reasons
not to add too many dimensions to your visuals. For instance, visuals that have too
many dimensions may overwhelm your audience. However, when the visuals are used as
exploratory tools to detect patterns in the data, being able to add dimensions to the visuals
might be just what a data analyst needs.

There are many ways to add dimensions to a visual, such as using color, size, hue, line
styles, and more. Here, we will cover the three most applied approaches by adding
dimensions using color, size, and time. In this case, we will show adding the dimensions
for the case of scatter plots, but the techniques shown can be easily extrapolated to other
visuals if applicable. The following example demonstrates how adding extra dimensions to
the scatter plot could be of significant value.

Example of a five-dimensional scatter plot
Use WH Report_preprocessed.csv to create a visualization that shows the
interaction of the following five columns in this dataset:

•	 Healthy_life_expectancy_at_birth

•	 Log_GDP_per_capita

•	 Year

•	 Continent

•	 Population

To solve this problem, we are going to have to do it step by step. So, please stay with
me throughout.

The dataset we use for this example is taken from The World Happiness Report, which
includes the data of 122 countries from 2010 to 2019. Before starting to engage with the
solutions given for this example, take some time and familiarize yourself with the dataset.

146 Data Visualization

Advice for Better Learning
As we learn more and more complex analyses, algorithms, and code, we may
not have space in these pages to get to know every new dataset we cover in the
book. Every time a new dataset is introduced throughout this book, I strongly
recommend that you take the steps that were laid out in the Pandas functions to
explore a DataFrame section in Chapter 1, Review of the Core Modules NumPy
and Pandas. Of course, this applies here. Take the time to get to know the WH
Report_preprocessed.csv dataset before reading on.

The following code uses plt.subplot() and plt.scatter() to bring three
dimensions together: Healthy_life_expectancy_at_birth, Log_GDP_per_
capita, and year:

country_df = pd.read_csv('WH Report_preprocessed.csv')

plt.figure(figsize=(15,8))

year_poss = country_df.year.unique()

for i,yr in enumerate(year_poss):

 BM = country_df.year == yr

 X= country_df[BM].Healthy_life_expectancy_at_birth

 Y= country_df[BM].Log_GDP_per_capita

 plt.subplot(2,5,i+1)

 plt.scatter(X,Y)

 plt.title(yr)

 plt.xlim([30,80])

 plt.ylim([6,12])

plt.show()

plt.tight_layout()

The output of the preceding code is shown in Figure 5.20. The visual manages to achieve
the following important things:

•	 The figure visualizes the three dimensions all at once.

•	 The figure shows the upward and rightward movement of the countries in both
X and Y dimensions. This movement has the potential to tell the story of global
success improving on both dimensions, Healthy_life_expectancy_at_
birth and Log_GDP_per_capita.

Adding visual dimensions 147

However, the visual is choppy and sloppy at showing the movement of the countries in the
years between 2010 and 2019, so we can do better.

Figure 5.20 – One figure with three dimensions of the WH Report_preprocessed.csv dataset

Now, we want to improve the preceding figure by seamlessly incorporating time in one
visual instead of having to use subplots. The following figure (Figure 5.21) shows our end
goal in this segment. The figure is interactive, and by sliding the control bar on the top
widget, we can change the year for the visual and therefore see the movement of countries
under the two dimensions of Healthy_life_expectancy_at_birth and
Log_GDP_per_capita. Of course, we cannot do that on paper, but I will share the
code that can make this happen right here. But, we have to do this in two steps:

1.	 Create a function that outputs the relevant visual for the inputted year.

148 Data Visualization

2.	 Use new modules and programing objects to create the slide bar.

Figure 5.21 – One figure with three dimensions of the WH Report_preprocessed.csv dataset using a slide
bar widget

The following code creates the function that we need for the interactive visual:

def plotyear(year):

 BM = country_df.year == year

 X= country_df[BM].Healthy_life_expectancy_at_birth

 Y= country_df[BM].Log_GDP_per_capita

 plt.scatter(X,Y)

 plt.xlabel('Healthy_life_expectancy_at_birth')

 plt.ylabel('Log_GDP_per_capita')

 plt.xlim([30,80])

 plt.ylim([6,12])

 plt.show()

After creating this function and before moving forward, put the function in use by
calling it a few times – for instance, run plotyear(2011), plotyear(2018), and
plotyear(2015). If everything is working well, you'd get a new scatter plot on every run.

Adding visual dimensions 149

After you have a well-functioning plotyear(), writing and running the following code
gives you the interactive visual showed in the preceding figure (Figure 5.21). To create this
interactive visual, we have used the interact and widgets programming objects from
the ipywidgets module:

from ipywidgets import interact, widgets

interact(plotyear,year=widgets.
IntSlider(min=2010,max=2019,step=1,value=2010))

After you have managed to create the interactive visual, go ahead and put the control bar
to use and enjoy the upward movement of the countries. Before your eyes, you will see the
history of global success from 2010 to 2019.

The fourth dimension
So far, we have only been able to include three dimensions in our visuals: Healthy_
life_expectancy_at_birth, Log_GDP_per_capita, and year. We have two
more dimensions to go.

We used a scatter plot to include the first two dimensions, and we used the time
to include the third dimension, year. Now, let's use color to include the fourth
dimension, Continent.

The following code adds color to what we've already built. Pay close attention to how
a for loop has been used to iterate over all the continents and add the data of each
continent one by one to the visual and thus separate them:

Continent_poss = country_df.Continent.unique()

colors_dic={'Asia':'b', 'Europe':'g', 'Africa':'r',
'South America':'c', 'Oceania':'m', 'North America':'y',
'Antarctica':'k'}

def plotyear(year):

 for cotinent in Continent_poss:

 BM1 = (country_df.year == year)

 BM2 = (country_df.Continent ==cotinent)

 BM = BM1 & BM2

 X = country_df[BM].Healthy_life_expectancy_at_birth

 Y= country_df[BM].Log_GDP_per_capita

 plt.scatter(X,Y,c=colors_dic[cotinent], marker='o',
 linewidths=0.5, edgecolors='w', label=cotinent)

150 Data Visualization

 plt.xlabel('Healthy_life_expectancy_at_birth')

 plt.ylabel('Log_GDP_per_capita')

 plt.xlim([30,80])

 plt.ylim([6,12])

 plt.legend()

 plt.show()

interact(plotyear,year=widgets.
IntSlider(min=2010,max=2019,step=1,value=2010))

After successfully running the preceding code, you will get another interactive visual. The
following figure shows the visual when the year control bar is set to 2015.

Figure 5.22– One figure with four dimensions of the WH Report_preprocessed.csv dataset using
a slide bar widget and color

Contemplating and interacting with the preceding visual not only adds extra dimensions
to the visual before our eyes, but it also adds further dimensions to the story we have been
developing. We can see the clear disparity between the continents in the world, but also,
we see the same upward movement to a higher GDP and life expectancy for all countries.

Adding visual dimensions 151

The fifth dimension
So far, we have only been able to include the following four dimensions in one visual:
Healthy_life_expectancy_at_birth, Log_GDP_per_capita, year, and
Continent. Now, let's add the fifth dimension, which is population, using the size of
the markers to represent this. The following code adds the dimension of the population as
the size of the markers:

Continent_poss = country_df.Continent.unique()

colors_dic={'Asia':'b', 'Europe':'g', 'Africa':'r',
'South America':'c', 'Oceania':'m', 'North America':'y',
'Antarctica':'k'}

country_df.sort_values(['population'],inplace = True,
ascending=False)

def plotyear(year):

 for cotinent in Continent_poss:

 BM1 = (country_df.year == year)

 BM2 = (country_df.Continent ==cotinent)

 BM = BM1 & BM2

 size = country_df[BM].population/200000

 X = country_df[BM].Healthy_life_expectancy_at_birth

 Y= country_df[BM].Log_GDP_per_capita

 plt.scatter(X,Y,c=colors_dic[cotinent], marker='o',
 s=size, inewidths=0.5, edgecolors='w', label=cotinent)

 plt.xlabel('Healthy_life_expectancy_at_birth')

 plt.ylabel('Log_GDP_per_capita')

 plt.xlim([30,80])

 plt.ylim([6,12])

 plt.legend(markerscale=0.5)

 plt.show()

interact(plotyear,year=widgets.
IntSlider(min=2010,max=2019,step=1,value=2010))

152 Data Visualization

After successfully running the preceding code, you will get another interactive visual. The
following figure shows the visual when the year control bar is set to 2019.

Figure 5.23 – One figure with five dimensions of the WH Report_preprocessed.csv dataset, using a slide
bar widget, color, and size

There are three parts of the preceding code that might be confusing for you. Let's go over
them together:

country_df.sort_values(['population'], inplace = True,
ascending=False)

The preceding code is included so the countries with higher populations are added to the
visual first, therefore, their markers will go to the background and will not cover up the
countries with lower populations.

size = country_df[BM].population/200000

The preceding code is added to scale down the big population numbers for creating the
visual. The number was found purely after some trial and error.

plt.legend(markerscale=0.5)

The markerscale=0.5 is added to scale the markers shown in the legend, as without this
they would be too big. Remove markerscale=0.5 from the code to see this for yourself.

Voila! We are done. We were able to learn how to create a five-dimensional scatter plot.

Showing and comparing trends 153

So far in this chapter, you have been able to learn useful visualization techniques and
concepts, such as summarizing and comparing populations, investigating the relationships
between attributes, and adding visual dimensions. Next, we will cover how we can use
Python to display and compare trends in data.

Showing and comparing trends
Trends can be visualized when the data objects are described by attributes that are highly
related to one another. A great example of such datasets is time series data. Time series
datasets have data objects that are described by time attributes and with an equal duration
of time between them. For instance, the following dataset is a time series dataset that
shows the daily closing prices of Amazon and Apple stocks for the first 10 trading days
of 2020. In this example, you can see that all of the attributes of the dataset have a time
nature and they have an equal duration of a day between them:

Figure 5.24 – Time series data example (daily stock prices of Amazon and Apple)

The best way to visualize time series data is using line plots. Figure 2.9 from Chapter 2,
Review of Another Core Module – Matplotlib, is a great example of using line plots to show
and compare trends.

Line plots are very popular in stock market analysis. If you search for any stock ticker,
you will see that Google will show you a line plot of the price trends. It also gives you the
option to change the duration of time over which you want the line plot to visualize the
price trends. Give this a try – for example, try some searches: Amazon stock, Google
stock, and Walmart stock.

Line plots are popular in stock market analysis; however, they are very useful in other
areas, too. Any dataset that has time series data could potentially take advantage of line
plots for showing trends. The following example illustrates another instance of applying
line lots to visualize and compare trends.

Example of visualizing and comparing trends
Use WH Report_preprocessed.csv to create a visualization that shows and compares
the trend of the Perceptions_of_corruption attribute for all continents between the
years 2010 and 2019. To be clear, we want the data for only the two years – 2010 and 2019.

Give this example a try before reading on.

154 Data Visualization

This example can be easily solved by all the programming and visualization tools that we
have learned so far. The following code creates the requested visualization:

country_df = pd.read_csv('WH Report_preprocessed.csv')

continent_poss = country_df.Continent.unique()

byContinentYear_df = country_df.groupby(['Continent','year']).
Perceptions_of_corruption.mean()

Markers_options = ['o', '^','P', '8', 's', 'p', '*']

for i,c in enumerate(continent_poss):

 plt.plot([2010,2019], byContinentYear_
 df.loc[c,[2010,2019]], label=c, marker=Markers_options[i])

plt.xticks([2010,2019])

plt.legend(bbox_to_anchor=(1.05, 1.0))

plt.title('Aggregated values per each continent in 2010 and
2019')

plt. label('Perceptions_of_corruption')

plt.show()

Before going over the different parts of this code, let's enjoy seeing, analyzing, and
appreciating the story the following visual tells us. These are the following five points that
the visual clearly shows:

•	 For most continents, namely, Africa, North America, Asia, and Europe,
Perceptions_of_corruption have declined.

•	 Between all these improving continents, Europe has had the fastest decrease in
Perceptions_of_corruption.

•	 Asia has had a faster improvement than North America, thereby placing Asia
in a better place than North America in 2019 compared to 2010.

•	 The two continents that have had an increase in Perceptions_of_corruption
are South America and Antarctica.

•	 The Perceptions_of_corruption values for Oceania have not changed,
and because of that, the continent has achieved the status of having the lowest
Perceptions_of_corruption among all continents.

Showing and comparing trends 155

Figure 5.25 – Line plot comparing Perceptions_of_corruption across different continents
in 2010 and 2019

Now, let's go through different elements of the preceding code:

1.	 The following line of code groups the data based on the two attributes, Continent
and year, and then calculates the aggregate function .mean() for the
Perceptions_of_corruption attribute. The result of this grouping is recorded
in byContinentYear_df, which is a DataFrame.

byContinentYear_df = country_df.groupby(
['Continent','year']
).Perceptions_of_corruption.mean()

The rest of the solution uses numbers in this DataFrame to draw different elements
of the visual. Separately, run print(byContinentYear_df) to see this. That
will help your understanding of the solution.

2.	 To better separate the continents, the code has used markers. First, the code creates
a list of possible markers for later use. The following line of code has done this:
Markers_options = ['o', '^','P', '8', 's', 'p', '*']. Then,
within the loop through all the continents and when each line is introduced using
the plt.plot() function, the code uses marker=Markers_options[i] to
assign one of those possible markers.

3.	 The code has incorporated box_to_anchor=(1.05, 1.0) for plt.
legend() to place the legend box outside the visual. Change the numbers a few
times and run the code to see how this functionality of Matplotlib works.

Now, we are completely done with this example. We first appreciated the visual's
storytelling values, then we also discussed each important element of the code we used
to create the visual.

156 Data Visualization

Summary
Congratulations on your excellent progress in this chapter. Together, we learned the
fundamental data visualization paradigms, such as summarizing and comparing
populations, examining the relationships between attributes, adding visual dimensions, and
comparing trends. These visualization techniques are very useful in effective data analytics.

All of the data we used in this chapter had been cleaned and preprocessed so we
could focus on learning the visualization goals of data analytics. Now that you are on
your way toward learning about effective data preprocessing in the next chapters, this
deeper understanding of data visualization will help you become more effective in data
preprocessing, and in turn, become more effective in data visualization and analytics.

In the next two chapters, we will continue learning about other data analytics goals,
namely, prediction, classification, and clustering, before we start introducing effective
preprocessing techniques.

Before moving forward and starting your journey in understanding those goals, spend
some time on the following exercises to practice what you have learned.

Exercise
1.	 In this exercise, we will be using Universities_imputed_reduced.csv.

Draw the following visualizations:

a) Use boxplots to compare the student/faculty ratio (stud./fac. ratio) for
the two populations of public and private universities.

b) Use a histogram to compare the student/faculty ratio (stud./fac. ratio) for
the two populations of public and private universities.

c) Use subplots to put the results of a) and b) on top of one another to create a visual
that compares the two populations even better.

2.	 In this exercise, we will continue using Universities_imputed_reduced.
csv. Draw the following visualizations:

a) Use a bar chart to compare the private/public ratio of all the states in the dataset.
In this example, the populations we are comparing are the states.

b) Improve the visualizations by sorting the states on the visuals based on the total
number of universities they have.

c) Create a stacked bar chart that shows and compares the percentages of public and
private schools across different states.

Exercise 157

3.	 For this example, we will be using WH Report_preprocessed.csv. Draw the
following visualizations:

a) Create a visual that compares the relationship between all the happiness indices.

b) Use the visual you created in a) to report the happiness indices with strong
relationships and describe those relationships.

c) Confirm the relationships you found and described by calculating their
correlation coefficients and adding these new pieces of information to your
description to improve them.

4.	 For this exercise, we will continue using WH Report_preprocessed.csv.
Draw the following visualizations:

a) Draw a visual that examines the relationship between two attributes, Continent
and Generosity.

b) Based on the visual, is there a relationship between the two attributes? Explain why.
5.	 For this exercise, we will be using whickham.csv. Draw the following visualizations:

a) What is the numerical attribute in this dataset? Draw two different plots that
summarize the population of data objects for the numerical attribute.

b) What are the categorical attributes in this dataset? Draw a plot per attribute that
summarizes the population of the data object for each attribute.

c) Draw a visual that examines the relationship between outcome and smoker.
Do you notice anything surprising about this visualization?

d) To demystify the surprising relationship you observed on c), run the following
code, and study the visual it creates:

person_df = pd.read_csv('whickham.csv')

person_df['age_discretized'] = pd.cut(person_df.age, bins
= 4, labels=False)

person_df.groupby(['age_discretized','smoker']).outcome.
value_counts().unstack().unstack().plot.bar(stacked=True)

plt.show()

Using the visual that was created for the preceding code, explain the surprising
observation made for c).

e) How many dimensions does the visual that was created for d) have? How did we
manage to add dimensions to the bar chart?

158 Data Visualization

6.	 For this exercise, we will be using WH Report_preprocessed.csv.

a) Use this dataset to create a five-dimensional scatter plot to show the interactions
between the following five attributes: year, Healthy_life_expectancy_at_
birth, Social_support, Life_Ladder, and population. Use a control bar for
year, marker size for population, marker color for Social_support, the x-axis
for Healthy_life_expectancy_at_birth, and the y-axis for Life_Ladder.

b) Interact with and study the visual you created for a) and report your observations.
7.	 For this exercise, we will continue using WH Report_preprocessed.csv.

a) Create a visual that shows the trend of change for the Generosity attribute for
all the countries in the dataset. To avoid making the visual overwhelming, use a gray
color for the line plots of all the countries, and don't use a legend.

b) Add three more line plots to the previous visual using a blue color and a thicker
line (linewidth=1.8) for the three countries, United States, China, and
India. Work out the visual so it only shows you the legend of these three countries.
The following screenshot shows the visual that is being described:

Figure 5.26 – Line plot comparing Generosity across all countries in 2010 and 2019 with an
emphasis on the United States, India, and China

c) Report your observations from the visual. Make sure to refer to all of the line
plots (gray and blue) in your observations.

6
Prediction

Being able to predict the future using data is becoming increasingly possible. Not only
that; soon, being able to perform successful predictive modeling will not be a competitive
advantage anymore—it will be a necessity to survive. To improve the effectiveness of
predictive modeling, many focus on the algorithms that are used for prediction; however,
there are many meaningful steps you can take to improve the success of prediction
by performing more effective data preprocessing. That is the end goal in this book:
learning how to preprocess data more effectively. However, in this chapter, we are going
to take a very important step toward that goal. In this chapter, we are going to learn the
fundamentals of predictive modeling. When we learn the concepts and the techniques
of data preprocessing, we will rely on these fundamentals to make better data
preprocessing decisions.

While many different algorithms can be applied for predictive modeling, the fundamental
concepts of these algorithms are all the same. After covering those fundamentals in this
chapter, we will cover two of these algorithms that are distinct from one another in terms
of complexity and transparency: linear regression and multi-layer perceptron (MLP).

These are the main topics that this chapter will cover:

•	 Predictive models

•	 Linear regression

•	 MLP

160 Prediction

Technical requirements
You will be able to find all of the code and the datasets that are used in this book in
a GitHub repository exclusively created for this book. To find the repository, click
on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. In this repository, you will find a folder titled
Chapter06, from which you can download the code and the data for better learning.

Predictive models
Using data to predict the future is exciting and doable using data analytics. In the realm
of data analytics, there are two types of future predictions, outlined as follows:

•	 Predict a numerical value—for example, predict next year's price of Amazon's
stock market.

•	 Predict a label or a class—for example, predict whether a customer is likely to stop
purchasing your services and switch to your competition.

By and large, when we use the term prediction, we mean predicting a numerical value.
To predict a class or a label, the term that is used is classification. In this chapter,
we will focus on the prediction goal of data analytics, and the next chapter will cover
classification.

The prediction of future numerical values also falls into two major overarching types:
forecasting and regression analysis. We will briefly explain forecasting, before turning
our attention to regression analysis.

Forecasting
In data analytics, forecasting refers to techniques that are used to predict the future
numerical values of time-series data. Where forecasting is distinct is in its application
to time-series data—for instance, the simplest forecasting method is the simple moving
average (SMA). Under this method, you would forecast the numerical value of a future
data point in your time-series data using the most recent data points.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Predictive models 161

Example of using forecasting to predict the future
Let's look at an example that features the moving average (MA) for forecasting. The
following table shows the number of student applications that Mississippi State
University (MSU) received from 2006 to 2021:

Figure 6.1 – Number of MSU applications from 2006 to 2021

The following screenshot visualizes the data presented in the preceding table using
a line plot:

Figure 6.2 – Line plot for the number of MSU applications from 2006 to 2021

MSU, for planning purposes, would like to have some ideas of how many new applications
they will receive in 2022. One way to go about this would be to use the MA method.
For this method, you need to specify the number of data points you want to use for
forecasting. This is often denoted by n. Let's use five data points (n=5). In that case, you
would use the data from 2017, 2018, 2019, 2020, and 2021 in your prediction. Simply, you
calculate the average number of applications for these years and use that as the estimated
forecast for the next year. The average value of 13,930, 13,817, 17,363, 18,269, and 16,127
is 15,901.2, which can be used as an estimate for the number of applications for 2022.

162 Prediction

The following screenshot depicts the application of MA with n=5:

Figure 6.3 – Application of a simple MA forecasting method on the number
of MSU applications from 2006 to 2021

There are more complicated methods for forecasting using time-series data such
as weighted MA, exponential smoothing, double exponential smoothing, and more.

We do not cover these methods in this book as the data preprocessing that is needed for
all time-series data is the same. However, what you'd want to remember from forecasting
is that the methods work on single-dimensional time-series data for prediction.
For instance, in the MSU example, the only dimension of data we had was the N_
Applications attribute.

This single dimensionality is in stark contrast to the next prediction methodology we will
cover. Regression analysis, in contrast to forecasting, finds relationships between multiple
attributes to estimate numerical values of one of the attributes.

Regression analysis
Regression analysis tackles the task of predicting numerical values using the relationship
between predictor attributes and the target attribute.

The target attribute is the attribute whose numerical values we are interested in
predicting. The term dependent attribute is another name that is used for the same
idea. The meaning of dependent attribute comes from the fact that the value of the
target attribute is dependent on other attributes; we call those attributes predictors
or independent attributes.

Predictive models 163

Many different methods could be used for regression analysis. As long as the methods
seek to find relationships between the independent attributes and the dependent attribute
for predicting the dependent attribute, we categorize the methods under regression
analysis. Linear regression, which is one of the simplest and yet widely used methods of
regression analysis is, of course, one of these methods. However, other techniques such
as MLP and regression tree are also categorized under regression analysis.

Example of designing regression analysis to predict future values
For example, the prediction of the number of MSU applications in the next year can
also be modeled using regression analysis. The following figure shows two independent
attributes that have the potential to predict the Number of Applications dependent
attribute. You can see in this example that the prediction model engages more than
one dimension; we have three dimensions—two independent attributes and one
dependent attribute.

The first independent attribute, Previous year football performance, is the MSU football
team ratio of winning games. The second independent attribute is Average number of
applications from last two years:

Figure 6.4 – Example of regression analysis

The second independent attribute is interesting as it depicts that you can interface
forecasting methods with regression analysis by including the value of forecasting
methods as independent attributes of regression analysis. The average number of
applications from the last 2 years is the value of the SMA method with n=2.

164 Prediction

How Do We Find Possible Independent Attributes?
You can see the vital role of having appropriate independent attributes for
predicting the attribute of interest (dependent attribute) in regression analysis.
Envisioning and collecting possible predictors (independent attributes) is the
most important part of performing successful regression analysis.

So far, you have learned valuable skills in this book that can help you in the
quest to envision possible predictors. The understanding you amassed in
Chapter 4, Databases, will allow you to imagine what is possible and search for
and collect that data.

In one of the future chapters, Chapter 12, Data Fusion and Integration, you will
learn all the skills you will need to go about integrating data from different
sources to support your regression analysis.

Once the independent and dependent attributes are identified, we have completed and
modeled our regression analysis. Next, we will need to employ the appropriate algorithms
to find relationships between these attributes and use those relationships for prediction.
In this chapter, we will cover two very different algorithms that can do this: linear
regression and MLP.

Linear regression
The name linear regression will tell you all you need to know about it—the regression
part tells you this method performs regression analysis, and the linear part tells you the
method assumes linear relationships between attributes.

To find a possible relationship between attributes, linear regression assumes and models
a universal equation that relates the target (the dependent attribute) to the predictors (the
independent attributes). This equation is depicted here:

This equation uses a parameter approach. In this equation N stands for the number of
predictors shows the linear regression universal equation.

The working of linear regression is very simple. The method first estimates the βs so that
the equation fits the data best, and then uses the estimated βs for prediction.

Let's learn this method with an example. We will continue solving the number of MSU
applications in the following example.

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝛽𝛽2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 + ⋯ + 𝛽𝛽𝑁𝑁 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Linear regression 165

Example of applying linear regression to perform
regression analysis
We have so far identified our independent and dependent attributes, so we can show the
linear regression equation for this example. The equation is shown here:

The MSU applications.csv dataset has all the attributes we need to estimate the βs.
Let's first read this data and take a look at it. The following screenshot shows the code we
run to read the data and the whole dataset:

Figure 6.5 – Reading MSU applications.csv and showing the dataset

𝑁𝑁_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑃𝑃_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽2 × 𝑆𝑆𝑆𝑆𝑆𝑆2

166 Prediction

In this dataset, we have the following attributes:

•	 P_Football_Performance: This attribute is the overall winning ratio of the
MSU football team during the previous academic year.

•	 SMAn2: This attribute is the calculated value of the SMA with n=2. For instance,
SMAn2 for row 2009 is the average of the N_Applications attribute in 2008 and
2007. Confirm this calculation before reading on.

•	 N_Applications: This is the same data as what we saw in Figure 6.1 and Figure
6.2. This is the dependent attribute that we are interested in predicting.

We are going to use the scikit-learn module to estimate these βs using msu_df,
so first, we need to install this module on our Anaconda platform. Running the following
code will install the module:

conda install scikit-learn

Once installed, you need to import the module to start using it every time, just as with
the other module we have been using. However, since scikit-learn is rather large,
we will import exactly what we want to use each time. For instance, the following code
only imports the LinearRegression function from the module:

from sklearn.linear_model import LinearRegression

Now, we have at our disposal a function that can seamlessly calculate the βs of our model
using msu_df. We now only need to introduce the data to the LinearRegression()
function in the appropriate way.

We can do this in four steps, as follows:

1.	 First, we will specify our independent and dependent attributes, by specifying the X
and y list of variables. See the following code snippet:

X = ['P_Football_Performance','P_2SMA']

Y = 'N_Applications'

2.	 Second, we will create two separate datasets from msu_df using the list X and Y:
data_X and data_y. data_X is a DataFrame with all the independent attributes,
and data_y is a Series that is the dependent attribute. The following code shows this:

data_X = msu_df[X]

data_y = msu_df[y]

Linear regression 167

This step and the previous step could have been merged with the next steps;
however, it is best to keep your code clean and tidy, and I highly recommend using
my guidelines, at least in the beginning.

3.	 Next, we will create the model and introduce the data. The following code will do
that. We create a linear regression model and call it lm, and introduce the data to it:

lm = LinearRegression()

lm.fit(data_X, data_y)

When you run the following code almost nothing happens, but don't worry—the
model has done its bit, and we only need to access the estimated βs in the next step.

4.	 As indicated, the estimated βs are within the trained lm model. We can use
lm.intercept_ to access β0, and lm.coef_ will show you β1, and β2. The
following code prints out an organized report with all the β0 instances:

print('intercept (b0) ', lm.intercept_)

coef_names = ['b1','b2']

print(pd.DataFrame({'Predictor': data_X.columns,
 'coefficient Name':coef_names,
 'coefficient Value': lm.coef_}))

After running these four steps successfully, you will have estimated the βs. I did show the
code for this step by step, but all this is normally done in one chunk of code. The following
screenshot shows the preceding lines of code and a small report from Step 4:

Figure 6.6 – Fitting msu_df data to LinearRegression() and reporting the βs

168 Prediction

Now that we have estimated the βs of the regression model, we can introduce our trained
model. The following equation shows the trained regression equation:

Next, we will learn how the trained regression equation can be used for prediction.

How to use the trained regression equation for prediction
To use the equation to predict the number of MSU applications in 2022, MSU needs to
put together the P_Football_performance and SMAn2 attributes for 2022. Here, we
describe the process of finding these values:

•	 P_Football_performance: At the time of writing this chapter (April 2021), the
college football season of 2020-21 had ended and MSU achieved 4 wins out of 11
games, reaching 0.364 winning ratios.

•	 SMAn2: The N_Applications values for 2021 and 2020 are 18,269 and 16,127,
respectively. The average value of these numbers is 17,198.

Here is the calculation to predict N_Applications values in 2022:

We do not have to do the preceding calculations ourselves; we did this for learning purposes.
We can use the .predict() function that comes with all of the scikit-learn
predictive models. The following screenshot shows how this can be done:

Figure 6.7 – Calculating the number of applications for 2022 using the .predict() function

𝑁𝑁_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = −890.71 + 5544.96 × 𝑃𝑃_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 0.91 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛2

𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = −890.71 + 5544.96 × 0.364 + 0.91 × 17198 = 16777.83

Linear regression 169

There is some difference between the preceding equation calculation and programming
calculation. One reached 16777.82 and the other arrived at 16726.78. The difference
is due to the rounding-ups we did to present the regression equation. The value that the
.predict() function came to, 16726.78, is more accurate.

Pay Attention!
Linear regression, and regression analysis in general, is a very established field
of analytics. There are many evaluative methods and procedures to ensure the
model we have created is of good quality. In this book, we will not cover those
concepts, as the goal of this chapter is to introduce techniques that may need
data preprocessing. By knowing the mechanism of these techniques, you will
be able to perform data preprocessing more effectively.

Now that we have completed this prediction, look back and examine the working of linear
regression. Here, linear regression achieved the following two objectives:

1.	 Linear regression used its universal and linear equation to find the relationship
between the independent and dependent attributes. The β coefficient of each
independent attribute tells you how the independent attributes relate to the
dependent attribute—for instance, the coefficient of SMAn2, β2, came out to be
0.91. This means that even if the MSU football team loses all of its games (which
makes the value of N_Football_Performance zero), next year, the number
of applications will be an equation of -890.71 + 0.91×SMAn2.

2.	 The linear regression equation has packaged the estimated relationship in an
equation that can be used for future observations.

These two matters, extraction and estimation of the relationships and packaging the
estimated relationship for future data objects, are essential for the proper working of any
predictive model.

What is great about linear regression is that the simplicity of these matters can be seen and
appreciated. This simplicity helps in understanding the working of linear regression and
comprehending the patterns it extracts. However, the simplicity works against the method
as far as its reach to estimate and package a more complex and non-linear relationship
between the independent and dependent attributes.

Next in this chapter, we will be briefly introduced to another prediction algorithm that
is at the other end of the spectrum. MLP is a complex algorithm that is capable of finding
and packaging more complex patterns between independent and dependent attributes, but
it lacks the transparency and intuitiveness of linear regression.

170 Prediction

MLP
MLP is a very complex algorithm with many details, and going over its functioning and
different parts abstractly will be difficult to follow. So, let's dive in with an example. We
will continue using the number of MSU applications in this section.

While linear regression uses an equation, MLP uses a network of neurons to connect the
independent attributes to the dependent attribute. An example of such a network is shown
in the following screenshot:

Figure 6.8 – An MLP network example for the number of MSU applications problem

Every MLP network has six distinct parts. Let's go through these parts using Figure 6.8,
as follows:

•	 Neurons: Each of the circles in Figure 6.8 is called a neuron. A neuron could be in
the input layer, output layer, and hidden layers. We will cover three tree types of
layers in the following section.

•	 Input layer: A layer of neurons from which values are inputted to the network.
In a prediction task, for as many as the number of independent attributes, we will
have neurons in the input layer. In Figure 6.8, you can see we have two neurons in
the input layer, one for each of our independent attributes.

•	 Output layer: A layer of neurons out of which the processed values of the network
come. In a prediction task, for as many as the number of dependent attributes,
we will have neurons in the output layer. More often than not, we only have one
dependent attribute. This holds true for Figure 6.8, as our prediction task only has
one dependent attribute and the network has only one neuron in the output layer.

•	 Hidden layers: One or more layers of neurons that come between the input and
output layers. The number of hidden layers and the number of neurons in each
hidden layer can be—and should be—adjusted for the desired level of model
complexity and computational cost. For example, Figure 6.8 only has one hidden
layer and six neurons in that hidden layer.

MLP 171

•	 Connections: The lines that connect the neurons of one layer to the next level are
called connections. These connections must exist exhaustively from one level to the
next; exhaustively means that all the neurons in a left layer are connected to all the
neurons to its right layer.

Now that you understand each part of the preceding MLP network, we will turn our
attention to how MLP goes about finding the relationship between the independent
attributes and the dependent attribute.

How does MLP work?
MLP works both similarly to and differently from linear regression. Let's first go over their
similarities, and then we will cover their differences. Their similarities are listed here:

•	 Linear regression relies on its structured equation to capture the relationships
between the independent attributes and the dependent attribute. MLP, too, relies on
its network structure to capture the same relationships.

•	 Linear regression estimates the βs as a way to use its structured equation to fit itself
to the data and hence find the relationship between the independent attributes and
the dependent attribute. MLP, too, estimates a value for each of the connections on
its structure to fit itself to the data; these values are called the connection's weight.
So, both linear regression and MLP use the data to update themselves so that they
can explain the data using their predefined structures.

•	 Once the βs for linear regression and the connections' weight for MLP are properly
estimated using the data, both algorithms are ready to be used to predict new cases.

We can see that both algorithms are very similar; however, they also have many
differences. Let's go over those now, as follows:

•	 While the linear regression algorithm's structured equation is fixed and simple,
MLP's structure is adjustable and can be set to be very complex. In essence, the
more hidden layers and neurons an MLP structure has, the more the algorithm
is capable of capturing more complex relationships.

•	 While linear regression relies on proven mathematical formulas to estimate the βs,
MLP has to resort to heuristics and computations to estimate the best connections'
weights for the data.

172 Prediction

The most famous heuristic that is used to estimate the connections' weights for MLP is
called backpropagation. The heuristic is very simple in essence; however, coding it and
getting it to work can be tricky. The good news for us is that we do not have to worry
about coding it, as there are stable modules we can use. However, let's go through its
simple idea once before seeing how we can use the aforementioned modules.

Backpropagation
For backpropagation, each connection's weight is first assigned a random number
between -1 and 1. Yes—this is done completely randomly and it is called MLP's random
initialization.

After MLP's random initialization, the algorithm will be capable of predicting a value for
any inputted data object. Of course, these predictions will be erroneous. Backpropagation
uses these errors and the extent of these errors to learn.

Every time a data object is exposed to the MLP network, MLP expects its dependent
attribute. As mentioned, this expectation is wrong, at least in the beginning. So,
backpropagation calculates the error of the network for each exposure, moves backward
on the network, and updates the connection's weight in such a way that if the same data
object is exposed again, the amount of error will be a little less.

The network will be exposed to all data objects in the dataset more than once. Every
time all the data objects are exposed to the network, we call that one epoch of learning.
Backpropagation makes the network undergo enough epochs of learning so that the
collective amount of error for the network will be acceptable.

Now that we have this general understanding of MLP and its major heuristic to estimate
the connections' weights, let's together see an example of using the scikit-learn
module to perform a prediction task using MLP.

Example of applying MLP to perform regression
analysis
To implement MLP using the scikit-learn module, we need to take the same four
steps that we took for linear regression. In short, these four steps are listed as follows.

1.	 Specifying our independent and dependent attributes
2.	 Creating two separate datasets: data_X and data_y
3.	 Creating a model and introducing the data
4.	 Predicting

MLP 173

The following code snippet shows these four steps being applied to the number of MSU
applications problem. It shows the MLPRegressor class being imported from the
sklearn.neural_network module first:

from sklearn.neural_network import MLPRegressor

X = ['P_Football_Performance','SMAn2']

y = 'N_Applications'

data_X = msu_df[X]

data_y = msu_df[y]

mlp = MLPRegressor(hidden_layer_sizes=6, max_iter=10000)

mlp.fit(data_X, data_y)

mlp.predict(newData)

The code is almost the same as the code that we used for linear regression, with some
minor changes. Let's go over those, as follows:

•	 Instead of creating lm using LinearRegression(), we created mlp using
MLPRegressor().

•	 The LinearRegression() function did not need any input, as linear regression
is a simple algorithm with no hyperparameters. But MLPRegressor() needed
at least two inputs, hidden_layer_sizes=6 and max_iter=10000. The first
input (hidden_layer_sizes=6) specifies the network structure. By inputting
only one number, we are indicating we only have one hidden layer, and by using
the number 6, we are indicating that the hidden layer has six neurons. This is
in line with the network design we saw in Figure 6.8. The second input (max_
iter=10000) specifies that you want at least 10,000 epochs of learning before the
module should give up on converging.

If you successfully run the preceding code a few times, you will observe the following two
general trends:

•	 The code will output a somewhat different prediction for newData every time,
but the values are all around 18,000.

•	 On some runs, the code will also create a warning. The warning is that the MLP
algorithm was not able to converge even after 10,000 epochs of learning.

Now, let's discuss these two trends.

174 Prediction

MLP reaching different predictions on every run
Let's discuss the first observation: The code will output a somewhat different prediction for
newData every time, but the values are all around 18,000.

MLP is a random-based algorithm. If you remember from our backpropagation learning,
every time the network is initialized, a random number between -1 and 1 is assigned
to each of the connections. These values are then updated so that the network fits the
data better; however, the beginning is random, and therefore the results are going to
be different.

However, if you pay attention to these different conclusions the random-based model
reached, you will see that even though they are different, they are somewhat consistent.
They are all around 18,000. This shows that the random-based procedure is capable of
finding similar and meaningful patterns in the data.

MLP needing significant epochs of learning
Let's now discuss the second observation: On some runs, the code will also create
a warning. The warning is that the MLP algorithm was not able to converge even after
10,000 epochs of learning.

As we will never know when the random-based algorithm will converge, we will have to
put a cap on the number of epochs of learning. In fact, having 10,000 epochs of learning
is extravagantly high, and we can afford it only because the data has only 16 data objects.
The default value of max_iter for MLPRegressor() is 200. That means if we had not
specified max_iter=10000, the function would have assumed max_iter=200. In this
case, that would mean the algorithm would not converge more often, and its conclusions
would be less consistent. Give this a try and observe the aforementioned patterns.

Pay Attention!
MLP is a very complex and flexible algorithm; here, we only discussed two of
its hyperparameters (hidden_layer_sizes and max_iter), but it has
many more, and to successfully use MLP, you will need to tune it first. To tune
an algorithm is to find the hyperparameters that work best for a dataset. We
will not cover how MLP is tuned here, as we only need a basic understanding
of the algorithm so that it will support our data preprocessing journey.

Furthermore, just as with linear regression, MLP should be rigorously
evaluated for validity and reliability before implementation. We will not use
those concepts and techniques in this book either for the same reason.

Summary 175

Summary
Congratulations! You made really good progress in this chapter. Together, we learned
the fundamental concepts and techniques for using data to perform predictions.
We separated the predictions into predicting numerical values and predicting events
and labels. In data mining, the term prediction is used for predicting numerical values,
and we use classification for predicting events and labels. In this chapter, we covered
data mining task prediction, and in the next chapter, we will cover data mining
task classification.

Before moving forward and starting your journey to learn about classification and how
it can be done in the next chapter, spend some time on the following exercises and solidify
your learnings.

Exercises
1.	 MLP has the potential to create prediction models that are more accurate than

prediction models that are created by linear regression. This statement is generally
correct. In this exercise, we want to explore one of the reasons why the statement
is correct. Answer the following questions:

a) �The following formula shows the linear equation that we used to connect the
dependent and independent attributes of the number of MSU applications
problem. Count and report the number of coefficients that linear regression can
play with to fit the equation to the data.

b) �Figure 6.8 shows the MLP network structure we used to connect the dependent
and independent attributes of the number of MSU applications problem. Count
and report the number of connections' weights MLP can play with to fit the
network to the data.

c) �Use your answers from a) and b) to state why MLP has more potential in terms
of creating prediction models with higher accuracy.

𝑁𝑁_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑃𝑃_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽2 × 𝑆𝑆𝑆𝑆𝑆𝑆2

176 Prediction

2.	 In this exercise, we will be using ToyotaCorolla_preprocessed.csv.
This dataset has the following columns: Age, Mileage_KM, Quarterly_Tax,
Weight, Fuel_Type_CNG, Fuel_Type_Diesel, Fuel_Type_Petrol, and
Price. Each data object in this dataset is a used Toyota Corolla car. We would like
to use this dataset to predict the price of used Toyota Corolla cars.

a) �Read the data into the car_df pandas DataFrame.

b) �Use the skills you picked up in the previous chapter to come up with data
visualizations that show the relationship between the attribute price and the rest
of the attributes.

c) �Use the visuals in b) to describe the relationship each of the attributes has with
the attribute price.

d) �Create a correlation matrix for all the attributes, and report the correlation values
for the relationship that you investigated in b) and c).

e) �Were the visual investigations you performed in b) and c) confirmed in d)? For
which types of attributes were the conclusions for c) not confirmed in d)?

f) �Perform linear regression to predict the attribute price. Use all the attributes that
you detect had a meaningful relationship with the attribute price as independent
attributes. Predict the price of a car with the following specifications: Age: 74
months, Mileage_KM: 124,057, Quarterly_Tax: 69, and Weight: 1,050. The
car fuel type is petrol.

g) �Implement an MLP algorithm to predict the attribute price. Use all the attributes
that you used in f) and predict the price of the same new car presented in f).
Use 15 neurons in one hidden layer (hidden_layer_sizes), and set the
max_iter attribute as 100.

h) �The actual price of the new car presented under f) is 7,950. Report which
algorithm performed a better prediction.

7
Classification

As you learned how to go about predicting numerical values in the previous chapter, in
this chapter, we will turn our attention to predicting categorical ones. Essentially, that
is what classification is: predicting future categorical values. While prediction focuses on
estimating what some numerical values will be in the future, classification predicts the
occurrence or non-occurrence of events in the future. For instance, in this chapter, we will
see how classification can predict whether an individual will default on their loan or not.

In this chapter, we will also discuss the procedural similarities and differences between
prediction and classification and will cover two of the most famous classification
algorithms: Decision Trees and K-Nearest Neighbors (KNN). While this chapter
provides a fundamental understanding of classification algorithms and also shows how
they are done using Python, this chapter cannot be looked at as a comprehensive reference
for classification. Rather, you want to focus on the fundamental concepts so that you will
be ready for your data preprocessing journey, which you will start in Chapter 9, Data
Cleaning Level I – Cleaning Up the Table.

These are the main topics that this chapter will cover:

•	 Classification models

•	 KNN

•	 Decision Trees

178 Classification

Technical requirements
You will be able to find all of the code and the dataset that is used in this book in
a GitHub repository exclusively created for this book. To find the repository, click
on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. In this repository, you will find a folder titled
Chapter07, from which you can download the code and the data for better learning.

Classification models
In the previous chapter, we covered predictive modeling. Classification is a type of
predictive modeling; specifically, classification is a regression analysis where the
dependent attribute or the target is categorical instead of numerical.

Even though classification is a subset of predictive modeling, it is the area of data mining
that has received the most attention due to its usefulness. At the core of many machine
learning (ML) solutions in the real world today is a classification algorithm. Despite
its prevalent applications and complicated algorithms, the fundamental concepts of
classification are simple.

Just as with prediction, for classification, we need to specify our independent attributes
(predictors) and the dependent attribute (target). Once we are clear about these and we have
a dataset that includes these attributes, we are set to employ classification algorithms.

Classification algorithms, just as with prediction algorithms, seek to find the relationship
between independent attributes and the dependent attribute, so by knowing the values of
the independent attributes of the new data object, we can guess the class of (classify) the
new data object.

Let's now look at an example together so that these rather abstract concepts start making
more sense to you.

Example of designing a classification model
When you apply for a cash loan these days, make no mistake that a classification
algorithm is going to have a major role in deciding if you are going to get the loan or not.
The classification models that are used in real cases tend to be very complex with many
independent attributes. However, the two most important pieces of information these
algorithms rely on are your income and credit score.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Classification models 179

Here, we will present a simple version of these complex classifications. The classification
design shown in the following diagram uses Income and Credit Score as independent
attributes to classify if an applicant will default on an accepted loan or not. The Default?
binary attribute is the dependent attribute of the classification design:

Figure 7.1 – Classification design of loan application problem

If you compare Figure 6.4 from the previous chapter with the preceding diagram, you
might assert that there is no difference between prediction and classification; you would
not be completely wrong. Prediction and classification are almost identical but for one
simple distinction: a classification's dependent attribute is categorical, but a prediction's
dependent attribute is numerical. That small distinction amounts to lots of algorithmic
and analytic changes for these two data mining tasks.

Classification algorithms
There are many well-researched, -designed, and -developed classification algorithms. In
fact, there are more classification algorithms than there are prediction algorithms. To
name a few, we have KNN, Decision Trees, Multi-Layer Perceptron (MLP), Support
Vector Machine (SVM), and Random Forest. Some of these algorithms are listed for
both prediction and classification. For instance, MLP will always be listed for both;
however, MLP is inherently designed for the prediction task, but it can be modified so that
it can also successfully tackle classification. On the other hand, we have the Decision Trees
algorithm, which is inherently designed for classification, but it can also be modified to
address prediction.

In this chapter, we are going to be briefly introduced to two of these algorithms: KNN and
Decision Trees.

180 Classification

KNN
KNN is one of the simplest classification algorithms, and almost everything you need to
know about its mechanism is presented in its name. In simple terms, to classify a new data
object, KNN finds the K-nearest neighbors to the new data object from the training dataset
and uses the label of those data objects to assign the likely label of the new data object.

It might be the case that KNN is too simple, and because of that, you do not fully
understand its mechanism. Let's continue our learning, using the following example.

Example of using KNN for classification
We are going to continue working on the loan application problem that was introduced
earlier. After completing the classification design, we specified Income and Credit
Score as independent attributes and Default? as the dependent attribute. The following
screenshot shows a dataset that can support this classification design. The dataset is from
the CustomerLoan.csv file:

Figure 7.2 – CustomerLoan.csv file

KNN 181

Now, let's assume that we want to use the preceding data to classify whether a customer
with a yearly income of US Dollars (USD) $98,487 and a credit score of 785 will default
on a loan or not.

As this example only includes three dimensions, we can use visualizations to perform
and understand the KNN algorithm. The following screenshot shows the classification
problem we would like to solve at one glance:

Figure 7.3 – Visualization of the loan application problem

The first step in performing KNN is to decide on K. Basically, we need to decide the
number of nearest neighbors we would like to base our classification on. Let's assume we
would like to use K=4.

Tuning KNN
Similar to many other data mining algorithms, to successfully use KNN
for classification, you will need to tune the algorithm. Tuning KNN would
mean finding the best number of K that would allow KNN to reach its best
performance for every case study. In this book, we will not cover tuning as we
are learning about algorithms, mainly to help us perform more successful data
preprocessing.

So, when K=4, we can easily eyeball the preceding screenshot and see that the four nearest
neighbors of the new applicant are data objects 1, 2, 3, and 14. As three out of four nearest
data objects have a label of Default-NO, we will classify the new applicant as Default-NO.
That is it—it's as simple as that.

182 Classification

While KNN is that simple in terms of its mechanism, creating a computer program that
implements this algorithm is more difficult. Why is that? A few reasons are presented
as follows:

•	 Here, we learned the mechanism of KNN, using an example that only had three
dimensions. So, using a scatterplot and colors, we were able to display the problem
and summarize all the data that we need to work with. Real-world problems will
likely have more than just three dimensions.

•	 While we were able to eyeball the visual and detect the nearest neighbors, computers
do not have the capability to just "see" which are the nearest neighbors. A computer
program would need to calculate the distance between the new data object with all
the data objects in the dataset so that it would find the K-nearest neighbors.

•	 What will happen if there is a tie? Let's say we have selected K=4, and two of the
nearest neighbors are of one class and two others are from another.

The great news for us is that we don't need to worry about any of these challenges
because we can simply use a stable module that includes this algorithm. Let's import
KNeighborsClassifier from the sklearn.neighbors module and apply it
to our example here.

Before we can apply the algorithm, we need to take action about the following two matters:

1.	 First, if you have never used the sklearn module on Anaconda Navigator, you
have to install it. Running the following code will install the module:

conda install scikit-learn

2.	 Next, we will need to normalize our data. This is a data preprocessing concept,
and we will cover it in depth when we get to it. However, let's briefly discuss its
necessity here.

The reason that we need normalization of the data before applying KNN is that normally,
the scale of the independent attributes are different from one another, and if the data
is not normalized, the attribute with the larger scale will end up being more important
in the distant calculation of the KNN algorithm, effectively canceling the role of other
independent attributes. In this example, income ranges from 78,479 to 119,976, while
score (for credit score) ranges from 680 to 815. If we were to calculate the distance between
the data objects using these scales, all that would matter is income and not credit score.

So, to avoid letting the scale of the attributes meddle with the mechanism of the algorithm,
we will normalize the data before using KNN. When an attribute is normalized, its values
are transformed so that the updated attribute ranges from 0 to 1 without influencing the
attribute's relative differentiation between the data objects.

KNN 183

The following code reads the CustomerLoan.csv file into the applicant_df
DataFrame and creates two new columns in applicant_df that are the normalization
transformation of the two columns in the original data:

applicant_df = pd.read_csv('CustomerLoan.csv')

applicant_df['income_Normalized'] = (applicant_df.income
- applicant_df.income.min())/(applicant_df.income.max() -
applicant_df.income.min())

applicant_df['score_Normalized'] = (applicant_df.score
- applicant_df.score.min())/(applicant_df.score.max() -
applicant_df.score.min())

The preceding code has created two new columns by using the following formula:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒 − min
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚

The preceding code has used the formula to transform the income column to income_
Normalized, and score to score_Normalized. The following screenshot shows the result
of this data transformation:

Figure 7.4 – Transformed applicant_df DataFrame

184 Classification

Take a moment to study the preceding screenshot; specifically, see the relationship
between the columns and their normalized version. You will notice that the relevant
distance and order between the values under the original attribute and its normalized
version do not change. To see this, find the minimum and maximum under both the
original attribute and its normalized version, and study those.

Pay attention to the fact that the last row of the data in the preceding screenshot is the new
applicant that we would like to classify.

Now that the data is ready, we can apply the KneighborsClassifier module from
sklearn.neighbors to do this. You can carry this out in four steps, as follows:

1.	 First, the KneighborsClassifier module needs to be imported. The following
code does the import:

from sklearn.neighbors import KNeighborsClassifier

2.	 Next, we need to specify our independent attributes and the dependent attribute.
The following code keeps the independent attributes in Xs and the dependent
attribute in y.

Pay attention to the fact that we are dropping the last row of the data, as this is the
row of the data we want to perform the prediction for. The .drop(index=[20])
part will take care of this dropping:

predictors = ['income_Normalized','score_Normalized']

target = 'default'

Xs = applicant_df[predictors].drop(index=[20])

y= applicant_df[target].drop(index=[20])

3.	 Next, we will create a KNN model and then fit the data into it. The following code
shows how this is done:

knn = KNeighborsClassifier(n_neighbors=4)

knn.fit(Xs, y)

4.	 Now, knn is ready to classify the new data objects. The following code shows how
we can separate the last row of the dataset and make a prediction for it using knn:

newApplicant = pd.DataFrame({'income_Normalized':
applicant_df.iloc[20].income_Normalized,'score_
Normalized': applicant_df.iloc[20].score_
Normalized},index = [20])

Decision Trees 185

predict_y = knn.predict(newApplicant)

print(predict_y)

If you put all the preceding four code snippets together, you will get the following
output, which also reports the prediction for newApplicant:

Figure 7.5 – Classification using sklearn.neighbors

The output in the preceding screenshot, which is the class for newApplicant, confirms
the conclusion we had already decided that KNN should arrive at.

So far in this chapter, you have learned about classification analysis, and you have also
learned how the KNN algorithm works and how to get KneighborsClassifier
from the sklearn.neighbors module to apply KNN to a dataset. Next, you will be
introduced to another classification algorithm: Decision Trees.

Decision Trees
While you can use the Decision Trees algorithm for classification, just like KNN, it
goes about the task of classification very differently. While KNN finds the most similar
data objects for classification, Decision Trees first summarizes the data using a tree-like
structure and then uses the structure to perform the classification.

Let's learn about Decision Trees using an example.

186 Classification

Example of using Decision Trees for classification
We will use DecisionTreeClassifier from sklearn.tree to apply the Decision
Trees algorithm to applicant_df. The code needed to use Decision Trees is almost
identical to that of KNN. Let's see the code first, and then I will draw your attention to
their similarities and differences. Here it is:

from sklearn.tree import DecisionTreeClassifier

predictors = ['income','score']

target = 'default'

Xs = applicant_df[predictors].drop(index=[20])

y= applicant_df[target].drop(index=[20])

classTree = DecisionTreeClassifier()

classTree.fit(Xs, y)

predict_y = classTree.predict(newApplicant)

print(predict_y)

There are two differences between the preceding code and the KNN code. Here, we list
these differences:

•	 First, the decision tree, due to the way it works, does not need the data to be
normalized, so that is why the predictors = ['income','score'] line
of code uses the original attributes. We used the normalized version for KNN.

•	 Second, and obviously, we have used DecisionTreeClassifier() instead
of KneighborsClassifier(). We also named our classification model
classTree here, as opposed to knn, which we used for KNN.

Pay Attention!
As you probably have noticed, the code to use any predictive model (prediction
and classification) in Python is very similar. Here are the steps we take for every
single one of the models. First, we import the module that has the algorithm we
would like to use. Next, we separate the data into independent and dependent
attributes. After that, we create a model using the module we imported. Then,
we use the .fit() function of the model we created to fit the data into the
model. Lastly, we use the .predict() function to predict the dependent
attribute for the new data objects.

Decision Trees 187

If you successfully run the preceding code, you will see that the decision tree, unlike
KNN, classifies newApplicant as YES. Let's look at the tree-like structure that
DecisionTreeClassifier() created to come to this conclusion. To do this, we will
use the plot_tree() function from the sklearn.tree module. Try running the
following code to draw the tree-like structure:

from sklearn.tree import plot_tree

plot_tree(classTree,
 feature_names=predictors,
 class_names=y.unique(),
 filled=True,
 impurity=False)

The preceding code will output the following:

Figure 7.6 – Classification using sklearn.neighbors

The output in the preceding screenshot will intuitively tell you why Decision Trees arrived
at a different conclusion from that of KNN. Starting from the top node, the dataset is
separated into two groups: data objects whose scores are greater than 789.5 and data
objects whose scores are lower than the cutoff value. All of the data objects with scores
higher than 789.5 are labeled NO-default; therefore, the decision tree has come to the
conclusion that if an applicant's score is higher than 789.5, they should be classified as NO.

188 Classification

Since the score of newApplicant is 785, this rule does not apply to this data object. To
find the class of the data object based on this tree-like structure. we need to go deeper.
From the tree-like structure, we see that the data object that has scores lower than 789.5
and an income lower than 110,122.5 has defaulted on the loan. So, again, Decision Trees
has reached the rule that when applicant scores are lower than 789.5 and 110,122.5, they
should be classified as YES. As the score and income of newApplicant are both lower
than these cutoff values, the decision tree has concluded YES for it.

Tuning Decision Trees
Just as with KNN, Decision Trees also needs tuning to reach its fullest
potential. In fact, Decision Trees requires even more tuning than what KNN
needs, as Decision Trees has more hyperparameters that could be adjusted.
However, for the same reasons mentioned for KNN, we will not cover the how-
to of the tunings in this book.

The way Decision Trees works is also simple—Decision Trees splits the dataset into two
segments again and again, at different stages, using one of the independent attributes until
all segments of the data are pure. Purity means that all of the data in the segment is of the
same class.

Before making our way to the end of this chapter, let's take a moment to discuss why the
two algorithms have reached a different conclusion. First, we need to understand that when
two distinct algorithms arrive at different conclusions about the same data object, this is
a sign that classification of that data object is difficult, meaning that there are different
patterns in the data that show the data object could be either of the classes. Second, as these
algorithms have various ways of pattern recognition and decision-making, the algorithms
that conclude differently may have prioritized the patterns in dissimilar ways.

Summary
Congratulations on your excellent progress in this chapter! Together, we learned the
fundamental concepts and techniques of classification analysis. Specifically, we understood
the distinction between classification and prediction, and we also learned about two
famous classification algorithms and used them on a sample dataset to understand
them even deeper.

In the next chapter, we will cover another important analytics task: clustering analysis.
We will use the famous K-Means algorithm to learn more about clustering and also run
a few experiments.

Before moving forward and starting your journey to learn about clustering, spend some
time on the following exercises and solidify your learning.

Exercises 189

Exercises
1.	 The chapter asserts that before using KNN, you will need to have your independent

attributes normalized. This is certainly true, but how come we were able to get
away with no normalization when we performed KNN using visualization?
(See Figure 7.3.)

2.	 We did not normalize the data when applying Decision Trees to the loan application
problem. For practice and a deeper understanding, apply Decision Trees to the
normalized data, and answer the following questions:

a) Did the conclusion of Decision Trees change? Why do you think that is? Use the
mechanism of the algorithm to explain.

b) Did the Decision Trees tree-like structure change? In what ways? Did the change
make a meaningful difference in the way that the tree-like structure could be used?

3.	 For this exercise, we are going to use the Customer Churn.csv dataset. This
dataset is randomly collected from an Iranian telecom company's database over a
period of 12 months. A total of 3,150 rows of data, each representing a customer,
bear information for 9 columns. The attributes that are in this dataset are listed here:

Call Failures: Number of call failures

Complaints: Binary (0: No complaint; 1: complaint)

Subscription Length: Total months of subscription

Seconds of Use: Total seconds of calls

Frequency of Use: Total number of calls

Frequency of SMS: Total number of text messages

Distinct Called Numbers: Total number of distinct phone calls

Status: Binary (1: active; 0: non-active)

Churn: Binary (1: churn; 0: non-churn)—class label

All of the attributes except for attribute churn are the aggregated data of the first 9
months. The churn labels are the state of the customers at the end of 12 months. 3
months is the designated planning gap.

Using the preceding data, we would like to use this dataset to predict if the following
customer will churn in 3 months:

Call Failures: 8; Complaints: 1; Subscription Length: 40; Seconds of Use: 4,472;
Frequency of Use: 70; Frequency of SMS: 100; Distinct Called Numbers: 25; Status: 1.

190 Classification

To do this, perform the following steps:

a) Read the data into the pandas customer_df DataFrame.

b)	 Use the skills you picked up in Chapter 5, Data Visualization, to come up with
data visualizations that show the relationship between the churn attribute and
the rest of the attributes.

c)	 Use the visuals in Step 2 to describe the relationship each of the attributes has
with the attribute Churn.

d)	 Perform KNN to predict if the aforementioned customer will be churned using
all of the attributes that had a meaningful relationship with churn. Do you need
to normalize the data first? Use K=5.

e)	 Repeat Step 4, but this time use K=10. Are the conclusions different?

f)	 Now, use the Decision Trees algorithm for classification. Do you need to
normalize the data? Use max_depth=4. Is the conclusion of the Decision Trees
algorithm different from that of the KNN algorithm?

max_depth is a hyperparameter of the Decision Trees algorithm that controls
how deep the learning can be. The number that is assigned is the maximum
number of splits from the root of the tree.

g)	 Draw the tree-like structure of the decision tree and explain how the decision
tree came to the conclusion it did.

8
Clustering Analysis

Finally, you have made your way to the last chapter of the second part of this book.
Clustering analysis is another useful and popular algorithmic pattern recognition tool.
When performing classification or prediction, the algorithms find the patterns that help
create a relationship between the independent attributes and the dependent attribute.
However, clustering does not have a dependent attribute, so it does not have an agenda in
pattern recognition. Clustering is an algorithmic pattern recognition tool with no prior
goals. With clustering, you can investigate and extract the inherent patterns that exist in
a dataset. Due to these differences, classification and prediction are called supervised
learning, while clustering is known as unsupervised learning.

In this chapter, we will use examples to fundamentally understand clustering analysis.
Then, we will learn about the most popular clustering algorithm: K-Means. We will also
perform some K-Means clustering analysis and examine the clustering output using
centroid analysis.

In this chapter, we will cover the following topics:

•	 Clustering model

•	 K-Means algorithm

192 Clustering Analysis

Technical requirements
You can find all the code and the dataset for this book in this book's GitHub repository. To
find the repository, go to https://github.com/PacktPublishing/Hands-On-
Data-Preprocessing-in-Python. You can find Chapter08 in this repository and
download the code and the data for ease of learning.

Clustering model
Since you've already learned how to perform prediction and classification tasks in data
analytics, in this chapter, you will learn about clustering analysis. In clustering, we strive
to meaningfully group the data objects in a dataset. We will learn about clustering analysis
through an example.

Clustering example using a two-dimensional dataset
In this example, we will use WH Report_preprocessed.csv to cluster the countries
based on two scores called Life_Ladder and Perceptions_of_corruption in 2019.

The following code reads the data into report_df and uses Boolean masking to
preprocess the dataset into report2019_df, which only includes the data of 2019:

report_df = pd.read_csv('WH Report_preprocessed.csv')

BM = report_df.year == 2019

report2019_df = report_df[BM]

The result of the preceding code is that we have a DataFrame, reprot1019_df, that
only includes the data of 2019, as requested by the prompt.

Since we only have two dimensions to perform the clustering, we can take advantage
of a scatterplot to visualize all the countries in relation to one another based on the two
attributes in question: Life_Ladder and Perceptions_of_corruption.

The following code creates the scatterplot in two steps:

1.	 Create the scatterplot as we learned about in Chapter 5, Data Visualization.
2.	 Loop over all the data objects in report2019_df and annotate each point in the

scatterplot using plt.annotate():

plt.figure(figsize=(12,12))

plt.scatter(report2019_df.Life_Ladder,
report2019_df.Perceptions_of_corruption)

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Clustering model 193

for _, row in report2019_df.iterrows():

 plt.annotate(row.Name, (row.Life_Ladder,
 row.Perceptions_of_corruption))

plt.xlabel('Life_Ladder')

plt.ylabel('Perceptions_of_corruption')

plt.show()

The output of the preceding code is as follows:

Figure 8.1 – Scatterplot of countries based on two happiness indices called Life_Ladder and
Perception_of_corruption in 2019

194 Clustering Analysis

As the data only has two dimensions, we can just look at the preceding figure and see the
groups of countries that have more similarities to one another based on Life_Ladder
and Perceptions_of_corruption. For instance, the following figure depicts the
groups of countries based on the preceding scatterplot. The countries that are within the
boundaries of more than one cluster should be assigned to one of the clusters.

Figure 8.2 – Scatterplot and clustering of countries based on two happiness indices called Life_Ladder
and Perceptions_of_corruption in 2019

Clustering model 195

Here, we see that we can meaningfully group all of the countries in the dataset into six
clusters. One of the clusters only has one data object, indicating that the data object is an
outlier based on the Life_Ladder and Perceptions_of_corruption attributes.

The key term here is meaningful clusters. So, let's use this example to understand what
we mean by meaningful clusters. The six clusters shown in the preceding figure are
meaningful for the following reasons:

•	 The data objects that are in the same clusters have similar values under
Life_Ladder and Perceptions_of_corruption.

•	 The data objects that are in different clusters have different values under
Life_Ladder and Perceptions_of_corruption.

In summary, meaningful clustering means that the clusters are grouped in such a way
that the members of the same clusters are similar, while the members of different clusters
are different.

When we cluster in two dimensions, meaning that we only have two attributes, the task
of clustering is simple, as shown in the preceding example. However, when the number of
dimensions increases, our ability to see patterns among the data using visualization either
decreases or becomes impossible.

For instance, in the following example, we will learn about the difficulty of visual
clustering when we have more than two attributes.

Clustering example using a three-dimensional dataset
In this example, we will use WH Report_preprocessed.csv. Try to cluster the
countries based on the three happiness indexes, called Life_Ladder, Perceptions_
of_corruption, and Generosity, in 2019.

The following code creates a scatterplot that uses color to add a third dimension:

plt.figure(figsize=(12,12))

plt.scatter(report2019_df.Life_Ladder,
 report2019_df.Perceptions_of_corruption,
 c=report2019_df.Generosity,cmap='binary')

plt.xlabel('Life_Ladder')

plt.ylabel('Perceptions_of_corruption')

plt.show()

196 Clustering Analysis

Running the preceding code will create the following figure. The following figure
visualizes Life_Ladder as the x dimension, Perceptions_of_corruption as
the y dimension, and Generosity as color. The lighter the markers, the lower the
Generosity score, while the darker the markers the higher the Generosity score:

Figure 8.3 – Scatterplot of countries based on three happiness indices called Life_Ladder,
Perceptions_of_corruption, and Generosity in 2019

K-Means algorithm 197

Try to use the preceding visualizations to find the meaningful clusters of data objects
based on the three attributes all at once. This task will be overwhelming for us as
our brains aren't good at performing tasks where we need to process more than two
dimensions at once.

The preceding figure does not include the names of the countries because even without
them, we have difficulty using this figure for clustering. Adding the country label would
only overwhelm us further.

The purpose of this example was not to complete it, but the conclusion we arrived at is
very important: we need to rely on tools other than data visualization and our brains to
perform meaningful clustering when the data has more than two dimensions.

The tools that we use for higher-dimensional clustering are algorithms and computers.
There are many different types of clustering algorithms with various working mechanisms.
In this chapter, we will learn about the most popular clustering algorithm: K-Means. This
algorithm is simple, scalable, and effective for clustering.

K-Means algorithm
K-Means is a random-based heuristic clustering algorithm. Random-based means that the
output of the algorithm on the same data may be different on every run, while heuristic
means that the algorithm does not reach the optimal solution. However, from experience,
we know that it reaches a good solution.

198 Clustering Analysis

K-Means clusters the data objects using a simple loop. The following diagram shows the
steps that the algorithm performs, as well as the loop that heuristically finds the clusters
in the data:

Figure 8.4 – K-Means flowchart

As we can see, the algorithm starts by randomly selecting k data objects as the cluster
centroids. Then, the data objects are assigned to the cluster that is closest to its centroid.
Next, the centroids are updated via the mean of all the data objects in the clusters. As the
centroids are updated, the data objects are reassigned to the cluster that is closest to its
centroid. Now, as the clusters are updated, the centroids will be updated as the mean of all
the new data objects in the clusters. These last two steps keep occurring until there is no
change in the cluster after updating the centroids. Once this stability has been reached, the
algorithm terminates.

From a coding perspective, applying K-means is very similar to applying any of the
other algorithms that we have learned about so far. The following example shows how
we could have reached a similar result we reached using visualization. See Figure 8.2 for
more information.

K-Means algorithm 199

Using K-Means to cluster a two-dimensional dataset
Earlier in this chapter, we grouped the countries into six clusters using Life_Ladder
and Perception_of_corruption. Here, we would like to confirm the same
clustering using K-Means.

The following code uses the KMeans function from the sklearn.cluster module to
perform this clustering:

from sklearn.cluster import KMeans

dimensions = ['Life_Ladder','Perceptions_of_corruption']

Xs = report2019_df[dimensions]

kmeans = KMeans(n_clusters=6)

kmeans.fit(Xs)

The preceding code performs KMeans clustering in four lines:

1.	 dimensions = ['Life_Ladder','Perceptions_of_corruption']:
This line of code specifies the attributes of the data we want to use for clustering.

2.	 Xs = report2019_df[dimensions]: This line of code separates the data we
want to use for clustering.

3.	 kmeans = KMeans(n_clusters=6): This line of code creates a K-Means
model that is ready to cluster input data into six clusters.

4.	 kmeans.fit(Xs): This line of code introduces the dataset we want to be clustered
to the model we created in the previous step.

