

Hands-On Application
Development with PyCharm

Accelerate your Python applications using practical coding
techniques in PyCharm

Quan Nguyen

BIRMINGHAM - MUMBAI

Hands-On Application Development with
PyCharm
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Alok Dhuri
Content Development Editor: Ruvika Rao
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Language Support Editor: Storm Mann
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Alishon Mendonca

First published: September 2019

Production reference: 1270919

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-826-2

www.packtpub.com

http://www.packtpub.com

To my two great teachers in life: my mother, Chi Lan, and father, Bang.

In memory of my grandmother and my two dear grandfathers.

– Quan Nguyen

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Quan Nguyen is a data scientist and Python enthusiast. He has a dual degree in
mathematics and computer science, with a minor in philosophy, from DePauw University.
Quan is interested in scientific computing and machine learning and enjoys incorporating
technology automation into everyday tasks through programming.

Quan's passion for Python has led him to be heavily involved in the Python community. He
started as a primary contributor to the book Python for Scientists and Engineers and various
open source projects on GitHub. Quan is also a writer for the Python Software
Foundation and a content contributor for DataScience.com. He is currently pursuing a
Ph.D. in computer science at Washington University in St. Louis.

I'd like to, first and foremost, thank my parents for their incredible support throughout the
process of writing this book. None of this would have been possible without their help and
encouragement. Also, a big thanks to the team at Packt: Ruvika and Storm, who offered
great insights that drastically improved the quality of this text; my reviewers for their
excellent comments; and all others who helped to make this work possible.

About the reviewers
Luis Felipe Vera was born and raised in Caracas, Venezuela, where he received a degree in
computer science from the Open National University in 2000. Subsequently, Luis Felipe
completed a telecommunications specialization at Clodosbaldo Russian University and
France Telecom in 2004 in Bordeaux, France.

Luis Felipe is the cousin of Blanca Vera Azaf. He is the creator of projects and applications
with real-time capabilities in Django. Luis Felipe lives in Miami, Florida, with his wife,
Susy, and their daughter and son, Gaby and Andres.

Dr. Gowrishankar S. is currently working as an Associate Professor in the Department of
Computer Science and Engineering at Dr. Ambedkar Institute of Technology, Bengaluru,
India. He earned his Ph.D. in engineering from Jadavpur University, Kolkata, India, in
2010, and an MTech in software engineering and a BE in computer science and engineering
from Visvesvaraya Technological University (VTU), Belagavi, India, in 2005 and 2003,
respectively. His current research interests are mainly focused on data science, including its
technical aspects as well as its applications and implications. Specifically, he is interested in
the application of machine learning, data mining, and big data analytics in healthcare. His
Twitter handle is @g_s_nath.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: The Basics of PyCharm
Chapter 1: Introduction to PyCharm - the Most Popular IDE for Python 8

The background of PyCharm 9
The recent rise of Python 9
The philosophy of IDEs 12
PyCharm as a Python IDE 13

PyCharm – an essential part of the Python community 16
Differentiating PyCharm from other editors/IDEs 16
Understanding the Professional and Community editions 18

Prices and licensing 18
Further support in the Professional Edition 20
Choosing a PyCharm edition that fits your profession 21

Summary 22
Questions 23
Further reading 23

Chapter 2: Installing and Configuring PyCharm 25
Technical requirements 26
Downloading, installing, and registration 26

System requirements 26
Downloading 26
Installing 28
License activation 29

Setting up PyCharm 31
General preferences 32

What is included in the settings 33
How to do it in PyCharm 33

Editor 34
What is included in the editor 34
How to do it in PyCharm 36

Keymap 37
The background of keymap 37
How to do it in PyCharm 38

Shortcut customizations 39
Getting started with PyCharm projects 43

Creating a project 44
Interacting with a PyCharm project 46

Table of Contents

[ii]

Getting the source code from GitHub 49
Summary 50
Questions 51
Further reading 51

Section 2: Improving Your Productivity
Chapter 3: Customizing Interpreters and Virtual Environments 54

Technical requirements 55
Customizing the PyCharm workspace 55

Inside a project window 55
Navigating within a project 59
Panels in a project window 60
Installing packages 64
Moving panels within a project window 66

Creating a PyCharm project – revisited 69
Choosing a project type 69
Project-specific boilerplate code 71
Considerations about Community PyCharm 73

Virtual environments and interpreters 73
Understanding the concepts 73

Python interpreters 74
Virtual environments in Python 74
Virtual environments and interpreters together 75

Managing virtual environments and interpreters in PyCharm 77
Configuring the interpreter for a created project 80

Why does it matter? 80
Options in PyCharm 82

Importing an external project into PyCharm 83
Summary 86
Questions 87
Further reading 88

Chapter 4: Editing and Formatting with Ease in PyCharm 89
Technical requirements 89
Code inspection 90

Specifics of the code analyzer 90
Code inspection in a PyCharm project 90

Dead code 92
Unused declarations 92
Unresolved references 93
PEP 8 style suggestions 93

Customizable code completion support 95
The case for code completion support 96
How is code completion different in PyCharm? 98

Basics versus smart code completion 98

Table of Contents

[iii]

Postfix code completion 101
Hippie completion 103
Intentions 104

Customizing your code completion engine 107
Match case 109
Sorting suggestions alphabetically 109
Showing the documentation popup in [...] ms 110
Parameter information 110
Intentions 111

Collecting runtime types 112
Troubleshooting 114

Indexing process 114
Power save mode 114
Out-of-scope files 115

Refactoring 115
What is refactoring? 116
Refactoring in PyCharm 119

Renaming 120
Inline variable 123
Extracting methods 124
Conversion between method and function 127
Exporting a function to another file 128

A dynamic approach to documentation 130
Docstrings – documentation for Python 130
Creating documentation 130
Viewing documentation 134

Quick Documentation 134
Quick Definition 135

Summary 136
Questions 136
Further reading 136

Chapter 5: Version Control with Git in PyCharm 138
Technical requirements 139
Version control and Git essentials 139

What does version control mean? 139
Situations that require version control 140

Git and GitHub 141
Downloading Git and registering for GitHub 141
Setting up a repository 142
Add, commit, and push 142
Fork, clone, and pull requests 143
Branching and merging 146
Ignoring files 146

Version control in PyCharm 147
Setting up a local repository 148
The Version Control panel 148

Table of Contents

[iv]

Add, commit, and push 149
Branching and merging 153
Ignoring files 154
Version control diagrams 154

Summary 156
Questions 157
Further reading 157

Chapter 6: Seamless Testing, Debugging, and Profiling 158
Technical requirements 158
Testing 159

Unit testing fundamentals 159
Unit testing in Python 160
Unit testing in PyCharm 162

PyCharm's run arrows 162
The Run panel in the context of unit testing 164
Creating unit tests with PyCharm 167
Tests for the Counter class 170

Debugging 171
Debugging fundamentals 171
Debugging in PyCharm 172

Starting a debugging session and the Debug panel 173
Placing breakpoints 176
Stepping functionalities 179
Watches 181
Evaluating expressions at all times 183

Profiling 184
Profiling fundamentals 184
Profiling in PyCharm 185

Summary 189
Questions 190
Further reading 190

Section 3: Web Development in PyCharm
Chapter 7: Web Development with JavaScript, HTML, and CSS 192

Technical requirements 192
Introduction to JavaScript, HTML, and CSS 193

Understanding the importance of HTML and CSS 193
Writing our code with HTML 193
Writing our code with CSS 195

Understanding the importance of JavaScript 196
Implementing web pages in PyCharm 198

Using HTML and CSS in PyCharm 198
Creating new HTML files 199
Including external files in HTML code 200
Viewing documentation 201

Table of Contents

[v]

Emmet 202
Viewing HTML output in browsers 203
Extracting HTML source code in PyCharm 204

Using JavaScript in PyCharm 205
Choosing the version for JavaScript 206
Hints about parameters 206
Debugging the code 207
Live editing 209
Specifying a framework for new applications 211

Summary 212
Questions 212
Further reading 213

Chapter 8: Integrating Django in PyCharm 214
Technical requirements 214
An overview of Django 215

Django and the idea of web frameworks 215
What makes Django special? 216

Django models 216
Admin access in Django 217
Django templates 218
Jinja 218

Django versus Flask 220
Django in PyCharm 221

Starting a Django project 221
Structure of a Django project 223
Initial configurations 224
Running manage.py and launching the server 225
Creating Django models 227
Making migrations 229
The admin interface 231

Creating a superuser and logging in 232
Connecting the admin interface to models 233

Creating Django views 237
Customizing the run/debug configuration 239
Making templates 240

Summary 243
Questions 243
Further reading 244

Chapter 9: Understanding Database Management with PyCharm 245
Technical requirements 246
Connecting to a data source 246
Working with a database in PyCharm 252

Working with SQL 252
SQL fundamentals 252
Using SQL in PyCharm 253

Table of Contents

[vi]

The PyCharm table view 256
Comparing and exporting query output 258
Diagrams for databases 260

Relational database 260
Diagrams for database objects 261
Diagrams for queries 264

Summary 264
Questions 265
Further reading 265

Chapter 10: Building a Web Application in PyCharm 266
Technical requirements 266
Starting a web project in PyCharm 267

Creating a Django project 267
Creating a Django application and models 269
Using the admin interface 271
Working with the Database panel 275
Making queries via Python code 277
Creating Django's list views 278
Creating Django's detail views 285

Forms and emails 288
Creating the interface for the share feature 288
Configuring Django emails 293

Deploying your web project 295
Hosting services 295

Amazon Web Services 295
Google Cloud 295
DigitalOcean 296
Heroku 296

Production-specific settings 297
Summary 298
Questions 299
Further reading 299

Section 4: Data Science with PyCharm
Chapter 11: Turning on Scientific Mode 302

Technical requirements 302
Starting a scientific project in PyCharm 303

Creating a scientific project in PyCharm 303
Setting up a scientific project 305

The README.md file 305
Installing packages 307
Running the code 307
Toggling Scientific Mode 309

Table of Contents

[vii]

Understanding the advanced features of PyCharm's scientific
projects 311

The documentation viewer 311
Using code cells in PyCharm 312

Implementing PyCharm code cells 312
Working with CSV data 316

Using the CSV plugin 317
Summary 318
Questions 319
Further reading 319

Chapter 12: Dynamic Data Viewing with SciView and Jupyter 320
Technical requirements 321
Data viewing made easy with PyCharm's SciView 321

Viewing and working with plots 322
Viewing and working with data 324

Understanding IPython and magic commands 330
Installing and setting up IPython 330
Introducing IPython magic commands 331

Leveraging Jupyter notebooks 334
Understanding Jupyter basics 336

The idea of iterative development 336
Editing Jupyter notebooks 337

Jupyter notebooks in PyCharm 344
Summary 347
Questions 348
Further reading 348

Chapter 13: Building a Data Pipeline in PyCharm 349
Technical requirements 350
Working with datasets 350

Starting with a question 350
Collecting data 354
Version control for datasets 355

Data cleaning and pre-processing 356
Reading in dataset 357
Data cleaning 360
One-hot encoding 363
Problem-specific techniques 366
Saving and viewing processed data 373

Data analysis and insights 374
Starting the notebook and reading in data 374
Using charts and graphs 375
Machine-learning-based insights 380

Scripts versus notebooks in data science 384

Table of Contents

[viii]

Summary 385
Questions 385
Further reading 386

Section 5: Plugins and Conclusion
Chapter 14: More Possibilities with PyCharm Plugins 388

Technical requirements 389
Exploring PyCharm plugins 389

Opening the plugin window 389
Downloading and installing a plugin 392
Updating and removing plugins 395

Best plugins to use for your PyCharm projects 396
Using Database Navigator 396
Using LiveEdit 397
Using the CSV Plugin 398
Using Markdown 399
Using String Manipulation 400

Advanced plugin-related options 401
Required plugins 401
Installing plugins from disk 403
Developing custom plugins 404

Summary 405
Questions 406
Further reading 406

Chapter 15: Future Developments 407
Technical requirements 407
Miscellaneous topics in PyCharm 407

Using remote Python interpreters 408
Using macros 415
File watchers 419

Taking a step back 421
Improving your productivity 422
Web development with PyCharm 423
Data science with PyCharm 424

Moving forward with PyCharm 425
Using official documentation 425
Future updates and releases 426
PyCharm – the Educational Edition 428
Troubleshooting at a high level 429

Summary 430
Questions 431
Further reading 431

Assessments 432

Table of Contents

[ix]

Other Books You May Enjoy 449

Index 452

Preface
This book is divided into five long sections, each covering a fundamental idea about the
usage of PyCharm. In the first section, a basic introduction to PyCharm is presented. The
section addresses a number of notable differences between PyCharm and other common
Python editors or IDEs, comparisons between the Professional and the Community
versions of PyCharm, and a step-by-step guide on how to download, register, and set up
your very own PyCharm distribution on a system.

Before we turn our attention to the specifics of the PyCharm software itself, let's first
consider the organization of the book. Being a comprehensive guide to a hands-on, flexible
understanding of how to use PyCharm in various situations, this book contains a wide
range of topics regarding PyCharm. While working on a project, most of the time, you
might only be interested in a specific topic or a particular functionality of PyCharm; you are
most likely not going to go through the complete book to teach yourself all the features of
PyCharm (however, you are more than welcome to do so!).

Who this book is for
Any beginner or expert user of the Python programming language looking to improve their
productivity via one of the best IDEs for Python can greatly benefit from Hands-On
Application Development with PyCharm. Throughout this book, a basic knowledge of Python
programming is assumed, together with a beginner's understanding of popular
applications of Python such as software engineering, data science, and web development.

What this book covers
Here, we will go through the structure of the book and examine which specific topics are
covered and where. After this, feel free to jump around the book as you look for specific
features or use cases of PyCharm.

Chapter 1, Introduction to PyCharm - the Most Popular IDE for Python, introduces the general
idea of an Integrated Development Environment (IDE) and PyCharm's place among the
rest of the IDEs for the Python language. This chapter also distinguishes between the two
editions of PyCharm: the Community Edition and the Professional Edition.

Preface

[2]

Chapter 2, Installing and Configuring PyCharm, walks you through the process of
downloading, installing, and registering your PyCharm software. Afterward, a brief
discussion regarding how to customize the general configurations (including the theme,
editor, and shortcuts) in PyCharm is included.

Chapter 3, Customizing Interpreters and Virtual Environments, discusses the process of
managing and customizing your PyCharm workspace. This includes how to arrange a
project window as well as choosing Python interpreters and virtual environments.

Chapter 4, Editing and Formatting with Ease in PyCharm, offers a detailed view of how
PyCharm supports the process of developing Python applications. Specifically, we will look
at the features in PyCharm that facilitate important tasks such as code inspection, code
completion, refactoring, and documentation.

Chapter 5, Version Control with Git in PyCharm, includes a theoretical discussion about what
version control is and why it is important. A hands-on tutorial on how to facilitate version
control with Git in PyCharm is subsequently included, covering concepts such as adding,
committing, pushing, branching, and merging.

Chapter 6, Seamless Testing, Debugging, and Profiling, focuses on the use of PyCharm to
streamline important, yet often overlooked, processes in programming such as testing,
debugging, and profiling. You will gain a theoretical understanding of what these
processes are as well as hands-on knowledge of the features in PyCharm that support them.

Chapter 7, Web Development with JavaScript, HTML, and CSS, starts our discussion on
PyCharm in the context of web applications. Here, we are concerned with the general idea
behind the web development trio languages: JavaScript, HTML, and CSS. We will explore
how these languages are supported in a PyCharm environment.

Chapter 8, Integrating Django in PyCharm, introduces Django, the premier web
development framework in Python. This chapter discusses what the Django framework is
intended to do while also explaining a number of its most important features in the context
of a web application.

Chapter 9, Understanding Database Management with PyCharm, incorporates the process of
database management into the current discussion. Specifically, we will see how PyCharm
assists its users during the process of working with database sources and interacting with
the data included in them.

Chapter 10, Building a Web Application in PyCharm, serves as the conclusion of the topic of
web development with PyCharm. By walking through a hands-on example of developing a
library application, we will combine everything we have learned so far on the topic, while
also introducing a few more new Django-related concepts.

Preface

[3]

Chapter 11, Turning on Scientific Mode, introduces the topic of data science and scientific
computing with PyCharm. By considering a number of central features that can improve
our productivity when viewing and working with data, we will see the power and
flexibility that PyCharm offers to its data scientist users.

Chapter 12, Dynamic Data Viewing with SciView and Jupyter, focuses on two of the most
important features PyCharm has to offer in the context of data-related projects: the SciView
panel and support for Jupyter notebooks. While some programmers might assume that we
will lose the ability to work with Jupyter when using an IDE, it is not the case with
PyCharm, as we will see in this chapter.

Chapter 13, Building a Data Pipeline in PyCharm, plays a conclusory role for the topic of data
science. Here, we will use our knowledge from the last few chapters to explore a real-life
dataset, thus gaining hands-on experience of building a data pipeline, which is one of the
most important jobs of data scientists in the industry.

Chapter 14, More Possibilities with PyCharm Plugins, discusses in detail and goes through
some of the most popular plugins for PyCharm. What we can get out of PyCharm does not
necessarily end with its built-in features; some of the time, we are able to leverage external
plugins that we can add on to our current PyCharm software.

Chapter 15, Future Developments, concludes the book by introducing a number of
miscellaneous features in PyCharm as well as a general discussion regarding how Python
programmers should use PyCharm.

To get the most out of this book
Readers of this book should be familiar with the general syntax and practices
found in Python programming, such as using variables, functions, and importing
packages.
An up-to-date version of Python is required before installing PyCharm. Python
3.6 and 3.7 were the current versions at the time of writing. You are also
encouraged to have a distribution of Anaconda installed.
A good internet connection is required for various parts of this book, where
external tools and libraries are downloaded and used.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Hands-​on-​Application-​Development-​with-​PyCharm. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github.​com/​PacktPublishing/​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/​/​static.​packt-​cdn.​com/​downloads/
9781789348262_​ColorImages.​pdf.

Code in Action
To see the Code in Action please visit the following link: http:/​/​bit.​ly/​2no4gi6.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789348262_ColorImages.pdf
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6
http://bit.ly/2no4gi6

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To follow this example, import the Chapter04/Inspection project into your
workspace and open the main.py file, or copy and paste the following code into a
PyCharm project."

A block of code is set as follows:

def main():
 print(math.sqrt(4))

if __name__ == '__main__':
 main()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def distance(self, p):
 diff = self - p
 distance = sqrt(diff.x**2 + diff.y**2)
 return distance

Any command-line input or output is written as follows:

python manage.py runserver

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"PyCharm also provides a customized view that optimally organizes workspaces in a
scientific project called the SciView."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: The Basics of

PyCharm
This section includes the first two chapters of this book. Mainly concerned with introducing
readers to the idea of an Integrated Development Environment (IDE) as well as the details
of PyCharm, this section will discuss various comparisons between PyCharm itself and
other notable editors/IDEs in the Python community, in combination with the differences
between the two versions of PyCharm available for download.

The first chapter will not go into any technical details of using PyCharm. Instead, we will
analyze the purpose of using an IDE for programming projects and who (in terms
of the level of competence, familiarity with Python, and so on) will benefit the most from
using an IDE in general and using PyCharm specifically. The case will be made for
choosing to use PyCharm over other editors and IDEs for your Python projects (given that
some pre-conditions are satisfied).

The second chapter will then lay out a step-by-step guide that walks you through the
process of downloading, registering, and setting up your PyCharm environment, which
will put you in the optimal position to start any Python project with the full support of
PyCharm.

This section includes the following chapters:

Chapter 1, Introduction to PyCharm – the Most Popular IDE for Python
Chapter 2, Installing and Configuring PyCharm

1
Introduction to PyCharm - the
Most Popular IDE for Python

Welcome to Hands-On Application Development with PyCharm, and congratulations on taking
the first step in exploring the powerful and dynamic functionalities that the most popular
Python IDE, PyCharm, provides. Throughout this book, we will be familiarizing ourselves
with the general interface of PyCharm, various customizations of PyCharm's functionalities
to best support different types of projects, and options to integrate additional features into a
base Python project.

This chapter first talks about the specifics of IDEs in programming and an overview of
what PyCharm is and what its general options provide. We will then discuss the usage of
PyCharm among the Python community and outline several reasons for PyCharm's
popularity in the community. This discussion will help us focus on why PyCharm is such a
great tool for Python programmers.

We will also be making comprehensive comparisons between PyCharm and other popular
Python editors/IDEs, as well as between the paid Professional Edition and the free
Community Edition of PyCharm. Any Python programmer is undoubtedly familiar with a
number of different Python development tools, so these comparisons will offer a way for
you to decide which edition of PyCharm is the right tool for you.

The following topics will be covered in this chapter:

The purpose of PyCharm as a Python IDE and some notable details on its
developing company, JetBrains
The usage of PyCharm within the community and a breakdown of which
professions tend to utilize PyCharm the most

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[9]

A comprehensive outline regarding the advantages and disadvantages of using
PyCharm, in comparison to other Python editors/IDEs
The differences between the Professional and the Community editions of
PyCharm and the additional functionalities that the paid edition offers

On the other hand, if you have already decided that PyCharm is the Python IDE for you,
feel free to jump to Chapter 2, Installing and Configuring PyCharm, to go through the
installation and registration process. If you have already downloaded and successfully set
up PyCharm on your system, you might want to begin at the second section of the book,
starting from Chapter 3, Customizing Interpreters and Virtual Environments.

The background of PyCharm
Let's begin by discussing the topic of the book—PyCharm. First, we will discuss the Python
language as it is the only reason why you would choose to use PyCharm in the first place.
After this, it is important to start the conversation about PyCharm by pointing out the fact
that there are considerable discussions surrounding the question of whether it is
appropriate to use an IDE for Python programming.

Unlike many other programming languages, Python (as you already know) can be edited
using just a simple text editor, due to the simplicity and readability of the code. You can
then instruct a Python interpreter to execute a text file containing Python code and a
Python program is thus complete.

Why would we want to use a heavy and complex IDE for Python to achieve the same
result? In the following subsections, we will address this question by learning more about
the idea of an IDE for Python and what specific problems PyCharm can help to solve.

The recent rise of Python
Python is one of the most popular programming languages out there (if not the most) by
many standards and for good reasons. The user-friendliness, readability, and simple syntax
of Python make it, arguably, the most accessible programming language. This is also why
most colleges all over the world are redesigning their entry computer science courses to
have Python as the main programming language.

The ease of learning the language leads to one of the most important factors regarding
Python, which is its support community. If you are a beginner programmer, you are more
likely to start out with Python, and then you will more likely make it your main
programming language.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[10]

To understand how quick and efficient development in Python is, especially in comparison
to other programming languages, we can turn to the creator of Python, Guido van Rossum,
and see what he has to say. In a paper for the OMG-DARPA-MCC Workshop on
Compositional Software Architecture, Guido van Rossum states that development in Python is
estimated to be 3-5 times faster than that in Java, and 5-10 times faster than that in C/C++.
Keeping this difference in mind, we can easily understand why Python is being used so
ubiquitously.

You can find Guido van Rossum's complete essay here: http:/​/​www.
python.​org/​doc/​essays/​omg-​darpa-​mcc-​position/​.

Obviously, the comparison between Python and Java or C/C++ is a weak one, since these
languages are designed and used for different applications. However, it goes without
saying that Python is relatively easier to write and develop programs with than the others,
given its simple syntax.

All of these factors (and undoubtedly others) have resulted in a community that keeps
growing stronger every day, taking in developers from all areas and of different
backgrounds. Python libraries and packages are also being developed and released
regularly, supporting a wide range of development tasks such as software engineering,
video game development, web development, and scientific computing.

If you are a Python user, you are also likely to have noticed a sudden increase in Python
usage in recent years. This is due to a new wave of data scientists and machine learning
engineers who have recognized the advantages offered by Python over the long dominator
of the field, R. In short, the Python community is growing like never before.

With numerous libraries and tools available, Python is seen as enticing by new
programmers and developers who are looking for simpler ways to do various tasks, and
thus, it generates more audience. I call this the cycle of Python, where its convenience attracts
developers to use it for work, which in turn makes Python even more popular and easy to
use. In fact, Codecademy (the premier online platform that offers interacting coding classes)
noted recently that Python is the most popular language among their learners, and titled it
The Programming Language of the Year (more details can be found here: http:/​/​news.
codecademy.​com/​why-​learn-​python/​).

http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://www.python.org/doc/essays/omg-darpa-mcc-position/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/
http://news.codecademy.com/why-learn-python/

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[11]

The following chart also illustrates the growth of Python in recent years, in comparison to
other popular languages (based on activities on Stack Overflow):

With the rise of Python observable, as stated previously, various development
environments have been developed and enhanced to support its growing user community.

In the following sections, we will learn more about the background of one of these
development environments, and the topic of our book—PyCharm—and why it has proven
itself to be a top contender in competition with other environments.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[12]

The philosophy of IDEs
A good development environment is the first step to better productivity, and Python
programming is no exception. While a beginner might be better equipped with a minimal,
unintegrated environment such as Python IDLE (which comes with any Python
distribution), Notepad++, Emacs, or Vim, once you have become sufficiently familiar with
Python, you will undoubtedly benefit from the design and support of a good IDE.

First, let's define some terms. In the context of development environments (meaning how a
programmer writes their code and develops projects), an editor typically indicates a simple,
minimal text editor without any additional highlighting or aligning functionalities; on the
other hand, an IDE is special software that provides such features. An intuitive comparison
that I'd like to make is when we draw a parallel between programming and word
processing. An editor would be a simple notepad, while an IDE would be Microsoft Word,
Google Docs, or similar multi-function word processors. An IDE can have various features
integrated, including syntax highlighting, automatic indention, debugging tools, and so on.

As mentioned previously, the development of some programming languages does rely
heavily on the use of an IDE. This is especially true for languages where there is a
considerable amount of what is generally known as boilerplate code, which is necessary for
the whole program itself but does not add further logic to the program instructions.
Boilerplate code is typically part of the syntax of the given programming language and is
always present, regardless of what the program is designed to do.

It is in these boilerplate-code-heavy programming languages that an IDE becomes
convenient, or even essential. IDEs help generate boilerplate code and appropriately place
it around the core instructions that the programmer wrote, saving their time and helping
them focus on the development process. This is, however, not the case for Python, a
language that requires minimal boilerplate code and focuses on the actual logic of the
program. In other words, once you have finished the general instructions of your Python
program, it is most likely ready to be executed by a Python interpreter.

How, then, can a Python developer benefit from using an IDE? Writing Python code can be
done in a sufficient way using a simple text editor, but there are other aspects of Python
aside from writing code such as testing/debugging, version control, the management of
environments and packages, and so on that can be boiler-plate-heavy and not quite
straightforward. It is during these somewhat grinding tasks that a Python IDE can shine by
streamlining them and helping developers focus on the development process.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[13]

With that said, it is not always recommended for a Python developer to use an IDE in their
projects. Some have argued that relying on an IDE too much can make programmers forget,
or altogether prevent them from learning, the core principles and syntax of a given
programming language. Say you are asked to write a class in Python with various
functionalities and methods. This is a great opportunity to take advantage of an IDE since
you can import the general structure of a skeleton Python class with a single command in
PyCharm (or in other IDEs). The only part left is to edit the inserted code with custom
instructions according to our purposes. Throughout this process, the programmer does not
need to remember, or even learn in the first place, the structure of a Python class and the
syntax involved.

As such, there is a certain degree of trade-off being made when choosing to use an IDE to
program, even in Python. However, you cannot argue with the fact that using a good IDE
can truly improve your programming productivity, and if it enhances yours, you have
every reason to use one. In general, a good strategy is to start off using a simple editor to
familiarize yourself with the language and its core syntax structure. Once a good
understanding of the language has been gained, you can then explore advanced
functionalities that an IDE provides to see if they will be able to make you more productive.
Being familiar with a text editor can also help you learn how to use an IDE faster, so that is
more reason to employ this strategy.

PyCharm as a Python IDE
We have discussed the fact that an IDE for Python programming can be a solution to your
productivity problem, given that you already have a solid familiarity and understanding of
the language. Let's now turn our attention to PyCharm itself to see why it is a good IDE for
us to learn to use.

Written in Java and Python, PyCharm was first introduced to the Python community in
2010, when the beta version was available for download. In 2013, the open source
distribution of the software (called the Community Edition), which is free to download and
use, was released. According to the developer, JetBrains, PyCharm operates on the
following two core principles:

Improving productivity: This is undoubtedly the most important feature of any
good IDE. Again, PyCharm takes away most of the repetitive, uncreative aspects
of Python programming, especially in large projects, helping programmers stay
focused on the core development portion.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[14]

Real-time assistance: It is no fun to complete a large project and realize
afterward that there are inconsistencies and errors spreading all over the project
code. PyCharm looks to address this problem by having an intelligent assisting
feature that focuses on code completion, real-time checking logic for errors, PEP
8 code styles, and corresponding quick fixes, among other important
functionalities.

From these two core principles, PyCharm also includes a number of higher-level features
that help facilitate these principles. They are as follows:

Intelligent coding assistance: As described previously, this real-time support
system offers code-completion options, syntax and error analyses, as well as
automated ways to refactor your code (which we will discuss further in Chapter
4, Editing and Formatting with Ease in PyCharm, in the Refactoring section). The
smart search option also allows you to navigate through large projects
seamlessly.
Streamlined programmer tools: Again, programming is only a part of the actual
development process; most of the time, programmers have to spend their time
debugging, testing, and profiling their code, as well as managing the databases
and packages necessary for their projects. With a straightforward GUI, PyCharm
provides a way to achieve all of this in a way that is consistent, unified, and
painless.
Web development options: As a result of the fast-growing nature of Python, web
development is becoming more and more common in the community. This is
why PyCharm places an emphasis on good support systems for web
development projects, specifically, various Python web development
frameworks (Django, web2py, and Flask), as well as other major elements such as
JavaScript, CoffeeScript, TypeScript, HTML, CSS, AngularJS, and Node.js. As
mentioned previously, we will look at more details on the integration of these
web development tools in PyCharm in section three of the book, starting from
Chapter 7, Web Development with JavaScript, HTML, and CSS.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[15]

Scientific computing support: The growth of the data science field has played an
important role in the growth of Python itself, and Python is now the most
common programming tool used in scientific projects (even more common than
R). Notable functionalities included in PyCharm that facilitate scientific
computing are the integration of IPython notebooks and an interactive console.
The support for scientific computing in PyCharm is detailed in section four of the
book, starting from Chapter 11, Turning On Scientific Mode. PyCharm also
provides a customized view that optimally organizes workspaces in a scientific
project called the SciView, which is shown in the following screenshot:

Visual debugging: Two extreme stances that we programmers typically take in
the topic of debugging in Python are: using print statements, which might prove
to be too simple and limited in terms of expressing the changes taking place
during the execution of a program, and using Python debuggers such as the
pdb module, which can be too intimidating, and therefore inaccessible, for
beginners. PyCharm offers its own solution to the debugging task—a GUI that
visualizes different steps in the debugging process. In addition to being faster
than pdb or any other current Python debugger, PyCharm's debugger allows us
to view and customize changes in variables via watches and breakpoints.

Keeping the fundamentals of PyCharm's features and functionalities in mind, let's discuss
the prevalence of the software in the Python community and see how its use is distributed
across different professions.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[16]

PyCharm – an essential part of the Python
community
In 2017, the Python Developers Survey (conducted by the Python Software Foundation and
JetBrains) found that PyCharm is indeed the most popular development tool among all
Python programmers in terms of editors and IDEs.

You can have a look at this survey here: https:/​/​www.​jetbrains.​com/
research/​python-​developers-​survey-​2017/​.

As observed from the Editors and IDEs section in the survey, both editions of PyCharm top
the result poll for the question—what is the main editor you use for your current Python
development? The results of the survey outlined that 17% of all developers used the
Professional Edition and 15% used the Community Edition.

As we mentioned earlier, two of the largest subgroups in the Python community are web
developers and scientific programmers. If we looked at editor/IDE use in these subgroups,
we would see that the two editions of PyCharm are still the most dominant Python
development environment; 30% of web developers use Professional PyCharm and 17% of
scientists use Community PyCharm.

It is notable that, according to the results of the survey, other widely used editors/IDEs for
Python programming are Sublime, Vim, IDLE, Atom, and Visual Studio Code. These are all
viable development tools for Python programming but they might still fall short in
comparison to PyCharm in a number of respects.

In the next section, we will look at a number of core differences between PyCharm and
these popular editors/IDEs, and why they help PyCharm emerge as the most widely used.

Differentiating PyCharm from other
editors/IDEs
We laid out several features of PyCharm in earlier sections, but it might be beneficial to
repeat some of them here in comparison to other editors and IDEs in order to truly
highlight the differences among them. We will start by looking at PyCharm and another
powerful Python IDE (Spyder) side by side, since they generally set out to solve the same
set of problems, and therefore, hold significant similarities.

https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[17]

In general, Spyder, like many other editors and IDEs, is a lightweight development
environment. This results in less memory space, fewer system resources, and better speed
in starting the software. PyCharm, on the other hand, comes as a fully supported IDE with
a large set of functionalities, which will be heavier in storage and slower in execution.

In terms of support, Spyder has a simpler UI (which resembles that of MATLAB's). This can
be beneficial for beginner programmers as well as people transitioning from MATLAB to
Python. As for PyCharm, a comprehensive interface with different options for
customization can be intimidating for unfamiliar programmers, but it can greatly improve
productivity, as we have discussed and will learn first-hand in the second part of the
book (Chapters 3, Customizing Interpreters and Virtual Environments, to Chapter 6, Seamless
Testing, Debugging, and Profiling). However, since they are produced by the same company,
users of IntelliJ IDEA specifically will also have no problem switching to PyCharm.

One previously notable way in which Spyder was superior to PyCharm was the support it
offered for scientific computing, (Spyder short for Scientific Python Development
Environment). The most commonly used support in Spyder is most likely the Variable
explorer feature, where we have the option to inspect the value of the variables included in
our program. The following screenshot demonstrates this Variable explorer feature
of Spyder (please refer to this URL for more information: https:/​/​www.​marsja.​se/​wp-
content/​uploads/​2016/​01/​Spyder_​variable_​explorer.​png):

However, this superiority Spyder had over PyCharm was only applicable until recently.
PyCharm has been making some substantial improvements to its own support for scientific
computing, and now it has deservedly become a serious contender to be the best scientific
programming tool in Python with SciView and its other functionalities. If there is a good
time to start using PyCharm for your scientific projects, then it is now!

One major difference between PyCharm and any other editor/IDE is, of course, the
extensive support for complex aspects of programming from PyCharm such as version
control with Git, testing and debugging, profiling, and so on. Again, the general strategy
when it comes to these tasks is to first understand the foundational idea of each task and
know how to do it manually before using PyCharm to automate and streamline that
process. At that point, after using these support features, you will be able to appreciate the
time and effort you are saving with the help of PyCharm.

Let's now take a step back and look at other editors and IDEs as well. Compared to other
popular IDEs such as Visual Studio Code with the PTVS plugin (short for Python Tools for
Visual Studio) or Eclipse with the PyDev plugin, PyCharm is better supported in terms of
debugging and testing, web development frameworks, Jupyter Notebook and Anaconda,
the real-time analysis of code, and refactoring options.

https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png
https://www.marsja.se/wp-content/uploads/2016/01/Spyder_variable_explorer.png

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[18]

Another factor that convinces Python programmers to choose PyCharm over Visual Studio
Code is its support for emulating Vim, the famous Unix text editor. Specifically, PyCharm
offers a plugin that simulates the complete experience of using Vim for hardcore users. For
anyone who is looking to leverage PyCharm's powerful features but still wants to keep the
old Vim key bindings and interface, they can find the optimal solution with PyCharm.

A more comprehensive comparison can be found in this report (compiled
by JetBrains themselves): http:/​/​resources.​jetbrains.​com/​storage/
products/​pycharm/​docs/​Comparisons_​PyCharm.​pdf. Additionally, to look
at different support features between most (if not all) Python editors and
IDEs, you can head to this Wikipedia page: http:/​/​en.​wikipedia.​org/
wiki/​Comparison_​of_​integrated_​development_​environments#Python.

Overall, the discussed features offered by PyCharm help it stand out from its competitors.
While it is true that PyCharm will take up more memory space and appear uninviting to
new programmers of the Python community, once you have mastered the general
fundamentals of Python programming and familiarized yourself with different best
practices, PyCharm will boost your productivity to another level.

I hope at this point you are somewhat convinced that PyCharm is a good IDE for Python
programming. However, before heading to the website to download it, another topic that
we need to discuss is the edition of PyCharm we will be using.

Understanding the Professional and
Community editions
In this section, I will outline a number of the biggest differences between the two editions of
PyCharm that are currently available and discuss the benefits of each edition with regard to
different Python programmer subgroups.

Prices and licensing
Before you ask, yes, there are two editions of PyCharm—a free and a paid edition. The
Community Edition is entirely free to download; in fact, as mentioned, JetBrains actually
made the source code of the Community Edition available on GitHub in 2013.

http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[19]

You can find its GitHub page at http:/​/​github.​com/​JetBrains/
intellij-​community/​tree/​master/​python.

The Professional Edition, on the other hand, has to be purchased; a license is then provided
to you so that you can actually use it.

The Professional Edition can be purchased at $89.00 for the first year, with that price
decreasing in the following years. However, there are ways that you can qualify for a
discount, or a free license, for the Professional Edition:

If you are a student, a teacher, or otherwise work in an educational setting, you
are eligible for free licensing to install PyCharm (in fact, all JetBrains tools) on
your system. This applies to faculty and staff of training courses, coding schools,
boot camps, and developer recognition programs (for example, active Microsoft
Most Valuable Professionals, ASPInsiders, Java Champions, Google Developers
Experts, and so on).

Head to this website to find out more information and register for a free
license: http:/​/​www.​jetbrains.​com/​student/​ (be sure to use your
organization-domain email while registering).

If you are working on an open source project, chances are you also qualify for a
free distribution of PyCharm, Professional Edition. There are, however, several
conditions regarding your open source project that need to be met.

Go to this website to read about these conditions and register for a license
if your project meets all of them: http:/​/​www.​jetbrains.​com/​buy/
opensource/​.

Former students, start-up employees, and non-profit organization members are
also eligible for various forms of discount when purchasing the Professional
Edition.

In the following subsection, we will be going into details regarding the additional features
that the Professional Edition includes but the Community Edition does not.

http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://github.com/JetBrains/intellij-community/tree/master/python
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/student/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/
http://www.jetbrains.com/buy/opensource/

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[20]

Further support in the Professional Edition
In terms of the actual software differences between the two editions of PyCharm, all
functionalities available in the Community Edition are included in the Professional Edition.
Simply put, functionalities in the Community Edition are a subset of those in the
Professional Edition.

Firstly, all the core functionalities of the GUI that puts PyCharm ahead of the competition
of other editors/IDEs are fortunately available in both editions. These include the real-time
code analyzer, graphical debugging features, refactoring and testing, version control, the
management of packages, and virtual environments. The following screenshot shows the
intelligent code analyzer (which, again, is available in both editions of PyCharm)
performing a code-completion task:

Specifically, this analyzer looks at what you are typing in real time and displays a list of
possible ways to complete that line of code. This can be a function/method call (similar to
the previous example), variable names, or a specific syntax. This feature allows us to write
code in a faster and more accurate way.

On the other hand, almost all support for web development and scientific computing
projects is only included in the Professional Edition. Web development tools such as
JavaScript (and its debugger) or CoffeeScript, along with Python web frameworks such as
Django, Flask, and web2py are not handled by the Community Edition. In a similar
manner, features that facilitate scientific computing (most notably the SciView, a variable
viewer for Pandas and NumPy data structures) can only be found in the Professional
Edition.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[21]

In terms of the materials covered in this book, some sections and chapters will focus on a
number of features that are exclusive to the Professional Edition. Note that these chapters
do not discuss only exclusive features, as there are still features available in both editions
that are worth considering. For example, in section four of the book (where we focus on
data science tools), the scientific mode of PyCharm and the SciView are only included in
the Professional Edition, but the integration of IPython and Jupyter Notebook is applicable
to both editions. In short, whichever edition you are using, it might be beneficial for you to
go through all the topics that you are interested in, even if they are not supported by your
Community Edition.

Additionally, a complete comparison matrix between the Community
Edition and the Professional Edition of PyCharm (compiled by JetBrains)
can be found on this site: http:/​/​www.​jetbrains.​com/​pycharm/​features/
editions_​comparison_​matrix.​html.

Choosing a PyCharm edition that fits your
profession
So which edition of PyCharm should you choose? You may have figured out by now
whether you should purchase the Professional Edition (given that you do not already have
it), or simply use the free Community Edition. This will mainly depend on your own
Python projects and what functionalities those projects need.

Firstly, it is possible to take advantage of all the functionalities included in the
Community edition of PyCharm, whatever your profession is and whatever your project's
focus is on. After all, every project can benefit from the intelligent coding assisting features
and various other support features in Community PyCharm.

So, whether you are a software engineer, web developer, or data scientist, Community
PyCharm will undoubtedly improve your overall productivity anyway, especially if you
are working on a significantly large project.

It is important to note that, if you are working on a complex web development project that
involves JavaScript, it is highly recommended that you use the Professional edition. Not
only does Professional PyCharm have a powerful editing environment for JavaScript and
other popular web languages, but it also offers a dedicated debugger for JavaScript, which
will undoubtedly prove to be useful in your advanced web project.

http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html
http://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[22]

Additionally, if your web applications interact with a database in a complicated manner,
Professional PyCharm can help you simplify the process with the integration of various
features and the visualization of data relationships in databases.

For example, say you'd like to add some data to a project by connecting to an SQLite
database; you can do that in a fairly straightforward way in Professional PyCharm, as
illustrated in the following screenshot:

By the same token, if you are a data scientist working with a fairly complex stack,
specifically, if your projects interact with a database, it might be beneficial to take
advantage of the features of the Professional Edition. The integration of IPython and
Jupyter Notebook might also be a great addition to your data science workflow, but these
are web-based tools that are already well-supported by web browsers such as Google
Chrome. Furthermore, if your whole pipeline is designed to revolve around the web-based
interface of the software, it might be worth continuing using the bare-bones Jupyter
platform without PyCharm's support.

Overall, the development work you do will dictate whether it is worth it for you to
purchase the Professional Edition of PyCharm or not. A good strategy is to take advantage
of the free 30-day trial of the Professional Edition to see if an upgrade from the Community
Edition is worth purchasing.

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[23]

Summary
In this chapter, we introduced the Python language itself, as well as the background behind
Python IDEs in general, and specifically, PyCharm.

We also discussed the usability of PyCharm for Python programmers. Specifically, to be
able to take full advantage of all the features and functionalities that PyCharm offers
without becoming too dependent on the IDE, a programmer should first master the
fundamentals of the Python language and its core syntax. We also looked at comparisons
between PyCharm itself and various other Python editors/IDEs and the reason why
PyCharm is considered the best development environment of them all.

Finally, we compared the two editions of PyCharm that are available for download: the
paid Professional Edition and the free Community Edition. If you are working with large,
complex projects with many moving parts (including database management, web
development languages, and view-ability in scientific reports), then you will most likely
benefit from using the Professional Edition.

In the next chapter, you will learn how to download PyCharm, set it up on your system,
and configure its environment for your Python projects. This will serve as the first step in
getting started with PyCharm, after which, we will start discussing the specific features
PyCharm offers that this book covers.

Questions
Programmers typically develop their code with an editor or an IDE. What is the1.
difference between the two, and which one is PyCharm?
Why do some think that an IDE for Python development might be inappropriate2.
or unnecessary?
What is the recommended strategy for using an IDE for Python development?3.
What are some key features of PyCharm? Of those features, which give PyCharm4.
an edge over other editors/IDEs?
What are the two editions of PyCharm? What are the key differences between5.
them?
Who should use the Community Edition of PyCharm? Who should use the6.
Professional Edition of PyCharm?

Introduction to PyCharm - the Most Popular IDE for Python Chapter 1

[24]

Further reading
For more information, you can refer to the following literature:

PyCharm, The Python IDE for Professional Developers, JetBrains s.r.o. (https:/​/​www.
jetbrains.​com/​pycharm/​)
Text Editors vs IDEs for Python development: Selecting the Right Tool, by Jason Fruit,
(https:/​/​www.​pythoncentral.​io/​text-​editors-​vs-​ides-​for-​python-
development-​selecting-​the-​right-​tool/​)
Mastering PyCharm, Quazi Nafiul Islam, by Packt Publishing (https:/​/​www.
packtpub.​com/​in/​web-​development/​mastering-​pycharm)
Python Developers Survey 2017 Results, JetBrains s.r.o. (https:/​/​www.​jetbrains.
com/​research/​python-​developers-​survey-​2017/​)
How does PyCharm match up against competing tools?, JetBrains s.r.o. (https:/​/
resources.​jetbrains.​com/​storage/​products/​pycharm/​docs/​Comparisons_
PyCharm.​pdf)

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.pythoncentral.io/text-editors-vs-ides-for-python-development-selecting-the-right-tool/
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.packtpub.com/in/web-development/mastering-pycharm
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://www.jetbrains.com/research/python-developers-survey-2017/
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf
https://resources.jetbrains.com/storage/products/pycharm/docs/Comparisons_PyCharm.pdf

2
Installing and Configuring

PyCharm
In the previous chapter, we looked at the most popular features of PyCharm and
considered some of the reasons why a programmer may find using PyCharm useful and
productive. This chapter, in turn, provides a step-by-step walk through of the installation of
PyCharm on a computer system, including the process of registering for a license for the
Professional edition.

As PyCharm is a highly customizable tool, a considerable amount of initial configuration is
typically necessary, which this chapter will tell you about in detail. Productivity-related
customizations such as keymap and shortcuts will also be discussed. Finally, we will talk
about the process of downloading the code that is used as examples in various chapters of
this book.

The following topics will be covered in this chapter:

Downloading, installing, and configuring PyCharm in a computer system
Customizing projects, keymap, and shortcuts within PyCharm
Downloading the code repository used in this book from GitHub

Installing and Configuring PyCharm Chapter 2

[26]

Technical requirements
A computer system with access to the internet is all you will need to complete this chapter.

Downloading, installing, and registration
Let's start with a disclaimer—this section is solely concerned with the process of
downloading and registering the PyCharm software in a computer system. If you have
successfully installed and set up PyCharm on your computer already, feel free to jump to
the next section, where we will be discussing some initial configuration for PyCharm.

System requirements
Before we walk through the process of installing PyCharm, we need to make sure that our
system has the requirements to install and run the software. You can find the complete list
of these requirements online, but the most noteworthy ones are as follows:

We must have at least 4 GB of RAM (8 GB recommended)
We must have at least 1.5 GB of disk space and 1 GB for caches
We must have Python 2.7 or Python 3.5 (or newer) already installed

After making sure that our system satisfies all of these requirements, let's move on to the
actual downloading process.

Downloading
The process of downloading PyCharm is similar to that of any computer software—after
all, PyCharm is a piece of computer software. Let's get started:

First, head to JetBrains' website, where we can download PyCharm (http:/​/​www.1.
jetbrains.​com/​pycharm/​download/​). The display will look similar to the
following screenshot:

http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/
http://www.jetbrains.com/pycharm/download/

Installing and Configuring PyCharm Chapter 2

[27]

Downloading PyCharm

Notice the different options for operating systems below the Download2.
PyCharm line. When you visit the site, the code on the site will detect the
operating system you are using, and the default option should correspond to that
operating system (my laptop is a MacBook, so the default option is macOS).
With your correct system option selected, click on either of the DOWNLOAD3.
buttons.

If you were to download the Professional edition, you would
automatically enter a 30-day free trial period, during which you can take
full advantage of the powerful features that the Professional edition
exclusively includes. After this period, you have to either purchase a
license for the Professional edition or stop using it altogether. If you are
only downloading the Community edition, you will be all set to use
PyCharm right after installation.

Installing and Configuring PyCharm Chapter 2

[28]

The previous chapter covers extensive comparisons between the two editions of
PyCharm, and how to decide whether the paid Professional edition would help
you better than the free Community edition. Head to the Choosing a PyCharm
edition that fits your profession section of Chapter 1, Introduction to PyCharm - The
Most Popular IDE for Python, for more details.

Additionally, if you are not sure whether you qualify for the free license for the
Professional edition of PyCharm (for being a student/teacher, working on an
open-source project, and so on), also head to Chapter 1, Introduction to PyCharm -
The Most Popular IDE for Python, to find out. A large number of developers fail to
realize that they do qualify for the Professional edition, and therefore miss the
opportunity to take advantage of the full combination of features that PyCharm
offers.

Either way, as you click on one of the two DOWNLOAD buttons, the download4.
process will start within your browser. It might take a while for the download to
complete (especially if you are downloading the Professional edition).
When the download has completed, open your file explorer in the folder that the5.
file was downloaded to.

Now, let's move to the next subsection to begin the installation process.

Installing
Again, installing PyCharm is similar to installing any other software. Run the downloaded
file to start the installation. As usual, there will be a number of different windows
displaying different configuration options while you install PyCharm on your system.