When we run the preceding code successfully, almost nothing happens. However,
clustering has been performed, and the cluster membership of every row can be accessed
using kmeans.labels_. The following code uses a loop, kmeans.labels_, and
Boolean masking to print the members of each cluster:

for i in range(6):

 BM = kmeans.labels_==i

 print('Cluster {}: {}'.format(
 i,report2019_df[BM].Name.values))

The following screenshot puts the two preceding codes together and shows the output of
the code as well. After running the code, you will probably get a different output from the
one shown in the following screenshot. If you run the same code a few times, you will get
a different output every time.

200 Clustering Analysis

The reason for this inconsistency is that K-Means is a random-based algorithm. Please
refer to the K-Means flowchart shown in Figure 8.4: K-Means starts by randomly selecting
k data objects as the initial centroids. As this initialization is random, the outputs are
different from one another.

Even though the outputs are different, the same countries are grouped under the same
cluster each time. For instance, notice that the United Kingdom and Canada are in the
same cluster every time. This is reassuring; it means that K-Means finds the same pattern
in the data, even though it follows a random procedure:

Figure 8.5 – K-Means clustering based on two happiness indices called Life_Ladder and
Perception_of_corruption in 2019 – Original data

K-Means algorithm 201

Now, let's compare the clusters we found using K-Means (Figure 8.5) and the clusters we
found using visualization (Figure 8.2). These clusters are different, even though the data
that was used for clustering was the same. For instance, while Rwanda was an outlier in
Figure 8.2, it is the member of a cluster in Figure 8.5. Why is this happening? Give this
question some thought before reading on.

The following code will output a visual that can help you answer this question:

plt.figure(figsize=(21,4))

plt.scatter(report2019_df.Life_Ladder, report2019_
df.Perceptions_of_corruption)

for _, row in report2019_df.iterrows():

 plt.annotate(row.Name, (row.Life_Ladder,
 row.Perceptions_of_corruption),
 rotation=90)

plt.xlim([2.3,7.8])

plt.xlabel('Life_Ladder')

plt.ylabel('Perceptions_of_corruption')

plt.show()

This code will produce the following output:

Figure 8.6 – The resized version of Figure 8.1 and Figure 8.2

The only difference between the preceding output and Figure 8.1 and Figure 8.2 is that in
the preceding output, the numerical scale of Life_Ladder and Perceptions_of_
corruption has been adjusted to be the same.

202 Clustering Analysis

Matplotlib automatically scaled both dimensions of Figure 8.1 and Figure 8.2 – Life_
Ladder and Perceptions_of_corruptions – so that they appear to have a similar
visual range. This can be seen if you pay attention to the amount of visual space between
3 and 4 on the Life_Ladder dimension, and then compare that to the amount of visual
space between 0.2 and 0.4 on the Perceptions_of_corruption dimension. So,
we can see that while the amounts of visual space are equal, the numerical values that
represent them are very different. This realization answers the question that was raised
earlier: why is the clustering outcome of Figure 8.5 entirely different from the one we
detected visually in Figure 8.2? The answer is that the two clusterings are not using the
same data. The clustering represented in Figure 8.2 uses a scaled version of the data, while
the clustering represented in Figure 8.5 (K-Means clustering) uses the original data.

Now, a second question we need to answer is, which clustering output should we use?
Let me help you come to the right answer. When we want to cluster our data objects
using two dimensions, Life_Ladder and Perceptions_of_corruption, how
much weight do we want each dimension to play in the result of the clustering? Don't
we want both attributes to play an equal role? Yes, that is the case. So, we want to
choose the clustering that has given both dimensions equal importance. Since K-Means
clustering used the original data without scaling it, the fact that Life_Ladder
happened to have larger numbers influenced K-Means to prioritize Life_Ladder over
Perceptions_of_corruption.

To overcome this challenge, before applying K-Means or any other algorithm that uses the
distance between data objects as an important deciding factor, we need to normalize the
data. Normalizing the data means the attributes are rescaled in such a way that all of them
are represented in the same range. For instance, as you may recall, we normalized our
datasets before applying KNN in the previous chapter for the same reason.

The following screenshot shows the code and the clustering output when the dataset is
normalized before using K-Means. In this code, Xs = (Xs - Xs.min())/(Xs.
min()-Xs.max()) is used to rescale all the attributes in Xs to be between zero and one.
The rest of the algorithm code is the same as the code we tried earlier in this chapter. Now,
you can compare the clustering outcome in the following screenshot and the one shown in
Figure 8.2 to detect that the two ways of clustering are achieving almost the same results:

K-Means algorithm 203

Figure 8.7 – K-Means clustering based on two happiness indices called Life_Ladder and
Perceptions_of_corruption in 2019 – Normalized data

In this example, we saw how K-Means, when applied correctly, can produce a meaningful
clustering compared to what we had reached using data visualization. However, the
K-Means clustering in this example was applied to a two-dimensional dataset. In the next
example, we will see that, from a coding perspective, there is almost no difference between
applying K-Means to a two-dimensional dataset and applying the algorithm to a dataset
with more dimensions.

Using K-Means to cluster a dataset with more than
two dimensions
In this section, we will use K-Means and form three meaningful clusters of countries in
report2019_df based on all the Life_Ladder, Log_GDP_per_capita, Social_
support, Healthy_life_expectancy_at_birth, Freedom_to_make_life_
choices, Generosity, Perceptions_of_corruption, Positive_affect,
and Negative_affect happiness indices.

204 Clustering Analysis

Go ahead and run the following code; you will see that it will form three meaningful
clusters and print out the members of each cluster:

dimensions = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_
support', 'Healthy_life_expectancy_at_birth', 'Freedom_to_
make_life_choices', 'Generosity', 'Perceptions_of_corruption',
'Positive_affect', 'Negative_affect']

Xs = report2019_df[dimensions]

Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())

kmeans = KMeans(n_clusters=3)

kmeans.fit(Xs)

for i in range(3):

 BM = kmeans.labels_==i

 print('Cluster {}: {}' .format(i,report2019_df[BM].Name.
 values))

Here, the only difference between the preceding code and the code presented in Figure 8.7
is the first line, where the dimensions of the data are selected. After this, the code is the
same. The reason for this is that K-Means can handle as many dimensions as inputted.

How Many Clusters?
Choosing the number of clusters is the most challenging part of performing
a successful K-Means clustering analysis. The algorithm itself does not
accommodate finding out how many meaningful clusters are in the data.
Finding the meaningful number of clusters in the data is a difficult task when
the dimensions of the data increase.

While there is no one perfect solution to go about finding the meaningful
number of clusters in a dataset, there are a few different approaches you can
adopt. In this book, we will not cover this aspect of clustering analysis as we
know enough about clustering analysis to perform effective data preprocessing.

So far, we have learned how to use K-Means to form meaningful clusters. Next, we are
going to learn how to profile these clusters using centroid analysis.

Centroid analysis
Centroid analysis, in essence, is a canonical data analytics task that is done once meaningful
clusters have been found. We perform centroid analysis to understand what formed each
cluster and gain insight into the patterns in the data that led to the cluster's formation.

K-Means algorithm 205

This analysis essentially finds the centroids of each cluster and compares them with one
another. A color-coded table or a heatmap can be very useful for comparing centroids.

The following code finds the centroids using a loop and Boolean masking and then uses
the sns.heatmap() function from the seaborn module to draw the color-coded table.

The following code must be run once you've run the preceding code snippet:

import seaborn as sns

clusters = ['Cluster {}'.format(i) for i in range(3)]

Centroids = pd.DataFrame(0.0, index = clusters, columns =
Xs.columns)

for i,clst in enumerate(clusters):

 BM = kmeans.labels_==i

 Centroids.loc[clst] = Xs[BM].median(axis=0)

sns.heatmap(Centroids, linewidths=.5, annot=True,
cmap='binary')

plt.show()

The preceding code will output the following heatmap:

Figure 8.8 – Using sns.heatmap() to perform centroid analysis

206 Clustering Analysis

Before we analyze the preceding heatmap, allow me to give you a heads up. As K-Means
is a random-based algorithm, your output may be different to the one printed here. We
would expect to see the same patterns emerge from the data, but the cluster names might
be different.

In the preceding heatmap, we can see that Cluster 0 has the best happiness scores
among all the clusters, so we may label this cluster as Very Happy. On the other hand,
Cluster 2 is second best in every index except for Generosity and Perception_
of_corruption, so we will label this cluster Happy but Crime-ridden. Finally, Cluster
1 has the lowest value for almost all of the happiness indices, but Geneoristy has a
close second rank among all the centroids; we will call this cluster Unhappy but Generous.

Summary
Congratulations on your excellent progress in this chapter and this book! By finishing this
chapter, you have also finished the second part of this book. In this chapter, we learned
about clustering analysis and some techniques we can use to perform it. In this part of this
book, we learned about the four most in-demand data analytics goals: data visualization,
prediction, classification, and clustering.

In the first part of this book, you learned about data and databases, as well as
programming skills that allow you to effectively manipulate data for data analytics. In the
second part, which is the one you just finished, you learned about the four most important
data analytics goals and learned how they can be met using programming.

Now, you are ready to take on the next challenge: learning how to effectively preprocess
data for the data analytics goals you just learned about in the second part of this book
using your programming skills, your fundamental understanding of data, and your
appreciation of data analytics goals.

In the next part of this book, we will start our journey of data preprocessing. The next part
of this book is comprised of data cleaning, data fusion and integration, data reduction,
and data massaging and transformation. These processes are the pieces of a puzzle that,
when put together appropriately and effectively, improve data preprocessing and improve
the quality of data analytics.

Before you move on and start your journey on data cleaning, spend some time on the
following exercises and solidify what you've learned.

Exercises 207

Exercises
1.	 In your own words, answer the following two questions. Use 200 words (at most) to

answer each question:

a) What is the difference between classification and prediction?

b) What is the difference between classification and clustering?
2.	 Consider Figure 8.6 regarding the necessity of normalization before performing

clustering analysis. With your new appreciation for this process, would you like to
change your answer to the first exercise question from the previous chapter?

3.	 In this chapter, we used WH Report_preprocessed.csv to form meaningful
clusters of countries using 2019 data. In this exercise, we want to use the data from
2010-2019. Perform the following steps to do this:

a) Use the .pivot() function to restructure the data so that each combination of
the year and happiness index has a column. In other words, the data of the year is
recorded in long format, and we would like to change that into wide format. Name
the resulting data pvt_df. We will not need the Population and Continent
columns in pvt_df.

b) Normalize pvt_df and assign it to Xs.

c) Use K-Means and Xs to find three clusters among the data objects. Report the
members of each cluster.

d) Use a heatmap to perform centroid analysis. As there are many columns for this
clustering, you may have to resize the heatmap so that you can use it for analysis.
Make sure you've named each cluster.

4.	 For this exercise, we will be using the Mall_Customers.xlsx dataset to
form four meaningful clusters of customers. The following steps will help you do
this correctly:

a) Use pd.read_excel() to load the data into customer_df.

b) Set CustomerID as the index of customer_df and binary code the Gender
column. This means replacing Male values with 0 and Female values with 1.

c) Clean the names of the columns by using the following names: Gender, Age,
Annual_income, and Spending_score.

d) Normalize customer_df and load it into the Xs variable.

208 Clustering Analysis

e) Use K-Means and Xs to find four clusters among the data objects. Report the
members of each cluster.

f) Use a heatmap to perform centroid analysis. Make sure you've named
each cluster.

g) Why did we binary code the Gender attribute in Step b?

In this part, you will learn how to use Python to perform data cleaning, data integration,
data reduction, and data transformation to prepare data for successful analytic purposes.

This part comprises the following chapters:

•	 Chapter 9, Data Cleaning Level I – Cleaning Up the Table

•	 Chapter 10, Data Cleaning Level II – Unpacking, Restructuring, and
Reformulating the Table

•	 Chapter 11, Data Cleaning Level III – Missing Values, Outliers, and Errors

•	 Chapter 12, Data Fusion and Data Integration

•	 Chapter 13, Data Reduction

•	 Chapter 14, Data Transformation and Massaging

Part 3:
The Preprocessing

9
Data Cleaning

Level I – Cleaning
Up the Table

We are finally here! After making sure that we have the required technical skills (part 1 of
this book) and analytics skills (part 2 of this book), we can start discussing effective data
preprocessing. We will start this journey by looking at data cleaning. This chapter divides
data cleaning into three levels: levels I, II, and III. As you move up these levels, learning
about the concept of data cleaning will become deeper and more complex. We will talk
about what they are, how they are different, and what types of situations require us to
perform each level of data cleaning. Furthermore, for each level of data cleaning, we will
see examples of data sources that will require different levels of data cleaning.

In this chapter, we will focus on data cleaning level I – cleaning up the table. The next two
chapters are also dedicated to data cleaning but at levels II and III.

212 Data Cleaning Level I – Cleaning Up the Table

In this chapter, we're going to cover the following main topics:

•	 The levels, tools, and purposes of data cleaning – a roadmap to Chapter 9, Data
Cleaning Level I – Cleaning Up the Table, Chapter 10, Data Cleaning Level II –
Unpacking, Restructuring, and Reformulating the Table, and Chapter 11, Data
Cleaning Level III – Missing Values, Outliers, and Errors

•	 Data cleaning level I – cleaning up the table

Technical requirements
You can find all of the code and the dataset for this book in this book's GitHub repository.
To find the repository, go to https://github.com/PacktPublishing/Hands-
On-Data-Preprocessing-in-Python. You can find Chapter09 in this repository
and download the code and the data to aid with your learning.

The levels, tools, and purposes of data
cleaning – a roadmap to chapters 9, 10, and 11
One of the most exciting moments in any data analytics project is when you have one
dataset that you believe contains all the data you need to effectively meet the goals of the
project. This moment comes normally in one of the following situations:

•	 You are done collecting data for the analysis you have in mind.

•	 You have done extensive data integration from different data sources. Data
integration is a very important skillset and we will cover it in Chapter 12, Data
Fusion and Data Integration.

•	 The dataset is just shared with you and it contains everything that you need.

Regardless of how you got your hands on the dataset, this is an exciting moment. But
beware that more often than not, you still have many steps to take before you can analyze
the data. First, you need to clean the dataset.

To learn about and perform data cleaning, we need to fully understand the following
three aspects:

•	 Purpose of data analytics: Why are we cleaning the dataset? In other words, how
are we going to use the dataset once it has been cleaned?

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

The levels, tools, and purposes of data cleaning – a roadmap to chapters 9, 10, and 11 213

•	 Tools for data analytics: What will be used to perform data analytics? Python
(Matplotlib/sklearn)? Excel? MATLAB? Tableau?

•	 Levels of data cleaning: What aspects of the dataset need cleaning? Is our cleaning
at the surface level, in that we are only cleaning up the name of the columns, or is
our cleaning deeper, in that we are making sure that the recorded values are correct?

In the next three subsections, we will look at each of these aspects in more detail.

Purpose of data analytics
While it might sound like data cleaning can be done separately without us paying too
much attention to the purpose of the analysis, in this chapter, we will see that more often
than not, this is not the case. In other words, you will need to know what analytics you
will be performing on the dataset when you are cleaning your data. Not only that, but you
also need to know exactly how the analytics and perhaps the algorithms that you have in
mind will be using and manipulating the data.

So far in this book, we have learned about four different data analytic goals: data
visualization, prediction, classification, and clustering. We learned about these analytics
goals and how data is manipulated to meet them. We needed a more profound level of
understanding and appreciation for these goals so that they can support our data cleaning.
By knowing how the data will be used after we have cleaned it, we are in a position to
make better decisions regarding how the data should be cleaned. In this chapter, we will
see that our deeper understanding of the analytic goals will guide us to perform more
effective data cleaning.

Tools for data analytics
The software tools you intend to use will also have a major role in how you will go about
data cleaning. For instance, if you intend to use MATLAB to perform clustering analysis
and you've completed data cleaning in Python and have the completed data in Pandas
DataFrame format, you will need to transform the data into a structure that MATLAB can
read. Perhaps you could use .to_csv() to save the DataFrame as a .csv file and open
the file in MATLAB since .csv files are compatible with almost any software.

214 Data Cleaning Level I – Cleaning Up the Table

Levels of data cleaning
The data cleaning process has both high-level goals and many nitty-gritty details. Not
only that but what needs to be done for data cleaning from one project to another can
be completely different. So, it is impossible to give clear-cut, step-by-step instructions on
how you should go about data cleaning. However, we can loosely place the data cleaning
procedure at three levels, as follows:

1.	 Level I: Clean up the table.
2.	 Level II: Unpack, restructure, and reformulate the table.
3.	 Level III: Evaluate and correct the values.

In this chapter and the next two, we will learn about various data cleaning situations that fall
under one of the preceding levels. While each of these levels will have a specific section in
this book, we will briefly go over what they are and how they differ from one another here.

Level I– cleaning up the table
This level of cleaning is all about how the table looks. A level I cleaned dataset has three
characteristics: it is in a standard data structure, it has codable and intuitive column titles,
and each row has a unique identifier.

Level II– restructuring and reformulating the table
This level of cleaning has to do with the type of data structure and format you need your
dataset to be in so that the analytics you have in mind can be done. Most of the time, the
tools you use for analytics dictate the structure and the format of the data. For instance,
if you need to create multiple box plots using plt.boxplot(), you need to separate
the data for each box plot. For instance, see the Comparing populations using box plots
example in the Comparing populations section of Chapter 5, Data Visualization, where we
restructured the data before using the function to draw multiple box plots.

Level III– evaluating and correcting the values
This level of cleaning is about the correctness and existence of the recorded values in the
dataset. At this level of cleaning, you want to make certain that the recorded values are
correct and are presented in a way that best supports the analytics goals. This level of data
cleaning is the most technical and theoretical part of the data cleaning process. Not only
do we need to know how the tools we will be using need the data to be, but we also need
to understand how the data should be corrected, combined, or removed, as informed by
the goals of the analytics process. Dealing with missing values and handling outliers are
also major parts of this level of data cleaning.

The levels, tools, and purposes of data cleaning – a roadmap to chapters 9, 10, and 11 215

So far, we have looked at the three most important dimensions of data cleaning: the
purpose of data analytics, the tools for data analytics, and the three data cleaning levels.
Next, we will understand the roles these three dimensions – analytics purposes, analytic
tools, and the levels of data cleaning – play when it comes to effective data cleaning.

Mapping the purposes and tools of analytics to the
levels of data cleaning
The following diagram shows the map of these three dimensions. Having a dataset that
has been cleaned at level I is the very first step, and taking the time to make sure this level
of data cleaning has been performed will make the next data cleaning levels and the data
analytics process easier. While we can perform data cleaning level I without knowing
the analytics we have for the dataset, it would be unwise to do any level II or level III
data cleaning without knowing the software tools or the analytics you intend to employ.
The following diagram shows that level II data cleaning needs to be done while you're
informed about the tools and the analytic goals, while level III data cleaning needs to be
executed once you know about the data analytics goals:

Figure 9.1 – Relevant amount of general and specific steps for three different levels of data cleaning

In the remainder of this chapter, we will cover data cleaning level I in more detail by
providing data cleaning examples that tend to occur frequently. In the next few chapters,
we will do the same thing for data cleaning levels II and III.

216 Data Cleaning Level I – Cleaning Up the Table

Data cleaning level I – cleaning up the table
Data cleaning level I has the least deep data preprocessing steps. Most of the time, you
can get away with not having your data cleaned at level I. However, having a dataset that
is level I cleaned would be very rewarding as it would make the rest of the data cleaning
process and data analytics much easier.

We will consider a level I dataset clean where the dataset has the following characteristics:

•	 It is in a standard and preferred data structure.

•	 It has codable and intuitive column titles.

•	 Each row has a unique identifier.

The following three examples feature at least one or a combination of the preceding
characteristics for ease of learning.

Example 1 – unwise data collection
From time to time, you might come across sources of data that are not collected and
recorded in the best possible way. These situations occur when the data collection process
has been done by someone or a group of people who don't have the appropriate skills
regarding database management. Regardless of why this situation might have occurred,
you are given access to a data source that requires significant preprocessing before it can
be put in one standard data structure.

For instance, imagine that you have been hired by an election campaign to use the power
of data to help move the needle. Omid was hired just before you, and he knows a lot about
the political aspects of the election but not much about data and data analytics. You have
been assigned to join Omid and help process what he has been tasked with. In your first
meeting, you realize that the task is to analyze the speeches that have been made by the
45th President of the United States, Donald Trump. To bring you up to speed, he smiles
and tells you that he has completed the data collection process and that all that needs to
be done is the analysis now; he shows you a folder on his computer that contains text files
(.txt) for every one of Donald Trump's speeches made in 2019 and 2020. The following
screenshot shows this folder on Omid's computer:

Data cleaning level I – cleaning up the table 217

Figure 9.2 – Example of unwise data collection

After viewing the folder, you instantly realize that data preprocessing must be done before
any analytics can be considered. In the interest of building a good working relationship
with Omid, you don't tell him directly that a huge data preprocessing task needs to be
done; instead, you comment on the aspects of his data collection that are great and can be
used as a cornerstone for data preprocessing. You mention that it is great that the naming
of these files follows a predictable order. The order is that city names come first, comes the
name of the month as three letters, then the day as one or two digits, and finally the year
as four digits.

As you are well-versed with Pandas DataFrame, you suggest that the data should be
processed into a DataFrame and Omid, eager to learn, accepts.

218 Data Cleaning Level I – Cleaning Up the Table

You can perform the following steps to process the data into a DataFrame:

1.	 First, we need to access the filenames so that we can use them to open and read
each file. Pay attention: we can type the names of the files ourselves as there are only
35 of them. However, we must do this using programing as we are trying to learn
scalable skills; imagine that we have one million files instead of 35. The following
code shows how using the listdir() function from the os module can do that
for us very easily:

from os import listdir

FileNames = listdir('Speeches')

print(FileNames)

2.	 Next, we need to create a placeholder for our data. In this step, we need to
imagine what our dataset would look like after this data cleaning process has been
completed. We want to have a DataFrame that contains the names of each file and
its content. The following code uses the pandas module to create this placeholder:

import pandas as pd

speech_df = pd.DataFrame(index=range(len(FileNames)),
columns=['File Name','The Content'])

print(speech_df)

3.	 Lastly, we need to open each file and insert its content into speech_df, which
we created in the previous step. The following code loops through the elements of
FineNames. As each element is the name of one of the files that can be used to open
and read the file, we can use the open() and .readlines() functions here:

for i,f_name in enumerate(FileNames):

 f = open('Speeches/' + f_name, "r", encoding='utf-8')

 f_content = f.readlines()

 f.close()

 speech_df.at[i,'File Name'] = f_name

 speech_df.at[i,'The Content'] = f_content[0]

Once you have completed these three steps, run Print(speech_df) and study it
before moving on. Here, you can see that speech_df has two of the three characteristics
of level I cleaned data. The dataset has the first characteristics as it is now one standard
data structure, which is also your preferred one.

Data cleaning level I – cleaning up the table 219

The dataset, after being processed into speech_df, also has the third characteristic
as each row has a unique index. You can run speech_df.index to investigate this.
You might be pleasantly surprised that we didn't do anything to acquire this cleaning
characteristic. This is automatically done for us by Pandas.

However, we could have done better regarding the second characteristic. The File Name
and The Content column names are intuitive enough, but they are not as codable
as they can be. We can access them using the df['ColumnName'] method but not
df.ColumnName, as shown here:

1.	 First, run speech_df['File Name'] and speech_df['The Content'];
you will see that you can easily access each column using this method.

2.	 Second, run speech_df.File Name and speech_df.The Content; you
will get errors. Why? To jog your memory, please go back to Chapter 1, Reviewing
the Core Modules of NumPy and Pandas, find the DataFrame access columns section,
and study the error shown in Figure 1.16. The cause of the error is very similar here.

So, to make the column titles codable when using a Pandas DataFrame, we only have to
follow a few guidelines, as follows:

•	 Try to shorten the column's titles as much as possible without them becoming
unintuitive. For instance, The Content can simply be Content.

•	 Avoid using spaces and possible programming operators such as -, +, =, %, and &
in the names of the columns. If you have to have more than one word as the
column's name, either use camel case naming (FileName) or use an underscore
(File_Name).

You may have noticed in the second to last piece of code that I could have used more
codable column titles; I could have used columns=['FileName','Content']
instead of columns=['File Name','The Content']. You are right. I should have
done this there; I only did this so I was able to make this point afterward. So, go ahead
and improve the code before moving on. Alternatively, you can use the following code to
change the column names to their codable versions:

speech_df.columns = ['FileName','Content']

Now that we have completed this example, let's review the characteristics of Level I data
cleaning that the sources of data in this example needed. This source of data needed
all three characteristics of Level I data cleaning to be improved. We had to take action
explicitly to make sure that the data is in standard data structure and also has intuitive and
codable column names. Also, the tool we used, Pandas, automatically gave each row
a unique identifier.

220 Data Cleaning Level I – Cleaning Up the Table

Example 2 – reindexing (multi-level indexing)
In this example, we want to perform Level 1 data Cleaning on TempData.csv. The
following screenshot shows how to use Pandas to read the data into a DataFrame:

Figure 9.3 – Reading TempData.CSV into a Pandas DataFrame

Our first evaluation of the dataset reveals that the data is in one standard data structure,
the column titles are intuitive and codable, and each row has a unique identifier. However,
upon looking at this more closely, the default indices assigned by Pandas are unique but
not helpful for identifying the rows. The Year, Month, Day, and Time columns would
be better off as the indexes of the rows. So, in this example, we would like to reindex the
DataFrame using more than one column. We will use Pandas's special capability known as
multi-level indexing. We covered this in the Pandas multi-level indexing section Chapter
1, Reviewing the Core Modules of NumPy and Pandas.

This can be done easily by using the .set_index() function of a Pandas DataFrame.
However, before we do that, let's remove the Year column as its value is only 2016. To
check this, run air_df.Year.unique(). In the following line of code, so that we don't
lose the information stating that this dataset is for 2016, we will change the DataFrame's
name to air2016_df:

air2016_df = air_df.drop(columns=['Year'])

Data cleaning level I – cleaning up the table 221

Now that the unnecessary column has been removed, we can use the .set_index()
function to reindex the DataFrame:

air2016_df.set_index(['Month','Day','Time'],inplace=True)

If you print air2016_df after running the preceding code, you will get the DataFrame
with a multi-level index, as shown in the following screenshot:

Figure 9.4 – air2016_df with a multi-level index

Our achievement here is that not only does each row have a unique index but the
indices can be used to meaningfully identify each row. For instance, you can run
air2016_df.loc[2,24,'00:30:00'] to get the temperature value of February 24
at 30 minutes after midnight.

In this example, we focused on the third characteristic of level I data cleaning: each
row has a unique identifier. In the following example, we will focus on the second
characteristic: having a codable and intuitive column name.

222 Data Cleaning Level I – Cleaning Up the Table

Example 3 – intuitive but long column titles
In this example, we will be using OSMI Mental Health in Tech Survey 2019.
csv from https://osmihelp.org/research. The following screenshot shows the
code that reads the dataset into response_df, and then uses the .head() function to
show the first row of the data:

Figure 9.5 – Reading data into response_df and showing its first row

Working with a dataset that has very long column titles can be hard from a programing
and visualization perspective. For instance, if you would like to access the sixth column of
the dataset, you would have to type out the following line of code:

response_df['Do you know the options for mental health care
available under your employer-provided health coverage?']

For cases where we cannot have short and intuitive titles for the columns, we need to use
a column dictionary. The idea is to use a key instead of each full title of columns, which is
somewhat intuitive but significantly shorter. The dictionary will also provide access to the
full title if need be through the relevant key.

The following code creates a column dictionary using a Pandas Series:

keys = ['Q{}'.format(i) for i in range(1,83)]

columns_dic = pd.Series(response_df.columns,index=keys)

https://osmihelp.org/research

Data cleaning level I – cleaning up the table 223

The preceding code breaks the process of creating the dictionary column into
two steps:

1.	 First, the code creates the keys variable, which is the list of shorter substitutes for
column titles. This is done using a list comprehension technique.

2.	 Second, the code creates a Pandas Series called columns_dic, whose indices are
keys and whose values are response_df.columns.

Once the preceding code has been run successfully, the columns_dic Panda Series can
act as a dictionary. For instance, if you run columns_dic['Q4'], it will give you the
full title of the fourth column (the fourth question).

Next, we need to update the columns of response_df, which can be done with a simple
line of code: response_df.columns = keys. Once you've done this, response_df
will have short and somewhat intuitive column titles whose full descriptions can easily be
accessed. The following screenshot shows the transformed version of response_df once
the preceding steps have been performed:

Figure 9.6 – Showing the first row of the cleaned response_df

In this example, we took steps to ensure that the second characteristic of level I data
cleaning has been met since the dataset was in good shape in terms of the first and
third characteristics.

So far, you've learned and practiced, by example, some examples of data cleaning. In the
next chapter, we will learn about and see examples of level II data cleaning.

224 Data Cleaning Level I – Cleaning Up the Table

Summary
Congratulations on your excellent progress. In this chapter, we introduced you to three
different levels of data cleaning and their relevance, along with the goals and tools of
analytics. Moreover, we covered level I of data cleaning in more detail and practiced
dealing with situations where this type of data cleaning is needed. Finally, by looking at
three examples, we used the programming and analytics skills that we had developed in
the previous chapters to effectively preprocess example datasets and meet the examples'
analytical goals.

In the next chapter, we will focus on level II of data cleaning. Before moving forward and
starting your journey on data cleaning level II, spend some time on the following exercises
and solidify what you've learned.

Exercises
1.	 In your own words, describe the relationship between the analytics goals and data

cleaning. Your response should answer the following questions:

a) Is data cleaning a separate step of data analytics and can be done in isolation?
In other words, can data cleaning be performed without you knowing about the
analytics process?

b) If the answer to the previous question is no, are there any types of data cleaning
that can be done in isolation?

c) What is the role of analytic tools in the relationship between analytic goals and
data cleaning?

2.	 A local airport that analyzes the usage of its parking has employed a Single-Beam
Infrared Detector (SBID) technology to count the number of people who pass the
gate from the parking area to the airport.

As shown in the following diagram, an SBDI records every time the infrared
connection is blocked, signaling a passenger entering or exiting:

Figure 9.7 – An example of a Single-Beam Infrared Detector (SBID)

Exercises 225

Unfortunately, the person who installed the SBID was not up to date with the latest
and greatest database technology, so they have set up the system in a way that
the recorded date of each day is stored in an Excel file. The Excel files are named
after the days the records were created. You have been hired to help and analyze
the data. Your manager has given you access to a zipped file called SBID_Data.
zip. This zipped file contains 14 files, each containing the data of one day between
October 12, 2020, and October 25, 2020. Your manager has informed you that due
to security reasons, she cannot share all 3,000 files with you. She has asked you to do
the following for the 14 files she has shared with you:

a) Write some code that can automatically consolidate all the files into one
Pandas DataFrame.

b) Create a bar chart that shows the average airport passenger traffic per hour.

c) Label and describe the data cleaning steps you did in this exercise.

10
Data Cleaning

Level II – Unpacking,
Restructuring,

and Reformulating
the Table

In level I data cleaning, we were only concerned about the neat and codable organization
of our dataset. As we mentioned previously, level I data cleaning can be done in isolation,
without having to keep an eye on what data will be needed next. However, level II data
cleaning is deeper. It is more about preparing the dataset for analysis and the tools for
this process. In other words, in level II data cleaning, we have a dataset that is reasonably
clean and is in a standard data structure, but the analysis we have in mind cannot be done
because the data needs to be in a specific structure due to the analysis itself, or the tool we
plan to use for the analysis.

228 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

In this chapter, we will look at three examples of level II data cleaning that tend to happen
frequently. Pay attention to the fact that, unlike level I data cleaning, where the examples
were merely a source of data, the examples for level II date cleaning must be coupled with
an analytical task.

In this chapter, we're going to cover the following main topics:

•	 Example 1 – unpacking columns and reformulating the table

•	 Example 2 – restructuring the table

•	 Example 3 – level I and II data cleaning

Technical requirements
You can find all the code and the dataset for this book in this book's GitHub
repository: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. You can find the Chapter10 directory in this
repository and download the code and the data for a better learning experience.

Example 1 – unpacking columns and
reformulating the table
In this example, we will use the level I cleaned speech_df dataset to create the following
bar chart. We cleaned this DataFrame in the Example 1 – unwise data collection section of
Chapter 9, Data Cleaning Level I – Cleaning Up the Table. The level I cleaned speech_df
database only has two columns: FileName and Content. To be able to create the
following visual, we need columns such as the month of the speech and the number of
times the four words (vote, tax, campaign, and economy) have been repeated in each
speech. While the level I cleaned speech_df dataset contains all this information, it is
somewhat buried inside the two columns.

The following is a list of the information we need and the column of speech_df that this
information is stored in:

•	 The month of the speech: This information is in the FileName column.

•	 The number of times the words vote, tax, campaign, and economy have been
repeated in each speech: This information is in the Content column:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Example 1 – unpacking columns and reformulating the table 229

 Figure 10.1 – Average frequency of the words vote, tax, campaign, and economy per month
in speech_df

So, for us to be able to meet our analytic goal, which is to create the previous visualization,
we need to unpack the two columns and then reformulate the table for visualization.
Let's do this one step at a time. First, we will unpack FileName and then we bring
our attention to unpacking Content. After that, we will reformulate the table for the
requested visualization.

Unpacking FileName
Let's take a look at the values of the FileName column. To do this, you can run speech_
df.FileName and study the values under this column. You will notice that the values
follow a predictable pattern. The pattern is CitynameMonthDD_YYYY.txt; Cityname is the
name of the city where the speech was given, Month is the three-letter version of the month
when the speech was given, DD is the one- or two-digit number that represents the day of
the month, YYYY is the four digits that represent the year during which the speech was
given, and .txt is the file extension, which is the same for all the values.

230 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

You can see that the FileName column contains the following information about the
speeches in the dataset:

•	 City: The city where the speech was given

•	 Date: The date when the speech was given

•	 Year: The year when the speech was given

•	 Month: The month when the speech was given

•	 Day: The day when the speech was given

In the following code, we will use our programming skills to unpack the FileName
column and include the preceding information as separate columns. Let's plan our
unpacking first and then put it into code. The following are the steps we need to take for
the unpacking process:

1.	 Extract City: Use Month from the CitynameMonthDD_YYYY.txt pattern to extract
the city. Based on this pattern, everything that comes before Month is Cityname.

2.	 Extract Date: Use the extracted Cityname to extract Date.
3.	 Extract Year, Month, and Day from Date.

Now, let's put these steps into code:

1.	 Extract City: The following code creates the SeparateCity() function and
applies it to the speech_df.FileName Series. The SeparateCity() function
loops through the previously created Months list to find the three-letter word that
represents a month, which is used for each filename. Then, we can use the.find()
function and the slicing capability of the Python strings to return the city's name:

Months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug'
,'Oct','Sep','Nov','Dec']

def SeperateCity(v):

 for mon in Months:

 if (mon in v):

 return v[:v.find(mon)]

speech_df['City'] = speech_df.FileName.apply(
SeperateCity)

Example 1 – unpacking columns and reformulating the table 231

Pay Attention!
Here, we had to use Month as the separator between Cityname and the date.
If the naming convention of the files was a bit more organized, we could have
done this a bit easier; in the speech_df.FileName column, some days
are presented by one digit, such as LatrobeSep3_2020.txt, while some
days are presented by two digits, such as BattleCreekDec19_2019.
txt. If all the days were presented with two digits, in that they used
LatrobeSep03_2020.txt instead of LatrobeSep3_2020.txt, the task of
unpacking the column, from a programming perspective, would have been
much simpler. For an example, see Exercise 2, later in this chapter.

2.	 Extract Date: The following code creates the SeparateDate() function and
applies it to speech_df. This function uses the extracted city as the starting point,
and the .find() function to separate the date from the city:

def SeperateDate(r):

 return r.FileName[len(r.City):r.FileName.find(
 '.txt')]

speech_df['Date'] = speech_df.apply(SeparateDate,axis=1)

Every time we work with date information, it is better to make sure that Pandas
knows the recording is a datetime programming object so that we can use its
properties, such as sorting by date or accessing the day, month, and year values. The
following code uses the pd.to_datetime() function to transform the strings
that represent the dates to datetime programming objects. To effectively use the
pd.to_datetime() function, you need to be able to write the format pattern
that the strings that represent dates follow. Here, the format pattern is '%b%d_%Y',
which means the string starts with a three-letter month representation (%b), then
a digit representation for the day (%d), followed by an underscore (_), and then a
four-digit year representation (%Y). To be able to come up with a correct format
pattern, you need to know the meaning of each of the directives, such as %b, %d,
and so on. Go to https://docs.python.org/3/library/datetime.
html#strftime-and-strptime-behavior to find a comprehensive list of
these directives:

speech_df.Date = pd.to_datetime(speech_df.Date,
format='%b%d_%Y')

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

232 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

3.	 Extract Year, Month, and Day from Date: The following code creates the
extractDMY() function and applies it to speech_df to add three new columns
to each row. Note that the code is taking advantage of the fact that the speech_df
column is a datetime programming object that has properties such as .day and
.month to access the day and the month for each date:

def extractDMY(r):

 r['Day'] = r.Date.day

 r['Month'] = r.Date.month

 r['Year'] = r.Date.year

 return r

speech_df = speech_df.apply(extractDMY,axis=1)

After running the preceding code snippets successfully, you will have managed to
unpack the FileName column of speech_df. Since all of the information that
was packed in FileName is not presented under other columns, we can go ahead
and remove this column by running the following command:

speech_df.drop(columns=['FileName'],inplace=True)

Before unpacking the other column, Content, let's take a look at the state of the
data and enjoy looking at the progress we've made. The following screenshot shows
the first five rows of the data:

Figure 10.2 – speech_df after unpacking FileName

Example 1 – unpacking columns and reformulating the table 233

Now that we have unpacked FileName into five new columns called City, Date, Day,
Month, and Year, we have taken one step toward the end goal: we've got access to
create the x axis shown in Figure 10.1. Now, we need to pay attention to unpacking the
column Content.

Unpacking Content
Unpacking the column Content differs somewhat from unpacking FileName. As
the column FileName only had a limited amount of information, we were able to
unpack everything this column had to offer. However, the column Content has a lot of
information and it could be unpacked in many different ways. However, we only need to
unpack a small portion of what is under the column Content; we need to know about
the ratio of the usage of four words: vote, tax, campaign, and economy.

We can unpack what we need from the column Content in one step. The following code
creates the FindWordRatio() function and applies it to speech_df. The function
uses a for loop to add four new columns to the DataFrame, one column for each of the
four words. The calculation for each word is simple: the returning value for each word is
the total occurrence of the word in the speech (row.Content.count(w)), divided by
the total number of words in the speech (total_n_words):

Words = ['vote','tax','campaign','economy']

def FindWordRatio(row):

 total_n_words = len(row.Content.split(' '))

 for w in Words:

 row['r_{}'.format(w)] = row.Content.count(w)/total_n_
 words

 return row

speech_df = speech_df.apply(FindWordRatio,axis=1)

234 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

The resulting speech_df after running the previous code will have 10 columns, as
shown in the following screenshot:

Figure 10.3 – speech_df after extracting the needed information from Content

Example 1 – unpacking columns and reformulating the table 235

So far, we have restructured the table, so we are inching closer to drawing Figure 10.1;
we've got the information for both the x axis and y axis. However, the dataset needs to be
modified further before we can visualize Figure 10.1.

Reformulating a new table for visualization
So far, we have cleaned speech_df for our analytic goals. However, the table we need
for Figure 10.1 needs each row to be Donald Trump's speeches in a month while each of
the rows in speech_df is one of Donald Trump's speeches. In other words, to be able
to draw the visualization, we need to reformulate a new table so that the definition of our
data object is Donald Trump's speeches in a month instead of one Donald Trump speech.

The new definition of the Donald Trump's speeches in a month data object is an
aggregation of some of the data objects that are defined as Donald Trump's speeches. When
we need to reformulate a dataset so that its new definition of data objects is an aggregation
of the current definition of data objects, we need to perform two steps:

1.	 Create a column that can be the unique identifier for the reformulated dataset.
2.	 Use a function that can reformulate the dataset while applying the aggregate

functions. The pandas functions that can do this are .groupby() and
.pivot_table().

So, let's perform these two steps on speech_df to create the new DataFrame called
vis_df, which is the reformulated table we need for our analytics goal:

1.	 The following code applies a lambda function that attaches the Year and Month
properties of each row to create a new column called Y_M. This new column will be
the unique identifier of the reformulated dataset we are trying to create:

Months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug'
,'Oct','Sep','Nov','Dec']

lambda_func = lambda r: '{}_{}'.format(r.Year,Months[r.
Month-1])

speech_df['Y_M'] = speech_df.apply(lambda_func,axis=1)

The preceding code created the lambda function (lambda_func) in a separate line
in the interest of making the code more readable. This step could have been skipped
and the lambda function could have been created "on the fly."

236 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

2.	 The following code uses the .pivot_table() function to reformulate
speech_df into vis_df. If you've forgotten how the.pivot_table() function
works, please revisit the pandas pivot and melt functions section of Chapter 1,
Review of the Core Modules of NumPy and Pandas:

Words = ['vote','tax','campaign','economy']

vis_df = speech_df.pivot_table(index= ['Y_M'],
values= ['r_{}'.format(w) for w in Words],
aggfunc= np.mean)

The preceding code uses the aggfunc property of the .pivot_table()
function, which was not mentioned in Chapter 1, Review of the Core Modules of
NumPy and Pandas. Understanding aggfunc is simple; when index and values
of .pivot_table() are specified in a way that more than one value needs to
be moved into one cell in the reformulated table, the.pivot_table() uses the
function that is passed for aggfunc to aggregate the values into one value.

The preceding code also uses a list comprehension to specify the values. The
list comprehension is ['r_{}'.format(w) for w in Words], which is
essentially the list of four columns from speech_df. Run the list comprehension
separately and study its output.

3.	 We could have also reformulated the data into vis_df using .groupby(). The
following is the alternative code:

vis_df = pd.DataFrame({
 'r_vote': speech_df.groupby('Y_M').r_vote.mean(),
 'r_tax': speech_df.groupby('Y_M').r_tax.mean(),
 'r_campaign': speech_df.groupby('Y_M').r_campaign.
 mean(),
 'r_economy': speech_df.groupby('Y_M').r_economy.
 mean()})

While the preceding code might feel more intuitive since working with
.groupby() function might be easier than using .pivot_table(), the first
piece of code is more scalable.

Example 1 – unpacking columns and reformulating the table 237

More Scalable Code
When coding, if possible, you want to avoid repeating the same line of code
for a collection of items. For example, in the second alternative in the two
preceding codee blocks, we had to use the .groupby() function four times,
one for each of the four words. What if, instead of 4 words, we needed to do
this analysis for 100,000 words? The first alternative is certainly more scalable
as the words are passed as a list and the code will be the same, regardless of the
number of words in the list.

At this point, you have created the reformulated vis_df, which we created to draw
Figure 10.1. The following screenshot shows vis_df:

Figure 10.4 – vis_df

Now that we have vis_df, all that remains is to represent the information in vis_df in
the form of a bar chart. The following subsection shows how this is done.

238 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

The last step – drawing the visualization
Figure 10.4 and Figure 10.1 are essentially presenting the same information. While Figure
10.4 (vis_df) uses a table to present the information, Figure 10.1 used a bar chart. In
other words, we have almost made it and we need to perform one more step to create the
requested visualization.

The following code block shows the code that creates the visualization shown in Figure 10.1.
Pay attention before running the following code as you must import the matplotlib.
pyplot module first. You can use import matplotlib.pyplot as plt to do this:

column_order = vis_df.sum().sort_values(ascending=False).index

row_order = speech_df.sort_values('Date').Y_M.unique()

vis_df[column_order].loc[row_order].plot.bar(figsize=(10,4))

plt.legend(['vote','tax','campaign','economy'],ncol=2)

plt.xlabel('Year_Month')

plt.ylabel('Average Word Frequency')

plt.show()

The preceding code creates two lists: column_order and row_order. As their names
suggest, these lists are the order in which the columns and rows will be shown on the visual.
The column_order is the list of words based on the summation of their occurrence ratio,
while row_order is the list of Y_M based on their natural order in the calendar.

In this example, we learned about different techniques for level II data cleaning; we
learned how to unpack columns and reformulate the data for the analytics tools and goals.
The next example will cover data preprocessing to restructure the dataset.

What's the difference between restructuring and reformulating a dataset? We tend to use
reformulate when the definition of data objects needs to change for the new dataset. In
contrast, we use restructure when the table structure does not support our analytic goals
or tools, and we have to use alternative structures such as a dictionary. In this example, we
change the definition of a data object from one Donald Trump speech to Donald Trump's
speeches in a month so we called this a dataset reformulation.

Here, we are being introduced to the new materials while immersing ourselves in examples.
In this example, we learned about unpacking columns and reformulating the table. In the next
example, we will be exposed to a situation that requires restructuring the table.

Example 2 – restructuring the table 239

Example 2 – restructuring the table
In this example, we will use the Customer Churn.csv dataset. This dataset contains
the records of 3,150 customers of a telecommunication company. The rows are described
by demographic columns such as gender and age, and activity columns such as the
distinct number of calls in 9 months. The dataset also specifies whether each customer
was churned or not 3 months after the 9 months of collecting the activity data of the
customers. Customer churning, from a telecommunication company's point of view,
means the customer stops using the company's services and receives the services from the
company's competition.

We would like to use box plots to compare the two populations of churning customers
and non-churning customers for the following activity columns: Call Failure,
Subscription Length, Seconds of Use, Frequency of use, Frequency of SMS, and
Distinct Called Numbers.

Let's start by reading the Customer Churn.csv file into the customer_df
DataFrame. The following screenshot shows this step:

Figure 10.5 – customer_df before level I cleaning

At first glance, we can see that this dataset needs some level I data cleaning. While the
column titles are intuitive, they can become more codable. The following line of code
makes sure that the columns are also codable:

customer_df.columns = ['Call_Failure', 'Complains',
'Subscription_Length', 'Seconds_of_Use', 'Frequency_of_use',
'Frequency_of_SMS', 'Distinct_Called_Numbers', 'Status',
'Churn']

Before you move on, make sure that you study the new state of customer_df after
running the preceding code.

Now that the dataset has been level I cleaned, we can pay attention to level II data cleaning.

240 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

This example needs us to draw six box plots. Let's focus on the first box plot; the rest will
follow the same data cleaning process.

Let's focus on creating multiple box plots that compare the Call_Failure attribute of
churning customers with that of non-churning customers. A box plot is an analytic tool
that needs a simpler data structure than a dataset. A box plot only needs a dictionary.

What is the difference between a dataset and a dictionary? A dataset is a table that
contains rows that are described by columns. As described in Chapter 3, Data – What is
it Really?, in the The most universal data structure – a table section, we specified that the
glue of a table is the definition of the data objects that each row represents. Each column
also describes the rows. On the other hand, a dictionary is a simpler data structure where
values are associated with a unique key.

For the box plot we want to draw, the dictionary we need has two keys – churn and
non-churn – one for each population that will be presented. The value for each key is the
collection of Call_Failure records for each population. Pay attention to the fact that,
unlike a table data structure that has two dimensions (rows and columns), a dictionary
only has one dimension.

The following code shows the usage of a pandas Series as a dictionary to prepare the data
for the box plot. In this code, box_sr is a pandas Series that has two keys called 0 and 1,
with 0 being non-churn and 1 being churn. The code uses a loop and Boolean masking to
filter the churning and non-churning data objects and record them in box_sr:

churn_possibilities = customer_df.Churn.unique()

box_sr = pd.Series('',index = churn_possibilities)

for poss in churn_possibilities:

 BM = customer_df.Churn == poss

 box_sr[poss] = customer_df[BM].Call_Failure.values

Before moving on, execute print(box_sr) and study its output. Pay attention to the
simplicity of the data structure compared to the data's initial structure.

Now that we have restructured the data for the analytic tool we want to use, the data is
ready to be used for visualization. The following code uses plt.boxplot() to visualize
the data we have prepared in box_sr. Don't forget to import matplotlib.pyplot as
plt before running the following code:

plt.boxplot(box_sr,vert=False)

plt.yticks([1,2],['Not Churn','Churn'])

plt.show()

Example 2 – restructuring the table 241

If the preceding code runs successfully, your computer will show multiple box plots that
compare the two populations.

So far, we have drawn a box plot that compares Call_Failure for churning and
non-churning populations. Now, let's create some code that can do the same process
and visualizations for all of the requested columns to compare the populations. As we
mentioned previously, these columns are Call_Failure, Subscription_Length,
Seconds_of_Use, Frequency_of_use, Frequency_of_SMS, and Distinct_
Called_Numbers.

The following code uses a loop and plt.subplot() to organize the six required visuals
for this analytic so that they're next to one another. Figure 10.6 shows the output of the
code. The data restructuring that's required to draw the box plot happens for each box plot
shown in Figure 10.6. As practice, try to spot them in the following code and study them. I
recommend that you review Chapter 1, Review of the Core Modules – NumPy and pandas,
and Chapter 2, Review of Another Core Module – Matplotlib, if you don't know what the
enumerate(), plt.subplot(), and plt.tight_layout() functions are:

select_columns = ['Call_Failure', 'Subscription_Length',
'Seconds_of_Use', 'Frequency_of_use', 'Frequency_of_SMS',
'Distinct_Called_Numbers']

churn_possibilities = customer_df.Churn.unique()

plt.figure(figsize=(15,5))

for i,sc in enumerate(select_columns):

 for poss in churn_possibilities:

 BM = customer_df.Churn == poss

 box_sr[poss] = customer_df[BM][sc].values

 plt.subplot(2,3,i+1)

 plt.boxplot(box_sr,vert=False)

 plt.yticks([1,2],['Not Churn','Churn'])

 plt.title(sc)

plt.tight_layout()

plt.show()

242 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

The following diagram is what you will get once the preceding code has been
successfully executed:

Figure 10.6 – End solution for Example 2 – restructuring the table

In this example, we looked at a situation where we needed to restructure the data so that
it was ready for the analytic tool of our choice, the box plot. In the next example, we
will look at a more complicated situation where we will need to perform both dataset
reformulation and restructuring to make predictions.

Example 3 – level I and II data cleaning
In this example, we want to use Electric_Production.csv to make predictions. We
are specifically interested in being able to predict what the monthly electricity demand
will be 1 month from now. This 1-month gap is designed in the prediction model so that
the predictions that come from the model will have decision-making values; that is, the
decision-makers will have time to react to the predicted value.

We would like to use linear regression to perform this prediction. The independent and
dependent attributes for this prediction are shown in the following diagram:

Figure 10.7 – The independent and dependent attributes needed for the prediction task

Example 3 – level I and II data cleaning 243

Let's go through the independent attributes shown in the preceding diagram:

•	 Average demand of the month over the years: For instance, if the month we want
to predict demands for is March 2022, we want to use the average of the demands
for every March in the previous years. So, we will collate the historical demands
of March from the beginning of the data collection process (1985) to 2021 and
calculate its average. This is shown in the following diagram.

•	 Slope of change for the demand of the month over the years: For instance, if the
month we want to predict demands for is March 2022, we want to use the slope of
change in the demand in March over the years. As shown in the following diagram,
we can fit a line on the Demand in March data points across the years. The slope of
that fitted line will be used for prediction.

•	 Average demands of months t-2, t-3, and t-4: In the preceding diagram, the t, t-2,
t-3, and t-4 notations are used to create a time reference. This time reference is that
if we want to predict the demand of a month, we want to use the average demand
of the following data points: the monthly demand of 2 months ago, the monthly
demand of 3 months ago, and the monthly demand of 4 months ago. For instance,
if we want to predict the monthly demand of March 2021, we'd want to calculate
the average of January 2021, December 2020, and November 2020. Note that we
skipped February 2021 as it was our planned decision-making gap.

Figure 10.8 – Example of extracting the first two independent attributes for March

244 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

Now that we have a clear understanding of the data analytic goal, we will focus on
preprocessing the data. Let's start by reading the data and covering its level I data
cleaning process. The following screenshot shows the code that reads the Electric_
Production.csv file into month_df and shows its first five and last five rows:

Figure 10.9 – month_df before level I data cleaning

At first glance, you can see that month_df can use some level I data cleaning.
Let's get started.

Level I cleaning
The month_df dataset could do with the following level I data cleaning steps:

•	 The title of the second column can be more intuitive.

•	 The data type of the DATE column can be switched to datetime so that we can take
advantage of datetime programming properties.

•	 The default index that's been assigned to the data by pandas can be improved as the
DATE column would provide a better and more unique identification.

Example 3 – level I and II data cleaning 245

The following code takes care of the aforementioned level I data cleaning properties:

month_df.columns = ['Date','Demand']

month_df.set_index(pd.to_datetime(month_df.Date,
format='%m/%d/%Y'),inplace=True)

month_df.drop(columns=['Date'],inplace=True)

Print month_df and study its new state.

Next, we will learn what level II data cleaning we need to perform.

Level II cleaning
Looking at Figure 10.7 and Figure 10.9 may give you the impression that the prescribed
prediction model in Figure 10.7 is not possible as the dataset that's shown in Figure 10.9
only has one column, while the prediction model needs four attributes. This is both a
correct and incorrect observation. While it is a correct observation that the data has only
one value column, the suggested independent attributes in Figure 10.7 can be driven
from month_df by some column unpacking and restructuring. That is the level II data
cleaning that we need to do.

We will start by structuring a DataFrame that we want to restructure the current table
into. The following code creates predict_df, which is the table structure that we will
need for the prescribed prediction task:

attributes_dic={'IA1':'Average demand of the month',
'IA2':'Slope of change for the demand of the month', 'IA3':
'Average demands of months t-2, t-3 and t-4', 'DA': 'Demand of
month t'}

predict_df = pd.DataFrame(index=month_df.iloc[24:].index,
columns= attributes_dic.keys())

When creating the new table structure, predict_dt, the code is drafted while taking the
following into consideration:

•	 The preceding code uses the attributes_dic dictionary to create intuitive and
concise columns that are also codable. As predict_df needs to include rather
long attribute titles, as shown in Figure 10.7, the dictionary allows the title columns
to be concise, intuitive, and codable, and at the same time, you will have access to
the title's longer versions through attributes_dic. This is a form of level I data
cleaning, as shown in Chapter 9, Data Cleaning Level I – Cleaning Up the Table, in
the Example 3 – intuitive but long column titles section. However, since we are the
ones creating this new table, why not start with a level I cleaned table structure?

246 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

•	 The table structure we have created, predict_df, uses the indices of month_df,
but not all of them. It uses all of them except for the first 24 rows, as specified in
the code by month_df.iloc[24:].index. Why are the first 24 indices not
included? This is due to the second independent attribute: Slope of change for the
demand of the month over the years. As the slope of demand change for each month
will be needed for the described prediction model, we cannot have a meaningful
slope value for the first 24 rows of month_df in predict_df. This is because we
at least need two historical data points for each month to be able to calculate a slope
for the second independent attribute.

The following diagram summarizes what we want to accomplish by level II data cleaning
month_df. The DataFrame on the left shows the first and last five rows of month_df,
while the DataFrame on the right shows the first and last five rows of predict_df. As
you already know, predict_df is empty as we just created an empty table structure that
supports the prediction task. The following diagram, in a nutshell, shows that we need to
fill predict_df using the data of month_df:

Figure 10.10 – Summary of data cleaning level II for Example 3

We will complete the depicted data processing and fill out the columns in predict_df
in the following order: DA, IA1, IA2, and IA3.

Example 3 – level I and II data cleaning 247

Filling out DA
This is the simplest column filling process. We just need to specify the correct portion of
month_df.Demand to be placed under predict_df.DA. The following screenshot
shows the code and its impact on predict_df:

Figure 10.11 – Code for filling out predict_df.DA and its result

As we can see, predict_df.DA was filled out properly. Next, we will fill out
predict_df.IA1.

Filling out IA1
To compute IA1, which is the Average demand of the month over the years, we need to
be able to filter month_df using the value of the month. To create such a capability, the
following code maps a lambda function to month_df and extracts the month of each row:

month_df['Month'] = list(map(lambda v:v.month, month_df.index))

Before you move on, print out month_df and study its new state.

248 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

The following code creates the ComputeIA1() function, which uses month_df to filter
out the data points needed for the correct value of each cell under predict_df.IA1.
Once it's been created, the ComputeIA1() function is applied to predict_df:

def ComputeIA1(r):

 row_date = r.name

 wdf = month_df.loc[:row_date].iloc[:-1]

 BM = wdf.Month == row_date.month

 return wdf[BM].Demand.mean()

predict_df.IA1 = predict_df.apply(ComputeIA1,axis=1)

The function ComputeIA1() that is written to be applied to the rows of predict_df,
performs the following steps:

1.	 First, it filters out month_df using the calculated row_date to remove the data
points whose dates are after row_date.

2.	 Second, the function uses a Boolean mask to keep the data points with the same
month as the row's month (row_date.month).

3.	 Next, the function calculates the average demand of the filtered data points and
then returns it.

Note
Let me share a side note before moving on. The wdf variable that was created
in the preceding code is short for Working DataFrame. The abbreviation wdf
is what I use every time I need a DataFrame inside a loop or a function but
where I won't need it afterward.

After successfully running the preceding code, make sure that you print out
predict_df and study its new state before moving on.

So far, we have filled out DA and IA1. Next, we will fill out IA2.

Filling out IA2
To fill out IA2, we will follow the same general steps that we did for filling out IA1. The
difference is that the function we will create and apply to predict_df to calculate the
IA2 values is more complex; for IA1, we created and applied ComputeIA1(), while for
IA2, we will create and apply ComputeIA2(). The difference is that ComputeIA2() is
more complex.

Example 3 – level I and II data cleaning 249

The code that creates and applies the ComputeIA2() function is shown here. Try to
study the code and figure out how it works before moving on:

from sklearn.linear_model import LinearRegression

def ComputeIA2(r):

 row_date = r.name

 wdf = month_df.loc[:row_date].iloc[:-1]

 BM = wdf.Month == row_date.month

 wdf = wdf[BM]

 wdf.reset_index(drop=True,inplace=True)

 wdf.drop(columns = ['Month'],inplace=True)

 wdf['integer'] = range(len(wdf))

 wdf['ones'] = 1

 lm = LinearRegression()

 lm.fit(wdf.drop(columns=['Demand']), wdf.Demand)

 return lm.coef_[0]

predict_df.IA2 = predict_df.apply(ComputeIA2,axis=1)

The preceding code is both similar and different to the code we used to fill out IA1. It is
similar since both ComputeIA1() and ComputeIA2() start by filtering out month_df
to get to a DataFrame that only includes the data objects that are needed to compute the
value. You may notice that the three lines of code under def ComputeIA1(r): and
def ComputeIA2(r): are the same. The difference between the two starts from there.
As computing IA1 was a simple matter of calculating the mean of a list of values, the rest
of ComputeIA1() was very simple. However, for ComputeIA2(), the code needs to
fit a linear regression to the filtered data points so that it can calculate the slope of the
change over the years. The ComputeIA2() function uses LinearRegression from
sklearn.linear_model to find the fitted regression equation and then return the
calculated coefficient of the model.

After successfully running the preceding code, make sure that you print out
predict_df and study its new state before moving on.

250 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

To understand the way ComputeIA2() finds the slope of change for each cell under
predict_df.IA2, see the following screenshot, which shows the code and its output
for calculating the slope for one cell under predict_df.IA2. The following screenshot
calculates the IA2 value for the row with an index of 2017-10-01:

Figure 10.12 – A sample calculation of the slope (IA2) for one row of predict_df

So far, we have filled out DA, IA1, and IA2. Next, we will fill out IA3.

Example 3 – level I and II data cleaning 251

Filling out IA3
Among all the independent attributes, IA3 is the easiest one to process. IA3 is the Average
demands of months t-2, t-3, and t-4. The following code creates the ComputeIA3()
function and applies it to predict_df. This function uses the index of predict_df to
find the demand values from 2 months ago, 3 months ago, and 4 months ago. It does this
by filtering out all the data that is after row_date using .loc[:row_date], and then
by only keeping the fourth, third, and second rows of the remaining data from the bottom
using .iloc[-5:-2]. Once the data filtering process is complete, the average of three
demand values is returned:

def ComputeIA3(r):

 row_date = r.name

 wdf = month_df.loc[:row_date].iloc[-5:-2]

 return wdf.Demand.mean()

predict_df.IA3 = predict_df.apply(ComputeIA3,axis=1)

Once the preceding code has been run successfully, we will be done performing level II
data cleaning on month_df. The following screenshot shows the state of predict_df
after the steps we took to create and clean it:

Figure 10.13 – Level II cleaned predict_df

252 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

Now that the dataset is level II cleaned and has been prepared for the prediction, we can
use any prediction algorithm to predict the future monthly demands. In the next section,
we'll apply linear regression to create a prediction tool.

Doing the analytics – using linear regression to create
a predictive model
First, we will import LinearRegression from sklearn.linear_model to fit the
data to a regression equation. As we learned in Chapter 6, Prediction to apply prediction
algorithms to our data, we need to separate the data into independent and dependent
attributes. Customarily, we use X to denote independent attributes and y to denote the
dependent attribute. The following code performs these steps and feeds the data into
the model:

from sklearn.linear_model import LinearRegression

X = predict_df.drop(columns=['DA'])

y = predict_df.DA

lm = LinearRegression()

lm.fit(X,y)

As we learned in Chapter 6, Prediction, once the preceding code has been executed, almost
nothing happens, but the analysis has been performed. We can use lm to access the
estimated βs and also perform prediction.

The following code extracts the βs from lm:

print('intercept (b0) ', lm.intercept_)

coef_names = ['b1','b2','b3']

print(pd.DataFrame({'Predictor': X.columns,
 'coefficient Name':coef_names,
 'coefficient Value': lm.coef_}))

Using the output of the preceding code, we can figure out the following regression equation:

𝐷𝐷𝐷𝐷 = −25.75 + 1.29 ∗ 𝐼𝐼𝐼𝐼1 + 1.43 ∗ 𝐼𝐼𝐼𝐼2 + 0.15 ∗ 𝐼𝐼𝐼𝐼3

Summary 253

To find out the quality of the prediction model, we can see how well the model has been
able to find the patterns in the dependent attribute, DA. The following screenshot shows
the code that draws the actual and fitted data of the linear regression model:

Figure 10.14 – Comparing the actual and predicted values of predict_df using linear regression

From the preceding diagram, we can see that the model has been able to capture the trends
in the data very well and that it is a great model to be used to predict future data points.

Before moving on, take a moment to consider all we did to design and implement an
effective predictive model. Most of the steps we took were data preprocessing steps rather
than analytics ones. As you can see, being able to perform effective data preprocessing will
take you a long way in becoming more successful at data analytics.

Summary
Congratulations on your excellent progress. In this chapter and through three examples,
we were able to use the programming and analytics skills that we have developed
throughout this book to effectively preprocess example datasets and meet the example's
analytics goals.

In the next chapter, we will focus on level III data cleaning. This level of data cleaning is
the toughest data cleaning level as it requires an even deeper understanding of the analytic
goals of data preprocessing.

Before moving on and starting your journey regarding level III data cleaning, spend some
time on the following exercises and solidify what you've learned.

254 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

Exercises
1.	 This question is about the difference between dataset reformulation and dataset

restructuring. Answer the following questions:

a) In your own words, describe the difference between dataset reformulation and
dataset restructuring.

b) In Example 3 of this chapter, we moved the data from month_df to
predict_df. The text described the level II data cleaning for both table
reformulation and table restructuring. Which of the two occurred? Is it possible
that the distinction we provided for the difference between table restructuring and
reformulation cannot specify which one happened? Would that matter?

2.	 For this exercise, we will be using LaqnData.csv, which can be found on the
London Air website (https://www.londonair.org.uk/LondonAir/
Default.aspx) and includes the hourly readings of five air particles (NO,
NO2, NOX, PM2.5, and PM10) from a specific site. Perform the following steps
for this dataset:

a) Read the dataset into air_df using pandas.

b) Use the .unique() function to identify the columns that only have one possible
value and then remove them from air_df.

c) Unpack the readingDateTime column into two new columns called Date
and time. This can be done in different ways. The following are some clues about
the three approaches you must take to perform this unpacking:

•	 Use air_df.apply().

•	 Use air_df.readingDateTime.str.split(' ',expand=true).

•	 Use pd.to_datetime().

d) Use what you learned in this chapter to create the following visual. Each line in
each of the five line plots represents 1 day's reading for the plot's relevant air particle:

https://www.londonair.org.uk/LondonAir/Default.aspx
https://www.londonair.org.uk/LondonAir/Default.aspx

Exercises 255

Figure 10.15 – air_df summary
e) Label and describe the data cleaning steps you performed in this exercise. For
example, did you have to reformulate a new dataset to draw the visualization?
Specify which level of data cleaning each of the steps performed.

256 Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table

3.	 In this exercise, we will be using stock_index.csv. This file contains hourly data
for the Nasdaq, S&P, and Dow Jones stock indices from November 7, 2019, until
June 10th, 2021. Each row of data represents an hour of the trading day, and each
row is described by the opening value, the closing value, and the volume for each of
the three stock indices. The opening value is the value of the index at the beginning
of the hour, the closing value is the value of the index at the end of the hour, and the
volume is the amount of trading that happened in that hour.

In this exercise, we would like to perform a clustering analysis to understand
how many different types of trading days we experienced during 2020. Using the
following attributes, which can be found in stock_df.csv, we'd like to use
K-Means to cluster the stock trading days of 2020 into four clusters:

a) nasdaqChPe: Nasdaq change percentage over the trading day.

b) nasdaqToVo: Total Nasdaq trading volume over the trading day.

c) dowChPe: Dow Jones change percentage over the trading day.

d) dowToVo: Total Dow Jones trading volume over the trading day.

e) sNpChPe: S&P change percentage over the trading day.

f) sNpToVo: Total S&P trading volume over the trading day.

g) N_daysMarketClose: The number of days before the market closes for the
weekend; for Mondays, it is 5, for Tuesdays, it is 4, for Wednesdays, it is 3, for
Thursdays, it is 2, and for Fridays, it is 0.

Make sure that you finish the clustering analysis by performing a centroid analysis
via a heatmap and give each cluster a name. Once the clustering analysis is
complete, label and describe the data cleaning steps you performed in this exercise.

11
Data Cleaning Level
III – Missing Values,
Outliers, and Errors

In level I, we cleaned up the table without paying attention to the data structure or
the recorded values. In level II, our attention was to have a data structure that would
support our analytic goal, but we still didn't pay much attention to the correctness or
appropriateness of the recorded values. That is the objective of data cleaning level III.
In data cleaning level III, we will focus on the recorded values and will take measures to
make sure that three matters regarding the values recorded in the data are addressed. First,
we will make sure missing values in the data have been detected, that we know why this
has happened, and that appropriate measures have been taken to address them. Second,
we will ensure that we have taken appropriate measures so that the recorded values are
correct. Third, we will ascertain that the extreme points in the data have been detected
and appropriate measures have been taken to address them.

Level III data cleaning is similar to level II in its relationship to data analytic goals and
tools. While level I data cleaning can be done in isolation without having an eye on
data analytics goals and tools, levels II and III data cleaning must be done while we are
informed by the analytic goals and tools. In examples 1, 2, and 3 in the previous chapter,
we experienced how level II data cleaning was performed for analytic tools. The examples
in this chapter are also going to be very well connected to analytical situations.

258 Data Cleaning Level III – Missing Values, Outliers, and Errors

In this chapter, we're going to cover the following main topics:

•	 Missing values

•	 Outliers

•	 Errors

Technical requirements
You will be able to find all of the code and the datasets that are used in this book in
a GitHub repository exclusively created for this book. To find the repository, click
on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. In this repository, you will find a folder titled
Chapter11, from where you can download the code and the data for better learning.