Additionally, even after the installation process, you will always have the
option to change these settings later on if you so choose.

Leaving all the default options intact and simply clicking through the windows is typically
the general strategy:

Installing and Configuring PyCharm Chapter 2

[29]

If you are using macOS, you will need to drag the PyCharm icon to1.
the Applications folder to begin the installation process
One additional thing to note is—especially if you have used PyCharm2.
before—that programmers used to be required to download and install Java
separately in order to run PyCharm (since PyCharm is written, partly, in Java)

Now, if you have installed the Java Runtime Environment (JRE) bundle during3.
the installation of PyCharm, which is one of the default options, then PyCharm
will be ready to execute upon successful installation—there is no need to
download and install Java separately
If everything runs successfully, upon opening, PyCharm will display its welcome4.
window

And that is it! You have successfully installed PyCharm, the best Python IDE at the time of
writing.

Note that, if you are installing the Professional edition, PyCharm will now ask you for your
license if you are not using it during a 30-day free trial. If you do have a license, head to the
next subsection to see how to activate it.

Otherwise, while any powerful features and functionalities of PyCharm are waiting to be
explored, we need to properly set up the general settings and configurations for PyCharm.
Simply skip the next subsection where the license activation process for the Professional
edition is discussed, and jump to the Setting up PyCharm section, to continue our discussion.

License activation
In this subsection, we will discuss the process of registering and activating the license for a
Professional edition of your PyCharm distribution. If you are using Community PyCharm,
you should go ahead and skip to the next section. Overall, this procedure is fairly simple,
and most of the information you need will have been generated when you
purchased/applied for a license.

Installing and Configuring PyCharm Chapter 2

[30]

Given that you have already purchased/applied for a Professional PyCharm license, there
are three main ways to activate it, all of which happen after you have successfully
downloaded and installed Professional PyCharm. Let's get started:

Open the program, and it will display a prompt asking for your license1.
information. The prompt will look similar to the following screenshot:

PyCharm license activation

Installing and Configuring PyCharm Chapter 2

[31]

Notice the options following the Activate your license with prompt:
Activation code, License server, and JetBrains Account. They are the
available methods to activate your license. Here, you can choose to use
one of the following:

Your JetBrains account information, which is used to simply log
you in to the JetBrains server and verify your license.
Your activation code, which was generated during the
purchase. For your reference, at the time of writing, a PyCharm
license ID (also known as an activation code) is a string of 10
characters. Each is either a digit or a capitalized letter.
A JetBrains license server, which is used to manage licenses for
JetBrains products within a company. Most of the time, you will
use one of the other two methods to activate your license, so I
will not be discussing this method here.

Make sure that you select the appropriate method in the prompt before entering2.
the corresponding information.
Click Activate when all the required information has been entered. If all runs3.
successfully, you are now ready to use the powerful, fully-supported
Professional edition of PyCharm.

To learn more about this license activation process, you can head
to http:/​/​www.​jetbrains.​com/​help/​pycharm/​license-​activation-
dialog.​html.

We have covered the process of downloading and installing PyCharm. In the next section,
we will be looking at various options in terms of setting up and customizing our PyCharm
software.

Setting up PyCharm
With PyCharm's powerful functionalities at our disposal, we might be tempted to jump
right in and work on our Python projects. However, it can be more beneficial for us to work
on some initial settings and configurations before interacting with an actual Python project.

After all, with your development environment set up and optimized to your preferences,
you will be set on the right track with PyCharm.

http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html
http://www.jetbrains.com/help/pycharm/license-activation-dialog.html

Installing and Configuring PyCharm Chapter 2

[32]

General preferences
Within the welcome window of PyCharm, you will notice a dropdown named Configure in
the bottom right-hand corner. With this dropdown, you can manage several general
options regarding your PyCharm software, such as checking for updates or managing your
license. However, we will be focusing on configuring the settings for PyCharm first, which
corresponds to the Preferences option, as indicated in the following screenshot:

Configure option in PyCharm

It is important to note that if you are using an operating system that is not macOS, you
might see a slightly different interface. For example, Configure in the Windows version of
PyCharm will be named Settings. Throughout this book, I will be showing screenshots
from examples on my macOS system, but the navigation and functionalities should not
differ too much if you are running a different operating system.

Installing and Configuring PyCharm Chapter 2

[33]

What is included in the settings
This option will take us to the settings of PyCharm, where you can adjust various options
to your liking, such as PyCharm's appearance and organization, Python editor font and
formatting, and interpreters for your projects.

For example, the theme of his or her development environment is something that a
programmer considers seriously. I have personally chosen the theme for my PyCharm to
be High contrast; the high contrast theme specifically focuses on readability—not just for
the code in the editor, but for all windows in general. It is my personal favorite theme, and
the screenshots on my PyCharm throughout this book will be in this theme.

Another useful option you can take advantage of is System Settings, where you can
customize the general behavior of PyCharm when starting/closing it or when a new project
is open (note that we will also talk about projects in more detail later on in this chapter). For
example, I always have my PyCharm resume the project that I last worked on whenever I
launch the software, and a new PyCharm project is always open in a new window.

How to do it in PyCharm
In the settings window, select the Appearance & Behavior | Appearance tab on the left-
hand side section. As we can see in the following screenshot, other than High contrast, you
can choose your theme to be either Light or Darcula—whichever fits your preferences the
best:

Choosing a theme for your PyCharm

Installing and Configuring PyCharm Chapter 2

[34]

Still in the Appearance & Behavior tab, go to System Settings to customize the general
behavior of your PyCharm. Your window should look similar to the following screenshot:

Starting/closing behaviors

Needless to say, there are numerous other options in this section that you can take
advantage of if you want to fully customize the appearance of your PyCharm software.
Don't be afraid to try combinations of different settings to find your favorite configuration,
at least in terms of appearance and behavior of the software.

Editor
Notice that settings in the general appearance section apply for all PyCharm windows.
However, you can have additional settings for the editor window (the window where you
edit your code, and therefore arguably the most important window). These settings for the
editor are applied separately from the general settings and are located in the Editor tab on
the left-hand side.

What is included in the editor
First, let's consider what options are available in this tab before learning how to customize
them in the next section.

Installing and Configuring PyCharm Chapter 2

[35]

In the setting options for the editor, you can choose the font (and the size and line spacing)
of your code. Most programmers are particular about the font of their code, so you will
appreciate these settings if you are one of them.

As we mentioned previously, it is also possible to change the theme of the editor,
independently from the general theme of PyCharm, which we have learned to set in the
previous subsection. You can also choose the theme (or, to be more exact, the scheme) of
your PyCharm editor. As an example, my personal scheme is Monokai (which is the
default color scheme of Sublime, so Sublime users migrating to PyCharm might appreciate
this option).

The next setting of interest to editors is in the line wrapping section (using Editor | Code
Style | Python | Wrapping and Braces), which is used to specify how long a line of code in
your editor should be. Following the current style guide for Python code, PEP 8, the
maximum length of a line in a Python file should be 79 characters, so I typically set the
entry in this setting to 79.

By specifying this, PyCharm will then display a vertical line at the 79th column, indicating
a point where the programmer should break his or her line of code, which is about to
become too long, into multiple lines. Users of other Python editors should already be
familiar with this visual guide functionality. The following is a screenshot of a Sublime
window:

Line length visual guide in Sublime

Installing and Configuring PyCharm Chapter 2

[36]

How to do it in PyCharm
In the Editor | Font tab, you can customize the font of your code, as shown in the following
screenshot. Notice that a preview of some code with the current font settings applied is
available in the lower portion of the window:

Editor font settings

To change the theme of the editor, independently from the general theme of PyCharm, use
the option called Color Scheme, which is the sub-tab in the Editor tab directly
below Font, which is what we were looking at in the preceding screenshot.

Note that you will not be able to see the changes you have made right now, as we are not
working with the editor yet. We will, however, see these effects as we start working with
projects (and then you can further adjust these settings if those effects are not to your
liking).

To customize line-wrapping settings, use the Editor | Code Style tab. As we mentioned
previously, the general convention is to have a visual guide after 79 columns, as shown in
the following screenshot:

Installing and Configuring PyCharm Chapter 2

[37]

Line wrapping

You can also set the entry at Hard wrap at to 79 to forcibly wrap a line of code if it exceeds
the recommended 79-character limit. All in all, these features will make sure that your code
is following the standard Python style guidelines in terms of line length.

Keymap
You might have noticed that, on the left-hand side navigation in the settings, we have
skipped over the Keymap tab, going from Appearance & Behavior to Editor. This is
because keymap is arguably the most technical functionality out of the three, and so it is
worth saving it for last in our discussion on the topic of setting up PyCharm.

The background of keymap
Keymap, in the most general sense, is the way a computer system defines the mappings of
keys—this includes both keyboard keys and buttons from other external hardware such as
a mouse. The simplest example for different keymaps is when a left-handed person changes
his or her mouse button mapping so that the right button of the mouse is the primary
button. In this case, the change in the keymap is simply a switch between the two mouse
buttons.

Another example of a keymap is using a Windows keyboard with a macOS system, or vice
versa. Even though most of the keyboards of the two systems are the same, there are a

number of differences—the option key or the command key on macOS keyboards,
and the Alt key and the key with the Windows logo on Windows keyboards. If you are
connecting a keyboard intended for one system to another, some mapping to ensure that
the keys are unique to the intended system would have to be applied.

Installing and Configuring PyCharm Chapter 2

[38]

Generally, in the context of text editors and integrated development environments (IDEs),
we can use this term to indicate both the mappings of keys and keyboard shortcuts. As a
programmer, it's likely that you are more than familiar with keyboard shortcuts, some of
the most common of which are Ctrl/command + C for copying, Ctrl/command + A for selecting
all the elements in a page, and so on.

Editors and IDEs have their own version of keymap. For example, if you are an Emacs user,
you are likely to be aware of Emac's unique shortcut to save and exit out of editing, C-x C-
c, or the C-w C-y shortcuts to cut and paste, respectively. Eclipse, on the other hand, uses
the common Ctrl/command + X, Ctrl/command + V for cutting and pasting. Eclipse, however,
also has other convenient shortcut options, such as Ctrl + Shift + / to add a comment block,
or Ctrl + F7 and Ctrl + Shift + F7 to move between views.

All of this is to say that there is significant variation among keymaps of different
development environments, and programmers understandably get mixed up with keymap
options while using more than one environment.

How to do it in PyCharm
Let's turn our attention back to PyCharm and see what keymap options it offers in the
Keymap tab in settings. First of all, we notice that we can choose from a wide range of
options regarding which keymap PyCharm should apply to our development environment
by using the Keymap dropdown menu at the top of the window, as shown in the following
screenshot:

Choosing a keymap

Multiple options are available, including the aforementioned Eclipse and Emacs. This
means that if you are transitioning from, say, Eclipse (or Emacs, or Visual Studio) to
PyCharm and do not want to forgo the keymap and shortcuts you have learned about
while using the previous editor/IDE, you can simply apply that keymap here and continue
to utilize the keymap and shortcuts when using your PyCharm.

Installing and Configuring PyCharm Chapter 2

[39]

Shortcuts are incredibly important to programmers, and this feature in PyCharm looks to
support the ease in using them. This will also help us avoid the confusion that might result
from using multiple keymaps at the same time, which we described previously.

In the following subsection, we will learn more about the options that are available in
PyCharm when it comes to using shortcuts.

Shortcut customizations
PyCharm also gives you the power to find, edit, and customize your own shortcuts. This
means that not only can you preserve the shortcuts you have mastered in other
environments, but you can also extend that set of shortcuts to perform other tasks that you
couldn't before.

To see this functionality in action, move to the lower section of the current Keymap tab and
inspect one of the lists that's available. For example, the following screenshot was taken
when I opened the first list, Editor Actions:

Inspecting shortcuts

Installing and Configuring PyCharm Chapter 2

[40]

This list contains available actions and tasks that you can add or customize your own
shortcuts for; they are ordered alphabetically, so you can look for a specific action that way.
Let's consider some examples. For the Delete Line action (which will delete the whole line

of code that the caret is currently at), we can see that it is associated with the shortcut
 (command + delete) in macOS.

Say, for some reason, you would like to unhook this link so that every time you enter the
shortcut, the current line isn't deleted. We can do this simply by right-clicking on the
Delete Line action (or any action you'd like to avoid) and choosing Remove ... to unhook
that shortcut.

Additionally, you can always come back to this setting and rehook the action to the
shortcut, if you ever find that you'd like to keep the shortcut after all. And for that matter,
you can also add your own key combination for the shortcut, including keys on the mouse.

You will also see that, in our list of actions available for shortcuts, some are not yet
associated with any shortcut (for example, Move Caret Backward a Paragraph or Decrease
Font Size in the preceding screenshot). By right-clicking on these options and attributing
different key combinations to them using Add Keyboard Shortcut or Add Mouse Shortcut,
you can also create your own shortcuts for any tasks you find convenient.

This customization is illustrated as follows:

Customizing a shortcut

Installing and Configuring PyCharm Chapter 2

[41]

On the topic of shortcuts, PyCharm offers unique functionality that maximizes your
productivity in this area.

Say you are listening to a talk or watching a presentation from another developer. This
developer has their PyCharm environment open to show their project and illustrate some
real-time coding. As they code, they use various shortcuts that prove to be extremely
convenient and make their editing much faster. Say one of the shortcuts you see them
utilize moves the caret to the end of a code block and selects the line that it passes
through—you can find out which shortcut they used by searching for it in the PyCharm
search bar.

In the following screenshot, I typed in move caret block (separate, independent
keywords—similar to googling—as opposed to an actual phrase) to narrow down the list of
actions returned by PyCharm, and was able to find that the action name was technically
Move Caret to Code Block End with Selection, and that the shortcut for that task (on a

macOS system) is (or option + Shift + command +]):

Searching for shortcuts

We can see that the search bar can not only find the shortcut command for a particular
given task but that it also gives us the exact name for the task. It is important to note that
this search functionality is not only limited to finding shortcut actions. In fact, users can use
it to find files, settings, and even classes and objects within Python code. This is why this
functionality is called Search Everywhere, and it is one of the many powerful features that
set PyCharm apart from other editors/IDEs.

Installing and Configuring PyCharm Chapter 2

[42]

We have seen that PyCharm allows you to find the shortcut for a particular action using its
search functionality, which is widely used by programmers to find and customize their
shortcuts in PyCharm. However, PyCharm also provides a reverse search functionality that
most users typically do not take advantage of. Specifically, the functionality is called Find
Actions by Shortcut, and is invoked when the button right next to the search bar that we
have been considering is clicked, as shown in the following screenshot:

Find Actions by Shortcut button

When using this search, you can enter in a key combination, and PyCharm will tell you
which, if any, action is associated with that keyboard shortcut. For example, if I wanted to
find out what the combination of command + home on a macOS keymap does, I can use this
search to find out that the Move Caret to Text Start action (which, as its name suggests,
will move the caret to the beginning of the file currently opened in the editor) is associated
with the shortcut. The following screenshot illustrates this process:

Finding a particular action using its shortcut

Installing and Configuring PyCharm Chapter 2

[43]

It is important to note that, at the time of writing, this Find Actions by Shortcut
functionality is only available within the Keymap settings tab.

In this section, we have looked at various options regarding how to customize our
PyCharm workspace, including themes for both the PyCharm interface and the editor
within, as well as keymap and shortcut options. However, these are more general settings
regarding the overall usage of PyCharm that you yourself can explore.

In the next section, we will be discussing the customizations at the project level and learn
about more settings and features in PyCharm.

Getting started with PyCharm projects
So far, we have only looked at the settings of PyCharm. In this section, we will go beyond
the welcome window and settings tabs to create a new PyCharm project from scratch. To
create a new Python project within PyCharm, simply choose the corresponding option in
the welcome window, as shown here:

Creating a new project

Installing and Configuring PyCharm Chapter 2

[44]

After choosing this option, the process of creating a PyCharm project will start. This process
consists of multiple distinct steps, each of which specifies important customizations for the
project we are creating.

Additionally, note that all the code and project structures that have been generated during
the discussions in this book can be found in this book's GitHub repository
at github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm.

It is encouraged that you follow along with the discussions and create the projects within
your own PyCharm, but if you wish to use the source code as a reference, you are welcome
to do so. In fact, if you successfully download the source code from GitHub, you can then
import it into PyCharm as an actual project. More details on the GitHub repository can be
found in the Getting the source code from GitHub section of this chapter.

Creating a project
Getting back to the process of creating a PyCharm project from scratch, let's get started:

After choosing the Create New Project option in the welcome window, you will1.
be prompted to select the type of project you'd like to create. This step is used to
specify which general project you are working on, where you'd like to store the
project, and which interpreter/environment to use. The prompt in which you can
select your project type is as follows:

Creating a PyCharm project

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Installing and Configuring PyCharm Chapter 2

[45]

If you are using the Community edition, you will not see the left-hand
side of the window that's shown in the preceding screenshot. Don't panic,
as that feature is used to create boilerplate files for specific types of Python
projects (such as Django or Flask), which can also be generated manually
without any difficulty in the Community edition anyway.
Furthermore, in this section, we are creating a Pure Python project, which
can be done using Community PyCharm. If you are a Professional
PyCharm user, also ignore the left panel for now.

As such, go ahead and choose a name for your PyCharm project by changing2.
untitled to whatever name you wish in the Location prompt. As suggested by
its name, this option also allows you to specify the location of your project. In the
following screenshot, I am naming this project FirstProject:

Project specifications

Also notice that, once you click on the Project Interpreter prompt in the middle3.
of the window, PyCharm will expand that section out, as shown in the preceding
screenshot. Here, you can specify which interpreter PyCharm should use to
execute the code in the project you are creating. You can see that I am choosing
the option to use my global Python interpreter (stored in
/usr/local/bin/python3.7 by default in macOS; yours might be different) by
selecting the Existing interpreter option.

Installing and Configuring PyCharm Chapter 2

[46]

The default option is to create a completely new virtual environment for your Python
project. We will look into the specification of virtual environments and interpreters later in
the next chapter, in the Virtual environments and interpreters section. For now, simply choose
your own global Python interpreter for this project we are creating

Now, since we've created a project, let's see how we can work with it within PyCharm.

Interacting with a PyCharm project
Still following the example from the previous subsection, we will be looking into how to
finally create and interact with a PyCharm project. Let's get started:

Click the Create button to finalize the process. PyCharm will take you to another1.
window where your newly created project is. The following screenshot shows
what I obtained from my PyCharm:

A new project in PyCharm

Notice that, aside from the directory folder in the left-hand panel, there is
not much for us to interact with here since there are no files in our project
currently.

Installing and Configuring PyCharm Chapter 2

[47]

To add a new file to our project, right-click on the project in the left panel and3.
choose New | Python File. You will notice that there are quite a number of other
file types that you can create. For our purposes, we will choose the Python File
option for now.
A prompt will pop up, asking for the name of this Python file, as shown here:4.

Naming a new file

Here, I'm using test.py to name my file. Notice that we do not actually have to5.
put in the .py file extension while naming the file since we have already
specified that it is a Python file. Click OK to generate this file.
After clicking OK, PyCharm might ask you whether you want to add this newly6.
created file to Git or not. Git is the version control manager that's integrated with
PyCharm so that we can use it within our PyCharm projects. We will go into
further details regarding version control with Git in Chapter 5, Version Control
with Git in PyCharm; for now, simply choose not to do this in the prompt.
We will see that our test.py file has been successfully created and is now7.
opened in the editor. As per tradition, we will print out a Hello, World!
message in this Python file. Input the following into your own test.py file:

if __name__ == '__main__':
 print('Hello, World!')

To run our first program in PyCharm, we have several options. First, we can go8.
to the Run tab at the top and choose the second Run option (instead of the first
Run), as shown here:

Installing and Configuring PyCharm Chapter 2

[48]

Running a PyCharm file

Another prompt will appear after this; choose test (or the name you use for9.
your file) to run our program. Here, we will see a panel appear in our PyCharm
window (most likely at the bottom), printing out the output of our
program, Hello, World!. This is the Run panel of PyCharm, which displays
various information regarding the Python program we just ran. For example, the
information I have in my Run panel is the following (which includes the location
of the Python file and the exit status, in addition to any printed output):

/usr/local/bin/python3.7 /Users/quannguyen/PycharmProjects/PyCharm-
Book/Chapter02/FirstProject/test.py
Hello, World!

Process finished with exit code 0

That is how you run a Python program in PyCharm. Additionally, you may also notice, to
the left of the Run panel, that there is a green run button, as indicated in the following
screenshot:

Rerunning a Python file

Installing and Configuring PyCharm Chapter 2

[49]

You can click on this button (or use its shortcut– R in the case of macOS – when the cursor
is in the Run panel) to execute the file again. Specifically, this functionality reruns the last
file executed, so you can use it to run a file multiple times in a row. However, this is not
possible when you are switching between executing multiple files.

Another way to run a Python file is by using the Run context configuration action, which
can be invoked when your cursor is on the line of the file you'd like to run (in the editor).

This action has the default shortcut of R (Ctrl + Shift + R) for macOS, and Ctrl + Shift +
F10 for Windows, and can, again, be changed using the Keymap settings that we discussed
previously. Move your cursor to test.py in your editor and try the shortcut to run the file.

With the functionalities that we have discussed, it is possible to begin developing Python
projects in PyCharm—we can now create a new blank project, create Python files, and run
them. However, we are merely scratching the surface of what PyCharm can do, and future
chapters of this book will go into more detail regarding various aspects of using PyCharm.

For example, immediately after this chapter, we will learn more about other types of
PyCharm project, as well as the management of virtual environments and interpreters, both
of which topics we have skipped over in this chapter. However, before we move any
further, let's begin the process of downloading the code examples that will be used in this
book from GitHub.

Getting the source code from GitHub
As we mentioned previously, while we will be working through all the code examples in
this book step by step, you may also take advantage of the code repository of this book,
which is stored on GitHub.

Generally, you should follow the discussions in individual chapters and edit your projects
as you go to get a full understanding of the materials. With that being said, you can
potentially point your PyCharm to the completed projects in the repository to import them
into your workspace. We will see how to do this (importing an existing project into
PyCharm) in the next chapter, though you should only do this if you have sufficiently
familiarized yourself with the materials for a given project.

Installing and Configuring PyCharm Chapter 2

[50]

Now, let's get back to downloading the repository from GitHub:

First, visit github.com/PacktPublishing/Hands-on-Application-Development-1.
with-PyCharm. To download the repository, simply click on the Clone or
download button in the top right corner of your web browser window. Choose
the Download ZIP option to download the compressed repository to your
computer. The download prompt should be similar to the following screenshot:

Downloading the code repository from GitHub

Find the downloaded file in your computer and uncompress it to generate the2.
folder that contains all our code. The folder should have the name Hands-on-
Application-Development-with-PyCharm-master.

Separate subfolders titled ChapterXX are inside this folder, where XX indicates the chapter
number that uses the code in that subfolder. For example, the Chapter03 folder contains
the code examples we will cover in Chapter 3, Customizing Interpreters and Virtual
Environments. There are varying folder directory structures (for different PyCharm projects)
in these subfolders; we will learn about which subfolder to look at as we move through this
book.

Summary
In this chapter, we have discussed the process of downloading, installing, and setting up
PyCharm in our computer system (including how to register a license if we are using the
Professional edition). We have seen a subset of the features and functionalities PyCharm
offers when it comes to customizing our workspace, including the theme for our PyCharm,
as well as the customizations for keymaps and shortcuts. Overall, PyCharm gives you total
control over customizing various mechanisms, making it a dynamic and flexible
development environment.

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Installing and Configuring PyCharm Chapter 2

[51]

We have also learned how to create a minimal Python project, create Python files, and
execute programs in Python. This officially concludes the first part of this book, where we
consider the basics of PyCharm. Again, the information you have learned about here will
help you navigate through simple usage of PyCharm, but there is so much more to
PyCharm than a simple editor with convenient shortcuts. Other parts in this book will
expand on this foundation, and discuss multiple specific situations when using PyCharm.

Specifically, multiple mentions throughout this chapter of the different options PyCharm
offers in this process, such as the choice in project type, interpreter, virtual environment,
and so on, will be fully addressed in the next chapter, where we will look into these options
in more details.

Questions
What are the editions of PyCharm that are available for download?1.
How can we activate a license for the Professional edition of PyCharm?2.
How can we change the general theme of PyCharm and the theme of its editor?3.
What is a keymap, and why is it important in the context of development4.
environments?
How can we search for a specific shortcut within PyCharm using the name for5.
the corresponding action? Can we do the reverse and search using a particular
shortcut?
How can we create a minimal Python project, add Python files to that project,6.
and execute them in PyCharm?

Further reading
For more information, you can refer to the following links:

Install PyCharm and Anaconda (Windows/Mac/Ubuntu), by Michael
Galarnyk, Medium (https:/​/​medium.​com/​@GalarnykMichael/​setting-​up-
pycharm-​with-​anaconda-​plus-​installing-​packages-​windows-​mac-
db2b158bd8c)
Mastering PyCharm, Quazi Nafiul Islam, by Packt Publishing (https:/​/​www.
packtpub.​com/​web-​development/​mastering-​pycharm)
Modern Python Development With PyCharm, by Pedro Kroger (https:/​/
pedrokroger.​net/​pycharm-​book/​)

https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://medium.com/@GalarnykMichael/setting-up-pycharm-with-anaconda-plus-installing-packages-windows-mac-db2b158bd8c
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/

2
Section 2: Improving Your

Productivity
This section starts with Chapter 3, Customizing Interpreters and Virtual Environments. In this
section, we will be discussing the features and functionalities of PyCharm that make it one
of the best, and definitely the most popular, development environments for Python
programming. From intelligent coding assistance to syntax highlighting and suggestions,
PyCharm offers a convenient way of following best programming practices in real time as
you work on your projects. Furthermore, the tedious management tasks of organizing
packages, interpreters, and virtual environments are also taken care of in a straightforward
manner.

Python development (or developing in any programming language, for that matter) does
not only involve writing code; it also consists of testing, debugging, and
profiling—important procedures in programming that are often overlooked. However,
given the complexity of these tasks and the deep understanding of software development
they require, many are intimidated by them and consequently tend not to be concerned
with them in their projects. PyCharm looks to resolve this situation by providing intuitive,
graphical methods for carrying out these tasks, and that is what we will also be discussing
in this section.

Section 2: Improving Your Productivity Chapter 2

[53]

The following screenshot includes an instance in which the graphical debugger in PyCharm
is used:

Example of visually debugging in PyCharm

This section includes the following chapters:

Chapter 3, Customizing Interpreters and Virtual Environments
Chapter 4, Editing and Formatting with Ease in PyCharm
Chapter 5, Version Control with Git in PyCharm
Chapter 6, Seamless Testing, Debugging, and Profiling

3
Customizing Interpreters and

Virtual Environments
This is the first chapter of the second section of this book, where we will focus on the
options and features in PyCharm that look to improve our productivity. In the previous
chapter, we started discussing the process of creating Python projects in PyCharm and how
to navigate through options to create and run Python files in a project window. This
chapter picks up from where we left off, and will go through the other options provided by
PyCharm so that we can customize our workspace, specifically to add in panels and tools to
improve our productivity.

This chapter will also lay out a detailed guide regarding different types of projects that can
be created in PyCharm. Next, we will discuss the management of Python interpreters and
virtual environments between different projects, and how PyCharm makes it dynamic and
convenient. Finally, we will learn how to import an external project into our PyCharm
workspace.

The following topics will be covered in this chapter:

The different options regarding the customization and organization of your
PyCharm project workspace
The variety of project types PyCharm offers and how different project types
affect the boilerplate code that's generated automatically by PyCharm
The concept of an interpreter and how to switch back and forth between different
Python interpreters within a PyCharm project
The concept of a virtual environment and its management in PyCharm

Customizing Interpreters and Virtual Environments Chapter 3

[55]

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm

Have the matplotlib package installed for your Python interpreter
In this chapter, we will be working with the subfolder named Chapter03 in the
downloaded code repository

Customizing the PyCharm workspace
At the end of the previous chapter, we created a new Pure Python project in PyCharm
(named FirstProject) and wrote a quick program to print out a Hello, World! message.
If you still have your PyCharm window option in that project open from the previous
chapter, great! Otherwise, start your PyCharm up and navigate to that project.

In this section, we will consider a number of important features in PyCharm that allow us
to fully customize our workspace and create the most optimal organization and navigation
for our projects. First, we will be looking at various components in our current project
window that we did not consider in the previous chapter.

Inside a project window
As a reference, the window we are working with should look similar to the following:

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Customizing Interpreters and Virtual Environments Chapter 3

[56]

Sample PyCharm project window

Again, we have already seen this window in the previous chapter, but it is worth going
over it again. First, we can see that this window consists of two big sections—the directory
tree on the left-hand panel and the editor right next to it on the right (which only contains a
simple program printing out Hello, World!).

You may notice that the general high contrast theme that we have picked for our PyCharm
is applied in the directory tree panel and other PyCharm windows, while the theme we
have picked for our editor is also appropriately applied (specifically, if you are a Sublime
user, you will see that our editor now has the default theme of Sublime).

Another important component in a PyCharm project window is the visual guide for line
wrapping (the two lines highlighted by green boxes). In Chapter 2, Installing and
Configuring PyCharm, we discussed that, according to the official Python style guide PEP, a
line of Python code should be at most 79 characters long, and therefore specified that there
should be a vertical line in our editor to indicate the end of the 79th column of text, which is
the vertical line on the left (the second one on the right is simply another visual guide at the
120th column). Again, this feature is rather useful as most programmers tend to forget about
this constraint for the maximum length of a line of code while working on a project.

Customizing Interpreters and Virtual Environments Chapter 3

[57]

One final element that's worth noting in a PyCharm project window is the button for the
search everywhere functionality, located in the top right corner of the window in the
magnifying glass icon. As we mentioned in the previous chapter, search everywhere can be
used to search for settings, shortcuts, official documentation, and even classes and objects
in our own code. Now, you can use it inside a PyCharm project so that you can
dynamically look things up as you are working on your project.

Additionally, there are various miscellaneous components in a PyCharm project window
that you should be aware of. First is the Scratches and Consoles section within the
directory tree panel on the left-hand side of our window:

Scratches folder in PyCharm

According to the official documentation from JetBrains, scratch files are fully functional
Python scripts that can run independently from other files in the project you are working
on. Creating a scratch file can be done in a similar way to what we did to create a new
Python file in the previous chapter—right-click on the project folder in the left-hand side
panel and choose New | New Scratch File, after which you will be prompted to choose the
language of the file.

All created scratch files are stored in the Scratches and Consoles directory in the
preceding screenshot. Technically speaking, scratch files are not a part of any PyCharm
project, but they can be accessed in all projects (and not just in the project that you create
the scratch files in). This option is quite useful in situations where you are working on a
specific project and then you come up with a new idea for another project that you want to
save and use for later.

Customizing Interpreters and Virtual Environments Chapter 3

[58]

The last minor detail regarding the PyCharm project window is actually quite common and
unfortunately often leads to confusion and frustration on the programmer's part. After you
have completely closed all PyCharm windows and exited the program, the next time you
run PyCharm again and access a specific project, you will most likely see a progress bar
near the bottom right corner of the project window, similar to the highlighted portion in the
following screenshot:

Progress bar upon startup

This progress bar denotes the indexing process where PyCharm scans through files and
documents in your current project to support important functionalities such as search,
syntax highlighting, and code completion. This process is to be done every time a project is
started or when a new package is installed—basically, when a new file is added to your
project. The progress bar we can see here is sometimes replaced by a message saying X
processes running if there is more than one background indexing task running.

The problem we mentioned that often causes confusion from PyCharm users is that when
this indexing process is still running, a number of options in PyCharm (understandably) are
not available for use. For example, to create an entirely new project when you are already in
a project window, you can go to File | New Project, and the process of creating a PyCharm
project that we discussed in the previous chapter will start. However, if there is still an
indexing task running in the background of your PyCharm, that option will appear as
though it is disabled, as shown in the following screenshot:

Disabled options when indexing

Customizing Interpreters and Virtual Environments Chapter 3

[59]

The lesson to be learned here is that, while working with PyCharm (especially when
something is just added to your current project), some features might not be functional.
Most of the time, this will not be the case as soon as the indexing process completes. As
such, if you realize that something is not working in PyCharm, check to see if there is a
background task running or not before panicking and reporting that as an error.

We have identified and discussed some of the most important elements in a PyCharm
project window. In the next subsection, we will consider navigating from a PyCharm
project to various other windows.

Navigating within a project
With the search everywhere functionality, you can potentially search for and customize
various features and settings within PyCharm. This way, you can dynamically make
changes to the settings inside a project window. With that said, while working on a specific
project, you may still want to directly open the Preferences window (the one we worked
with in the previous chapter) to go through specific settings yourself, as opposed to
searching for a specific one.

In that case, you can do this by going to PyCharm | Preferences (in macOS) or File |
Settings (in Windows or Linux). Also, notice the shortcut associated with the option when
you choose it. For example, the shortcut to open Preferences in macOS is , while it is Ctrl +
Alt + S in Windows:

Opening Preferences in PyCharm

It is generally a good idea to take note of the shortcuts associated with actions and tasks
that you commonly use; using shortcuts, as we know, can be much faster and more efficient
than choosing from the menu bar. If a specific option does not have a shortcut assigned to it
yet, remember that you can attribute your own custom shortcut to it.

Customizing Interpreters and Virtual Environments Chapter 3

[60]

Again, PyCharm offers extensive flexibility in terms of customizing your working
environment, and this is an example of that.

In the same File tab (as well as in other tabs), there are also various useful options that you
might want to take advantage of regularly, including the following:

Close Project: Personally, I often use this command to exit out of the current
project window and go back to the initial welcome window whenever I've
finished working on a project
File | Open Recent: This, on the other hand, allows you to quickly switch to
another project that you have recently worked on
Edit | Macros (which we will discuss in detail later on): This provides a way to
record and replay specific sequences of actions within PyCharm, with the goal of
automating repetitive and tedious processes

In general, I recommend going through all the available options and actions in different
tabs to narrow down those that you anticipate using often and take note of them. Again, if
there is a specific action you will use regularly that does not have a shortcut combination
attributed to it, you can add in your own custom shortcut in PyCharm's settings window.

Panels in a project window
Go to View | Tool Windows and take a look at the available options, as shown in the
following screenshot:

PyCharm tool windows

Customizing Interpreters and Virtual Environments Chapter 3

[61]

These tool windows are what I'd like to call panels, which can be displayed and
dynamically arranged within a project window.

If you have used a text editor to write Python code, think about the process of running a
Python program—you would (typically) edit the code using the editing software, then open
a Terminal and run a Python command to execute the Python script. Here, in PyCharm,
you can have a Terminal panel in the same window as your editor (notice the last option in
the preceding screenshot).

This is only one of the potential panels that you can include in your PyCharm workspace;
we will see that this ability to organize our PyCharm panels will greatly improve our
productivity as programmers. For example, the following screenshot is my PyCharm
workspace for the project named FirstProject, which we have been considering so far:

Project window with various panels

Customizing Interpreters and Virtual Environments Chapter 3

[62]

There are many elements going on in this window, so let's break it down together:

The left-hand side panel is still the familiar directory tree, as well as the editor in
the middle of the window (which now contains a new Python script named
plot.py—don't worry about that for now).
We have a Terminal panel in the top right corner and directly below it is the
panel that contains all the visualizations that are produced by the code in our
project.
Turning our attention to the bottom left corner, we can see the Run panel, which
we know displays relevant information and the printed output of the Python
program we most recently ran (in this case, it is the plot.py file).
Finally, in the bottom-middle section of the window, we have another panel for a
Python console. In case you are not familiar with the concept, a Python console is
essential what you have when you type in python or python3 in the Terminal of
a system that has Python (specifically Python 3) installed. You can type in
individual Python code and run it immediately. This is specifically helpful for
testing quick syntax, methods, or functions.

You may also notice the tags that are correspondingly associated with the panels that we
just described, which are highlighted in green boxes in the preceding screenshot. For
example, the tag in the top left corner says Project, which corresponds to the directory tree
panel in the same area of our project window. The same goes for the Terminal, SciView,
Run, and Python Console tags. If a specific panel is active (displayed in the Project
window), its corresponding tag will have a background color of deep blue (see the
preceding screenshot).

Let's take a moment to discuss the functionality of some noteworthy panels. Note that some
of these panels are available to be displayed via View | Tool Windows, while others will
dynamically appear when the corresponding command is run:

The Project panel displays the directory tree for your project so that you can
expand and inspect the structure of your current project.
The Run panel, as we have seen, displays runtime information and printed
output of a recently executed Python script.

Customizing Interpreters and Virtual Environments Chapter 3

[63]

The Debug panel, as the name suggests, is used during the debugging process
with the graphical debugger in PyCharm.
The TODO panel lists out all the locations in your project that contains a line that
starts with # TODO: ... (which, as you probably already know, is a
conventional way to denote to-do tasks while programming). The data that's
displayed in this panel is compiled from indexing processes and is quite useful
when working on a large project.
The Terminal panel is simply a way to directly interact with your Terminal
within PyCharm. One important thing to note regarding the Terminal panel is
that, if the current project has a virtual environment, the profile that's used in the
Terminal panel will automatically be associated with that virtual environment.
This means you won't have to manually activate the virtual environment when
working with the Terminal.
The SciView panel (not available in the Community edition of PyCharm)
automatically displays relevant information in a scientific computing project.
This includes any important data being used and, as we have seen, displayed
visualizations from our programs. As we mentioned in Chapter 1, Introduction to
PyCharm – the Most Popular IDE for Python, we have an entire section of this book
dedicated to scientific computing and data science work in PyCharm, where we
will look at the SciView functionality in more depth.

There are, of course, other panels that might be useful in your PyCharm projects as well.
For now, we will move on with our discussion. Now, let's create the plot.py file in our
project:

First, create a new Python file inside our current FirstProject project named1.
plot.py and enter the following code (which roughly visualizes the graph of
the function):

import matplotlib.pyplot as plt

if __name__ == '__main__':
 x = [i for i in range(9)]
 y = [i**2 for i in range(9)]

 plt.plot(x, y)
 plt.show()

Customizing Interpreters and Virtual Environments Chapter 3

[64]

Note that you can also import the source code from GitHub into your
PyCharm so that you don't have to input the code yourself. In the
Importing an external project into PyCharm section of this chapter, we will
discuss the process of importing an external project into our own
PyCharm.

Getting back to our discussion, let's try to run the script we just entered. But,2.
before we can do that, we have to install the matplotlib library, which is the
visualization package that we import and utilize in the script.

If you already have matplotlib installed on your computer, simply skim through the
following section.

Installing packages
To install a package using PyCharm, you can use either of the following methods:

Graphical installer
Type in Terminal commands

The first option, which utilizes the graphical installer, is as follows:

First, open PyCharm's settings, again, by going to PyCharm | Preferences (in1.
macOS) or File | Settings (in Windows or Linux).
Then, go to Project: FirstProject (or the name of your project) and choose Project2.
Interpreter. Here, you will see a window displaying all the libraries and
packages that have been installed for your project (or more specifically, your
current interpreter).

Customizing Interpreters and Virtual Environments Chapter 3

[65]

To install/uninstall another package in/from our project, click on the +/- button3.
located in the bottom left corner of the middle section of the window, as shown
here:

Adding a package in PyCharm using a graphical installer

Then, you will be taken to another window with a comprehensive list of Python4.
packages available for installation.
Scroll to the matplotlib option and click on the Install Package button in the5.
bottom left corner.

Customizing Interpreters and Virtual Environments Chapter 3

[66]

After this, our project will install matplotlib and we will be able to use it in our6.
Python code.

Aside from this method of downloading Python packages via a graphical
installer, most of you might agree that the faster way to do this is to run a
pip install command in the Terminal. So, if you are comfortable
working with a Terminal, simply run the following command into the
Terminal panel (after opening it by selecting View | Tool Windows |
Terminal): pip install matplotlib.

Whichever method you choose to download and install matplotlib, after the installation
process, you should now be able to run the plot.py script. After doing so, you will see two
of the panels we discuss earlier pop up, displaying the output visualization that our
program created:

The Run panel (which we already saw in the previous chapter)
The SciView panel

For the rest of the panels, again, simply go to View | Tool Windows and select the options
that correspond to the panels we want (that is, Python Console and Terminal) to activate
them in our project window.

We can also deactivate a panel (and also reactivate it) by clicking on its
tag.

Here, we have learned about the different panels that can be activated and displayed within
PyCharm. Next, we will see how we can rearrange the panels in a project in a dynamic
way.

Moving panels within a project window
Additionally, you will see that, as you select a specific panel to pop up, it will be located at
various places in our project window, either along the side edges or at the bottom section.
Now, PyCharm provides the ability to dynamically reorganize these panels to be in an
optimal arrangement for our workspace. Specifically, we can move a panel to another
region in the project window by dragging and dropping its corresponding tag along the
side and bottom edges of the project window.

Customizing Interpreters and Virtual Environments Chapter 3

[67]

For example, in the preceding screenshot, my Run panel was originally in the bottom left
corner. Now, I can drag its tag (highlighted in the green box in the following screenshot) as
follows:

Dragging the Run tag

Now, I will drop it to the bottom area of the left edge of the project window, and the whole
panel will be moved to the corresponding area. After this process, the Run panel is now
located in the middle area of the left-hand side of the project window, as follows:

Dropping the Run along the left edge of the window

Customizing Interpreters and Virtual Environments Chapter 3

[68]

As we mentioned previously, you can drag and drop a panel tag along the left, right, and
bottom edges of the project window. Specifically, there are six sections in total to which you
can drag and drop a panel tag, as follows:

Top of the left edge: To display a panel in the top left corner. For example, my
directory tree.
Bottom of the left edge: To display a panel in the middle of the left section of the
window.
Left of the bottom edge: To display a panel in the bottom left corner.
Right of the bottom edge: To display a panel in the bottom right corner.
Top of the right edge: To display a panel in the top right corner.
Bottom of the right edge: To display a panel in the middle of the right section of
the window.

So, to create the specific arrangement in the previous screenshot of my project window, you
can move the following tags:

The Project tag to the top of the left edge
The Run tag to the left of the bottom edge
The Python Console tag to the right of the bottom edge
The Terminal tag to the top of the right edge
The SciView tag to the bottom of the right edge

However, keep in mind that this is my own custom arrangement. It is possible for you to
not only have a different arrangement, but also a different set of panels than what I have.
Depending on your projects, you might have different arrangements for different projects
as well.

For example, you might want the Database panel rather than the SciView panel while
working with databases, or you might want to include the Version Control panel when
working with Git. I would suggest taking some time to try different panel combinations to
see what works and don't be afraid to switch things up when you realize that the current
organization is not optimal. All of this dynamic organization is possible in PyCharm.

The organization of panels in a PyCharm project window concludes our discussion on the
topic of customizing our PyCharm project workspace. In the next section, we will take a
step back and discuss the different options that are available for project types in PyCharm.

Customizing Interpreters and Virtual Environments Chapter 3

[69]

Creating a PyCharm project – revisited
A specific type of PyCharm project can be selected during the process of creating that
project. In this section, we will be discussing that process again and looking at the options
that we did not consider in the previous chapter regarding PyCharm project types. Let's
walk through the process of creating a new project in PyCharm again.

In the previous chapter, we saw that, after choosing the Create New Project option in the
welcome window, we will be prompted to select the type of project we'd like to create.
However, if you are already in a project (like we are now) and need to create a new project,
you can go to File | New Project to achieve the same result as well. Let's choose this option.

Additionally, it is important to reiterate that this option might not be available until the
indexing process is completed, in which case you should wait for the processes (indicated
in the bottom right-hand corner of your PyCharm window) to finish.

Choosing a project type
As we select the option to create a new project, we will be taken to a configuration window.
This window is used to specify which general project you are working on, where you'd like
to store the project, and which interpreter/environment to use. The prompt in which you
can select your project type is as follows:

Choosing a PyCharm project type

Customizing Interpreters and Virtual Environments Chapter 3

[70]

If you are using the Community edition, you will not see the left-hand side of the window.
Don't panic, as that section is only used to create boilerplate files for specific types of
Python projects, which can also be generated manually without any difficulty in the
Community edition anyway.

This section will not be irrelevant to users of the Community edition either, as we will also
be discussing the options of specifying the location and the interpreter for your projects,
which are available in both editions, so be sure to stick around and not skip to the next
section!

With that said, let's consider the left-hand side of the window for now. From this section,
we can see all the available options for the type of a PyCharm project—pure, minimal
Python, Django or Flask for web development, Google App Engine, and so on. If you do
not select the first option, Pure Python, then various base files with boilerplate code are
generated in a way that corresponds to the type of project that you select.

To see this generation of boilerplate code in action, go ahead and choose, for example,
Django as the project type in the left-hand panel (if you are using the Professional edition).
In the Location prompt (which is at the top of the main panel), simply choose a convenient
location for this project in your system. The more important option is the specification of
the project interpreter, which can be achieved in the section directly below the Location
prompt.

The default option for the project interpreter is to create a new virtual environment
altogether, which is also a general good practice in Python development. If you click on the
section to expand it, you will see the following:

Selecting the project's location and interpreter

Customizing Interpreters and Virtual Environments Chapter 3

[71]

Here, you can also see various options regarding the creation of the virtual environment. If
you are not familiar with the concepts of the virtual environment and interpreter, we will
be discussing them, along with the options to manage them in PyCharm projects, in the
next section.

For now, go ahead and proceed with our new project creation. Here, I am creating a new
Django project called TestDjango (note that you can specify the location of the project as
you type in the project name). This project is to have a new environment created using
Virtualenv in the project folder itself. Again, if you are using the Community edition of
PyCharm, ignore the option to specify the project type.

In the section directly below Project Interpreter, we will see More Settings. Expand it, and
you will see that this section contains various Django-related configuration options such as
the template language (Django or Jinja2), the name of the templates folder, the optional
name for the application, as well as whether PyCharm should enable the Django admin
option or not.

Don't change any of these settings for now; if you are interested in leveraging PyCharm's
power to improve your Django projects, an entire part of our book dedicated to Django can
be found later. Let's continue.

Project-specific boilerplate code
Next, click on the Create button in the bottom right corner of the window. PyCharm will
generate a folder in the location you specify with all the skeleton files and code for your
specific project. This process might take a while, but when it finishes, you will see a
PyCharm window that contains your project.

The following window is what my PyCharm displayed when the creation process finished:

Customizing Interpreters and Virtual Environments Chapter 3

[72]

Django project created in PyCharm

If you are familiar with the Django web development framework, you will find that the
manage.py file (which is currently being opened in the editor in the preceding screenshot)
is one of the essential parts of a Django project. Turning our attention to the left-hand side
panel (which is our project directory), we will also see other typical Django folders and files
such as settings.py and urls.py in the TestDjango subfolder as well as the
templates subfolder.

So, if you were to work on a new Django project from scratch and used PyCharm as your
development environment, you could potentially start working on the actual functionalities
and features of your web project, as opposed to having to spend time creating boilerplate
code and files. In Chapter 1, Introduction to PyCharm - the Most Popular IDE for Python, we
discussed that the generation of boilerplate code is one of the main responsibilities of an
IDE, and we are seeing that (Professional) PyCharm excels in this matter.

Customizing Interpreters and Virtual Environments Chapter 3

[73]

Considerations about Community PyCharm
Comparing this project and the minimal project we created in the previous chapter,
FirstProject, we can see that no boilerplate code is generated in a Pure Python project.
Since users of the Community edition of PyCharm only have the option to create Pure
Python projects, they will have to start from scratch while working on a Django project.
However, as Django developers know, a small set of simple Django commands can also
achieve the same result and generate the appropriate boilerplate code and structure of the
directory tree for us.

So, in the end, the Professional edition of PyCharm might allow you to skip a particular set
of steps in the process of setting up a specific Python project, but these steps can also be
accomplished easily and independently of PyCharm. However, this is not to say that it is
better to forgo PyCharm altogether if you are using its Community edition. On the
contrary, we have seen various forms of customization and flexibility that both editions of
PyCharm offer, specifically when it comes to organizing our workspace, in this chapter. We
will see a similar trend in future chapters as well.

On another note, if you are using the Professional edition, aside from a Django project, you
can choose to create other types of Python project, as we have seen from the options in the
preceding screenshot (for example, Google App Engine, Angular, or even React
applications). We will go into more detail regarding two types of Python project—Django
projects and Scientific projects—later on in this book, but feel free to explore other project
types that you are interested in.

Virtual environments and interpreters
In the previous sections, we talked about the different types of projects you can create with
PyCharm and skipped through the discussion of choosing the appropriate virtual
environments and interpreters for your projects. In this section, we will have that
discussion, and see how the management of virtual environments and Python interpreters
within PyCharm projects tie into all that we have learned.

Understanding the concepts
While you might already be familiar with virtual environments and Python interpreters, it
is worth going into the concepts so that we can get our terminologies straight. There will be
no confusion from here on out, especially since some of the terminologies tend to be
utilized interchangeably by various user groups.