Missing values
Missing values, as the name suggests, are values we expect to have but we don't. In the
simplest terms, missing values are empty cells in a dataset that we want to use for analytic
goals. For example, the following screenshot shows an example of a dataset with missing
values—the first and third students' grade point average (GPA) is missing, the fifth
student's height is missing, and the sixth student's personality type is missing:

Figure 11.1 – A dataset example with missing values

In Python, missing values are not presented with emptiness—they are presented via NaN,
which is short for Not a Number. While the literal meaning of Not a Number does not
completely capture all the possible situations for which we have missing values, NaN is
used in Python whenever we have missing values.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Missing values 259

The following screenshot shows a pandas DataFrame that has read and presented the table
represented in Figure 11.1. After comparing the two screenshots, you will see that every
cell that is empty in Figure 11.1 has NaN in Figure 11.2.

Figure 11.2 – A dataset example with missing values presented in pandas

We now know what missing values are and how they are presented in our analytic
environment of choice, Python. Unfortunately, missing values are not always presented
in a standard way; for example, having NaN on a pandas DataFrame is a standard way
of presenting missing values. However, someone who did not know any better may have
used some internal agreements to present missing values with an alternative such as MV,
None, 99999, and N/A. If missing values are not presented in a standard way, the first
step of dealing with them is to rectify that. In such cases, we detect the values that the
author of the dataset meant as missing values and replace them with np.nan.

Even if missing values are presented in the standard way, detecting them might sometimes
be as easy as just eyeballing the dataset. When the dataset is large, we cannot rely on
eyeballing the data to detect and understand missing values. Next, we will turn our
attention to how we can detect missing values, especially for larger datasets.

Detecting missing values
Every Pandas DataFrame comes with two functions that are very useful in detecting
which attributes have missing values and how many there are: .info() and .isna().
The following example shows how these functions can be used to detect whether a dataset
has missing values and how many values are missing.

260 Data Cleaning Level III – Missing Values, Outliers, and Errors

Example of detecting missing values
The Airdata.csv air quality dataset comprises hourly recordings of the year 2020 from
three locations. The dataset—apart from NO2 readings for three locations A, B, and C—
has DateTime, Temperature, Humidity, Wind_Speed, and Wind_Direction
readings. The following screenshot shows the code that reads the file into the air_df
DataFrame and shows the first and last few rows of the dataset:

Figure 11.3 – Reading Airdata.csv into air_df

The first method we can use to detect whether any columns of the data have any
missing values is to use the .info() function. The following screenshot showcases the
application of this function on air_df:

Missing values 261

Figure 11.4 – Using .info() to detect missing values in air_df

As you can see in the preceding screenshot, air_df has 8784 rows (entries) of data, but
the NO2_Location_A, NO2_Location_B, and NO2_Location_C columns have
fewer non-null values, and that means these attributes have missing values.

A second method to figure out which attributes have missing values is to use the
.isnan() function of Pandas Series. Both Pandas DataFrames and Pandas Series have
the .isnan() function, and it outputs the same data structure with all the cells filled
with Booleans indicating whether the cell is NaN. The following screenshot uses the
.isnan() function to count the number of NaN entries in each attribute of air_df:

Figure 11.5 – Detecting missing values in air_df

262 Data Cleaning Level III – Missing Values, Outliers, and Errors

In the preceding screenshot, we see that the NO2 readings in all three locations have
missing values. This only confirms the detection of missing values we performed in
Figure 11.4 using the .info() function.

Now that we know how to detect missing values, let's turn our attention to understanding
what could have caused these values to be missing. In our quest to deal with missing
values, we first and foremost need to know why this has happened. In the next subchapter,
we will focus on which situations cause missing values.

Causes of missing values
There can be a wide range of reasons as to why missing values may occur. As we will see
in this chapter, knowing why a value is missing is the most important piece of information
that enables us to handle missing values effectively. The following list provides the most
common reasons why values may be missing:

•	 Human error.

•	 Respondents may refuse to answer a survey question.

•	 The person taking the survey does not understand the question.

•	 The provided value is an obvious error, so it was deleted.

•	 Not enough time to respond to questions.

•	 Lost records due to lack of effective database management.

•	 Intentional deletion and skipping of data collection (probably with fraudulent
intent).

•	 Participant exiting in the middle of the study.

•	 Third-party tampering with or blocking data collection.

•	 Missed observations.

•	 Sensor malfunctions.

•	 Programing bugs.

When working with data as a data analyst, sometimes all you have is the data and you do
not have anyone to whom you can ask questions about the data. So, the important thing
here would be to be inquisitive about the data and imagine what could be the reasons
behind the missing values. Committing the preceding list to memory and understanding
these reasons will be beneficial to you when you have to guess what could have caused
missing values.

Missing values 263

It goes without saying that if you have access to someone who knows about the data, the
best course of action on finding out the causes of missing values is to ask the informant.

Regardless of what caused missing values, from a data analytic perspective, we can
categorize all the missing values into three types. Understanding these types will be very
important in deciding how missing values should be addressed.

Types of missing values
One missing value or a group of missing values in one attribute could fall under one of
the following three types: missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). There is an ordinal relationship between
these types of missing values. Moving from MCAR to MNAR, the missing values become
more problematic and harder to deal with.

MCAR is used when we do not have any reason to believe the values are missing due to
any systematic reasons. When a missing value is classed as MCAR, the data object that has
a missing value could be any of the data objects. For instance, if an air quality sensor fails
to communicate with its server to save records due to random fluctuations in the internet
connection, the missing values are of the MCAR type. This is because internet connection
issues could have happened for any of the data objects, but it just happened to occur for
the ones it did.

On the other hand, we have MAR when some data objects in the data are more likely
to have missing values. For instance, if a high wind speed sometimes causes a sensor
to malfunction and renders it unable to give a reading, the missing values that have
happened in the high wind are classed as MAR. The key to understanding MAR is that the
systematic reason that leads to having missing values does not always cause missing values
but increases the tendency of the data objects to have missing values.

Lastly, MNAR happens when we know exactly which data object will have missing values.
For instance, if a power plant that tends to emit too much air pollutant tampers with the
sensor to avoid paying a penalty to the government, the data objects that are not collected
due to this situation would be classed as MNAR. MNAR missing values are the most
problematic ones, and figuring out why they happen and stopping them from happening
is often the priority of a data analytic project.

Next, we will learn how we can use data analytic tools to diagnose the types of missing
values. In the following section, we will see an example that showcases the three types of
missing values.

264 Data Cleaning Level III – Missing Values, Outliers, and Errors

Diagnosis of missing values
An attribute with missing values has, in fact, the information of two variables: itself, and a
hidden attribute. The hidden attribute is a binary attribute whose value is one when there
is a missing value, and zero otherwise. To figure out the types of missing values (MCAR,
MAR, and MNAR), all we need to do is to investigate whether there is a relationship
between the hidden binary variable of the attribute with missing values and the other
attributes in the dataset. The following list shows the kinds of relationships we would
expect to see based on each of the missing value types:

•	 MCAR: We don't expect the hidden binary variable to have a meaningful
relationship with the other attributes.

•	 MAR: We expect a meaningful relationship between the hidden binary variable and
at least one of the other attributes.

•	 MNAR: We expect a strong relationship between the hidden binary variable and at
least one of the other attributes.

The following subsections showcase three situations with different types of missing values,
and we will use our data analytic toolkit to help us diagnose them.

We will continue using the air_df dataset that we saw earlier. We saw that NO2_
Location_A, NO2_Location_B, and NO2_Location_C have 120, 560, and 176
missing values, respectively. We will tackle diagnosing missing values under each column
one at a time.

Diagnosing missing values in NO2_Location_A
To diagnose the types of missing values, there are two methods at our disposal: visual
and statistical methods. These diagnosis methods must be run for all of the attributes in
the dataset. There are four numerical attributes in the data: Temperature, Humidity,
Wind_Direction, and Wind_Speed. There is also one DateTime attribute in the
data that can be unpacked into four categorical attributes: month, day, hour, and
weekday. The way we need to run the analysis is different for numerical attributes than
for categorical attributes. So, first, we will learn about numerical attributes, and then we
will turn our attention to categorical attributes.

Let's start with the Temperature numerical attribute. Also, we'll first do the diagnosis
visually and then we will do it statistically.

Missing values 265

Diagnosing missing values based on temperature
The visual diagnosis is done by comparing the temperature values for the two populations:
first, data objects with missing values for NO2_Location_A, and second, data objects
with no missing values for NO2_Location_A. In Chapter 5, Data Visualization,
under Comparing populations, we learned how we use data visualizations to compare
populations. Here, we will use those techniques. We can either use a boxplot or histogram
to do this. Let's use both—first, a boxplot, and then a histogram.

The following screenshot shows the code and the boxplot that compares the two
populations. The code is very similar to what we learned in Chapter 5, Data Visualization,
so we will just discuss the implications of the visualizations.

Figure 11.6 – Code for the diagnosis of missing values in NO2_Location_A using
the boxplots of temperature

266 Data Cleaning Level III – Missing Values, Outliers, and Errors

Looking at the boxplot in the preceding screenshot, we can see that the value of
Temperature does not meaningfully change between the two populations. That shows
that a change in Temperature could not have caused or influenced the occurrence of
missing values under NO2_Location_A.

We could also have done this analysis using a histogram. This was also shown in Chapter
5, Data Visualization, under Comparing populations. The following screenshot shows the
code to create a histogram and compare the two populations:

Figure 11.7 – The code for the diagnosis of missing values in NO2_Location_A using
the histogram of temperature

The preceding screenshot confirms the same conclusion we arrived at when using
boxplots. As we do not see a significant difference between the two populations, we
conclude that the value of Temperature could not have influenced or caused the
occurrence of missing values.

Missing values 267

Lastly, we would also like to confirm this using a statistical method: a two-sample t-test.
The two-sample t-test evaluates whether the value of a numerical attribute is significantly
different among the two groups. The two groups here are the data objects having missing
values under NO2_Location_A and the data objects without missing values under
NO2_Location_A.

In short, the two-sample t-test hypothesizes that there is no significant difference between
the attributes' value among the two groups and then calculates the probability of the data
turning out the way it has if the hypothesis is correct. This probability is called the p-value.
So, if the p-value is very small, we have meaningful evidence to suspect the hypothesis of
the two-sample t-test could have been wrong.

We can easily do any hypothesis testing using Python. The following screenshot uses the
ttest_ind function from the scipy.stats module to do a two-sample t-test:

Figure 11.8 – Using t-test to evaluate whether the value of temperature is different in NO2_Location_A
between data objects with missing values and without missing values

As you can see in the previous screenshot, to use the ttest_ind() function, all we need
to do is to pass the two groups of numbers.

The p-value of the t-test is very large—0.95 out of 1, which means we do not have any reason
to suspect the value of Temperature can be meaningfully different between the two
groups. This conclusion confirms the one that we arrived at using boxplots and histograms.

Here, we showcased the code for diagnosing missing values based on only one numerical
attribute. The code and analysis for the rest of the numerical attributes are similar. Now
that you know how to do this for one numerical attribute, we will next create a code that
outputs all we need for missing value diagnosis using numerical attributes.

Diagnosing missing values based on all the numerical attributes
To do a complete diagnosis of missing values, a similar analysis to what we did for the
Temperature attribute needs to be done for all of the attributes. While each part of
the analysis is simple to understand and interpret, the fact that the diagnosis analysis has
many parts begs a very organized way of coding and analysis.

268 Data Cleaning Level III – Missing Values, Outliers, and Errors

To do this in an organized way, we will first create a function that performs all of the three
analyses that we showed can be done for Temperature. Apart from the dataset, the
function takes the name of the numerical attribute we want to perform the analysis and
the Boolean mask that is True for the data objects with missing values and False for the
data object without missing values. The function outputs boxplots, a histogram, and the
p-value of the t-test for the inputted attribute. The code in the following screenshot shows
how this function is created. The code is rather long; if you'd like to copy it, please find it
in the Ch 11 Data Cleaning Level III – missing values, outliers,
and errors folder in the dedicated GitHub repository for this book.

Figure 11.9 – Creating a Diagnose_MV_Numerical() function for diagnosing missing values based
on numerical attributes

Missing values 269

Simply put, the previous code is a parameterized and combined version of the code
presented in Figure 11.6, Figure 11.7, and Figure 11.8. After running the preceding code,
which creates a Diagnose_MV_Numerical() function, running the following code
will run this function for all of the numerical attributes in the data, and it allows you
to investigate whether the missing values of NO2_Location_A happen due to any
systematic reasons that are linked to numerical attributes in the dataset.

numerical_attributes = ['Temperature', 'Humidity', 'Wind
Speed', 'Wind Direction']

BM_MV = air_df.NO2_Location_C.isna()

for att in numerical_attributes:

 print('Diagnosis Analysis of Missing Values for {}:'.
 format(att))

 Diagnose_MV_Numerical(air_df,att,BM_MV)

 print('- - - - - - - - - - divider - - - - - - - - - ')

Running the preceding code will produce four diagnosis reports, one for each of the
numerical attributes. Each report has three parts: diagnosis using boxplots, diagnosis
using a histogram, and diagnosis using a t-test.

Studying the ensuing reports from the preceding code snippet shows that the tendency
of the missing value under NO2_Location_A does not change based on values of either
numerical attribute in the data.

Next, we will do a similar coding and analysis for categorical attributes. Like what we did
for numerical attributes, let's do a diagnosis for one attribute first, and then we will create
code that can output all the analysis we need all at once. The first attribute that we will do
the diagnosis for is weekday.

Diagnosing missing values based on weekday
You may be confused that the air_df dataset does not have a categorical attribute named
weekday, and you would be right, but unpacking the air_df.DataTime attribute can
give us the following attributes: weekday, day, month, and hour.

If you are thinking that sounds like level II data cleaning, you are absolutely right. To be
able to do level III data cleaning more effectively, we need to do some level II data cleaning
first. The following code performs the described level II data cleaning:

air_df.DateTime = pd.to_datetime(air_df.DateTime)

air_df['month'] = air_df.DateTime.dt.month

air_df['day'] = air_df.DateTime.dt.day

air_df['hour'] = air_df.DateTime.dt.hour

air_df['weekday'] = air_df.DateTime.dt.day_name()

270 Data Cleaning Level III – Missing Values, Outliers, and Errors

After running the preceding code and before reading on, check the new state of air_df
and study the new columns that are added to it. You will see that the month, day, hour,
and weekday categorical attributes are unpacked into their own attributes.

Now that this data cleaning level II is done, we can perform a diagnosis of missing values
in the air_df.NO2_Location_A column based on the weekday categorical attribute.
As we saw in Chapter 5, Data Visualization, a bar chart is a data visualization technique
to compare populations based on a categorical attribute. The following screenshot shows
a modification of what we learned in Chapter 5, Data Visualization, under the heading
Example of comparing populations using bar charts, the first way, for this situation:

Figure 11.10 – Using a bar chart to evaluate whether the value of weekday is different between data
objects in NO2_Location_A with missing values and without missing values

Looking at the preceding screenshot, we can see that the missing values could have happened
randomly and we don't have a meaningful trend to believe there is a systematic reason for
the missing values happening due to a change of the value of airt_df.weekday.

We can also do a similar diagnosis using a chi-square test of independence statistical test.
In short and for this situation, this test hypothesizes that there is no relationship between
the occurrence of missing values and the weekday attribute. Based on this hypothesis,
the test calculates a p-value that is the probability of the data we have happening if the
hypothesis is true. Using that p-value, we can decide whether we have any evidence to
suspect a systematic reason for missing values.

Missing values 271

What Is a P-Value?
This is the second time we are seeing the concept of a p-value in this chapter.
A p-value is the same concept across all statistical tests and it has the same
meaning. Every statistical test hypothesizes something (which is called a null
hypothesis), and the p-value is calculated based on this hypothesis and the
observations (data). The p-value is the probability that the data that has already
happened is happening if the null hypothesis is true.

A popular rule of thumb for using p-value is to employ the famous 5%
significance level. A 0.05 significance level denotes that if the p-value turns out to
be larger than 0.05, then we don't have any evidence to suspect the null hypothesis
is not correct. While this is a fairly good rule of thumb, it is best to understand the
p-value and then complement the statistical test with data visualization.

The following screenshot shows a chi-square test of independence being performed using
chi2_contingency() from scipy.stats. The code first uses pd.crosstab()
to create a contingency table that is a visualization tool, to investigate the relationship
between two categorical attributes (this was covered in the Visualizing the relationship
between two categorical attributes section in Chapter 5, Data Visualization). Then, the code
passes contigency_table to the chi2_contingency() function to perform the
test. The test outputs some values, but not all of them are useful for us. The p-value is the
second value, which is 0.4127.

Figure 11.11 – Using the chi-square test of independence to evaluate whether the value of weekday is
different between data objects in NO2_Location_A with missing values and without missing values

272 Data Cleaning Level III – Missing Values, Outliers, and Errors

Having a p-value of 0.4127 confirms the observation we made under Figure 11.10,
which is that there is no relationship between the occurrence of missing values in
air_df.NO2_Location_A and the value of weekday, and the fact that the missing
values happened the way they did could have just been a random chance.

Here, we showcased the code for diagnosing missing values based on only one categorical
attribute. The code and analysis for the rest of the categorical attributes are similar. Now
that you know how to do this for one numerical attribute, we will next create a code that
outputs all we need for missing value diagnosis using categorical attributes.

Diagnosing missing values based on all the categorical attributes
To do a complete diagnosis of missing values, a similar analysis to what we did for the
Weekday attribute needs to be done for all of the other categorical attributes. To do this
in an organized way, we will first create a function that performs the two analyses that we
showed can be done for Weekday. Along with the dataset, the function takes the name
of the categorical attribute we want to perform the analysis and the Boolean mask, which
is True for the data objects with missing values and False for the data objects without
missing values. The function outputs bar charts, and the p-value of the chi-squared test
of independence for the inputted attribute. The following code snippet shows how this
function is created:

from scipy.stats import chi2_contingency

def Diagnose_MV_Categorical(df,str_att_name,BM_MV):

 MV_labels = {True:'With Missing Values', False:'Without
 Missing Values'}

 plt.figure(figsize=(10,4))

 for i,poss in enumerate(BM_MV.unique()):

 plt.subplot(1,2,i+1)

 BM = BM_MV == poss

 df[BM][str_att_name].value_counts().plot.bar()

 plt.title(MV_labels[poss])

 plt.show()

 contigency_table = pd.crosstab(BM_MV,df[str_att_name])

 p_value = chi2_contingency(contigency_table)[1]

 print('p-value of Chi_squared test: {}' .format(p_value))

Missing values 273

The preceding code snippet is a parameterized and combined version of the code
presented in Figure 11.10 and Figure 11.11. After running the preceding code, which
creates a Diagnose_MV_Categorical() function, running the following code
will run this function for all of the categorical attributes in the data, and it allows you
to investigate whether the missing values of NO2_Location_A happen due to any
systematic reasons that are linked to the categorical attributes in the dataset:

categorical_attributes = ['month', 'day','hour', 'weekday']

BM_MV = air_df.NO2_Location_A.isna()

for att in categorical_attributes:

 print('Diagnosis Analysis for {}:'.format(att))

 Diagnose_MV_Categorical(air_df,att,BM_MV)

 print('- - - - - - - - - - divider - - - - - - - - - ')

When you run the preceding code, it will produce four diagnosis reports, one for each of
the categorical attributes. Each report has two parts, as follows:

•	 Diagnosis using a bar chart

•	 Diagnosis using a chi-squared test of independence

Studying the reports shows that the tendency of the missing value under NO2_
Location_A does not change based on values of either categorical attribute in the data.

Combined with what we learned for numerical attributes earlier in this subchapter and
what we just learned about categorical attributes, we do see that none of the attributes
in the data—namely, Temperature, Humidity, Wind_Speed, Wind_Direction,
weekday, day, month, and hour—may have influenced the tendency of missing values.
Based on all the diagnoses that we ran for the missing values, we conclude that missing
values in NO2_Location_A are of the MCAR type.

Now that we have been able to determine the missing values of NO2_Location_A, let's
also run the diagnosis that we learned so far for the missing values of NO2_Location_B
and NO2_Location_C. We will do so in the following two subsections.

274 Data Cleaning Level III – Missing Values, Outliers, and Errors

Diagnosing missing values in NO2_Location_B
To diagnose missing values in NO2_Location_B, we need to do exactly the same
analysis we did for NO2_Location_A. The coding part is very easy as we have already
done this, for the most part. The following code uses the Diagnose_MV_Numerical()
and Diagnose_MV_Categorical() functions that we already created to run all
needed diagnoses in order to figure out which types of missing values happen under
NO2_Location_B:

categorical_attributes = ['month', 'day','hour', 'weekday']

numerical_attributes = ['Temperature', 'Humidity',
'Wind_Speed', 'Wind_Direction']

BM_MV = air_df.NO2_Location_B.isna()

for att in numerical_attributes:

 print('Diagnosis Analysis for {}:'.format(att))

 Diagnose_MV_Numerical(air_df,att,BM_MV)

 print('- - - - - - - - - divider - - - - - - - - ')

for att in categorical_attributes:

 print('Diagnosis Analysis for {}:'.format(att))

 Diagnose_MV_Categorical(air_df,att,BM_MV)

 print('- - - - - - - - - divider - - - - - - - - - ')

When you run the preceding code, this produces a long report that investigates whether
the tendency of missing values happening may have been influenced by the values of any
of the categorical or numerical attributes.

After studying the report, you can see that there are a couple of attributes that seem to
have a meaningful relationship with the occurrence of missing values. These attributes
are Temperature, Wind_Speed, Wind_Direction, and month. The following
screenshot shows a diagnosis analysis for Wind_Speed that has the strongest relationship
with the missing values:

Missing values 275

Figure 11.12 – Diagnosis of missing values in NO2_Location_B based on the Wind_Speed attribute

In the preceding screenshot, you can see all three analytic tools are showing that there is a
significant difference in the value of Wind_Speed between data objects that have missing
values under NO2_Location_B and data objects that don't have missing values. In short,
a higher Wind_Speed value tends to increase the chance of NO2_Location_B having
missing values.

276 Data Cleaning Level III – Missing Values, Outliers, and Errors

After this diagnosis, the results were shared with the company that sold us the air quality
sensor. Here is the email that was sent to the company:

Dear Sir/Madam,

I am writing this email to share with you what seems to be a pattern
of malfunction with the electrochemical sensors with serial number

231703612 that we purchased from you. The sensor seems to skip recording
when the temperature is lower, and the wind speed is higher. We thought to
let you know and we would appreciate it if you could tell us what you make

of this pattern.

Sincerely,

Iman Ahmadian
After a few days, we received the following email:

Dear Analytic Team,

Thanks for sharing your concern and the information regarding the issues
with the electrochemical sensors.

What you shared with us is consistent with our recent findings. We have
understood that the model of the sensor that you have listed tends to

malfunction in high wind conditions.

For future cases, you would expect to experience similar issues with the
sensors whose serial numbers start with 2317.

We sincerely apologize for this inconvenience and would be more than
happy to accommodate you with a 50% discount on our brand-new sensors

that do not suffer from this malfunction. If you wish to use this discount,
please follow up with our sales department citing this email.

Best wishes

Nima Ghaderi

Missing values 277

There we have it—now we know why some of the missing values under NO2_Location_B
occurred. As we know, the value of Temperature can cause an increase in the occurrence
of missing values, so we can conclude that the missing values under NO2_Location_B are
of the MAR type.

A good question to ask here is that if a high Wind_Speed value is a culprit for the
missing values, how come the missing values also showed meaningful patterns with
Temperature, Wind_Direction, and month? The reason is that Wind_Speed
has a strong relationship with Temperature, Wind_Direction, and month. Use
what you learned in Chapter 5, Data Visualization, in the Investigating the relationship
between two attributes section, to put this into an analysis. Due to those strong
relationships, it may look as though the other attributes also influence the tendency
of missing values. We know that is not the case from our communication with the
manufacturer of the sensor.

So far, we have been able to diagnose missing values under NO2_Location_A and
NO2_Location_B. Next, we will perform a diagnosis for NO2_Location_C.

Diagnosing missing values in NO2_Location_C
We only need to change one line in the code for the diagnosis of missing values in
NO2_Location_B so that we can diagnose missing values in NO2_Location_C. You
need to change the third line of code from BM_MV = air_df.NO2_Location_B.
isna() to BM_MV = air_df.NO2_Location_C.isna(). Once that change is
applied and the code is run, you will get a diagnosis report based on all the categorical
and numerical attributes in the data. Try to go through and interpret the diagnosis report
before reading on.

278 Data Cleaning Level III – Missing Values, Outliers, and Errors

The diagnosis report shows a relationship between the tendency of missing values and
most of the attributes—namely, Temperature, Humidity, Wind_Speed, day, month,
hour, and weekday. However, the relationship with the weekday attribute is the
strongest. The following screenshot shows a missing value diagnosis based on weekday.
The bar chart in the screenshot shows that the missing values happen exclusively on
Saturdays. The p-value of the chi-square test is very small.

Figure 11.13 – Diagnosis of missing values in NO2_Location_C based on the weekday attribute

The diagnosis based on hour and day also shows meaningful patterns (the diagnosis
report for the hour and day attributes is not printed here, but please look at the report
you just created). The missing values happen equally only when the value of the hour
attribute is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20, or when the value of the day
attribute is 25, 26, 27, 28, and 29. From these reports, we can deduce that the missing
values happen predictably on the last Saturday of every month from 10 A.M. to 8 P.M.
That is the pattern we see in the data, but why?

Missing values 279

After letting the local authority of location C know, it turned out that a group of employees at
the power plant in location C had been taking advantage of the resources of the power plant
to engage in the mining of various cryptocurrencies. This abuse of resources had happened
only on the last Saturday of the month as the power plant in question had a complete day
off for regular and preventive maintenance. As this group of employees had been under a lot
of stress to cover their tracks and avoid getting caught, they had decided to tamper with the
sensor that had been put in place to regulate the air pollution from the power plant. Little
did they know that tampering with data collection leaves a mark on the dataset that is not
easily hidden from the eyes of a high-quality data analyst such as yourself.

This last piece of information and the diagnosis brings us to the conclusion that the
missing value in NO2_Location_C is an MNAR value. Such values are missed due to
a direct reason as to why the data was being collected in the first place. A lot of times
when a dataset has a significant number of MNAR missing values, the dataset becomes
worthless and cannot be of value in meaningful analytics. A very first step in dealing with
MNAR missing values is to prevent them from happening ever again.

After learning how to detect and diagnose missing values, now is the perfect time to
discuss dealing with missing values. Let's get straight to it.

Dealing with missing values
As shown in the following list, there are four different approaches to dealing with
missing values:

•	 Keep them as is.

•	 Remove the data objects (rows) with missing values.

•	 Remove the attributes (columns) with missing values.

•	 Estimate and impute a value.

Each of the previous strategies could be the best strategy in different circumstances.
Regardless, when dealing with missing values, we have the following two goals:

•	 Keeping as much data and information as possible

•	 Introducing the least possible amount of bias in our analysis

280 Data Cleaning Level III – Missing Values, Outliers, and Errors

Simultaneously achieving these two goals is not always possible, and a balance often needs
to be struck. To effectively find that balance in dealing with missing values, we need to
understand and consider the following items:

•	 Our analytic goals

•	 Our analytic tools

•	 The cause of the missing values

•	 The type of the missing values (MCAR, MAR, MNAR)

In most situations when there is sufficient understanding of the preceding items, the
best course of action in dealing with missing values shows itself to you. In the following
subsection, we will first describe each of the four approaches in dealing with missing
values, and then we will put what we learn into practice, with some examples.

First approach – Keep the missing value as is
As the heading suggests, this approach keeps the missing value as a missing value and
enters the next stage of data preprocessing. This approach is the best way to deal with
missing values in the following two situations.

First, you would use this strategy in cases where you will be sharing this data with others
and you are not necessarily the one who is going to be using it for analytics. In this way,
you will allow them to decide how they should deal with missing values based on their
analytics needs.

Second, if both data analytic goals and data analytic tools you will be using can seamlessly
handle missing values, keep as is is the best approach. For instance, the K-Nearest
Neighbors (KNN) algorithm that we learned about in Chapter 7, Classification, can be
adjusted to deal with missing values without having to remove any data objects. As you
remember, KNN calculates the distance between data objects to find the nearest neighbors.
So, every time the distance between a data object with missing values and other data
objects is being calculated, a value will be assumed for the missing values. The assumed
values will be selected in such a way that the assumed values will not help, so the data
object with the missing value will be selected. In other words, a data object with missing
values will be selected as one of the nearest neighbors only if its non-missing values show
a very high level of similarity that cancels out the negative effect of the assumed values for
the missing values.

Missing values 281

You can see that if the KNN is adjusted in this way, then it would be best if we kept
the missing values as is so as to meet both of the listed goals in dealing with missing
values: keeping as much information as possible and avoiding the introduction of bias
in the analysis.

While the described modification to the KNN algorithm is an accepted approach in the
literature, it is not guaranteed that every analytic tool that features KNN has incorporated
the described modification so that the algorithm can deal with missing values. For
instance, KNeighborsClassifier that we used from the sklearn.neighbors
module will give you an error if the dataset has missing values. If you are planning to use
this analytics tool, then you cannot use a keep as is approach and have to use one of the
other approaches.

Second approach – Remove data objects with missing values
This approach must be selected with great care because it can work against the two goals
of successfully dealing with missing values: not introducing bias into the dataset, and not
removing valuable information from the data. For instance, when the missing values in
a dataset are of the type MNAR or MAR, we should refrain from removing data objects
with missing values. That is because doing so means that you are removing a meaningfully
distinct part of the population in the dataset.

Even if the missing values are of type MCAR, we should first try to find other ways of
dealing with missing values before turning toward removing data objects. Removing data
objects from a dataset should be considered as a last resort when there are no other ways
to deal with missing values.

Third approach – Remove the attributes with missing values
When most of the missing values in a dataset come from one or two attributes, we might
consider removing the attributes as a way of dealing with missing values. Of course, if the
attribute is a key attribute without which you cannot proceed with the project, facing too
many missing values in the key attribute means the project is not doable. However, if the
attributes are not absolutely essential to the project, removing the attributes with too many
missing values might be the right approach.

When the number of missing values in one attribute is large enough (roughly more
than 25%), estimating and inputting missing values becomes meaningless, and letting go
of the attribute is better than estimating missing values.

282 Data Cleaning Level III – Missing Values, Outliers, and Errors

Fourth approach – Estimate and impute missing values
In this approach, we would use our knowledge, understanding, and analytic tools to fill
missing values. The term imputing captures the essence of what this does to a dataset—we
put value instead of missing value while knowing that this could cause bias in our analysis.
If the missing values are of the MCAR or MAR type and the analytic we have chosen
cannot process the dataset with missing values, imputing the missing values might be the
best approach.

There are four general methods to estimate a replacement for missing values. The
following list outlines these methods:

•	 Impute with the general central tendency (mean, median, or mode). This is better
for MCAR missing values.

•	 Impute with the central tendency of a more relevant group of data to the missing
values. This is better for MAR missing values.

•	 Regression analysis. Not ideal, but if we have to proceed with a dataset that has
MNAR missing values, this method is better for such a dataset.

•	 Interpolation. When the dataset is a time series dataset and the missing values are
of the MCAR type.

A common misconception about the process of estimation and imputation is that we want
to impute missing values with the most accurate replacements. That is not correct at all.
When imputing, we do not aim to best predict the value of missing values but to impute
with values that would create the least amount of bias for our analysis. For instance, for
clustering analysis, if a dataset has MCAR missing values, imputing with the whole-
population central tendency is the best way to go. The reason is that the central tendency
value will act as a neutral vote in the process of grouping the data objects, and if the data
objects with missing values are pushed to be a part of one cluster, this is not due to the
imputed value.

Now that we have had a chance to understand the different approaches to dealing with
missing values, let's put things together and see a step-by-step decision-making process in
selecting the right strategy.

Choosing the right approach in dealing with missing values
The following diagram summarizes what we have discussed in dealing with missing values
so far. The diagram shows that the selection of the right approach in dealing with missing
values must be informed from four items: analytic goals, analytic tools, the cause of
missing values, and the type of missing values (MCAR, MAR, MNAR).

Missing values 283

Figure 11.14 – Diagram for choosing approaches and methods for dealing with missing values

Now, let's put what we have learned so far into practice and see some examples.

284 Data Cleaning Level III – Missing Values, Outliers, and Errors

Example 1
Using air_df, whose missing values we detected and diagnosed earlier in this chapter, we
would like to draw a bar chart that shows the average NO2 per hour value in Location A.

If you remember, the missing values in air_df.NO2_Location_A are of the MCAR
missing value type. Since the missing values are not of the MNAR type and a bar chart can
easily handle missing values, the strategy we chose to deal with the missing values
will be to keep them as it is. The following screenshot shows the code and the bar chart
that it creates:

Figure 11.15 – Dealing with missing values of NO2_Location_A to draw an hourly bar chart

In the preceding screenshot, you observed that the .groupby() and .mean() functions
were able to handle missing values. When the data is aggregated and the number of
missing values is not significant, the aggregation of the data handles the missing values
without imputation. In fact, the .mean() function ignores the existence of attributes with
missing values and calculates the mean based on data objects that have a value.

Example 2
Using air_df, whose missing values we detected and diagnosed earlier in this chapter, we
would like to draw a line chart that compares the NO2 variation of the first day of each
month in Location A.

Missing values 285

We know that the missing values in air_df.NO2_Location_A are of the MCAR type;
however, assume that we don't know if a line plot can handle the missing values or not. So,
let's give it a try and see if the keep as is strategy will work. The following screenshot shows
the line plot we need without dealing with the missing values:

Figure 11.16 – Daily line plot of NO2_Location_A for the first day of every month

In the preceding screenshot, we see that the line plots are cut in between due to the
existence of missing values. If the figure meets our analytic need, then we are done and
there is no need to do anything further. However, if we would like to deal with the missing
values and remove the empty spots in the line plots, we would need to use interpolation
as the missing values are of the MCAR type and the data is time series data. The following
code snippet shows how to deal with the missing values and then draw complete line plots:

NO2_Location_A_noMV = air_df.NO2_Location_A.interpolate(
method='linear')

month_poss = air_df.month.unique()

hour_poss = air_df.hour.unique()

plt.figure(figsize=(15,4))

for mn in month_poss:

 BM = (air_df.month == mn) & (air_df.day ==1)

 plt.plot(NO2_Location_A_noMV[BM].values, label=mn)

plt.legend(ncol=6)

plt.xticks(hour_poss)

plt.show()

The preceding code snippet uses the .interploate() function to impute the missing
values. When method='linear' is used, the function imputes with the average of the
data points before and after it. In our eyes, it will appear as though the empty spots are
connected with a ruler. Run the preceding code and compare its output with Figure 11.16.

286 Data Cleaning Level III – Missing Values, Outliers, and Errors

Example 3
Using air_df, we would like to draw a bar chart that compares the average NO2 per hour
value in Location A and Location B.

We remember that the missing values in air_df.NO2_Location_A are of the MCAR
type and that those in air_df.NO2_Location_B are of the MAR type. As neither of
the attributes has MNAR missing values and the bar chart can handle missing values, we
can use a keep as is strategy. The following screenshot shows the code needed to create a
bar chart for this situation:

Figure 11.17 – Dealing with missing values of NO2_Location_A and NO2_Location_B to draw an
hourly bar chart

Example 4
Using air_df, we would like to draw a bar chart that compares the average NO2 per hour
value in Location A, Location B, and Location C.

We remember that the missing values are of types MCAR, MAR, and MNAR, respectively,
in NO2_Location_A, NO2_Location_B, and NO2_Location_C. As we mentioned,
dealing with MCAR and MAR missing values is much easier than dealing with MNAR
missing values. For MCAR and MAR, we already saw that we can use a keep as is strategy.

Missing values 287

For MNAR, we need to answer the question: Are the MNAR missing values essential
attributes? Answering this question requires a deep understanding of the analytic goals. In
two different analytic situations, we may have to deal with the missing values differently.

In one analytic situation, a bar chart is requested from an air pollution regulatory
government body. In this situation, we cannot move past the MNAR missing values in
NO2_Location_C, and instead of sending them what they have requested, we need to
reject their request and instead inform the regulatory body about the existence of missing
values. This is because a bar chart would be misleading, as the missing values are due to
data tampering, with the intention of downplaying air pollution data.

In another situation, a bar chart is requested from a researcher who would like to investigate
general air pollution in different regions. In this situation, even though the missing values
are of the MNAR type, the systematic reason behind them is not essential to our analytic
goals. Therefore, we can use a keep as is strategy for all three columns. Creating a bar chart
is very similar to what we did in Figure 11.17. Running air_df.groupby('hour')
[['NO2_Location_A', 'NO2_Location_B', 'NO2_Location_C']].mean().
plot.bar() will create the requested visual.

Example 5
We would like to use the kidney_disease.csv dataset to classify between the
cases of chronic kidney disease (CKD) and those cases that are not CKD. The dataset
shows the data of 400 patients and has 5 independent attributes—namely, red blood
cells (rc), serum creatinine (sc), packed cell volume (pcv), specific gravity (sg),
and hemoglobin (hemo). Of course, the dataset also has a dependent attribute named
diagnosis whereby the patients are labeled with either CKD or not CKD. Decision
Tree is the classification algorithm we would like to use.

In our initial look at the dataset, we notice that the dataset has missing values, and after
using the code we learned under Detecting missing values, we conclude that the number
of missing values for rc, sc, pcv, sg, and hemo are 131, 17, 71, 47, and 52, respectively.
This means the percentage of missing values under rc, sc, pcv, sg, and hemo is 32.75%,
4.25%, 17.75%, 11.75%, and 13%, respectively.

Use what you've learned in this chapter to confirm the information in the previous
paragraph before reading on.

288 Data Cleaning Level III – Missing Values, Outliers, and Errors

When the number of missing values are across different attributes and are high (more
than 15%), it might be the case that most of the missing values happen for the same data
objects, and that could be very problematic for our analysis. So, before moving to the
diagnosis of missing values for each attribute, let's use the heatmap() function from the
seaborn module to visualize missing values across the dataset. The following screenshot
shows the code and the heatmap it produces:

Figure 11.18 – Using seaborn to visualize missing values in kidney_disease.csv

The heatmap in the preceding screenshot shows that the missing values are somewhat
scattered across the data objects, and it is certainly not the case that the missing values
under different attributes are only from specific data objects.

Missing values 289

Next, we turn our attention to the missing value diagnosis per attribute. After performing
what we've learned in this chapter, we can conclude that the missing values of the sc
attribute are of the type MCAR, and the missing values of rc, pcv, sg, and hemo are
of the type MAR. The tendency of all of the MAR missing values is highly linked to the
diagnosis dependent attribute.

Use what you've learned in this chapter to confirm the information in the previous
paragraph before reading on.

Now that we have a better idea of the types of missing values, we need to turn our focus
to the essence of analytic goals and tools. We want to perform classification using the
Decision Tree algorithm. When we want to deal with missing values, before using the
dataset in an algorithm, we need to first consider how the algorithm uses the data and then
try to choose a strategy that simultaneously optimizes the two goals of dealing with missing
values. Let's remind ourselves of the two goals of dealing with missing values, as follows:

•	 Keeping as much data and information as possible

•	 Introducing the least possible amount of bias in our analysis

We know that Decision Tree is not inherently designed to deal with missing values, and
the tool we know for the Decision Tree algorithm—the DecisionTreeClassifier()
function from the sklearn.tree module—will give an error if the input data has
missing values. Knowing that will tell us that a keep as is strategy is not an option.

We also just realized that the tendency of some of the missing values can be a predictor
of the dependent attribute. This is important because if we were to impute the missing
values, that would remove this valuable information from the dataset; the valuable
information is that the missing values of some of the attributes (the MAR ones) predict
the dependent attribute. Therefore, regardless of the imputation method that we will use,
we will add a binary attribute to the dataset for every attribute with MAR missing values
that describes whether the attribute had a missing value. These new binary attributes
will be added to the independent attributes of the classification task to predict the
diagnosis dependent attribute.

The following code snippet shows these binary attributes being added to the
patient_df dataset:

patient_df['rc_BMV'] = patient_df.rc.isna().astype(int)

patient_df['pcv_BMV'] = patient_df.pcv.isna().astype(int)

patient_df['sg_BMV'] = patient_df.sg.isna().astype(int)

patient_df['hemo_BMV'] = patient_df.hemo.isna().astype(int)

290 Data Cleaning Level III – Missing Values, Outliers, and Errors

Run the preceding lines of code first and study the state of patient_df before
reading on.

Let's now turn our attention to imputing missing values. If you do not remember how the
Decision Tree algorithm goes about the task of classification, please go back to Chapter
7, Classification, to jog your memory before reading on. The Decision Tree algorithm
consecutively splits data objects into groups based on the value of the attributes, and when
the data objects have values that are larger than or smaller than the central tendencies
of the attribute, they are more likely to be classified with a specific label. Therefore, by
imputing with the central tendency of the attributes, we will not introduce a bias into
the dataset, so the imputed value will not cause the classifier to predict one label over the
other more often.

Thus, we have concluded that imputing with the central tendency of attributes is a
reasonable way to address missing values. The question that we now need to answer is:
Which central tendency should we use—median or mean? The answer to that question is
that the mean is better if the attribute does not have many outliers.

After investigating the boxplots of the attributes with missing values, you will see that sc
has too many outliers, and the rest of the attributes are not highly skewed. Therefore, the
following code snippet shows the missing values of patient_df.sc being imputed with
patient_df.sc.median(), and the rest of the attributes with missing values with
their means:

patient_df.sc.fillna(patient_df.sc.median(),inplace=True)

patient_df.fillna(patient_df.mean(),inplace=True)

The preceding code snippet uses the .fillna() function, which is very useful when
imputing missing values. After running the preceding code, recreate the heatmap shown
in Figure 11.18 to see the state of missing values in your data.

Phew! The detection of, diagnosis of, and dealing with missing values have now been
completed. The dataset is now preprocessed for the classification task. All we need to do is
use the code we learned from Chapter 7, Classification, to run the Decision Tree algorithm.
The following code snippet shows the modified code from Chapter 7, Classification, for
this analytic situation:

from sklearn.tree import DecisionTreeClassifier, plot_tree

predictors = ['rc', 'sc', 'pcv', 'sg', 'hemo', 'rc_BMV', 'pcv_
BMV', 'sg_BMV', 'hemo_BMV']

target = 'diagnosis'

Xs = patient_df[predictors]

y= patient_df[target]

Missing values 291

classTree = DecisionTreeClassifier(min_impurity_decrease= 0.01,
min_samples_split= 15)

classTree.fit(Xs, y)

The preceding code snippet creates a Decision Tree model and trains it using the data
we've preprocessed. Pay attention to the fact that min_impurity_decrease= 0.01
and min_samples_split= 15 are hyperparameters of the Decision Tree algorithm
that are adjusted using a process of tuning.

The following code snippet uses the classTree trained decision tree model to visually
draw its tree for analysis and use:

from sklearn.tree import plot_tree

plt.figure(figsize=(15,15))

plot_tree(classTree,
 feature_names=predictors,
 class_names=y.unique(),
 filled=True,
 impurity=False)

plt.show()

Successfully running the preceding code will create the following output:

Figure 11.19 – Trained decision tree for the preprocessed kidney_disease.csv data source

292 Data Cleaning Level III – Missing Values, Outliers, and Errors

We can now use the preceding decision tree to make decisions regarding incoming patients.

You've made excellent progress so far in this chapter. You are now capable of detecting,
diagnosing, and dealing with missing values from both a technical and an analytic
standpoint. Next in this chapter, we will discuss the issue of extreme points and outliers.

Outliers
Outliers, a.k.a. extreme points, are data objects whose values are too different than the
rest of the population. Being able to recognize and deal with them is important from the
following three perspectives:

•	 Outliers may be data errors in data and should be detected and removed.

•	 Outliers that are not errors can skew the results of analytic tools that are sensitive to
the existence of outliers.

•	 Outliers may be fraudulent entries.

We will first go over the tools we can use to detect outliers, and then we will cover dealing
with them based on the analytic situation.

Detecting outliers
The tools we use for detecting outliers depend on the number of attributes involved. If
we are interested in detecting outliers only based on one attribute, we call that univariate
outlier detection; if we want to detect them based on two attributes, we call that bivariate
outlier detection; and finally, if we want to detect outliers based on more than two
attributes, we call that multivariate outlier detection. We will cover the tools we can use
for outlier detection for each of these mentioned categories. We will also cover detecting
outliers for time series data as there are better tools for this.

Univariate outlier detection
The tools we will use for univariate outlier detection depend on the attribute's type. For
numerical attributes, we can use a boxplot or the [Q1-1.5*IQR, Q3+1.5*IQR] statistical
range. The concept of outliers does not have much meaning for a single categorical
attribute, but we can use tools such as a frequency table or a bar chart.

Outliers 293

The following two examples feature univariate outlier detection. In these examples, we
will use responses.csv and columns.csv files. The two files are used to record
the date of a survey conducted in Slovakia. To access the data on Kaggle, use this link:
https://www.kaggle.com/miroslavsabo/young-people-survey.

The dataset uses two files to keep the records due to a level I data cleaning reason— intuitive
and codable attribute names. The columns.csv file keeps the codable attribute titles
and their complete titles, and the file responses.csv has a table of data objects (survey
responses) whose attributes are named using the codable titles.

The following screenshot shows the reading of these two files into Pandas DataFrames and
the first two rows of both DataFrames:

Figure 11.20 – Reading responses.csv and columns.csv into response_df and column_df and showing
them

Now, let's look at the first example of univariate outlier detection across one
numerical attribute.

https://www.kaggle.com/miroslavsabo/young-people-survey

294 Data Cleaning Level III – Missing Values, Outliers, and Errors

Example of detecting outliers across one numerical attribute
In this example, we would like to detect outliers in the response_df.Weight
numerical attribute. There are two ways we can go about this; both ways will lead to the
same conclusion. The first way is visual; we will use a boxplot. The following screenshot
shows the code for creating a boxplot for response_df.Weight:

Figure 11.21 – Creating a boxplot for response_df.Weight

The circles that come before the lower cap and and after the upper cap represent data
objects in the data that are statistically too different from the rest of the numbers. These
circles are called fliers in the context of boxplot analysis.

There are different ways we can access the data objects that are fliers in a boxplot.
First, we can do this visually. We can see that the fliers have a Weight value larger
than 105, so we can use a Boolean mask to filter out these data objects. Running
response_df[response_df.Weight>105] will list the outliers presented in
the preceding screenshot.

Second, we can access the fliers directly from the boxplot itself. If you pay attention to
the preceding screenshot, you will notice that for the first time in this book, the output
of a plot function—in this case, plt.boxplot()—is assigned to a new variable—in
this case, fig. The reason for this is that up until now, the end goal of data visualization
was the visualization itself, and we did not need to access the details of the visualization.
However, here, we would like to access the fliers and find out their values to avoid possible
visual mistakes.

Outliers 295

We can access all aspects of every Matplotlib visualization similarly. If you run
print(fig) and study its results, you will see that fig is a dictionary whose keys are
different elements of the visualization. As the visualization in this case is a boxplot, the
elements are caps, whiskers, fliers, boxes, and median. Each key is associated
with a list of one or multiple matplotlib.lines.Line2D programming objects. This
is a programing object that Matplotlib uses in its internal processes, but here we want to
use this to give us the values of the fliers. Each matplotlib.lines.Line2D object
has the .get_data() function that gives you values that are shown on the plot. For
instance, running fig['fliers'][0].get_data() gives you the weight values that
are shown as fliers in Figure 11.21.

We didn't need to use a boxplot to find outliers. A boxplot itself uses the following
formulas to calculate the upper cap and lower cap of the boxplot. Q1 and Q3 are the first
and third quarters of the data:

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐 = Q3 + 1.5 ∗ IQR

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐 = Q1 − 1.5 ∗ IQR

𝐼𝐼𝐼𝐼𝐼𝐼 = Q3 − Q1

Anything that is not between the upper cap and the lower cap will be marked as outliers.
The following code uses the .quantile() function and the preceding formulas to
output the outliers:

Q1 = response_df.Weight.quantile(0.25)

Q3 = response_df.Weight.quantile(0.75)

IQR = Q3-Q1

BM = (response_df.Weight > (Q3+1.5 *IQR)) | (response_df.Weight
< (Q1-1.5 *IQR))

response_df[BM]

Using any of the two methods we covered in this example, you will realize that there are
nine data objects whose Weight values are statistically too different from the rest of the
data objects. The Weight values for these outliers are 120, 110, 111, 120, 113, 125, 165,
120, and 150. Make sure to confirm this using both methods before reading on.

Next, we will see an example that showcases detecting outliers based on one
categorical attribute.

296 Data Cleaning Level III – Missing Values, Outliers, and Errors

Example of detecting outliers across one categorical attribute
In this example, we would like to detect the outliers in the response_df.Education
categorical attribute. For detecting outliers across one categorical attribute, we can use a
frequency table or a bar chart. As we learned in Chapter 5, Data Visualization, you may
run response_df.Education.value_counts() to get a frequency table, and
running response_df.Education.value_counts().plot.bar() will create a
bar chart. Run both lines of code to confirm that the data object whose Education value
is doctorate degree is an outlier across this one categorical attribute.

We are now equipped with the tools for univariate outlier detection. Let's turn our
attention to bivariate outlier detection.

Bivariate outlier detection
As univariate outlier detection was across only one attribute, bivariate outlier detection
is across two attributes. In bivariate outlier detection, outliers are data objects whose
combination of values across the two attributes is too different from the rest. Similar to
univariate outlier detection, the tools we will use for bivariate outlier detection depend
on the attributes' type. For numerical-numerical attributes, it is best to use a scatterplot;
for numerical-categorical attributes, it is best to use multiple boxplots; and for
categorical-categorical attributes, the tool we use is a color-coded contingency table.

Each of the following three examples features one of the three possible paired
combinations of categorical and numerical attributes.

Example of detecting outliers across two numerical attributes
In this example, we would like to detect outliers when they are described by two
numerical attributes, response_df.Height and response_df.Weight. When
detecting outliers across two numerical attributes, it is best to use a scatterplot. Running
response_df.plot.scatter(x='Weight', y='Height') will result in the
following output:

Outliers 297

Figure 11.22 – Scatterplot to detect outliers across response_df.Weight and response_df.Height

Based on the preceding screenshot, we can clearly see two outliers, one with a Weight
value larger than 120, and one with a Height value smaller than 70. To filter out these
two outliers, we can use a Boolean mask. The following code snippet shows how this can
be done:

BM = (response_df.Weight>130) | (response_df.Height<70)

response_df[BM]

When the preceding code is run, you will see three data objects. If you check the Height
and Weight values of these data objects, you will see one of them has a missing value for
Height and therefore is not shown on the scatterplot.

This example featured a bivariate outlier detection when two attributes are numerical. The
next example will be a bivariate outlier detection when two attributes are categorical.

298 Data Cleaning Level III – Missing Values, Outliers, and Errors

Example of detecting outliers across two categorical attributes
In this example, we want to detect outliers across two categorical attributes,
response_df.God and response_df.Education. As the two attributes
are categorical, it is best to use a contingency table to detect outliers. Running
pd.crosstab(response_df['Education'],response_df['God']) will
create a contingency table. To help see the outliers, you can turn the table into a heatmap
by using .heatmap() from the seaborn module. The code shown in the following
snippet will create a heatmap from the contingency table:

cont_table = pd.crosstab(response_df['Education'],
response_df['God'])

sns.heatmap(cont_table,annot=True, center=0.5 ,cmap="Greys")

The following screenshot shows the heatmap that the preceding code will produce:

Figure 11.23 – Color-coded contingency table to detect outliers across response_df.God and
response_df.Education

From the preceding screenshot, we can see that there are cases of one data object that
have some combinations of values across response_df.God and response_
df.Education. To filter out these outliers, we can also use a Boolean mask, but as there
will be a lot of typing due to the values of the categorical attributes, we might be better off
using another Pandas DataFrame function. The .query() function, as its name suggests,
can also help us perform filtering of a DataFrame based on the values of the attributes.
Run the following lines of code one at a time to filter out each of the data objects we
spotted as outliers:

•	 response_df.query('Education== "currently a primary school
pupil" & God==2')

Outliers 299

•	 response_df.query('Education== "currently a primary school
pupil" & God==4')

•	 response_df.query('Education== "doctorate degree" &
God==1')

•	 response_df.query('Education== "doctorate degree" &
God==2')

•	 response_df.query('Education== "doctorate degree" &
God==3')

In this example, we covered categorical-categorical bivariate outlier detection. In the
example preceding this, we covered numerical-numerical bivariate outlier detection. Next,
we will feature numerical-categorical bivariate outlier detection.

Example of detecting outliers across two attributes – one categorical and
the other numerical
In this example, we want to detect outliers across two attributes, response_
df.Education and response_df.Age. Pay attention to the fact that
response_df.Education is categorical and response_df.Age is numerical.
When performing bivariate outlier detection across one numerical and one categorical
attribute, we use multiple boxplots. In essence, we will create one boxplot across the
numerical attribute for each of the categories of the categorical attribute. Running
sns.boxplot(x=response_df.Age,y=response_df.Education) will create
the following boxplot that can be used for outlier detection:

Figure 11.24 – Multiple boxplots to detect outliers across response_df.Age and response_df.Education

300 Data Cleaning Level III – Missing Values, Outliers, and Errors

This is the first time we are using sns.boxplot() in this book. We did learn how we
would be able to do this using Matplotlib in Chapter 5, Data Visualization. Try to recreate
the boxplot using Matplotlib before reading on. You will see that using the seaborn
function is significantly easier.

Looking at the multiple boxplots, we can see that we have some fliers for Education
categories: college/bachelor degree, secondary school, and primary
school. To filter out the outliers, we can use Boolean masks or the query() function.
The following code shows how we can create one Boolean mask to include all the fliers:

BM1 = (response_df.Education=='college/bachelor degree') &
(response_df.Age>26)

BM2 = (response_df.Education == 'secondary school') &
((response_df.Age>24) | (response_df.Age<16))

BM3 = (response_df.Education == 'primary school') & ((response_
df.Age>19) | (response_df.Age<16))

BM = BM1 | BM2 | BM3

response_df[BM]

So far, we have managed to learn how to perform univariate and bivariate outlier
detection. Next, we will cover multivariate outlier detection.

Multivariate outlier detection
Detecting outliers across more than two attributes is called multivariate outlier detection.
The best way to go about multivariate outlier detection is through clustering analysis. The
following example features a case of multivariate outlier detection.

Example of detecting outliers across four attributes using clustering
analysis
In this example, we would like to see whether we have outliers based on the following four
attributes: Country, Musical, Metal or Hardrock, and Folk. If you check the
complete description of these attributes on columns_df, you will realize these attributes
describe the liking level of data objects for each of four kinds of music. As mentioned, the
best way to perform multivariate outlier detection is through cluster analysis. In Chapter 8,
Clustering Analysis, we learn about the K-Means algorithm, and here, we will use it to see
whether we have outliers.

Outliers 301

If K-Means groups one data object or only a handful of data objects in one cluster, that
will be our clue that there are multivariate outliers in our data. If you remember, the
one big weakness of the K-Means algorithm is that the number of clusters, k, must be
specified. To ensure the K-Means algorithm's weakness will not stand in the way of
effective outlier detection and to give the analysis the best chance of success, we will use
different k values: 2, 3, 4, 5, 6, and 7. We need to do this in multiple steps, as follows:

1.	 First, we will create an Xs attribute, which includes the attributes we want to be
used for clustering analysis. The following code snippet shows how this is done:

dimensions = ['Country', 'Metal or Hardrock', 'Folk',
'Musical']

Xs = response_df[dimensions]

2.	 Second, we need to check whether there are any missing values. You may use
Xs.info() for the quick detection of missing values.

3.	 If there are missing values, we need to do a similar analysis to what we did in Figure
11.18 to check whether all the missing values are from one of the data objects. If that
is the case, the fact that one data object has more than two missing values could be a
reason for concern. However, if the missing values seem to be happening randomly
across Xs, we may impute them with Q3+1.5*IQR.

Why not impute them with a central tendency? The reason we don't is that we
would decrease the likelihood of a data object with a missing value being detected as
outliers if we imputed with a central tendency. We don't want to help a data object
that has the potential to be an outlier with our missing value imputation.

In this case, the missing values are spread across the data objects and the
dimensions of Xs. So, we can use the following line of code to impute the missing
values with Q3+IQR*1.5:

Q3 = Xs.quantile(0.75)

Q1 = Xs.quantile(0.25)

IQR = Q3 - Q1

Xs = Xs.fillna(Q3+IQR*1.5)

4.	 Next, of course, we will not forget to standardize the dataset using Xs = (Xs -
Xs.min())/(Xs.max()-Xs.min()).

302 Data Cleaning Level III – Missing Values, Outliers, and Errors

5.	 Lastly, we can use a loop to perform clustering analysis for different Ks and report
its results. The following line of code shows how this can be done:

from sklearn.cluster import KMeans

for k in range(2,8):

 kmeans = KMeans(n_clusters=k)

 kmeans.fit(Xs)

 print('k={}'.format(k))

 for i in range(k):

 BM = kmeans.labels_==i

 print('Cluster {}: {}'.format(i,Xs[BM].index.
 values))

 print('--------- Divider ----------')

Once the preceding code is successfully run, you can scroll through its prints to see that
under none of the Ks, has K-Means grouped one data object or a handful of data objects
in one cluster. This will allow us to conclude that there is no multivariate outlier in Xs.

Time series outlier detection
Outliers in time series data are best detected using line plots, the reason being that between
consecutive records of a time series there is a close relationship, and using the close
relationship is the best way to check the correctness of a record. All you need is to evaluate
the value of the record against its closest consecutive records, and that is easily done using
line plots. We will see an example of time series outlier detection in this chapter—please see
the example under Detecting systematic errors toward the end of this chapter.

Now that we have covered all the three possible outlier detections—univariate, bivariate,
and multivariate—we can turn our attention to dealing with outliers.

Dealing with outliers
When we have detected outliers in a dataset we want to analyze, we also need to effectively
deal with outliers. The following list highlights the four approaches we can use to deal
with outliers:

•	 Do nothing

•	 Replace with the upper cap or lower cap

•	 Perform a log transformation

•	 Remove data objects with outliers

Outliers 303

Next, we will talk more about each of the preceding approaches.

First approach – Do nothing
Although it may not feel like this, especially after going through so many hoops to detect
outliers, do nothing is the best strategy in most analytic situations. The reason for this is
that most analytic tools we use can easily handle outliers. In fact, if you know the analytic
tools you want to use can handle outliers, you might not perform outlier detection in the
first place. However, outlier detection itself may be the analytic you need, or the analytic
tool you need to use is prone to outliers.

The table shown in the following screenshot lists all the analytic tools/goals we have
covered in this book and specifies the best approach for dealing with outliers:

Figure 11.25 – Summary table of analytic goals and tools and the best way to deal with
outliers if they exist

304 Data Cleaning Level III – Missing Values, Outliers, and Errors

As you can see in Figure 11.25, in most analytic situations, it will be better to adopt the
first approach: do nothing. Now, let's continue and learn about the next approaches.

Second approach – Replace with the upper cap or the lower cap
Applying this approach may be wise when the following criteria are met:

•	 The outlier is univariate.

•	 The analytic goals and/or tools are sensitive to outliers.

•	 We do not want to lose information by removing data objects.

•	 An abrupt change of value will not lead to a significant change in the
analytic conclusions.

If the criteria are met, in this approach the outliers are replaced with the correct upper or
lower cap. The upper and lower caps are statistical concepts we discussed earlier in this
chapter in the Univariate outlier detection section. They are also an essential part of any
boxplot. We replace the univariate outliers that are too much smaller than the rest of the
data object with the lower cap of the Q1-1.5*IQR attribute, and replace the univariate
outliers that are too much larger than the rest of the data objects with the upper cap of the
Q3+1.5*IQR attribute.

Third approach – Perform a log transformation
This approach is not just a method to deal with outliers but is also an effective data
transformation technique that we will cover in the relevant chapter. As a method to deal
with outlier detection, it is only applicable in certain situations. When an attribute follows
an exponential distribution, it is only typical for some of the data objects to be very
different from the rest of the population. In those situations, applying a log transformation
will be the best approach.

Fourth approach – Remove data objects with outliers
When the other methods are not helpful or possible, we may be reduced to removing the
data objects with the outliers. This is our least favorite approach and should only be used
when absolutely necessary. The reason that we would like to avoid this approach is that the
data is not incorrect; the values of the outliers are correct but happen to be too different
from the rest of the population. It is our analytic tool that is incapable of dealing with the
actual population.

Outliers 305

Pay Attention!
As to when and whether you should adopt the approach of removing data
objects due to being outliers, I would like to share with you an important word
of advice. First, only apply this approach to the preprocessed version of the
dataset that you've created for the specific analysis and not to the source data.
The fact that this analysis needed the data objects with outliers to be removed
does not mean all the analysis will need that. Second, make it a priority to
inform the audience of the resulting analytic as they will be aware of this
invasive approach in dealing with outliers.

Now that we know all four approaches in dealing with outliers, let's spend some time
going over a summary of how best we should go about selecting the best one.

Choosing the right approach in dealing with outliers
The selection of the right approach in dealing with outliers must be informed from
analytic goals and analytic tools. As shown in Figure 11.25, in most situations, the best way
to deal with outliers is using a do nothing approach. When and if the other approaches are
necessary, make sure to only apply them to the preprocessed version of the data you are
creating for your analytics and refrain from changing the source dataset.

We now know everything we need to know about dealing with outliers, so let's see a
couple of examples to put what we learned into practice.

Example 1
We earlier saw that the response_df.Weight attribute has some outliers. We would
like to use a histogram to draw the distribution of the population across this attribute.

As our analytic end goal is to visualize the population distribution, the existence of
outliers might consume some visualization space, and therefore removing them can open
the visualization space.

The following code snippet and its output show how to create both histogram versions for
response_df.Weight, one with outliers and the other without them:

response_df.Weight.plot.hist(histtype='step')

plt.show()

BM = response_df.Weight<105

response_df.Weight[BM].plot.hist(histtype='step')

plt.show()

306 Data Cleaning Level III – Missing Values, Outliers, and Errors

The preceding code will produce the following output:

Figure 11.26 – Histogram of response_df.Weight featuring two different approaches in
dealing with outliers

In the previous screenshot, from an analytic perspective, you may imagine situations
where either visual would be more appropriate. For instance, if we are interested in
seeing the frequency changes where most of the population is between 40 and 100, then a
histogram without outliers would be better. On the other hand, if a true representation of
the population is our end goal, then a histogram with outliers would be ideal.

In the previous screenshot, from a data preprocessing perspective, pay attention to the fact
that to create a histogram without outliers, we did not edit response_df but created a
DataFrame on the fly just for the purpose of creating a histogram without outliers.

Now, let's consider another example.

Outliers 307

Example 2
We would like to visualize the relationship between two attributes, response_df.Height
and response_df. Weight. As the two attributes are both numerical, we do know the
best way to visualize this relationship is a scatterplot. We also would like to include a linear
regression (LR) line in the visualization so as to augment its analytic values.

We have been told that LR is prone to outliers. Let's use this opportunity to learn why. We
will first adopt a do nothing approach and create a visualization to see what would happen
if there were outliers in the data for regression analysis.

The following screenshot shows the application of the .regplot() function from the
seaborn module to create a scatterplot visualization:

Figure 11.27 – Scatterplot to visualize the relationship between response_df.Height and
response_df.Weight without dealing with outliers

You can see in the preceding screenshot that the outliers we detected in Figure 11.22 are
consuming the visualization space and do not allow the relationship to show itself fully.

308 Data Cleaning Level III – Missing Values, Outliers, and Errors

However, the following screenshot shows the code that removes the outliers at the last step
of the visualization:

Figure 11.28 – Scatterplot to visualize the relationship between response_df.Height and
response_df.Weight after dealing with outliers

Comparing the last two screenshots, we can see how removing the two outliers allows the
visualization to show the relationship between the two variables much better. You can see
in the preceding screenshot how higher Height values can lead to higher Weight values.

Example 3
In this example, we would like to use regression to capture the linear relationship between
Weight, Height, and Gender to predict Weight, which we saw in the previous example.
In other words, we would like to find the β0 and β1 values in the following equation:

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 + 𝛽𝛽2 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

As we saw in Figure 11.25, regression analysis is sensitive to outliers. We also observed in
Figure 11.28 that both Weight and Height have outliers. We also need to check whether
Gender has any outliers.

Outliers 309

This is going to be a long example, so please bear with me throughout. In this example, we
will go over the following steps, one by one:

1.	 Dealing with missing values
2.	 Detecting univariate outliers and dealing with them
3.	 Detecting bivariate outliers and dealing with them
4.	 Detecting multivariate outliers and dealing with them
5.	 Applying LR

Let's start with the first step.

Dealing with missing values
However, before doing that, we will first need to deal with the missing values in these
three attributes, as LinearRegression from sklearn.linear_model gives an
error when the input data has missing values. The following code snippet shows how we
would start preprocessing the data for this example:

select_attributes = ['Weight','Height','Gender']

pre_process_df = pd.DataFrame(response_df[select_attributes])

pre_process_df.info()

After running the previous code, you will be able to see that Weight and Height have
20 missing values, and Gender has 6 missing values. Assume that we know that the
missing values are of the MCAR type.

To deal with missing values for regression analysis, we cannot use a keep as is strategy, as
the tool we plan to use cannot handle outliers. Imputing values will not be a good option
either as this will create bias in the data. Therefore, the only doable option that remains
is dropping the data objects. The following line of code uses the .dropna() function to
remove the data objects with missing values:

pre_process_df.dropna(inplace=True)

After running this code, rerun pre_process_df.info() to confirm that
pre_process_df does not have missing values anymore.

Now that we are certain there are no missing values in pre_process_df, we can turn
our attention to detecting and dealing with outliers, as LR is prone to outliers. We need to
detect whether the data has univariate, bivariate, or multivariate outliers. In the following
subsections, we will do this one step at a time.

310 Data Cleaning Level III – Missing Values, Outliers, and Errors

Detecting univariate outliers and dealing with them
The following screenshot shows the code that has created boxplots for the numerical
attributes and a bar chart for the categorical attribute in this example:

Figure 11.29 – Drawing boxplots of the numerical attributes and a bar chart of the categorical attribute
in the example

In the preceding screenshot, we can see that both Height and Weight have outliers,
but Gender does not. So, before moving on to the LR analysis, we need to deal with the
outliers. As suggested by Figure 11.25, we can use one of the following two approaches in
dealing with outliers:

•	 Remove these data objects

•	 Replace them with their statistical upper cap or lower cap

Outliers 311

But which approach is better? When the data objects are univariate outliers, it is better to
use the second approach, as replacing the statistical upper or the lower cap will help to
keep the data objects and at the same time mitigate the negative effect of the data object
with the outliers.

On the other hand—and this also applies generally—when the data objects are bivariate or
multivariate outliers, it would be better to remove them. This is because these outliers will
not allow the regression model to capture the patterns among the non-outlier data objects.
In the special case of bivariate outliers whereby the pair of attributes is categorical-
numerical, it might also be sensible to replace the outlier values with the upper or lower
caps of the specific population.

So, let's first deal with the univariate outliers by replacing them with the statistical lower
and upper caps. The following code replaces the fliers of pre_process_df.Weight
with the statistical upper cap of the attribute:

Q3 = pre_process_df.Weight.quantile(0.75)

Q1 = pre_process_df.Weight.quantile(0.25)

IQR = Q3 - Q1

upper_cap = Q3+IQR*1.5

BM = pre_process_df.Weight > upper_cap

pre_process_df.loc[pre_process_df[BM].index,'Weight'] = upper_
cap

After running the previous code, run pre_process_df.Weight.plot.box() to see
that the outliers are taken care of. Also, pay attention to two matters before moving on to
replace the flier in pre_process_df.Height, as follows:

•	 First, by looking at Figure 11.29, you will realize that pre_process_df.Weight
only has fliers that are larger than the statistical upper cap of the attribute. That
is why in the previous code, we don't have any replacement with the statistical
lower cap of the attribute. This will change when we do the same procedure for
pre_process_df.Height.

•	 Second, we could have the boxplot itself extract the statistical upper caps and lower
caps of the attribute, but instead, we use the formulas Q1-1.5*IQR and Q3+1.5*IQR,
respectively, to calculate the statistical lower and upper caps. This is because
we don't want to waste computational resources by having the computer draw
unnecessarily when we have the formula to calculate it ourselves.

312 Data Cleaning Level III – Missing Values, Outliers, and Errors

Next, we will do the same procedure for pre_process_df.Height to deal with the
univariate outliers. The following code shows how this is done:

Q3 = pre_process_df.Height.quantile(0.75)

Q1 = pre_process_df.Height.quantile(0.25)

IQR = Q3 - Q1

lower_cap = Q1-IQR*1.5

upper_cap = Q3+IQR*1.5

BM = pre_process_df.Height < lower_cap

pre_process_df.loc[pre_process_df[BM].index,'Height'] = lower_
cap

BM = pre_process_df.Height > upper_cap

pre_process_df.loc[pre_process_df[BM].index,'Height'] = upper_
cap

After running the previous code successfully, run pre_process_df.Weight.plot.
box() to check the state of the outliers.

Now that the univariate outliers are taken care of, let's see whether we have bi- or
multivariate outliers.

Detecting bivariate outliers and dealing with them
Running pre_process_df.plot.scatter(x='Height', y='Weight') will
show that we don't have bivariate outliers based on the Height and Weight numerical
attributes. However, running the following code will tell us that we do have bivariate
outliers under Height and Gender, and under Weight and Gender:

plt.subplot(1,2,1)

sns.boxplot(y=pre_process_df.Height, x=pre_process_df.Gender)

plt.subplot(1,2,2)

sns.boxplot(y=pre_process_df.Weight, x=pre_process_df.Gender)

plt.tight_layout()

Outliers 313

Running the preceding code successfully will create the following output:

Figure 11.30 – Multiple boxplots to investigate bivariate outliers under numerical-categorical attributes
for Height-Gender and Weight-Gender

Given the recognized bivariate outliers in the preceding screenshot, we will need to deal
with them. As these outliers are bivariate in a pair of categorical-numerical attributes, we
may be replacing them with the specific population's upper or lower caps.

The following code replaces the outliers for the attribute pairs of Height-Gender:

for poss in pre_process_df.Gender.unique():

 BM = pre_process_df.Gender == poss

 wdf = pre_process_df[BM]

 Q3 = wdf.Height.quantile(0.75)

 Q1 = wdf.Height.quantile(0.25)

 IQR = Q3 - Q1

 lower_cap = Q1-IQR*1.5

 upper_cap = Q3+IQR*1.5

 BM = wdf.Height > upper_cap

314 Data Cleaning Level III – Missing Values, Outliers, and Errors

 pre_process_df.loc[wdf[BM].index,'Height'] = upper_cap

 BM = wdf.Height < lower_cap

 pre_process_df.loc[wdf[BM].index,'Height'] = lower_cap

Very similar code will replace the outliers for the attribute pairs of Weight-Gender, as
illustrated here:

for poss in pre_process_df.Gender.unique():

 BM = pre_process_df.Gender == poss

 wdf = pre_process_df[BM]

 Q3 = wdf.Weight.quantile(0.75)

 Q1 = wdf.Weight.quantile(0.25)

 IQR = Q3 - Q1

 lower_cap = Q1-IQR*1.5

 upper_cap = Q3+IQR*1.5

 BM = wdf.Weight > upper_cap

 pre_process_df.loc[wdf[BM].index,'Weight'] = upper_cap

 BM = wdf.Weight < lower_cap

 pre_process_df.loc[wdf[BM].index,'Weight'] = lower_cap

After running the preceding codes successfully, running the code shown in the following
screenshot, which is the same code as under Detecting bivariate outliers and dealing with
them, will show us that the bivariate outliers are taken care of:

Outliers 315

Figure 11.31 – Checking the state of bivariate outliers under numerical-categorical attributes for
Height-Gender and Weight-Gender

Next, we will need to see whether there are any multivariate outliers, and if there are, we
will see how we can deal with them.

Detecting multivariate outliers and dealing with them
To detect multivariate outliers, the standard method is to use clustering analysis; however,
when two of the three attributes are numerical and the other is categorical, we can do
outlier detection using a specific visualization technique.

The following code creates a scatterplot of Height and Weight for each possibility of the
Gender categorical attribute:

Cat_attribute_poss = pre_process_df.Gender.unique()

for i,poss in enumerate(cat_attribute_poss):

 BM = pre_process_df.Gender == poss

 pre_process_df[BM].plot.scatter(x='Height',y='Weight')

 plt.title(poss)

 plt.show()

316 Data Cleaning Level III – Missing Values, Outliers, and Errors

Running the preceding code will create the following visualization:

Figure 11.32 – Scatterplots of the numerical attributes per the possibilities of the Gender attribute

Based on the preceding screenshot, we can conclude that there are no multivariate outliers
in the data. If there were any, the only choice we would have would be to remove them, as
outliers can negatively impact LR performance. Also, as mentioned before, replacing the
outliers with upper and lower caps is not an option for multivariate outliers.

After dealing with the outliers and the missing values, we are finally ready to use LR to
estimate the relationship between Height, Gender, and Weight to predict Weight.

Outliers 317

Applying LR
Before applying LR to pre_process_df, we need to take another preprocessing step.
Pay attention to the fact that the Gender attribute is categorical and not numerical, and
LR can only work with numbers. So, the following code performs the data transformation
so that the attribute is binary coded:

pre_process_df.Gender.
replace({'male':0,'female':1},inplace=True)

The following code prepares the independent and dependent attributes, respectively,
in data_X and data_Y, and then uses LinearRegression() from sklearn.
linear_model to fit the preprocessed data into the model:

from sklearn.linear_model import LinearRegression

X = ['Height','Gender']

y = 'Weight'

data_X = pre_process_df[X]

data_y = pre_process_df[y]

lm = LinearRegression()

lm.fit(data_X, data_y)

If the preceding code runs successfully, then we can run the code in the following
screenshot to access the estimated β values from the fitted lm value:

Figure 11.33 – Extracted β values from the train lm value

Therefore, the following equation can be driven from the output in the preceding
screenshot. The equation can now predict the individual Weight value based on their
Height and Gender values:

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 = −51.1038 + 0.7040 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 − 8.6020 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

318 Data Cleaning Level III – Missing Values, Outliers, and Errors

For instance, my height is 189 centimeters (cm) and my gender is male (0). Using the
following equation, my weight can be predicted to be 82.895:

𝑀𝑀𝑀𝑀 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 = −51.1038 + 0.7040 × 189.5 − 8.6020 × 0 = 82.3042

That's pretty good, but my current weight is 86 kilograms (kg), so there is an error of
around 4 kg.

Example 4
In this example, we would like to repeat the previous example, but this time, we would like
to use a multilayer perceptron (MLP) to predict weight based on gender and height.

The data preprocessing difference between this example and the previous one is that MLP
is resilient toward outliers, and we don't need to worry about the dataset having outliers.
However, we do need to take care of missing values and also binary code for the Gender
attribute. The following code recreates pre_process_df, deals with missing values, and
performs the binary coding transformation of the Gender attribute:

select_attributes = ['Weight','Height','Gender']

pre_process_df = pd.DataFrame(response_df[select_attributes])

pre_process_df.dropna(inplace=True)

pre_process_df.Gender.replace(
{'male':0,'female':1},inplace=True)

After running the preceding code, pre_process_df is ready to be used for MLP.
The following code prepares the independent and dependent attributes, respectively, in
data_X and data_Y, and then uses MLPRegressor() from sklearn.linear_
model to fit the preprocessed data into the model:

from sklearn.neural_network import MLPRegressor

X = ['Height','Gender']

y = 'Weight'

data_X = pre_process_df[X]

data_y = pre_process_df[y]

mlp = MLPRegressor(hidden_layer_sizes=5, max_iter=2000)

mlp.fit(data_X, data_y)

Outliers 319

Once the preceding code is run successfully, we can use the trained mlp attribute to
perform predictions. The following code snippet shows how to extract the prediction of
my Weight value based on my Height and Gender values using mlp:

newData = pd.DataFrame({'Height':189.5,'Gender':0}, index=[0])

mlp.predict(newData)

The prediction I received the last time I ran the preceding code was 80.0890. You will
remember that MLP is a random variable and that every time it is run, we expect a
new result. Anyhow, as my weight is 86, mlp is about 6 kg out. Does this mean that lm
(previous example) is a predictor compared to mlp? Not necessarily—after all, I am only
one data point. More test data is needed to make that determination.

Let's look at another example that features dealing with outliers for the purpose of
applying clustering analysis, before moving on to the next item.

Example 5
In this example, we would like to use chicago_population.csv. The data objects
in this dataset are communities in Chicago. These data objects are described by the
following attributes:

•	 population: The population of the community

•	 income: The median income of the community

•	 latino: The percentage of Latinos in the population

•	 black: The percentage of blacks in the population

•	 white: The percentage of whites in the population

•	 asian: The percentage of Asians in the population

•	 other: The percentage of other races in the population

The mayor of Chicago would like to assign 5 communication liaisons for these 77
communities. The data analyst in the office suggests employing K-Means clustering to
group the communities into five groups and assigning the appropriate liaisons based on
the characteristics of clustered groups.

320 Data Cleaning Level III – Missing Values, Outliers, and Errors

First, we will read the file into the community_df pandas DataFrame and check whether
there are missing values in the dataset. The following code shows how this is done:

community_df = pd.read_csv('chicago_population.csv')

community_df.info()

Reading the output of the previous code will show us that there are no missing values in
community_df. Next, we will need to detect outliers and deal with them.

Detecting univariate outliers and dealing with them
The following code uses sns.boxplot() to create boxplots of all the numerical attributes:

numerical_atts = ['population', 'income', 'latino', 'black',
'white', 'asian','other']

plt.figure(figsize=(12,3))

for i,att in enumerate(numerical_atts):

 plt.subplot(1,len(numerical_atts),i+1)

 sns.boxplot(y=community_df[att])

plt.tight_layout()

plt.show()

Running the preceding code will create the following output:

Figure 11.34 – Boxplots of all the numerical attributes in community_df

In the preceding screenshot, we can see we have some univariate outliers in the
population, asian, and other attributes.

As we are using K-Means to cluster the communities into five homogenous groups to
assign communication liaisons, the best way to deal with the outliers is to replace them
with statistical lower or upper caps. We don't want the extreme values of the outliers to
impact the results of the clusters.

Outliers 321

Please pay attention to the fact this is not the only or the best way to deal with outliers
before applying cluster analysis. If we use clustering analysis to find out the inherent
pattern in the data, then the best way to deal with the outliers is to do nothing.

The following code uses similar code to what we used under Example 3 to filter the
outliers and then replace them with the appropriate cap. Notice that this code is a bit
smarter than what we saw in Example 3, as the process of dealing with the outliers is
parameterized in one loop:

pre_process_df = community_df.set_index('name')

candidate_atts = ['population','asian','other']

for att in candidate_atts:

 Q3 = pre_process_df[att].quantile(0.75)

 Q1 = pre_process_df[att].quantile(0.25)

 IQR = Q3 - Q1

 lower_cap = Q1-IQR*1.5

 upper_cap = Q3+IQR*1.5

 BM = pre_process_df[att] < lower_cap

 candidate_index = pre_process_df[BM].index

 pre_process_df.loc[candidate_index,att] = lower_cap

 BM = pre_process_df[att] > upper_cap

 candidate_index = pre_process_df[BM].index

 pre_process_df.loc[candidate_index,att] = upper_cap

After running the preceding code, the univariate outliers will have been replaced with the
appropriate statistical cap.

Detecting bivariate and multivariate outliers and dealing with them
It adds no value to detect bivariate and multivariate outliers as the only strategy we can use
for them at this stage is to do nothing—we cannot replace them with the upper or lower
caps as there is more than one numerical attribute; neither can we remove the data objects
as we need all the data objects to be in at least one of the clusters. Therefore, the current
state of pre_process_df is the best possible it can be for the clustering analysis.

As the data preprocessing is complete, the only remaining step in this example is to
perform clustering. That is what we will do next.

322 Data Cleaning Level III – Missing Values, Outliers, and Errors

Applying K-Means
The following code snippet shows the adjusted version of the code for K-Means clustering
from Chapter 8, Clustering Analysis:

From sklearn.cluster import Kmeans

dimensions = ['population', 'income', 'latino', 'black',
'white', 'asian','other']

Xs = pre_process_df[dimensions]

Xs = (Xs – Xs.min())/(Xs.max()-Xs.min())

kmeans = Kmeans(n_clusters=5)

kmeans.fit(Xs)

Once the preceding code is run successfully, clusters are formed. The following screenshot
shows the code we can use to extract the clusters and the code's output:

Figure 11.35 – Extracting the clusters of data objects in community_df

Errors 323

We can also perform centroid analysis for the clusters that were just formed. The code for
centroid analysis was presented in Chapter 8, Clustering Analysis, in the Using K-Means
to cluster a dataset with more than two dimensions section. Find the code and adjust it to
confirm the following heatmap as a result of centroid analysis. Note that as K-Means is a
random algorithm, we do expect the heatmap to be different. At the same time, we expect
the patterns that emerge from the data to be similar:

Figure 11.36 – Centroid analysis of the formed clusters

We can see in the preceding screenshot that the communities in each cluster are
distinctively different, and this result will be tremendously helpful in assigning
communication liaisons.

So far in this chapter, we have covered and seen examples of how to detect and deal with
missing values and outliers. Next, we will turn our attention to detecting errors and
dealing with them in the dataset.

Errors
Errors are an inevitable part of any data collection and measurement. The following
formula best captures this fact:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

324 Data Cleaning Level III – Missing Values, Outliers, and Errors

The True Signal is the reality we are trying to measure and present in the form of Data,
but due to the incapability of our measurement system or data presentation, we cannot
capture the True Signal. Therefore, Error is the difference between the True Signal and the
recorded Data.

For instance, let's say we have purchased seven thermometers and we would like to
accurately calculate the room temperature using these seven thermometers. At a given
point in time, we take the following readings from them:

Figure 11.37 – Seven thermometers' readings

Looking at the preceding screenshot, what would you say the temperature of the room—
the True Signal—is? The answer is that we cannot measure or capture the True Signal—in
this case, the exact temperature of the room. With seven thermometers, we may have been
able to come to a more accurate reading, but we cannot eliminate error.

Types of errors
There are two types of errors: random errors and systematic errors. The biggest
distinction between these two types of errors is that random errors are not avoidable, but
systematic errors are.

Random errors happen due to unavoidable inconsistencies and the limitations of our
measurement equipment. What we saw in the seven thermometers example was a case of
random errors. Another example is random errors that happen when measuring people's
opinions using surveys due to unavoidable miscommunications and misunderstandings.

On the other hand, systematic errors are avoidable inconsistencies that happen because
of a problem that persists throughout the entire data collection. Systematic errors happen
on top of random errors, meaning random errors are always present. For example, if an
uncalibrated thermometer is used for measuring a room temperature, we have random
errors due to the incapability of the device in capturing the true signal, and we also have a
systematic error due to failing to calibrate the thermometer before the act of measuring.

Errors 325

Dealing with errors
We will deal with errors differently based on their types. Random errors are unavoidable
and, at best, we may be able to mitigate them using smoothing or aggregation. These
are techniques that we will cover in one of the future chapters: Data Massaging and
Transformation.

However, systematic errors are avoidable, and once recognized, we should always take the
following steps in dealing with them:

1.	 Adjust and improve the data collection so that systematic errors will not happen in
the future.

2.	 Try to use other data resources if available to find the correct value, and if there are
none, we will regard the systematic error as a missing value.

From the second step onward, you would deal with systematic errors as missing values.
That is great, as we have already covered values and have got many powerful tools and
techniques in dealing with missing values.

Detecting systematic errors
Detecting systematic errors is not very easy, and it is likely that they go unnoticed
and negatively influence our analysis. The best chance we have in detecting systematic
errors is the techniques we learned in the Detecting outliers section. When outliers are
detected and there is no explanation why the value of the outliers are correct, then we can
conclude that outliers are systematic errors. The following example will help to shed light
on this distinction.

Example of systematic errors and correct outliers
In this example, we would like to analyze CustomerEntries.xlsx. The dataset
contains about 2 months of customer-visiting data from a local coffee shop between
October 1, 2020, and November 24, 2020. The goal of the analysis is to profile the hours of
the day to see at which times and days peak customer visits happen.

326 Data Cleaning Level III – Missing Values, Outliers, and Errors

The following screenshot shows the code to read the file into the hour_df pandas
DataFrame and the use of the .info() function to evaluate the state of the dataset in
terms of the missing values:

Figure 11.38 – Reading CustomerEntries.xlsx into hour_df and using .info() function to check outliers

We can see in the preceding screenshot that the dataset does not have missing values. Next,
we will turn our attention to checking for outliers. As the dataset is essentially a time series,
it is best to use a line plot to see whether there are any outliers. The following screenshot
shows the output of running hour_df.N_Customers.plot() to create a line plot:

Figure 11.39 – Drawing a line plot of hour_df.N_Customers to check for outliers

Errors 327

In the preceding screenshot, we can see we have a clear case of an outlier between the 200
and 300 indexes. Running hour_df[hour_df.N_Customers>20] will reveal that the
outlier happens in index 232, which is timestamped 2020-10-26 at 16.

To check whether this outlier is a case of a systematic error or not, we investigate using
our other sources and we realize that nothing out of the ordinary had happened during
that day, and this record could simply be a manual data entry error. This shows us that this
is a systematic error, and therefore we need to take the following two steps in dealing with
systematic errors:

1.	 Step 1: We inform the entity who is in charge of data collection about this mistake
and ask them to take appropriate measures to prevent such a mistake from
happening in the future.

2.	 Step 2: If we do not have ways to find the correct value using other resources within
a reasonable time and effort, we regard the data entry as a missing value and replace
it with np.nan. The following code can take care of that:

err_index = hour_df[hour_df.N_Cusotmers>20].index

hour_df.at[err_index,'N_Customers']=np.nan

After successfully running the previous code, you should rerun hour_df.N_
Customers.plot() to check the status of day_df regarding outliers. The
following screenshot shows the new line plot:

Figure 11.40 – Drawing a line plot of hour_df.N_Customers to check for outliers after dealing
with the systematic error

328 Data Cleaning Level III – Missing Values, Outliers, and Errors

You can see in the preceding screenshot that we do not see a univariate outlier anymore.

Although the time series looks like a univariate dataset, it is not univariate and we can
always perform level II data cleaning to unpack new columns such as month, day,
weekday, hour, and minute. In this dataset, time and data have already been separated,
so we can perform the following bivariate outlier detection.

As you remember, the best way to perform bivariate outlier detection for a pair of
numerical-categorical attributes is to use multiple boxplots. The following screenshot
shows the output of sns.boxplot(y=hour_df.N_Customers, x=hour_
df.Time), which are multiple boxplots we need to see whether there are bivariate
outliers for the N_Customers and Time attributes:

Figure 11.41 – Drawing multiple boxplots for the N_Customers and Time attributes to check for
bivariate outliers

Looking at the preceding screenshot, we do see that we have two other outliers that could
be systematic errors. The first one is the smallest value of N_Customers, which is zero,
under the Time value of 17. The value is consistent with the rest of the data. The Time
value of 17 (or 5 P.M.) seems to be getting the least number of customers, and we can
imagine occasionally having no customers at that hour.

Summary 329

However, the second flier at the same hour (5 P.M.) seems more troubling. After running
hour_df.query("Time==17 and N_Customers>12"), which filters the flier, we
can see the outlier has happened on November 17, 2020. After investigation, it turns out
that on November 17, 2020 at 4:25, a biking club made a half hour stop for refreshment,
which was out of the ordinary for the store. Therefore the data entry was not erroneous
and just a correct outlier.

After preprocessing hour_df, it now has a missing value (the systematic error that was
replaced with np.nan) and two bivariate outliers. Knowing this, we allow ourselves to
enter that last step: the analysis.

Drawing a bar chart that shows and compares the central tendency of N_Customers per
working hour of the coffee shop (Time) will be the visualization we need for this analysis.
The prescribed bar chart can easily deal with missing values as per the aggregation of the
data to calculate the central tendencies. As we have outliers in the dataset, we chose to use
median over mean as the central tendency for this analysis. Running the following line of
code will create the described bar chart:

hour_df.groupby('Time').N_Customers.median().plot.bar()

As you experienced during this example, the techniques that we use for detecting and
dealing with systematic errors are already covered under the subsection on missing values
and outliers. In a nutshell, when we don't find any support to believe an outlier is a correct
value, we regard this as a systematic error and consequently a missing value.

Summary
Congratulations on your learning in this chapter. This chapter covered data cleaning
level III. Together, we learned how to detect and deal with missing values, outliers, and
errors. This may sound like too short of a summary for such a long chapter, but as we saw,
detection, diagnosis, and dealing with each of the three issues (missing values, outliers,
and errors) can have many details and delicacies. Finishing this chapter was a significant
achievement, and now you know how to detect, diagnose, and deal with all of these three
possible issues you may encounter when working with a dataset.

This chapter concludes our three-chapter-long data cleaning journey. In the next chapter,
we move to another important data preprocessing area, and that is data fusion and
integration. Before moving on to the next chapter, spend some time working on the
following exercises to solidify your learnings.

330 Data Cleaning Level III – Missing Values, Outliers, and Errors

Exercises
1.	 In this exercise, we will be using Temperature_data.csv. This dataset has some

missing values. Do the following:

a) After reading the file into a pandas DataFrame, check whether the dataset is level
I clean, and if not, clean it. Also, describe the cleanings (if any).

b) Check whether the dataset is level II clean, and if not, clean it. Also, describe the
cleanings (if any).

c) The dataset has missing values. See how many, and run a diagnosis to see which
types of missing values they are.

d) Are there any outliers in the dataset?

e) How should we best deal with missing values if our goal is to draw multiple
boxplots that show the central tendency and variation of temperature across the
months? Draw the described visualization after dealing with the missing values.

2.	 In this exercise, we are going to use the Iris_wMV.csv file. The Iris dataset
includes 50 samples of 3 types of iris flowers, totaling 150 rows of data. Each flower
is described by its sepal and petal length or width. The PetalLengthCm column
has some missing values.

a) Confirm that PetalLengthCm has five missing values.

b) Figure out the types of missing values (MCAR, MAR, MNAR).

c) How would you best deal with missing values if your end goal was to draw the
following visualization? Comment on all four different approaches of dealing
with missing values in this chapter, citing why the approach would or wouldn't
be appropriate:

Figure 11.42 – Exercise 2

Exercises 331

d) Draw the preceding screenshot twice, once after adopting a keep as is approach,
and once after adopting an imputing with the central tendency of the appropriate iris
species approach. Compare the two outputs and comment on their differences.

3.	 In this exercise, we will be using imdb_top_1000.csv. More information
about this dataset may be found at this link: https://www.kaggle.com/
harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-
shows. Perform the following steps for this dataset:

a) Read the file into movie_df, and list the level I data cleaning steps that the
dataset needs. Implement the listed items, if any.

b) We want to employ a Decision Tree Classification algorithm using the following
columns to predict IMDB_rating values: Certificate, Runtime, Genre, and
Gross. For this analytic goal, list the level II data cleanings that need to be done,
and then implement them.

c) Does the dataset have issues regarding missing values? If yes, which types are
they, and how best should we deal with them given the listed data analytic goals in
b)?

d) Use the following function from sklearn.tree to create RegressTree,
which will be a prediction model that can predict IMDB_rating
values using Certificate, Runtime, Genre, and Gross attributes:
DecisionTreeRegressor(max_depth=5, min_impurity_decrease=0,
min_samples_split=20, splitter='random'). The tuning parameters
have been set for you so that the DecisionTreeRegressor algorithm can
perform better. Once the model is trained, draw the trained tree and check whether
the Gross attribute is used for the prediction of IMDB_rating values.

e) Run the following code and then explain what summary_df is:
dt_predicted_IMDB_rating = RegressTree.predict(Xs)

mean_predicted_IMDB_rating = np.ones(len(y))*y.mean()

summary_df = pd.DataFrame({'Prediction by Decision Tree':
dt_predicted_IMDB_rating, 'Prediction by mean': mean_
predicted_IMDB_rating, 'Actual IMDB_rating': y})

https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows

332 Data Cleaning Level III – Missing Values, Outliers, and Errors

f) Run the following code and explain the visualization it creates. What can you
learn from the visualization?

summary_df['Decision Tree Error'] = abs(summary_
df['Prediction by Decision Tree']- summary_df['Actual
IMDB_rating'])

summary_df['Mean Error'] = abs(summary_df['Prediction by
mean'] - summary_df['Actual IMDB_rating'])

plt.figure(figsize=(2,10))

table = summary_df[['Decision Tree Error','Mean Error']]

sns.heatmap(table, cmap='Greys')

4.	 In this exercise, we will be using two CSV files: responses.csv and columns.
csv. The two files are used to record the data of a survey conducted in Slovakia.
To access the data on Kaggle, use this link: https://www.kaggle.com/
miroslavsabo/young-people-survey. Perform the following exercises for
this data source:

a) Are there respondents in this survey that are suspected to be outliers based on
their age? How many? List them in a separate DataFrame.

b) Are there respondents in this survey that are suspected to be outliers based on
their level of liking for country and hard rock music? How many? List them in a
separate DataFrame.

c) Are there respondents in this survey that are suspected to be outliers based
on their body mass index (BMI) or education level? How many? List them in a
separate DataFrame. BMI can be calculated using the following formula:

The weight has to be in kg and height in meters (m) for the preceding formula.
In the dataset, weight is recorded in kg but height is recorded in cm and has to be
transformed to m.

d) Are there respondents in this survey that are suspected to be outliers based on
their BMI and age? How many? List them in a separate DataFrame.

e) Are there respondents in this survey that are suspected to be outliers based on
their BMI and gender? How many? List them in a separate DataFrame.

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡2

https://www.kaggle.com/miroslavsabo/young-people-survey
https://www.kaggle.com/miroslavsabo/young-people-survey

Exercises 333

5.	 One of the most common approaches for fraud detection is using outlier detection.
In this exercise, you will use creditcard.csv from https://www.kaggle.
com/mlg-ulb/creditcardfraud to evaluate the effectiveness of outlier
detection for credit card fraud detection. Note that most of the columns in this data
source are processed values to uphold data anonymity. Perform the following steps:

a) Check the state of the dataset for missing values and address them, if any.

b) Using the Class column, which shows whether a transaction has been fraudulent
or not, find out what percentage of the transactions in the dataset are fraudulent.

c) Using data visualization or the appropriate statistical set (and, if necessary, both),
specify which univariate outliers have a relationship with the Class column—
in other words, if the values of this column are outliers, then we may suspect
fraudulent activity. Which statistical test is appropriate here?

d) First, use the K-Means algorithm to group the transactions into 200 clusters by
the attributes that were found to have a relationship with the Class column in part
c). Then, filter out the members of the clusters with fewer than 50 transactions. Do
any of them contain significantly fraudulent transactions?

e) If there are any clusters with significant fraudulent transactions, perform centroid
analysis for them.

6.	 In Chapter 5, Data Visualization, and Chapter 8, Clustering Analysis, we used
WH Report_preprocessed.csv, which is the preprocessed version of WH
Report.csv. Now that you have learned numerous data preprocessing skills, you
will be preprocessing the dataset yourself. Proceed as follows:

a) Check the status of the dataset for missing values.

b) Check the status of the dataset for outliers.

c) We would like to cluster the countries based on their happiness indices over the
years. Based on these analytic goals, address the missing values.

d) Based on the listed goal in part c), address the outliers.

e) Does the data need any level I or level II data cleaning before clustering is
possible? If any, prepare the dataset for K-Means clustering.

f) Perform K-Means clustering to separate the countries into three groups, and do
all the possible analytics that we do when clustering.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

334 Data Cleaning Level III – Missing Values, Outliers, and Errors

7.	 Specify whether the following items describe random errors or systematic errors:

a) The data has these types of errors as the thermometer that the lab has purchased
can give precise readings to one-thousandth of a degree.

b) The data has these types of errors as the survey records were gathered by five
different surveyors who attended five rigorous training sessions.

c) The data has these types of errors because when asking for salary questions in a
survey, there were no options such as I would not like to share.

d) The data has these types of errors because the cameras were tampered with so
that the robbery would not be recorded.

8.	 Study Figure 11.14 one more time and run the first three exercises by this diagram,
noting down the path that led to your decisions regarding the missing values. Did
you take steps in dealing with missing values that were not listed in this diagram or
this chapter? Would it be better to have a more complex diagram so every possibility
would be included, or not? Why or why not?

9.	 Explain why the following statement is incorrect: a row may have a significant
number of MCAR missing values.

12
Data Fusion and
Data Integration

The popular understanding of data pre-processing goes hand in hand with data cleaning.
Although data cleaning is a major and important part of data preprocessing, there are
other important areas regarding this subject. In this chapter, we will learn about two
of those important areas: data fusion and data integration. In short, data fusion and
integration have a lot to do with mixing two or more sources of data for analytic goals.

First, we will learn about the similarities and differences between data fusion and data
integration. After that, we will learn about six frequent challenges regarding data fusion
and data integration. Then, by looking at three complete analytic examples, we will get to
encounter these challenges and deal with them.

In this chapter, we are going to cover the following main topics:

•	 What are data fusion and data integration?

•	 Frequent challenges regarding data fusion and integration

•	 Example 1 (Challenges 3 and 4)

•	 Example 2 (Challenges 2 and 3)

•	 Example 3 (Challenges 1, 2, 3, 5, and 6)

336 Data Fusion and Data Integration

Technical requirements
You can find the code and dataset for this chapter in this book's GitHub repository,
which can be found at https://github.com/PacktPublishing/Hands-On-
Data-Preprocessing-in-Python. You can find chapter12 in this repository and
download the code and the data for a better learning experience.

What are data fusion and data integration?
In most cases, data fusion and data integration are terms that are used interchangeably,
but there are conceptual and technical distinctions between them. We will get to those
shortly. Let's start with what both have in common and what they mean. Whenever the
data we need for our analytic goals are from different sources, before we can perform the
data analytics, we need to integrate the data sources into one dataset that we need for our
analytic goals. The following diagram summarizes this integration visually:

Figure 12.1 – Data integration from different sources

In the real world, data integration is much more difficult than what's shown in the
preceding figure. There are many challenges that you need to overcome before integration
is possible. These challenges could be due to organizational privacy and security
challenges that restrict our data accessibility. But even assuming that these challenges
are not in the way when different data sources need to be integrated, they arise because
each data source is collected and structured based on the needs, standards, technology,
and opinions of the people who have collected them. Regardless of correctness, there
are always differences in the ways that the data is structured and because of that, data
integration becomes challenging.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

What are data fusion and data integration? 337

In this chapter, we will cover the most frequently faced data integration challenges and
learn how to deal with them. These challenges will be discussed in the next subchapter.
First, let's understand the difference between data fusion and data integration.

Data fusion versus data integration
As we implied previously, both data integration and data fusion are all about mixing
more than one source of data. With data integration, the act of mixing is easier as all the
data sources have the same definition of data objects, or with simple data restructuring
or transformation, the definitions of the data objects can become the same. When the
definitions of the data objects are the same and the data objects are indexed similarly
across the data sources, mixing the data sources becomes easy; it will be one line of code.
This is what data integration does; it matches the definitions of the data objects across the
data sources and then mixes the data objects.

On the other hand, data fusion is needed when the data sources do not have the same
definitions as the data objects. With restructuring and simple data transformation, we
cannot create the same definitions of data objects across the data sources. For data fusion,
we often need to imagine a definition of data objects that is possible for all the data
sources and then make assumptions about the data. Based on those assumptions, we must
restructure the data sources. So, again, the data sources are in states that have the same
definitions of data objects. At that point, the act of mixing the data sources becomes very
easy and can be done in one line of code.

Let's try and understand the differences between the two by using two examples: one that
needs data integration and one that needs data fusion.

Data integration example
Imagine that a company would like to analyze its effectiveness in how it advertises. The
company needs to come up with two columns of data – the total sales per customer and
the total amount of advertisement expenditure per customer. As the sales department and
marketing department keep and manage their databases, each department will be tasked
with creating a list of customers with the relevant information. Once they've done that,
they need to connect the data of each customer from the two sources. This connection
can be made by relying on the existence of real customers, so no assumptions need to be
made. No changes need to be made to connect this data. This is a clear example of data
integration. The definition of data objects for both sources is customers.

338 Data Fusion and Data Integration

Data fusion example
Imagine a technology-empowered farmer who would like to see the influence of irrigation
(water dispersion) on yield. The farmer has data regarding both the amount of water its
revolving water stations have dispensed and the amount of harvest from each point in the
farm. Each stationary water station has a sensor and calculates and records the amount
of water that is dispensed. Also, each time the blade in the combine harvester moves, the
machine calculates and record the amount of harvest and the location.

In this example, there is no clear connection between the sources of data. In the previous
example, the clear connection was the definition of data objects - customers. However,
we don't have that here, so we need to make assumptions and change the data so that a
connection is possible. The situation in this example could look like something like the
following figure. The blue dots represent the water stations, while the gray ones represent
harvest points:

Figure 12.2 – Water points and harvest points

To perform data fusion, we need different sets of assumptions and sets of preprocessing
that combine or fuse these data sources. Next, let us see how these assumptions to make
the fusion possible may look like.

What are data fusion and data integration? 339

How about if we defined our data objects as the pieces of land that are harvested? In other
words, we define our data objects as harvest points. Then, based on the proximity of the
revolving water station to each harvest point, we calculate a number that represents the
amount of water the point received. Each water point could be attributed a radius of reach.
The closer a harvest point is to the water point within this radius of reach, the more the
harvest point got from the amount of water that was dispensed from the water station.
We don't know how much water arrives at the harvest points, but we make assumptions
about it. These assumptions could be completely naïve or based on some careful
experimentation or research.

In this example, we had to come up with a definition of data objects that did not exist
within both data sources. Then, we had to make many assumptions about the collected
data so that the data sources could be fused.

Good news! You will get to do this data fusion yourself in Exercise 8 at the end of
this chapter.

You will see the term data integration for both data integration and data fusion
throughout this chapter. When you need to be aware of the distinction between them, the
text will inform you of that.

You are almost ready to start seeing the frequent challenges that occur in these areas, as
well as some examples, but first, let's discuss one more thing. In the next section, we will
introduce two directions of data integration.

Directions of data integration
Data integration may happen in two different directions. The first is by adding attributes;
we might want to supplement a dataset with more describing attributes. In this direction,
we have all the data objects that we need, but other sources might be able to enrich our
dataset. The second is by adding data objects; we might have multiple sources of data with
distinct data objects, and integrating them will lead to a population with more data objects
that represent the population we want to analyze.

Let's look at two examples to understand the two directions of data integration better.

340 Data Fusion and Data Integration

Examples of data integration by adding attributes
The examples we saw earlier in the Data integration example and Data fusion example
sections were both data integration by adding attributes. In these examples, our aim was to
supplement the dataset by including more attributes that would be beneficial or necessary
for the analytic goals. In both examples, we looked at situations where we would need to
perform data integration by adding attributes. Next, we will examine situations that needs
data integration by adding data objects.

Examples of data integration by adding data objects
In the first example (Data integration example), we wanted to integrate customer data
from the sales and marketing departments. The data objects and customers were the
same, but different databases included the data we needed for the analytic goals. Now,
imagine that the company has five regional managing bodies and that each managing
body is in charge of keeping the data of their customers. In this scenario, data integration
will happen after each managing body has come up with a dataset that includes the total
sales per customer and the total amount of advertisement expenditure per customer. This
type of integration, where we're using five sources of data that include the data of distinct
customers, is known as performing data integration by adding data objects.

In the second example (Data fusion example), our goal was to fuse the irrigation and yield
data for one piece of land. Regardless of how we would define the data objects to serve the
purpose of our analysis, at the end of the day, we will have analyzed only one piece of land.
So, different sets of assumptions that would allow the data sources to be fused may have
led to different numbers of data objects, but the piece of land stays the same. However,
let's imagine that we had more than one piece of land whose data we wanted to integrate.
That would become data integration by adding data objects.

So far, we have learned about different aspects of data integration. We have learned what
it is and its goals. We've also covered the two directions of data integration. Next, we will
learn about the six challenges of data integration and data fusion. After that, we will look
at examples that will feature those frequent challenges.

Frequent challenges regarding data fusion and
integration
While every data integration task is unique, there are a few challenges that you will face
frequently. In this chapter, you will learn about those challenges and, through examples,
you will pick up the skills to handle them. First, let's learn about each. Then, through
examples that feature one or more of them, we will pick up valuable skills to handle them.

Frequent challenges regarding data fusion and integration 341

Challenge 1 – entity identification
The entity identification challenge – or as it is known in the literature, the entity
identification problem – may occur when the data sources are being integrated by adding
attributes. The challenge is that the data objects in all the data sources are the same real-
world entities with the same definitions of data objects, but they are not easy to connect
due to the unique identifiers in the data sources. For instance, in the data integration
example section, the sales department and the marketing department did not use a central
customer unique identifier for all their customers. Due to this lack of data management,
when they want to integrate the data, they will have to figure out which customer is which
in the data sources.

Challenge 2 – unwise data collection
This data integration challenge happens, as its name suggests, due to unwise data
collection. For instance, instead of using a centralized database, the data of different data
objects is stored in multiple files. We covered this challenge in Chapter 9, Data Cleaning
Level I – Cleaning Up the Table, as well. Please go back and review Example 1 – Unwise
data collection, before reading on. This challenge could be seen as both level I data
cleaning or a data integration challenge. Regardless, in these situations, our goal is to
make sure that the data is integrated into one standard data structure. This type of data
integration challenge happens when data objects are being added.

Challenge 3 – index mismatched formatting
When we start integrating data sources by adding attributes, we will use the pandas
DataFrame .join() function to connect the rows of two DataFrames that have the
same indices. To use this valuable function, the integrating DataFrames needs to have the
same index formatting; otherwise, the function will not connect the rows. For example,
the following figure shows three attempts of combining two DataFrames: temp_df and
electric_df. temp_df contains the hourly temperature (temp) of 2016, while
electric_df carries the hourly electricity consumption (consumption) for the same
year. The first two attempts (the top one and the middle one) are unsuccessful due to
the index mismatched formatting challenge. For instance, consider the attempt at the
top; while both DataFrames are indexed with Date and Time and both show the same
Date and Time, attempting the .join() function will produce a "cannot join with
no overlapping index names" error. What is happening? The attempt to integrate was
unsuccessful because the index formatting from the two DataFrames is not the same:

342 Data Fusion and Data Integration

Figure 12.3 – Examples of index mismatched formatting when combining two data sources

Frequent challenges regarding data fusion and integration 343

In the preceding diagram, while the attempt in the middle is better than the one at the top,
it is still unsuccessful. Pay close attention and see if you can figure out why there are so
many NaNs in the output of the integration.

Challenge 4 – aggregation mismatch
This challenge occurs when integrating data sources by adding attributes. When
integrating time series data sources whose time intervals are not identical, this challenge
arises. For example, if the two DataFrames presented in the following figure are to be
integrated, not only do we have to address the challenge of index mismatch formatting,
but we will also need to face the aggregation mismatch challenge. This is because temp_df
carries the hourly temperature data but electric_df carries the electricity consumption of
every half an hour:

Figure 12.4 – Example of an aggregation mismatch when combining two data sources

To deal with this challenge, we will have to restructure one source or both sources to get
them to have the same level of data aggregation. We will see this shortly, so now, let's cover
another challenge.

344 Data Fusion and Data Integration

Challenge 5 – duplicate data objects
This challenge occurs when we're integrating data sources by adding data objects. When
the sources contain data objects that are also in the other sources, when the data sources
are integrated, there will be duplicates of the same data objects in the integrated dataset.
For example, imagine a hospital that provides different kinds of healthcare services. For
a project, we need to gather the socioeconomic data of all of the patients in the hospital.
The imaginary hospital does not have a centralized database, so all of the departments are
tasked with returning a dataset containing all the patients they have provided services for.
After integrating all of the datasets from different departments, you should expect that
there are multiple rows for the patients that had to receive care from different departments
in the hospital.

Challenge 6 – data redundancy
This challenge's name seems to be appropriate for the previous challenge as well, but in
the literature, the term data redundancy is used for a unique situation. Unlike the previous
challenge, this challenge may be faced when you're integrating data sources by adding
attributes. As the name suggests, after data integration, some of the attributes may be
redundant. This redundancy could be shallow as there are two attributes with different titles
but the same data. Or, it could be deeper. In deeper data redundancy cases, the redundant
attribute does not have the same title, nor is its data the same as one of the other attributes,
but the values of the redundant attribute can be derived from the other attributes.

For example, after integrating data sources into a dataset of customers, we have the
following seven attributes: age, average order $, days from the last visit, weekly visit
frequency, weekly $ purchase, and satisfaction score. If we use all seven attributes to cluster
customers, we have made a mistake regarding data redundancy. Here, the weekly visit
frequency, weekly $ purchase, and average order $ attributes are distinct but the value of
weekly $ purchase can be derived from weekly visit frequency and average order $. By doing
so, inadvertently, we will have given the information regarding the customer's visit and
their purchase amount more weight in the clustering analysis.

We should deal with data redundancy challenges that are informed by the analytic goals
and data analysis tools. For instance, if we were employing the decision tree algorithm
to predict the satisfaction score of the customers, we needn't have worried about data
redundancy. This is because the decision tree algorithm only uses the attributes that help
its performance.

Example 1 (challenges 3 and 4) 345

However, if the same task were to be done using linear regression, you would have a
problem if you didn't remove weekly $ purchase. This is because the same information
being in more than one attribute would confuse the linear regression. There are two
reasons for this:

•	 First, the linear regression algorithm will have to use all the independent attributes
as they are inputted.

•	 Second, the algorithm needs to come up with a set of weights that works for all the
data objects for all the independent attributes, all at the same time. In regression
analysis, this situation is referred to as collinearity and it should be avoided.

Now that we've learned about these six common challenges of data integration, let's look
at some examples that feature one or some of these challenges.

Example 1 (challenges 3 and 4)
In this example, we have two sources of data. The first was retrieved from the local
electricity provider that holds the electricity consumption (Electricity Data 2016_2017.
csv), while the other was retrieved from the local weather station and includes temperature
data (Temperature 2016.csv). We want to see if we can come up with a visualization that can
answer if and how the amount of electricity consumption is affected by the weather.

First, we will use pd.read_csv() to read these CSV files into two pandas DataFrames
called electric_df and temp_df. After reading the datasets into these DataFrames, we
will look at them to understand their data structure. You will notice the following issues:

•	 The data object definition of electric_df is the electric consumption in 15
minutes, but the data object definition of temp_df is the temperature every 1
hour. This shows that we have to face the aggregation mismatch challenge of data
integration (Challenge 4).

•	 temp_df only contains the data for 2016, while electric_df contains the data
for 2016 and some parts of 2017.

•	 Neither temp_df nor electric_df has indexes that can be used to connect the
data objects across the two DataFrames. This shows that we will also have to face the
challenge of index mismatched formatting (challenge 3).

346 Data Fusion and Data Integration

To overcome these issues, we will perform the following steps:

1.	 Remove the 2017 data objects from electric_df. The following code uses
Boolean masking and the.drop() function to do so:

BM = electric_df.Date.str.contains('2017')

dropping_index = electric_df[BM].index

electric_df.drop(index = dropping_index,inplace=True)

Check the state of electric_df after successfully running the preceding code.
You will see that electric_df in 2016 is recorded every half an hour.

2.	 Add a new column titled Hour to electric_df from the Time attribute. The
following code manages to do this in one line of code using the.apply() function:

electric_df['Hour'] = electric_df.Time.apply(lambda v:
'{}:00'.format(v.split(':')[0]))

3.	 Create a new data structure whose definition of the data object is hourly electricity
consumption. The following code uses the .groupby() function to create
integrate_sr. The Pandas integrate_sr series is a stopgap data structure
that will be used for integration in the later steps:

integrate_sr = electric_df.groupby(['Date','Hour']).
Consumption.sum()

One good question to ask here is this, why are we using the.sum() aggregate function
instead of .mean()? The reason is the nature of the data. The electricity consumption
of an hour is the summation of the electricity consumption of its half-hour pieces.

4.	 In this step, we will turn our attention to temp_df. We will add the Date and
Hour columns to temp_df from Timestamp. The following code does this by
applying an explicit function:

First, we will create the function:
def unpackTimestamp(r):

 ts = r.Timestamp

 date,time = ts.split('T')

 hour = time.split(':')[0]

 year,month,day = date.split('-')

 r['Hour'] = '{}:00'.format(int(hour))

 r['Date'] = '{}/{}/{}'.
 format(int(month),int(day),year)

 return(r)

Example 1 (challenges 3 and 4) 347

Then, we will apply the function to the temp_df DataFrame:
temp_df = temp_df.apply(unpackTimestamp,axis=1)

Check the status of temp_df after successfully running the preceding code block
before moving to the next step.

5.	 For temp_df, set the Date and Hour attributes as the index and then drop the
Timestamp column. The following code does this in one line:

temp_df = temp_df.set_index(['Date', 'Hour']).drop(
columns = ['Timestamp'])

Again, check the status of temp_df after successfully running the preceding code
before moving on to the next step.

6.	 After all this reformatting and restructuring, we are ready to use .join() to
integrate the two sources. The hard part is what comes before using .join().
Applying this function is just as easy as applying it. See for yourself:

integrate_df =temp_df.join(integrate_sr)

Note that we came to integrate_sr as a stopgap data structure from Step 3.
As always, take a moment to investigate what integrate_df looks like before
reading on.

7.	 Reset the index of integrate_df as we no longer need the index for integration
purposes, nor do we need those values for visualization purposes. Running the
following code will take care of this:

integrate_df.reset_index(inplace=True)

8.	 Create a line plot of the whole year's electricity consumption, where the dimension
of temperature is added to the line plot using color. This visualization is shown in
Figure 12.5 and was created using the tools we have learned about in this book. The
following code creates this visualization:

days = integrate_df.Date.unique()

max_temp, min_temp = integrate_df.temp.max(), integrate_
df.temp.min()

green =0.1

plt.figure(figsize=(20,5))

for d in days:

 BM = integrate_df.Date == d

 wdf = integrate_df[BM]

348 Data Fusion and Data Integration

 average_temp = wdf.temp.mean()

 red = (average_temp - min_temp)/ (max_temp - min_
 temp)

 blue = 1-red

 clr = [red,green,blue]

 plt.plot(wdf.index,wdf.Consumption,c = clr)

BM = (integrate_df.Hour =='0:00') & (integrate_df.Date.
str.contains('/28/'))

plt.xticks(integrate_df[BM].index,integrate_df[BM].
Date,rotation=90)

plt.grid()

plt.margins(y=0,x=0)

plt.show()

The preceding code brings many parts together to make the following visualization
happen. The most important aspects of the code are as follows:

•	 The code created the days list, which contains all the unique dates from
integrate_df. By and large, the preceding code is a loop through the days list,
and for each unique day, the line plot of electricity consumption is drawn and added
to the days before and after. The color of each day's line plot is determined by that
day's temperature average, that is, temp.mean().

•	 The colors in the visualization are created based on the RGB color codes. RGB
stands for Red, Green, and Blue. All colors can be created by using a combination
of these three colors. You can specify the amount of each color you'd like and
Matplotlib will produce that color for you. These colors can take values from 0 to 1
for Matplotlib. Here, we know that when green is set to 0.1, and the red and blue
have a blue = 1 - red relationship with one another, we can create a red-blue
spectrum of color that can nicely represent hot and cold colors. The spectrum can
be used to show hotter and colder temperatures. This has been done by calculating
the maximum and minimum of the temperature (using max_temp and min_
temp) and calculating the three red, green, and blue elements of clr at the
right time to pass as the color value to the plt.plot() function.

Example 2 (challenges 2 and 3) 349

•	 A Boolean Mask (BM) and plt.xticks() are used to include the 28th of each
month on the x axis so that we don't have a cluttered x axis:

Figure 12.5 – Line plot of electricity consumption color-coded by temperature

Now, let's bring our attention to the analytic values shown in the preceding diagram. We
can see a clear relationship between temp and Consumption; as the weather becomes
colder, the electricity consumption also increases.

We would not be able to draw this visualization without integrating these two data
sources. By experiencing the added analytic values of this visualization, you can also
appreciate the value of data integration and see the point of having to deal with both
Challenge 3 – index mismatched formatting and Challenge 4 – aggregation mismatch.

Example 2 (challenges 2 and 3)
In this example, we will be using the Taekwondo_Technique_Classification_Stats.
csv and table1.csv datasets from https://www.kaggle.com/ali2020armor/
taekwondo-techniques-classification. The datasets were collected by 2020
Armor (https://2020armor.com/), the first ever provider of e-scoring vests and
applications. The data includes the sensor performance readings of six taekwondo athletes,
who have varying levels of experience and expertise. We would like to see if the athlete's
gender, age, weight, and experience influence the level of impact they can create when
they perform the following techniques:

•	 Roundhouse/Round Kick (R)

•	 Back Kick (B)

•	 Cut Kick (C)

•	 Punch (P)

https://www.kaggle.com/ali2020armor/taekwondo-techniques-classification
https://www.kaggle.com/ali2020armor/taekwondo-techniques-classification
https://2020armor.com/

350 Data Fusion and Data Integration

The data is stored in two separate files. We will use pd.read_csv() to read table1.
csv into athlete_df and Taekwondo_Technique_Classification_Stats.
csv into unknown_df. Before reading on, take a moment to study athlete_df and
unknown_df and evaluate their state to perform the analysis.

After analysis, it will be obvious that the data structure that's been chosen for athlete_
df is simple to understand. The data object's definition of athlete_df is athletes, which
means that each row represents a taekwondo athelete_df. However, the unknown_df
data structure is not readily understandable and is somewhat confusing. The reason
for this is that even though a very common data structure – a table – is being used, it
is not appropriate. As we discussed in Chapter 3, Data – What Is It Really?, The most
universal data structure – a table, we know that the glue that holds a table together is an
understandable definition of data objects. Therefore, the major data integration challenge
we will face in this example is Challenge 2 – unwise data collection.

To integrate the data when we face unwise data collection challenges, similar to what we did
in Chapter 9, Data Cleaning Level I – Cleaning Up the Table, in Example 1 – unwise data
collection, we need the data structure and its design to support the following two matters:

•	 The data structure can include the data of all the files.

•	 The data structure can be used for the mentioned analysis.

As we've discussed, the athlete_df dataset is simple and easy to understand, but what
does the information in unknown_df include? After putting two and two together, we
will realize that the sensor readings from the performance of six taekwondo athletes are
in athlete_df. From studying unknown_df, we also realize that each athlete has
performed each of the four aforementioned techniques five times. These techniques are
coded in unknown_df using the letters R, B, C, and P; R stands for roundhouse, B stands
for back kick, C stands for cut kick, and P stands for punch. Furthermore, we can see that
each technique is performed five times by each athlete.

Running the following code will create an empty pandas DataFrame called
performance_df. This dataset has been designed so that both athlete_df and
unknown_df can be integrated into it.

The number of rows (n_rows) we have designed for performance_df is one minus the
number of columns in unknown_df: len(unknown_df.columns)-1. We will see
why that is the case when we are about to fill up performance_df:

designed_columns = ['Participant_id', 'Gender', 'Age',
'Weight', 'Experience', 'Technique_id', 'Trial_number',
'Average_read']

Example 2 (challenges 2 and 3) 351

n_rows = len(unknown_df.columns)-1

performance_df = pd.DataFrame(index=range(n_rows),columns
=designed_columns)

The following table shows performance_df, which the preceding code creates:

Figure 12.6 – The empty performance_df DataFrame before being filled in

Because the dataset has been collected unwisely, we cannot use simple functions such as
.join() for data integration here. Instead, we need to use a loop to go through the many
records of unknown_df and athlete_df and fill out performance_df row by row
and, at times, cell by cell.

The following pieces of code will use both athlete_df and unknown_df to fill
performance_df. Let's get started:

1.	 First, we need to perform some level I data cleaning for athlete_df so that
accessing this DataFrame within the loop becomes easier. The following code takes
care of these cleaning steps for athlete_df:

athlete_df.set_index('Participant ID',inplace=True)

athlete_df.columns = ['Sex', 'Age', 'Weight',
'Experience', 'Belt']

Study the state of athlete_df after running the preceding code and make sure
that you understand what each line of code does before reading on.

352 Data Fusion and Data Integration

2.	 Now that athlete_df is cleaner, we can create and run the loop that will fill up
performance_df. As shown in the following screenshot, the loop goes through
all of the columns in unknown_df. Except for the first column in unknown_df,
each column contains information for one of the rows in performance_df. So,
in each iteration of looping through the columns of unknown_df, one of the rows
of performance_df will be filled. To fill up each row in performance_df,
the data must come from both athlete_df and unknown_df. We will use the
structures we know about from athlete_df and unknown_df:

Figure 12.7 – The code that fills performance_df

Attention!
In this chapter, there are going to be a few instances of very large code, such
as that shown in the preceding screenshot. Because of the size of this code, we
had to include a screenshot instead of a copiable code block. To copy this code,
please see the chapter12 folder in this book's GitHub repository.

3.	 After successfully running the code in the preceding screenshot, performance_df
will be filled up. Print performance_df to check its status before reading on.

4.	 Now that data integration has been performed, we can bring our attention to the
data analytic goals. The following code creates a box plot of Average_read based
on Gender, Age, Weight, and Experience:

select_attributes = ['Gender', 'Age', 'Experience',
'Weight']

Example 2 (challenges 2 and 3) 353

for i,att in enumerate(select_attributes):

 plt.subplot(2,2,i+1)

 sns.boxplot(data = performance_df,
 y='Average_read', x=att)

plt.tight_layout()

plt.show()

After running the preceding code, the following visualization will be created:

Figure 12.8 – A box plot of Average_read based on Gender, Age, Experience, and Weight

In the preceding diagram, we can see meaningful relationships between Average_read
and Gender, Age, Experience, and Weight. In a nutshell, these attributes can change the
impact of the techniques that are performed by the athletes. For example, we can see that
as the experience of an athlete increases, the impact of the techniques that are performed
by the athlete increases.

We can also see a surprising trend: the impact of the techniques that are performed by
female athletes is significantly higher than the impact of male athletes. After seeing this
surprising trend, let's look back at athlete_df. We will realize that there is only one
female athlete in the data, so we cannot count on this visualized trend.

354 Data Fusion and Data Integration

Before we move on to the next data integration example, let's have some fun and create
visualizations with higher dimensions. The following code creates multiple box plots that
include the Average_read, Experience, and Technique_id dimensions:

sns.boxplot(data = performance_df, y= 'Average_read', x=
'Experience', hue='Technique_id')

The following diagram will be created after running the preceding code:

Figure 12.9 – A three-dimensional box plot of Average_read, Experience, and Technique_id

Before reading on, look at the preceding diagram and see if you can detect more
relationships and patterns.

Now, let's bring our attention to the next example. Buckle up – the next example is going
to be a complex one with many different aspects.

Example 3 (challenges 1, 3, 5, and 6) 355

Example 3 (challenges 1, 3, 5, and 6)
In this example, we would like to figure out what makes a song rise to the top 10 songs on
Billboard (https://www.billboard.com/charts/hot-100) and stay there for at
least 5 weeks. Billboard magazine publishes a weekly chart that ranks popular songs based
on sales, radio play, and online streaming in the United States. We will integrate three CSV
files – billboardHot100_1999-2019.csv, songAttributes_1999-2019.csv,
and artistDf.csv from https://www.kaggle.com/danield2255/data-on-
songs-from-billboard-19992019 to do this.

This is going to be a long example with many pieces that come together. How you organize
your thoughts and work in such data integration challenges is very important. So, before
reading on, spend some time getting to know these three data sources and form a plan.
This will be a very valuable practice.

Now that you've had a chance to think about how you would go about this, let's do this
together. These datasets seem to have been collected from different sources, so there may
be duplicate data objects among any or all of the three data files. After reading the files into
billboard_df, songAttributes_df, and artist_df, respectively, we will check
if there are duplicate data objects in them. This is dealing with Challenge 5 – duplicate
data objects.

Checking for duplicate data objects
We will have to do this for every file. We will start with billboard_df before doing the
same for songAttributes_df and artist_df.

Checking for duplicates in billboard_df
The following code reads the billboardHot100_1999-2019.csv file into
Billboard_df and then creates a pandas series called wsr. The name wsr is short
for Working SeRies. As I've mentioned previously, I tend to create a wdf (Working
DataFrame) or wsr when I need a temporary DataFrame or series to do some analysis.
In this case, wsr is used to create a new column that is a combination of the Artists,
Name, and Week columns, so we can use it to check if the data objects are unique.

https://www.billboard.com/charts/hot-100
https://www.kaggle.com/danield2255/data-on-songs-from-billboard-19992019
https://www.kaggle.com/danield2255/data-on-songs-from-billboard-19992019

356 Data Fusion and Data Integration

The reason for this multi-column checking is obvious, right? There might be different
unique songs with the same name from different artists; every artist may have more
than one song; or, the same song may have a different weekly report. So, to check for the
uniqueness of the data objects across billboard_df, we need this column:

billboard_df = pd.read_csv('billboardHot100_1999-2019.csv')

wsr = billboard_df.apply(lambda r: '{}-{}-{}'.format(r.
Artists,r.Name,r.Week),axis=1)

wsr.value_counts()

After running the preceding code, the output shows that all the data objects appear once
except for the song Outta Control by 50 Cent in week 2005-09-14. Running
billboard_df.query("Artists == '50 Cent' and Name=='Outta
Control' and Week== '2005-09-14'") will filter out these two data objects. The
following screenshot displays the outcome of running this code:

Figure 12.10 – Filtering the duplicates in bilboard_df

Here, we can see that the two rows are almost identical and that there is no need to have
both of them. We can use the.drop() function to delete one of these two rows. This is
shown in the following line of code:

billboard_df.drop(index = 67647,inplace=True)

After running the preceding line of code successfully, it seems that nothing has happened.
This is due to inplace=True, which makes Python update the DataFrame in place
instead of outputting a new DataFrame.

Example 3 (challenges 1, 3, 5, and 6) 357

Now that we are certain about the uniqueness of each row in bilboard_df, let's move
on and do the same thing for songAttributes_df.

Checking for duplicates in songAttributes_df
We will use a very similar code and approach to see if there are any duplicates in
songAttributes_df. The following code has been altered for the new DataFrame.

First, the code reads the songAttributes_1999-2019.csv file into
songAttributes_df, then creates the new column and checks for the duplicates
using .value_counts(), which is a function of every pandas Series:

songAttribute_df = pd.read_csv('songAttributes_1999-2019.csv')

wsr = songAttribute_df.apply(lambda r: '{}---{}'.format(r.
Artist,r.Name),axis=1)

wsr.value_counts()

After running the preceding code, we will see that many songs have duplicate rows in
songAttributes_df.

We need to find out the causes of these duplicates. We can filter out the duplicates of a few
songs and study them. For instance, from the top, we can run the following lines of codes
separately to study their output:

•	 songAttribute_df.query("Artist == 'Jose Feliciano' and
Name == 'Light My Fire'")

•	 songAttribute_df.query("Artist == 'Dave Matthews Band' and
Name == 'Ants Marching - Live'")

After studying the output of these codes, we will realize that there are two possible reasons
for the existence of duplicates:

•	 First, there might be different versions of the same song.

•	 Second, the data collection process may have been done from different resources.

Our study also shows that the attributes' value of these duplicates, while not identical, are
very similar.

358 Data Fusion and Data Integration

To be able to do this analysis, we need to have only one row for each song. Therefore, we
need to either remove all but one row for the songs with duplicates or aggregate them.
Either might be the right course of action, depending on the circumstances. Here, we will
drop all the duplicates except for the first one. The following code loops through the songs
with duplicate data objects in songAttributes_df and uses .drop() to delete all the
duplicate data objects, except for the first one. First, the code creates doFrequencies
(do is short for data object), which is a pandas series that shows the frequencies of each
song in songAttributes_df, and loops through the elements of doFrequencies
whose frequency is higher than 1:

songAttribute_df = pd.read_csv('songAttributes_1999-2019.csv')

wsr = songAttribute_df.apply(lambda r: '{}---{}'.format(r.
Name,r.Artist),axis=1)

doFrequencies = wsr.value_counts()

BM = doFrequencies>1

for i,v in doFrequencies[BM].iteritems():

 [name,artist] = i.split('---')

 BM = ((songAttribute_df.Name == name) & (songAttribute_
 df.Artist == artist))

 wdf = songAttribute_df[BM]

 dropping_index = wdf.index[1:]

 songAttribute_df.drop(index = dropping_index, inplace=True)

If you try running the preceding code, you will see that it will take a long time. It took
around 30 minutes on my computer. In these situations, it is nice to add some elements
to the code that give users some idea of how much the code has run and how much more
time will be needed. The following code is the same as the preceding one, but some more
elements have been added to create a mechanism for reporting the progress of the runtime.
I would suggest running the following code instead. But before doing so, compare the two
options and study how the reporting mechanism is added. Do not forget that you will need
to import the time module before you can run the following code. The time module is an
excellent module that allows us to work with time and time differences:

Example 3 (challenges 1, 3, 5, and 6) 359

Figure 12.11 – Dropping the duplicates that were added with code to report progress

Once you've successfully run the preceding code, which will take a while,
songAttributes_df will not suffer from duplicate data object problems.

Next, we will check if artist_df contains duplicates and address them if it does.

Checking for duplicates in artist_df
Checking the uniqueness of the data objects in artisit_df is easier than it was for
the two DataFrames we looked at previously. The reason for this is that there is only one
identifying column in artist_df. There were two and three identifying columns for
songAttribute_df and billboard_df.

360 Data Fusion and Data Integration

The following code reads artistDf.csv into artisit_df and uses the
.value_counts() function to check if all the rows in artisit_df are unique:

artist_df = pd.read_csv('artistDf.csv')

artist_df.Artist.value_counts()

After running the preceding code and studying its results, you will see that two rows
represent the artist Reba McEntire. Running artist_df.query("Artist == 'Reba
McEntire'") will filter out these two rows. The following screenshot displays the
outcome of running this code:

Figure 12.12 – Filtering the duplicates in artist_df

Here, we can see that the two rows are the same and that there is no need to have both
of them. The following line of code uses the .drop() function to delete one of these
two rows:

artist_df.drop(index = 716, inplace=True)

After running the preceding line of code successfully, it seems that nothing has happened.
This is due to inplace=True, which makes Python update the DataFrame in place
instead of outputting a new DataFrame.

Well done! Now, we know that all of our DataFrames only contain unique data objects. We
can use this knowledge to tackle the challenging task of data integration.

We are better off if we start with the end in sight. In the next section, we will envision
and create the structure of the DataFrame we would like to have at the end of the data
integration process.

Example 3 (challenges 1, 3, 5, and 6) 361

Designing the structure for the result of data
integration
As there are more than two data sources involved, it is paramount that we have a vision in
sight for the result of our data integration. The best way to do this is to envision and create
a dataset whose definition of data objects and its attribute have the potential to answer our
analytic questions and, at the same time, can be filled by the data sources that we have.

The following screenshot shows the code that can create a dataset that contains the listed
characteristics. The definition of the data objects is songs, while the attributes can be filled
in using one of three DataFrames. Once songIntegrate_df has been filled, it can help
us answer the question of what makes a song go all the way up to the top 10 on Billboard
and stay there for at least 5 weeks:

Figure 12.13 – Designing and creating the result of data integration for songIntegrate_df

Most of the envisioned attributes in songIntegrate_df are intuitive. Let's go over the
ones that might not be as obvious:

•	 Top_song: A binary attribute that describes if the song has been in the top 10
songs of Billboard for at least 5 weeks.

•	 First_date_on_Billboard: The first date that the song was on Billboard.

•	 Acousticness, Danceability, Duration, Energy, Explicit,
Instrumentalness, Liveness, Loudness, Mode, Speechiness, Tempo,
TimeSignature, and Valence are the artistic properties of songs. These attributes
will be integrated into songIntegrate_df from songAttribute_df.

•	 Artists_n_followers: The artist's or artists' number of followers on social
media. If there is more than one artist, the summation of their number of followers
will be used.

362 Data Fusion and Data Integration

•	 n_male_artists and n_female_artists are the attributes that show the
gender of the artists. If one female artist has produced the song, their values will be
0 and 1, respectively. If two male artists have produced the song, their values will be
2 and 0, respectively.

•	 n_bands: The number of bands that have been involved in producing the song.

•	 artist_average_years_after_first_album tries to capture the
experience of the artists in the business. If one artist has created the song, then a
single value will be used, and when more than one artist is involved, an average value
is used. These values will be calculated based on First_date_on_Billboard.

•	 artist_average_number_albums also attempts to capture the experience
of the artists in the business. Similar to the previous attribute, if one artist has
created the song, then a single value will be used, while when more than one artist is
involved, an average value will be used.

The first four attributes will be filled using billboard_df, the last six attributes will be
filled using artist_df, and the rest will be filled using songAttribute_df.

Note that the First_date_on_Billboard attribute will be created temporarily. It will
be filled from billboard_df so that when we get around to filling from artist_df,
we can use First_date_on_Billboard to calculate artist_average_years_
after_first_album.

Before we start filling up songIntegrate_df from the three sources, let's go over the
possibility of having to remove some songs from songIntegrate_df. This might become
inevitable because the information we may need for every song on file may not exist in the
other resource. Therefore, the rest of the subsections in this example will be as follows:

•	 Filling songIntegrate_df from billboard_df

•	 Filling songIntegrate_df from songAttribute_df

•	 Removing data objects with incomplete data

•	 Filling songIntegrate_df from artist_df

•	 Checking the status of songIntegrate_df

•	 Performing the analysis

It seems that we've got a lot of ground to cover, so let's get to it. We will start by using
billboard_df to fill songIntegrate_df.

Example 3 (challenges 1, 3, 5, and 6) 363

Filling songIntegrate_df from billboard_df
In this part of filling songIntegrate_df, we will be filling the first four attributes:
Name, Artists, Top_song, and First_date_on_Billboard. Filling the first
two attributes is simpler; the latter two need some of the rows in billboard_df to be
calculated and aggregated.

The challenge of filling data from billboard_df into songIntegrate_df is
two-fold. First, the definitions of the data objects in the two DataFrames are different. We
have designed the definition of the data objects in songIntegrate_df to be songs,
while the definition of the data objects in billboard_df is the weekly reports of songs'
billboard standings. Second, as billboard_df has a more complex definition of data
objects, it will also need more identifying attributes to distinguish between unique data
objects. For billboard_df, the three identifying attributes are Name, Artists, and
Week, but for songIntegrate_df, we only have Name and Artists.

The songIntegrate_df DataFrame is empty and contains no data objects. Since the
definition of data objects we have considered for this DataFrame is songs, it is best to
allocate a new row in songIntegrate_df for all the unique songs in billboard_df.

The following code loops through all the unique songs in billboard_df using nested
loops to fill songIntegrate_df. The first loop goes over all the unique song names, so
each iteration will be processing one unique song name. As there might be different songs
with the same song name, the code does the following within the first loop:

1.	 First, it will filter all the rows with the song name of the iteration.
2.	 Second, it will figure out all Artists who have had a song with the song name of

the iteration.
3.	 Third, it will go over all Artists we recognized in the second step and as per each

iteration of this second loop, we will add a row to songIntegrate_df.

To add a row to songIntegrate_df, the following code has used the.append()
function. This function either takes a pandas Series or a Dictionary to add it to a
DataFrame. Here, we are using a dictionary; this dictionary will have four keys, which are
the four attributes – Name, Artists, Top_song, First_date_on_Billboard – of
songIntegrate_df that we intend to fill from billboard_df. Filling Name and
Artists is easy as all we need to do is insert the values from billboard_df. However,
we need to make some calculations to figure out the values of Top_song and First_
date_on_Billboard.

364 Data Fusion and Data Integration

Study the following code and try to understand the logic behind the parts of the code
that try to calculate these two attributes. For Top_song, try to see if you can connect
the logic to what we are trying to do. Go back to the very first paragraph in this
example. For First_date_on_Billboard, the code has assumed something about
billboard_df. See if you can detect what that assumption is and then investigate if
that assumption is reliable.