Customizing Interpreters and Virtual Environments Chapter 3

[74]

Python interpreters
First of all, when you download Python to your system, you are specifically downloading a
Python interpreter. As the term suggests, it is a program that can take in Python code,
interpret it, and translate that code into lower-level machine language, thus executing the
Python program. If you have both Python 2.7 and Python 3.6 on your computer, for
example, this means that you have two different and separate Python interpreters—in
essence, you have two ways to interpret a specific Python program.

Virtual environments in Python
To understand what a Python virtual environment is and why we need it, imagine a
scenario where you are working on two separate projects—a large-scale project at work
with multiple other employees, and a small, independent side project at home. These
projects are stored on your computer, utilize the same Python interpreter, and are in the
same environment.

Additionally, we have briefly discussed the fact that Python libraries support almost all
possible computing subfields and topics. So, if you are working on a project with enough
complexity, chances are there is a library out there that can assist you efficiently. It is,
therefore, very likely that you use external libraries and packages. This is also due to the
idea to avoid reinventing the wheel in programming: if someone has already invented a
tool to address a problem with considerable success, you should (in most cases) take
advantage of that tool.

In short, when you are working on a Python project, you are most likely (and should be)
using external libraries and packages in that project. Getting back to the two projects in our
imaginary scenario, say both projects make use of the requests module (a Python library
providing simple methods to make HTTP requests) and an update to the module with
major improvements has just been released. As a responsible programmer who keeps
themselves up to date with the current technology, you plan to apply this update to your
two projects.

A problem arises when you realize that the API of the requests module changes during
this update and that it will require a code revision every time your code uses the requests
module. This is not ideal for either project, but it is manageable for the second, which is
smaller in scale and, after all, a personal side project. Your first project, on the other hand,
would need to be completely rewritten if the update is to be applied. This is obviously not
desirable, given the fact that it is a work project with multiple people contributing to it.

Customizing Interpreters and Virtual Environments Chapter 3

[75]

You might think you could simply not update the requests module at all so that you
wouldn't have to fix the syntax in either project. However, the updated API would actually
help your second and personal project significantly, so you would like to somehow apply
the update only to the second project. Here is where the concept of virtual environments
comes in. In this scenario, we need a way to separate the two projects in the sense that an
update to a library in one project would not affect the same library in the other.

Virtual environments, in essence, are independent, isolated environments that manage their
own libraries and packages. This means that when a project changes specific things in a
library, other projects will not be affected. As such, it is also a great way to organize and
compartmentalize your Python projects.

In terms of the actual process of creating virtual environments for your Python projects,
there are a number of tools available in Python—Virtualenv, Pipenv, and Conda. All three
of them are virtual environment and package managers that offer various levels of
functionality and control.

If you work with the Anaconda platform, you have likely used Conda as
your virtual environment manager already.

All in all, each of these is widely used by Python programmers, but usage commands and
details differ widely among the three tools. Luckily, PyCharm provides the option to utilize
all of them in the process of creating a virtual environment, and, as we will see later, all the
commands to set up, activate, and deactivate a specific virtual environment are all taken
care of by PyCharm.

Virtual environments and interpreters together
Interpreters and virtual environments are actually two interconnected concepts in Python.
Intuitively, since Python virtual environments specify separate and isolated workspaces,
they should also have separate interpreters as well. In the same lines as the preceding
scenario, we can image situations where we have some projects in Python 2 and others in
Python 3. In this case, having separate interpreters for different projects is a good thing to
have.

The following illustration is an example of the separation of library and package
dependencies among different Python projects on the same system:

Customizing Interpreters and Virtual Environments Chapter 3

[76]

Example of virtual environments

Specifically, we have three different Python projects in total, encapsulated in three separate
virtual environments:

The first and second projects are related to scientific computing, taking
advantage of the same set of scientific modules such as numpy, matplotlib, and
pandas. Though having the same libraries and packages, the two projects have
different Python interpreters (2.7 and 3.6), and the versions of the packages are
also different among them. Again, this means that a package update in one
project would not affect the functionality of the other.
Looking at the third environment, which is a web development project with
Django and Celery, we can see it uses a completely different set of external
libraries and packages. Since the third project does not, and should not, need the
scientific computing packages that are used by the other projects—and the same
goes for those projects and the web development packages used by the third
project—having separate virtual environments is specifically beneficial.

However, you might be tempted to think that an interpreter is a part of a virtual
environment; that is, virtual environments manage not only packages but Python
interpreters themselves. This is not correct—each virtual environment can potentially
utilize multiple interpreters, and each interpreter can also be used in multiple virtual
environments. In the next section, we will see that we can switch between interpreters and
virtual environments independently.

Customizing Interpreters and Virtual Environments Chapter 3

[77]

Managing virtual environments and interpreters
in PyCharm
In this section, we will see what options there are in terms of managing virtual
environments and interpreters that PyCharm provides. To do this, we will create another
PyCharm project:

If you are still in the TestDjango project, go ahead and select File > New1.
Project; if you are at the PyCharm welcome window, simply choose Create New
Project.
In the next window, we will see various options for the new project, which we2.
briefly looked at earlier.
Here, I am specifying this new project as a Scientific project and naming it3.
TestScientific, as shown here:

If you are using the Professional edition, feel free to select whichever
project type you are interested in so that you will be able to see what
project-specific boilerplate code will be generated afterward.

Using Conda to create a virtual environment

Customizing Interpreters and Virtual Environments Chapter 3

[78]

Expand the Project Interpreter option to set the specifics of the virtual4.
environment for our new project. For the sake of a complete comparison, I am
selecting the new environment to be created by Conda, and its own interpreter
will be Python 3.6. There is also an option for Pipenv; feel free to try this as well
if it interests you more.

If you are a Conda user, you will see that the location of the environment folder is
appropriately stored in my Miniconda directory, as opposed to the same folder as
the project, like in virtual environments created by Virtualenv, which we saw
earlier with TestDjango. These are simply different practices between Conda
and VirtualEnv, and PyCharm does a good job of preserving them. So, there is a
technical consistency between creating a virtual environment on your own and
doing it using PyCharm, regardless of what virtual environment tool you are
using.

Note that there is an option at the bottom of the Project Interpreter
section named Existing interpreter, which we used to create our first
project in the previous chapter. As the name suggests, by selecting this
option, we will not have PyCharm create a new virtual environment for
the current project, and it will utilize an existing interpreter. However, as
long as a new virtual environment is to be created, that environment will
have its own Python interpreter (in our current example, it is a Python 3.6
interpreter).

Go ahead and click Create. After around 10 seconds, you will be taken to the5.
window of the newly created project. If you are a user of the Professional edition
and chose a specific type for this current project, you can take a moment to
inspect the boilerplate code that was generated automatically by PyCharm.
However, we should also consider the virtual environment and interpreter of this
project.

Customizing Interpreters and Virtual Environments Chapter 3

[79]

Open the Python Console panel, which is typically a default part of the project6.
window. Alternatively, you can open it up by going to View | Tool Windows |
Python Console. The information that's displayed in this panel tells us which
interpreter our current project is using. For example, the following screenshot
shows the information that's given in my Python Console panel:

Interpreter information in the Python Console panel

The section that's highlighted by the green box shows us that we are using a Python 3.6.2
interpreter, which corresponds to the options that we chose while creating this project
earlier.

As another way to check which Python interpreter you are using, you can take advantage
of the which command in the Terminal/command line. The following is the output I
received when I typed in which python (used to determine the path to the current Python
interpreter) and which conda (used to determine the path to my Conda root folder):

> which python
/Users/quannguyen/miniconda3/bin/python
> which conda
/Users/quannguyen/miniconda3/bin/conda

Since we used Conda to create this current virtual environment, the corresponding Python
interpreter is appropriately stored with, and managed by, Conda. Again, this is a consistent
way of having virtual environments created by different tools that PyCharm offers.

I personally like to use Virtualenv to create the virtual environments for my PyCharm
projects, simply because that is the tool I used before PyCharm. So, from now on, the
example projects that are used in this book will have their respective virtual environments
created via Virtualenv.

Customizing Interpreters and Virtual Environments Chapter 3

[80]

With that said, I suggest that you also keep using your go-to virtual environment tool, as
you yourself know best about the specifics of that tool. Furthermore, we have seen that
whichever option we choose in PyCharm to create a virtual environment, the subsequent
details of managing that environment remain consistent.

Configuring the interpreter for a created project
As we mentioned earlier, in a virtual environment, a Python interpreter, though
considerably connected with that environment, is technically not a part of it. This means
that a project can utilize multiple interpreters for its code.

We have already seen that a new interpreter will be created along with a virtual
environment when we create a new project in PyCharm. In this section, we will learn how
to change the interpreter of a PyCharm project after it has been created.

Why does it matter?
It is worth discussing the reason why we might want to point to a project that has already
been created for a specific Python interpreter. After all, that project already has its own
interpreter, and shouldn't all the elements regarding the interpretation and execution of
code in a project be bound in its corresponding virtual environment (like the case we have
made for the general use of virtual environments)?

As it turns out, it is beneficial to be able to share an interpreter across multiple projects,
especially in transitional situations. Say you are working on a large project using Python 2.7
and are thinking of updating your interpreter to Python 3.6. However, you are not sure if,
for example, all your print statements or numerical divisions will work as intended after
the update. In this case, you could simply point your project to a Python 3.6 interpreter and
try executing your code. Any warnings and errors you receive during that execution will
help you decide whether the update is feasible.

In some other situations, your computer platform might dictate what Python interpreter is
appropriate. For example, a specific version of the computer vision library, OpenCV, may
only support Python 3.5 on macOS but can support Python 3.6 on Linux and Windows (this
is simply an example, but there are similar problems when you work with OpenCV in
Python). So if you are working on a project using OpenCV on multiple platforms at the
same time (maybe at work and at home), you will find the ability to switch to the
interpreter of each of your projects incredibly helpful.

Customizing Interpreters and Virtual Environments Chapter 3

[81]

All in all, PyCharm gives us the freedom to switch between different interpreters across
multiple projects. While it is important to keep specific goals in mind while starting a new
project, we shouldn't be afraid to be flexible and change things up as the project moves
forward. This is certainly the case for the usage of the interpreter in a PyCharm project.

Now, you may remember from the diagram for the example of three separate projects (two
scientific projects and one web project) we used earlier that the interpreters were drawn to
be a part of their respective virtual environment. But now, we need to revise that diagram
so that it reflects our ability to dynamically configure the interpreter of PyCharm projects,
as follows:

Virtual environments and interpreters

Each of our projects is associated with its corresponding interpreter, as we saw earlier, but
the interpreters are not a part of their respective virtual environments anymore. In fact, we
can point a project to a different interpreter. For example, the first two projects can
potentially utilize the second interpreter (Python 3.6), or all three projects can share the
third (Python 3.5), given that all the dependencies are met.

Customizing Interpreters and Virtual Environments Chapter 3

[82]

Options in PyCharm
Now, let's see how we can do this in PyCharm. Navigate to the project we just created
(TestScientific) if you are not already there. Again, the interpreter that's currently
being used for this project should be Python 3.6, and created using Conda:

We will open the settings and go to Project: TestScientific | Project Interpreter,1.
which we already saw when we learned how to install external libraries and
packages for our projects.
Now, click on the dropdown button in the Project Interpreter prompt in the2.
upper section of the window and select Show All..., as follows. This will show us
all the Python interpreters that are available on our system:

Showing the available interpreters in PyCharm

Customizing Interpreters and Virtual Environments Chapter 3

[83]

From here, you will be able to select one of the interpreters that's available to be3.
used by PyCharm projects. As an example, I will choose the Python 3.7
interpreter that was created for the TestDjango project earlier.
Click OK and Apply to point our current project to that specific interpreter. For4.
this change to take full effect, we need to relaunch PyCharm.
After reopening the PyCharm project, you will notice, in the Python Console and5.
Terminal (using the which python command again), that our interpreter has
indeed been changed.

That is how you select and change the interpreter for your PyCharm projects, even after
they have already been created. In the next section, we will look into the process of
importing external projects into PyCharm.

Importing an external project into PyCharm
We have seen how the management of project types, virtual environments, and interpreters
is done in PyCharm. In this final section, we will discuss the process of importing an
existing project, previously external to PyCharm, into our workspace. This option is
considerably useful, especially when you are working on collaborative projects that are
cross-platform and cross-system. For example, you can import the source code of this book
into your own PyCharm so that you don't have to manually enter the code yourself while
following the examples in later chapters.

We will take a hands-on approach and try to import a small project that I previously
prepared that's included in the GitHub repository for this book. Specifically, if you have
already downloaded and unzipped the repository on your computer, the project we are
trying to import into PyCharm is included in Chapter03/TestImport. To do this, we
need to follow these steps:

Go to File | Open... (or choose Open in the welcome window), navigate to that1.
folder, and choose Open.
A PyCharm project window will open. Inside, you will see the content of this2.
project—a starting web development project with the Flask framework. The
following is a screenshot of this project window, showing the main.py file in the
editor:

Customizing Interpreters and Virtual Environments Chapter 3

[84]

Importing an external project into PyCharm

In the preceding screenshot, you may have noticed—and potentially in your3.
window as well—that there is a warning message above our editor that says No
Python interpreter configured for the project. This should be expected since as
we are importing an external project that has never been read by our PyCharm
software before, so it won't know the specifics regarding the interpreter (and
virtual environment) of the project.

Looping back to what we discussed previously, when a project is being worked
on cross-platform, it is good practice to maintain separate virtual environments
and interpreters in the different platforms. In other words, since different
platforms may require different combinations of interpreters and libraries or
packages, developers should only exchange and collaborate on the actual source
code of the project, not including interpreters, virtual environments, or library
dependencies.

If we look at the Python Console of the TestImport project we just imported
into PyCharm, we will see that the global Python interpreter is being used, which
supports the fact that PyCharm does not know which interpreter is appropriate
for this specific external project.

To select an interpreter, simply click on the text Configure Python interpreter (or4.
open the settings and go to Project Interpreter). You will be taken to the
interpreter-selecting window that we examined earlier. In my case, I will select
my global Python interpreter for simplicity's sake.

Customizing Interpreters and Virtual Environments Chapter 3

[85]

After choosing an interpreter for the project, another warning will potentially5.
pop up, saying that the package and library requirements for this project are not
being met:

Unsatisfied package requirements in imported projects

Specifically, the tqdm module (that I arbitrarily chose to use as an example),6.
which is being used in main.py and specified in requirements.txt, is not
available for the Python interpreter I selected. If you don't have the tqdm module
installed on your system, you will receive this warning as well. If you run the
script, the execution will fail inside the try block in the code, and you will receive
the following output:

You have successfully imported this project.
You do not have tqdm.

Going back to the warning message, you can select the Install requirement7.
option and PyCharm will automatically download and install all the unsatisfied
packages for you.
After the installation process has completed, rerunning the Python script again8.
will give us a different output:

You have successfully imported this project.
You also have tqdm!

The reason PyCharm was able to detect the unsatisfied package requirement for tqdm is not
because it analyzed the line of code where we import the package, but because we have the
requirements.txt file in our project, which specifies that the dependency for this project
is tqdm version 4.31.1.

Customizing Interpreters and Virtual Environments Chapter 3

[86]

As you already know, having a requirements.txt file that lists all the external libraries
and packages a project requires is good practice in Python development that you should
always follow, especially when working cross-platform. Our experiment just now has
shown us that when we import a Python project with an appropriate requirements.txt
file, PyCharm will assist us in the process of downloading and importing all the unmet
dependency requirements.

For your reference, a quick command to generate the appropriate
requirements.txt file for your project is pip freeze >
requirements.txt, which should be run in your Terminal.
The pip freeze command lists all the external libraries and packages
that your Python interpreter has, and the second part of the command will
transfer the output data into a requirements.txt file.

Every time you'd like to transfer a project outside of your system and
import it into PyCharm in another system, run this command and include
requirements.txt in your project for a smooth transition, which will be
assisted by PyCharm.

Notice that the combined usage of virtual environments and the requirements.txt file is
common with Virtualenv. If the project you are importing uses Pipenv and Pipfile files as
the virtual environment manager, PyCharm also offers the same functionalities to help you
import your dependencies with one click.

Overall, we have learned how to import external projects into PyCharm. Moving forward
with this book, you can go through this process again to import code examples from this
book's GitHub repository into your own PyCharm while following the discussions in this
book.

Summary
In this chapter, we have considered the ability to work with multiple types of Python
projects, virtual environments, and interpreters in PyCharm. Overall, PyCharm provides a
wide range of options so that users are able to customize their projects, and they can do it in
a dynamic way, even after a project has already been created.

Customizing Interpreters and Virtual Environments Chapter 3

[87]

In the Professional edition of PyCharm, you can have specific types of Python projects
created, such as Django/Flask web development projects or scientific computing projects.
This option will populate the new project with various boilerplate code and a directory
structure that follows the convention of the corresponding project type. For example, a new
Django project will have a templates folder and a manage.py file, while a scientific
computing project will have commonly used folders such as data, models, and
notebooks.

It is important to note that, while this functionality of generating boilerplate code allows
users to save a significant amount of time when a new project is created, the whole process
can be done manually in the Community edition.

We have also looked at how to create and customize a virtual environment and a Python
interpreter for a PyCharm project. PyCharm's dynamic nature is demonstrated with the
ability to switch the interpreter for a project freely, even after the project has already been
associated with an interpreter of its own. This allows for easy and intuitive dependency-
based testing processes in Python development.

Finally, we have seen how to import an external project into our PyCharm workspace and
install all of its package and library requirements using the requirements.txt file.
PyCharm actively combs through this file and looks for any unmet requirements in the
current interpreter, effectively taking the pain of installing project dependencies away from
the developer.

As you have probably noticed, the first few chapters have concerned themselves with
setting up various aspects of the usage of PyCharm in order to create an optimal workspace
for our projects.

In the next chapter, we will go into details about the assistance PyCharm provides when it
actually comes to programming and writing code. Specifically, we will consider PyCharm's
real-time smart coding assistance, together with the refactoring and documentation
processes and how PyCharm streamlines them.

Questions
What types of panels (or window tools) are available in a PyCharm project1.
window? How can we arrange the panels to our liking in a PyCharm project
window?
A progress bar typically appears when we open a Python project in PyCharm.2.
What does the bar indicate? What problem arises for some PyCharm
functionalities when the progress bar is still running?

Customizing Interpreters and Virtual Environments Chapter 3

[88]

What types of projects are available during the creation of a PyCharm project?3.
Are they available in both editions of PyCharm?
What is the difference between a Pure Python project and other types of4.
PyCharm project? Does this difference matter in the long run?
What is a Python interpreter? What is a Python virtual environment? Are Python5.
interpreters dependent on virtual environments? Is the reverse true?
What methods of creating a virtual environment are available during the creation6.
of a PyCharm project? Are there any differences in usage within PyCharm after
the virtual environment is created among these methods?
How can we choose to use another project interpreter that is different from the7.
one we created and associated with the project? What is the benefit of being able
to do this?
How can we import an external project into PyCharm? What is the role of8.
requirements.txt in this process?

Further reading
For more information, you can refer to the following information:

Mastering PyCharm, by Quazi Nafiul Islam, Packt Publishing (https:/​/​www.
packtpub.​com/​web-​development/​mastering-​pycharm)
Modern Python Development with PyCharm, by Pedro Kroger (https:/​/
pedrokroger.​net/​pycharm-​book/​)
Django Projects in PyCharm Community Version, by Andy Knight, Automation
Panda (https:/​/​automationpanda.​com/​2017/​09/​14/​django-​projects-​in-
pycharm-​community-​edition/​)
Python Virtual Environments: A Primer, Real Python (https:/​/​realpython.​com/
python-​virtual-​environments-​a-​primer/​)

https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://automationpanda.com/2017/09/14/django-projects-in-pycharm-community-edition/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/

4
Editing and Formatting with

Ease in PyCharm
So far in this book, we have only covered high-level ideas for using PyCharm and
developing Python projects within it. In this chapter, we are going to take a closer look at
the editor and its various functionalities for Python development.

Specifically, this chapter serves as a comprehensive compilation of features in PyCharm
that facilitate faster and more accurate programming. These features include linting, code
completion, refactoring, documentation, and so on. This chapter will offer you a practical
understanding of the preceding programming practices. Additionally, you will also learn
how to incorporate those practices into your projects and even automate them with the help
of PyCharm.

The following topics will be covered in this chapter:

Real-time code inspection and fixes
Various code-completion support features in PyCharm and how to leverage
them to work faster and make your code more readable as well as accurate
The concept of refactoring in programming, why it is important to refactor your
code, and how to do that in PyCharm
The details of making documentation in programming and the various options
for viewing and creating documentation for your PyCharm projects

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Editing and Formatting with Ease in PyCharm Chapter 4

[90]

During this chapter, we will be working with the subfolder named Chapter04 in
the downloaded code repository

Code inspection
A large part of the real-time code analyzer that makes PyCharm so powerful is embedded
in its code inspection features. Specifically, as you work on your code, potential messages
will pop up, displaying various information, including errors and their potential fixes.

Specifics of the code analyzer
In general, PyCharm performs code analysis in real-time as you type in new code into the
editor. The executed inspections look for potential syntactical and runtime errors, as well as
code styling conventions. Any potential problem that is detected will be highlighted within
that specific piece of code and will be indicated in the top-right corner, as well as along the
scroll bar of the editor window.

In total, there are three possible levels of severity indicated in the top-right corner of the
editor:

Errors ()
Warnings ()
Nothing detected ()

It is generally a good practice to address any problems in your code if the severity is either
errors or warnings before using it or committing it to GitHub.

Fortunately, PyCharm not only lists out all problems with our code (using highlighting and
severity levels, as we've already mentioned) but also offers a list of potential and relevant
fixes for each problem so that you're not left alone in the process of fixing your code. This is
done via intention actions, which we will look at in upcoming sections.

Code inspection in a PyCharm project
In this section, we will be considering a number of specific instances where PyCharm's code
analyzer points out common errors and warnings in Python programs. We will then
address these problems accordingly.

Editing and Formatting with Ease in PyCharm Chapter 4

[91]

To follow this example, import the Chapter04/Inspection project into your workspace
and open the main.py file, or copy and paste the following code into a PyCharm project:

def is_even(x):
 if x % 2 == 0:
 return True
 else:
 return False

 print('Function finished.')

def foo(bar):
 return 0

def main():
 print(math.sqrt(4))

if __name__ == '__main__':
 main()

The first thing to note here is that there are several errors and warnings that we need to
address in this file, as indicated in the top-right corner and along the scroll bar of the editor
window. This is indicated by a green box in the following screenshot:

Code inspection in PyCharm

Editing and Formatting with Ease in PyCharm Chapter 4

[92]

For each error or warning, you can hover your cursor over the code that is associated with
that problem to see more details regarding the issue. For example, if you hover over the
math.sqrt() function call in the main() function, a popup will appear saying Unresolved
reference 'math' to indicate that we need to import the math module to be able to utilize its
sqrt() function.

On the topic of hovering, you can also hover over indications of problems
in the scroll bar to display the same information. This feature is especially
useful in large files and projects.

Now, let's try our hand at resolving each of these problems. The goal, again, is to obtain a
green checkmark in the top-right corner of our editor window (which is currently a red
exclamation mark).

Dead code
In the is_even() function, the print statement at the end will never be reached by a
Python interpreter since the function will return beforehand. We call this piece of code
(which does not affect the execution of our program in any way) dead code. In most cases, a
programmer will either try to incorporate that code into the actual function somehow or
simply delete it.

We will delete the line of code in this example. Watch the scroll bar on the right as you do
so to see the current warning disappear.

Unused declarations
Another nifty feature of code inspection is spotting any unused function parameters or
variables. In the foo() function of our example, a parameter named bar is passed in but
never actually used inside the function. By hovering over this parameter, you can see the
message Parameter 'bar' value is not used. This warning will also be displayed for any
unused function, variable, or imported API.

As we are not using this parameter in the function, simply remove it from the function
signature. You can also utilize intention actions, which we will consider in more detail after
this section.

Editing and Formatting with Ease in PyCharm Chapter 4

[93]

Unresolved references
Another common problem that PyCharm's code analyzer can detect—and this one is
actually an error—is unresolved references. As we mentioned previously, in our example,
we are using the sqrt() function from the math module without importing it. The general
error extends to any unimported and undeclared API.