Now, it is time for you to give the code a try. Just a heads-up before you hit run: it might
take a while to finish. It will not be as lengthy as the preceding code to run, but it won't be
instantaneous either:

SongNames = billboard_df.Name.unique()

for i, song in enumerate(SongNames):

 BM = billboard_df.Name == song

 wdf = billboard_df[BM]

 Artists = wdf.Artists.unique()

 for artist in Artists:

 BM = wdf.Artists == artist

 wdf2 = wdf[BM]

 topsong = False

 BM = wdf2['Weekly.rank'] <=10

 if(len(wdf2[BM])>=5):

 topsong = True

 first_date_on_billboard = wdf2.Week.iloc[-1]

 dic_append = {'Name':song,'Artists':artist, 'Top_
 song':topsong, 'First_date_on_Billboard': first_date_
 on_billboard}

 songIntegrate_df = songIntegrate_df.append(dic_append,
 ignore_index=True)

After successfully running the preceding code, print songIntegrate_df to study the
state of the DataFrame.

Example 3 (challenges 1, 3, 5, and 6) 365

The challenge we just faced and addressed here can be categorized as Challenge 3 – index
mismatched formatting. This particular challenge is more difficult as not only do we have
different index formatting but also we have different definitions of data objects. To be able
to perform data integration, we had to refrain from declaring the identifying attributes as
indexes. Why? Because that would not help our data integration goal. However, having
to do that also forced us to take things into our hands and use loops instead of simpler
functions such as .join(), as we saw in Example 1 (challenges 3 and 4) and Example 2
(challenges 2 and 3).

Next, we will fill in some of the remaining attributes of songIntegrate_df from
songAttribute_df. Doing this will challenge us somewhat differently; we will have to
deal with Challenge 1 – entity identification.

Filling songIntegrate_df from songAttribute_df
The challenge we have to reckon with in this part of data integration is entity identification.
While the definitions of the data objects for both songIntegrate_df and
songAttribute_df are the same – that is, songs – the way the unique data objects are
distinguished in the two DataFrames is different. The crux of the difference goes back to
the songIntegrate_df.Artists and songAttribute_df.Artist attributes; pay
attention to the plural of Artists and the singular of Artist. You will see that the songs
that have more than one artist are recorded differently in these two DataFrames. However,
in songIntegrate_df, all of the artists of a song are included in the songIntegrate_
df.Artists attribute, separated by commas (,); in songAttribute_df, only the
main artist is recorded in songAttribute_df.Artist and if other artists are involved
in a song, they are added to songAttribute_df.Name. This makes identifying the
same songs from the two DataFrames very difficult. So, we need to have a plan before we
approach data integration here.

The following table shows the five different situations where the same songs entered our
two sources. Let's answer two questions about these five situations.

First, how did we come up with these five situations? That is an excellent question. When
dealing with the entity identification challenge, you will need to study the sources of the
data and figure out how to work with the identifying attributes in the sources. Then, you
can use a computer to connect the rows that are for the same entity but not coded the
same way. So, the answer to this question is that we just studied the two sources enough to
realize that these five situations exist.

366 Data Fusion and Data Integration

Second, what do we do with these situations? Answering this question is simple. We will
use them to draft some code that will connect the identifiable songs from both sources to
connect and integrate the datasets:

Figure 12.14 – Five situations in the integration of songIntegrate_df with songAttribute_df due to the
entity identification challenge

The following code, which is rather long, uses the five extracted situations from the
preceding diagram and all the other coding capabilities we've picked up in this book to
perform the integration task. The code loops through the rows of songIntegrate_df
and searches for any rows in songAttribute_df that have listed the song. The code
employes the five situations we've extracted to create the preceding diagram as a guideline
to search for songAttribute_df.

Before you look at the following code, allow me to bring your attention to a quick matter.
Since the code is lengthy, it's been commented to help you decipher it. Python line
comments can be created using #, so, for example, when you see # Situation 1, that
means what's coming has been created by our understanding of situation 1.

Example 3 (challenges 1, 3, 5, and 6) 367

Now, spend some time using the preceding diagram and the code in the following
screenshot to understand how the connection between songIntegrate_df and
songAttribute_df has been made:

Figure 12.15 – Creating the connection between songIntegrate_df and songAttribute_df

368 Data Fusion and Data Integration

After successfully running the preceding code, which might take a while, spend some
time studying the report it provided. If you have paid attention, then you'll know that the
code is printed out every time a connection between songs is found. This also happens if
the connection was possible. Study the printout to see the frequencies of the situations.
Answer the following questions:

•	 Which situation was the most frequent?

•	 Which situation was the least frequent?

•	 Were all of the rows in songIntegrate_df filled in with the values found in
songAttribute_df?

The answer to the last question is no – running songIntegrate_df.info() will
only show you that 4,045 out of 7,213 rows were filled from songAttribute_df. A
critical question to answer regarding this data not being filled completely is to see if there
is meaningful discrimination between the top songs and not the top song. If there is any
meaningful discrimination, then the values listed in songAttribute_df become much
less valuable. This is because our goal is to study the impact that the song attributes have
on the song becoming a top song. So, let's study this before moving on to the next filling.

The following screenshot shows the contingency table for the two binary variables,
songIntegrate_df.Top_song, and the missing values. It also shows the p-value of
the chi-square test of association:

Figure 12.16 – The code and their output for studying if missing values in songIntegrate_df after
integrating with songAttribute_df are meaningfully connected to songIntegrate_df.Top_song

Example 3 (challenges 1, 3, 5, and 6) 369

After studying the preceding screenshot, we can conclude that there is not enough
evidence for us to reject the hypothesis that the missing values don't have a relationship
with the songs being a top song or not.

This makes our job easier as we won't need to do anything but remove the rows that
don't contain values before we start using artist_df to fill songIntegrate_df. The
following code uses the .drop() function to delete the rows in songIntegrate_df
that songAttribute_df failed to fill. Note that the B_MV variable comes from the code
in the preceding screenshot:

dropping_index = songIntegrate_df[B_MV].index

songIntegrate_df.drop(index = dropping_index,inplace=True)

Successfully running the preceding code and before moving on to the next step, which
is using artist_df to fill the rest of songIntegrate_df, run songIntegrate_
df.info() to evaluate the state of the DataFrame and ensure that the drops went
as planned.

Filling songIntegrate_df from artist_df
The last six attributes of songIntegrate_df, which are Artists_n_followers,
n_male_artsits, n_female_artsits, n_bands, artist_average_years_
after_first_album, and artist_average_number_albums, will be filled
from artist_df. The entity identification challenge that we face here is much simpler
than what we did when integrating songIntegrate_df and songAttribute_df.
The definitions of the data objects in artist_df are artists, and that is only one part of
the definition of the data objects in songIntegrate_df. All we need to do is find the
unique artist or artists of each song of songIntegrate_df in artist_df and then fill
in songIntegrate_df.

All of the attributes we need to fill in here need information from artist_df, but there
will be no direct filling. All of the aforementioned attributes will need to be calculated
using the information from artist_df.

370 Data Fusion and Data Integration

Before data integration is possible, we will need to perform one pre-processing task on
artist_df. We need to make artist_df searchable by the name of the artist; that
is, we must set the index of artist_df as Artist. The following line of code makes
sure that happens. The following code also drops the X column, which will not serve any
purpose at this point:

artist_df = artist_df.set_index('Artist').drop(columns=['X'])

Now, before moving on to the data integration part, give the searchable artist_df a
chance to show you how easy it can gather the information of each artist. For example, try
artist_df.loc['Drake'] or any other artist you may know of.

The code in the following screenshot loops through all the rows of songIntegrate_df
to find the needed information about the songs' artists and fill up the last six attributes
of songIntegrate_df. In each iteration, the code separates the artists of the songs
in songIntegrate_df and checks if artists_df contains the information of all
of the song's artists. If not, the code terminates as there is not enough information in
artist_df to fill out the six attributes. If this information exists, the code assigns zero to
all six new attributes and then, within some conditional and logical calculations, updates
the zero values.

Before you get your teeth into this rather large piece of code, a few words of caution. First,
the lines of code are rather long, so they may have been cut into more than one line. There
are two different ways to cut a line of code into more lines. The better method is called
implicit line continuation; whenever the line breaks after a parenthesis, (, a curly brace,
{, or square bracket, [, Python assumes there is more to come and automatically goes to
the next line while looking for it. The other method – the one we try to avoid if we can – is
known as explicit line continuation and is where Python will not go looking for more in
the next line unless we explicitly request this by using a backslash, \, at the end of the line.

The second word of caution is that the code uses what is called augmented arithmetic
assignment to save space when writing code. These types of assignments are used to
avoid writing the same variable twice when the calculation of the new value of the variable
involves the old value of the variable. For instance, you can write x+=1 instead of x = x
+1, or you can write y/=5 instead of y = y/5. Augmented arithmetic assignment has
been used in multiple places throughout the following code:

Example 3 (challenges 1, 3, 5, and 6) 371

Figure 12.17 – Filling up the last six attributes of songIntegrate_df

You may have noticed that the code adds 2 to n_male_artists when the song's artist
is a group and the gender is listed as male, while it adds 2 to n_female_artists when
the song's artist is a group and the gender is listed as female. This includes the assumption
that all the groups have only two artists. As we don't have other sources so that we can be
more accurate about these situations, this is a reasonable assumption that lets us continue
while avoiding the infliction of too much bias in the data. However, this assumption must
be communicated if the results are going to be presented to any interested decision-maker.

372 Data Fusion and Data Integration

After successfully running the preceding code, run songIntegrate_df.info() to
investigate how many of the rows in songIntegrate_df were completed using the
information from artist_df. You will see that 3,672 out of 4,045 songs were completed.
While this is the major portion of songIntegrate_df, we still need to make sure that
there are no missing values due to reasons connected to the songs being top songs or not.
So, we will do a similar analysis to what we did for Figure 12.16. The following screenshot
shows the result of the same analysis with the updated songIntegrate_df:

Figure 12.18 – The code and their output for studying if missing values in songIntegrate_df after
integrating with artist_df are meaningfully connected to songIntegrate_df.Top_song

After studying the preceding screenshot, we can see that there is no meaningful pattern
that points to the possible connection between a song being a top song and its tendency to
have missing values at this juncture. So, we can comfortably remove the rows with missing
values and proceed. The following line of code does the prescribed removal:

droping_indices = songIntegrate_df[B_MV].index.values

songIntegrate_df.drop(index = droping_indices, inplace=True)

The preceding code uses the .drop() function to delete the rows in songIntegrate_
df that artist_df failed to fill. Note that the B_MV variable comes from the code in the
preceding screenshot.

Example 3 (challenges 1, 3, 5, and 6) 373

Congratulations – you have integrated these three data sources! This was due to your
excellent understanding of data structures and your capability to see the definitions of
data objects in each of these sources. Furthermore, you were able to envision a dataset that
could house the information from all the sources and, at the same time, be useful for your
analytic goals.

Before we proceed to the analysis, we need to tackle another challenge. Whenever we
bring data together from different sources, we may have inadvertently created a case that
we called data redundancy earlier (Challenge 6 – data redundancy). As we mentioned
previously, data redundancy is where you repeat the same attribute but where you repeat
the same information.

Checking for data redundancy
As we mentioned previously, this part deals with Challenge 6 – data redundancy. Even
though we've never dealt with this challenge before in this book, we've seen many
examples of investigating the relationships between attributes. If there are attributes in
songIntegrate_df that have a strong relationship with each other, that can be our red
flag for data redundancy. It's as simple as that!

So, let's get to it. First, we will use correlation analysis to investigate the relationship
between the numerical attributes. Then, we will use box plots and t-tests to investigate the
relationship between numerical attributes and categorical ones.

We would have investigated the relationships between categorical attributes as well if
we didn't only have one categorical attribute. If you do have more than one categorical
attribute, to evaluate data redundancy, you would need to use contingency tables and the
chi-squared test of independence.

Checking for data redundancy among numerical attributes
As we mentioned previously, to evaluate the existence of data redundancy, we will use
correlation analysis. If the correlation coefficient between two attributes is two high (we
will use the rule thumb of 0.7), then this means that the information presented in the two
attributes is too similar and there might be a case of data redundancy.

374 Data Fusion and Data Integration

The following code uses the .corr() function to calculate the correlation between
the numerical attributes that are explicitly listed in num_atts. The code also uses a
Boolean mask (BM) to help our eyes find the correlation coefficient that is either greater
than 0.7 or smaller than -0.7. Pay attention to the reason why the code had to include
.astype(float): during the data integration process, some of the attributes may have
been carried over as strings instead of numbers:

num_atts = ['Acousticness', 'Danceability', 'Duration',
'Energy', 'Instrumentalness', 'Liveness', 'Loudness', 'Mode',
'Speechiness', 'Tempo', 'TimeSignature', 'Valence', 'Artists_n_
followers', 'n_male_artists', 'n_female_artists', 'n_bands',
'artist_average_years_after_first_album', 'artist_average_
number_albums']

corr_Table = songIntegrate_df[num_atts].astype(float).corr()

BM = (corr_Table > 0.7) | (corr_Table<-0.7)

corr_Table[BM]

After running the preceding code successfully, a correlation matrix will appear that has
NaN for most of the cells, but only for the ones that have had a correlation coefficient
that's either greater than 0.7 or smaller than -0.7. You will notice that the only flagged
correlation coefficient is between Energy and Loudness.

It makes sense that these two attributes have a relationship with one another. As these
attributes come from the same source, we will put our confidence in the creators of these
attributes that they do show different values and that around 30% of the information that
is different between the two is worth keeping.

Here, we can conclude that there are no issues regarding data redundancy between the
numerical attributes. Next, we will investigate whether the relationships between the
categorical attributes and the numerical attributes are too strong.

Checking for data redundancy between numerical and categorical
attributes
To evaluate if there is data redundancy, similar to what we did for the numerical attributes,
we need to examine the relationship between the attributes. As the attributes are of
different natures – that is, numerical and categorical – we need to use boxplots and t-tests.

Example 3 (challenges 1, 3, 5, and 6) 375

The only categorical attribute that has been integrated and has analytic values at this point
is the Explicit attribute. Why not the top_song attribute? The top song does have
an analytic value for us – in fact, it is the hinge of our analysis – but it was not integrated
from different sources. Instead, was calculated for our analysis. Once we get to the analysis
part of this example, we will look at the relationship between this attribute and all the
other ones. Why not Name or Artists? These are merely identifying columns. Why not
First_date_on_Billboard? This was a temporary attribute to allow us to perform
calculations where we needed information from more than one source of data. This
attribute will be dropped before the analysis.

The following code creates the box plots that show the relationship between the numerical
attribute and the categorical attribute; that is, Explicit. Furthermore, the code uses the
ttest_ind() function from scipy.stats to run the t-test:

from scipy.stats import ttest_ind

for n_att in num_atts:

 sns.boxplot(data=songIntegrate_df, y=n_att,x='Explicit')

 plt.show()

 BM = songIntegrate_df.Explicit == True

 print(ttest_ind(songIntegrate_df[BM][n_att],
 songIntegrate_df[~BM][n_att]))

 print('-----------------divide-------------------')

After running the preceding code, per each numerical attribute, a box plot and the
result of the t-test that evaluates the relationship between the Explicit attribute
and the numerical attribute will appear. After studying the output, you will realize that
the Explicit attribute has a relationship with all the numerical attributes except for
Loudness, Mode, and Valence. As it is very unlikely that the Explicit attribute will
contain any new information that has not already been included in the data, we will flag
Explicit for possible data redundancy.

Note that we will not necessarily need to remove Explicit at the data preprocessing
stage. How we will deal with data redundancy will depend on the analytic goals and the
tools. For instance, if we intend to use a decision tree to see the multivariate patterns
that lead to a song being a top song or not, then we won't need to do anything about the
data redundancy. This is because the decision tree has a mechanism for selecting the
features (attributes) that help with the success of the algorithm. On the other hand, if we
are using K-means to group the songs, then we would need to remove Explicit as the
information has already been introduced in the other attributes. If we include it twice,
then it will create bias in our results.

376 Data Fusion and Data Integration

The analysis
Finally, the data sources are appropriately integrated into songIntegrate_df and
the dataset is ready for analysis. Our goal is to answer the question of what makes a song
become a top song. There is more than one approach we can adopt here to answer this
question, now that the data has been preprocessed. Here, we will use two of them. We will
use data visualization to recognize the univariate patterns of top songs, and we will use a
decision tree to extract the multi-variate patterns.

We will start with the data visualization process.

Before we start, there is no need to remove the Explicit attribute for any of the
aforementioned analytic tools due to the attribute being flagged as redundant. As we
mentioned previously, the decision tree has a smart mechanism for feature selection, so
for data visualization, keeping Explicit will only mean one more simple visualization
that does not interfere with the other visualizations.

The data visualization approach to finding patterns in top songs
To investigate what makes a song become a top song, we can investigate the relationship
that all the other attributes in songIntegrate_df have with the Top_song attribute
and see if any meaningful pattern emerges.

The following code creates a box plot for each of the numerical attributes in
songIntegrate_df to investigate if the value of the numerical attribute changes in two
populations: top songs and not top songs. The code also outputs the result of a t-test that
answers the same question statistically. Furthermore, the code outputs the median of the
two populations in case it is hard to recognize the minute comparisons between the values
of the two populations in the box plots:

from scipy.stats import ttest_ind

for n_att in num_atts:

 sns.boxplot(data=songIntegrate_df, y=n_att,x='Top_song')

 plt.show()

 BM = songIntegrate_df.Top_song == True

 print(ttest_ind(songIntegrate_df[BM][n_att], songIntegrate_
 df[~BM][n_att]))

 dic = {'not Top Song Median': songIntegrate_df[~BM][n_att].
 median(), 'Top Song Median': songIntegrate_df[BM][n_att].
 median()}

 print(dic)

 print('-----------------divide-------------------')

Example 3 (challenges 1, 3, 5, and 6) 377

Moreover, the following code outputs a contingency table that shows the relationship
betweenn the two categorical attributes; that is, songIntegrate_df.Top_song and
songIntegrate_df.Explicit. It also prints out the p-value of the chi-squared test
of independence for these two categorical attributes:

from scipy.stats import chi2_contingency

contingency_table = pd.crosstab(songIntegrate_df.Top_song,
songIntegrate_df.Explicit)

print(contingency_table)

print('p-value = {}'.format(chi2_contingency(contingency_table)
[1]))

After studying the outputs of the two preceding pieces of code, we may come to the
following conclusions:

•	 There is no evidence to reject the null hypothesis that the Top_song attribute does
not have a relationship with the Duration, Energy, Instrumentalness,
Liveness, Loudness, Mode, Speechiness, Explicit, and TimeSignature
attributes. This means that the top songs cannot be predicted by looking at the values
of these attributes.

•	 The top songs tend to have smaller values on the Acousticness, Tempo,
n_male_artists, n_bands, artist_average_years_after_first_
album, and artist_average_number_albums attributes.

•	 The songs that have greater values for the Danceability, Valence,
Artists_n_followers, n_female_artists attributes tend to become top
songs more often.

Of course, these patterns sound too general, and they should be; this is because they
are univariate. Next, we will apply a decision tree to figure out the multivariate patterns,
which may help us understand how a song becomes a top song.

The decision tree approach to finding multivariate patterns in
top songs
As we discussed in Chapter 7, Classification, decision trees are famous for being
transparent and being able to render useful multivariate patterns from the data. Here, we
would like to use the decision tree algorithm to see the patterns that lead to a song raising
to the top 10 list of the billboard.

378 Data Fusion and Data Integration

The following code uses DecisionTreeClassifier from sklearn.tree to create a
classification model that aims to find the relationships between the independent attributes
and the dependent attribute; that is, Top_song. Once the model has been trained using
this data, the code will use graphviz to visualize the trained decision tree. At the end
of the code, the extracted graph will be saved in a file called TopSongDT.pdf. After
successfully running this code, you should be able to find the file in the same folder where
you have the Jupyter Notebook file.

Attention!
If you have never used graphviz on your computer before, you may have to
install it first.

To install graphviz, all you need to do is run the following piece of code. After successfully
running this code once, graphviz will be installed on your computer for good:

pip install graphviz

Before running the following code, note that the decision tree model that is used in the
following code has already been tuned. In Chapter 7, Classification, we mentioned that
tuning decision trees is very important. However, we have not covered how to do it in this
book. The hyperparameters and their tuned values are criterion= 'entropy',
max_depth= 10, min_samples_split= 30, and splitter= 'best':

from sklearn.tree import DecisionTreeClassifier, export_
graphviz

import graphviz

y = songIntegrate_df.Top_song.replace({True:'Top
Song',False:'Not Top Song'})

Xs = songIntegrate_df.drop(columns = ['Name','Artists','Top_
song','First_date_on_Billboard'])

classTree = DecisionTreeClassifier(criterion= 'entropy', max_
depth= 10, min_samples_split= 30, splitter= 'best')

classTree.fit(Xs, y)

dot_data = export_graphviz(classTree, out_file=None, feature_
names=Xs.columns, class_names=['Not Top Song', 'Top Song'],
filled=True, rounded=True, special_characters=True)

graph = graphviz.Source(dot_data)

graph.render(filename='TopSongDT')

Example 3 (challenges 1, 3, 5, and 6) 379

After successfully runing the preceding code, the TopSongDT.pdf file will be saved
on your computer, which contains the visualized decision tree. This tree is shown in the
following diagram. In this instance, this diagram has not be shared with you so that you
can study it; as you can see, the decision tree is rather large and our space is very small.
However, you can see that there are a lot of meanigful multi-variate patterns forming the
data, which can help us predict the top songs:

Figure 12.19 – A decision tree that visualizes the multivariate patterns of the top songs

Open TopSongDT.pdf on your own and study it. For instance, you will see that the
most important attribute for a distinction between top songs and non-top songs is
Artists_n_followers. For another example, if the song does not have artists with
high followings, the best shot the song has at becoming a top song is that the song is
explicit, danceable, and from artists with less experience. There are many more useful
patterns like this in the decision tree. Continue studying TopSongDT.pdf to find them.

Example summary
In this example, we performed many steps to get to a point where songIntegrate_df
was in a state where we were able to perform analysis and find useful information. To jog
our memory, these are the steps that we took:

1.	 Checked for duplicates in all three data sources
2.	 Designed the structure of the final and integrated dataset
3.	 Integrated the data sources in three steps
4.	 Checked for data redundancy
5.	 Performed analysis

Now, let's summarize the chapter.

380 Data Fusion and Data Integration

Summary
Congratulations on your excellent progress in this chapter. First, we learned the difference
between data fusion and data integration before becoming familiar with six common
data integration challenges. Then, through three comprehensive examples, we used the
programming and analytic tools that we've picked up throughout this book to face these
data integration challenges and preprocess the data sources so that we were able to meet
the analytic goals.

In the next chapter, we will focus on another data preprocessing concept that is crucial,
especially for algorithmic data analytics due to the limitations of computational resources:
data reduction.

Before you start your journey on data reduction, take some time and try out the following
exercises to solidify your learning.

Exercise
1.	 In your own words, what is the difference between data fusion and data integration?

Provides examples other than the ones given in this chapter.
2.	 Answer the following question about Challenge 4 – aggregation mismatch. Is this

challenge a data fusion one, a data integration one, or both? Explain why.
3.	 How come Challenge 2 – unwise data collection is somehow both a data cleaning

step and a data integration step? Do you think it is essential that we categorize an
unwise data collection under data cleaning or data integration?

4.	 In Example 1 of this chapter, we used multi-level indexing using Date and Hour
to overcome the index mismatched formatting challenge. For this exercise, repeat
this example but this time, use single-level indexing using the Python DataTime
object instead.

5.	 Recreate Figure 5.20 from Chapter 5, Data Visualization, but instead of using WH
Report_preprocessed.csv, integrate the following three files yourself first: WH
Report.csv, populations.csv, and Countries.csv. Hint: information
about happiness indices come from WH Report.csv, information of the
countries comes from Countries.csv, and population information comes from
populations.csv.

6.	 In Chapter 6, Prediction, Exercise 2, we used ToyotaCorolla_preprocessed.
csv to create a model that predicts the price of cars. In this exercise, we want to
do the preprocessing ourselves. Use ToyotaCorolla.csv to answer the
following questions:

Exercise 381

a) Are there any concerns regarding level I data cleaning? If so, address them
if necessary.

b) Are there any concerns regarding level II data cleaning? If so, address them
if necessary.

c) Are there any concerns regarding level III data cleaning? If so, address them
if necessary.

d) Are there any attributes in ToyotaCorolla.csv that can be considered
redundant?

e) Apply LinearRegression from sklearn.linear_model. Did you have
to remove the redundant attributes? Why/why not?

f) Apply MLPRegressor from sklearn.neural_network. Did you have to
remove the redundant attributes? Why/why not?

7.	 We would like to use the Universities.csv file to put the universities into
two meaningful clusters. However, the data source has many issues, including data
cleaning levels I – III and data redundancy. Do the following:

a) Deal with data cleaning issues.

b) Deal with data redundancy issues.

c) Use any column necessary except for State and Public (1)/ Private
(2) to find the two meaningful clusters.

d) Perform centroid analysis and name each cluster.

e) Find out if the newly created categorical attribute cluster has a relationship with
either of the two categorical attributes we intentionally did not use for clustering:
State or Public (1)/ Private (2).

8.	 In this exercise, we will see an example of data fusion. The case study that we will
use in this exercise was already introduced in the data fusion example for this
chapter, so please go back and read it again before continuing with this exercise.

In this example, we would like to integrate Yield.csv and Treatment.csv to
see if the amount of water can impact the amount of yield.

Do the following to make this happen:

a) Use pd.read_csv() to read Yield.csv to yield_df, and read
Treatment.csv into treatment_df.

b) Draw a scatterplot of the points in treatment_df. Use the dimension of color
to add the amount of water that has been dispensed from each point.

382 Data Fusion and Data Integration

c) Draw a scatterplot of the points in yield_df. Use the dimension of color to add
the amount of harvest that has been collected from each point.

d) Create a scatterplot that combines the visual in Steps b and c.

e) From the scatterplots in the preceding steps, we can deduce that the water
stations are equidistant from one another. Based on this realization, calculate the
distance between the water points, and call it radius. We are going to use this
variable in the following set of calculations.

e) First, use the following code to create the calculateDistance() function:
import math

def calculateDistance(x1,y1,x2,y2):

 dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)

 return dist

Then, using the following code and the preceding function we just created, create
the waterRecieved() function so that we can apply it to the function for the
rows of treatment_df:

def WaterReceived(r):

 w = 0

 for i, rr in treatment_df.iterrows():

 distance = calculateDistance(rr.longitude,
 rr.latitude, r.longitude, r.latitude)

 if (distance< radius):

 w= w + rr.water * ((radius-distance)/radius)

 return w

a) Apply waterRecieved() to the rows of yield_df and add the newly
calculated value for each row to the water column.

b) Study the newly updated yield_df. You just fused these two data sources. Go
back and study these steps, especially the process of creating the waterRecieved()
function. What are the assumptions that made this data fusion possible?

c) Draw a scatterplot of the yield_df.harvest and yield_df.water attributes.
Do we see any impact that yield_df.water has on yield_df.harvest?

d) Use the correlation coefficient to confirm your observation from the previous step.

13
Data Reduction

We have come to yet another important step of data preprocessing that is not concerned
with data cleaning; this is known as data reduction. To successfully perform analytics, we
need to be able to recognize situations where data reduction is necessary and know the
best techniques and the how-to of their implementation. In this chapter, we will learn what
data reduction is. Let's put this another way: we will learn what the data pre-processing
steps are that we call data reduction. Furthermore, we will cover the major reasons and
objectives of data preprocessing. Most importantly, we will look at a categorized list of
data reduction tools and learn what they are, how they can help, and how we can use
Python to implement them.

In this chapter, we are going to cover the following main topics:

•	 The distinction between data reduction and data redundancy

•	 Types of data reduction

•	 Performing numerosity data reduction

•	 Performing dimensionality data reduction

384 Data Reduction

Technical requirements
You can find the code and dataset for this chapter in this book's GitHub repository
at https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. You can find Chapter13 in this repository and
download the code and data for a better learning experience.

The distinction between data reduction and
data redundancy
In the previous chapter, Chapter 12, Data Fusion and Data Integration, we discussed
and saw an example of the data redundancy challenge. While data redundancy and
data reduction have very similar names and their terms use words that have connected
meanings, the concepts are very different. Data redundancy is about having the same
information presented under more than one attribute. As we saw, this can happen when
we integrate data sources. However, data reduction is about reducing the size of data due
to one of the following three reasons:

•	 High-Dimensional Visualizations: When we have to pack more than three to five
dimensions into one visual, we will reach the human limitation of comprehension.

•	 Computational Cost: Datasets that are too large may require too much
computation. This might be the case for algorithmic approaches.

•	 Curse of Dimensionality: Some of the statistical approaches become incapable of
finding meaningful patterns in the data because there are too many attributes.

In other words, data redundancy is a characteristic that a dataset may have. This
characteristic is about having redundant data in the dataset, so we may have to take some
actions. On the other hand, data reduction is a set of actions that we can take to reduce
the size of data due to the aforementioned reasons.

When we remove some part of a dataset due to its data redundancy, can we call the
removal part data reduction? After all, we are removing and reducing the dataset. In
the general sense of the term reduction, yes, the dataset is being reduced, but in the
context of data mining, the terms data reduction and data redundancy have specific
meanings. And based on those specific meanings, as described previously, the answer to
the question is no.

Now that we've learned about the distinction between data redundancy and data
reduction, let's learn how to assess the success of a data reduction operation.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Types of data reduction 385

The objectives of data reduction
Successful data reduction seeks to achieve the following two objectives at the same time.
First, data reduction seeks to obtain a reduced representation of the dataset that is much
smaller in volume. Second, it tries to closely maintain the integrity of the original data,
which means making sure that data reduction will not lead to including bias and critical
information being lost in the data.

As shown in the following diagram, these two objectives can be contradictory and when
performing data reduction actions, the two objectives must be taken into consideration at
the same time so that one is not overshadowed by the other:

Figure 13.1 – The counterbalancing objectives of data reduction

With these two objectives in mind, we will look at examples of data reduction and how
we can ensure both objectives are met. However, before we do that, let's categorize the
different methods of data reduction so that we can give our content a nice structure.

Types of data reduction
There are two types of data reduction methods. They are called numerosity data
reduction and dimensionality data reduction. As their names suggest, the former
performs data reduction by reducing the number of data objects or rows in a dataset,
while the latter performs data reduction by reducing the number of dimensions or
attributes in a dataset.

386 Data Reduction

In this chapter, we will cover three methods for numerosity reduction and six methods
for dimensionality reduction. The following are the numerosity reduction methods we
will cover:

•	 Random Sampling: Randomly selecting some of the data objects to avoid
unaffordable computational costs.

•	 Stratified Sampling: Randomly selecting some of the data objects to avoid the
unaffordable computational costs, all the while maintaining the ratio representation
of the sub-populations in the sample.

•	 Random Over/Under Sampling: Randomly selecting some of the data objects
to avoid the unaffordable computational costs, all the while creating a prescribed
representation of the sub-populations in the sample.

The following are the dimensionality reduction methods we will cover:

•	 Linear Regression: Using regression analysis to investigate the predictive power
of independent attributes to predict a specific dependent attribute

•	 Decision Tree: Using the decision tree algorithm to investigate the predictive power
of the independent attributes to predict a specific dependent attribute

•	 Random Forest: Using the random forest algorithm to investigate the predictive
power of the independent attributes to predict a specific dependent attribute

•	 Brute-force Computational Dimension Reduction: Computational
experimentations to figure out the best subset of independent attributes that leads
to the most successful prediction of the dependent attribute

•	 Principal Component Analysis (PCA): Representing the data by transforming
the axes in such ways that most of the variation in the data is explained by the first
attributes and the attributes are orthogonal to one another

•	 Functional Data Analysis (FDA): Representing the data using fewer points using
functional representation

Some of these explanations may have gone over your head here. Don't worry; next, we will
learn about each of these using analytic examples, so the context of those examples will
help you understand all of these techniques.

First, we will look at the three numerosity reduction methods, after which we will cover
the dimensionality reduction ones.

Performing numerosity data reduction 387

Performing numerosity data reduction
When we need to reduce the number of data objects (rows) as opposed to the number
of attributes (columns), we have a case of numerosity reduction. In this section, we
will cover three methods: random sampling, stratified sampling, and random over/
undersampling. Let's start with random sampling.

Random sampling
Randomly selecting some of the rows to be included in the analysis is known as random
sampling. The reason we are compelled to accept random sampling is when we run into
computational limitations. This normally happens when the size of our data is bigger than
our computational capabilities. In those situations, we may randomly select a subset of the
data objects to be included in the analysis. Let's look at an example.

Example – random sampling to speed up tuning
In this example, we are using Customer Churn.csv to train a decision tree so that it
can predict (classify) what customer will be churning in the future.

Before reading on, please go back and study Example 2 – restructuring the table in Chapter
10, Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table. In that
example, we used visualization – specifically, box plots – to figure out which attributes
have the potential to give us an insight into the customer's future decisions regarding
churning. In this example, we want to do the same thing but this time, we want to take
a multi-variate approach where the interactions of these attributes are also considered.
This can be done using a well-tuned decision tree algorithm.

In this book, we have not covered the techniques of algorithm tuning. But we'll get
a glimpse of them here. One of the standard ways of tuning an algorithm is to take a
brute-force approach where we use all the possible combinations of hyperparameters and
see which one leads to the best outcome. The following code uses the GridSearchCV()
function from sklearn.model_selection to experiment with all the combinations
of the listed possibilities for the criterion, max_depth, min_samples_split,
and min_impurity_decrease hyperparameters. These hyperparameters are the
DecisionTreeClassifier() model's from sklearn.tree:

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import GridSearchCV

y=customer_df['Churn']

Xs = customer_df.drop(columns=['Churn'])

388 Data Reduction

param_grid = { 'criterion':['gini','entropy'], 'max_depth':
[10,20,30,40,50,60], 'min_samples_split': [10,20,30,40,50],
'min_impurity_decrease': [0,0.001, 0.005, 0.01, 0.05, 0.1]}

gridSearch = GridSearchCV(DecisionTreeClassifier(), param_grid,
cv=3, scoring='recall',verbose=1)

gridSearch.fit(Xs, y)

print(Best score: ', gridSearch.best_score_)

print(Best parameters: ', gridSearch.best_params_)

Run the preceding code before reading on. Upon running this code, it will report that
there are 360 candidate models, and each will be fitted three times on different subsets
of the input dataset, totaling 1,080 fittings. The 360 model candidate comes from the
multiplication of 2,6, 5, and 6, which are the number of possibilities that the preceding
code has listed for the mentioned hyperparameters, respectively.

The code will take a while to run. It took my computer, with a CPU speed of 1.3 GHz,
around 26 seconds to finish. This may not sound like a very significant amount of time, but
the dataset only contains around 3,000 customers. Imagine if the number of customers
was 30 million, which is not unimaginable for today's telecommunication companies.
Here, this 26 seconds would probably be 26,000 seconds, which is equivalent to 7 hours,
just to tune the algorithm. That is no good.

One of the approaches we can take to reduce this amount of time is random sampling.
The following code has implemented random sampling by using the pandas DataFrame
.sample() function, which takes the number of random samples you'd like from the
DataFrame:

customer_df_rs = customer_df.sample(1000, random_state=1)

y=customer_df_rs['Churn']

Xs = customer_df_rs.drop(columns=['Churn'])

gridSearch = GridSearchCV(DecisionTreeClassifier(), param_grid,
cv=3, scoring='recall',verbose=1)

gridSearch.fit(Xs, y)

print(Best score: ', gridSearch.best_score_)

print(Best parameters: ', gridSearch.best_params_)

As you can see, first, 1,000 of the data objects have been randomly selected and then the
same tuning code has been applied. After running this code, you will see that the amount
of time it takes for the code to finish will drop significantly. On my computer, it dropped
from 26 seconds to 18 seconds.

Performing numerosity data reduction 389

What is random_state=1 in the preceding code? This is the ingenious way of sklearn
modules controlling randomness for better experimentations. What that means for us is
that if you run the preceding code multiple times, even though you have included some
randomness in the code, you will get the same result every time. Even better, by assigning
the same number to random_state, you can also get the same results that I am getting,
even though we are experimenting with randomness.

You won't have to include random_state=1 in your code, but if you have, you will get the
following parameters as the best ones: {'criterion': 'entropy', 'max_depth':
10, 'min_impurity_decrease': 0.005, 'min_samples_split': 10}.

Now that we know the optimized hyperparameters, we can use them to draw the decision
tree and evaluate the multi-variate patterns that lead to customer churning in this dataset.
The following code uses all the data objects to train DecisionTreeClassifier(),
which includes the optimized hyperparameters we found earlier, to find the multi-variate
relationships between the independent attributes and the dependent attribute; that is,
Churn. Once the model has been trained using this data, the code uses graphviz to
visualize the trained decision tree. At the end of the code, the extracted graph will be
saved in the ChurnDT.pdf file.

Attention!
If you have never used garaphvis on your computer before, you may have
to install it first. To install graphvis, all you need to do is run the following
one-line piece of code. After successfully running this code, graphvis will
be installed on your computer for good.

Run the following one-line piece of code to install graphvis on your computer:

pip install graphviz

After successfully running the following code, you should be able to find the ChurnDT.
pdf file in the same folder where you have your Jupyter Notebook file:

from sklearn.tree import export_graphviz

import graphviz

y=customer_df['Churn']

Xs = customer_df.drop(columns=['Churn'])

classTree = DecisionTreeClassifier(criterion= 'entropy', max_
depth= 10, min_samples_split= 10, min_impurity_decrease= 0.005)

classTree.fit(Xs, y)

390 Data Reduction

dot_data = export_graphviz(classTree, out_file=None, feature_
names=Xs.columns, class_names=['Not Churn', 'Churn'],
filled=True, rounded=True, special_characters=True)

graph = graphviz.Source(dot_data)

graph.render(filename='ChurnDT')

The following diagram shows the content of ChurnDT.pdf that will be saved on your
computer after running the preceding code successfully:

Figure 13.2 – The trained decision tree showing the multivariate patterns of customer
churning in customer_df

Performing numerosity data reduction 391

As we can see, random sampling is useful when we don't have the computational
capability to include all of the data objects. It is debatable if random sampling maintains
a good balance of the two counterbalancing objectives of successful data reduction shown
in Figure 13.1. Due to its limited computational capabilities, we do need a smaller version
of the dataset. By incorporating complete randomness, we give all of the data objects the
same chance to be selected, so to some extent, we are maintaining the integrity of the
dataset and avoiding introducing any bias by arbitrarily selecting a subset of the dataset.

In this example, we could have maintained the integrity of the dataset better. When it
comes to binary classification, most of the time, one of the classes is significantly less
frequent. In the case of churn_df, there are 495 Churn=1 cases and 2,655 Churn=0 cases;
that is, approximately 15.7% of cases are churn cases and 84.3% are non-churn cases. You
can see this by running customer_df.Churn.value_counts(normalize=True).

Now, let's see what happens to these ratios when we take samples from customer_df.
The following screenshot shows the ratios of churn and non-churn for three experiments
of sampling from customer_df:

Figure 13.3 – Three sampling experiments on churn_df to see the ratios of
churn and non-churn in the samples

In the preceding screenshot, we can see that after every three experiments, the ratios do
not match the original dataset's. This begs the question, are there sampling methods that
make sure these ratios match the original dataset? The answer is yes. One such method is
stratified sampling. We will look at this in the next section.

392 Data Reduction

Stratified sampling
Stratified sampling, also known as proportional random sampling, is a numerosity data
reduction method. The similarity between random sampling and stratified sampling is
that in both samplings, all the data objects have some chance to be selected in the sample.
The distinction is that stratified sampling makes sure that the selected data objects show
the same representation of the groups in the original dataset. The distinction between
these methods is shown in the following diagram:

Figure 13.4 – Stratified sampling versus random sampling

Performing numerosity data reduction 393

The preceding diagram shows a dataset in the middle, five instances of random sampling
on the right, and five instances of stratified sampling on the left. The dataset contains 30
data objects: six stars (*) and 24 pluses (+). Each of the 10 samples selects 15 data objects
out of the 30 data objects. Before reading on, investigate the preceding diagram and try to
figure out the difference between random sampling and stratified sampling.

What jumps out from this diagram is that while all of the stratified samplings have three
stars, the instance of random sampling has stars ranging from two to four. This is because
stratified sampling has maintained the ratio of the data between the groups, while random
sampling does not have such restrictions; 20% (6/30) of the data objects in the original
data are stars, while 20% (3/15) of the data objects in the stratified samples are stars.
However, such restrictions have not been put in place for the random sampling instance.

Example – stratified sampling for an imbalanced dataset
In the previous example, we saw that customer_df is imbalanced as 15.7% of its cases
are churn, while the rest, which is 84.3%, are non-churn. Now, we want to come up with
some code that can perform stratified sampling.

The following code will be able to get a stratified sample of customer_df that
contains 1000 data objects out of the 3,150 data objects. In the end, the code will
print the ratios of churn and non-churn data objects in the sample using .value_
counts(normalize=True). Run the code a few times. You will see that even though
the process is completely random, it will always lead to the same ratios of churn and
non-churn cases:

n,s=len(customer_df),1000

r = s/n

sample_df = customer_df.groupby('Churn', group_keys=False)
.apply(lambda sdf: sdf.sample(round(len(sdf)*r)))

print(sample_df.Churn.value_counts(normalize=True))

394 Data Reduction

The preceding code may have gone over your head in terms of its way of using the
.groupby() and .apply() functions. This is the first time we have had to use this
combination in this book. This is as good an opportunity as any to learn about this
combination. When we want a specific set of operations to be performed on multiple
subsets of a DataFrame, we will specify the subsets by the.groupby() function first.
After this, using the .apply() function opens the door for us to be able to perform
operations on those subsets created by .groupby(). Here, sdf stands for Subset
DataFrame.

Before moving on to the next section, let's discuss how stratified sampling approaches
the two objectives of data reduction presented in Figure 13.1. As we implied previously,
stratified sampling puts more effort into the objective of maintaining the integrity of the
original data. Of course, when we have different populations in the same dataset and we
want to make sure the representation ratios are intact, stratified sampling helps us achieve
this goal.

Random over/undersampling
Unlike random sampling and stratified sampling, where the chance of objects being
selected in the sample is dictated by the dataset, random over/undersampling due to the
needs of analytic gives more or less chance of being selected to certain data objects.

To understand random over/undersampling, let's compare it to stratified sampling. When
we perform stratified sampling, we calculate the ratio of the sub-populations based on the
important attribute and then perform a controlled random sampling, where the ratios are
maintained in the sample. On the other hand, in random over/undersampling, we have a
prescribed ratio that we want our sample to have; that is, we decide what ratios we want
based on our analytic needs.

To illustrate this, the following diagram compares two instances of stratified sampling
from customer_df with two instances of over/undersampling, with a 50-50% (1:1)
prescribed ratio between churning and non-churning customers. All the samples contain
500 data objects from the 3,150 data objects in the original dataset. If you study the four
samples in the following diagram, you will notice a few patterns. First, you will see that
all of them are different, which they should be due to the randomized nature of both
sampling methods. Second, you will see that the ratio of churn and non-churn customers
in the two instances of over/undersampling has been shifted, as described previously:

Performing numerosity data reduction 395

Figure 13.5 – Stratified sampling versus random over/undersampling using customer_df

396 Data Reduction

The most common analytic situation that might require over/undersampling is binary
classification using an imbalanced dataset. An imbalanced dataset is a table that has
been prepared for classification and its dependent attribute has two characteristics. First,
the dependent attribute is binary, meaning that it only has two class labels. Second, there
are significantly more of one class label than the other. For example, the customer churn
prediction that we discussed earlier in this chapter uses an imbalanced dataset. To check
this, you can run customer_df.Churn.value_counts(normalize=True).
plot.bar(), which will create a bar chart that shows the frequency of each label in the
customer_df.Churn attribute. You will see that there are around five times more cases
of 0 (non-churn customers) and cases of 1 (churn customers).

Too Specific to Matter?
Binary classification using an imbalanced dataset might sound too specific
to matter. However, the most important classification tasks are binary, and in
almost all of them, the dataset is imbalanced. To name a few very common
and important examples of binary classification that have to use imbalanced
datasets, we can mention online fraud detection, machinery fault detection
using sensor data, and automatic disease detection using radiology images.

The reason that we might want to perform over/undersampling is that it has been seen time
and again that the classification algorithm, by default, might overemphasize learning from
the less frequent class label, and unfortunately, often, the case that matters more for us is
the less frequent one. For example, in the example of churn prediction, it is more important
for us to recognize who will be churning, rather than who will not be churning. So, when
developing an algorithmic solution, we might choose to perform over/undersampling. This
is done to give the algorithm a greater opportunity to learn from the less frequent cases.

The code that we use to apply randomly over/undersampling is very similar to and
simpler than stratified sampling. The following code will be able to get a sample of
customer_df that contains 500 data objects out of the 3,150 data objects. There will be
250 data objects from both the churning and non-churning customers. In the end, the
code will print the ratios of the churn and non-churn data objects in the sample using
.value_counts(normalize=True). This code is a copy of the preceding code with
a few changes; to help you see them, the updated parts are highlighted. Before running the
following code, first, compare it with the preceding one to study the changes. Then, run
the code a few times. You will see that even though the process is completely random, it
will always lead to the same and equal ratios of churn and non-churn cases:

n,s=len(customer_df),500

sample_df = customer_df.groupby('Churn', group_keys=False)
.apply(lambda sdf: sdf.sample(250))

print(sample_df.Churn.value_counts(normalize=True))

Performing dimensionality data reduction 397

Before switching gears from numerosity data reduction to dimensionality data reduction,
let's discuss how random over/undersampling approaches the two objectives of data
reduction presented in Figure 13.1. This approach intentionally disrupts the integrity of the
original dataset due to analytic reasons. However, as the sampling is performed randomly,
the randomness helps keep the integrity of the dataset to some degree. The fact that we
committed to this transgression here is that, at times, random over/undersampling happens
both as a data reduction strategy and as a data transformation strategy. This is the mixing
that allowed us to do this. As we will learn in the next chapter, data transformation does
inflict changes on the data for analytic purposes.

Over/undersampling is more of a data transformation technique, though, at times, it gets
mixed with data reduction. Also, from a technical perspective, it is very similar to random
sampling and stratified sampling, as we learned about here. As a data transformation
technique, oversampling could also mean having repetitions of data objects with the less
frequent class label or even having simulated data objects that we would predict having
the less frequent class label.

Attention!
We will not discuss over/undersampling beyond this point in this book.
This is because successful over/undersampling is highly relevant to the
classification algorithm of choice and you could see it as a hyperparameter
of any classification algorithm. This means that one algorithm's performance
might improve using oversampling, while the other may suffer. Therefore,
oversampling is the content that a book with more emphasis on teaching
algorithms should cover. In this book, our focus is on data preprocessing.

Now, it is time to switch gear! Dimensionality data reduction, here we come!

Performing dimensionality data reduction
When we need to reduce the number of attributes (columns) as opposed to the number
of data objects (rows), we have a case of dimensionality reduction. This is also known as
dimension reduction. In this section, we will cover six methods: regression, decision tree,
random forest, computational dimension reduction, functional data analysis (FDA),
and principal component analysis (PCA).

398 Data Reduction

Before we talk about each of them, we must note that there are two types of dimension
reduction methods: supervised and unsupervised. Supervised dimension reduction
methods aim to reduce the dimensions to help us predict or classify a dependent attribute.
For instance, when we applied a decision tree algorithm to figure out which multi-variate
patterns can predict customer churning, earlier in this chapter, we performed a supervised
dimensionality reduction. The attributes that did not show up on the tree in Figure 13.2
are not important for predicting (classifying) customer churn.

On the other hand, when dimension reduction is performed without paying attention to
the task of prediction or classification, and data reduction is done only to reduce the data
size or perhaps data transformation and massaging, then we have unsupervised dimension
reduction. If the terms data transformation and data massaging are not familiar to you,
don't worry. We will discuss these in the next chapter.

Now, let's look at each of the six methods. I will refrain from mentioning if each method is
supervised or unsupervised so that you can think about them on your own. Exercise 4, at
the end of this chapter, will ask you to answer that for each method.

Linear regression as a dimension reduction method
We learned about linear regression as a prediction model in Chapter 6, Prediction.
Linear regression is a very well-researched and integrated statistical method. As such,
the libraries that package this method normally come with many built-in metrics and
hypothesis testings that can be very useful for analyzing the dataset. A group of such
hypothesis testing is very useful in deciding if each independent attribute is playing a
significant role in predicting a dependent attribute.

Therefore, linear regression can be used as a dimension reduction method by looking
at the resulting p-value of those hypothesis testings. The p-values that do not show that
there is a meaningful relationship between the relevant independent attributes and the
dependent attribute can be used as evidence, to help remove those independent attributes
from the analysis. Let's look at an example to understand this better.

Example – dimension reduction using linear regression
In this example, we would like to use amznStock.csv, which contains some calculated
metrics from the historical data of Amazon stock that's was collected and computed on
January 11, 2021, to predict the next day percentage of change of the Amazon stock. The
dependent attribute in this dataset is today_changeP. The independent attributes are
as follows:

•	 yes_changeP: Amazon's stock price change in the previous day

•	 lastweek_changeP: Amazon's stock price change in the previous week

Performing dimensionality data reduction 399

•	 dow_yes_changeP: Dow Jones change in the previous day

•	 dow_lastweek_changeP: Dow Jones change in the previous week

•	 nasdaq_yes_changeP: NASDAQ 100 change in the previous day

•	 nasdaq_lastweek_changeP: Last week's NASDAQ 100 change in the
previous week

I created this dataset on January 11, 2021, to create the YouTube video A Taste of
Prediction (https://youtu.be/_z0oHuTnMKc). To find out more about this dataset
and the logic behind it, please see the YouTube video.

Now that I am looking at the name of the attributes, I think the attribute names can
become much more intuitive. So, let's start by doing some level I data cleaning; that is,
creating concise and intuitive attribute titles. The attribute titles are concise but they can
be more intuitive.

The following code reads the dataset into amzn_df, sets t as the index of amzn_df, and
changes the attribute titles:

amzn_df = pd.read_csv('amznStock.csv')

amzn_df.set_index('t',drop=True,inplace=True)

amzn_df.columns = ['pd_changeP', 'pw_changeP', 'dow_pd_
changeP','dow_pw_changeP', 'nasdaq_pd_changeP', 'nasdaq_pw_
changeP', 'changeP']

Changing the attribute titles in the previous code followed three simple patterns. The
yes title segment, which was meant to represent yesterday, was updated with _pd_,
which is meant to present the previous day. Moreover, the _lastweek_ title segment was
updated with _pw_, which is meant to present the previous week. Lastly, the today title
segment was eliminated from the dependent attribute.

Now, let's bring our attention to dimension reduction using linear regression. To use linear
regression as a dimension reduction method, we have to perform linear regression as
though we are going to train the prediction model. The following is the linear regression
equation for this amzn_df:

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑝𝑝𝑑𝑑𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑃𝑃 + 𝛽𝛽2 × 𝑝𝑝𝑤𝑤𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽3 × 𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝛽𝛽4 × 𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽5 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝛽𝛽6 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

https://youtu.be/_z0oHuTnMKc

400 Data Reduction

To practice and review this, before reading on, refer back to the Example of applying
linear regression to perform regression analysis section of Chapter 5, Data Visualization,
and estimate the values of the βs in the preceding linear regression equation using
LinearRegression() from sklearn.linear_model.

Even though LinearRegression() is a great and stable function to use for linear
regression, unfortunately, this function does not include the hypothesis testings that are
necessary for applying linear regression as a dimension reduction method. That is why the
following code uses the OLS() function, from statsmodels.api, to import a linear
regression module that outputs the results of the hypothesis testing we discussed earlier:

import statsmodels.api as sm

Xs = amzn_df.drop(columns=['changeP'], index =['2021-01-12'])

Xs = sm.add_constant(Xs)

y = amzn_df.drop(index =['2021-01-12']).changeP

sm.OLS(y, Xs).fit().summary()

Let's go over a few things about the preceding code that might have become a question for
you before we analyze its output:

•	 Why are we dropping the data object with an index of 2021-01-12? If you print
amzn_df, you will see that this data object is presented as the last row of this
DataFrame and that there is no value for the dependent attribute; that is, changeP.
Do you remember that the dataset was collected and computed on January 11,
2021? At that time, we did not know what changeP of January 12 will be. The
dataset was put together to try to predict this value.

•	 What is the purpose of Xs = sm.add_constant(Xs)? This line of code adds a
column whose value for all the rows is 1. The reason for this addition is to make sure
OLS() will include a constant coefficient, which is what linear regression models
have. Why did we not have to include this when we used LinearRegression()
from sklearn.linear_model? That is a good question and the answer is that
the developer of each module may choose to create their module based on what
they think is a better approach. As users, we need to learn how and when we should
use what module.

Now that we understand the code, let's pay attention to its output. After successfully
running the preceding code, you will get the following output:

Performing dimensionality data reduction 401

Figure 13.6 – The result of the OLS() function on the described linear regression model

Before reading on, go back to the βs you estimated using LinearRegression(). The
β values must be the same as the values you can see in the preceding diagram, under the
coef column.

In the same table, in the P>|t| column, you can find the p-values of the hypothesis
test of the independent attribute's significance for predicting the dependent attribute.
You can see that most of the p-values are way larger than the cut-off point of 0.05, except
for dow_pd_changeP, which is slightly larger than the cut-off point. Based on our
understanding of the p-value, we can see that we don't have enough evidence to reject the
null hypothesis that most of the independent attributes are not related to the dependent
attribute – that is, except for dow_pd_changeP, which has a rather small probability that
this attribute is not related to the dependent attribute. So, if we were going to keep any
attribute, we would keep dow_pd_changeP and remove the rest.

402 Data Reduction

In this example, we used linear regression to turn a prediction model with six independent
attributes into a prediction model with only one independent attribute. The following is a
simplified version of the linear equation:

If you modify the preceding code so that the OLS() functions will run the new model,
you will get the following output:

Figure 13.7 – The result of the OLS() function on the reduced linear regression model

Comparing the adjusted R2 (Adj. R-squared), which is a reliable metric for the quality
of linear regression, in Figure 13.6 and Figure 13.7 shows that data reduction helped with
the success of the model. Even though the model in Figure 13.7 has fewer independent
attributes, it is more successful than the model in Figure 13.6.

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑑𝑑𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Performing dimensionality data reduction 403

The shortcoming of linear regression as a dimension reduction method is that the
model takes a univariate approach in deciding if an independent attribute helps predict
the dependent attribute. In many situations, it might be the case that an independent
attribute is not a good predictor of the dependent attribute but its interaction with other
independent attributes might be helpful. That is why, when we want to perform dimension
reduction before capturing multi-variate pattern recognition, linear regression is not a
good method of choice. For those cases, we should use one of the other methods, such
as decision tree, random forest, or computational dimension reduction. We will
be learning about each of these methods in this section. Next up, we'll look at using a
decision tree as a dimension reduction method.

Using a decision tree as a dimension reduction
method
Throughout this book, we have learned that the decision tree algorithm can handle both
prediction and classification data mining tasks. However, here, we want to see how a
decision tree can be used as a method for dimension reduction. The logic is simple: if an
attribute was a part of a tuned and trained final decision tree, then the attribute must have
helped predict or classify the dependent attribute.

For example, in the tuned and trained decision tree for predicting customer churn, as
shown in Figure 13.2, all of the eight attributes were used in the final decision tree. This
shows that we would not want to remove any of the independent attributes for multi-
variate pattern recognition.

The decision tree algorithm is an effective way to see if an attribute has the potential to
predict or classify a dependent attribute in a multi-variate way, but it does have some
shortcomings. First, the decision tree makes a binary decision about whether each attribute
should be included or not, and we do not have a way to see how valuable each dependent
attribute is. Second, it might be the case that an attribute is excluded – not because it does
not play a role in any multivariate pattern, which can help predict the dependent attribute –
but because the attribute can be beneficial but the structure and/or the logic of the decision
tree fails to capture the specific patterns that the attribute plays a role in.

Next, we will learn about the random forest algorithm, which rectifies the first
shortcoming of the decision tree. After that, we will learn about brute-force computational
dimension reduction, which can deal with the second shortcoming.

404 Data Reduction

Using random forest as a dimension reduction method
We have not been introduced to the random forest algorithm before in this book. This
algorithm is similar to the decision tree algorithm and can handle both classification
and prediction data mining tasks. However, its unique design makes the random forest
a prime candidate to be used as a dimension reduction method.

Random forest, as the name suggests, instead of just relying on one decision tree to
perform classification or prediction, uses many decision trees in a randomized way. The
decision trees that the random forest uses are random and have fewer levels. These smaller
decision trees are called weak predictors or classifiers. The logic behind random forest is
that instead of using an opinionated decision tree (one strong predictor) to give us one
prediction, we can employ multiple, more flexible, decision trees (weak predictors) and
consolidate their predictions into a final class or a value.

As a dimension reduction method, we can just look at the number of times each attribute
appeared in the multiple weak decision trees and arrive at a percentage of decision trees
that each attribute was employed by. This will be invaluable information regarding our
choice to keep or remove attributes.

Let's look at an example.

Example – dimension reduction using random forest
In this example, we would like to use random forest to come to the relative importance of
each attribute in the classification of customer churn using the Customer Churn.csv
file. We saw the influence that each attribute has on one tuned and trained decision tree
in Figure 13.2. However, here, we are more interested in coming to a numerical value that
shows the importance of each attribute.

The following code uses RandomForestClassifier() from sklearn.ensemble
to train a random forest model that uses 1000 weak decision trees:

from sklearn.ensemble import RandomForestClassifier

y=customer_df['Churn']

Xs = customer_df.drop(columns=['Churn'])

rf = RandomForestClassifier(n_estimators=1000)

rf.fit(Xs, y)

Performing dimensionality data reduction 405

After successfully running the preceding code, which might take a few seconds to
run, nothing will happen. But don't worry – the magic has happened; we just need to
access what we are looking for. Print rf.feature_importances_ and look at the
numerical values that show the importance of the independent attributes. The code
shown in the following screenshot creates a pandas Series, sorts the attributes based on
their importance, and then creates a bar chart that shows the relative importance of each
attribute to classify customer churn:

Figure 13.8 – Creating a bar chart using a pandas Series and Matplotlib to show the relative importance
of independent attributes to classify customer churn in customer_df

The information shown in the preceding screenshot, other than the valuable implications
for dimension reduction, may also be used for direct analysis. For instance, we can see
that the complaints attribute has floated to the top of the list. This means that customer
complaints have very important implications for customer churn and that the decision-
makers of the telecommunication company that this data was collected from may be able
to use that for positive change.

While random forests do not suffer from the first shortcoming of decision trees regarding
dimension reduction, they do suffer from the second shortcoming. That is, we cannot be
certain that if an attribute does not show enough importance through the fandom forest,
it will not be valuable for predicting the dependent attribute in other algorithms. The
next dimension reduction method that we will learn about, brute-force computational
dimension reduction, does not have this shortcoming. However, this method is
computationally very expensive. Let's learn more about it.

406 Data Reduction

Brute-force computational dimension reduction
This method uses a brute-force approach where all the different subsets of independent
attributes are used in an algorithm to predict or classify the dependent attribute. After
this brute-force experimentation, we will know which combination of the independent
attributes can best predict the dependent attribute.

The Achilles heel of this method is that it can become computationally very expensive,
especially if the algorithm of choice is also computationally expensive. For instance,
using computational dimension reduction to find the best subset of independent attributes
using an artificial neural network (ANN) will probably have a higher chance of leading
to the optimum predictor, but at the same time, it will probably take a significant amount
of time to run.

On the other hand, this approach does not suffer from the shortcomings of the other
dimension reduction methods we have learned about so far. Brute-force computational
dimension reduction can be coupled with any prediction or classification algorithms,
thus removing our method-specific results concern we had with the decision tree and
random forest.

Now, let's look at an example and see what brute-force computational dimension
reduction would look like.

Example – finding the best subset of independent attributes for
a classification algorithm
In this example, we would like to find the best subset of independent attributes that would
lead to the best performance of K-Nearest Neighbors (KNN) in predicting customer
churn in the Customer Churn.csv file.

We learned about KNN in Chapter 7, Classification, and, as you may recall, to successfully
implement KNN, we need to have tuned the number of neighbors (K). So, if we want to
check which subset will lead to the best KNN performance, we will need to tune KNN
once for every combination of the independent attributes. This will make the process even
more computationally expensive.

The following code has put all these pieces together so that we can experiment with every
combination of independent attributes after tuning KNN for them. This code has many
parts and we will go over them later in the chapter.

Performing dimensionality data reduction 407

This code has been presented in the form of a screenshot because it is rather large. If you
wish to copy the code instead of typing it, please see the Chapter13 file in this book's
GitHub repository:

Figure 13.9 – Brute-force dimensionality reduction to optimize KNN's performance
when predicting customer churn

Let's go over the different parts of the code in the form of the questions you might have
about it. Before reading on, try running and also understanding the code.

408 Data Reduction

As the code will be computationally expensive, it might be smart to let your computer run
the code while you try to understand it:

•	 What is itertools and why do we need it? It is a very useful module when we
need a complex web of nested loops to get our task done. To create every possible
combination of the independent attributes, we need to have various number of
nested loops under the main loop, and that is not possible to do using the regular
iteration functionality of Python. If the previous sentence didn't make sense and
you are adamant about understanding it, try to write some code that prints all the
combinations of the independent attributes; then, you will understand.

By using itertools .combinations(), we were able to create all the combinations
in a two-level nested loop.

•	 What is result_df and why do we need it? This is a pandas DataFrame that
this code uses as a placeholder, in which we will record the records of all the
brute_force experimentations.

•	 What is recall and why are we evaluating our method using recall instead of
accuracy? Recall is a specific evaluation metric of binary classification tasks, and in
this case study, having a better recall is more important than better accuracy. I'd say
Google it and learn more about it, but if you are not interested in learning about
what recall is at this point in your data analytics career, I think just looking at it
as an appropriate evaluation metric would do for now.

•	 Why are we only experimenting with the four possible values of [1,3,5,7] for K?
This is a measure that's used to cut the computational costs because without it, the
code would take a very long time to run.

Once you have fully understood the preceding code and your computer has finished
running it, you should sort the pandas DataFrame, result_df, by the performance
column and see the results of your experimentation. result_df.sort_
values('performance',ascending=False) does this, and studying its output
will help you realize that the following two combinations will lead to a very successful
KNN classification with recall scores of 0.99596:

•	 Complains, Seconds of Use, Frequency of use, Distinct Called Numbers

•	 Seconds of Use, Frequency of SMS, Distinct Called Numbers

Performing dimensionality data reduction 409

Comparing the final results of this example with Figure 13.8, which was the final result of
the random forest on the same case study, can teach us a lot about the advantages of the
brute-force computational dimension reduction method:

•	 First, we can see that what was important for the random forest is not necessarily
important for KNN. For instance, while for the random forest, Distinct Called
Numbers was not very important, we can see that KNN can use it to get its
best performance.

•	 Second, while the random forest gave us a good visualization about the importance
of the attributes after we received these results, we will still need to make decisions
as to what attributes we need to exclude or include. However, brute-force
computational dimension reduction will tell us exactly what attributes to include.

While these advantages of brute-force computational dimension reduction sound very
impressive, I'd hesitate to write this method up as the best. The computational cost of this
method is a real concern.

So far in this chapter, we've learned about two numerosity reduction methods and four
dimensionality reduction methods. The dimensionality reduction methods we've learned
about so far are specific to prediction or classification. We will learn about two more
dimensionality reduction methods that are more general and can be used as one of the
preprocessing steps before any task, including classification and prediction. These two
methods are principal component analysis (PCA) and functional data analysis (FDA).
Let's start with PCA.

PCA
This dimension reduction method is the most famous general and non-parametric
dimension reduction method in the literature. There are rather complex mathematical
formulas if we raise the hood of the method and take a look at how the method works.
However, we are not going to get bogged down in the mathematical complexities. Instead,
we are going to learn about PCA by using two examples: one containing a toy dataset and
one containing a real example. So, let's dive into the first example and learn about PCA.

Example – toy dataset
In this example, we are going to use the PCA_toy_dataset.xlsx file. The following
screenshot, which is in a dashboard-style, shows five items:

•	 The code to read the file into toy_df

•	 The Jupyter Notebook representation of toy_df

410 Data Reduction

•	 The scatterplot of the two dimensions of toy_df

•	 The calculated variance of both attributes in toy_df and their summation (Total)

•	 The correlation matrix of toy_df:

Figure 13.10 – A dashboard containing information and visuals for toy_df

Using the preceding screenshot, we can gain a lot of insight into toy_df. What jumps
out right off the bat is that Dimension_1 and Dimension_2 are strongly correlated. We
can see this both in the scatterplot and the correlation matrix; the correlation coefficient
between Dimension_1 and Dimension_2 is 0.859195. We can also see that there is a total
of 1026.989474 variations in toy_df; Dimension_1 contributes 415.315789 of the total
variation, while Dimension_2 contributes the rest.

Performing dimensionality data reduction 411

The way PCA looks at any data is in terms of variations. For PCA, there is this much
(1026.989474) information presented in toy_df. Yes, PCA considers variations across
different data attribute information. For PCA, the way that the information is presented
across the two attributes is troublesome. PCA doesn't like the fact that some of the
information that is presented by Dimension_1 is the same as some of the information
presented by Dimension_2, and vice versa. PCA has a non-parametric view of the data.
For PCA, the attributes are simply the holders of information in form of numerical
variations. Thus, PCA sees it as fitting to transform the data so that the dimensions do not
show similar information.

Before discussing what transformations PCA applies to a dataset, let's go ahead and
apply them to toy_df and see its results. The following screenshot shows another
dashboard-style visual that shows the information about the PCA-transformed toy_df.
This screenshot contains five items that are similar to the ones shown in Figure 13.11.
This screenshot also contains the code that uses the PCA() function from sklearn.
decomposition to transform toy_df:

Figure 13.11 – A dashboard containing information and visuals for the PCA transformed toy_df dataset

412 Data Reduction

In the preceding screenshot, we can see the information and visualizations of the
PCA-transformed toy_df, which is called toy_t_df. We call the new columns of a
PCA-transformed dataset principal components (PCs). Here, you can see that since
toy_df has two attributes, toy_t_df has two PCs called PC1 and PC2.

After taking a cursory look at the preceding screenshot and comparing it with Figure
13.11, it might feel like there's no points of similarity between the two DataFrames: the
original toy_df dataset and its PCA-transformed version, toy_t_df. However, you'll
be surprised to know that there are lots of commonalities between the two. First, look at
the total amount of variance in both figures. They are both exactly 1026.989474. So, PCA
does not add information to and remove information from the dataset, it just moves the
variations from one attribute to the other.

A second similarity will show itself when we rotate the scatterplot of Dimension_1 and
Dimension_2 in Figure 13.11. This can be seen in the following diagram, and you can see
that the data presented in Figure 13.12 is the same as that shown in Figure 13.11 after some
axis transformation:

Figure 13.12 – A comparison between the PCA-transformed toy_df dataset
and the visually rotated toy_df dataset

Now, let's talk about what PCA does to a dataset. In plain English, PCA transforms the
axes of a dataset in such a way that the first PC – in this example, PC1 – carries the
maximum possible variation, and the correlation between the PCs – in this example,
PC1 and PC2 – will be zero.

Performing dimensionality data reduction 413

Now, let's compare Figure 13.11 and Figure 13.12 again. While Dimension_1 only
contributes 415.315789 to the total 1026.989474 variations in Figure 13.11, PC1
contributes 957.53716 to the total 1026.989474 variations in Figure 13.12. So, we can
see that the PCA transformation has successfully pushed most of the variations into the
first PC, PC1. Moreover, looking at the scatterplot and the correlation matrix in Figure
13.12, we can see that PC1 and PC2 have no relationship with one another and that the
correlation coefficient is zero (-2.682793e-17). However, we do remember from Figure
13.11 that the relationship between Dimension_1 and Dimension_2 was rather strong
(0.859195). Again, we can see that PCA has been successful in making sure there is no
correlation between PC1 and PC2 in this example. When two attributes are poised to have
zero correlation with one another, it is said that they are orthogonal to one another.