To fix this error, you can manually import the function from the math module by typing the
import statement into the code. On the other hand, you can take advantage of intention
actions by performing the following steps:

Move your cursor to where the error is, that is, the math part1.
of print(math.sqrt(4)).
A red light-bulb icon will appear shortly at the beginning of the line of code, as2.
shown in the following screenshot. Click on it to open the Intention menu:

Fixing unresolved references in PyCharm

From here, we can choose the appropriate action to take to fix the error. Since we3.
need to import the function from the math module, choose the first option, that
is, Import this name. There will be another menu asking you where to import a
module named math from (since there are multiple in Python). Choose the first
option.
After this, an appropriate import statement will be automatically inserted at the4.
beginning of the file, and the error will go away.

Again, we can imagine the convenience of this feature in large projects, where it is difficult
to keep track of all the libraries and packages that the project uses. PyCharm's intention
actions nicely handle these nitty-gritty details for us.

Editing and Formatting with Ease in PyCharm Chapter 4

[94]

PEP 8 style suggestions
Last but definitely not least, PyCharm will inform you of any improvements that can be
made in your code with regard to the official style guide for writing Python code, PEP 8.

For more information about this style guide, head on over
to www.python.org/dev/peps/pep-0008/.

We have already seen an example of using PyCharm to follow PEP 8 conventions with the
wrapping limit set to 79 in each line of the editor.

Now, hover over the beginning of the main scope in our current program, if __name__
== '__main__':. You will see a message saying PEP 8: expected 2 blank lines after class
of function definition, found 1. As suggested, following PEP 8, programmers should have
two blank lines after the declaration of a class or, in our case, a function before writing new
code blocks.

To fix this problem, simply add another blank line after the main() function, and the
warning will go away.

As you can see, this feature is quite convenient for Python programmers. No one really
wants to write bad code that does not follow the official style guide, but not many people
really remember all the instances and subtleties of PEP 8 off by heart. Having code
inspections offering suggestions so that we can format our Python code in PyCharm
effectively takes care of this problem for us.

If, for some reason, you are not seeing the preceding warnings, open PyCharm's settings
and navigate to Editor | Inspections. From the list included in the main section, expand the
Python item and ensure that the two sub-items, that is, PEP 8 coding style violation
and PEP 8 naming convention violation, are enabled, as shown in the following
screenshot:

https://www.python.org/dev/peps/pep-0008/

Editing and Formatting with Ease in PyCharm Chapter 4

[95]

Enabling PEP 8 conventions in PyCharm

After successfully addressing each of these problems, there should be no warnings or error
in your current code now, and hopefully the icon on the top-right corner of your editor
window is a green checkmark. Again, since we already have a great IDE to detect all
potential problems in our code, the least we can do is leverage that and strive for better
code quality.

Customizable code completion support
All of us are familiar with code completion support from our editor/IDE in one way or
another. This is the functionality that suggests potential ways to complete the line of code
that you are currently typing. Text completion is not only limited to programming; we see
it in word processing, texting, or typing in general. Even auto-correct functionalities in
smartphones are a part of general text completion.

Editing and Formatting with Ease in PyCharm Chapter 4

[96]

However, there are still some subtleties in taking advantage of the code completion support
in PyCharm, specifically regarding how to adjust various options with the support, as well
as how hands-on the suggestions will be. In this section, we will be looking into the
advantages of using intelligent code completion functionalities while programming, and
how PyCharm assists in this process.

The case for code completion support
Formally, intelligent code completion support is aware of the context of both high-level
aspects of programming—the programming language being used and the
project/class/method the code that is written belongs to. In general, the purpose of having
an intelligent code completion engine is to reduce the number of errors and typos in your
code, as well as the development time (specifically, time spent writing code).

The most common form of code completion is showing a pop-up with a list of suggestions
regarding how to complete the line of code (or part of the line) that you are writing. You
can then choose the item you want to complete your code with. This suggestion list is
shown in the following screenshot:

Code completion suggestions

Editing and Formatting with Ease in PyCharm Chapter 4

[97]

In the preceding example, just from the given information (to the effect that I am trying to
import something that has an s in its name from the math module), PyCharm is able to list
all the potential methods and classes, sorted by relevance (we will see how to change the
order of these suggestions to alphabetical later in this chapter, in the Customizing your code
completion engine section). You can then continue typing. Click on an option in this list to
complete the sentence, or hit Enter or Tab to select the first suggested option.

Code completion is widely accepted as a good way to speed up programming and
development without bringing about any downsides. Being able to use code completion
means that you don't need to memorize all the API and method calls, and you don't have to
type as much either. In many IDEs (and certainly in PyCharm), you can dynamically open
up documentation saved in the IDE while interacting with the code completion support, so
gaining access to the official documentation is still possible.

Code completion specifically doesn't entail the drawbacks that might result from using, as
we have already discussed, an IDE. Recall that we have argued that beginner developers,
while relying too much on their IDEs, might not have to learn and deeply understand the
fundamentals of programming, as well as the general syntax of the language being used.
This is not the case for code completion support because, in order to take advantage of its
functionality, you have to know what you are looking for and thus be familiar with what
you are working with anyway.

Historically, a professor of Computer Science at Columbia University, Gail Kaiser, is
considered the creator of many fundamental components of the very first code completion
system. While the actual implementation of a good code completion engine can get quite
complex, all we need to keep in mind (when using PyCharm specifically) is that the engine
relies on the indexing process.

Recall that this is when PyCharm combs through all relevant code and
documentation to gather all the necessary information for various
purposes. Code completion is one of them. This is also why code
completion, similar to some other functionalities that we have discussed,
might not be available when the indexing process is still running.

There is almost no reason for a developer to not utilize a good code completion platform,
especially at a time when efficiency and productivity are emphasized and valued.
Furthermore, as we've already explained, code completion support can be used as a black
box; the developer doesn't need to know how it works in order to take full advantage of it.

Editing and Formatting with Ease in PyCharm Chapter 4

[98]

Overall, code completion allows us to efficiently find the correct APIs during the
development process. If a developer gets bogged down by miscellaneous and low-level
aspects of a project (in this case, looking for API calls), he or she will fail to keep the big
picture of the project in mind. However, with the help of a good code completion engine,
this problem can be addressed effectively.

In the next subsection, we will be looking at code completion features in PyCharm that
make the software stand out.

How is code completion different in PyCharm?
Alongside the generation of boilerplate code, code completion support is indeed one of the
most important features of a good IDE, and therefore a big reason why PyCharm is so
popular. The main approach to code completion that PyCharm takes is smart code
completion, which only looks for the most applicable and most likely APIs to suggest in the
pop-up list.

In this subsection, we will go through the code completion features that are commonly used
in PyCharm projects. After this, you will be able to leverage and customize various options
in PyCharm when it comes to code completion.

Before we move forward, we will set up our workspace by going through the following
steps:

Navigate to the code repository of this book and go into the1.
Chapter04/CodeCompletion folder, which includes examples that we will be
examining in this section.
Launch PyCharm and import this folder as a project into your workspace.2.
If you are fuzzy on the details, the last section of the previous chapter provides a3.
walkthrough for the process of importing a project in PyCharm.

Once you have successfully imported the necessary example code for this section into
PyCharm, it is time to start exploring the various aspects of PyCharm's intelligent code
completion engine.

Basics versus smart code completion
Looking back to the preceding screenshot (when I tried to import from the math module),
the first thing we should appreciate about code completion is the fact that suggestions are
not necessarily methods and classes whose names start with an s, but ones that have an s in
their names.

Editing and Formatting with Ease in PyCharm Chapter 4

[99]

This means that, in general, if a class or a method that contains the word currently being
typed is in any part of its name, it will be suggested by code completion. This functionality
gives us a better searching capability, but it also generates a large number of suggestions
that we might not need.

This is where the distinction between basic and smart code completion in PyCharm comes
into play:

Basic code completion will suggest all the methods, keywords, or classes that are
applicable to the line of code the caret is currently on.
Smart code completion compiles a more filtered list of suggestions by taking into
account the types of the variables being used in that line of code.

Let's consider this distinction with an example. Consider the string_assert.py file in the
CodeCompletion folder:

def foo(a, b):
 assert isinstance(a, str)

 a

 b

The file contains incomplete code—don't panic. This is intentional so that we can see how
code completion in PyCharm works. First of all, if the indexing process is still running on
PyCharm, be sure to wait for it to complete before moving on to the next paragraph. In fact,
if you try to force code completion when indexing is incomplete, you will see the following
message:

Code completion before indexing completes

Editing and Formatting with Ease in PyCharm Chapter 4

[100]

Getting back to our discussion, here, we are considering the difference between basic and
smart code completion. In the foo() function, which takes in two parameters, a and b,
what we already have is an assertion making sure that a is a string. Now, move your cursor
to line 4 right after a, and enter a dot character (.). You should now see a code completion
suggestion list pop up, like so:

Type-specific code completion

Notice that the items in the preceding suggestion list are all methods for string variables
(indicated by the str column on the right-hand side of the popup). PyCharm's code
completion is able to intelligently narrow down the suggestion list to just string methods
because it analyzes the code that we've already entered (specifically the assertion
statement) and determines that the a variable is a string. Then, it removes all the
suggestions that are irrelevant to string variables from the suggestion list.

Editing and Formatting with Ease in PyCharm Chapter 4

[101]

This distinction becomes more clear when we consider the suggestion list for b—move the
cursor to line 6 and enter a dot character (.):

Autocomplete suggestions

You can see that this suggestion list includes many more items and options, simply because
PyCharm has no information regarding what datatype variable b is. This goes to show that,
if a datatype of a variable in a program is determined, PyCharm can compile a better, more
relevant code completion suggestion list.

Postfix code completion
We have seen the general usage of PyCharm's smart code completion engine—looking at a
suggestion list and choosing the item that you want. Here, we are considering using the
engine for a specific purpose, that is, postfix code completion. Still working with the
string_assert.py file from the previous example, we look at the suggestion list for
variable b, and we enter a dot character after it.

Notice the first suggestion—if (if expr). If you are confused and don't know what the
.if expression is in Python, you are completely right in thinking that. In fact, if you go
ahead and select the option to complete the line of code, you will see that the code will be
transformed into the following:

if b:

Editing and Formatting with Ease in PyCharm Chapter 4

[102]

So, .if is just another way to express an if condition in PyCharm, but why is it necessary
and desirable? Well, I know personally—and many might sympathize with me—that I
would start an expression, say an if condition, by typing in the actual conditional
expression (as opposed to the if keyword and then the expression), and only
afterward move the caret back in front of that expression and add in the if keyword to
correctly form a Python conditional statement.

This practice helps me organize my thoughts better, especially if the conditional expression
is long and complex and consists of multiple components. But it requires me, again, to
move the caret to the beginning of the expression and add the if keyword afterward. If I
were to add together all the time I have spent doing this, I might feel compelled to give up
this practice. Luckily, postfix code completion addresses this problem. When I've finished
the conditional expression, I simply use the code completion feature, and the line of code
will be formatted into a correct if statement.

Obviously, postfix code completion is not only limited to if statements. If you go to
PyCharm's general settings, Editor | General | Postfix Completion, and scroll to the
section for Python, you will be able to see a complete list of available expressions for postfix
code completion. These are illustrated in the following screenshot:

Postfix code completion expressions in Python

Editing and Formatting with Ease in PyCharm Chapter 4

[103]

You might notice that there are postfix completion options for other languages in that
window as well (for example, TypeScript, JavaScript, and SQL). This goes to show that
PyCharm realizes the different technologies that Python developers might use in
integration with Python, and does its best to support a variety of technologies in the
software. We, however, will not consider these options, and only focus on Python
development specifically throughout this book.

Hippie completion
Hippie completion denotes code completion where the current visible scope and context of
your code are taken into account. This is different from general code completion, which
produces a suggestion list that includes things outside your current visible context. I
emphasize the word visible here since what is suggested by hippie completion is dictated by
what is currently being opened in PyCharm.

Let's see this feature in action. Close any file you have open in the PyCharm editor and
open the http_status.py file, which can be found in the Chapter04/CodeCompletion
folder of our repository. The file currently contains the following code:

import requests

SITES = [
 'http://google.com',
 'http://python.org',
 'http://www.python.org/psf/',
 'http://www.packtpub.com/tech/Python'
]

def get_status(url):
 res = requests.get(url)
 return res.status_code

if __name__ == '__main__':
 get_status('http://p')

Editing and Formatting with Ease in PyCharm Chapter 4

[104]

In the current script, we have a short function, get_status(), that takes in the address of
a website, attempts to make a GET request using the request module, and returns the
status code of the response the program receives. We also have a list of websites, stored in
the SITES variable, that we can pass as the parameter for get_status(). If you are not
familiar with this procedure for using the requests library, don't worry, as the point that
we are trying to make here does not require you to be.

In the main scope of our program, we are trying to call get_status() on one of the
websites listed in SITES, specifically one that starts with a p. Here, we can easily type it
ourselves, or move the cursor to the line of code that contains that specific site, and copy
and paste it in. However, hippie completion offers the ability to expand the string we are
typing efficiently.

While the cursor is right after the letter p in the last line of code, evoke the hippie
completion shortcut (option / for macOS, Alt / for Windows). You will see that every time
you evoke the action, hippie completion will expand the code with each of the various
possible options (psf, python, packtpub) that were included in the current scope. This is
because hippie completion looks for anything that starts with a p in our scope and context.

Many grow to appreciate the hippie completion feature quickly after they start using it.
This is understandable as, generally speaking, looking for what is in the current scope and
context will be more likely to give us relevant suggestions than a general code completion
option. Doing this is undoubtedly much faster and more efficient than the other two
options we listed previously (manual typing and copying/pasting) when we want to look
for things in our current context.

I have been using the words scope and context without explaining their meanings. In
general, they are used to denote what you recently typed or have opened. Indeed, similar to
how hippie completion suggested applicable options resulting from items in the SITES
variable in the preceding example, it can do the same thing for external files that have been
opened in the PyCharm editor.

This actually opens up a new level of efficiency and flexibility—imagine you are working
with a text file in a Python program and you need to hard-code in some strings from that
text file. Now, if you have that text file open in another tab in the editor, hippie completion
will be able to access that text file and give you relevant suggestions when evoked. Feel free
to try out this feature by opening the sample.txt file (which contains more random
strings that start with the letter p) in your PyCharm editor and go back to http_status.py
to evoke the shortcut again.

Editing and Formatting with Ease in PyCharm Chapter 4

[105]

Intentions
Code completion support in PyCharm is not limited to typing suggestions. In other words,
you can take advantage of various features so that you can format/edit the code after it has
already been typed up. Specifically, intention actions are possible ways to analyze and alter
a completed line of code; this feature is displayed as a yellow light bulb icon, as illustrated
in the screenshot that follows:

Open the sqrt_floor.py script, which is in the same subfolder that we have1.
been working on, Chapter04/CodeCompletion. The script contains the
following code, including a function that returns the greatest integer that does
not exceed the square root of the input parameter. This is called sqrt_floor():

from math import sqrt

def sqrt_floor(x):
 return int(sqrt(x))

if __name__ == '__main__':
 sqrt_floor(10)

Note that sqrt_floor() takes advantage of the sqrt() function from
the math module.

Now, move your cursor to the first line of the script and leave it there. The2.
intention icon should appear as follows:

Intentions in PyCharm

Editing and Formatting with Ease in PyCharm Chapter 4

[106]

Hover over this icon and open the drop-down menu, which should contain one3.
option saying Convert to 'import math'. Here, the intention capability has
scanned through the code we currently have and looked for better ways to
structure and optimize it. Sometimes, the light bulb is red and has an
exclamation point on it, indicating that there are actual errors in the code.

Not stopping at detecting errors and showing warnings, the intention also
suggests a list of actions to take to address the detected problem—this is
the drop-down list included in the intention icon.

Going back to our example, we can see that intention has suggested that we,4.
instead of importing the sqrt() function from the math module, import the
whole math module itself.

Now, this fix won't make any difference in terms of efficiency for our
current small-sized example but imagine a situation where you are
importing a large number of classes and methods from the same module.
In that case, it might make the code better (and definitely more readable)
to simply get the whole module itself.

So, what actually happens when we choose to apply a suggestion from the Intention drop-
down menu? For our current example, once we choose the Convert to 'import
math' option, PyCharm will mutate our current code into the following:

Effect of intention actions

Editing and Formatting with Ease in PyCharm Chapter 4

[107]

So, instead of from math import sqrt, we now have import math. However, also
notice that, in the sqrt_floor() function, math.sqrt(x) has replaced sqrt(x). This
change is necessary since we are now importing the whole math module, so we need to
specifically pick out the sqrt() function from it. With that being said, PyCharm
automatically implements this change for us.

Again, this feature does not seem like much in our current example, but you can imagine
and appreciate how much this feature would help in a large project where classes and
methods are used from multiple modules and libraries. This intention feature is the perfect
example of code completion and its intended functionality—taking all the nitty-gritty away
from your development process and keeping you on track with regard to the big picture of
your project.

In case you are wondering, intention actions are not limited to just changing the way we
import packages and modules into Python programs. In fact, we can customize and adjust
which intention actions are available for code completion in PyCharm. This is done in the
settings, which we will be discussing in the following subsection.

Customizing your code completion engine
With all the code completion features available in PyCharm, a developer will be able to
significantly increase their productivity—specifically their code output. However, not
everyone has the same preference for development environments (some people prefer to
stick with minimal text editors, however experienced they are at programming); in the
same way, not everyone has the same preference for code completion. Some might want a
more hands-on code completion engine assisting them with every line of code they write,
while others might prefer to work on their own and only evoke code completion when they
really need help referencing obscure APIs.

This is why PyCharm provides the option to customize various aspects of its code
completion support. In this section, we will be looking into some of these aspects so that
you can tailor code completion support in PyCharm to your own preferences.

To open the settings for code completion, go to your PyCharm settings window and
navigate to Editor | General | Code Completion.

Editing and Formatting with Ease in PyCharm Chapter 4

[108]

The window should now look like the following:

Code completion settings window

Editing and Formatting with Ease in PyCharm Chapter 4

[109]

As you go through the specific options (which I recommend you do), you will see a
comprehensive list of all the customizations and adjustments you can make to your code
completion engine. In the following subsections, we are only going through a number of
basic and often used options so that you have a better starting point before exploring other,
more subtle options.

Match case
Located at the top of the window, this option specifies whether items in the suggestion list
should match the case of whatever you are typing. For example, if I wanted to type in an
exception expression for the KeyboardInterrupt exception in Python and the Match case
option is enabled, I would have to type a capital letter K for the correct class name to be
included in the suggestion list. Next to the Match case checkbox, you can also choose only
the first letter's case should be matched or whether this should apply to all the letters.

I personally always disable this checkbox so that I only have to type in, for example, a
lower-case k to take advantage of code completion. However, like everything we have seen
in code completion (and for that matter, like everything in programming), there is a trade-
off to this practice. Specifically, if Match case is disabled, sometimes the suggestion list
might be populated by many more irrelevant options, which would make finding the
correct API more difficult. In this case, you would have to continue typing so that the
suggestion list is narrowed down.

Sorting suggestions alphabetically
As its name suggests, this option allows you to sort the items in the suggestion list in
alphabetical order. This feature is useful for long suggestion lists that would require the
developer to scroll through them carefully to find what he or she is looking for if they were
not ordered alphabetically.

On multiple occasions, we have seen the dynamic nature of PyCharm, and it is once again
demonstrated in this feature. Specifically, while interacting with a suggestion list in the
editor, you can change the order of the items in the list at any time by clicking on the icon
located in the bottom-right corner of the suggestion window.

Editing and Formatting with Ease in PyCharm Chapter 4

[110]

This feature is illustrated in the following screenshot:

Changing code completion suggestion order dynamically

Showing the documentation popup in [...] ms
If this feature is enabled, every time an item in a code completion suggestion list is
highlighted (that is, when you move the cursor to that item), PyCharm will display the
documentation for that specific item (after the specified time period). The advantage of this
feature is that you can go through the documentation of all the suggested items
dynamically as you simply move the cursor down the items.

This is especially beneficial when you are working with classes and methods that have
similar APIs. We will discuss this feature, along with other documentation-related
functionalities, in the last section of this chapter.

Parameter information
In the middle of the window, we can see various code completion options regarding
parameters:

Show parameter name hints on completion
Show the parameter info popup in [...] ms
Show full method signatures

These options are self-explanatory, and the options themselves are generally useful.

Editing and Formatting with Ease in PyCharm Chapter 4

[111]

If you are not familiar with the term method signatures, it denotes the fully
declared method name, along with all the parameters and potentially
returned types.

All in all, I suggest that you have all three parameter options on so that you get the
necessary information about the parameter of a method or function while interacting with
it in your Python programs.

Intentions
We looked at intentions previously. These are predetermined options that can quickly
reformat your code with a click of a button. To customize which intention options are
available, open the settings window, navigate to Editor | Intentions, and scroll down to the
options for Python:

Intentions in PyCharm

Editing and Formatting with Ease in PyCharm Chapter 4

[112]

As you select/deselect each option, you are choosing whether PyCharm should include that
specific option in the drop-down menu whenever an intention popup appears.

The first thing to note is that there are numerous potential options for intentions, even if we
are just focusing on Python. Obviously, not all the options will be included in every
intention drop-down menu (as we saw earlier); in fact, PyCharm filters out irrelevant
options from this list and only leaves behind those that can actually be applied in a specific
situation.

Secondly, as you select each option, the panel on the right-hand side of the window will
adjust itself to display the appropriate information about the option in question. For
example, the preceding screenshot displays information on the option of converting old
string formatting APIs into f-string literals.

For those of you who are not familiar with this f-string is a feature I use
throughout the code repository of this book. It was implemented in
Python 3.6 to provide a better and more readable way to format strings.
However, many online tutorials, articles, and blogs still use %-formatting
and str.format() in their materials.
This, in turn, discourages other Python users who are reading these
materials even more strongly from taking advantage of f-string. However,
with PyCharm, you can easily convert those old formatting APIs into f-
string literals using PyCharm's intentions.

Again, you have the option to fully specify which options you want PyCharm to utilize in
its code completion support. With that being said, similar to my advice with other
customizations, it is generally a good idea to leave all the options enabled—you never
know when an option will become useful when you are working on a project.

Collecting runtime types
In this section, we will be learning how to improve our experience when using PyCharm
code completion—sharing runtime data. In general, the logic that's used for PyCharm's
code completion engine is efficient at predicting which suggestions are applicable to what
you are currently typing. However, programming conventions and best practices are ever-
changing and so the code completion engine needs to adjust itself to meet these changes.

We have seen that one of the most important aspects of code completion is suggesting and
encouraging good styling, and failure to adjust quickly will negatively affect this feature.
This is why it is important for any good code completion engine to collect and analyze the
runtime data of its users so that it can refine its logic.

Editing and Formatting with Ease in PyCharm Chapter 4

[113]

With that being said, protecting your data is just as, if not more, important than having
good, self-adjusting code completion logic. PyCharm, therefore, allows you to choose
whether you want your runtime data to be collected (and used for the improvement of its
code completion) or not.

Note that this option is disabled by default, which means you have to
enable this option before PyCharm can collect your data.

Furthermore, the runtime data that's collected simply involves data that's generated when
you debug a program, as opposed to when you run it. All in all, I personally think enabling
this feature is an easy and effortless way to help improve code completion in PyCharm. To
do this, go to the General settings and navigate to Build, Execution, Deployment
| Python Debugger. Then, check the box that corresponds to the option, as illustrated by
the following screenshot:

Collecting runtime types

That's all you need to do. From now on, every time you choose to debug your program,
data regarding runtime types will be collected and sent to JetBrains. Potential
improvements to the code completion engine will be included in future updates of the
software.

Editing and Formatting with Ease in PyCharm Chapter 4

[114]

Troubleshooting
Just like any feature in any software, sometimes code completion in PyCharm doesn't work
as intended, causing frustration and headaches for its users. In this subsection, we'll discuss
some common problems PyCharm users often encounter while working with code
completion.

Indexing process
We have already emphasized the importance of waiting for PyCharm's indexing
process—when PyCharm scans through all the project files and folders to adjust its code
completion logic and other support features—to finish before working with various
features, but it is worth reiterating again. This is because code completion utilizes the
information that was gathered from the indexing process.

Power save mode
Located at File | Power Save Mode, this feature, as its name suggests, is used to conserve
the power of your computer. When turned on, power save mode will stop running all
background tasks, such as error highlighting, inspections, and, of course, code completion,
and will display the following message in the bottom-right-hand corner of your project
window:

Power save mode and code completion

Simply go to File | Power Save Mode again to turn the feature back off, and code
completion will be able to function properly again.

Editing and Formatting with Ease in PyCharm Chapter 4

[115]

Out-of-scope files
If you are confused about why APIs that are included in some external libraries or scripts
are not showing up in your code completion suggestion lists, chances are the files
containing those APIs are not included as part of your project:

For an external Python file containing classes and methods you'd like to include
in code completion suggestion lists, check to see if it is inside the project folder
you are working on and if it is currently marked as a plain text file (it shouldn't
be).
For third-party packages and libraries, make sure to actually install them
(globally or in the current virtual environment) and add them to the
requirements.txt file of your project. We have seen that requirements.txt
plays an important role in detecting unmet dependency requirements and that
that information is used for code completion purposes as well.