There is more to learn about PCA, but now, you are ready to learn via a real data analytic
application. Let's look at the next example.

Example – non-parametric dimension reduction
Go back to Chapter 8, Clustering Analysis, the Using K-Means to cluster a dataset with
more than two dimensions section and review the clustering we performed there. We
employed K-Means to cluster the countries in WH Report_preprocessed.csv based
on their data from 2019 into three groups. In this example, instead of using only 2019
data, we want to use all of the data in the file. Also, instead of using clustering analysis, we
want to use PCA to visualize the inherent patterns in the data.

In Chapter 8, Clustering Analysis, we used the following nine attributes to cluster
the countries: Life_Ladder, Log_GDP_per_capita, Social_support,
Healthy_life_expectancy_at_birth, Freedom_to_make_life_choices,
Generosity, Perceptions_of_corruption, Positive_affect, and
Negative_affect. As there are more than three attributes, we were unable to use the
visualization methods to visualize a complete representation of the dataset. With the help
of PCA, we can push most of the variations in the data into the first few PCs and visualize
them instead, which will help us get some insight into the general trends in the dataset.

The following code reads the WH Report_preprocessed.csv file into report_df
and then uses the pandas.pivot() function to create country_df:

report_df = pd.read_csv('WH Report_preprocessed.csv')

country_df = report_df.pivot(index='Name', columns='year',
values=['Life_Ladder','Log_GDP_per_capita', 'Social_support',
'Healthy_life_expectancy_at_birth', 'Freedom_to_make_life_
choices', 'Generosity', 'Perceptions_of_corruption', 'Positive_
affect', 'Negative_affect'])

414 Data Reduction

After running the preceding code and studying country_df, you will see that the
dataset has been restructured so that the definitions of the data objects are for each
country, while all the happiness indices of all the 10 years from 2010 to 2019 are included.
Therefore, in total, country_df has 90 attributes now.

After data restructuring, the following code creates Xs and standardizes it. To be specific,
Xs = (Xs - Xs.mean())/Xs.std() standardizes the Xs DataFrame:

Xs = country_df

Xs = (Xs - Xs.mean())/Xs.std()

Xs

We already know how to normalize a dataset. Here, we are using another data
transformation technique: standardization. What distinguishes these two data
transformation methods is why they are used. For clustering, we use normalization
as it makes sure the scale of all the attributes is the same, so each attribute will have
equal weight in the clustering analysis. However, it is essential to standardize the data
before applying PCA. That is because standardization transforms the attributes, so
all of the transformed attributes will have an equal standard deviation: one. After
successfully running the preceding code, run either Xs.var() or Xs.std() to see
that standardizing the data ensures each attribute has the same variance across the
data objects.

Why is standardization necessary before applying PCA? If you remember from what we
have been learning about PCA, this method looks at each attribute as a carrier of some
variation of the total variation. If one attribute happens to have a significantly larger
variance, it will just dominate the PCA's attention. Therefore, to ensure each attribute will
get fair and equal attention from PCA, we will standardize the dataset.

Now that the dataset is ready, let's apply PCA. The following code uses the PCA()
function from sklearn.decomposition to PCA-transform Xs into Xs_t:

from sklearn.decomposition import PCA

pca = PCA()

pca.fit(Xs)

Xs_t = pd.DataFrame(pca.transform(Xs), index = Xs.index)

Xs_t.columns = ['PC{}'.format(i) for i in range(1,91)]

After successfully running the preceding code, print the transformed dataset, Xs_t, and
investigate its state.

Performing dimensionality data reduction 415

Attention!
You might be confused about ['PC{}'.format(i) for i in
range(1,91)] in the preceding code. The technique that was used in
this line of code is called list comprehension. Whenever we want to fill a
collection with iterable items, instead of using traditional loops, we can use list
comprehensions. For instance, if you were to run this line of code separately, it
would print out ['PC1', 'PC2', 'PC3', …, 'PC90'].

The question we should be asking ourselves now is, was PCA successful? We can do better
than asking – we can check. By simply running Xs_t.var(), we can see the amount
of variations that are explained by each PC. After running this, we can see that most of
the variations are explained by the first PCs, but we don't know by exactly how much.
Normally, after performing PCA, we perform cumulative variance explanation analysis
on the PCs.

The following screenshot shows the code for creating explanation_df, which is
a reporting DataFrame that was created to show the variance percentage of each PC,
as well as the cumulative variance percentage up until each PC, starting from PC1:

Figure 13.13 – Creating explanation_df from Xs_t

416 Data Reduction

In the preceding screenshot, we can see that the first three PCs account for 71% of the
total variation in data. We would roughly need 64 out of 90 attributes to be able to account
for around 71% of the variations in a dataset with 90 attributes. However, thanks to PCA,
we have transformed the dataset into a state where we can show 71% of the variations in
the dataset only using three attributes.

Next, we will use our visualization skills to draw a three-dimensional scatterplot. Running
Xs_t.plot.scatter(x='PC1', y='PC2', c='PC3', sharex=False) will
ouput the following 3D scatterplot:

Figure 13.14 – Visualizing 71% of the variations in country_df using PC1, PC2, and PC3

The preceding visualization now has the advantage of having visualized 71% of
the information in country_df, which is an excellent achievement. However,
the disadvantage of creating visualizations using PCs is that the dimensions in the
visualization will not have the intuitive meaning that they would if we were to use the
original attributes for visualization. For instance, compare the preceding diagram with
Figure 8.3 of Chapter 8, Clustering Analysis. In Figure 8.3, you will see that the x-axis
shows Life_Ladder, whereas the y-axis shows Perception_of_corruption, and the color
shows Generosity. When we look at the visualization, we have an understanding of what
intuitive values change while moving from one dot to the other. However, in the preceding
diagram, PC1, PC2 and PC3 are simply capsules of variations; we have no intuitive
understanding of what they show.

And that's not where things end. When looking at a regular scatterplot, we would
intuitively assume that the x-axis and y-axis have equal weight and importance. However,
we should try to beat that second nature when looking at the scatterplots of PCs. The
reason for this is that the first PCs have more importance as they carry more variations.
We also need to keep in mind that the representation of color only carries about 10.1% of
the total variations shown by the visualization; 10.1% was calculated using the formula
7.197769e-02/0.710524; both numbers are from Figure 13.13.

Performing dimensionality data reduction 417

In any case, beating our perception by paying attention to the relevancy and ratios of PCs
all at once is a tall order, especially for untrained eyes. The good news is that we can use
other visualization techniques to somewhat guide our eyes. The following code uses a few
strategies to help us see the relative relationship that the data points have to one another
regarding the PCs:

Xs_t.plot.scatter(x='PC1',y='PC2',c='PC3',sharex=False, vmin=-
1/0.101, vmax=1/0.101)

x_ticks_vs = [-2.9*4 + 2.9*i for i in range(9)]

for v in x_ticks_vs:

 plt.axvline(v,c='gray',linestyle='--',linewidth=0.5)

plt.xticks(x_ticks_vs)

y_ticks_vs = [-8.7,0,8.7]

for v in y_ticks_vs:

 plt.axhline(v,c='gray',linestyle='--',linewidth=0.5)

plt.yticks(y_ticks_vs)

plt.show()

Before we look at how the strategies were translated into the preceding code, let's look at
the result and use that as a lead-in to learning about those strategies. After running the
preceding code, Python will produce the following diagram:

Figure 13.15 – A repeat of Figure 13.13 but with new details to guide our eyes regarding
the relevance and ratios of PC1, PC2, and PC3

418 Data Reduction

In the preceding diagram, you can see that two changes have been adopted. Let's go
through them one by one and explain them:

•	 x-ticks of the plot has been updated, and vertical lines have been added
accordingly. These changes are adopted using the amount of variations PC1 offers.
Likewise, y-ticks of the plot has also been updated, and horizontal lines have
been added accordingly.

The numbers 2.9 and 8.7 have been calculated by trial and error and the
information taken from Figure 13.13; first, we can calculate 67.21682870670097%
and 22.652999757925132% as the percentages that PC1 and PC2 are representing in
the diagram, respectively. Then once 1 is divided by each of these values we get 2.9
and 8.7 for PC1 and PC2. Where did being divided by 1 come from? Think about it.

•	 The color spectrum changes as it represents PC3, which has been widened. We
use the range of -1/0.101 to 1/0.101 here. Earlier, we calculated 11.1% as the
percentage amount of variations that PC3 carries. This change, as you can observe
in the preceding diagram, helps us not give undue importance to the changes of
PC3 among the data objects.

Before we move on, let's do one last thing to enrich the visualization.

We want to annotate the dots in the preceding diagram with the names of the countries.
Since annotating all of the countries would probably make the visual cluttered and
unreadable, we will only add 50 countries; these 50 counties will be selected randomly
using the pandas DataFrame.sample() function. We will also make the scatterplot
a bit larger. The following code will do this for us. The changes that we've made to the
preceding code are in bold so that you can easily find them:

Xs_t.plot.scatter(x='PC1',y='PC2',c='PC3',sharex=False, vmin=-
1/0.101, vmax=1/0.101, figsize=(12,9))

x_ticks_vs = [-2.9*4 + 2.9*i for i in range(9)]

for v in x_ticks_vs:

 plt.axvline(v,c='gray',linestyle='--',linewidth=0.5)

plt.xticks(x_ticks_vs)

y_ticks_vs = [-8.7,0,8.7]

for v in y_ticks_vs:

 plt.axhline(v,c='gray',linestyle='--',linewidth=0.5)

plt.yticks(y_ticks_vs)

for i, row in Xs_t.sample(50).iterrows():

Performing dimensionality data reduction 419

 plt.annotate(i, (row.PC1, row.PC2),
 rotation=50,c='gray',size=8)

plt.show()

The following diagram will be produced after successfully running the preceding code:

Figure 13.16 – The annotated and enlarged version of Figure 13.15

Now, instead of having to rely on a clustering algorithm to extract and give us the
inherent multi-variate patterns in a dataset, we can visualize them. This visualization, to a
decision-maker whose eyes have been trained, can be invaluable as 71% of the variations
in the dataset are presented in this visualization.

The next dimensionality reduction method we will learn about is functional data
analysis (FDA); however, let's discuss the advantages and disadvantages of PCA first. As
we saw in this example, PCA may be able to push most of the variations across all the
attributes of a dataset into the first PCs. This is great as we can present more information
using fewer dimensions.

420 Data Reduction

This can have two distinct positive impacts. First, as we saw in this example, we can
visualize more information using fewer visual dimensions. Second, we may use PCA as
a way to help with computational costs for algorithmic decision-making. For instance,
instead of having to have 90 independent attributes, we may be able to have only three
attributes with only a minimal loss of information.

On the other hand, there is a very significant negative impact that comes with using PCA.
By pushing the variations around, PCA effectively makes the new dimensions of the
transformed data meaningless, which can deprive us of some analytical capabilities.

The next strength/weakness of PCA is also the weakness/strength of the next method we
will learn about, which is FDA. PCA is a non-parametric method, which means it can be
applied to any dataset and it may be able to transform the data into a new space where
fewer dimensions are necessary to present much of the variations. However, FDA is not a
method that can be applied to any data. FDA may be applicable or not – it all depends on
if we can find a mathematical function that can imitate our data to an acceptable degree.
That being said, if we do manage to find that function and apply FDA, then dimension
reductionality will not transform the data into a new space where the dimensions are
meaningless. However, this is what PCA does.

Is PCA Applicable to Any Dataset?
Actually, no. If the attributes of a dataset form non-linear relationships whose
inclusion is important for the analytic goals, PCA should be avoided. However, in
most everyday datasets, the assumption that attributes have a linear relationship
with one another is safe. On the other hand, if capturing the non-linear
relationships between data attributes is essential, you should stay away from PCA.

At this point, I hope you are very excited to learn about FDA. You should be since FDA is
a very powerful and exciting method.

Functional data analysis
As the name suggests, functional data analysis (FDA) involves applying mathematical
functions to data analytics. FDA can be a standalone analytic tool, or it can be used for
dimension reduction or data transformation. Here, we will discuss how it can be used as
a dimension reduction method. In the next chapter, we will discuss how FDA can be used
for data transformation.

Simply put, as a dimension reduction method, FDA finds a function that can imitate
the data well enough so that we can use the parameters of the function instead of the
original data.

As always, let's look at an example to understand this better.

Performing dimensionality data reduction 421

Example – parametric dimension reduction
In the preceding example, Example – non-parametric dimension reduction, we used
PCA to transform country_df so that most of the variations – 71%, to be exact –
were presented in only three dimensions; that is, PC1, PC2, and PC3. Here, we want to
approach the same problem but use a parametric approach instead.

Before moving on, get Jupyter Notebook to show country_df and study its structure.
Its structure is also shown in the following diagram. You can see that each country has 90
records from nine happiness indices over 10 years:

Figure 13.17 – The structure of country_df

To gauge if FDA can help us transform this dataset, let's visualize the 10-year trend of each
happiness index per country.

The following code populates 1,098 (122*9) line plots. As you hit run in Jupyter Notebook,
line plots will start to appear. You will not have to let your computer populate all the
visuals. Once you feel like you have grasped what these plots look like, you can interrupt
the kernel. If you don't know how to stop your kernel, go back to Figure 1.2:

happines_index = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_
support', 'Healthy_life_expectancy_at_birth', 'Freedom_to_
make_life_choices', 'Generosity', 'Perceptions_of_corruption',
'Positive_affect', 'Negative_affect']

for i,row in country_df.iterrows():

 for h_i in happines_index:

 plt.plot(row[h_i])

 plt.title('{} - {}'.format(i,h_i))

 plt.show()

422 Data Reduction

After this exercise, you might be convinced that a linear equation might be able to
summarize the trends in all of the visualizations. The general linear equation looks
like this:

In this equation, t represents time, and in this example, it can take any one of the values
in the list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. For each of the visualizations we saw after running the
preceding code, we strive to estimate the a and b parameters so that the function shown in
the preceding formula can represent all the points fairly.

Before making any final decisions, let's test the applicability of this function, both visually
and statistically. However, as this is our first time fitting a function to a data, let's perform
curve fitting for some sample data and then use loops to apply that to all of our data.
The sample data we will be using will be Life_Ladder of Afghanistan – the very first
visualization the preceding code created.

We will be using the curve_fit() function from scipy.optimize to estimate the
a and b parameters for Life_Ladder of Afghanistan. To apply this function, other than
importing it (from scipy.optimize import curve_fit), we need to perform
the following steps:

1.	 First, we need to define a Python function for the mathematical function we want
to use to fit the data.

The following code creates linearFunction(), as we described previously:
def linearFunction(t,a,b):

 y = a+ b*t

 return y

 We will be using linearFunction() shortly.
2.	 Second, prepare the data for the curve_fit() function by organizing it into

x_data and y_data.

The following code shows how this is done for Life_Ladder of Afghanistan:
x_data = range(10)

y_data = country_df.loc['Afghanistan','Life_Ladder']

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑡𝑡

Performing dimensionality data reduction 423

3.	 Pass the function and the data into the curve_fit() function.

The following code shows how this can be done for the sample data:
from scipy.optimize import curve_fit

p, c = curve_fit(linearFunction, x_data, y_data)

After running the three preceding code blocks, the p variable will have the
estimated a and b parameters. Printing p will show you that a is estimated to be
4.37978182, while b is estimated to be -0.19528485.

To evaluate the goodness of this estimation, we can use both visualization and statistics.
The following screenshot shows the code to create the analyzing visualization, its result,
the code for calculating r2, and its result:

Figure 13.18 – The code and the result of using visualization and statistics to evaluate the curve
for fitting goodness-of_fit

Statistically speaking, r2 is the ideal metric for capturing and summarizing the goodness
of fit for data one number. The metric can take any value between 0 and 1 and the higher
values show a better fit. The value of 0.59 in this example is not a value that would make
you say "phew! I've found the perfect fit," but it is also not terrible.

424 Data Reduction

In any case, we want to combine visualization with statistics for the best interpretation and
decision-making. Visually speaking, the fitted data nicely shows where the country started
in 2010 (a) and the average slope of change the country has had over the years (b). Even
though r2 does not show the perfect fit, the visualization shows that the function tells a
perfect story of the data with only two parameters. When you're dealing with FDA, being
able to capture what is essential to our analysis is more important than having a perfect fit.
Sometimes, the perfect fit shows we are capturing the noise over the generalizable trend.

The Meaning behind the Parameters of a Linear Function
Similar to any other famous function, the parameters of the linear function
(y=a+b*x) have intuitive meanings. The a parameter is known as an intercept
or constant; in this example, the intercept represents where the country started.
The b parameter is known as the slope, and it represents the rate and direction
of change. In this example, b represents exactly that – the rate and direction of
change a country has gone through over the years.

So, every time you perform FDA, one of the must-do activities is
understanding the meaning of the parameters of the function that can capture
the essential information of the dataset.

Of course, we don't stop here before finalizing the linear function – we must test how well the
function can capture the essence of information for the happiness indices of each country.

The following code fits the linear function 1,098 times – one per combination of happiness
indices – and the countries (122 countries and 9 happiness indices). For every curve fitting,
the line plot shows the actual data and the fitted function is presented. r2 of the fit is also
reported. Moreover, all calculated r2 values are recorded in rSqured_df for future analysis:

happines_index = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_
support', 'Healthy_life_expectancy_at_birth', 'Freedom_to_
make_life_choices', 'Generosity', 'Perceptions_of_corruption',
'Positive_affect', 'Negative_affect']

rSqured_df = pd.DataFrame(index=country_df.index,
columns=happines_index)

for i,row in country_df.iterrows():

 for h_i in happines_index:

 x_data = range(10)

 y_data = row[h_i]

 p,c= curve_fit(linearFunction, x_data, y_data)

 fit_y = linearFunction(x_data,p[0],p[1])

Performing dimensionality data reduction 425

 rS = r2_score(y_data,fit_y)

 rSqured_df.at[i,h_i] = rS

 plt.plot(x_data,y_data,label='data')

 plt.plot(x_data, fit_y, '--', label='fit')

 plt.xticks(x_data,y_data.index)

 plt.legend()

 plt.title('{} - {} - r2={}'
 .format(i,h_i,str(round(rS,2))))

 plt.show()

Spend some time and review the visuals that the preceding code populates. You will see
that while the r2 values of some of the visualization and the fit of the linear function
are not statistically high, for almost all of the visualizations, the story about the linear
function state makes sense.

To investigate this further, let's create a box plot of all of the r2 values per happiness
index. The following screenshot uses the seaborn.boxplot() function to do this:

Figure 13.19 – The box plots of r2 per happiness index

426 Data Reduction

After studying the box plot in the preceding screenshot, we can see that the curve fitting
for Log_GDP_per_capita and Healthy_life_expectancy_at_birth have had very good
fits. This shows that the trends of these two happiness indices have been the most linear.

From the preceding screenshot, we could conclude that the linear function is not the
appropriate function to transform the other happiness indices and recommend going to
the drawing board to find a more suitable function for them. While that is also a valid
direction, continuing with the linear function for all of the happiness indices is also valid.
This is because linear functions tend to capture the essence of what is important for this
analysis, and having a lower goodness-of-fit does not mean the parameters will not be able
to show the trends of the data.

The following code creates a code function to be applied to country_df. The
linearFDA() function, when applied to a row, loops through all the hapiness indices,
fits the linear function to the 10 values, and returns the estimated parameters, a and b:

happines_index = ['Life_Ladder', 'Log_GDP_per_capita',
'Social_support', 'Healthy_life_expectancy_at_birth',
'Freedom_to_make_life_choices','Generosity', 'Perceptions_of_
corruption','Positive_affect', 'Negative_affect']

ml_index = pd.MultiIndex.from_product([happines_index,
['a','b']], names=('Hapiness Index', 'Parameter'))

def linearFDA(row):

 output_sr = pd.Series(np.nan,index = ml_index)

 for h_i in happines_index:

 x_data = range(10)

 y_data = row[h_i]

 p,c= curve_fit(linearFunction, x_data, y_data)

 output_sr.loc[(h_i,'a')] =p[0]

 output_sr.loc[(h_i,'b')] =p[1]

 return(output_sr)

Once the function has been created, you can use the following code to create
country_t_df, which is the FDA-transformed version of country_df.

However, there is a caveat before running the code. Once run, the code will provide a
warning regarding covariance not being able to estimate. That's nothing to worry about:

country_df_t=country_df.apply(linearFDA,axis=1)

Performing dimensionality data reduction 427

Once the code has been run, get Jupyter Notebook to show you country_df_t and
study the transformed dataset. The following diagram shows the extent and structure of
change that was applied to country_df to shape country_df_t:

Figure 13.20 – The original structure of country_df and its FDA-transformed one

In the preceding code, we can see that country_df_t now only uses 18 attributes
instead of the 90 attributes of country_df. Here, FDA has done more than just data
reduction. FDA, along with the linear function, has transformed the data so that its
key features – the starting point and the slope of change of the happiness indices – are
massaged to the surface.

428 Data Reduction

Before moving on, let's compare the FDA approach and PCA approach that we applied to
the same data. There are a few key points here:

•	 Extension of Reduction: PCA was able to reduce the data into only three attributes,
while FDA reduced the data into 18 attributes.

•	 Loss of Information: Both approaches removed some variations from the data.
We know that PCA kept 71% of the variation, but we don't know exactly how
many variations were kept by FDA. However, we did have control over what kind
of variations we were interested in using with the FDA. PCA does not offer this
kind of control.

•	 Parametricality: While there were fewer new dimensions for PCA, they did not
have an intuitive meaning. However, FDA's reduced parameters did have meaning,
and those were even more useful for analysis than the original attributes.

Next, we are going to learn about a few possible useful functions that are frequently used
when transforming data sources with FDA.

Prominent functions to use for FDA
In this section, we will learn about a few functions that are frequently used for FDA.

Before we look at this list of functions, let's reiterate that the functions can be anything
that has the potential to capture the trends in the data. However, the functions we will go
over here are famous and frequently used for curve fitting.

When you have data and want to apply it to FDA, you can experiment with one of the four
functions - exponential, Fourier, sinusoidal, and Gaussian - to see which one works best
for the analytic goals.

Now, let's learn a little bit about each of them. We will start with exponential. Before
moving on, please pay close attention to the following caveat.

Caveat!
There is a lot to be said about each of these functions; in a book dedicated
to functional data analysis, each of these functions could take up one whole
chapter. However, here, we only get a very brief introduction to each of these
functions. These instructions will be enough for you to have a good guess if a
function will be applicable for a dataset or not. If and when you have a function
candidate for a dataset, I highly encourage you to read more about the function
to understand its possible variations and the meanings of its parameters. This
will be essential if you wish to succeed with functional data analysis.

Performing dimensionality data reduction 429

Now, let's learn a little bit about these functions. We will start with the exponential function.

Exponential function
This function can capture what is characterized as exponential growth or decay. For
instance, what we know as exponential growth is a growth that is slow at first but whose
rate of growth rapidly increases. The following equation shows the exponential function:

The parameters of these functions are a and b. Here, e is a constant known as Euler's
number, which is a constant that is approximately 2.71. To get an accurate value of e, run
np.exp(1) in your Jupyter Notebook after having imported NumPy as np.

For example, the following code uses the GoogleStock.csv file, which contains the
daily stock prices of Google from the day it went public until September 3, 2021, which is
the day this content is being developed. This code uses everything we have learned about
in this chapter on how to fit a function to a dataset:

def exponantial(x,a,b):

 y = a*np.exp(b*x)

 return y

price_df = pd.read_csv('GoogleStock.csv')

price_df.set_index('t',inplace=True)

y_data = price_df.Price

x_data = range(len(y_data))

p,c= curve_fit(exponantial, x_data, y_data,p0=[50,0])

fit_y = exponantial(x_data,p[0],p[1])

plt.plot(x_data,y_data,label='Google Stock Price Data')

plt.plot(x_data, fit_y, '--', label='fit')

plt.xticks(np.linspace(1,len(y_data),15),y_data.iloc[1::300].
index,rotation=90)

plt.legend()

plt.show()

𝑦𝑦 = 𝑎𝑎 ∗ 𝑒𝑒𝑏𝑏∗𝑥𝑥

430 Data Reduction

Running the preceding code will create the following output:

Figure 13.21 – The output of fitting the exponential function to GoogleStock.csv

Before moving on to the next function, allow me to share with you a rather disappointing
reality about the curve_fit() function from scipy.optimize. While this is a great
and useful function, it is not fully integrated and the most powerful it can be. For more
complex functions, for curve_fit() to estimate the best possible parameters, the
function needs a leg-up. This small act of help must come from us as a first guess
about what we think the parameters should be. For example, in the preceding code,
p0=[50,0] is that leg-up. For us to be able to have good educated guesses so that we
can help curve_fit(), we need to have a good understanding of what the parameters
of the function mean. For instance, in the case of the exponential function, a is known as
the intercept and b is known as the base. To get curve_fit() going, we have helped the
function by stating that the intercept will be around the number 50. The number 50 is the
price of Google stocks for the first few days.

Now, let's move at the Fourier function.

Performing dimensionality data reduction 431

Fourier function
This function is a valid candidate for capturing vibrational signals such as noise and voice
data. These vibrational signals are characterized by oscillating, reciprocating, or periodic,
and the Fourier function can capture these periodic oscillations and reciprocations. The
following equation shows the Fourier function. The parameters of the Fourier function are
a0, a1, a2, and w:

𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 ∗ 𝑤𝑤) + 𝑏𝑏1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 ∗ 𝑤𝑤)

For example, the following code uses the Noise_data.csv file, which contains 200
milliseconds of vibrational signals collected from a car engine for health diagnosis. Similar
to the preceding code, it uses everything we have learned about in this chapter on how to
fit a function to a dataset:

def fourier(x,a0,a1,b1,w):

 y = a0 + a1*np.cos(x*w) + b1*np.sin(x*w)

 return y

noise_df = pd.read_csv('Noise_data.csv')

noise_df.set_index('t',inplace=True)

y_data = noise_df.Signal

x_data = range(len(y_data))

p,c= curve_fit(fourier, x_data, y_data,p0=[10,1000,-400,0.3])

fit_y = fourier(x_data,p[0],p[1],p[2],p[3])

plt.figure(figsize=(15,4))

plt.plot(x_data,y_data,label='Noise Data')

plt.plot(x_data, fit_y, '--', label='fit')

plt.legend()

plt.show()

print("r2_score",r2_score(y_data,fit_y))

432 Data Reduction

Running the preceding code will create the following output:

Figure 13.22 – The output of fitting the Fourier function to Noise_data.csv

Before moving on to the next function, Sinusoidal, note that the curve_fit() function
needed even a stronger leg-up (p0=[10,1000,-400,0.3]) to be able to fit the data.

Sinusoidal function
This function, which is similar to the Fourier function, can capture oscillations and
reciprocations, and similarly, the function could be a candidate for capturing noise and
voice data. The following equation shows the sinusoidal function. The parameters of the
sinusoidal function are a1, b1, and c1:

𝑦𝑦 = 𝑎𝑎1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏1 ∗ 𝑥𝑥 + 𝑐𝑐1)

For example, the following code uses the same data as in the previous example, which
is contained in the Noise_data.csv file, to see whether the function can simulate
the data:

def sinusoidal(x,a1,b1,c1):

 y = a1*np.sin(b1*x+c1)

 return y

noise_df = pd.read_csv('Noise_data.csv')

noise_df.set_index('t',inplace=True)

y_data = noise_df.Signal

x_data = range(len(y_data))

p,c= curve_fit(sinusoidal, x_data, y_data,p0=[1000,0.25,2.5])

fit_y = sinusoidal(x_data,p[0],p[1],p[2])

plt.figure(figsize=(15,4))

plt.plot(x_data,y_data,label='Noise Data')

Performing dimensionality data reduction 433

plt.plot(x_data, fit_y, '--', label='fit')

plt.legend()

plt.show()

print("r2_score",r2_score(y_data,fit_y))

Running the preceding code will create the following output:

Figure 13.23 – The output of fitting the sinusoidal function to Noise_data.csv

Again, note that the curve_fit() function needed even a more significant leg-up
(p0=[1000,0.25,2.5]) to be able to fit the data. These leg-ups can only be given to
the curve_fit() function if we have a good understanding of the parameters of the
sinusoidal function.

Gaussian function
This function is famous for Gaussian or normal distribution from probability and
statistics. The functionality behind the normal distribution that we use to summarize,
analyze, and compare many populations with comes from the Gaussian function. The
general Gaussian function has three parameters called a1, b1, and c1. The following
equation shows its formula:

The density function of a normal distribution is a specific variation of the preceding
formula with only two parameters, where b1=μ and c1=δ, and a1 is calculated as 1 δ√2𝜋𝜋⁄ .
If you don't know about the normal distribution, just ignore this paragraph and move on.
You can just treat this function as another famous function you just became aware of.

The Gaussian function is famous for being a bell-shaped figure, and each of the three
parameters shows the characteristics of the shape of a bell. Let's look at an example.

𝑦𝑦 = 𝑎𝑎1 ∗ 𝑒𝑒(𝑥𝑥−𝑏𝑏1)2 2𝑐𝑐12⁄

434 Data Reduction

We will use the covid19hospitalbycounty.csv file here, which contains the daily
COVID hospitalization data of all the counties in California, as collected on September
4, 2021. The following code reads the file into covid_county_day_df and then uses
the .groupby() function to aggregate all of the counties' data by summing them, thus
creating covid_day_df. The code also plots the trend of daily hospitalizations:

covid_county_day_df = pd.read_csv('covid19hospitalbycounty.
csv')

covid_day_df = covid_county_day_df.groupby('todays_date').
hospitalized_covid_patients.sum()

covid_day_df.plot()

plt.xticks(rotation=90)

plt.show()

Running the preceding code will create the following output:

Figure 13.24 – California COVID hospitalizations until September 4, 2021

Performing dimensionality data reduction 435

We can see a few bell-shaped figures in the trend of the data. Each of these waves can be
summarized and captured using the Guassian function. For example, let's capture the one
from 2020-10-15 to 2021-05-03. The following code does that just like all the previous
curve fittings do:

def gaussian(x,a1,b1,c1):

 y= a1*np.exp(-((x-b1)**2/2*c1**2))

 return y

y_data = covid_day_df.loc['2020-10-15':'2021-05-03']

x_data = range(len(y_data))

p,c= curve_fit(gaussian, x_data, y_data)

fit_y = gaussian(x_data,p[0],p[1],p[2])

plt.plot(x_data,y_data,label='Hospitalization Data')

plt.plot(x_data, fit_y, '--', label='fit')

plt.legend()

plt.show()

print("r2_score",r2_score(y_data,fit_y))

Running the preceding code will create the following output:

Figure 13.25 – The output of fitting the Gaussian function to a part of covid_day_df

436 Data Reduction

While the preceding diagram shows a great fit, you may be wondering how this can be of
any analytics value. This is an excellent question. Let's consider an analytics project where
we want to predict the number of COVID deaths in the next month using the historical
data. You could create a prediction model that connects the number of COVID deaths on
any given day (the dependent attribute) to the total number of hospitalizations 2 weeks
before that day (the independent attribute). Such a model can achieve a certain level of
success in prediction. However, there are ways to improve that. For instance, we could add
more independent attributes, such as the rate of COVID test positivity a month before
that day, or the rate of vaccination 2 months before that day. This approach uses more
data sources to enrich the prediction model. A second approach, which can use FDA, is to
enrich the independent attributes that come from the same source of data. For instance,
instead of just extracting one value from the hospitalization data from 3 weeks ago, we
might be able to use the parameters of the function we used to fit the data. Doing this is
certainly trickier than adding more data sources, but this might just be the improvement
a model needs to reach even better predictions. See Chapter 16, Case Study 2 – Predicting
COVID 19 Hospitalization, for great data integration/reduction examples of using FDA.

As we get closer to the end of this chapter, let us first go over a quick summary of the
FDA, and after that, we will have another quick summary of the whole chapter.

Final notes on FDA
There is a lot to be said and covered in FDA. It has its own world. What we covered here
should just be looked at as an introduction and a springboard for a possible deep dive into
this world for more learning.

As we finish learning about FDA, we will provide a few notes and considerations:

•	 Any function, even one that has just been created, can be used as the function for
FDA. The advantage of using these famous functions is that they are well known
and there are lots of resources for them to support your learning and your data
analytic projects.

•	 Most functions have variations and they can become more complex for more
complicated datasets. If a function kind of works for a dataset but not perfectly, maybe
one of its variations will. For instance, the sinusoidal function, when used with two
terms, can accommodate more complex oscillations. See the following equation:

•	 Knowing the meaning of the parameters is essential in understanding the
transformed data. Also, as we saw, you may have to tap into that knowledge in
giving a leg-up to the function curve_fit().

𝑦𝑦 = 𝑎𝑎1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏1 ∗ 𝑥𝑥 + 𝑐𝑐1) + 𝑎𝑎2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏2 ∗ 𝑥𝑥 + 𝑐𝑐2)

Summary 437

•	 FDA can be used as a dimension reduction method. However, FDA can be looked at
as a data analytics tool. Furthermore, as we will see in the next chapter, FDA can be
a data transformation method.

Now, let's summarize this chapter.

Summary
Congratulations on your excellent progress on yet another exciting and important chapter.
In this chapter, we learned about the concept of data reduction, its uniqueness, the
different types, and saw a few examples of how knowing about the tools and techniques
we can use for data reduction can be of significant value in our data analytic projects.

First, we understood the distinction between data redundancy and data reduction and
then continued to learn about the overarching categories of data reduction: numerosity
data reduction and dimensionality data reduction. For numerosity data reduction, we
covered two methods and an example to showcase when and where they could be of value.
For dimensionality reduction, we covered two categories: supervised and unsupervised
dimension reduction.

Supervised dimension reduction is when we pick and choose the independent attributes
for prediction or classification data mining tasks, while unsupervised dimension
reduction is when we reduce the number of dimensions with a more general outlook.

The next chapter is going to be the last one in Part 3 of this book: preprocessing. We are
going to learn about data transformation and massaging. In this chapter, we sometimes
had to talk a little about data transformation as well. Some of the techniques that were
covered in this chapter can also be used as data transformation techniques.

The next chapter is going to be another exciting chapter. However, before we learn about
data transformation and data massaging, take advantage of the learning opportunities that
the following exercises provide.

Exercises
1.	 In your own words, describe the similarities and differences between data reduction

and data redundancy from the following angles: the literal meanings of the terms,
their objectives, and their procedures.

2.	 If you decide to include or exclude independent attributes based on the correlation
coefficient value of each independent attribute with the dependent attribute in a
prediction task, what would you call this type of preprocessing? Data redundancy
or data reduction?

438 Data Reduction

3.	 In this example, we will be using new_train.csv from https://www.
kaggle.com/rashmiranu/banking-dataset-classification. Each
row of the data contains customer information, along with campaign efforts
regarding each customer, to get them to subscribe for a long-term deposit at the
bank. In this example, we would like to tune a decision tree that can show us
the trends that lead to successful subscription campaigning. As the only tuning
process we know about will be computationally very expensive, we have decided to
perform one of the numerosity data reductions we've learned about in this chapter
to ease the computation for the tuning process. Which method would fit this data
better? Why? Once you have arrived at the data reduction method you want to use,
apply the method, tune the decision tree, and draw the final decision tree. Finally,
comment on a few interesting patterns you found in the final decision tree.

4.	 In this chapter, we learned about six dimensionality reduction methods. For each of
these six methods, specify if the method is supervised or unsupervised, and why.

5.	 We would like to continue working on new_train.csv from Excercise 3. Use
a decision tree and a random forest to evaluate the usefulness of the independent
attributes in new_train.csv. Report and compare the results using both
dimension reduction methods.

6.	 Use brute-force computational dimension reduction to figure out the optimum
subset of independent attributes that the KNN algorithm needs for the classification
task described in Exercise 3. If the task is computationally too expensive, what is
one strategy that we learned about that can curb that? If you did end up using that
strategy, could you say the subset you've found is still optimum?

7.	 In this exercise, we will use the data in ToyotaCorolla.csv to create a
prediction model using MLP that can predict car prices. Do the following:

a) Deal with all the data cleaning issues, if any.

b) �Apply linear regression, a decision tree, and a random forest to evaluate the
usefulness of the independent attributes in the dataset. Use all the results of the
evaluations to come to the top eight independent attributes that can support
MLP prediction best. Which three dimension reduction methods should be given
the least priority and why?

c) �Use similar code to the code we used in this chapter to tune the decision tree to
tune MLP for the prediction task of connecting the top eight independent attributes
from the previous step to the dependent attribute. In this tuning experiment, use
the following two hyperparameters and the values given in the list:
i.	 hidden_layer_sizes: [5,10,15,20,(5,5),(5,10),(10,10),(5,5,5),(5,10,5)]
ii.	 max_iter: [50, 100, 200, 500]

https://www.kaggle.com/rashmiranu/banking-dataset-classification
https://www.kaggle.com/rashmiranu/banking-dataset-classification

Exercises 439

If the computation takes too long, feel free to use the computational cost-cutting
strategy you have learned about in this chapter.

d) �In this step, we would like to use brute-force computational dimension reduction
to find the best subset of independent attributes out of the eight independent
attributes. Can we use the tuning parameters we found from the previous step
or, when using the brute-force dimension reduction method, does it have to be
mixed with parameter tuning? Why/why not? Apply the best approach. Again,
feel free to use the computational cost-cutting strategy you learned about in
this chapter.

8.	 In this exercise, we would like to use the Cereals.csv dataset. This dataset
contains rows of information about different cereal products. We would like to
perform clustering analysis on this dataset, first using K-Means and then using
PCA. Do the following:

a) Impute a central tendency of the attribute for all the missing values.

b) What central tendency did you choose and why?

c) �Why did we impute using the central tendency? Why not use other methods?
Answer by commenting on how the data will be used next.

d) Remove the categorical attribute from the data.

e) Should the data be normalized or standardized for clustering? Why?

f) Apply K-Means with K=7 and report the resulting clustering.

g) Perform centroid analysis and name each cluster.

h) �Investigate the relationship between the clusters and the two categorical
attributes that you removed. Which cluster has both hot and cold kinds of cereal?
Which company only creates popular cereals that are not very nutritious?

i) �The elementary public schools would like to choose a set of cereals to include in
their cafeterias. Every day, a different cereal is offered, but all the cereals should be
healthy. Which members from which cluster should be used here? Explain why.

j) �Now, we want to complement this analysis using PCA. Before applying PCA,
should we standardize or normalize the dataset?

k) �Using the first few PCs, come up with an annotated three-dimensional scatterplot
that shows most of the variation in the data. How much variation is shown? Make
sure that the figure contains the necessary element to explain to the audience the
importance of each PC.

440 Data Reduction

l) �Looking at the three-dimensional scatterplot, would you say the choice of K=7
for K-Means was good?

m) �Can you spot the members of the cluster you found in Step i in the
three-dimensional scatterplot you created in Step k? Are they all together?

9.	 In this exercise, we will use Stocks 2020.csv, which contains the daily stock
prices of 4,154 companies in 2020. Remember that 2020 is the year that the
COVID-19 pandemic happened. During this year, the stock market experienced a
sudden crash and also a quick recovery. We want to use the data reduction methods
that we know of to see if we can capture this from the data. Do the following:

a) �Use the k-means algorithm to cluster the data into 27 groups. Also, use the
module time to capture the amount of time it took the algorithm to run.

b) What are the outliers in the data based on the clustering results?

c) Draw line plots for all the outliers and describe the trends you see.

d) �Draw line plots for all the members of the clusters where there are less than 10
members and describe the trends.

e) �Apply PCA to the data and report the number of variations that the first three
PCs account for. Also, draw an annotated scatterplot that includes the three PCs
with all the necessary visual guides.

f) �Using the visual from the previous step, count and report the outliers. Are they
the same outliers that we found using k-means clustering?

g) �Cluster the stocks into 27 groups again using the most significant PCs. Also,
report the amount of time it took for K-means to complete the task. See how
much faster K-means was compared to how fast it was in Step a.

h) �Draw a visual that compares the clusterings in Steps a and g. Describe your
observations.

i) �We would like to extract the following features from the data:

	� General_Slope: The slope of the linear regression line fitted to the data of the stock.

	� Sellout_Slope: The slope of the linear regression line fitted to the data of the stock
from Feb 14 – March 19 (stock sell-out period due to COVID).

•	 Rebound_Slope: The slope of linear regression line fitted to the data of the stock
from March 21 – December 30 (Stock rebound after COVID sell-out).

We will do this in a few steps. First, create a placeholder DataFrame (fda_df) where
its index is the stock symbols and its columns are the features mentioned previously.

Exercises 441

j) Find General_Slope and fill the placeholder using a linear regression model.

k) Find Sellout_Slope and fill the placeholder using a linear regression model.

l) Find Rebound_Slope and fill the placeholder using a linear regression model.

m) �Draw a three-dimensional scatterplot for fda_df. Use x_axis for
Sellout_Slope and y-axis for Rebound_Slope.

n) �Cluster the stocks into 27 groups again using the three attributes of fda_df.
Then, compare the clustering outcomes with the clusterings from Steps a and g
and describe your observations.

o) �Among the three preprocessing approaches (no preprocessing, PCA-transformed,
and FDA-transformed) you experimented with in this exercise, which one was
able to help in capturing the patterns we were interested in?

10.	 Figure 13.2 was created using a decision tree after random sampling. Recreate this
figure but this time, use random over/undersampling, where the sample has 500
churning customers and 500 non-churning customers. Describe the differences in
the final visual.

11.	 Figure 13.7 shows the result of dimension reduction for the task of predicting
the next day's amazon Stock prices using linear regression. Perform dimension
reduction using a decision tree and compare the results. Don't forget that to do so,
you will need to tune DecisionTreeRegressor() from sklearn.tree. You
can use the following code for this tuning process:

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import GridSearchCV

y=amzn_df.drop(index=['2021-01-12'])['changeP']

Xs = amzn_df.drop(
columns=['changeP'],index=['2021-01-12'])

param_grid = { 'criterion':['mse','friedman_mse','mae'],
'max_depth': [2,5,10,20], 'min_samples_split':
[10,20,30,40,50,100], 'min_impurity_decrease': [0,0.001,
0.005, 0.01, 0.05, 0.1]}

gridSearch = GridSearchCV(DecisionTreeRegressor(), param_
grid, cv=2, scoring='neg_mean_squared_error', verbose=1)

gridSearch.fit(Xs, y)

print('Best score: ', gridSearch.best_score_)

print('Best parameters: ', gridSearch.best_params_)

14
Data Transformation

and Massaging
Congratulations, you've made your way to the last chapter of the third part of the book
– The Preprocessing. In this part of the book, we have so far covered data cleaning, data
integration, and data reduction. In this chapter, we will add the last piece to the arsenal
of our data preprocessing tools – data transformation and massaging.

Data transformation normally is the last data preprocessing that is applied to our datasets.
The dataset may need to be transformed to be ready for a prescribed analysis, or a specific
transformation might help a certain analytics tool to perform better, or simply without a
correct data transformation, the results of our analysis might be misleading.

In this chapter, we will cover when and where we need data transformation. Furthermore,
we will cover the many techniques that are needed for every data preprocessing situation.
In this chapter, we're going to cover the following main topics:

•	 The whys of data transformation and data massaging

•	 Normalization and standardization

•	 Binary coding, ranking transformation, and discretization

•	 Attribute construction

•	 Feature extraction

444 Data Transformation and Massaging

•	 Log transformation

•	 Smoothing, aggregation, and binning

Technical requirements
You will be able to find all of the code and the dataset that is used in this book in a GitHub
repository exclusively created for this book. To find the repository, go to: https://
github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-
Python. You can find this chapter in this repository and download the code and the data
for better learning.

The whys of data transformation and
massaging
Data transformation comes at the very last stage of data preprocessing, right before
using the analytic tools. At this stage of data preprocessing, the dataset already has the
following characteristics.

•	 Data cleaning: The dataset is cleaned at all three cleaning levels (Chapters 9–11).

•	 Data integration: All the potentially beneficial data sources are recognized and
a dataset that includes the necessary information is created (Chapter 12, Data
Fusion and Integration).

•	 Data reduction: If needed, the size of the dataset has been reduced (Chapter 13,
Data Reduction).

At this stage of data preprocessing, we may have to make some changes to the data
before moving to the analyzing stage. The dataset will undergo the changes for one of the
following reasons: we will call them necessity, correctness, and effectiveness. The following
list provides more detail for each reason.

•	 Necessity: The analytic method cannot work with the current state of the data. For
instance, many data-mining algorithms, such as Multi-Layered Perceptron (MLP)
and K-means, only work with numbers; when there are categorical attributes, those
attributes need to be transformed before the analysis is possible.

•	 Correctness: Without the proper data transformation, the resulting analytic will
be misleading and wrong. For instance, if we use K-means clustering without
normalizing the data, we think that all the attributes have equal weights in the
clustering result, but that's incorrect; the attributes that happen to have a larger scale
will have more weight.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

The whys of data transformation and massaging 445

•	 Effectiveness: If the data goes through some prescribed changes, the analytics will
be more effective.

Now that we have a better understanding of the goals and reasons for data transformation
and massaging, let's learn what is the difference between data transformation and
data massaging.

Data transformation versus data massaging
There is more similarity between the two terms than difference. Therefore, using them
interchangeably would not be incorrect in most situations. Both terms describe changes
that a dataset undergoes before analytics for improvement. However, there are two
differences that it will be good for us know.

•	 First, the term data transformation is more commonly used and known.

•	 Second, the literal meanings of transforming and massaging may be used for
drawing a conclusive difference between the two terms.

The term transformation is more general than massaging. Any changes a dataset undergoes
can be called data transformation. However, the term massaging is more specific and does
not carry the neutrality of transformation, but it carries the meaning of doing more for
getting more. Therefore, as the following figure suggests, data massaging can be interpreted
as changing the data when we are trying to improve the effectiveness of data analytics,
whereas data transformation is a more general term. So, some could argue that all data
massaging is also data transformation, but not all data transformation is also data massaging:

Figure 14.1 – Data transformation versus data massaging

446 Data Transformation and Massaging

The preceding figure shows the three reasons for data transformation that we discussed
earlier: Necessity, Correctness, and Effectiveness. Furthermore, the figure shows that
while data transformation is a more general term used to refer to the changes a dataset
undergoes before the analysis, data massaging is more specific and can be used when the
goal of transforming the dataset is for effectiveness.

In the rest of this chapter, we will cover some data transformation and massaging tools
that are commonly used. We will start by covering normalization and standardization.

Normalization and standardization
At different points during our journey in this book, we've already talked about and used
normalization and standardization. For instance, before applying K-Nearest Neighbors
(KNN) in Chapter 7, Classification, and before using K-means on our dataset in Chapter
8, Clustering Analysis, we used normalization. Furthermore, before applying Principal
Component Analysis (PCA) to our dataset for unsupervised dimension reduction in
Chapter 13, Data Reduction, we used standardization.

Here is the general rule of when we need normalization or standardization. We need
normalization when we need the range of all the attributes in a dataset to be equal. This
will be needed especially for algorithmic data analytics that uses the distance between the
data objects. Examples of such algorithms are K-means and KNN. On the other hand, we
need standardization when we need the variance and/or the standard deviation of all the
attributes to be equal. We saw an example of needing standardization when learning about
PCA in Chapter 13, Data Reduction. We learned standardization was necessary because
PCA essentially operates by examining the total variations in a dataset; when an attribute
has more variations, it will have more say in the operation of PCA.

The following two equations show the formula we need to use to apply normalization and
standardization. The following list defines the variables used in the equations:

•	 A: The attribute

•	 i: The index for the data objects

•	 Ai: The value of data object i in attribute A

•	 NA: The normalized version of attribute A

Normalization and standardization 447

•	 SA: The standardized version of attribute A

𝑁𝑁𝑁𝑁𝑖𝑖 = 𝐴𝐴𝑖𝑖 − min (𝐴𝐴)
max(𝐴𝐴) − min (𝐴𝐴)

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝐴𝐴𝑖𝑖 − mean (𝐴𝐴)
std(A)

Let's see an example. The following figure shows a small dataset of employees that are
described by only two attributes, Salary and GPA. Naturally, the numbers we use for salary
are larger than GPA, as you can see in the original attributes, Salary and GPA. The preceding
two equations have been used to apply normalization and standardization transformation
respectively. The middle table is the normalized version of the dataset showing N_Salary
and N_GPA. You can see that after normalization, the transformed versions of the attributes
have the same range from zero to one. The right table is the standardized version of the
dataset featuring S_Salary and S_GPA. You can see in the standardized version that the
standard deviation (STD) of the two attributes are both equal to one:

Figure 14.2 – An example of normalization and standardization

448 Data Transformation and Massaging

Upon further study of the preceding figure, you may observe two interesting trends:

•	 First, even though the goal of normalization is equalizing the range (Max and Min),
the standard deviations (STD) of the normalized attributes have become much
closer to one another too.

•	 Second, even though the goal of standardization is equalizing the standard deviation
(STD), the Max and Min values of the two standardized attributes are much closer
to one another too.

These two observations are the main reason in many resources standardization and
normalization are introduced as two methods that can be used interchangeably.
Furthermore, I have seen all too often that the choice of applying standardization or
normalization is set in a supervised tuning. That means the practitioner experiments with
both normalizing the data and then standardizing it, and then selects the one that leads to
better performance on the prime evaluation metric. For instance, if we want to apply KNN
on the data, we might see the choice between normalization or standardization of the
attribute as a tuning parameter next to K and the subset of the independent attributes (see
the Example – finding the best subset of independent attributes for a classification algorithm
subsection in the Brute-force computational dimension reduction section in Chapter 13,
Data Reduction) and experiment with both to see which one works best for the case study.

Before moving to the next group of data transformation methods, let's discuss whether
normalization and standardization fall under data massaging or not. Most of the time,
the reason we would apply these two transformations are that without them, the results
of our analysis would be misleading. So, the best way to describe the reason behind
applying them is correctness; therefore, we cannot refer to standardization or
normalization as data massaging.

In the course of this book, we have seen many examples of applying normalization and
standardization, so we will skip giving a practical example on these data transformation
tools and go straight to the next group of methods: binary coding, ranking transformation,
and discretization.

Binary coding, ranking transformation, and
discretization
In our analytics journey, there will be many instances in which we want to transform
our data from numerical representation to categorical representation, or vice versa. To
do these transformations, we will have to use one of three tools: binary coding, ranking
transformation, and discretization.

Binary coding, ranking transformation, and discretization 449

As the following figure shows, to switch from Categories to Numbers, we either have
to use Binary Coding or Ranking Transformation, and to switch from numbers to
categories, we need to use Discretization:

Figure 14.3 – Direction of application for binary coding, ranking transformation, and discretization

One question that the preceding figure might bring to mind is, how do we know which
one we choose when we want to move from categories to numbers: binary coding or
ranking transformation? The answer is simple.

If the categories are nominal, we can only use binary coding; if they are ordinal, both may
be used, but each method has its pros and cons. We will talk about those using examples.

Before moving on to see examples of applying these transformations, let's discuss why we
may need these data transformations, in two parts:

•	 First, why we would transform the data into numerical form

•	 Second, why we would transform data into categorical form

We generally transform categorical attributes to numerical ones when our analytics tool of
choice can only work with numbers. For instance, if we would like to use MLP
for prediction and some of the independent attributes are categorical, MLP will not be
able to handle the prediction task unless the categorical attributes are transformed into
numerical attributes.

Now, let's discuss why we would transform numerical attributes into categorical ones.
Most often, this is done because the resulting analytics output will become more intuitive
for our consumption. For instance, instead of having to deal with a number that shows
the GPA, we may be more comfortable dealing with categories such as excellent, good,
acceptable, and unacceptable. This will become the case, especially if we want to use our
attention to understand the interactions between attributes. We will see an example of this
in a few pages.

450 Data Transformation and Massaging

Furthermore, in some analytics situations, the types of attributes must be the same. For
instance, when we want to examine the relationship between a numerical attribute and a
categorical one, we may decide to transform the numerical attribute to a categorical attribute
to be able to use a contingency table for the analysis (see Visualizing the relationship between
a numerical attribute and a categorical attribute in Chapter 5, Data Visualization).

Now, let's start looking at some examples to understand these transformation tools.

Example one – binary coding of nominal attribute
In Chapter 8, Clustering Analysis, in the Using K-means to cluster a dataset with more
than two dimensions section, we did not use the Continent categorical attribute for
the clustering analysis using K-means. This attribute indeed has information that can
add to the interestingness of our clustering analysis. Now that we have learned about the
possibility of transforming categorical attributes into numerical ones, let's try to enrich
our clustering analysis.

As the attribute continent is nominal, we only have one choice and that is to use binary
coding. In the following code, we will use the pd.get_dummies() pandas function to
binary-code the Continent attribute. Before doing that, we need to load the data as we
did in Chapter 8, Clustering Analysis. The following code takes care of that:

report_df = pd.read_csv('WH Report_preprocessed.csv')

BM = report_df.year == 2019

report2019_df = report_df[BM]

report2019_df.set_index('Name',inplace=True)

After running the preceding code, we are set to give pd.get_dummies() a try. The
following screenshot shows how this function is used and the first five rows of its output.
The bc_Continent variable name is inspired by bc, as in binary coded:

Figure 14.4 – Screenshot of report2019_df.Continent using pd.get_dummies() binary coding

Binary coding, ranking transformation, and discretization 451

The preceding screenshot shows exactly what binary coding does. For each possible
categorical attribute, a binary attribute will be added. The combination of all the binary
attributes will present the same information.

Next, we will run a very similar code to what we ran in Chapter 8, Clustering Analysis.
Only one part of the following code has been updated, and the updated part is highlighted
for your attention:

from sklearn.cluster import KMeans

dimensions = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_
support', 'Healthy_life_expectancy_at_birth', 'Freedom_to_
make_life_choices', 'Generosity', 'Perceptions_of_corruption',
'Positive_affect', 'Negative_affect']

Xs = report2019_df[dimensions]

Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())

Xs = Xs.join(bc_Continent/7)

kmeans = KMeans(n_clusters=3)

kmeans.fit(Xs)

for i in range(3):

 BM = kmeans.labels_==i

 print('Cluster {}: {}'.format(i,Xs[BM].index.values))

After running the preceding code successfully, you will see the result of the clustering
analysis.

The only noticeable difference between the preceding code and the one we used in
Chapter 8, Clustering Analysis, is the addition of Xs = Xs.join(bc_Continent/7),
which adds the binary coded version of the Continent attribute (bc_Continent)
to Xs after Xs is normalized, and before it is fed into kmeans.fit(). There is another
question – why didn't we add bc_Continent without dividing it by 7?

Let's try to dispel all the confusion before moving on to centroid analysis. The reason
we added bc_Continent to our code at a specific point in a specific manner is that we
wanted to control how much this binary coding would affect our results. If we had added
without dividing it by 7, bc_Continent would have dominated the clustering result
by clustering the countries mostly based on their continent. To see this impact, remove
the division by 7, run the clustering analysis, and create the heatmap of the centroid
analysis to see this. Why does this happen? Isn't it obvious? The Continent attribute has
information worth only one attribute, and not 7.

452 Data Transformation and Massaging

Furthermore, if we had added bc_Continent/7 before the normalization, the
division by 7 would not be meaningful, as the code we run for normalization, which is
Xs = (Xs - Xs.min())/(Xs.max()-Xs.min()), would have canceled out the
division by 7.

So, now we understand why we added the binary-coded data the specific way that we did.
Now, let's perform the centroid analysis. The following code will create the heatmap for
centroid analysis for this specific situation. The code is very similar to any other centroid
analysis that we have performed so far in this book but for a small change. Instead of
having one heatmap, we will have two – one for the regular numerical attributes and one
for the binary-coded attribute. The reason for this twofold visual is that the normalized
numerical values are between 0 and 1, and the binary-coded values are between 0 and 0.14;
without the separation, the heatmap would only show the normalized numericals, as those
values have a larger scale. Run the normal non-separated heatmap and see that for yourself:

clusters = ['Cluster {}'.format(i) for i in range(3)]

Centroids = pd.DataFrame(0.0, index = clusters, columns =
Xs.columns)

for i,clst in enumerate(clusters):

 BM = kmeans.labels_==i

 Centroids.loc[clst] = Xs[BM].mean(axis=0)

plt.figure(figsize=(10,4))

plt.subplot(1,2,1)

sns.heatmap(Centroids[dimensions], linewidths=.5, annot=True,
cmap='binary')

plt.subplot(1,2,2)

sns.heatmap(Centroids[bc_Continent.columns], linewidths=.5,
annot=True, cmap='binary')

plt.show()

As described, the preceding code will create a twofold heatmap. To compare the results
we arrived at in Chapter 8, Clustering Analysis, with what we have arrived at here with the
preceding code block, we have put these two results in the following figure for comparison:

Binary coding, ranking transformation, and discretization 453

Figure 14.5 – Clustering analysis of countries based on their happiness indices with and without the
inclusion of the Continent categorical attribute

454 Data Transformation and Massaging

The comparison of the heatmaps from the preceding figure clearly shows the successful
enrichment of the clustering analysis by the inclusion of a categorical attribute after binary
coding. Note that the clustering results of a) and b) in the preceding figure are largely the
same, except for Cluster 0 and Cluster 2 having switched places.

Next, let's see an example where our categorical attribute is not nominal but ordinal and
see how we should decide between binary coding and ranking transformation.

Example two – binary coding or ranking
transformation of ordinal attributes
Transforming ordinal attributes into numbers is a bit tricky. There is no perfect solution;
we either have to let go of the ordinal information in the attribute, or assume some
information into the data. Let's see what that means in an example.

The following figure shows the transformation of an example ordinal attribute into
numbers by three methods: Binary Coding, Ranking Transformation, and Attribute
Construction. Spend some time studying this figure before moving on to the next
paragraph:

Figure 14.6 – An example showing three ways of transforming an ordinal attribute into numbers

Binary coding, ranking transformation, and discretization 455

Now, let's discuss why none of the transformations are perfect. In the case of Binary
Coding, the transformation has not assumed any information into the result, but the
transformation has stripped the attribute from its ordinal information. You see, if we
were to use the binary-coded values instead of the original attribute in our analysis, the
data does not show the order of the possible values of the attribute. For example, while
the binary-coded values make a distinction between High School and Bachelor, the data
does not show that Bachelor comes after High School, as we know it does.

The next transformation, Ranking Transformation, does not have this shortcoming;
however, it has other cons. You see, by trying to make sure that the order of the possible
values is maintained, we had to engage numbers by ranking transformation; however, this
goes a little bit overboard. By engaging numbers, not only have we successfully included
order in between the possible values of the attribute but we have also collaterally assumed
information that does not exist in the original attribute. For example, with the ranking
transformed attribute, we are assuming there is one unit difference between Bachelors
and High School.

The figure has another transformation, Attribute Construction, which is only possible
if we have a good understanding of the attribute. What Attribute Construction tries
to fix is the gross assumptions that are added by Ranking Transformation; instead,
Attribute Construction uses the knowledge about the original attribute to assume more
accurate information into the transformed data. Here, for example, as we know, achieving
any of the degrees in the Education Level attribute takes a different number of years of
education. So, instead, Attribute Construction uses that knowledge to assume more
accurate assumptions into the transformed data.

We will learn more about Attribute Construction in a few pages in this chapter. Now, we
want to see an example of transforming numerical attributes into categories.

456 Data Transformation and Massaging

Example three – discretization of numerical attributes
For this example, let's start from the ending. The following figure shows what
discretization can achieve for us. The top plot is a box plot that shows the interaction
between three attributes, sex, income, and hoursPerWeek, from adult_df (adult.csv).
We had to use a box plot because hoursPerWeek is a numerical attribute. The bottom
plot, however, is a bar chart that has the interaction with the same three attributes, except
that the hoursPerWeek numerical attribute has been discretized. You can see the magic
that the discretization of this attribute has done for us. The bottom plot tells the story of
the data far better than the top one:

Figure 14.7 – Example of discretization to show the simplifying benefit of the transformation

Binary coding, ranking transformation, and discretization 457

Now, let's look at the code that we used to make the two plots happen. The following code
creates the top plot using sns.boxplot():

adult_df = pd.read_csv('adult.csv')

sns.boxplot(data=adult_df, y='sex', x='hoursPerWeek',
hue='income')

To create the bottom plot, we first need to discretize adult_df.hoursPerWeek. The
following code uses the .apply() function to transform the numerical attribute to a
categorical attribute with the three possibilities of >40, 40, and <=40:

adult_df['discretized_hoursPerWeek']= adult_df.hoursPerWeek.
apply(lambda v: '>40' if v>40 else ('40' if v==40 else '<40'))

A good question here is, why are we using 40 as the cut-off point? In other words, how
did we come to use this cut-off? To best answer this question and, in most cases, find the
appropriate cut-off point, you'd want to study the histogram of the attribute you intend to
discretize. So, you will know the answer to this question after drawing the histogram of
adult_df.hoursPerWeek. The following screenshot shows the code and the histogram:

Figure 14.8 – Creating the histogram for adult_df.hoursPerWeek

458 Data Transformation and Massaging

After discretizing adult_df.hoursPerWeek, running the following code will create
the bottom plot in Figure 14.7. The following code is a modified version of the code that we
learned in Chapter 5, Data Visualization, under Example of comparing populations using bar
charts, which is part of the Comparing populations subsection; this specific code is from The
fifth way of solving in the example. We have added [['<40','40', '>40']] to make
sure that these values appear in the order that they make the most sense:

adult_df.groupby(['sex','income']).discretized_hoursPerWeek.
value_counts().unstack()[['<40','40', '>40']].plot.barh()

This example served well to showcase the possible benefits of discretization. However,
there is more to learn about discretization. Next, we will learn about the different types
of discretization.

Understanding the types of discretization
While the best tool to guide us through finding the best way to discretize an attribute is a
histogram, as we saw in Figure 14.8, there are a few different approaches one might adopt.
These approaches are called equal width, equal frequency, and ad hoc.

As the name suggests, the equal width approach makes sure that cut-off points will lead to
equal intervals of the numerical attribute. For instance, the following screenshot shows the
application of the pd.cut() function to create 5 equal-width bins from adult_df.age:

Figure 14.9 – Using pd.cut() to create equal width binning

Binary coding, ranking transformation, and discretization 459

On the other hand, the equal frequency approach aims to have an equal number of data
objects in each bin. For instance, the following screenshot shows the application of the
pd.qcut() function to create 5 equal-frequency bins from adult_df.age:

Figure 14.10 – Using pd.qcut() to create equal frequency binning

As you can see in the preceding figure, the absolute equal frequency binning may not
be feasible. In these situations, pd.qcut() gets us as close as possible to equal
frequency binning.

Lastly, the ad hoc approach prescribes the whereabouts of cut-off points based on the
numerical attribute and other circumstantial knowledge about the attribute. For instance,
we decided to cut adult_df.hoursePerWeek in Example 3 – discretization of numerical
attributes ad hoc after having consulted the histogram of the attribute (Figure 14.8) and the
circumstantial knowledge that most employees work 40 hours a week in the US.

In these examples, especially Figure 14.9 and Figure 14.10, one matter we did not talk
about is how we got to the number 5 for the number of bins. That's all right, because that
is the topic of what we will cover next.

460 Data Transformation and Massaging

Discretization – the number of cut-off points
When we discretize a numerical attribute with one cut-off point, the discretized attribute
will have two possible values. Likewise, when we discretize with two cut-off points,
the discretized attribute will have three possible values. The number of possible values
resulting from k cut-off points during discretization of a numerical attribute will be k+1.

Simply put, the question we want to answer here is how to find the optimum number for
k. There is no bulletproof procedure to follow, so you will get the same answer every time.
However, there are a few important guidelines that, when understood and practiced, make
finding the right k less difficult. The following lists these guidelines:

•	 Study the histogram of the numerical attribute you intend to discretize and keep an
open mind about what will be the best number of cut-off points.

•	 Too many cut-off points are not desirable, as one of the main reasons we would like
to discretize a numerical attribute is to simplify it for our own consumption.

•	 Study the circumstantial facts and knowledge about the numerical attribute and see
if they can lead you in the right direction.

•	 Experiment with a few ideas and study their pros and cons.

Before ending our exploration of discretization, I would like to remind you that we've
already used discretization in our journey in this book. See the Example of examining the
relationship between a categorical attribute and a numerical attribute section in Chapter 5,
Data Visualization, for another example of discretization.

A summary – from numbers to categories and back
In this subsection, we learned about the techniques to transform categorical attributes into
numerical ones (binary coding, ranking transformation, and attribute construction), and we
also learned how to transform numerical attributes into categorical ones (discretization).

Before ending this subsection and moving to learn even more about attribute
construction, let's discuss whether any of what we see could be labeled as data massaging.
As we discussed in Figure 14.1, anything we are doing in this chapter is indeed data
transformation; however, a data transformation can be labeled as data massaging when
the transformation has been performed as a way to increase the effectiveness of the
analysis. Most of the time when we transform an attribute from categorical to numerical
or vice versa, it is done out of necessity; however, in the preceding few pages, there are two
instances where the transformation could be labeled as data massaging because we did it
for improving effectiveness. It will be your job to figure out which those are in Exercise 2 at
the end of the chapter.

Attribute construction 461

Now, let's continue our journey of data transformation – next stop: attribute construction.

Attribute construction
We've already seen an example of this type of data transformation. We saw that we could
employ it to transform categorical attributes into numerical ones. As we discussed, using
attribute construction requires having a deep understanding of the environment that the
data has been collected from. For instance, in Figure 14.6, we were able to construct the
Education Years attribute from Education level because we have a pretty good idea of the
working of the education system in the environment the data was collected from.

Attribute construction can also be done by combining more than one attribute. Let's see
an example and learn how this could be possible.

Example – construct one transformed attribute from
two attributes
Do you know what Body Mass Index (BMI) is? BMI is a result of attribute construction
by researchers and physicians, who were looking for a healthiness index that takes both
the weight and height of individuals into account.

We are going to use 500_Person_Gender_Height_Weight_Index.csv from
https://www.kaggle.com/yersever/500-person-gender-height-
weight-bodymassindex. Let's first read the data and do some level one data cleaning.
The following code does that:

person_df = pd.read_csv('500_Person_Gender_Height_Weight_Index.
csv')

person_df.Index = person_df.Index.replace({0:'Extremely Weak',
1: 'Weak',2: 'Normal',3:'Overweight', 4:'Obesity',5:'Extreme
Obesity'})

person_df.columns = ['Gender', 'Height', 'Weight', 'Condition']

After running the preceding code, get Python to show you person_df and evaluate its
state before reading on.

Next, we will leverage .scatterplot() of the seaborn module (sns) to create a 4D
scatter plot. We will use the x axis, y axis, color, and marker style to respectively represent
Height, Weight, Condition, and Gender. The following screenshot shows the code
and the 4D scatterplot:

https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex
https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex

462 Data Transformation and Massaging

Attention
If you are reading the print version of this book, you will not see the colors,
which are an essential aspect of the visualization, so make sure to create the
visual before reading on.

Figure 14.11 – Using sns.scatterplot() to create a 4D visualization of person_df

Our observation from the preceding plot is obvious. The two Height and Weight
attributes together can determine a person's healthiness. This is what the researchers and
physicians must have seen before having arrived at the BMI formula. BMI is a function
that factors in both weight and height to create a healthiness index. The formula is as
follows. Be careful – in this formula, weight is in kilograms and height is in meters:

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡2

This begs the question, why this formula? We literally could have used an infinite number
of possibilities to come up with a transformed attribute that is driven by both weight and
height. So, why this one?

The answer goes back to the most important criteria of being able to apply attribute
construction – deep knowledge of the environment from which the data is collected.
Therefore, on this one, we have to trust that the researchers and physicians that have chosen
this formula did possess such depth of knowledge and appreciation for the human body.