Troubleshooting also marks the end of our discussion on code completion in PyCharm.
Throughout this section, we have discussed some of the most common and most powerful
features offered by PyCharm's code completion support.

There are, of course, many more available features and functionalities included in PyCharm
that you might find useful for your development process. Therefore, it is important that
you keep exploring and playing around with various options for code completion so that
you find the best settings and customizations for your own preferences.

After code completion, the second topic regarding editing and formatting Python code
within PyCharm is refactoring. Let's have a look at this in detail.

Refactoring
The ability to effectively refactor your code is a characteristic any good programmer should
have, but there can be confusion regarding what actually constitutes refactoring, as well as
how to do it well in Python development.

In this section, we will discuss the case for refactoring, see how it helps us structure and
format our code (specifically Python), and learn what options PyCharm offers to assist us in
this process.

Editing and Formatting with Ease in PyCharm Chapter 4

[116]

What is refactoring?
As we mentioned previously, there might be confusion as to what the process of refactoring
code actually means. Before moving on to discuss any specifics, let's get the definition
straight.

Formally, code refactoring is the process of changing the structure and organization of
your code. The term factoring in computer science means splitting/decomposing a given
system into smaller components; to refactor, then, is to rework on that decomposition
process. The purpose of refactoring is to improve various aspects of a program, such as its
readability and the simplicity of its code.

Note that these aspects do not directly affect how the program functions,
but the process of maintaining and extending the program heavily
depends on how readable and simple its code is. This is why refactoring is
such an important process in programming and, again, a sign of a good
developer.

Let's consider a quick example: the problem of representing and interacting with points on
a 2D, Cartesian coordinate system. For example, the origin of the Cartesian plane is (0, 0)
(zero for the x-coordinate and zero for the y-coordinate); point (3, 2) is 3 units away from
the origin to the right with respect to the x-axis, and 2 units above with respect to the y-axis.

For now, we are looking to write a program to calculate the distance between two given
points. Mathematically, the distance between (x1, y1) and (x2, y2) (with the x's and y's being
real numbers) is as follows:

Now, navigate to the Chapter04/Refactoring folder and consider the code in the
point_v1.py file:

from math import sqrt

def tuple_distance(tuple1, tuple2):
 return sqrt((tuple1[0]-tuple2[0])**2 +(tuple1[1]-tuple2[1])**2)

if __name__ == '__main__':
 x = (1, 0)
 y = (5, 3)
 print(f'Distance between {x} and {y} is {tuple_distance(x, y)}')

Editing and Formatting with Ease in PyCharm Chapter 4

[117]

In this script, we are using two-element tuples to represent 2D points—the first element is
the x-coordinate, while the second is the y-coordinate. Here, we have a function called
tuple_distance() that takes in two tuples and distributes and applies operations on the
elements in those tuples so that a quantity corresponding to the distance between the points
the tuples represent is worked out and returned.

Finally, in the main scope of the program, we declare two tuples representing points (1,
0) and (5, 3), calculate the distance between them using tuple_distance(), and print
it out in an f-string. If you like, run it. You should get the following output:

Distance between (1, 0) and (5, 3) is 5.0

This program works fine for all intents and purposes right now. But you can imagine the
problems that might occur when representing points using tuples in a large system—how
to distinguish them from other actual two-element tuples. Accessing the x- and y-
coordinates of a point is equivalent to tuple indexing, which is not readable and might
cause confusion. We can see that, even in the simple task of calculating the distance
between two points, the tuple_distance() function has to contain a rather long and
awkward line of code consisting of many operations.

Following an object-oriented mindset, we can try to design a class for 2D point objects. In
the same subfolder that contains point_v1.py, open point_v2.py, which contains the
following code:

from math import sqrt

class Point():
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return f'Point ({self.x}, {self.y})'

 def __add__(self, p):
 return Point(self.x + p.x, self.y + p.y)

 def __sub__(self, p):
 return Point(self.x - p.x, self.y - p.y)

 def distance(self, p):
 diff = self - p
 distance = sqrt(diff.x**2 + diff.y**2)
 return distance

Editing and Formatting with Ease in PyCharm Chapter 4

[118]

if __name__ == '__main__':
 p1 = Point(1, 0)
 p2 = Point(5, 3)
 print(f'Distance between {p1} and {p2} is {p1.distance(p2)}')

Here, we have a Point class whose initializer function takes in two parameters—x and
y—which correspond to the coordinates of the specific point, respectively. Inside the class,
we have the customized __add__() and __sub__() methods, which allow us the perform
coordinate-wise additions and subtractions. We also have the customized __str__()
method for better string representation (more on this later).

If you are not familiar with class methods that have double underscores surrounding their
names, they are called dunder (double-under), or magic methods in Python. Dunder
methods allow you to mutate the default behavior of built-in methods for class objects. By
using dunder methods in your custom class, you can improve the readability of the
corresponding class methods.

For example, the __add__() and __sub__() methods specify how addition and
subtraction between class objects is performed; the __str__() method specifies the
string representation of the class object. For more information, you can check out the
article titled Enriching Your Python Classes with Dunder (Magic, Special) Methods in the Further
reading section at the end of this chapter.

More importantly, we also have the distance() class method, which computes the
Cartesian distance between the calling Point object and another Point object. Note that
this method applies the subtraction operation on the two Point objects—diff = self -

p. This is appropriate since we have customized our own class subtraction method in
__sub__().

Finally, in the main scope, we declare the two points we used in the previous example that
were used as Point objects and display the distance between them using the distance()
class method. Run the program and you will receive the following output:

Distance between Point (1, 0) and Point (5, 3) is 5.0

The first difference to note between the two versions of the program is the readability that
the API of the Point class provides. As we have said, the tuple_distance() function in
the first version of the program contains some awkward operations that might not be
descriptive of what we are trying to achieve (which is the distance between two 2D
Cartesian points), while the representation of Cartesian points using two-element tuples
has problems of its own.

Editing and Formatting with Ease in PyCharm Chapter 4

[119]

Additionally, using the Point class, we can simply call the distance() class method to
handle all the logic for us. This provides another level of encapsulation for the program so
that external users of the Point class will not, and cannot, interact with the underlying
logic of the class.

Even though we get the exact same information as the old tuple_distance() function
and we have to write more code, we can see that this way of representing point coordinates
in an object-oriented way and making use of the ability to overwrite built-in functions can
help future users of the code have a better time working with, maintaining, and extending
the program. For example, you can go further and customize the __str__() class method
to give a different string representation.

This Point class is an example of the refactoring process in programming—you take a
specific portion of your program (this can be a function, a class, or simply a block of code)
and restructure and reorganize it without actually changing the functionality of the code.
This gives us better readability and maintainability.

There are, of course, other forms of refactoring aside from creating a new class, as we've
already mentioned. While we will not discuss the refactoring process itself and its other
forms further (since they are not the focus of this book), we will learn more about various
aspects of refactoring from PyCharm's support for this process, starting from the upcoming
subsection.

Refactoring in PyCharm
Keeping the fundamentals of refactoring in mind, we will now move on to see how
PyCharm supports various tasks and actions in this topic. Still considering and making
changes to the current Point class that we have, we will go through specific refactoring
techniques that are most commonly used and applicable, even outside the context of
writing a Python class.

Throughout the following subsections, we will still be working with the
Chapter04/Refactoring subfolder, specifically the point_v3.py file.

Editing and Formatting with Ease in PyCharm Chapter 4

[120]

Renaming
Before you start wondering—yes, simply renaming things in a program is still an aspect of
refactoring. However, there is more subtlety in renaming than you might imagine. For
example, say you'd like to rename a variable in a Python program. This process would be
trivial if that variable was only used once or twice throughout the whole program, but if the
program you are working with was large enough, and the variable is shared among many
components of the program, renaming the variable might prove extremely difficult and
time-consuming.

One potential solution is to use the find and replace functionality (which is commonly
applicable in this case) to find all the locations in the program that contains that specific
variable name and then replace it with the new name. However, there is a downside to
using the find and replace (or for that matter, find) functionality—false positives.

For example, if you type in the variable name in question in the search box, any places that
contain that specific string will be returned. So, if there were string objects in the program
that contain that variable name, or if there were other variables whose names correspond to
the original variable name (for example, 'x' will be found in 'f_x'), a lot of unintended
consequences could result from using find and replace.

Undoubtedly, renaming is not limited to variable names. Often, it's for developers who
want to rename specific functions, classes, or even filenames in their program. The same
problem is faced in renaming functions and classes if we use find and replace, which will
not be able to handle renaming filenames anyway.

So, let's examine the functionality of PyCharm's refactoring support as a way to rename
various elements of our Python programs. Navigate to the point_v3.py file, which
extends from the point_v2.py file that we previously considered. This new file contains
the same Point class API, with the addition of a draw() static method, which will be used
to draw the corresponding point in the 2D Cartesian plane:

from matplotlib import pyplot as plt

class Point():
 ...

 @staticmethod
 def draw(x, y):
 # set up range of the plot
 limit = max(x, y) + 1

 fig = plt.figure()
 ax = fig.add_subplot(111)

Editing and Formatting with Ease in PyCharm Chapter 4

[121]

 ax.set_aspect('equal')

 # lines corresponding to x- and y-coordinates
 plt.plot([x, x], [0, y], '-', c='blue', linewidth=3)
 plt.plot([0, x], [y, y], '-', c='blue', linewidth=3)

 plt.scatter(x, y, s=100, marker='o', c='red') # actual point

 ax.set_xlim((-limit, limit))
 ax.set_ylim((-limit, limit))

 # axis arrows
 left, right = ax.get_xlim()
 bottom, top = ax.get_ylim()
 plt.arrow(left, 0, right - left, 0, length_includes_head=True,
 head_width=0.15)
 plt.arrow(0, bottom, 0, top - bottom,
 length_includes_head=True,
 head_width=0.15)

 plt.grid()
 plt.show()

if __name__ == '__main__':
 p1 = Point(1, 0)
 p2 = Point(5, 3)

 draw(p2.x, p2.y)

Feel free to look at and study the draw() method, but note that it is not necessary to
understand its logic for us to carry on our subsequent discussions in this section. For now,
we will only focus on what we already discussed in the previous example—the __add__(),
__sub__(), and distance() class methods. Each of these methods handles the logic of
the interaction between the calling object and another Point object, which is represented as
the p parameter.

In these methods, the character p is currently not very readable; you might not be able to
guess that the parameter indicates another Point object. To make it clear what this
parameter represents, we will rename it from p to other.

Editing and Formatting with Ease in PyCharm Chapter 4

[122]

To do this for each method, move your cursor to any occurrence of p inside the method and
go to Refactor | Rename... to start the renaming process:

Renaming in PyCharm

Also notice the keyboard shortcut associated with the action (in my case,

as you can see, the macOS shortcut is F6). As we mentioned in the
previous chapter, remembering shortcuts for tasks and actions that you
use often will help you become increasingly productive.

As you choose the Rename... action, a pop-up window will appear, asking for the new
name of the component in question (in this case, it is our variable, p). Type the new name in
the box for the variable—other—and hit Refactor. You will see that all the instances of p
have been replaced with other. For example, the __add__() method should look as
follows after this process:

 def __add__(self, other):
 return Point(self.x + other.x, self.y + other.y)

Do this for all three methods to improve their readability.

It is important to note that this process can be applied to renaming functions and classes in
the same manner. All occurrences of the element to be renamed within the whole project
will be changed appropriately so that there is no naming inconsistency.

Let's do the same for filenames:

Open the point_client.py file, which contains the same usage of the Point1.
class as the previous example. However, we are doing this in another file now, so
an import statement is necessary:

from point_v2 import Point

if __name__ == '__main__':

Editing and Formatting with Ease in PyCharm Chapter 4

[123]

 p_x = Point(1, 0)
 p_y = Point(5, 3)
 print(f'Distance between {p_x} and {p_y} is
 {p_x.distance(p_y)}')

Let's say we'd like to rename the point_v2.py file to just point.py, but we are2.
wondering how other files that import elements of point_v2.py in our project
(namely point_client.py) will be affected.
First, in the Project panel (on the left-hand side of the project window), select the3.
point_v2.py file and evoke the Refactor | Rename action again.
In the renaming pop-up window, type in point.py and you will see that not4.
only the name of the file itself was changed appropriately, but also that the
import statement in point_client.py was converted:

from point import Point

This is quite a powerful feature since it takes care of all the instances that use and interact
with the element that we'd like to rename in a consistent way.

Inline variable
Inline variable refactoring is used to remove redundant usage of variables. Consider our
current distance() method in the Point class:

def distance(self, p):
 diff = self - p
 distance = sqrt(diff.x**2 + diff.y**2)
 return distance

We can see that, after the distance variable is declared, it is immediately returned by the
method. We would like to combine these two lines of code into one so that we can simply
return the sqrt(diff.x**2 + diff.y**2) expression.

However, doing this, you might argue, can be seen as the opposite of how we defined the
general purpose of refactoring; after all, by getting rid of a variable, we are potentially
making our code less readable and extendable. The readability of our code will not be
affected since we can easily guess that the expression being returned by a method named
distance() is a distance quantity. Since the variable is being returned right away, there is
no use in making the method extendable and allowing the variable to be used further. All
in all, we can safely shorten and make this code simpler without any significant downsides.

Editing and Formatting with Ease in PyCharm Chapter 4

[124]

This process is generally known as inlining variables. Let's go over this now:

Getting back to our specific example in the distance() method, go ahead and1.
select the two lines of code that we wish to combine and go to Refactor |
Inline..., like so:

Inlining variable

A pop-up window will appear, informing us about the total number of instances2.
where the variable will be inlined (there should be only one in this specific case).
After this, the distance() method will be transformed into the following code,
which is what we wanted:

def distance(self, p):
 diff = self - p
 return sqrt(diff.x ** 2 + diff.y ** 2)

We can see that the method is now more concise, but no readability has been lost. In
practice, you also have the option of inlining various other components of a Python
program (constants, fields, parameters, methods, and superclasses) using the same feature
in PyCharm. More information can be found at
www.jetbrains.com/help/pycharm/inline.html.

https://www.jetbrains.com/help/pycharm/inline.html

Editing and Formatting with Ease in PyCharm Chapter 4

[125]

Extracting methods
Extracting methods is arguably one of the most common aspects of refactoring. In general,
it is the process of taking a block of code, which specializes in a specific task, outside of the
current context it is being used in and converting it into a method/function.

Doing this is generally good practice in programming and has the advantages of readability
and extendibility. For example, by moving a specific block of code into its own
method/function, that logic can be reused in other places in the program, without the
programmer having to copy and paste that block of code. Having some functionality that is
used a lot through a program inside a separate function is intuitively a good way to
structure your code as well.

Turning our attention to the aforementioned draw() method, we can see that the usage of
the arrow() function from the matplotlib.pyplot module to draw the axis arrows (lines
45 - 48) is quite repeatable. In other words, we would like to extract these two lines of code
into a function that takes in the four measurements of the axis (left, right, top, bottom)
and evokes the plt.arrow() function twice. Let's get started:

To do this, select the four lines of code and go to Refactor | Extract | Method... to1.
perform the extraction (note the keyboard shortcut for future use):

Extracting a method

Editing and Formatting with Ease in PyCharm Chapter 4

[126]

Another familiar pop-up window will appear and ask for the name of the2.
method to be extracted.
We will enter draw_arrow for now.3.
Also, note that you can specify which parameters the newly extracted method4.
will take in the Parameters section of the pop-up window by checking and
unchecking particular options.
Finally, Signature preview gives you one last chance to check what the signature5.
of the method will look like before we actually extract the code.
For now, hit the OK button. You will see that not only are the two instances of6.
the plt.arrow() function being called moved to a completely new function
with the appropriate signature, but also that the code within the old draw()
function is also edited appropriately (that is, the new draw_arrow() function is
now being called within draw()):

 ...
 # axis arrows
 left, right = ax.get_xlim()
 bottom, top = ax.get_ylim()
 Point.draw_arrow(bottom, left, right, top)

 plt.grid()
 plt.show()

@staticmethod
def draw_arrow(bottom, left, right, top):
 plt.arrow(left, 0, right - left, 0, length_includes_head=True,
 head_width=0.15)
 plt.arrow(0, bottom, 0, top - bottom,
 length_includes_head=True,
 head_width=0.15)

Also note that, if the code being extracted returns some value, the new method will also
return the same value in a consistent way. This feature allows us to achieve a fairly complex
refactoring task with the click of a button.

Editing and Formatting with Ease in PyCharm Chapter 4

[127]

Conversion between method and function
At this point, draw() and draw_arrow() are static methods of the Point class, and
therefore can only be called using Point.draw() and Point.draw_arrow(), respectively.
Let's say we'd like to convert these two methods into functions outside the scope of the
Point class so that they can be called in a simpler way. To do this, we can take advantage
of the intention feature that we discussed earlier in this chapter:

Specifically, move your cursor to the signature of either method, wait for the1.
Intention drop-down menu to appear, and choose Convert static method to
function:

Method/function conversion via intention

Do this for both methods. You should end up with them being converted into2.
functions that are beyond the scope of the Point class. Specifically, your code
should look like the following:

class Point():
 ...

 def distance(self, p):
 diff = self - p
 return sqrt(diff.x ** 2 + diff.y ** 2)

def draw_arrow(bottom, left, right, top):
 plt.arrow(left, 0, right - left, 0, length_includes_head=True,
 head_width=0.15)
 plt.arrow(0, bottom, 0, top - bottom,
length_includes_head=True,
 head_width=0.15)

def draw(x, y):
 # set up range of the plot

Editing and Formatting with Ease in PyCharm Chapter 4

[128]

 limit = max(x, y) + 1

 ...

if __name__ == '__main__':
 p1 = Point(1, 0)
 p2 = Point(5, 3)

 draw(p2.x, p2.y)

Notice that the call to draw() in the main scope and the one to draw_arrow() inside the
draw() function itself do not involve the Point class anymore—the two are now
independent functions inside our point.py script.

Exporting a function to another file
Sometimes, to create more encapsulation and modularity for your Python program, you
might want to move some functions that perform very specific tasks to another file. Then,
other programs can simply import those functions and use them inside their logic. We see
this the most in Python programming with util.py files, which are also in most external
packages and modules that contain various miscellaneous utility functions.

To simulate this process, let's try moving the two functions we just converted from class
methods—draw() and draw_arrow()—into another Python script. Let's get started:

Move your cursor to the signature of one of the two functions (you can also1.
highlight the whole function) and select Refactor | Move... (as always, keep track
of the keyboard shortcut for future usage). After this, a familiar pop-up window
will appear:

Editing and Formatting with Ease in PyCharm Chapter 4

[129]

Moving functions to a new file

In the To prompt (highlighted in the preceding screenshot, where you specify2.
which file to send the selected function to), enter point_util.py (or any name
for the script that you prefer) within the current path. Note that, even if the file
we are specifying does not exist yet, PyCharm will create it automatically for us.
Hit Refactor and the exporting process starts. Afterward, go ahead and do the3.
same thing for the other function (out of draw() and draw_arrow()), while
making sure that the destination file is the same for the two files. You can also
move several components to another file in bulk by checking them in the Bulk
move section, which is in the middle of the pop-up window (illustrated in the
preceding screenshot).

A powerful thing about this feature is that import statements are generated according to
the interaction between files. In our example, the newly created point_util.py file
utilizes the matplotlib library in its functions, so the library was imported automatically
there. The matplotlib library was also removed from the point.py file as it is not needed
in that scope anymore. Instead, point.py is now importing the draw() function from
point_util.py appropriately.

Editing and Formatting with Ease in PyCharm Chapter 4

[130]

Throughout several topics in this section, we have learned the specifics of some of the most
common refactoring techniques in Python programming that PyCharm handles seamlessly.

A dynamic approach to documentation
No programmer can doubt the importance of documentation in software engineering and
development. With that said, the process of creating documentation for a program can be
quite tedious. Furthermore, the end result might not even be effective if the person doing
the documenting was not following standard practices.

Keeping that in mind, PyCharm looks to streamline this process of documentation and
make it as straightforward and seamless as possible. Regarding documentation, there are
two components we will consider for this process: viewing and creating documentation.
We will learn that PyCharm offers great support for both processes.

Docstrings – documentation for Python
Documentation in Python is known as docstrings, defined as a string literal that is placed
before any of the statements in a module, function, class, or method in Python. You can
look at examples of Python docstrings by going into the source code of the various built-in
Python functions. It is also recommended that any custom API you write also has the
appropriate docstrings for readability and maintainability.

The most noteworthy subtlety in creating docstrings is the practice of using triple-double
quotes to surround a docstring (which we will see examples of in the next subsection). For
more details about docstring conventions, take a look at this PEP article:
www.python.org/dev/peps/pep-0257/.

Creating documentation
In this subsection, we will look into the process of writing a docstring for functions with the
help of PyCharm. Let's get started:

Copy the following code into a Python script in a PyCharm project. Alternatively,1.
navigate to the Chapter04/Documentation folder in our code repository and
open the prime_check.py file, which contains the same code:

import sys
from math import sqrt

https://www.python.org/dev/peps/pep-0257/

Editing and Formatting with Ease in PyCharm Chapter 4

[131]

def prime_check(n: int) -> bool:
 # TODO: docstring goes here

 if n < 2:
 return False

 limit = int(sqrt(n)) + 1
 for i in range(2, limit):
 if n % i == 0:
 return False # return False if a divisor is found

 return True # return True if no divisor is found

if __name__ == '__main__':
 input_ = input('Enter a number: ') # get user input

 # handle invalid inputs
 try:
 num = int(input_)
 except ValueError:
 print('A number was not entered.')
 sys.exit(0) # quit if the input is invalid

 # print out the result
 if prime_check(num):
 print('It is a prime number.')
 else:
 print('It is not a prime number.')

In short, the preceding program asks users for an integer, and prints out a
message indicating whether that integer is a prime number or not. Again, note
that a full understanding of the logic that's included in this program is not
necessary.

Now, let's turn our attention to the prime_check() function, which starts from2.
line 5 in the script. This function does not have any documentation/docstring
inside it yet, and it is our job to enter an appropriate docstring there (as indicated
by TODO).

Editing and Formatting with Ease in PyCharm Chapter 4

[132]

Navigate to the line that contains the TODO, delete it, and type in a triple-double3.
quote (which PyCharm will match-complete by inserting another triple-double
quote after the cursor), like so:

def prime_check(n: int) -> bool:
 """[Your cursor is here]"""

 if n < 2:

Again, we are using triple-double quotes because it is a convention of writing4.
Python docstrings. Now, hit the Return/Enter key, and PyCharm should expand
the current docstring automatically. It should look as follows:

def prime_check(n: int) -> bool:
 """
 :param n:
 :return:
 """

 if n < 2:

We can see that the function parameters are scanned by PyCharm and that that5.
information is used to generate the appropriate template for our docstring here.
Our job is to fill in the blanks and complete the docstring with specific
information about the function. Finish the docstring by entering the following in
your code:

def prime_check(n: int) -> bool:
 """
 Check whether an integer is a prime number of not.
 Generally, the function goes through all odd numbers
 less than the square root of the input integer, and
 checks to see if the input is divisible by that number.

 :param n: the integer to prime check
 :return: boolean
 """

 if n < 2:

Consider the generated template of the docstring after we hit Return/Enter to
expand the pair of triple-double quotes. :param and :return: are part of the
template, and will be included every time we expand a docstring in the same
way. Being highly customizable and accommodating to its users, PyCharm allows
us to change this format of docstring templates.

Editing and Formatting with Ease in PyCharm Chapter 4

[133]

Open PyCharm's general settings, go to Tools | Python Integrated Tools, and6.
focus on the Docstrings section in the window, as shown in the following
screenshot:

Customizing auto-docstring behaviors in PyCharm

Specifically, in the Docstring format section, you can change the predetermined7.
template of your docstrings. Aside from reStructuredText (the default option),
you can choose a Plain format (which will not generate anything in your
docstrings when you expand them), or various other formats such as Epytext,
NumPy, or Google.

In this section, we covered the process of creating documentation in Python. In the next
subsection, we will consider viewing Python documentation within PyCharm.

Editing and Formatting with Ease in PyCharm Chapter 4

[134]

Viewing documentation
Imagine a situation where you are using a specific method from one package, but you are
not entirely sure which parameters the method takes in and/or what its return type is.
Therefore, you need to go online and look into the documentation of the package for that
specific method.