Attribute construction 463

Let's go ahead and construct the new attribute for person_df. The following code uses
the formula and the knowledge that the recorded weight and height in person_df are
respectively in kilograms and meters to construct person_df['BMI']. Of course, this
has been done using the powerful .apply() function:

person_df['BMI'] = person_df.apply(lambda r:r.Weight/((r.
Height/100)**2),axis=1)

After constructing the new person_df.BMI attribute, study it a bit, maybe create its
histogram and box plot to see its variation. After that, try to create the following figure.
Having reached this part of the book, you have all the skills to be able to create it. Anyhow,
you have access to the code that has created the visual in the dedicated GitHub repository
file of this chapter:

Figure 14.12 – Visualization of interaction between BMI and condition

The preceding figure shows the interaction between the constructed attribute, BMI, and the
Condition attribute. The y axis in the preceding scatterplot has been used to disperse the
data points so we can appreciate the number of data objects on the x axis (BMI). The trick
to make the dispersion effect is to assign a random number to each data object.

In any case, what the interaction between the two attributes shows is the main point;
that is, we can almost give out a set of cut-off points that tell us whether a person is
healthy or not; BMI smaller than 15 indicates Extremely Weak, BMI between 15 and
19 shows Weak, BMI between 19 and 25 signifies Normal, BMI between 25 and 30
tells us the person is in the Overweight category, BMI between 30 and 40 is a case of
Obesity, and finally, BMI larger than 40 is a sign that the person is Extremely Obese. Do
a quick Google search to see whether what we've managed to find is the same as what is
recommended regarding BMI.

In this example, we managed to construct one attribute by combining two attributes. There
are cases where we can construct more than one attribute from a single attribute or source
of data. However, while that can also be thought of as attribute construction, in the relevant
literature, doing that is referred to as feature extraction. We will look into that next.

464 Data Transformation and Massaging

Feature extraction
This type of data transformation is very similar to attribute construction. In both, we use
our deep knowledge of the original data to drive transformed attributes that are more
helpful for our analysis purposes.

In attribute construction, we either come up with a completely new attribute from scratch
or combine some attributes to make a transformed attribute that is more useful; however,
in feature extraction, we unpack and pick apart a single attribute and only keep what is
useful for our analysis.

As always, we will go for the best way to learn what we just discussed – examples! We will
see some illuminative examples in this arena.

Example – extract three attributes from one attribute
The following figure shows the transformation of the Email attribute into three binary
attributes. Every email ends with @aWebAddress; by looking at the website address
providing the email service, we have extracted the three Popular Free Platform, .edu,
and Others features. While Email may sound like just a meaningless string as regards
being able to derive information about an individual, this example shows a smart feature
extraction can derive valuable information from email addresses. For instance, here we
can detect individuals who would like to use more popular services. Moreover, we can
distinguish the individual that uses emails provided by educational institutions; this shows
perhaps they work for academia or they are students:

Figure 14.13 – Feature extraction from the Email attribute

Let's look at another example.

Feature extraction 465

Example – Morphological feature extraction
The following figure shows 100 milliseconds of vibrational signals collected from a
car engine for health diagnosis. Furthermore, the figure shows the extraction of three
morphological features.

Before getting more into these three features and what they are, let's discuss what the word
morphological means. The Oxford English Dictionary defines it as "connected to shape and
form." As a feature extraction approach, morphological feature extraction is employing
the common shape and form of the data to get to new features.

The following figure serves as an excellent example. We have extracted three
morphological features. Simply, in the line plot of the vibration signal, we have counted
the number of peaks (n_Peaks), the number of valleys (n_Valleys), and the extent of
oscillation during the 100 milliseconds (max_Oscillate):

Figure 14.14 – Morphological feature extraction of vibrational signals

466 Data Transformation and Massaging

The value of doing such feature extraction will show itself when we see them in
comparison between a few data objects. The preceding figure is the feature extraction
of only one data point. However, the following figure has put together five distinct data
points that are from engines with five different states: Healthy, Fault 1, Fault 2, Fault 3,
and Fault 4:

Figure 14.15 – Morphological feature extraction of vibrational signals for five instances of data objects

Contemplating the preceding figure shows us that with simple morphological feature
extraction, we might be able to accurately distinguish between different types of fault and the
healthy engine. You will have the opportunity to create the classification model after doing
morphological feature extraction on similar data in Exercise 5 at the end of this chapter.

Feature extraction 467

In our journey throughout this book, we have already seen other instances of feature
extraction without referring to it as such. Next, we are going to discuss those instances
and how we had gotten ahead of ourselves.

Feature extraction examples from the previous
chapters
In this book, we have dissected data preprocessing into different stages. These stages are
Data Cleaning (Chapters 9–11), Data Fusion and Integration (Chapter 12), Data Reduction
(Chapter 13), and Data Transformation (this chapter). However, in many instances of
data preprocessing, these stages may be done in parallel or at the same time. This is a
great achievement from a practical perspective and we should not force ourselves to take
apart these stages in practice. We've only discussed these stages separately to aid our
understanding, but once you feel more comfortable with them, it is recommended to do
that at the same time if it's possible and useful.

That is the reason that we've already seen feature extraction in the other stages of data
preprocessing. Let's go over these examples and see why they are both feature extraction
and also other things.

Examples of data cleaning and feature extraction
In Chapter 10, Data Cleaning Level II – Unpacking, Restructuring, and Reformulating
the Table, during the solution for the Example 1 – Unpacking columns and reformulating
the table section, which was cleaning speech_df, a dataset that had a few of President
Trump's speeches, we unwittingly performed some feature extraction under the name of
unpacking the Content column. The Content attribute had each of the speeches in
text, and the solution unpacked these long texts by counting the number of times the vote,
tax, campaign, and economy terms had been used.

This is both data cleaning and data transformation (feature extraction). From the
perspective of data cleaning, there was so much fluff in the data that we did not need and
got in the way of our visualization goals, so we removed the fluff to bring what's needed to
the surface. From a data transformation perspective, we extracted four features that were
needed for our analysis.

Next, let's see how data reduction and feature extraction are sometimes done at the
same time.

468 Data Transformation and Massaging

Examples of data reduction and feature extraction
In Chapter 13, Data Reduction, we learned two unsupervised dimension reduction
techniques. We saw how a non-parametric method (that is, PCA) and a parametric
method (that is, FDA) reduced the dimension of country_df, a dataset of countries
with 10 years of 9 happiness indices (90 attributes). From a data reduction perspective,
the data was reduced by reducing the number of attributes. However, after learning about
data transformation and feature extraction, we can see that we transformed the data by
extracting a few features.

Almost always any unsupervised dimension reduction effort can also be referred to as
feature extraction. More interestingly, this type of data reduction/dimension reduction
can also be seen as data massaging, because we are extracting features and reducing the
size of the data solely to improve the effectiveness of the analysis.

The gear shift from attribute construction to feature extraction was very smooth as the
two data transformations are very similar and, in most cases, we can think of them as
data massaging. These two types of data transformation are also very general and can
be employed in a wide range of ways, and for their successful implementation, they
require the resourcefulness of the analyst. For instance, the analyst must be able to find
appropriate functions to use FDA for parametric feature extraction, which requires
high-level resourcefulness.

However, the next data transformation technique we will learn is going to be very
specific and is only applicable in certain situations. Next, we will learn about
log transformation.

Log transformation
We should use this data transformation when an attribute experiences exponential
growth and decline across the population of our data objects. When you draw a box plot
of these attributes, you expect to see fliers, but those are not mistaken records, nor are
they unnatural outliers. Those significantly larger or smaller values come naturally from
the environment.

Attributes with exponential growth or decline may be problematic for data visualization
and clustering analysis; furthermore, they can be problematic for some prediction
and classification algorithms where the method uses the distance between the data
objects, such as KNN, or where the method drives its performance based on collective
performance metrics, such as linear regression.

Log transformation 469

These attributes may sound very hard to deal with, but there is a very easy fix for them –
log transformation. In short, instead of using the attribute, you calculate the logarithms of
all of the values and use them instead. The following figure shows how this transformation
looks using the Gross Domestic Product (GDP) data of the world's countries in 2020.
The data is retrieved from https://data.worldbank.org/indicator/NY.GDP.
MKTP.CD and preprocessed into GDP 2019 2020.csv:

Figure 14.16 – Before and after log transformation – the GDP of the countries in the world

https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

470 Data Transformation and Massaging

We can see in the preceding figure that the line plot of the original data shoots up; that
is what we earlier described as exponential growth. We also see in the box plot of the
original data that there are outliers with unrestrictedly high values compared to the rest
of the population. You can imagine how these types of outliers can be problematic for our
analytics, such as data visualization and clustering analysis.

Now, pay attention to the log-transformed version of the visualization. The data objects
still have the same relationships with one another from the perspective of being more
or less; however, the exponential growth has been tamped down. We can see in the box
plot of the log-transformed data that we still have fliers, but those fliers' values are not
unrestrictedly higher.

The preceding figures are created using GDP 2019 2020.csv, and you can find the
code that created them in the dedicated GitHub repository file of this chapter.

There are two approaches in applying log transformation – doing it yourself or the
working module doing it for you. Let's see these two approaches in the following section.

Implementation – doing it yourself
In this approach, you take matters into your own hands and first add a log-transformed
attribute to the dataset and then use that transformed attribute. For example, the following
screenshot shows doing the attribute for country_df['2020'].

Pay attention – before running the code presented in the following screenshot, you
need to first run the following code that reads the GDP 2019 2020.csv file into
country_df:

country_df = pd.read_csv('GDP 2019 2020.csv')

country_df.set_index('Country Name',inplace=True)

Log transformation 471

After running the preceding code, you can run the code presented in the
following screenshot:

Figure 14.17 – Log transformation – doing it yourself

Next, let's cover the approach of the working module doing it for you.

472 Data Transformation and Massaging

Implementation – the working module doing it for you
As log transformation is a very useful and well-known data transformation, many modules
provide the option for you to use the log transformation. For instance, the code in the
following screenshot uses logy=True, which is a property of the .plot() Pandas Series
function, to do the log transformation without having to add a new attribute to the dataset:

Figure 14.18 – Log transformation – the working module doing it for you

The disadvantage of this approach is that the module you are using may not have
this accommodation, or you may not be aware of it. On the other hand, if such
accommodation is provided, it makes your code much easier to read.

Furthermore, the result of the working module doing it for you might be even more
effective. For instance, compare the y axis in Figure 14.15 with that of Figure 14.16.

Before moving to the next data transformation tools, let me remind you that we have
already used log transformation in our data analysis in the course of this book. Remember
the WH Report_preprocessed.csv and WH Report.csv datasets, which are
the two versions of the World Health Organization reports on the happiness indices of
122 countries? One of the attributes in these datasets is Log_GDP_per_capita. As
GDP_per_capita experiences exponential growth, for clustering analysis, we used its
log-transformed version.

Smoothing, aggregation, and binning 473

The next group of data transformation tools is going to be used for dealing with noisy
data, and sometimes to deal with missing values and outliers. They are smoothing,
aggregation, and binning.

Smoothing, aggregation, and binning
In our discussion about noise in data in Chapter 11, Data Cleaning Level III – Missing
Values, Outliers, and Errors, we learned that there are two types of errors – systematic
errors and unavoidable noise. In Chapter 11, Data Cleaning Level III – Missing Values,
Outliers, and Errors, we discussed how we deal with systematic errors, and now here
we will discuss noise. This is not covered under data cleaning, because noise is an
unavoidable part of any data collection, so it cannot be discussed as data cleaning.
However, here we will discuss it under data transformation, as we may be able to
take measures to best handle it. The three methods that can help deal with noise are
smoothing, aggregation, and binning.

It might seem surprising that these methods are only applied to time-series data to deal
with noise. However, there is a distinct and definitive reason for it. You see, it is only in
time-series data, or any data that is collected consistently, consecutively, and with ordered
intervals, that we can detect the presence of noise. It is this unique data collection that
allows us to be able to detect the existence of noise. In other forms of data collection, we
cannot detect the noise, and therefore there will be nothing we can do. Why is that? The
answer is in the consistent, consecutive, and ordered intervals. Due to this unique data
collection, we can pick apart patterns from noise.

The three methods that can help deal with noise are smoothing, aggregation, and
binning. Each of these three methods to deal with noise operate under a specific set of
assumptions. In the following three sections, we will first learn about these assumptions
and then we will see examples of how they are implemented.

One last word before seeing the sections – strictly speaking, missing values and outliers
are types of noise, and if they are non-systematic and a natural part of the data collection,
either of these three methods could also be applied to deal with them.

Now, let's look at the smoothing approach in dealing with noise.

474 Data Transformation and Massaging

Smoothing
The following screenshot uses the Noise_data.csv file, which is 200 milliseconds of
vibrational signals collected from a car engine for health diagnosis. The screenshot shows
the line plot of these vibrational signals:

Figure 14.19 – Line plot of Noise_data.csv

In the preceding figure, you can sense what we meant by time-series data allowing
us to distinguish between patterns and noise. Now, let's use this data to learn more
about smoothing.

By and large, there are two types of smoothing – functional and rolling. Let's learn about
each of them one by one.

Functional data smoothing
Functional smoothing is the application of Functional Data Analysis (FDA) for the
purpose of smoothing the data. If you need to refresh your memory on FDA, which we
covered in Chapter 13, Data Reduction, go back and review it before reading on.

When we used FDA to reduce the size of the data, we were interested in replacing the
data with the parameters of the function that simulate the data well. However, when
smoothing, we want our data with the same size, but we want to remove the noise. In
other words, regarding how FDA is applied, it is very similar to both data reduction and
smoothing; however, the output of FDA is different for each purpose. For smoothing, we
expect to have the same size data as the output, whereas for data reduction, we expect to
only have the parameters of the fitting function.

Smoothing, aggregation, and binning 475

There are many functions and modules in the space of the Python data analysis
environment that use FDA to smooth data. A few of them are savgol_filter from
scipy.signal; CubicSpline, UnivariateSpline, splrep, and splev from
scipy.Interpolate; and KernelReg from statsmodels.nonparametric.
kernel_regression. However, none of these functions works as well as it should, and
I believe there is much more room for the improvement of smoothing tools in the space
of Python data analytics. For instance, the following figure shows the performance of the
.KernelReg() function on part of the data (50 numbers) versus its performance on the
whole Noise_data.csv file (200 numbers):

Figure 14.20 – The performance of .KernelReg() on part of signal_df and all of it

476 Data Transformation and Massaging

We can see in the preceding figure that the .KernelReg()function is successful in part
of the data, but it crumbles as the complexity of the data increases.

The code to create each of the plots in the preceding figure is very similar. For instance,
to create the top plot, you can use the following code. I am certain you are capable of
modifying it to create the bottom one as well:

from statsmodels.nonparametric.kernel_regression import
KernelReg

x = np.linspace(0,50,50)

y = noise_df.Signal.iloc[:50]

plt.plot(x, y, '+')

kr = KernelReg(y,x,'c')

y_pred, y_std = kr.fit(x)

plt.plot(x, y_pred)

plt.show()

What was covered here in terms of functional data smoothing can only be looked at as an
introduction to this complex data transformation tool. There is a lot that can be said about
functional data smoothing, enough for an entire book. However, what you learned here
can be a great foundation for you to go off on your own and learn more.

Now, let's bring our attention to rolling data smoothing.

Rolling data smoothing
The biggest difference between functional data smoothing and rolling data smoothing is
that functional data smoothing looks at the whole data as one piece and then tries to find
the function that fits the data. In contrast, rolling data smoothing works on incremental
windows of the data. The following figure shows what rolling calculation and the
incremental windows are using in the first 10 rows of singnal_df:

Smoothing, aggregation, and binning 477

Figure 14.21 – Visual explanation of rolling calculations and the window

In the preceding figure, the width of each window is 5. As shown, the window rolling
calculation happens by picking the first 5 data points. After performing the prescribed
calculations, the window rolling calculation moves on to the next window by one
increment jump.

For instance, the following code uses the .rolling() function of a Pandas DataFrame
to calculate the mean of every window of singnal_df in a rolling window calculation
where the width of each window is 5. The code also creates a line plot to show how this
specific window rolling calculation manages to smooth the data:

signal_df.Signal.plot(figsize=(15,5),label='Signal')

signal_df.Signal.rolling(window=5).mean().plot(label='Moving
Average Smoothed')

plt.legend()

plt.show()

478 Data Transformation and Massaging

After running the preceding code successfully, the following plot will be created.
Theoretically, what we just did is called Moving Average Smoothing, which is calculating
the moving average of the time-series data:

Figure 14.22 – Moving Average Smoothing using window rolling calculations

As you can see, Moving Average Smoothing has smoothed the data pretty nicely, but
it has a distinct disadvantage – the data seems to have been shifted. Naively, you may
think that you can simply shift the plot a bit to the left and all will be okay. However, the
following figure, the first seven rows of Signal and Moving Average Smoothed shows you
that a perfect match will never be possible:

Figure 14.23 – Comparing the Signal and Moving Average Smoothed columns

Smoothing, aggregation, and binning 479

It is no surprise that the first four values for Moving Average Smoothed are NaN, right? It
is due to the nature of rolling window calculations. Always, when the width of windows is
k, the first k-1 rows will have NaN.

Rolling window calculations provide the opportunity to use simple or complex
calculations to smooth. For instance, you might want to try other time-series methods,
such as simple exponential smoothing. The following code uses the mechanism of the
rolling window calculations to apply exponential smoothing.

Before running the following code, pay attention to the way the code uses the
.rolling() and .apply() functions to implement simple exponential smoothing that
was first defined as a function:

def ExpSmoothing(v):

 a=0.2

 yhat = v.iloc[0]

 for i in range(len(v)):

 yhat = a*v.iloc[i] + (1-a)*yhat

 return yhat

signal_df.Signal.plot(figsize=(15,5),label='Signal')

signal_df.Signal.rolling(window=5).apply(ExpSmoothing).plot(
label = 'Exponential Smoothing')

plt.legend()

plt.show()

Running the preceding code creates a figure similar to Figure 14.20, but this time, the
smoothed values have used the simple exponential smoothing formulas.

Now, let's bring our attention to the next tool that we will learn to deal with
noise – aggregation.

Aggregation
Data aggregation is a specific type of rolling data smoothing. With aggregation, we do not
use any window's width, but we aggregate the data points from smaller data objects to
wider data objects, for example, from days to weeks, or from seconds to hours.

480 Data Transformation and Massaging

For example, the following figure shows the line plot of daily COVID-19 cases and deaths,
and then its aggregated version – weekly COVID-19 cases and deaths for California and
the US:

Figure 14.24 – Example of aggregation to deal with noise – COVID-19 new cases and deaths

The operation of aggregating a dataset to create a dataset with a new definition of data
objects is not new to us. Through the course of this book, we've seen many examples of it.
For instance, see the following items:

•	 Example 1 – unpacking columns and reformulating the table in Chapter 10, Data
Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table – in this
example, speech_df was aggregated to create vis_df, whose definition of data
objects is speeches in a month.

Smoothing, aggregation, and binning 481

•	 Example 1 (challenges 3 and 4) in Chapter 12, Data Fusion and Integration – in this
example, we had to aggregate electric_df, whose definition of a data object was
the electricity consumption of half an hour, to create a new dataset whose definition
of data object was hourly electricity consumption. This was done so electric_df
could be integrated with temp_df.

In any case, Exercise 12 will provide the opportunity for you to practice aggregation to
deal with noise. You will be able to create Figure 14.24 yourself.

Lastly, we will discuss binning as a method to transform the data to deal with noise.

Binning
It may seem that this is a new method, but binning and discretization are technically the
same type of data preprocessing. When the process is done to transform a numerical
attribute to a categorical one, it is referred to as discretization, and when it is used as a way
to combat noise in numerical data, we call the same data transformation binning.

Another possibly surprising fact is that we have done binning so many times before in this
book. Every time we created a histogram, binning was done under the hood. Now, let's
raise that hood and see what's happening inside.

The very first histogram we ever created in this book was shown in Figure 2.1 in Chapter
2, Review of Another Core Module – Matplotlib. In that figure, we created the histogram of
the adult_df.age attribute. Go back and review the histogram.

The following screenshot shows how it would have looked if we had created the bar chart
of adult_df.age, instead of its histogram:

Figure 14.25 – Creating the bar chart of adult_df.age

482 Data Transformation and Massaging

Comparing the preceding visualization with Figure 2.1 allows us to see the value of the
histogram and how it can help us with smoothing the data so that we can get a better
understanding of the variation among the population.

We can also create the same shape as the histogram by binning the attribute first and then
creating the bar chart. The code in the following screenshot uses the pd.cut() pandas
function to bin adult_df.age and then create its bar chart. Compare the bar chart in
the following screenshot with Figure 2.1; they are showing the same patterns:

Figure 14.26 – Creating the histogram of adult_df by pd.cut() and .bar() instead of .hist()

If you are concerned about the preceding figure not looking exactly like the one in Figure
2.1, all you need to change is the width of the bar. Replace .bar(width=1) with
.bar() in the code of the preceding screenshot and you will manage that.

In this section, we learned three ways to deal with noise in the data: smoothing,
aggregation, and binning. We are getting closer to the end of this chapter. Next, we will go
over a summary of the whole chapter and wrap up our learning.

Summary 483

Summary
Congratulations to you for completing this chapter. In this chapter, we added many
useful tools to our data preprocessing armory, specifically in the data transformation
area. We learned how to distinguish between data transformation and data massaging.
Furthermore, we learned how to transform our data from numerical to categorical, and
vice versa. We learned about attribute construction and feature extraction, which are very
useful for high-level data analysis. We also learned about log transformation, which is one
of the oldest and most effective tools. And lastly, we learned three methods that are very
useful in our arsenal for dealing with noise in data.

By finishing this chapter successfully, you are also coming to the end of the third part
of this book – The Preprocessing. By now, you know enough to be very successful at
preprocessing data that leads to effective data analytics. In the next part of the book, we
will have three case studies (Chapters 15–17), into which we will put our learning from
across the book into use and have culminating experience of data preprocessing and
effective analytics. We will end the book with Chapter 18, Summary, Practice Case Studies,
and Conclusions. This chapter will provide learning opportunities for you to put what you
have learned into real use and to start creating your portfolio of data preprocessing and
data analytics.

Before all that real, practical, and exciting learning, do not miss out on the learning
opportunity that the exercises at the end of this chapter provide.

Exercise
1.	 In your own words, what are the differences and similarities between normalization

and standardization? How come some use them interchangeably?
2.	 There are two instances of data transformation done during the discussion of binary

coding, ranking transformation, and discretization that can be labeled as massaging.
Try to spot them and explain how come they can be labeled that way.

484 Data Transformation and Massaging

3.	 Of course, we know that one of the ways that the color of a data object is presented
is by using their names. This is why we would assume color probably should be
a nominal attribute. However, you can transform this usually nominal attribute
to a numerical one. What are the two possible approaches? (Hint: one of them is
an attribute construction using RGB coding.) Apply the two approaches to the
following small dataset. The data shown in the table below is accessible in the
color_nominal.csv file:

Figure 14.27 – color_nominal.csv
Once after binary codding and once after RGB attribute construction, use the
transformed attributes to cluster the 30 data objects into 3 clusters. Perform
centroid analysis for both clusterings and share what you learned from this exercise.

4.	 You've seen three examples of attribute construction so far. The first one can be
found in Figure 14.6. The other one was in the Example – Construct one transformed
attribute from two attributes section, and the last one was the previous exercises. Use
these examples to argue whether attribute construction is data massaging or not.

5.	 In this exercise, you will get to work on a dataset collected for research and
development. The dataset was used in a recent publication titled Misfire and
valve clearance faults detection in the combustion engines based on a multi-sensor
vibration signal monitoring to show that high-accuracy detection of engine
failure is possible using vibrational signals. To see this article, visit this link:
https://www.sciencedirect.com/science/article/abs/pii/
S0263224118303439.

https://www.sciencedirect.com/science/article/abs/pii/S0263224118303439
https://www.sciencedirect.com/science/article/abs/pii/S0263224118303439

Exercise 485

The dataset that you have access to is Noise_Analysis.csv. The size of the file
is too large and we were not able to include it on the GitHub Repository. Please
use this link (https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise_
Analysis.csv?dl=1) to download the file. This dataset has 7,500 rows, each
showing 1 second (1,000 milliseconds) of the engine's vibrational signal and the
state of the engine (Label). We want to use the vibrational signal to predict the state
of the engine. There are five states: H – Healthy, M1 – Missfire 1, M2 – Missfire 2,
M12 – Missfire 1 and 2, and VC – Valve Clearance.

To predict (classify) these states, we need to first perform feature extraction from
the vibrational signal. Extract the following five morphological features and then
use them to create a decision tree that can classify them:

a) n_Peaks – the number of peaks (see Figure 14.13)

b) n_Valleys – the number of valleys (see Figure 14.13)

c) Max_Oscilate – the maximum oscillation (see Figure 14.13)

d) Negative_area – the absolute value of the total sum of negative signals

e) Positive_area – the total sum of the positive signals

Make sure to tune the decision tree to come to a final tree that can be used for
analysis. After creating the decision tree, share your observations. (Hint: to find
n_Peaks and n_Valleys, you may want to use the scipy.signal.find_peaks
function.)

6.	 In this chapter, we discussed the possible distinction between data massaging and
data transformation. We also saw that FDA can be used both for data reduction and
data transformation. Review all of the FDA examples you have experienced in this
book (Chapter 13, Data Reduction, and this chapter) and use them to make a case
regarding whether FDA should be labeled as data massaging or not.

7.	 Review Exercise 8 in Chapter 12, Data Fusion and Integration. In that exercise, we
transformed the attribute of one of the datasets so that the fusion of the two sources
became possible. How would you describe that data transformation? Could we call
it data massaging?

8.	 In this exercise, we will use BrainAllometry_Supplement_Data.csv from
a paper titled The allometry of brain size in mammals. The data can be accessed
from https://datadryad.org/stash/dataset/doi:10.5061/
dryad.2r62k7s.

https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise_Analysis.csv?dl=1
https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise_Analysis.csv?dl=1
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2r62k7s
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2r62k7s

486 Data Transformation and Massaging

The following scatterplot tries to show the relationship between mean body
mass and mean brain mass of species in nature. However, you can see that the
relationship is not very well shown. What transformation could fix this? Apply it
and then share your observations:

Figure 14.28 – Scatter plot of Mean_body_mass_g and Mean_brain_mass_g

9.	 In this chapter, we learned three techniques to deal with noise: smoothing,
aggregation, and binning. Explain why these methods were covered under data
transformation and not under data cleaning – level III.

10.	 In two chapters (Chapter 13, Data Reduction, and this chapter) and under three
areas of data preprocessing, we have shown the applications of FDA: data reduction,
feature extraction, and smoothing. Find examples of the FDA in these two chapters,
and then explain how FDA manages to do all these different data preprocesses.
What allows FDA to be such a multipurpose toolkit?

11.	 In Figure 14.18, we saw that .KernelReg() on all of signal_df did not
perform very well, but it did perform excellently on part of it. How about trying
to smooth all of signal_df with a combination of rolling data smoothing
and functional data smoothing? To do this, we need to have window rolling
calculations with a step size. Unfortunately, the .rolling() Pandas function
only accommodates the step size of one, as shown in Figure 14.18. So, take matters
into your hands and engineer a looping mechanism that uses .KernelReg() to
smooth all of signal_df.

Exercise 487

12.	 Use United_States_COVID-19_Cases_and_Deaths_by_State_over_
Time.csv to recreate Figure 14.24. You may want to pull the most up-to-date data
from https://catalog.data.gov/dataset/united-states-covid-
19-cases-and-deaths-by-state-over-time to develop an up-to-date
visualization. (Hint: you will need to work with the two new_case and
new_death columns.)

13.	 It may seem like that binning and aggregation are the same method; however, they
are not. Study the two examples in this chapter and explain the difference between
aggregation and binning.

https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-over-time
https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-over-time

In this part, you will see three real cases of data preprocessing for analytics that you can
read to shadow a real project before you pick up your own project. Some suggestions are
also provided.

This part comprises the following chapters:

•	 Chapter 15, Case Study 1 – Mental Health in Tech

•	 Chapter 16, Case Study 2 – Predicting COVID-19 Hospitalizations

•	 Chapter 17, Case Study 3 – United States Counties Clustering Analysis

•	 Chapter 18, Summary, Practice Case Studies, and Conclusions

Part 4:
Case Studies

15
Case Study 1 –
Mental Health

in Tech
In this chapter and the two upcoming ones, we are going to put the skills that we have
picked up in the course of this book into practice. For this case study, we are going to
use data collected by Open Sourcing Mental Illness (OSMI) (https://osmihelp.
org/), which is a non-profit corporation dedicated to raising awareness, educating, and
providing resources to support mental wellness in the tech and open source communities.
OSMI conducts yearly surveys that "aim to measure attitudes towards mental health in
the tech workplace and examine the frequency of mental health disorders among tech
workers." These surveys are accessible to the public for participation and can be found at
https://osmihelp.org/research.

In this chapter, we're going to learn about mental health in tech case study by covering
the following:

•	 Introducing the case study

•	 Integrating the data sources

•	 Cleaning the data

•	 Analyzing the data

https://osmihelp.org/
https://osmihelp.org/
https://osmihelp.org/research

492 Case Study 1 – Mental Health in Tech

Technical requirements
You will be able to find all of the code and the dataset that is used in this book in
a GitHub repository exclusively created for this book. To find the repository, click
on this link: https://github.com/PacktPublishing/Hands-On-Data-
Preprocessing-in-Python. You can find this chapter's materials in this repository
and can download the code and the data for better learning.

Introducing the case study
Mental health disorders such as anxiety and depression are inherently detrimental to
people's well-being, lifestyles, and ability to be productive in their work. According to
Mental Health America, over 44 million adults in the US have a mental health condition. The
mental health of employees in the tech industry is of great concern due to the competitive
environments often found within and among these companies. Some employees at these
companies are forced to work overtime simply to keep their jobs. Managers of these types of
companies have good reason to desire improved mental health for their employees because
healthy minds are productive ones and distracted minds are not.

Managers and leaders of tech and non-tech companies must make difficult decisions
regarding whether or not to invest in the mental health of their employees and, if so,
to what degree. There is plenty of evidence that poor mental health can have a negative
impact on workers' well-being and productivity. Every company has a finite amount of
funds that it can invest in the physical health of its employees, let alone mental health.
Knowing where to allocate resources is of great importance.

This serves as a general introduction to this case study. Next, we will discuss a very
important aspect of any data analysis – who is the audience of our results?

The audience of the results of analytics
Always, the main audience of the results of any analytics is decision-makers; however, it
is important to be clear about who exactly are those decision-makers. In real projects, this
should be obvious, but here in this chapter of the book, as our goal is to practice, we need
to imagine a specific decision-maker and tailor our analysis for them.

The decision-makers that we will focus on are the managers and the leaders of tech
companies who are in charge of making decisions that can impact the mental health
of their employees. While mental health should be looked at as a priority, in reality,
managers have to navigate a decision-making environment that has many competing
priorities, such as organizational financial health, survival, profit maximization, sales, and
customer service, as well as economic growth.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Introducing the case study 493

For instance, the following simple visualization created by OSMI (available at
https://osmi.typeform.com/report/A7mlxC/itVHRYbNRnPqDI9C) tells us
that while mental health support in tech companies is not terrible, there remains a large
gap for improvement:

Figure 15.1 – A simple visualization from the 2020 OSMI mental health in tech survey

Our goal in this case study is to dig a bit deeper than the basic report provided by OSMI
and see the interactions between more attributes, which can be informative and beneficial
to the described decision-makers.

Specifically, for this case study, we will try to answer the following Analytic Questions
(AQs) that can inform the described decision-makers about the attitude and importance
of mental health in their employees:

•	 AQ1: Is there a significant difference between the mental health of employees across
the attribute of gender?

•	 AQ2: Is there a significant difference between the mental health of employees across
the attribute of age?

•	 AQ3: Do more supportive companies have healthier employees mentally?

•	 AQ4: Does the attitude of individuals toward mental health influence their mental
health and their seeking of treatments?

https://osmi.typeform.com/report/A7mlxC/itVHRYbNRnPqDI9C

494 Case Study 1 – Mental Health in Tech

Now that we are clear about how we are analyzing this data and what AQs we want to
answer, let's roll up our sleeves and start getting to know the source of the data.

Introduction to the source of the data
OSMI started conducting the mental health in tech survey in 2014, and even though the
rate of participation in their surveys has dwindled over the years, they have continued
collecting data until now. At the time of developing this chapter, the raw data for 2014 and
2016 to 2020 is accessible at https://osmihelp.org/research.

Get to Know the Sources of Data
Go ahead and download the raw data from 2014 to the most recent version,
and use the tools you've picked up in your journey in this book to get to know
these files. Continue reading once you have a good grasp of these datasets.

At the time of developing this chapter, only six raw datasets from 2014, 2016, 2017, 2018,
2019, and 2020 were collected and available. Only the five datasets from 2016 to 2020 are
used in this chapter, so there is continuity in the data.

As we move along in this chapter, feel free to add the most recent versions, if they are
available at the listed address, and update the code accordingly.

Now, let's get started. We will have to start with data integration and then data cleaning.

Attention!
You are going to experience a shift in the way code is represented in this
chapter. From Chapter 1 to Chapter 14, almost all of the code that was used
for analytics and preprocessing was shared both during the chapter and also
in a dedicated file in the GitHub repository. However, in this chapter, and in
the following two chapters, Chapters 16, Case Study 2 – Predicting COVID
Hospitalization, and Chapter 17, Case Study 3 – United States Counties
Clustering Analysis, the code will be presented mainly in the dedicated file for
this chapter in the GitHub repository. So, while studying this chapter, make
sure you also have the code in the GitHub repository handy so that you can go
back and forth and learn.

https://osmihelp.org/research

Integrating the data sources 495

Integrating the data sources
As discussed, five different datasets need to be integrated. After having seen these five
datasets that collected data of OSMI mental health in tech surveys across five different
years, you will realize that the survey throughout the years has undergone many changes.
Also, while the collected datasets are about mental health in tech, the wordings of the
questions and sometimes the nature of these questions have changed. Therefore, the
figurative funnel in the following figure serves two purposes. First, it lets the parts of the
data from each dataset come through that are common among all six datasets. Second, the
funnel also filters out the data that is not relevant to our AQs:

Figure 15.2 – The schematic of the integration of five datasets into one

496 Case Study 1 – Mental Health in Tech

While the preceding figure makes the integration of these five datasets seem simple, there
are meaningful challenges ahead of us. The very first one is knowing what the common
attributes are among all these five datasets if there is no consistent wording among them.
Do we need to do it manually? While that is certainly one way of doing it, it would be a
very long process. We can use SequenceMatcher from the difflib module to find
the attributes that are similar to one another.

After doing the filtering based on what is common among all five datasets, we still need
to only keep the attributes that are relevant to our AQs. The following list is the collection
of the attributes that are both common among all five datasets and are relevant to our
AQs. To make cleaner-looking data, each long attribute name that is a question on the
survey has been assigned a name. These names are used to create an attribute dictionary,
Column_dict, so the attribute names are codable and intuitive, and the complete
questions are also accessible:

•	 SupportQ1: Does your employer provide mental health benefits as part of
healthcare coverage?

•	 SupportQ2: Has your employer ever formally discussed mental health (for
example, as part of a wellness campaign or other official communication)?

•	 SupportQ3: Does your employer offer resources to learn more about mental
health disorders and options for seeking help?

•	 SupportQ4: Is your anonymity protected if you choose to take advantage of
mental health or substance abuse treatment resources provided by your employer?

•	 SupportQ5: If a mental health issue prompted you to request medical leave from
work, how easy or difficult would it be to ask for that leave?

•	 AttitudeQ1: Would you feel comfortable discussing a mental health issue with
your direct supervisor(s)?

•	 AttitudeQ2: Would you feel comfortable discussing a mental health issue with
your coworkers?

•	 AttitudeQ3: How willing would you be to share with friends and family that you
have a mental illness?

Cleaning the data 497

•	 SupportEx1: If you have revealed a mental health disorder to a client or business
contact, how has this affected you or the relationship?

•	 SupportEx2: If you have revealed a mental health disorder to a coworker or
employee, how has this impacted you or the relationship?

•	 Age: What is your age?

•	 Gender: What is your gender?

•	 ResidingCountry: What country do you live in?

•	 WorkingCountry: What country do you work in?

•	 Mental Illness: Have you ever been diagnosed with a mental health disorder?

•	 Treatment: Have you ever sought treatment for a mental health disorder from a
mental health professional?

•	 Year: The year that the data was collected.

After removing the other attributes, renaming the long attribute names with their key
in the dictionary, the five datasets can be easily joined using the pd.concat() pandas
function. I have named the integrated DataFrame in_df.

Cleaning the data
While going about data integration, we took care of some level I data cleaning as well,
such as the data being in one standard data structure and the attributes having codable
and intuitive titles. However, because in_df is integrated from five different sources, the
chances are that different data recording practices may have been used, which may lead to
inconsistency across in_df.

498 Case Study 1 – Mental Health in Tech

For instance, the following figure shows how varied data collection for the Gender
attribute has been:

Figure 15.3 – The state of the Gender attribute before cleaning

We need to go over every attribute and make sure that there is no repetition of the same
possibilities in a slightly different wording due to varying data collection or misspellings.

Cleaning the data 499

Detecting and dealing with outliers and errors
As our AQs are only going to rely on data visualization for answers, we don't need to
detect outliers, as our addressing them would be adopting the "do nothing" strategy.
However, as we use outlier detection to also find possible systematic errors in the data, we
can visualize all of the attributes in the data and spot inconsistencies, and then fix them.

The following figure shows the box plot and histogram of the Age attribute, and we can
see there are some mistaken data entries. The two unreasonably high values and the one
unreasonably low value were changed to NaN:

Figure 15.4 – The box plot and histogram of the Age attribute before cleaning

500 Case Study 1 – Mental Health in Tech

After the prescribed transformation, the box plot changed to more healthy-looking data
distribution, as shown in the following figure. There are still some fliers in the data, but,
after further investigation of these entries, it was concluded these values are correct, and
the individuals who responded to the survey just happened to be older than the rest of the
respondent population:

Figure 15.5 – The box plot and histogram of the Age attribute after cleaning

The visualization of another two attributes showed that they need our attention –
ResidingCountry and WorkingCountry. The following figure shows the bar chart
of the WorkingCountry attribute. The visuals of the two attributes are very similar,
which is why we have shown only one of them:

Cleaning the data 501

Figure 15.6 – The box plot and histogram of the WorkingCountry attribute before transformation

Considering the bar charts of these two attributes, we do know that the issue with this
data is not mistaken data entries; however, the fact that there are just more data entries
from the US than the other countries is not because the US only has tech companies,
but, at a guess, because the survey participation was more encouraged in the US. To deal
with this situation, the best way is to focus our analysis on the US respondents instead of
the whole data. Therefore, we remove all the rows, except for the ones that have United
States of America under both WorkingCountry and ResidingCountry.

After implementing this data transformation, the values under WorkingCountry and
ResidingCountry will only have one possible value; therefore, they are not adding any
information to the population of the transformed dataset. The best way to move forward
would be to remove these two attributes.

Next, let's deal with the missing values in the dataset.

502 Case Study 1 – Mental Health in Tech

Detecting and dealing with missing values
After investigation, we realize that except for AttitudeQ3, Age, Gender, Mental
Illness, Treatment, and Year, the rest of the attributes do have missing values. The
first thing we check is to make sure the missing values are all from the same data objects.
The following figure was created so that we can see the assortment of missing values
across the population of the dataset:

Figure 15.7 – Assortment of missing values across the population of the dataset

Cleaning the data 503

Considering the preceding figure, the answer to our wondering is yes, some data objects
have missing values on more than one attribute. The missing values for the attributes from
SupportQ1 to AttitudeQ3 are from the same data objects. However, the preceding figure
brings our attention to the fact that the missing values under SupportEx1 and SupportEx2
are much more troublesome, as the majority of the data objects have missing values under
these two attributes. The best way of moving forward in these situations is to forego having
these attributes. So these two attributes have been removed from the analysis.

Now, let's bring our attention back to the common missing values among the data objects
for the attributes from SupportQ1 to AttitudeQ3.

The common missing values in attributes from SupportQ1 to
AttitudeQ3
We need to diagnose these missing values to figure out what type they are before we
can deal with them. After running the diagnosis, we can see these missing values have a
relationship with the Age attribute. Specifically, the older population in the dataset has
left these questions unanswered. Therefore, we can conclude that these missing values
are of the Missing At Random (MAR) type. We will not deal with these missing values
here because our decision regarding them depends on the analysis. However, we'll keep in
mind that these missing values are of the MAR type.

Next, let's diagnose the missing values on the other attributes – next stop: the Mental
Illness attribute.

The missing values in the MentalIllness attribute
The Mental Illness attribute has 536 missing values. The missing value ratio is
significant at 28%. To investigate why these missing values happen, we compare the
pattern of the occurrence of these missing values with the distribution of the whole data.
In other words, we diagnose these missing values, and after the diagnosis, it will become
apparent that missing values under this attribute are closely connected with the Age,
Treatment, and Year attributes. It is apparent that these missing values are also of the
MAR type, and we will not deal with them before the analysis.

Lastly, we need to address the three missing values in the Age attribute.

504 Case Study 1 – Mental Health in Tech

The missing values in the Age attribute
The Age attribute has three missing values. These are missing values that were imputed
from the extreme point analysis. We decided these attributes were mistake data entries. As
we know where they come from and that there are only three of them, we can assume that
they are of the Missing Completely At Random (MCAR) type.

Now that the dataset is clean and integrated, let's move our attention to the analysis part.

Analyzing the data
As we have seen in our journey in this book, data preprocessing is not an island and the
best data preprocessing is done by being informed about the analytics goals. So we will
continue preprocessing the data as we go about answering the four questions in this case
study. Let's progress in this subsection one AQ at a time.

Analysis question one – is there a significant difference
between the mental health of employees across the
attribute of gender?
To answer this question, we need to visualize the interaction between three attributes:
Gender, Mental Illness, and Treatment. We are aware that the Mental
Illness attribute has 536 missing MAR values and those missing values have a
relationship with the Treatment attribute. However, as the goal of the analysis is to
see the mental health across Gender, we can avoid interacting with Treatment and
Mental Illness and bring the focus of our analysis to the interaction of the Gender
attribute with both of these two attributes. With this strategy, we can adopt the do-nothing
approach for the missing values in Mental Illness.

Analyzing the data 505

Using the skills that we have picked up in the course of our learning in this book, we can
come up with the following two bar charts that meaningfully show the interactions in the
data that can help us answer this AQ:

Figure 15.8 – Bar charts for AQ1

506 Case Study 1 – Mental Health in Tech

The preceding figure shows that the Gender attribute does have a meaningful impact on
the mental health of tech employees. So the answer to this question is yes. However, while
the ratio of not having a mental illness compared to having a mental illness is higher for
Male than Female, there is also a much higher "never having sought professional mental
health help" ratio among Male. These observations suggest that there is a population of
male employees in tech that are not aware of their mental health and have never sought
professional help. Based on these observations, it should be recommended to target male
employees for mental health awareness.

Another important observation from the preceding figure is that there seem to be many
more mental health concerns for the individuals who have not chosen Male or Female for
their gender. However, the preceding figure does not show what the difference is because
this segment of the population has much smaller data objects than Male and Female.
Therefore, to tease out the portion of these individuals with mental health concerns and
compare them with the other two subpopulations, the following two heat maps were created:

Figure 15.9 – Heat maps for AQ1

Analyzing the data 507

In the preceding figure, we can see that indeed the subpopulation that did not identify
as Male or Female has a much larger percentage of people with mental illnesses than the
other two populations. However, we can that see this population, similar to the population
of Female, has a higher percentage of having sought treatment.

Now, let's discuss AQ2.

Analysis question two – is there a significant difference
between the mental health of employees across the
Age attribute?
To answer this question, we need to visualize the interaction between three attributes:
Age, Mental Illness, and Treatment. We are aware that the Mental Illness
attribute has 536 missing MAR values and those missing values have a relationship with
the Treatment and Age attributes. Moreover, we are aware that Age has three missing
MCAR values.

Dealing with the missing MCAR values is simple, as we know these missing values are
completely random. However, we cannot adopt the approach of leaving them as they are
because to be able to visualize these relationships, we need to transform the Age attribute
from categorical to numerical. Therefore, for this analysis, we have removed the data
objects with missing values under the Age attribute.

508 Case Study 1 – Mental Health in Tech

We cannot take the same approach we took in AQ1 to deal with the missing MAR values
of Mental Illness because this attribute has a relationship with both the Age and
Treatment attributes. Therefore here we have added a third category to Mental
Illness – MV-MAR. The following figure shows the bar charts that visualize the
relationships that we are interested in investigating:

Figure 15.10 – Bar chart for AQ2

Studying the preceding figure, we can see that there seem to be some patterns in the
data; however, they are not as pronounced as they were under AQ1, so before discussing
these patterns, let's see whether these patterns are significant statistically. We can use
the chi-square test of association for this purpose. As seen in Chapter 11, Data Cleaning
Level III – Missing Values, Outliers, and Errors, the scipy.stats module has this test
packaged in the chi2_contingency function.

Analyzing the data 509

After calculating the p-values of the test for both bar charts in the preceding figure, we
come to 0.0022 and 0.5497 respectively. This tells us that there are no significant
patterns in the second bar chart, but the patterns in the first bar chart are significant.
Using this information, we can conclude that while age does have an impact on mental
health concerns, it does not impact the behavior of individuals in seeking treatment.

Moreover, the significant pattern in the first bar chart tells us that as the Age attribute
increases, the answer no to the question "Have you ever been diagnosed with a mental
health disorder?" also increases. Surprisingly, the answer yes to the same question also
increases. It is surprising because we would expect these two to counteract with one
another. The reason for this surprising observation is also shown in this bar chart; as
the age increases, the number of individuals who have not answered the question has
also increased. This could be because older individuals do not have as much trust in the
confidentiality of the data collection.

The conclusion that is drawn from this observation is that older tech employees may
need to build more trust for them to open up about their mental health concerns than
younger employees.

Next, we will discuss AQ3.

Analysis question three – do more supportive
companies have mentally healthier employees?
To answer this question, we first need to perform some data transformation, specifically
attribute construction. We have constructed thePerceivedSupportScore attribute,
which is a column that indicates how supportive the participant's employer is of mental
health. The SupportQ1, SupportQ2, SupportQ3, SupportQ4, and SupportQ5
attributes were used to calculate SupportScore. The +1 or +0.5 values were added to
PerceivedSupportScore where the answers to these attributes indicated support,
whereas the -1 or -0.5 values were subtracted from PerceivedSupportScore
where the answers to these attributes indicated a lack of support. For instance, for
SupportQ5, the +1, +0.5, -0.5, -0.75, and -1 values were added/subtracted
respectively for Very easy, Somewhat easy, Somewhat difficult, Somewhat difficult, and Very
difficult. The question that SupportQ5 asked was "If a mental health issue prompted you
to request medical leave from work, how easy or difficult would it be to ask for that leave?"

510 Case Study 1 – Mental Health in Tech

The following figure shows the histogram of the newly constructed column:

Figure 15.11 – Histogram of the newly constructed attribute for AQ3

We certainly do not forget that all of the ingredients of the newly constructed
SupportQ1 and SupportQ2 attributes have 228 missing MAR values. These missing
MAR values showed a relationship with the Age attribute. As for answering AQ3, we need
to visualize the relationship between the newly constructed attribute and the Mental
Illness and Treatment attributes; we can adapt the approach of "leaving as is" for
these missing values. The reason is that neither the Mental Illness attribute nor the
Treatment attribute influenced the missing values on the ingredient attributes.

Before doing the visualization, as the newly constructed attribute is numerical and both
Mental Illness and Treatment are categorical, we need to first discretize the
attribute. Scores higher than 1 were labeled as Supportive and scores lower than -0.5
were labeled as Unsupportive. The results are presented in the following bar chart:

Analyzing the data 511

Figure 15.12 – Bar chart of the newly constructed attribute after discretization for AQ3

The following figure shows the interaction between the three Mental Illness, Treatment,
and pereceivedSupportGroup attributes. As a visualization with three dimensions is
going to be somewhat overwhelming, we can make a strategic decision to only include the
two extreme categories, Supportive and Unsupportive, and leave out Neutral:

Figure 15.13 – Bar chart for AQ3

512 Case Study 1 – Mental Health in Tech

Studying the patterns shown in the preceding figure, we realize that
perceivedSupportScore influences the employee's behavior in seeking professional
help for mental health concerns. The number of respondents that have answered Yes to
both "Have you ever been diagnosed with a mental health disorder?" and "Have you ever
sought treatment for a mental health disorder from a mental health professional?" questions
is significantly higher in the Supportive category. Likewise, the number of respondents
that have answered No to both questions is significantly lower in the Supportive category.

Based on these observations, we can recommend investing in creating trust and
employees' perception of support in tech companies.

Next, we will address the last AQ.

Analysis question four – does the attitude of
individuals toward mental health influence their
mental health and their seeking of treatments?
Similar to AQ3, to answer this question, we first need to construct a new attribute;
AttitudeScore will be a column that indicates the participant's attitude toward
sharing mental health issues. The AttitudeQ1, AttitudeQ2, and AttitudeQ3
attributes are used to construct AttitudeScore. The +1 or +0.5 values were added
to AttitudeScore where the answers to these attributes indicated openness, whereas
the -1 or -0.5 values were subtracted from AttitudeScore where the answers to
these attributes indicated a lack of openness. For instance, for AttitudeQ3, the +1,
+0.5, -0.5, and -1 values were added/subtracted respectively for Very open, Somewhat
open, Somewhat not open, and Not open at all; the question that AttitudeQ3 asked was
"Would you feel comfortable discussing a mental health issue with your coworkers?"

Analyzing the data 513

The following figure shows the histogram of the newly constructed attribute:

Figure 15.14 – Histogram of the newly constructed attribute for AQ4

Similar to perceivedSupportScore in AQ3, before doing the visualization, as the
newly constructed attribute is numerical and both Mental Illness and Treatment
are categorical, we need to first discretize the attribute. Scores higher than 0.5 were
labeled as OpenAttitude, scores lower than -0.5 were labeled as ClosedAttitude, and
scores between -0.5 and 0.5 were labeled as Neutral. The results are presented in the
following bar chart:

Figure 15.15 – Bar chart of the newly constructed attributes after discretization for AQ4

514 Case Study 1 – Mental Health in Tech

The following stacked bar chart is created to show the interaction between the three
MentalIllness, Treatment, and attitudeGroup attributes. We use a similar strategy to the
one used in Figure 15.13 to avoid overwhelming our sensory faculty:

Figure 15.16 – Stacked bar chart for AQ4

The preceding visualization provides an answer for AQ4. There seems to be a meaningful
improvement in employees seeking treatment if they have an open attitude toward
sharing mental health issues. These observations suggest that tech companies should
see the education of employees in their attitude toward mental health as a sensible
investment option.

Summary
In this chapter, we got to practice what we have learned during our journey in this
book. We did some challenging data integration and data cleaning to prepare a dataset
for analysis. Furthermore, based on our analytics goals, we performed specific data
transformations so that the visualization that answers our AQs becomes possible and, at
times, more effective.

In the next chapter, we will practice data preprocessing on another case study. In this case
study, the general goal of the analysis was data visualization; however, the preprocessing in
the next case study will be done to enable predictive modeling.

16
Case Study 2 –

Predicting COVID-19
Hospitalizations

This chapter is going to provide an excellent learning opportunity to perform a predictive
analysis from scratch. By the end of this chapter, you will have learned a valuable lesson
about preprocessing. We will take the COVID-19 pandemic as an example. This is a good
case study because there is lots of data available about different aspects of the pandemic
such as covid hospitalizations, cases, deaths, and vaccinations.

In this chapter, we're going to cover the following:

•	 Introducing the case study

•	 Preprocessing the data

•	 Analyzing the data

Technical requirements
You will be able to find all of the code examples and the dataset that is used in this chapter
in this book's GitHub repository at https://github.com/PacktPublishing/
Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter16.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter16
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter16

516 Case Study 2 – Predicting COVID-19 Hospitalizations

Introducing the case study
As the world started grappling with the ramifications of COVID-19, healthcare systems
across the globe started dealing with the new overwhelming burden of caring for the
people infected with the disease. For instance, in the US governments, all levels – Federal,
State, and local, had to make decisions so they can help the hospitals as they struggled to
shoulder the crisis. The good news is that database and data analytics technologies were
able to create real value for these decision-makers. For instance, the following figure shows
a dashboard that monitors the COVID-19 situation for Los Angeles County in the State of
California in the United States. The figure was collected from http://publichealth.
lacounty.gov/media/coronavirus/data/index.htm on October 4, 2021.

Figure 16.1 – An LA County COVID-19 data dashboard

http://publichealth.lacounty.gov/media/coronavirus/data/index.htm
http://publichealth.lacounty.gov/media/coronavirus/data/index.htm

Introducing the case study 517

In this case study, we are going to see an example of data analytics that can be of
meaningful value to a local government department. We are going to focus on the
government of Los Angeles County (LA), California. This county is the most populated
in the US, with approximately 10 million residents. We are going to use historical data
to predict the number of patients that will need hospitalization in the near future;
specifically, we will create a model that can predict the number of hospitalizations in LA
County two weeks from the present moment.

Now that we have a general understanding of this case study, let's get to know the datasets
that we will use for our prediction model.

Introducing the source of the data
When we create a prediction model, one of the first things we need to do is to imagine
what kind of data can be useful for predicting our target. In this example, our target is
the number of hospitalizations. In other words, we want to imagine what the independent
attributes could be for predicting this specific dependent attribute.

Go back to Chapter 3, Data – What Is It Really?, and study the DDPA pyramid in Figure
3.2. When we imagine what data resources could be useful for the prediction of our target,
we are exploring the base of the DDPA pyramid. The base of the pyramid represents all of
the data that is available to us. Not everything is going to be useful at this point, but that
is the beginning of the data preprocessing journey. We start by considering what could be
useful, and by the end of the process, we should have a suitable dataset that can be useful
for pattern recognition.

The following list shows four sources of data that can be useful for predicting
hospitalizations:

•	 Historical data of LA County COVID-19 hospitalizations (https://data.
chhs.ca.gov/dataset/covid-19-hospital-data)

•	 Historical data of COVID-19 Cases and Deaths in LA County (https://data.
chhs.ca.gov/dataset/covid-19-time-series-metrics-by-
county-and-state)

•	 Historical data of COVID-19 Vaccinations in LA County (https://data.chhs.
ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-
by-zip-code)

•	 The dates of US public holidays (these can be accessed via Google)

https://data.chhs.ca.gov/dataset/covid-19-hospital-data
https://data.chhs.ca.gov/dataset/covid-19-hospital-data
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code

518 Case Study 2 – Predicting COVID-19 Hospitalizations

You can download the latest versions of these datasets from the provided links. The
three datasets that we use in this chapter, covid19hospitalbycounty.csv,
covid19cases_test.csv, and covid19vaccinesbyzipcode_test.csv, were
collected on October 3, 2021. You must keep this date in mind as you go through this
chapter, as the time range of our prediction is an important feature. I strongly encourage
you to download the latest version of these files and update the analysis and do some
actual predictions. Better yet, if the same datasets are available where you live, do the
predictive analysis for your local government.

The fourth data source is a simple one – the US public holidays are, well, public
knowledge, and some simple Googling can provide these.

Attention!
I strongly encourage you to open each of these datasets on your own and scroll
through them to get to know them before continuing. This will enhance
your learning.

Now that we have the datasets, we need to perform some data preprocessing before we get
to the data analytics. So, let's dive in.

Preprocessing the data
The very first step in preprocessing data for prediction and classification models is to be
clear about how far in the future you are planning to make predictions. As discussed, our
goal in this case study is to make a prediction for two full weeks (that is, 14 days) in the
future. This is critical to know before we start the preprocessing.

The next step is to design a dataset that has two characteristics:

•	 First, it must support our prediction needs. For instance, in this case, we want to use
historical data to predict hospitalizations in two weeks.

•	 Second, the dataset must be filled with all of the data we have collected.
In this example, the data includes covid19hospitalbycounty.csv,
covid19cases_test.csv, covid19vaccinesbyzipcode_test.csv, and
the dates of US public holidays.

Preprocessing the data 519

One of the very first things we will do codewise, of course, is to read these datasets into
pandas DataFrames. The following list shows the name we used for the pandas DataFrames:

•	 covid19hospitalbycounty.csv: day_hosp_df

•	 covid19cases_test.csv: day_case_df

•	 covid19vaccinesbyzipcode_test.csv: day_vax_df

Now, let's discuss the steps for designing the dataset, which needs to have the two
characteristics we previously described.

Designing the dataset to support the prediction
While designing this dataset to possess the two characteristics that were mentioned
earlier, we basically try to come up with possible independent attributes that can have
meaningful predictive values for our dependent attribute. The following list shows the
independent attributes that we may come up with for this prediction task.

In defining the attributes in the following list, we have used the t variable to represent
time. For instance, t0 shows t=0, and the attribute shows information about the same
day as the row:

•	 n_Hosp_t0: The number of hospitalizations at t=0

•	 s_Hosp_tn7_0: The slope of the curve of hospitalizations for the period t=-7
to t=0

•	 Bn_days_MajHol: The number of days from the previous major holiday

•	 av7_Case_tn6_0: The seven-day average of the number of cases for the period
t=-6 to t=0

•	 s_Case_tn14_0: The slope of the curve of cases for the period t=-14 to t=0

•	 av7_Death_tn6_0: The seven-day average of the number of deaths for the
period t=-6 to t=0

•	 s_Death_tn14_0: The slope of the curve of deaths for the period t=-14 to t=0

•	 p_FullVax_t0: The percentage of fully vaccinated people at t=0

•	 s_FullVax_tn14_0: The slope of the curve of the percentage of fully vaccinated
people for the period t=-14 to t=0

520 Case Study 2 – Predicting COVID-19 Hospitalizations

Note!
A great question to ask about these suggested independent attributes is how
did we come up with them. There is no step-by-step process that can guarantee
the perfect set of independent attributes, but you can learn the relevant skills to
position you for more success.

These independent attributes are the byproduct of the creative mind of a
person that has the following characteristics: 1) they understand the prediction
algorithms, 2) they know the types of data that are collected, 3) they are
knowledgeable about the target attribute and the factors that can influence it,
and 4) they are equipped with data preprocessing tools such as data integration
and transformation that enable effective data preprocessing.

After reviewing these potential attributes, you realize the importance of functional
data analysis (FDA), which we learned about in different parts of this book. Most of
these attributes will be the outcome of the FDA for data integration, data reduction, and
data transformation.

The dependent attribute (or our target) is also coded similarly as n_Hosp_t14, which is
the number of hospitalizations at t=14.

The following figure shows the placeholder dataset that we have designed so that we can
fill it up using the data resources we have identified:

Figure 16.2 – The placeholder for the designed dataset

Preprocessing the data 521

Filling up the placeholder dataset
The following figure tells a simple story of how we will be filling up the placeholder dataset.
Of course, the data comes from the four data sources that we have identified; however, the
ingenuity and the skills that we need to integrate, transform, reduce, and clean the data so it
can fill up the placeholder will come from our knowledge and creativity.

Figure 16.3 – A schematic of filling up the placeholder dataset

522 Case Study 2 – Predicting COVID-19 Hospitalizations

Attention!
It is important to remember that we learned about each of the data
preprocessing steps in isolation. We first learned about data cleaning, then
data integration, and after that data reduction, and at the end came data
transformation. However, now that we are starting to feel more comfortable
with these stages, there is no need to do these in isolation. In real practice, they
can and should be done at the same time very regularly. In this case study, you
are seeing an example of this.

So, as shown in the preceding figure, we will be using the data from the four sources to
fill the columns, one by one, in the designed placeholder dataset. However, to make the
connections between the data sources, some data cleaning is needed. The main priority is
to make sure all of the rows in day_hosp_df, day_case_df, day_vax_df, and even
the placeholder day_df are indexed with the datetime version of the dates. These dates
will provide seamless connections between the data sources. After that, we will use what
we have learned in this book to fill the columns in the placeholder day_df DataFrame.
The following figure shows the day_df DataFrame rows after having been filled:

Figure 16.4 – The placeholder dataset after being filled

You may be wondering why some of the rows still contain NaN. That's a great question and
I am confident you can figure out the answer on your own. Just go back to the definition
of each of these independent attributes we designed earlier. Give this some thought before
reading on.

Preprocessing the data 523

The answer to the question is simple. The reason that there are still NaN values on some
of the rows is that we did not have the information in our data sources to calculate them.
For instance, let's consider why s_Hosp_tn7_0 is NaN in the 2020-03-29 row. We
have to go back to the definition of s_Hosp_tn7_0, which is the slope of the curve of
hospitalizations for the period t=-7 to t=0. As 2020-03-29 is t=0 for this row, we will
need to have the data of the following dates to calculate s_Hosp_tn7_0, and we don't
have them in our data sources:

•	 t=-1: 2020-03-28

•	 t=-2: 2020-03-27

•	 t=-3: 2020-03-26

•	 t=-4: 2020-03-25

•	 t=-5: 2020-03-24

•	 t=-6: 2020-03-23

•	 t=-7: 2020-03-22

The dataset that we are using in this case study has data from 2020-03-29. This almost
always happens when creating a dataset for future prediction with a decision-making
gap. The reason we included the 14 days' difference between the sources of data we use
for calculating the independent attributes and computing the dependent attribute is for
our prediction to have decision-making values. Of course, we can have a more accurate
prediction if the decision-making gap is shorter, but at the same time, these predictions
will have fewer decision-making values, as they may not allow for the decision-maker to
process the situation and make the decision that can have a positive impact.

As you will see in the following sections, we will have to eliminate the rows that contain
NaN. But that's okay, as we have enough data for our algorithm to still be capable of
finding patterns.

Next, let's see whether the independent attribute we imagined would have predictive
values has them. We will do that with supervised dimension reduction during our
data preprocessing.

Supervised dimension reduction
In Chapter 13, Data Reduction, we learned a few supervised dimension reduction
methods. Here, we want to apply three of them before moving to the data analysis part of
the case study. These three methods are linear regression, random forests, and decision
trees. Before reading on, make sure to revisit Chapter 13, Data Reduction, to freshen
up your understanding of the strengths and weaknesses of each of these methods. The
following figures show the results of each of these three methods.

524 Case Study 2 – Predicting COVID-19 Hospitalizations

In the following figure, we see that linear regression deems all of the independent
attributes significant for the prediction of n_Hosp_t14, except for n_days_MajHol
and s_FullVax_tn14_0. Pay attention to the P>|t| column, which shows with
the p-value of the test on the null hypothesis that the relevant dependent attribute
is not capable of predicting the target in this model. The p-values for all of the other
independent attributes – except n_days_MajHol and s_FullVax_tn14_0 – are very
small, indicating the rejection of the null hypothesis.

Figure 16.5 – The output of linear regression for supervised dimension reduction

Preprocessing the data 525

We should remember to take the conclusion from the preceding figure with the caveat
that linear regression is only capable of checking the linear relationships for us, and that
these two attributes may have non-linear relationships that could be useful in a more
complex model.

This is shown in the second supervised dimension reduction method: the random forest.
The following figure visualizes the importance that the Random Forest has given to each
independent attribute, and we do see, unlike our conclusion we arrive at under Linear
Regression, only four independent attributes are among the most important attributes,
and the rest has not given any sizable share of importance.

Figure 16.6 – The output of a random forest for supervised dimension reduction

The following figure shows the final decision tree after being tuned for the successful
prediction of n_Hosp_t14. The resulting decision tree has many levels, and you will not
be able to see the splitting attributes. However, you can see the complete decision tree via
the HospDT.pdf file in this book's GitHub repository, or you can create it yourself to
investigate it.

Figure 16.7 – The output of a decision tree for supervised dimension reduction

526 Case Study 2 – Predicting COVID-19 Hospitalizations

The data preprocessing is almost done. However, because we are going to use different
algorithms in the next section, we will leave some of the last preprocessing steps to be
performed immediately before applying each prediction algorithm.

Analyzing the data
Now that the data is almost ready, we get to reap the rewards of our hard work by being
able to do what some may consider magic – predict the future. However, our prediction
is going to be even better than magic. Our prediction will be reliable, as it is driven by
meaningful patterns within historical data.

Throughout this book, we have got to know three algorithms that can handle prediction:
linear regression, multilayer perceptrons (MLPs), and decision trees.

To be able to see the applicability of the prediction models, we need to have a meaningful
validation mechanism. We haven't covered this in this book, but there is a well-known
and simple method normally called the hold-out mechanism or the train-test procedure.
Simply put, a small part of the data will not be used in the training of the model, and
instead, that small part will be used to evaluate how well the model makes predictions.

Specifically, in this case study, after removing the rows that have any missing values,
we have 525 data objects that can be used for prediction. We will use 511 of these data
objects for training, specifically, the data objects from 2020-04-12 to 2021-09-04
(which would include 507 data objects). The rest, which are 14 data objects from two
weeks of the data (that is, the data objects from 2021-09-05 to 2021-09-18), will
be used for testing our models. Using these dates, we will separate our data into train
and test sets. We will then train the algorithms using the train set and evaluate them
using the test set.

Analyzing the data 527

The following figure shows how well the three models – namely linear regression, the
decision tree, and the MLP – were able to fit themselves to the training data. With the
decision tree and MLP, we should not trust a good fit between the training data and the
model, as these algorithms can easily overfit the training data. Therefore, it is important to
also see the performance of these algorithms on the test data.

Figure 16.8 – The train dataset versus the fitted model for the linear regression, decision tree,
and MLP models

528 Case Study 2 – Predicting COVID-19 Hospitalizations

The following figure shows how the trained models were able to predict the test data. The
figure also shows what the prediction of actual future values looks like. Remember that
this content was created on October 3, 2021.

Figure 16.9 – The test data, test prediction, and future prediction of the linear regression,
decision tree, and MLP models

Summary 529

Comparing the performance of these three models on the test data is rather difficult due
to the way the preceding figure is set up. The following figure shows the prediction of
all three models on the test data and also the test data itself in one chart. The following
visualization will allow us to find the best algorithm for the job:

Figure 16.10 – Comparing the performance of the linear regression, decision tree, and MLP models on
the test set

In the preceding figure, we can see that while the MLP model performs slightly better
than the other two, the three models are largely comparable in performance, and they are
all successful.

Well done, we were able to complete the prediction task and also validate it. Let's wrap up
this chapter with a summary.

Summary
In this chapter, we got to see the real value of data preprocessing in enabling us to perform
predictive analytics. As you saw in this chapter, what empowered our prediction was not
an all-singing, all-dancing algorithm – it was our creativity in using what we learned
during this chapter to come to a dataset that could be used by standard prediction
algorithms for prediction. Furthermore, we got to practice different kinds of data cleaning,
data reduction, data integration, and data transformation.

In the next chapter, we will get to practice data preprocessing on another case study. In
this case study, the general goal of the analysis was prediction; however, the preprocessing
in the next case study will be done to enable clustering analysis.

17
Case Study 3: United

States Counties
Clustering Analysis

This chapter is going to provide another excellent learning opportunity to showcase the
process of data preprocessing for high-stakes clustering analysis. We will practice all the
four major steps of data preprocessing in this chapter—namely, data integration, data
reduction, data transformation, and data cleaning. In a nutshell, in this part of the book,
we are going to form meaningful groups of United States (US) counties based on different
sources of information and data. By the end of this chapter, we are going to have a much
better understanding of the different types of counties that are in the US.

In this chapter, we're going to extract information from this case study using the following
main subchapters:

•	 Introducing the case study

•	 Preprocessing the data

•	 Analyzing the data

532 Case Study 3: United States Counties Clustering Analysis

Technical requirements
You will be able to find all of the code and the dataset that is used in this book in a GitHub
repository exclusively created for this book. To find the repository, click on this link:
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-
in-Python/tree/main/Chapter17. In this repository, you will find Chapter17
folder from which you can download the code and the data for better learning.

Introducing the case study
During the 2020 US presidential election, the world and America alike were reminded
that where an individual lives can best predict what they will decide for their future (that
is, how they vote). This may be a sobering realization at an individual level, but this is
a billion-dollar understanding for national businesses such as Starbucks, Walmart, and
Amazon. Furthermore, for federal, state, and local politicians, this realization can be
monumentally useful both at election time and when drafting legislation.

All these benefits may be available to these entities if they are capable of doing meaningful
locational analyses of groups of people. In this case study, we are going to analyze the
differences and the similarities between US counties. In the following screenshot, we
can see that the US has many counties; there are 3,006, to be exact. The color-coded map
shows the county-level relative population density:

Figure 17.1 – US demographic data map at a county level

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter17
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter17

Introducing the case study 533

Note!
The source of the US demographic data map at a county level can
be found at the following link: https://mtgis-portal.
geo.census.gov/arcgis/apps/MapSeries/index.
html?appid=2566121a73de463995ed2b2fd7ff6eb7.

What is the first step in being able to meaningfully analyze the differences and similarities
between all the counties shown in the preceding screenshot? The answer is, of course, data
preprocessing. I hope you didn't hesitate to give this answer at this point in the book.

In this chapter, specifically, we are going to integrate a few sources of data, and then
perform the necessary data reduction and data transformation before the analysis.
There will be lots of data cleaning that needs to be done across different steps of data
preprocessing; however, at this point in your learning about data preprocessing, your
skillset for data cleaning should have sufficiently developed that you will not need
reminding to recognize these steps.

Now that we have a general understanding of this case study, let's get to know the datasets
that will be used for this clustering analysis.

Introduction to the source of the data
We will use the following two sources of data to create a dataset that allows us to perform
county clustering analysis:

•	 The four files Education.xls, PopulationEstimates.xls,
PovertyEstimates.xls, and Unemployment.xlsx from the US
Department of Agriculture Economic Research Service (USDA ERS) (https://
www.ers.usda.gov/data-products/county-level-data-sets/)

•	 US election results from Massachusetts Institute of Technology (MIT)
election data (https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/VOQCHQ)

Across the preceding two sources, we've got five different files that we need to integrate.
The files from the first source are easily downloaded; however, the one file from the
second source will need to be unzipped after being downloaded. After downloading
dataverse_files.zip file from the second source, and unzipping it, you will get
countypres_2000-2020.csv, which is the file we want to use.

https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7
https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7
https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7
https://www.ers.usda.gov/data-products/county-level-data-sets/
https://www.ers.usda.gov/data-products/county-level-data-sets/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ

534 Case Study 3: United States Counties Clustering Analysis

We will eventually integrate all this data into a county_df pandas DataFrame; however,
we will need to read them into their own Pandas DataFrames first and then go about
the data preprocessing. The following list shows the names we will use for those Pandas
DataFrames per file:

•	 Education.xls: edu_df

•	 PopulationEstimates.xls: pop_df

•	 PovertyEstimates.xls: pov_df

•	 Unemployment.xlsx: employ_df

•	 countypres_2000-2020.csv: election_df

Attention!
I highly encourage you to open each of these datasets on your own and scroll
through them to get to know them before continuing to read on, as this will
enhance your learning.

Now that we know the data sources, we need to go through some meaningful data
preprocessing before we get to the data analytics part. Let's dive in.

Preprocessing the data
The very first step in preprocessing for clustering analysis is to be clear about which
data objects will be clustered, and that is clear here: counties. So, at the end of the data
preprocessing, we will need to have a dataset whose rows are counties, and with columns
based on how we want to group the counties. As shown in the following screenshot, which
is a summary of the data preprocessing that we will perform during this chapter, we will
get to county_df, which has the characteristics that were just described.

Preprocessing the data 535

Figure 17.2 – Schematic of the data preprocessing

As shown in the preceding summarizing screenshot, we will first transform election_
df into partisan_df, and then integrate the partisan_df, edu_df, pov_df, pop_
df, and employ_df DataFrames. Of course, there will be more detail to all of these
steps than the preceding screenshot shows; however, this serves as a great summary and
a general map for our understanding.

536 Case Study 3: United States Counties Clustering Analysis

Let's roll up our sleeves, then. We will start by transforming election_df into
partisan_df.

Transforming election_df to partisan_df
With a first glance at the election_df dataset, we should realize that the definition of
data objects for this dataset is not counties, and instead, it is the county-candidate-election-
mode in each presidential election. While counties are indeed a part of the definition, we
only need to have county as the definition of the data object. This very fact can be our
guiding principle in the data transformation process.

Let's work our way back from mode to county. Mode refers to the different ways that
individuals had been able to participate in the election. By recognizing the fact that
election_df also has the mode of 'TOTAL', which is the sum of all the other modes,
we can simply drop all the other rows that have modes other than 'TOTAL' to simplify
the definition of data objects to county-candidate-election.

To simplify from county-candidate-election to county for the definition of data objects,
we will first use attribute construction, and then functional data analysis (FDA).

Constructing the partisanism attribute
The partisanism attribute is meant to capture the level of uniformity in individuals'
votes in electing a democrat or a republican in each election. The following formula shows
how this constructed attribute can be calculated:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

If a county in an election has a large positive partisanism value, it shows the county in that
election has swung largely toward republicans; if it has a large negative value, it shows
a great swing toward democrats.

The following screenshot shows a small portion of the partisanElection_df
DataFrame, which is the result of calculating a partisan value for each election and county:

Preprocessing the data 537

Figure 17.3 – A portion of partisanElection_df

By constructing the new partisanism attribute and calculating it for every county and
election, we managed to move from the definition of data objects being county-candidate-
election to county-election. Next, we will use FDA to have the definition of data objects as
only county.

FDA to calculate the mean and slope of partisanism
Looking at Figure 17.3, you may notice that we have the partisanism value of
presidential elections 2000, 2004, 2008, 2012, 2016, and 2020 for every county—in
other words, for every county, we have a time series of partisanism values. Therefore,
instead of having to deal with 6 values, we can use FDA to calculate the mean and slope of
partisanism across elections over 20 years.

After doing this FDA transformation and creating a partisan_df DataFrame whose
definition of data objects is county, we will make sure to also perform a necessary data
cleaning step. Specifically, we will transform the County_Name column so that its
characters are presented in lowercase. This data cleaning is performed for future data
integration purposes. As the name of counties may have been written in different formats
that are understandable for human comprehension but not for a computer, we thus need
to make sure the county names are all in lowercase in all of the data sources so that the
data integration will go smoothly.

538 Case Study 3: United States Counties Clustering Analysis

The following screenshot shows the partisan_df attribute:

Figure 17.4 – A portion of partisan_df

Note that the definition of data objects for the DataFrame shown in Figure 17.4 is
county. If you go back to the beginning of this subchapter (Transforming election_df to
partisan_df), our goal was to transform the election_df dataset, whose definition
of data objects is county-candidate-election-mode, into partisan_df. We saw that the
definition of data objects for partisan_df is county.

Next, we will perform the necessary data cleaning on edu_df, employ_df, pop_df,
and pov_df.

Preprocessing the data 539

Cleaning edu_df, employ_df, pop_df, and pov_df
To take another step toward the preprocessed county_df dataset, we will need to
perform some data cleaning on edu_df, employ_df, pop_df, and pov_df. The
steps will be very similar for all these datasets. These include removing unwanted
columns, transforming the index attributes, and renaming the attribute titles for brevity
and intuitiveness.

Data integration
By the time we arrive at this step, the hardest part of data integration—preparing the
DataFrames for integration—has already been done. Because we took our time preparing
each one of the DataFrames, doing the data integration is as simple as one line of code, as
shown in the following snippet:

county_df = pop_df.join(edu_df).join(pov_df).join(employment_
df).join(partisan_df)

Once the code is successfully run, we will get the following DataFrame that is almost
ready for analysis:

Figure 17.5 – A portion of preprocessed county_df

Now, we need to perform the next important data preprocessing steps: Level III data
cleaning—missing values, errors, and outliers.

540 Case Study 3: United States Counties Clustering Analysis

Data cleaning level III – missing values, errors, and
outliers
After investigation, we realize that there are a handful of missing values under seven
out of eight of the attributes in county_df. If this were a real government project,
these missing values would need to be tracked down before we moved forward with the
analysis; however, as this is practice analysis and there are not too many missing values,
we adopt a strategy of dropping the missing values.

Furthermore, when investigating outliers, we will see that all of the attributes in county_
df have fliers in their boxplots. However, the extreme values under the Population
and UnemploymentRate attributes are too different than the rest of the population, so
much so that the extreme values can easily impact the clustering analysis. To mitigate their
impact, we will use log transformation on these two attributes.

Regarding the possibility of having errors in the data, there are two matters we need to pay
attention to, as follows:

•	 First, as all of the attributes do have actual extreme values, our tools for possibly
detecting univariate errors become ineffective.

•	 Second, the clustering analysis that we will be doing eventually will show us the
outliers, and at that point, we can investigate whether those outliers are possible errors.

One last data preprocessing step and we will then be set for the analysis—we need to
check for data redundancy.

Checking for data redundancy
Data redundancy is very possible for county_df as we have brought together different
sources of data to create this dataset. As clustering analysis is very prone to be heavily
impacted by data redundancy, this step becomes very important. We will use two effective
tools for this goal: a scatter matrix and correlation analysis.

The following screenshot shows a scatter matrix, which is very useful for seeing the
possible relationship between the attributes and assessing whether the assuming linear
relationship between the attributes is reasonable:

Preprocessing the data 541

Figure 17.6 – Scatter matrix of county_df

In the preceding screenshot, we can see that while there is somewhat of a non-linear
relationship between PovertyPercentage and MedianHHIncome, assuming a linear
relationship between the rest of the attributes does sound reasonable.

542 Case Study 3: United States Counties Clustering Analysis

The following screenshot shows a correlation matrix of county_df:

Figure 17.7 – Correlation matrix of county_df

We can see in the preceding screenshot that MedianHHIncome has a strong relationship
with PovertyPercentage and MedianHHIncome_Percent_of_State_Total.
This is a concerning data redundancy for clustering analysis as there seems to be a
repetition of information in these three attributes. To rectify this, we will remove
MedianHHIncome from the clustering analysis.

Now, we are set to begin the analysis part of this case study.

Analyzing the data 543

Analyzing the data
In this part, we will do two types of unsupervised data analysis. We first use principal
component analysis (PCA) to create a high-level visualization of the whole data. Next,
after having been informed how many clusters are possibly among the data objects, we
will use K-Means to form the clusters and study them. Let's start with PCA.

Using PCA to visualize the dataset
As we already know, PCA can transform the dataset, so most of the information is
presented in the first few principal components (PCs). Our investigation showed that the
majority of relationships between the attributes, including county_df, is linear, which
is allowing us to be able to use PCA; however, we won't forget about the few non-linear
relationships as we move ahead with PCA, and we will not rely too much on the results of
the PCA.

The following screenshot shows a three-dimensional (3D) scatterplot of PC1, PC2,
and PC3. PC1 and PC2 are visualized using the x and y axes, whereas PC3 is visualized
using color. From the PCA analysis, we learned that PC1 to PC3 account for almost 80%
of the variations in the whole data, so the following screenshot is illustrating 80% of the
information in the data. To get a better insight into what we see in this scatterplot, the
counties that are at the extreme end of PC1 and PC2 are annotated.

Figure 17.8 – 3D scatterplot of PC1, PC2, PC3 PCA for transformed county_df

544 Case Study 3: United States Counties Clustering Analysis

Now, let's look at our K-Means clustering analysis. Pay attention to the fact that we
standardize the data before performing PCA and normalize the data before performing
clustering analysis.

K-Means clustering analysis
After our investigation of Figure 17.8, which shows a 3D scatterplot of the PCs and some
computational experimentations, we will conclude that the best K value for K-Means
clustering is 5. The computational experimentation method to find K is not covered in this
book; however, the code that is used for this step is included in the file dedicated to this
chapter in the book's GitHub repository.

The following screenshot shows the result of the K-Means clustering (K=5) using PC1
and PC2. This screenshot is advantageous for two reasons—first, we can see the
relationship between the clusters, and second, the dispersion between the members of the
clusters is depicted.

Figure 17.9 – Visualization of the result of clustering county_df using PC1 and PC2

Analyzing the data 545

To understand the patterns among the data objects and also know more about
the relationship between the clusters, we can view the following centroid analysis
using heatmaps:

Figure 17.10 – Heatmaps of the clusters' centroid for centroid analysis

From studying Figure 17.9 and Figure 17.10, we can see the following patterns
and relationships:

•	 Clusters 0, 1, and 2 are Republican-leaning, and clusters 3 and 4 are
Democrat-leaning.

•	 Cluster 2 is the one that has the most in common with all the rest of the clusters.
This cluster is the best characterized to be the most moderate and affluent among
all the Republican-leaning counties.

•	 Cluster 0 only has a relationship with clusters 2 and 3 and is completely cut off from
clusters 4 and 5, which are the only Democrat-leaning clusters. This cluster is best
characterized by the most Republican-leaning cluster with the lowest unemployment
rate and population among all the clusters.

546 Case Study 3: United States Counties Clustering Analysis

•	 Cluster 1 has a relationship with all the clusters except cluster 3. This cluster is
best characterized as having the lowest HigherEdPercent value among all the
clusters, and the lowest MedianHHIncome and highest PovertyPercentage
and UnemploymentRate values among the Republican-leaning clusters.

•	 Another interesting pattern about cluster 1 is that this cluster has the fastest
movement toward becoming more Republican-leaning among all the clusters.

•	 Cluster 4, which is a Democrat-learning cluster, has more in common with two
Republican-leaning clusters, clusters 1 and 2. This cluster is best characterized as
having the highest PovertyPercentage and UnemploymentRate values and
the lowest MedianHHIncome value among all clusters.

•	 Another interesting pattern about cluster 4 is that while this cluster is the most
Democrat-leaning cluster, it is the only cluster that has been moving in the opposite
direction in terms of partisanism.

•	 Cluster 3 has more of a relationship with cluster 2, which is a Republican-leaning
cluster, than cluster 4, which is the only other Democrat-leaning cluster. Among all
the clusters, this cluster seems to be a unique one. This cluster is best characterized
by the highest Population and HigherEdPercent values and the lowest
PovertyPercentage value.

•	 Another interesting pattern about cluster 3 is that it is the only cluster that has a
movement toward becoming more Democrat-leaning; however, its movement is the
slowest among all the clusters:

Well done! We were able to complete the clustering analysis and visualize very interesting
and meaningful patterns. What enabled this visualization was partly the existence of
great tools such as PCA and K-Means; however, what made this analysis happen was our
ingenuity during the data preprocessing step that allowed us to create a dataset that would
lead to the presented meaningful outcome.

Summary
In this chapter, we got to experience the essential role of effective data preprocessing in
enabling us to perform meaningful clustering analytics. Furthermore, we got to practice
different kinds and types of data cleaning, data reduction, data integration, and data
transformation situations.

This was the last case study that we have in this book. The next and final chapter will
provide some directions for more learning and some practice case studies.

18
Summary, Practice

Case Studies, and
Conclusions

This chapter will provide a summary of the book, some practice case studies, and lastly
offer some concluding remarks.

In this chapter, we're going to cover the following main subchapters:

•	 A summary of the book

•	 Practice case studies

•	 Conclusions

A summary of the book
Congratulations on your excellent journey of learning through the course of this book;
you've acquired invaluable skills. You learned various skills in the four parts of this book.
In the following subchapter, we will go over what we learned in each part of this book.

548 Summary, Practice Case Studies, and Conclusions

Part 1 – Technical requirements
In this part of the book, which lasted from Chapter 1, Review of the Core Modules of NumPy
and Pandas through Chapter 4, Databases, we covered all the technical and foundational
concepts, techniques, and technologies that you will need for effective data preprocessing.
Specifically, in Chapter 1, Review of the Core Modules of NumPy and Pandas, and Chapter
2, Review of Another Core Module – Matplotlib, we picked up all the foundation Python
programming skills that we will need for data preprocessing. In Chapter 3, Data – What
Is It Really? we acquired a fundamental understanding of data and the different analytics
paths that have implications for our data preprocessing. Finally, in Chapter 4, Databases, we
learned about the technological backbone of data analytics, which is databases, and got to
understand their role in effective analytics and preprocessing.

Part 2 – Analytics goals
While the first part of the book was meant to give you a technological and foundational
background for effective data preprocessing, the second part of the book, which we will
cover next, was meant to provide a deep enough understanding of data analytics goals.

It may sound counterintuitive for The preprocessing, which is the third part of the book to
come after Analytics goals, but that is actually a common misunderstanding regarding data
preprocessing and data cleaning. In many resources, data cleaning is presented as
a stage of data analytics that can be done in isolation; however, as you have experienced in
this book, most of the data cleaning and the rest of the data preprocessing steps must be
done to support the analytics. That is to say, without a proper understanding of what the
analytics goals are, we cannot prepare the data through effective data preprocessing.

To best prepare you for your hands-on learning of data preprocessing, this part of the
book provided learning opportunities for you to know the four most data analytics goals:
data visualization, prediction, classification, and clustering analysis. These goals are the
titles of Chapters 5 through 8. Under each chapter and through examples, we formed
a deeper understanding of each of these analytics goals and we got to employ various
analytics tools to realize these goals.

In this stage of your learning, the datasets that you worked on were mostly cleaned and
prepared to best support your learning. However, the datasets you used after that had
different issues and challenges that you learned how to deal with. You learned most of this
in Part 3 and Part 4 of the book. Let's now go over our learning in Part 3.

A summary of the book 549

Part 3 – The preprocessing
This part of the book is indeed the meat of our learning. Our learning happened in six
chapters. The first three chapters, Chapters 9 through 11, covered data cleaning. Specifically,
in these three chapters, we learned about three different levels of data cleaning. In Chapter
12, Data Fusion and Data Integration, we covered data integration. As you experienced, data
integration is one of the simplest data preprocessing steps to understand but one of the most
challenging parts to implement. In Chapter 13, Data Reduction, we got to learn about data
reduction, which is a necessary step for many analytics projects, for many reasons. Lastly,
Chapter 14, Data Transformation and Massaging provided a learning opportunity about data
transformation, which can be thought of as the very last step of data preprocessing.

So, the four major data preprocessing steps that we learned during the course of this part
of the book are data cleaning, data integration, data reduction, and data transformation.
While we went about learning them in isolation in these six chapters, in real practice, you
will more often perform some of them at once.

Let me use an analogy to explain that better. Imagine we wanted to learn how to effectively
play soccer. In this scenario, we would have to know how to kick the ball, pass the ball,
control the ball, and so on; our coach would probably give us lessons and let us practice
each skill. However, when you are put to play in a real soccer game, you would not be
allowed to just show your competence in one skill but would have to be relatively good at
all skills to be considered a decent soccer player. Moreover, at some points during a game,
you might have to combine skills and perform them either at the same time or one after
the other in a split second.

The same is true regarding data preprocessing skills: data cleaning, data integration, data
reduction, and data transformation. We learned them first in isolation, but real learning
happens when you can perform them at the same time, in tandem, or in a smooth sequence.
The next part of the book, Part 4 – Case studies, provides just that learning opportunity.

Part 4 – Case studies
In this part of the book, including the current chapter, we have culminating experiences so
that we can see how the data preprocessing tools that we picked up in the previous parts of
the book are used in concert with each other.

Specifically, the first three chapters, Chapters 15 through 17, were three complete case studies
that showcased three real analytics examples that required significant data preprocessing. As
you experienced in these three chapters, the order in which we performed the preprocessing
steps was very different. Not only that—the steps were not done in complete isolation, and
some data preprocessing was performed at the same time too.

550 Summary, Practice Case Studies, and Conclusions

In this current chapter, which is the last chapter of Part 4 of the book, besides a book
summary and conclusion, you will also be provided with more culminating experiences
and learning opportunities. In the next subchapter, you will be introduced to 10 case
studies that can be used for more practice. As we discussed, learning each skill in isolation
is great but your data preprocessing will become more effective when they are performed
in tandem with one another.

Practice case studies
This subchapter introduces 10 practice case studies. Each case study introduces a dataset
and provides an analytics goal that can be achieved by preprocessing and analyzing the
dataset. While each case study comes with a few analytics questions (AQs), don't allow
them to close your mind to other possibilities. The suggested AQs are only meant to get
you started.

We will start with a very meaningful and valuable case study that can provide real value to
many levels of decision makers.

Google Covid-19 mobility dataset
Since the beginning of the recent COVID 19 pandemic, the United States (US) had
various responses to combat Covid-19, varying from state to state. Each state implemented
different health and safety precautions and followed different timeframes when shutting
down the state. Many factors contributed to each state's health regulations, such as the
number of Covid-19 cases, population density, and healthcare systems; however, most
states issued stay-at-home orders, asking citizens to stay in their houses.

To aid public health officials in combating the virus and learn whether techniques
such as social distancing were working, Google put forth a database called the Global
Mobility Report. The data was put together to give insights into how different regions
of the world were responding to the Covid-19 crisis. The report breaks down changes in
people's movements in parks, grocery stores, and pharmacies; retail and recreation; and
workplaces. For instance, the following screenshot portrays changes in people's behavior
in San Luis Obispo County, California from the baseline during September 12 to October
24, 2021, for each movement category:

Practice case studies 551

Figure 18.1 – Sample from Global Mobility Report: San Luis Obispo County, California

This data was collected from the users of Google Maps by using aggregated, anonymized
data, and seeing how frequently people traveled around during the ongoing pandemic.
To ensure the privacy of all users of Google Maps, the company used an anonymization
technology called differential privacy. This technology adds artificial noise to datasets to
not allow the system to identify an individual.

The latest version of the dataset can be accessed at https://www.google.com/
covid19/mobility/. We could define many analytics questions that can be answered
using this rich dataset; however, to get you started, please see the following two AQs:

•	 AQ1: Did people's behavior change after the government's stay-at-home order? This
can be answered at different levels: counties, state, country.

•	 AQ2: Was the degree of change to stay-at-home orders different state by state and
county by county?

The next practice case study is also going to be very meaningful for federal, state, and even
individual decision makers.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/

552 Summary, Practice Case Studies, and Conclusions

Police killings in the US
There are a lot of debates, discussions, dialogues, and protests happening in the US
surrounding police killings. In the past 5 years, The Washington Post has been collecting
the data of all fatal police shootings in the US. The dataset available to the government
and the public alike has data regarding age, gender, race, location, and other situational
information of these fatal police shootings. You can download the dataset from
https://github.com/washingtonpost/data-police-shootings.

Again, while the dataset has the potential to answer many valuable questions, the
following two AQs are provided to get you started:

•	 AQ1: Would the suspect's race increase the chance of being fatally shot at?

•	 AQ2: Can wearing a body camera help decrease the number of fatal police
shootings?

The next case study will feature a dataset regarding automobile accidents in the US.

US accidents
Not all roads are the same; there is a much higher risk of weather conditions causing an
accident during winter in Chicago versus a summer in San Jose. Data analysis can shed
so much light on hazardous roads and weather conditions—for instance, in the following
screenshot, we can see that the frequency of accidents varies significantly across states.
However, we must pay attention to the fact that the population of the states might be
causing this variation more than the difference in driving habits and road conditions:

Figure 18.2 – Sample visualization from the US-Accidents dataset

https://github.com/washingtonpost/data-police-shootings

Practice case studies 553

Note
The preceding screenshot is sourced from https://smoosavi.org/
datasets/us_accidents.

You can download the dataset from the following link: https://www.kaggle.com/
sobhanmoosavi/us-accidents. The following list provides two possible AQs that
can get you started:

•	 AQ1: Is there a discernable difference between the frequency of accidents per capita
across different states?

•	 AQ2: Does a specific type of road become more prone to a fatal accident in rainy
weather conditions?

The next case study will be another form of data analytics for the greater good; we will use
the power of data analytics to investigate crime patterns.

San Francisco crime
San Francisco experiences a somewhat higher crime rate than other parts of the US. On
average, 19 crimes happen per 100,000 people, and in a year, every person has a 1 in 15
chance of being mugged. While these statistics are staggering, data analytics might be
able to help by showing crime patterns. These patterns can help decision makers to first
understand the cause of the much higher crime rate and then try to address them using
sustainable measures.

https://smoosavi.org/datasets/us_accidents
https://smoosavi.org/datasets/us_accidents
https://www.kaggle.com/sobhanmoosavi/us-accidents
https://www.kaggle.com/sobhanmoosavi/us-accidents

554 Summary, Practice Case Studies, and Conclusions

The following screenshot shows that data analytics is already being used in the San
Francisco Police Department. It is greatly encouraging to see that the tools you know are
being actively used and that you could be contributing to these efforts.

Figure 18.3 – San Francisco Police Department Crime dashboard

Note
The preceding screenshot is sourced from https://www.
sanfranciscopolice.org/stay-safe/crime-data/crime-
dashboard.

You can access a rather large dataset that is ripe for data preprocessing practice via
https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset.
This dataset includes the records of crimes in San Francisco in 2016. The following two
AQs can get you started:

•	 AQ1: Are there times of the day during which the frequency of assaults increases?

•	 AQ2: Are there locations in the city that see more theft?

In the last four case studies, we focused on the greater good by studying cases that can
benefit society. Let's shift gear and look at a case study that can empower an individual—
in this case, to become smarter in the data analytics job market.

https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset

Practice case studies 555

Data analytics job market
The job market for data analysts and data science has not yet taken a stable shape. There
is a wide range of variations experienced by people who try to find jobs in this market.
This dataset provides an opportunity to discover some of the patterns in the job market.
The dataset can be downloaded via https://www.kaggle.com/andrewmvd/data-
analyst-jobs. The following two AQs can get you started:

•	 AQ1: Does the location of the data analytics job influence the amount of
compensation?

•	 AQ2: Does the company rating influence the amount of compensation?

The next two practice case studies relate to sports analytics. I am glad you are already
excited.

FIFA 2018 player of the match
20 minutes after each international soccer game, the player of the match is recognized. For
instance, the following screenshot shows a YouTube video honoring Antoine Greizmann
who was recognized as the player of the match for the 2018 FIFA World Cup™ final after
helping his team to beat Croatia and become the 2018 FIFA World Cup champions:

Figure 18.4 – Player of the Match: 2018 FIFA World Cup™ final

https://www.kaggle.com/andrewmvd/data-analyst-jobs
https://www.kaggle.com/andrewmvd/data-analyst-jobs

556 Summary, Practice Case Studies, and Conclusions

Note
The preceding screenshot is sourced from https://youtu.be/-5k-
vgqHO2I.

While knowing the player of the match is peripheral to the main soccer competition,
knowing who will be the winner beforehand can be of much value to gambling
professionals. This dataset contains the data of all of the games in FIFA 2018. You can
access the data via https://www.kaggle.com/mathan/fifa-2018-match-
statistics. The following two AQs can get you started to preprocess and analyze this
exciting dataset:

•	 AQ1: Can the ball position predict the team from which the man of the match will
be selected?

•	 AQ2: Can a combination of the number of attempts and passing accuracy predict
the team from which the man of the match will be selected?

The next practice case study is going to relate to sports analytics too, but this time, the
sport is going to be basketball.

Hot hands in basketball
Basketball is a very exciting game in that the winning and losing teams may switch
places in a matter of seconds, and there is a lot of common sense and theories around
this captivating game. One of them is the Hot Hand theory, which is about a successful
sequence of three-point shots. As the theory goes, if a player has a hot hand, if they have
made some consecutive successful shots, they will continue to make more successful
shots. While behavioral economists have long rejected the Hot Hand theory, citing
representativeness heuristic bias, I bet it will be fun to let the data speak and see whether
the historical data supports the theory. I am more excited for you to do an analysis
using the dataset on this Kaggle page: https://www.kaggle.com/dansbecker/
nba-shot-logs. The following two AQs can get you started on preprocessing and
analyzing this dataset:

•	 AQ1: Does the historical data support the Hot Hand theory?

•	 AQ2: Does being against a "good" defender dampen the success rate of a
"good" shooter?

https://youtu.be/-5k-vgqHO2I
https://youtu.be/-5k-vgqHO2I
https://www.kaggle.com/mathan/fifa-2018-match-statistics
https://www.kaggle.com/mathan/fifa-2018-match-statistics
https://www.kaggle.com/dansbecker/nba-shot-logs
https://www.kaggle.com/dansbecker/nba-shot-logs

Practice case studies 557

After having some fun with sports analytics, let's turn our attention to more high-stakes
analysis. The next case study is going to have both environmental and societal analysis
value. We are going to analyze wildfires in California.

Wildfires in California
California saw two of its worst wildfire seasons in 2020 and 2021, and the ecological
predictions all point to the hypothesis that these are not just some outliers in the historical
data but are long-term shifts in trend. This dataset provides the opportunity for you to
analyze firsthand the pattern of California wildfires from 2013 to 2020. You can access
this dataset from the Kaggle web page: https://www.kaggle.com/ananthu017/
california-wildfire-incidents-20132020.

This dataset can both support data visualization and clustering analysis. An example
of data visualization is used by BLM California Wildfire Dashboard (Public), and the
following screenshot shows the dashboard information collected on October 28, 2021:

Figure 18.5 – BLM California Wildfire Dashboard (Public)

Note
The preceding screenshot was sourced from
https://www.arcgis.com/apps/
dashboards/1c4565c092da44478befc12722cf0486 on
October 28, 2021.

https://www.kaggle.com/ananthu017/california-wildfire-incidents-20132020
https://www.kaggle.com/ananthu017/california-wildfire-incidents-20132020
https://www.arcgis.com/apps/dashboards/1c4565c092da44478befc12722cf0486
https://www.arcgis.com/apps/dashboards/1c4565c092da44478befc12722cf0486

558 Summary, Practice Case Studies, and Conclusions

I highly suggest practicing data preprocessing for the purpose of clustering analysis on
this dataset first, and then turn your attention to more data visualization. The first AQ
listed here can only be answered using clustering analysis:

•	 AQ1: Do the fires from 2013 to 2020 form meaningful clusters? What are their
patterns?

•	 AQ2: Are there more large fires in specific years?

We are going to see some more societally meaningful data analysis next. The following
case study is going to provide an opportunity to analyze the diversity profile of 23 top tech
companies in Silicon Valley.

Silicon Valley diversity profile
This Kaggle web page, https://www.kaggle.com/rtatman/silicon-valley-
diversity-data, has three datasets, and you want to focus on Reveal_EEO1_
for_2016.csv for this case study. Many meaningful AQs can be designed that this dataset
can help provide an answer to; however, the following two AQs are meant to get you started.

The first AQ listed here can only be answered using clustering analysis:

•	 AQ1: Is there a relationship between the attribute gender and job category? In other
words, does the gender of an individual influence their job category?

•	 AQ2: Is there a noticeable difference between the Silicon Valley companies
concerning employee diversity profiles?

In the next case study, we are going to have an opportunity to practice our preprocessing
for prediction models.

Recognizing fake job posting
There is nothing worse than spending hours on a job application only to realize the job
posting is fake. In this practice case study, you will get to see whether prediction models
can help us weed out fake job postings. Furthermore, we can see which characteristics
tend to give away a fake posting.

The dataset that provides this learning opportunity is accessible on the Kaggle web page
at https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-
prediction. This dataset supports many possible AQs; however, the following will get
you started:

•	 AQ1: Can Decision Tree meaningfully predict fake postings?

•	 AQ2: What are the characteristics that fake posts share?

https://www.kaggle.com/rtatman/silicon-valley-diversity-data
https://www.kaggle.com/rtatman/silicon-valley-diversity-data
https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction
https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction

Conclusions 559

The 10 listed practice case studies in this chapter of the book are excellent sources to
continue learning; however, there are more potential learning opportunities out on the
internet that you can find on your own. Before ending this subchapter, we will go over
a list of possible resources that you may use to hunt for more datasets.

Hunting more practice case studies
The following two resources are excellent for finding datasets to practice your newly
acquired data preprocessing and analytics skills.

Kaggle.com
This website is the best resource for finding more case study projects. Throughout this
book, you may have noticed that most of the datasets we used were sourced from this
website. The Kaggle website has done a great job of creating a community of developers
with different skill levels who have come together to share knowledge and datasets.
I highly encourage you to join this community to find more learning and practice
resources.

The next resource is not as vibrant a community as Kaggle; however, it is the oldest most
well-known machine learning (ML) dataset repository.

University of California Irvine Machine Learning Repository
Very well known by the term UCI ML Repository, this repository has been collecting
datasets for research purposes since 1987. A great feature of this repository is that you can
see datasets based on the analytics goals; all the datasets are filterable by four associated
tasks: classification, regression (prediction), clustering, and others. You can access this
repository at https://archive.ics.uci.edu/ml/index.php.

In this subchapter, you were introduced to 10 possible case studies and 2 sources that have
many more possible practice case studies. The next subchapter offers some conclusions to
this chapter and the whole book.

Conclusions
Allow me to start concluding this book by congratulating you on having gone through
this journey of learning about data analytics and data preprocessing. I am confident that
your learning about data analytics and data preprocessing does not end here, and you are
already planning to learn more useful tools and pick up valuable skills. So, how about
we conclude this book by examining a few routes for learning and improvement?

https://archive.ics.uci.edu/ml/index.php

560 Summary, Practice Case Studies, and Conclusions

My first suggestion would be to cover your base and take advantage of all of the learning
resources that this book has to offer so that you can deepen your learning and bring
your skill level closer to second nature. The end of most chapters provides exercises for
exactly this purpose. Furthermore, the three case studies in Chapters 15 through 17 can be
expanded upon and improved; doing that would be a great way to improve your learning.
Lastly, this current chapter provided many starting points and case studies to practice the
skills you've picked up during your journey in this book and make them second nature.

Besides solidifying what you learned in this book, there are a few distinct learning routes
you may consider. For organization, I call these routes data visualization and storytelling,
algorithms, technology, and mathematics. Let's go over these routes one by one.

Chapter 5, Data Visualization, provided a brief but fundamental understanding of data
visualization. The material was provided to support our learning for data preprocessing.
There is much more to learn about data visualization as far as techniques and technology
go, but also from the perspective of storytelling. You might be good at the technical
aspect of coming up with visualization, but this visualization must be prescribed before
you can create it. In other words, if you are the one deciding what kind of visualization
is needed to convince an audience, you might not be the best person to go to. If that's
the case, I'd highly recommend that you consider reading Storytelling with Data: A Data
Visualization Guide for Business Professionals, by Cole Nussbaumer Knaflic, and Effective
Data Visualization: The Right Chart for the Right Data, by Stephanie Evergreen. Not only
do these books help to kindle your curiosity and creativity regarding data visualization,
but they will also guide you through the actual storytelling part that is bound to come
with effective data visualization.

In this book, we only scratched the surface of algorithmic analytics. In Chapters 6 through
8, we briefly learned about some classification, prediction, and clustering algorithms.
Not only are there more algorithms for each of the three mentioned data analytics tasks,
but there are also more analytics tasks that need an algorithmic approach for effective
solutions. You may want to invest in these to deepen your learning and pick up more skills
in this area, and if you become proficient with all these algorithms, you'd become a highly
attractive hire for ML engineer roles.

Conclusions 561

While this route of learning sounds very promising, I would like to offer a few notes
of caution. First, for this route, you want to have good programming skills or at least
enjoy programming; I am not talking about the type of programming we did during this
book. In this book, we only learned enough programming to use modules and functions
created by real programmers. I mean that you need enough programming skills so that
you would be able to create those modules and functions. My second note of caution
regards the future of algorithmic analytics. I surmise that out of all the four routes of
learning that I am discussing here, this route is the one that is the most automatable. That
means in the near future, the cost of hiring an ML engineer to develop an algorithmic
solution becomes higher than subscribing to Artificial Intelligence as a Service (AIaaS)
or Machine Learning as a Service (MLaaS) solutions provided by tech giants such as
Amazon (Amazon Web Services (AWS)), Microsoft (Azure), and Google (Google Cloud
Platform (GCP)). Unless you are the best of the best in these areas and hirable by these
companies, you might end up needing to reskill.

Next, let's talk about the technology route of learning and improvement. For better or
worse, many organizations and companies think of effective data analytics as visualization
dashboards that are effectively connected to their relevant databases. For these
organizations, the skill in drafting effective queries that pull the appropriate data from the
databases that create and enliven the graphics on the dashboard is what they will look for
in their analytics professionals. This is the simple reality of the data analytics job market:
companies are not looking for hires that have more technical and conceptual knowledge,
but they are looking to hire people who can work most effectively with the technologies
that they have already adopted. Granted—being able to work with those technologies
requires its own specific knowledge and skillset, but they may be rather different.

If today's most adopted technology that allows survival and competitiveness is databases,
in the near future, it is my humble prediction that most companies will take the next
technological leap and adopt cloud computing. This exciting trend in technological
improvement is a world in itself. Not only has it streamlined and improved database
technologies and the current mass technological adoption, but it also has a lot more to
offer, including Platform as Service (PaaS), Supply Chain as Service (SCaaS), MLaaS,
AIaaS technologies, and more.

While cloud computing platforms such as Amazon's AWS, Microsoft's Azure, and
Google's GCP will provide all these solutions under various payment schemes, these
services will have many variations that are designed for different needs and companies.
Knowing these variations and being able to select the correct one for a company can save
a meaningful amount of money for companies. Not only that—to be able to adopt AIaaS
solutions such as natural language translators, the solution needs to be appropriately
linked to the databases of the companies. Being able to effectively put together these pieces
of technologies and cater them to the needs of a company will be a very valuable skill.

562 Summary, Practice Case Studies, and Conclusions

We are already seeing pioneer companies having developed roles such as development-
operations (DevOps) engineer, cloud engineer, and cloud architect whose responsibilities
are to recognize and adapt different pieces of cloud technology and streamline them for
their needs. It is my humble prediction that for a good while, we will see a rise in the
demand for these roles, while we will see a decline in demand for roles that were meant
to develop analytics, AI, and ML solutions from scratch, such as data scientists and ML
engineers. This trend will continue until the cloud computing adoption rate becomes high
enough that companies cannot remain competitive and survive just by being able to use
this technology, and they will need to adopt the new hot one. So, right now, it lays before
us as a golden opportunity to break into a high-paying future tech role. Granted—you
would still need to understand the business, computer programing, data preprocessing,
and algorithmic data analytics to some extent, but in these roles, you would most
contribute by knowing the ins and outs of the solutions that cloud computing has to offer.

Last but not least, let's talk about the learning route of mathematics. Toward the end of this
book—specifically, in Chapter 13, Data Reduction, and Chapter 14, Data Transformation
and Massaging—we started to talk about functional data Analysis (FDA). As you
experienced during these two chapters, FDA can be a very powerful analytics and
preprocessing tool if you have a solid mathematical understanding of various functions.
Improving your understanding of various mathematical functions can give you an
untouchable edge when it comes to the effectiveness of data preprocessing. After all, if
other analysts don't know the mathematical function that can capture the most important
information in the data, they are reduced to using a noisy dataset whose patterns are not
brought to the surface and hope the algorithm will be able to pick up on them.

All of the four learning routes that I have provided here could be the right one for you,
and the correct decision as to which one hinges on your personality and the types of daily
activities you would enjoy doing. If you are more interested in inspiring people and would
like to be more effective at persuading people, data visualization and storytelling may be
the right route for you. If you enjoy computer programming and take pleasure from the
thrill of zoning out into the third or fourth nested loop, the algorithms route might be it.
If you enjoy being up to date with technology and enjoy debating what will happen if
a new piece of technology is adopted, the technology route could be for you. Lastly, if you
are good at math and can envision functions in your mind, and are fast at simulating data
with various functions, the FDA route could help you in your tech career.

Lastly, I would like to say that I hope you learned many things of value in this book.
I enjoyed the journey of writing this book, and I hope you enjoyed it as much as I did.
Happy learning, everyone!

Index

Symbols
.unstack() function 40, 41

A
adjusted R2 (Adj. R-squared) 402
aggregation 473, 479-481
aggregation mismatch 345-349
analytics standpoint

about 81
attribute types 85
binary attribute 85
interval-scaled attribute 83, 84
nominal attribute 82
ordinal attribute 82, 83
ratio-scaled attribute 85

anonymization technology 551
API connection

about 110
data, accessing 111
data, restructuring 112, 114
data, using 111
used, for connecting data 110, 111
used, for pulling data 110, 111

Apple stock prices 57
artificial intelligence 75

artificial neural network (ANN) 406
artist_df

songIntegrate_df, filling 369-373
assigned indices 17
asymmetric binary attribute 85
attribute construction 461
attributes

relationship, investigating 134
removing, with missing values 281

augmented arithmetic assignment 370

B
backpropagation 172
bar chart 54, 122
billboard_df

songIntegrate_df, filling 363, 365
binary attribute

about 85
extracting, from Email attribute 466

binary attribute, types
asymmetric binary attribute 85
symmetric binary attribute 85

binary coding
about 448, 449
of nominal attribute 450-454
of ordinal attribute 454, 455

564 Index

binning 473
bivariate outlier detection

about 292, 296
to two attributes 299, 300
to two categorical attributes 298
to two numerical attributes 296, 297

bivariate outliers
dealing with 312-315, 321
detecting 312-315, 321

Blockchain 106
Body Mass Index (BMI) 461
Boolean mask (BM)

about 349, 374
for filtering DataFrame 25, 26

Boolean masking
about 24, 205
analytic example 27
for filtering DataFrame 24

boxplot
about 54, 122
used, for comparing data object

population 126, 127
used, for summarizing numerical

attributes 54, 56
brute-force computational

dimension reduction
about 406
independent attributes, finding for

classification algorithm 406-409

C
categorical attributes

contingency table, using to
investigate relationships between
binary attributes 137-139

contingency table, using to
investigate relationships between
non-binary attributes 139, 140

relationship between, visualizing 137
summarizing example 124, 125
versus numeric attributes 140-144

centroid analysis
about 204
performing 204-206
using, for profiling clusters 204

chi-square test of independence 270
classification 160, 178
classification algorithms

about 178, 179
Decision Trees 185
K-nearest neighbors (KNN) 180

classification models
about 178
example, of designing 178, 179

clustering analysis
about 191
used, for detecting multivariate

outlier to attributes 300-302
clustering model

about 192
example, with three-dimensional

dataset 195-197
example, with two-dimensional

dataset 192-195
collinearity 345
column

unpacking 228, 229
comma-separated values (CSV) 293
connections 171
Content column

unpacking 233, 234
contingency table 137
correlation analysis 540

Index 565

correlation coefficient 90
COVID-19

data analysis 526-529
data source 517, 518
healthcare systems 516, 517

D
data

about 72, 73
analyzing, via computer programming 6
connecting, to database 107
defining 73
pulling, from database 107
trends, observing with line plot 56, 57

data analysis
about 376, 504
AttitudeScore attribute,

constructing 512-514
data transformation,

performing 509-512
mental health of employees, versus

Age attribute 507, 509
mental health of employees, versus

attribute of gender 504, 506
data analytics

goals 548
purpose 213
tools 213

data attributes 81
database

about 100
data, connecting to 107
data, pulling from 107
versus dataset 101

database, connecting methods
API connection 110
direct connection 107

publicly shared 114
request connection 114
SQL learning 108, 109
web page connection 109

database elements
about 102
authority 104
level of data structure 103, 104
storage location 104

database, types
about 102
Blockchain 107
distributed databases 106
relational databases 105
unstructured databases 105

data cleaning
about 444, 494-498
example 467
missing values, dealing with 502, 503
missing values, detecting with 502, 503
outliers and errors, dealing

with 499, 500, 501
outliers and errors, detecting

with 499, 500
data cleaning level I

about 216
long column titles 222, 223
reindexing 220, 221
unwise data collection 216-219

data cleaning, levels
about 214
purposes and tools of analytics,

mapping to 215
table, cleaning up 214
table, reformulating 214
table, restructuring 214
values, correcting 214
values, evaluating 214

566 Index

data collection 349-354
Data Dataset Pattern Action (DDPA)

about 75
elements 75
transactional steps 75

Data Dataset Visualization and
Wisdom (DDVW)

about 76
elements 77

DataFrame
about 13
filtering, with Boolean masking 24-26
used, for exploring pandas function 28

DataFrame, dataset structure
about 28
.columns property 28, 29
.info() function 29
.shape property 28

DataFrame, dataset values
about 29
.describe() function 30
numerical columns, visualizing

with barcharts 32, 33
numerical columns, visualizing

with boxplots 30
numerical columns, visualizing

with histograms 30
.unique() function 31
.value_counts() function 32

data fusion
about 336
example 338, 339
versus data integration 337

data fusion, challenges
about 340
aggregation mismatch 343
data collection 341
data objects, duplicating 344

data redundancy 344, 345
entity identification 341
index mismatched formatting 341

Data, Information, Knowledge,
and Wisdom (DIKW) 74

data integration
about 336, 444, 494
example 337
structure, designing 361, 362
versus data fusion 337

data integration, challenges
about 340
aggregation mismatch 343
data collection 341
data objects, duplicating 344
data redundancy 344, 345
entity identification 341
index mismatched formatting 341

data integration, directions
about 339
example, by adding attributes 340
example, by adding data objects 340

data massaging
about 444
versus data transformation 445, 446

data object population
comparing 125
comparing, with boxplot 126, 127
comparing, with histogram 127-129
summarizing 122

data object population, with bar chart
comparing example 129
fifth way of problem solving 133
first way of problem solving 130
fourth way of problem solving 132
second way of problem solving 130
sixth way of problem solving 134
third way of problem solving 131, 132

Index 567

data objects
about 79
defining 80
duplicating 355
removing, with missing values 281
removing, with outliers 304

data preprocessing
about 518, 519, 549
case studies 549
characteristics 518
dataset, designing 519, 520
placeholder dataset, filling up 521-523
supervised dimension

reduction 523-525
technologies 548
Three Vs of big data 78, 79

data preprocessing for data analytics
versus data preprocessing for

machine learning 77
data preprocessing for machine learning

versus data preprocessing
for data analytics 77

data reduction
about 444
example 468
objectives 385
types 385, 386
versus data redundancy 384

data redundancy
about 89, 355
checking 373
checking, between numerical and

categorical attributes 374, 375
checking, in numerical

attributes 373, 374
correlation coefficient, using 90
versus data reduction 384

dataset
about 101
case studies 550-559
versus database 101

dataset, changes
correctness 444
effectiveness 445
necessity 444

dataset, characteristics
data cleaning 444
data integration 444

data source
integrating 495-497

data transformation
about 444
versus data massaging 445, 446

data values, types
about 81
analytics standpoint 81
programming standpoint 86

data visualization approach
for finding patterns 376, 377

decision tree
about 179, 185, 523
for classification, example 186-188
using, as dimensionality data

reduction methods 403
decision tree algorithm 287, 290, 344
decision tree approach

for finding multivariate
patterns 377-379

decision tree regression 163
default indices 17
dependent attribute 162
differential privacy 551
DIKW pyramid

about 74
elements 74

568 Index

for data analytics 76, 77
for machine learning and AI 75, 76

dimensionality data reduction
performing 397
types 385

dimensionality data reduction, methods
brute-force computational

dimension reduction 386, 406
decision tree 386
decision tree, using 403
functional data analysis (FDA) 386, 420
linear regression 386, 398-403
principal component analysis

(PCA) 386, 409
random forest 386
random forest, using 404, 405

direct connection 107
discretization

about 448, 449
numerical attributes, with

cut-off points 460
of numerical attributes 456-458
types 458, 459

distributed databases 106
do nothing approach 303, 304
dots per inch (DPI) 67
duplicate data objects

checking 355
checking, in artist_df 359, 360
checking, in billboard_df 355, 356
checking, in songAttributes_df 357, 358

E
Email attribute

used, for extracting binary attribute 466
entity identification 355
epoch of learning 172

errors
about 323, 324
dealing with 325
types 324

Exponential function 429, 430

F
FDA approach

key points 428
feature extraction

about 464
example 467, 468

FileName column
unpacking 229-233

Finnhub Stock API
reference link 110

five-dimensional scatter plot
example 145-149
fifth dimension 151-153
fourth dimension 149, 150

fliers 294
forecasting

about 160
example 161, 162

Fourier function 431, 432
functional data analysis (FDA)

about 409, 419, 420, 474, 520, 536
overview 436, 437
parametric dimension reduction,

example 421-427
prominent functions 428

functional smoothing 474-476

G
Gaussian function 433-436
Global Mobility Report 550

Index 569

Gross Domestic Product (GDP) 469

H
higher-level conventions and

understandings (HLCUs) 72
histogram

about 54, 122
used, for comparing data object

population 127-129
used, for summarizing numerical

attributes 54, 56

I
imbalanced dataset 396
implicit line continuation 370
independent attribute 163
index mismatched formatting 345-355
information

defining 87
versus pattern 86

information, statistical use
about 87
data redundancy 89
for categorical attributes 88
for numerical attributes 88

interpolation 282
interval-scaled attribute 83, 84

J
Jupyter Notebook

about 4, 67, 123
overview 4, 5

K
K-Means

about 197
applying 198, 322, 323
flowchart 198
using, for clustering

multi-dimensional dataset 203, 204
using, for clustering two-dimensional

dataset 199-203
K-Nearest Neighbors (KNN)

about 179, 180, 280, 406, 446
for classification, example 180-185

L
lambda function 35
level I data cleaning 242-244
level II data cleaning

about 242-246
predict_df.DA 247
predict_df.IA1 247, 248
predict_df.IA2 248-250
predict_df.IA3 251, 252

linear regression (LR)
about 163, 164, 242, 523
applying 317
applying, to perform regression

analysis 165-168
using, as dimensionality data

reduction methods 398-403
using, to create predictive

model 252, 253
line plot

about 54
used, for observing trends in data 56, 57

list comprehension 415

570 Index

log transformation
about 468, 470
implementing 470, 471
performing 304
working module 472

long form 45

M
machine learning (ML) 75
machine learning (ML) repository 559
main plots

drawing, in Matplotlib 54
MATLAB 213
Matplotilb data assist preprocessing

example 67, 68
Matplotlib

main plots, drawing 54
numerical attributes, summarizing

with boxplot 54, 56
numerical attributes, summarizing

with histogram 54, 56
trends, observing in data

with line plot 56, 57
two numerical attributes, relating

with scatterplot 58
Matplotlib, marker color

reference link 65
Matplotlib, marker shapes

reference link 65
Matplotlib visuals

labels, adding to axis 60
legends, adding 60, 61
markers, modifying 64, 65
modifying 58
resizing 67
saving 67

ticks, modifying 61-63
title, adding to axis 60

mental health disorders
case study 492
data analysis 492-494
data source 494

missing at random (MAR) 263, 264
missing completely at random

(MCAR) 263, 264
missing not at random (MNAR) 263, 264
missing values

about 258, 259
approaches 279
causes 262
dealing with 279, 280, 309
detecting 259
detecting, example 260-262
diagnosing 264
diagnosing, in NO2_Location_A 264
diagnosing, in NO2_

Location_B 274-277
diagnosing, in

NO2_Location_C 277-279
goals 289
in Age attribute 504
in attributes, from SupportQ1

to AttitudeQ3 503
in Mental Illness attribute 503
types 263

missing values, approaches
attributes, removing 281
data objects, removing 281
estimation methods 282
example 284-292
imputing 282
keep as is approach 280, 281
selecting 282

Index 571

missing values, diagnosing
in NO2_Location_A

about 264
based on categorical attributes 272, 273
based on numerical attributes 267-269
based on Temperature 265-267
based on weekday 269-272

Mississippi State University (MSU) 161
MLP's random initialization 172
morphological feature extraction 465, 466
moving average (MA) 161
multilayer perceptron (MLP)

about 170, 179, 318, 444, 526
applying, to perform regression

analysis 172, 173
connections 171
epochs of learning 174
hidden layer 170
input layer 170
neuron 170
output layer 170
prediction 174
working 171

multi-level indexing 40, 220
multivariate outlier detection

about 292, 300
example, with clustering

analysis 300-302
multivariate outliers

dealing with 315, 316, 321
detecting 315, 316, 321

N
nominal attribute 82
non-parametric method 468
normalization 88, 446-448

NoSQL databases 105
Not a Number (NaN) 258
np.arange() function 8, 9
np.linspace() function

about 12
used, for creating solution

candidates 12, 13
null hypothesis 271
numerical attributes

relating, with scatterplot 58
relationship between, visualizing 135
scatter plot, using to investigate

relationships between 135, 136
summarizing example 122-124
summarizing, with boxplot 54, 56
summarizing, with histogram 54, 56
transforming, into categorical ones 460
versus categorical attributes 140-144

numerosity data reduction
performing 387
types 385

numerosity data reduction, methods
random over/under sampling

386, 394-397
random sampling 386, 387
stratified sampling 386, 392, 393

NumPy 6
NumPy functions

np.arange() function 8, 9
np.linspace() function 12
np.ones() function 9
np.zeros() function 9
overview 6-8
placeholder, using to

accommodate analytics 10

572 Index

O
Open Sourcing Mental Illness (OSMI)

URL 491
ordinal attribute 82, 83
outlier detection

bivariate 296
multivariate 300
time-series data 302
univariate 292

outliers
about 292
approaches 302
detecting 292
example 325-329
perspectives 292

outliers, approaches
data objects, removing 304
do nothing 303, 304
example 305-308, 318, 319
log transformation, performing 304
selecting 305
upper and lower caps,

replacing with 304

P
pandas

about 13-16
overview 13

pandas data access 16
pandas DataFrame access

about 16
columns 18
rows 17
values 19

pandas function
analytic example 34-37
applying 33
applying, to DataFrame 35, 36
applying, to series 34
for exploring DataFrame 28
lambda function, applying 35

pandas Groupby function
about 37, 39
analytic example 39

pandas melt function 45-47
pandas multi-level indexing

about 40
multi-level access 45
.stack() function 43
.unstack() function 40-43

pandas pivot function 45-47
pandas series access 20
parametric method 468
pattern

defining 90
employing 91
finding 91
seaborn module, installing 92, 93
versus information 86

PCA approach
key points 428

prediction 160
predictive model

about 160
creating, with linear regression 252, 253
regression analysis 162

predictor attribute 162
principal component analysis (PCA)

about 409, 543
non-parametric dimension

reduction, example 413-420
toy dataset, example 409-413

Index 573

principal components (PCs) 412, 543
programming standpoint 86
prominent functions, for FDA

about 428
exponential function 430
Exponential function 429, 430
Fourier function 431, 432
Gaussian function 433-436
Sinusoidal function 432, 433

proportional random sampling 392
publicly shared 114
p-value 267, 271

R
random errors 324
random forest

about 179, 523
using, as dimensionality data

reduction methods 404, 405
random over/under sampling 394-397
random sampling

about 387
to speed up tuning 387-391

ranking transformation
about 142, 448, 449
of ordinal attributes 454, 455

ratio-scaled attribute 85
regression analysis

about 160, 162, 282
example 163, 164
performing, by applying linear

regression 165-168
performing, to apply MLP 172, 173

relational databases 105
request connection 114
rolling data smoothing 476-479

S
scatter matrix 135, 540
scatter plot

about 54, 135
used, for relating two numerical

attributes 58
seaborn module

about 92
installing 92, 93

series 15
Sex Assigned At Birth (SAAB) 85
simple exponential smoothing 479
simple linear regression 92
simple moving average (SMA) 160
Sinusoidal function 432, 433
slicing

about 20
example 23, 24

slicing NumPy array 21
slicing pandas DataFrame 22
smoothing 473, 474
smoothing, types

functional smoothing 474-476
rolling data smoothing 476-479

songAttribute_df
songIntegrate_df, filling 365-369

songIntegrate_df
filling, from artist_df 369-373
filling, from billboard_df 363, 365
filling, from songAttribute_df 365-369
summary example 379

SQL learning 108, 109
SQL Server Management

Studio (SSMS) 108
stacked bar chart 134
standard deviation (STD) 7, 447
standardization 414, 446-448

574 Index

stratified sampling
about 392
for imbalanced dataset 393, 394

structured databases
about 105
versus unstructured databases 105, 106

Structured Query Language (SQL) 107
subplot

drawing 65, 66
supervised dimensionality

data reduction 398
supervised dimension reduction 523
supervised learning 191
Support Vector Machine (SVM) 179
symmetric binary attribute 85
systematic errors

about 324
detecting 325
example 325-329
steps, in dealing with 325, 327

T
table

reformulating 228, 229
reformulating, for visualization 235-237
restructuring 239-242

table data structure
about 79
data attributes 81
data objects 79

target attribute 162
Three Vs of big data

about 78
for data preprocessing 78, 79

time series data 153
time-series outlier detection 302

trained regression equation
using, for prediction 168, 169

transformed attribute
constructing, by combining

two attributes 461-463
trends

about 153
comparing 153
displaying 153
example 153-155
observing, in data with line plot 56, 57

True Signa 324
two-sample t-test 267

U
Unified Modeling Language (UML) 108
United States Counties Clustering

Analysis, case study
about 532, 533
data, analyzing 543
data cleaning 540
data integration 539
data preprocessing 534, 535
data redundancy, checking 540-542
data sources 533, 534
edu_df, cleaning 539
election_df, transforming

to partisan_df 536
employ_df, cleaning 539
FDA, to calculate mean and slope

of partisanism 537, 538
K-Means clustering analysis 544, 545
partisanism attribute, constructing 536
PCA, using to visualize dataset 543
pov_df, cleaning 539

Index 575

univariate outlier detection
about 292, 293
to one categorical attribute 296
to one numerical attribute 294, 295

univariate outliers
dealing with 310-312, 320, 321
detecting 310-312, 320, 321

unstructured databases
about 105
versus structured databases 105, 106

unsupervised dimensionality
data reduction 398

unsupervised learning 191
upper and lower cap approach

replacing with, outliers 304
User Interface (UI) 4, 108

V
variance (var) 7
variety 78
velocity 78
visual dimensions

adding 145
visualization

drawing 238
volume 78

W
web page connection 109
wide form 45
Working SeRies (wsr) 355

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

578 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Amazon SageMaker - Second Edition
Julien Simon
ISBN: 978-1-80181-795-0

•	 Become well-versed with data annotation and preparation techniques

•	 Use AutoML features to build and train machine learning models with AutoPilot

•	 Create models using built-in algorithms and frameworks and your own code

•	 Train computer vision and natural language processing (NLP) models using
real-world examples

•	 Cover training techniques for scaling, model optimization, model debugging, and
cost optimization

•	 Automate deployment tasks in a variety of configurations using SDK and several
automation tools

https://www.packtpub.com/product/learn-amazon-sagemaker-second-edition/9781801817950

Other Books You May Enjoy 579

The Data Science Workshop - Second Edition

Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

ISBN: 978-1-80056-692-7

•	 Explore the key differences between supervised learning and unsupervised learning

•	 Manipulate and analyze data using scikit-learn and pandas libraries

•	 Understand key concepts such as regression, classification, and clustering

•	 Discover advanced techniques to improve the accuracy of your model

•	 Understand how to speed up the process of adding new features

•	 Simplify your machine learning workflow for production

https://www.packtpub.com/product/the-data-science-workshop-second-edition/9781800566927

580

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Hands-On Data Preprocessing in Python, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07213-2
https://packt.link/r/1-801-07213-2

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
Technical Needs
	Chapter 1: Review of the
Core Modules of NumPy and Pandas
	Technical requirements
	Overview of the Jupyter Notebook
	Are we analyzing data via computer programming?
	Overview of the basic functions of NumPy
	The np.arange() function
	The np.zeros() and np.ones() functions
	The np.linspace() function

	Overview of Pandas
	Pandas data access
	Boolean masking for filtering a DataFrame
	Pandas functions for exploring a DataFrame
	Pandas applying a function
	The Pandas groupby function
	Pandas multi-level indexing
	Pandas pivot and melt functions

	Summary
	Exercises

	Chapter 2: Review of
Another Core Module – Matplotlib
	Technical requirements
	Drawing the main plots in Matplotlib
	Summarizing numerical attributes using histograms
or boxplots
	Observing trends in the data using a line plot
	Relating two numerical attributes using a scatterplot

	Modifying the visuals
	Adding a title to visuals and labels to the axis
	Adding legends
	Modifying ticks
	Modifying markers

	Subplots
	Resizing visuals and saving them
	Resizing
	Saving

	Example of Matplotilb assisting data preprocessing
	Summary
	Exercises

	Chapter 3: Data – What Is It Really?
	Technical requirements
	What is data?
	Why this definition?
	DIKW pyramid
	Data preprocessing for data analytics versus data preprocessing for machine learning

	The most universal data structure – a table
	Data objects
	Data attributes

	Types of data values
	Analytics standpoint
	Programming standpoint

	Information versus pattern
	Understanding everyday use of the word "information"
	Statistical use of the word "information"
	Statistical meaning of the word "pattern"

	Summary
	Exercises
	References

	Chapter 4: Databases
	Technical requirements
	What is a database?
	Understanding the difference between a database and a dataset

	Types of databases
	The differentiating elements of databases
	Relational databases (SQL databases)
	Unstructured databases (NoSQL databases)
	A practical example that requires a combination of both structured and unstructured databases
	Distributed databases
	Blockchain

	Connecting to, and pulling data from, databases
	Direct connection
	Web page connection
	API connection
	Request connection
	Publicly shared

	Summary
	Exercises

	Part 2:
Analytic Goals
	Chapter 5: Data Visualization
	Technical requirements
	Summarizing a population
	Example of summarizing numerical attributes
	Example of summarizing categorical attributes

	Comparing populations
	Example of comparing populations using boxplots
	Example of comparing populations using histograms
	Example of comparing populations using bar charts

	Investigating the relationship between two attributes
	Visualizing the relationship between two numerical attributes
	Visualizing the relationship between two categorical attributes
	Visualizing the relationship between a numerical attribute and a categorical attribute

	Adding visual dimensions
	Example of a five-dimensional scatter plot

	Showing and comparing trends
	Example of visualizing and comparing trends

	Summary
	Exercise

	Chapter 6: Prediction
	Technical requirements
	Predictive models
	Forecasting
	Regression analysis

	Linear regression
	Example of applying linear regression to perform regression analysis

	MLP
	How does MLP work?
	Example of applying MLP to perform regression analysis

	Summary
	Exercises

	Chapter 7: Classification
	Technical requirements
	Classification models
	Example of designing a classification model
	Classification algorithms

	KNN
	Example of using KNN for classification

	Decision Trees
	Example of using Decision Trees for classification

	Summary
	Exercises

	Chapter 8: Clustering Analysis
	Technical requirements
	Clustering model
	Clustering example using a two-dimensional dataset
	Clustering example using a three-dimensional dataset

	K-Means algorithm
	Using K-Means to cluster a two-dimensional dataset
	Using K-Means to cluster a dataset with more than two dimensions
	Centroid analysis

	Summary
	Exercises

	Part 3:
The Preprocessing
	Chapter 9: Data Cleaning
Level I – Cleaning
Up the Table
	Technical requirements
	The levels, tools, and purposes of data cleaning – a roadmap to chapters 9, 10, and 11
	Purpose of data analytics
	Tools for data analytics
	Levels of data cleaning
	Mapping the purposes and tools of analytics to the levels of data cleaning

	Data cleaning level I – cleaning up the table
	Example 1 – unwise data collection
	Example 2 – reindexing (multi-level indexing)
	Example 3 – intuitive but long column titles

	Summary
	Exercises

	Chapter 10: Data Cleaning
Level II – Unpacking, Restructuring,
and Reformulating the Table
	Technical requirements
	Example 1 – unpacking columns and reformulating the table
	Unpacking FileName
	Unpacking Content
	Reformulating a new table for visualization
	The last step – drawing the visualization

	Example 2 – restructuring the table
	Example 3 – level I and II data cleaning
	Level I cleaning
	Level II cleaning
	Doing the analytics – using linear regression to create a predictive model

	Summary
	Exercises

	Chapter 11: Data Cleaning Level III – Missing Values, Outliers, and Errors
	Technical requirements
	Missing values
	Detecting missing values
	Example of detecting missing values
	Causes of missing values
	Types of missing values
	Diagnosis of missing values
	Dealing with missing values

	Outliers
	Detecting outliers
	Dealing with outliers

	Errors
	Types of errors
	Dealing with errors
	Detecting systematic errors

	Summary
	Exercises

	Chapter 11: Data Fusion and Data Integration
	Technical requirements
	What are data fusion and data integration?
	Data fusion versus data integration
	Directions of data integration

	Frequent challenges regarding data fusion and integration
	Challenge 1 – entity identification
	Challenge 2 – unwise data collection
	Challenge 3 – index mismatched formatting
	Challenge 4 – aggregation mismatch
	Challenge 5 – duplicate data objects
	Challenge 6 – data redundancy

	Example 1 (challenges 3 and 4)
	Example 2 (challenges 2 and 3)
	Example 3 (challenges 1, 3, 5, and 6)
	Checking for duplicate data objects
	Designing the structure for the result of data integration
	Filling songIntegrate_df from billboard_df
	Filling songIntegrate_df from songAttribute_df
	Filling songIntegrate_df from artist_df
	Checking for data redundancy
	The analysis
	Example summary

	Summary
	Exercise

	Chapter 13: Data Reduction
	Technical requirements
	The distinction between data reduction and data redundancy
	The objectives of data reduction

	Types of data reduction
	Performing numerosity data reduction
	Random sampling
	Stratified sampling
	Random over/undersampling

	Performing dimensionality data reduction
	Linear regression as a dimension reduction method
	Using a decision tree as a dimension reduction method
	Using random forest as a dimension reduction method
	Brute-force computational dimension reduction
	PCA
	Functional data analysis

	Summary
	Exercises

	Chapter 14: Data Transformation and Massaging
	Technical requirements
	The whys of data transformation and massaging
	Data transformation versus data massaging

	Normalization and standardization
	Binary coding, ranking transformation, and discretization
	Example one – binary coding of nominal attribute
	Example two – binary coding or ranking transformation of ordinal attributes
	Example three – discretization of numerical attributes
	Understanding the types of discretization
	Discretization – the number of cut-off points
	A summary – from numbers to categories and back

	Attribute construction
	Example – construct one transformed attribute from two attributes

	Feature extraction
	Example – extract three attributes from one attribute
	Example – Morphological feature extraction
	Feature extraction examples from the previous chapters

	Log transformation
	Implementation – doing it yourself
	Implementation – the working module doing it for you

	Smoothing, aggregation, and binning
	Smoothing
	Aggregation
	Binning

	Summary
	Exercise

	Part 4:
Case Studies
	Chapter 15: Case Study 1 – Mental Health
in Tech
	Technical requirements
	Introducing the case study
	The audience of the results of analytics
	Introduction to the source of the data

	Integrating the data sources
	Cleaning the data
	Detecting and dealing with outliers and errors
	Detecting and dealing with missing values

	Analyzing the data
	Analysis question one – is there a significant difference between the mental health of employees across the attribute of gender?
	Analysis question two – is there a significant difference between the mental health of employees across the Age attribute?
	Analysis question three – do more supportive companies have mentally healthier employees?
	Analysis question four – does the attitude of individuals toward mental health influence their mental health and their seeking of treatments?

	Summary

	Chapter 16: Case Study 2 – Predicting COVID-19 Hospitalizations
	Technical requirements
	Introducing the case study
	Introducing the source of the data

	Preprocessing the data
	Designing the dataset to support the prediction
	Filling up the placeholder dataset
	Supervised dimension reduction

	Analyzing the data
	Summary

	Chapter 17: Case Study 3: United States Counties Clustering Analysis
	Technical requirements
	Introducing the case study
	Introduction to the source of the data

	Preprocessing the data
	Transforming election_df to partisan_df
	Cleaning edu_df, employ_df, pop_df, and pov_df
	Data integration
	Data cleaning level III – missing values, errors, and outliers
	Checking for data redundancy

	Analyzing the data
	Using PCA to visualize the dataset
	K-Means clustering analysis

	Summary

	Chapter 18: Summary, Practice Case Studies, and Conclusions
	A summary of the book
	Part 1 – Technical requirements
	Part 2 – Analytics goals
	Part 3 – The preprocessing
	Part 4 – Case studies

	Practice case studies
	Google Covid-19 mobility dataset
	Police killings in the US
	US accidents
	San Francisco crime
	Data analytics job market
	FIFA 2018 player of the match
	Hot hands in basketball
	Wildfires in California
	Silicon Valley diversity profile
	Recognizing fake job posting
	Hunting more practice case studies

	Conclusions

	Index
	Other Books You May Enjoy