As a PyCharm user, you can achieve the same thing with two simple actions: Quick
Definition and Quick Documentation. Still using the prime_check.py script from the
previous section, move your cursor to the line where we use the math.sqrt() function in
the prime_check() function; it should be around line 19.

Quick Documentation
Let's say we'd like to see the documentation of this function. We can choose View | Quick
Documentation for this (or its corresponding keyboard shortcut). You will see a pop-up
window showing that documentation, as follows:

Viewing documentation in PyCharm

What's more, you can also view the documentation for your own functions (or methods,
classes, and so on) using the same action since PyCharm scans through all code in its
projects. Move your cursor to the call to prime_check() in the main scope in the following
line (which should be around line 38):

if prime_check(num):

Editing and Formatting with Ease in PyCharm Chapter 4

[135]

If you evoke the same Quick Documentation action, you will be able to see the same
docstring that we entered earlier.

Quick Definition
Say the documentation alone doesn't provide enough information and you'd like to see
how a specific function is defined. Quick Definition, which operates in the same way as
Quick Documentation, can be utilized for this. While having your cursor at a specific API
call, go to View | Quick Definition to evoke the action.

For example, the following screenshot was captured when I evoked the feature on the call
to prime_check() in our example:

Viewing a definition in PyCharm

Overall, we can appreciate the powerful options PyCharm provides when it comes to
dynamically viewing documentation and definitions within the IDE. Significant time and
energy can be saved when programmers don't have to switch away from their development
environment to look for documentation, say, on the internet.

Editing and Formatting with Ease in PyCharm Chapter 4

[136]

Summary
Throughout this chapter, we examined PyCharm's features regarding various aspects of
programming, including code analysis, code completion, refactoring, and documenting. In
all of these processes, PyCharm's intelligent code analyzer provides smart and convenient
options for editing and fixing problems in your code in real-time and in a dynamic way.

Aside from a wide number of options the intelligent code analyzer can support, PyCharm
also allows users to customize the behavior of the analyzer to their liking. This can be
achieved in various sections of the general settings. Overall, these support features look to
improve your productivity as a developer in a way that is customized and beneficial to you.

In the next chapter, we will focus on a particular aspect of programming: version control.
We will learn about the specifics of the version control process with Git, and how PyCharm
supports and streamlines this process.

Questions
What levels of severity in terms of problems in a Python program are determined1.
by PyCharm's code analyzer?
What are some common problems that PyCharm can detect and help fix via its2.
intelligent code analyzer?
How is PyCharm's code completion support different from others?3.
What are some common code completion options that PyCharm offers?4.
What are common causes for PyCharm's code completion support not working?5.
What are some common refactoring options that PyCharm offers?6.
What options does PyCharm provide when it comes to documentation?7.

Further reading
For more information regarding what you learned in this chapter, you can refer to the
following links:

Mastering PyCharm, Quazi Nafiul Islam, by Packt Publishing (https:/​/​www.
packtpub.​com/​web-​development/​mastering-​pycharm)
Modern Python Development with PyCharm, by Pedro Kroger (https:/​/
pedrokroger.​net/​pycharm-​book/​)

https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://www.packtpub.com/web-development/mastering-pycharm
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/

Editing and Formatting with Ease in PyCharm Chapter 4

[137]

Code completion, JetBrains s.r.o. documentation
(jetbrains.org/intellij/sdk/docs/reference_guide/custom_language_suppo
rt/code_completion.html)
Intelligent code completion, Wikipedia (https:/​/​en.​wikipedia.​org/​wiki/
Intelligent_​code_​completion)
PyCharm: The Good Parts, by Nafiul Islam (http:/​/​nafiulis.​me/​pycharm-​the-
good-​parts-​ii.​html)
Hippie Completion in Eclipse, by Cédric Beust (https:/​/​beust.​com/​weblog/​2005/
03/​11/​hippie-​completion-​in-​eclipse/​)
Intention actions, JetBrains s.r.o. documentation (https:/​/​www.​jetbrains.​com/
help/​idea/​intention-​actions.​html)
Refactoring Python Applications for Simplicity, by Anthony Shaw, (https:/​/
realpython.​com/​python-​refactoring/​)
Enriching Your Python Classes With Dunder (Magic, Special) Methods, by Bob
Belderbos (https:/​/​dbader.​org/​blog/​python-​dunder-​methods)

https://www.jetbrains.org/intellij/sdk/docs/reference_guide/custom_language_support/code_completion.html
https://www.jetbrains.org/intellij/sdk/docs/reference_guide/custom_language_support/code_completion.html
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Intelligent_code_completion
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
http://nafiulis.me/pycharm-the-good-parts-ii.html
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://beust.com/weblog/2005/03/11/hippie-completion-in-eclipse/
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://www.jetbrains.com/help/idea/intention-actions.html
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://realpython.com/python-refactoring/
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods
https://dbader.org/blog/python-dunder-methods

5
Version Control with Git in

PyCharm
Version control is an essential part of software engineering and development, but it is a
considerably complex process, and therefore hard to get right. The process, in general, is
quite intimidating, especially to beginner programmers. However, as we will learn in this
chapter, PyCharm offers an intuitive and graphical interface that helps demystify version
control for its users.

This chapter will first cover the idea of version control and why it is important, both in
personal projects and group work. You will then learn about the most common version
control tool, Git, and how to integrate it into Python projects in PyCharm.

Using PyCharm to take care of our version control process will help us avoid the low-level,
nitty-gritty details that are usually involved in the process, leaving us free to focus on the
actual development tasks. Knowing how to facilitate version control with PyCharm will
also offer us a clearer idea of the extent to which PyCharm assists with almost all aspects of
Python software development.

The following topics will be covered in this chapter:

The idea behind the process of version control and its importance
How to use Git to facilitate adding, committing, pushing, merging, and
branching
The options and features PyCharm provides to streamline the version control
process

Version Control with Git in PyCharm Chapter 5

[139]

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm

During this chapter, we will be working with the Chapter05 subfolder in the
downloaded code repository

Version control and Git essentials
Hopefully, the fact that you are reading this chapter means that you already acknowledge
the importance of the process of version control in software development and in
programming in general. If you want to learn the specific options and features, PyCharm
offers to assist users during the process of version control, specifically with Git. Feel free to
skip to the next section, which is going to be more hands-on.

If, however, you'd like to learn more generally about the process and the details about Git
and GitHub, stick around, as this section will provide that information, which will be
essential as we move forward with the topic of this chapter.

What does version control mean?
In the general context of programming, version control denotes the process of using a
specific system to record and save changes and overall progress in directories and files so
that a programmer can come back to it later. If multiple separate changes have been applied
to a project that is under version control, you can even switch between these different
changes (versions) in the development process.

In software development, we are generally concerned with applying version control to files
containing the source code (scripts), but almost any file type in a computer can be version
controlled (images, videos, system files, and so on).

The simplest form of version control is something that most of us are already doing—file
backups. For example, as you are working on a project, each time you'd like to version
control the changes made, you can copy the entire project to a separate location in your
local computer. To facilitate multiple versions, each time you back up your project, you can
create a new folder with a timestamp containing that version of the project.

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Version Control with Git in PyCharm Chapter 5

[140]

This simple method is effective at helping us achieve what we want from version
control—progress made to a project is saved in separate version instances and it is possible
to go back to each of those versions. However, it is not without its disadvantages—errors
can be made and files can be copied to the wrong folders, and if the local drive of your
computer is damaged, everything that is version controlled in this way might be lost.

Nowadays, it is standard practice to use methods that take advantage of some sort of
database that can be accessed in a network of multiple systems. This is called distributed
version control and allows multiple agents to collaborate on a common project by applying
different changes to that project independently (given that there are no conflicts between
the changes).

Situations that require version control
I personally think the easiest and quickest way for a programmer to appreciate version
control is to imagine various scenarios, programming-wise, where things will become dire,
or even catastrophic if version control is not being implemented.

The scenario that can be imagined easily (which has also probably happened to you) is
when a programmer has made too many changes to a project that cannot be easily reverted
manually. For example, after two hours of implementing a specific feature for your
program, you decide that the feature is no longer desirable and would like to omit any
instance in the project where that feature is used. This is not an easy task to do manually,
especially if the feature is complicated and has complex APIs that are scattered throughout
different files of the project.

The much more efficient way to revert all the changes made is to save the project before any
changes of that feature are made and simply revert the project to that stage when you
decide not to implement that feature anymore. Instead of going through all the files and
folders that have been changed with regard to the feature, you can simply take a step back
and use a past version of the project.

Another reason to use version control, especially in today's industry environment, is its
efficient facilitation of collaborative work. Backing up your project to, say, a cloud version
control service such as GitHub allows others to see and make comments on that project, as
well as obtain the source code for themselves. Furthermore, members of a development
team can have a centralized code hub for their projects; specific roles can be assigned to
different members during the version control process (programming, reviewing, tracking
issues).

Version Control with Git in PyCharm Chapter 5

[141]

Using a cloud-based version control method also means that, even if you completely lose
everything in a given project on your local computer, you can retrieve it from the web
anytime. This practice additionally allows programmers to work on projects in a cross-
platform manner.

Git and GitHub
Git (along with its cloud interface GitHub) is undoubtedly the most common version
control tool in the field of programming and software engineering today. Even if you are
not using Git and GitHub to facilitate version control for your projects, you actually have
already interacted with GitHub in a sense when downloading the code repository for this
book!

In this section, we will go into details about how to get started as a Git user (if you are not
already one), and various options available for the facilitation of version control. Again, if
you are already an experienced Git user, feel free to skip to the next section to learn about
the integration of Git in PyCharm.

Downloading Git and registering for GitHub
To be able to utilize Git and GitHub for version control, you have to have two components
ready—a Git client on your local computer (used to communicate with the cloud service
GitHub) and a GitHub account (to be associated with all version control tasks that you will
perform).

Let's walk through the following steps to set up our Git and GitHub tools:

Go to git-scm.com/downloads and choose the download that corresponds to1.
your operating system.
By default, Git client is a command-line tool, but it is possible to utilize various2.
GUI tools from Git to make the process more intuitive. We will not be needing
these GUI tools, as PyCharm will take care of this process.
Next, you need to register for an account on GitHub. Head to www.github.com3.
and click on the Sign Up button to start the registration process.

With that, you are all set to be able to utilize various version control functionalities with Git
and GitHub. In the next few subsections, we will be considering various tasks and
commands that programmers commonly use in their version control process.

https://git-scm.com/downloads
https://github.com

Version Control with Git in PyCharm Chapter 5

[142]

Setting up a repository
The term repository is used to denote an overarching project that is version controlled with
Git. Given that there are two main components to working with Git (Git client and GitHub),
there are two separate processes you need to go through to set up a repository that is
version controlled and these are as follows:

Firstly, you need to initialize the project that is to be put under version control as1.
a repository on your local system. This can be done with a simple command (git
init), which is to be executed at the root directory of the project.
Second, you need to create a corresponding repository on GitHub. While logged2.
in with your GitHub account, click on the + button in the top-right corner of the
site and choose New repository.
Next, GitHub will take you through multiple steps to customize various3.
information about your repository. At this stage, you should only enter the name
of the repository and leave all the other options as is.
Finally, you need to associate the local repository to one stored on GitHub—this4.
process is called adding remotes. To do this, you can run the following Git
command:

git remote add origin
https://github.com/PacktPublishing/Hands-on-Application-Development
-with-PyCharm

The previous steps outline the process for setting up a local Git repository on GitHub. Next,
we will learn about the process of transferring data from your local repository to GitHub.

Add, commit, and push
To send any files you have saved and stored in your local repository to GitHub, we need to
utilize the add, commit, and push commands, which are to be executed in the same order.
Note that these commands can transfer your local repository to GitHub when you first set
up the Git repositories and they can also apply any changes you have made locally to the
cloud repository on GitHub.

Version Control with Git in PyCharm Chapter 5

[143]

We are now considering these commands one by one:

The add command registers a specific file (or a set of files) to Git, indicating that
this file should be a part of the version controlled repository. You can either run
git add [path to some file], or run git add ., which will register all
folders and files inside the root directory into the Git repository.
The commit command applies all the newly created changes in the registered
files to Git. This command is run when we'd like to literally commit the changes
we have made to version control.
Finally, the push command sends the committed changes to the remote that is
associated with the local repository. Normally, this is done via git push
origin master.

By following these steps in order, you can apply cloud version control to your own projects
with Git and GitHub in a simple manner. In the next subsection, we will discuss working
with projects that are not your own, which can be group projects or open source projects
that you'd like to tinker with.

Fork, clone, and pull requests
The series of commands discussed in the previous section (add, commit, and push) work
great if you are only working with and version controlling your own projects and code.
However, this is not always the case in the real world, where you need to work with other
developers in a common project at work, or you are contributing to an open source project.

In these situations, you are interacting not only with your own GitHub repository but also
with others. This process requires you to have multiple remotes for your local repository.
Recall from the previous subsection that a remote can be thought of as a link between a
local repository and a GitHub one on the cloud. Here, we need to have multiple (at least
two) remotes—one associated with our own repository and one with the original GitHub
repository.

The process is as follows:

Say, there is a GitHub repository called abc created by another user named Alice1.
that you'd like to work on. The GitHub repository is located at
github.com/alice/abc. The first thing you need to do is go to that GitHub
repository and fork the repository, using the Fork button in the top-right corner
of the window, as shown in the following screenshot:

Version Control with Git in PyCharm Chapter 5

[144]

Forking on GitHub

This action, in essence, creates a copy of that given repository as one of your own,
in your GitHub account. To learn more about forking, check out the following
link: guides.github.com/activities/forking/.

Now, from your local computer, you will set up a Git repository in a similar way2.
as what we discussed earlier (including adding a remote associated with your
GitHub repository, forked from Alice's original one). From here, you will clone
the GitHub repository to your local system via that remote; doing this will create
a physical copy of the repository on your local machine.
In your local repository, you can now make any changes to the project as you'd3.
like, and finally, push them to your GitHub repository. This process is no
different from making changes to your own repository. However, note that you
can only push the changes made to your repository, forked from the original; you
cannot directly push those changes to Alice's repository (unless you have
permission to do so on GitHub, which is commonly not the case).
From your own updated GitHub repository, you can now create a pull request,4.
which will submit all the changes you have made to your forked repository to
the original repository if you'd like to contribute to that original project. This can
be done by going to the Pull requests tab of your GitHub repository and clicking
on the New pull request button on the right, as illustrated in the following
screenshot:

Making a pull request on GitHub

https://guides.github.com/activities/forking/

Version Control with Git in PyCharm Chapter 5

[145]

In short, the whole process can be summed up with the following diagram, with numbered
arrows denoting specific steps to be taken in order:

Working with others' GitHub repositories

Specifically, while working with Alice's GitHub repository, we would first fork it to our
own account, which will then be cloned to our local environment. Any changes made to our
local copy should be applied (or pushed) to our repository, which could finally be applied
back to Alice's original project with a pull request. A fetch command can also be used to
copy Alice's project to our local environment, but the middle-man repository in our GitHub
account will not be created in this way.

Note that there is an arrow in the previous diagram that we have not discussed—(1.5)
Fetch. This arrow represents the fact that you can, in fact, directly clone Alice's GitHub
repository to your local machine (without having to go through the fork step). However, to
be able to make changes to Alice's project, you'd still have to utilize pull requests, which are
only possible with a forked repository of your own. So fetching is undesirable in most
instances, unless you simply want a code of the original project.

With that, we have finished discussing the process of working with and making changes to
a GitHub repository that is not your own. In the next section, we will move on to discuss
the main topic of this chapter—the integration of Git and GitHub as a version control
method in PyCharm.

Version Control with Git in PyCharm Chapter 5

[146]

Branching and merging
In addition to forking and pushing, branching and merging are two other processes that
directly affect the GitHub repository of a given project. As the name suggests, branching is
when we create an entirely separate copy of our repository, and any changes applied to this
copy will not affect the main copy (also known as the master branch) or any other copies.
The ability to isolate different versions of a project in one repository is significantly useful
when experimental changes are made.

When committing them to GitHub, a developer can access different branches in the branch
dropdown menu in the top-left corner of the GitHub web page, as shown in the following
screenshot:

Branches in GitHub

On the other hand, merging is the process of combining two given branches into one,
commonly between the master branch and another branch. Merging is done mainly when
the developer wants to apply the changes made to a non-master branch to the master
branch. This process is typically done via GitHub's online interface and is quite similar to
accepting a pull request.

Ignoring files
Most of the time, one would not want to transfer all the folders and files in your local
project onto GitHub. For example, if you are working on a data science project and the
datasets you are working with are significantly large, it is undesirable to upload these
datasets on GitHub. In fact, there is a limit of 100 MB in size for files that you can upload to
GitHub. Another reason not to upload everything to GitHub is to avoid leakage of sensitive
information such as login credentials and API keys that are stored in your projects.

Version Control with Git in PyCharm Chapter 5

[147]

To leave certain files out of the transferring process, you can take advantage of a
.gitignore file. Treated as a hidden file, only to be interpreted by Git, .gitignore can be
edited as a text file in which folders and files that should be ignored by Git can be listed
out.

A complete documentation on gitignore can be found at git-
scm.com/docs/gitignore.

With that, we have learned about the fundamental components of a Git/GitHub workflow.
In the next section, we will see how PyCharm can streamline and automate most of this
process.

Version control in PyCharm
In this section, we will study various features in PyCharm that facilitate the process of
version control with Git and GitHub. As a prerequisite of this exercise, go on to your
GitHub account to create a new repository to be the one associated with this current local
project. You can name this repository however you like (GitTest,
PyCharmVersionControlTest, or whatever).

Also note that while creating the GitHub repository, you can specify it to be private, which
will prevent other people from seeing and accessing the repository—after all, this is a
playground repository solely for learning purposes.

Next, either create a new Pure Python project in PyCharm and enter the following sample
code into a Python script inside that project or import the Chapter05 folder from our book
repository as a project into your PyCharm:

if __name__ == '__main__':
 print('Hello from Version Control!')

Our goal in this section is to push this project to GitHub by walking through all the steps
that we discussed previously. If at any point you are not sure what a specific command is
used for, you can go back to the previous section in this chapter to learn more about Git
commands. We will also be looking at the differences between the manual process and
doing it via PyCharm so that the advantages of the latter option can be highlighted.

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore

Version Control with Git in PyCharm Chapter 5

[148]

Setting up a local repository
As you might remember from the previous section, the first step to version control with Git
is to initialize a local repository.

To do this, go to VCS in the menu bar and choose Enable Version Control Integration. If
you don't see this option in your PyCharm project, this means that you already have your
Git integrated, so simply move on to the next step. Otherwise, a pop-up window will
appear asking for the version control tool you'd like to use. Choose Git for this option, as
illustrated in the following screenshot:

Choosing Git for version control in PyCharm

As you can see, there are other options for version control that PyCharm can
support—CVS, Mercurial, Perforce, and so on. Since Git and GitHub, once again, are the
most common option for version control nowadays, we will focus on them in this book.
However, you always have the chance to take advantage of the other options if you do
work with any of them.

To actually create the local Git repository, choose VCS | Import into Version Control |
Create Git Repository. In the window that opens immediately after, choose the directory
that you'd like to create the Git repository. For this exercise, simply choose the current
folder that we are in, Chapter05.

The Version Control panel
After creating the Git repository, the tab for the Version Control panel will appear in your
project window (most likely in the bottom-left corner), though it is minimized by default.
(Note that we have talked about PyCharm panels in Chapter 3, Customizing Interpreters and
Virtual Environments, so if you skipped that chapter but would like to learn more, feel free
to go back to it before moving forward with this section.)

Version Control with Git in PyCharm Chapter 5

[149]

The Version Control panel, when pulled up, will look similar to the following screenshot:

The Version Control panel in PyCharm

First, notice that there are multiple tabs that you can examine in this panel—Local Changes,
Console, and Log—as highlighted earlier (note that the Console tab might not be available
if you haven't run any Git commands yet). Most of the time, we will mostly focus on the
Local Changes tab, where we will be able to interact with files where we want to apply
version control.

In the Local Changes tab, you will typically see two separate sections:

Default Changelist lists all files within your project that have been added to Git.
A file highlighted in blue indicates that it has been modified since the last
commit, while a file in green means that it has not yet been committed.
Unversioned Files, on the other hand, lists all files within your project that have
not been added to Git altogether.

For example, in the preceding screenshot, and most likely in the project you currently have
open (if you are following with the example), all the files in our project (main.py along
with other hidden, project-related files) are in the Unversioned Files section, since we have
not added them to Git yet.

Add, commit, and push
Again, we will try to perform all the tasks in the version control pipeline we have discussed
in the previous section using PyCharm. Here, we will see how we can add files to Git,
commit them, and finally, push them on the GitHub repository created at the beginning for
this section.

Version Control with Git in PyCharm Chapter 5

[150]

To add a specific file to Git, simply select it within the Version Control panel, right-click on
the file, and select Git | Add, as illustrated, where I was adding the main.py file to Git:

Adding files to Git in PyCharm

Alternatively, you can also go to VCS | Git | Add in the menu bar, or use the
corresponding keyboard shortcut. After the add is performed, you should be able to see
that the file has been moved to the Default Changelist section, and is now highlighted in
green (again, indicating that it is registered by Git and has not been committed).

Note that you can also select multiple files at the same time in the Version Control panel
and add them to Git simultaneously. To add all the unversioned files to Git, you can also
select the Unversioned Files section itself and evoke the add action. For now, just add the
main.py file to Git.

Furthermore, to remove a file from Git, you can select that file within the Default
Changelist, right-click, and choose Revert. Doing this will have Git unregister the file, and
move it back to the Unversioned Files section. Again, we only want main.py committed in
our current example, so go ahead and revert any file that you accidentally committed using
this method.

The process of committing files is fairly similar to what we just saw with adding. To
commit the files highlighted in green in the Default Changelist section (which we only
have the main.py file for now), right-click on them and select Commit, or use the
corresponding keyboard shortcut.

Version Control with Git in PyCharm Chapter 5

[151]

The following pop-up window will appear, showing information regarding the commit
that we are attempting:

The commit window in PyCharm

In the middle-left section of the window, you can enter a commit message indicating the
purpose of the commit, which will be displayed on GitHub. Furthermore, in the bottom
section, you can see the differences between the file(s) you are committing and their
previous versions; the default comparison is displayed side by side (which you can further
customize).

Version Control with Git in PyCharm Chapter 5

[152]

When you have entered a commit message, you can finalize the process by clicking the
Commit button. After a file has been committed, it will disappear from the Default
Changelist section.

Additionally, you can also evoke the Commit button, conveniently placed in the top-right
corner of the project window by default, when files you'd like to commit are selected:

Version Control's Commit button in PyCharm

Finally, the last step is to push the committed portion of the project (which consists of the
main.py file only for now) to GitHub. Go to VCS | Git | Push to perform this task and
another pop-up window will appear.

If you are pushing to GitHub for the first time in this project (which we are if you are
following the example), there will be a Define remote link in the main section of the
window, which we can use to establish the connection between our local project and a
GitHub repository:

Adding remotes in PyCharm

Click on the link and input the URL to the GitHub repository that you created at the
beginning of this section. After this, you can push the local project you have to this
repository on the cloud. You can go to that repository on GitHub to see the pushed
main.py file after this process is complete.

Version Control with Git in PyCharm Chapter 5

[153]

Branching and merging
Branching and merging processes can be accomplished quite effortlessly in PyCharm. In
the bottom-right corner of your project window, click on the Git button, which will bring
up the following dropdown in which we can manage the branches for our project:

Management of branches in PyCharm

As you can see, in this menu we can create a new branch for our project. Go ahead and
create a new branch and make a change to the main.py file in our project. For example, I
named my new branch branch1 and changed the code in main.py too:

if __name__ == '__main__':
 print('Hello from Version Control!')
 print('Change in branch 1.')

From here, you can switch back and forth between different branches in the same menu by
selecting a specific branch and choose Checkout. For example, selecting the following will
bring you back to the master branch of our current project:

Switching between branches

Version Control with Git in PyCharm Chapter 5

[154]

From the same menu, you can choose to rename or delete a branch, or more importantly,
implement a merge between two branches by selecting Merge into Current.

Ignoring files
With what we just discussed/will discuss, you will see that there are a lot of useful
commands and actions available when one right-clicks on items in the Version Control
panel, and ignoring certain files is no exception. We have talked about the need of not
including specific files in the version control process (because they contain confidential
information or they are heavy files).

Again, doing this in PyCharm is quite simple; right-click on the items you'd like to exclude
from version control within the Version Control panel, and choose Ignore. Additionally,
you can go to the settings and navigate to Version Control | Ignored Files to further
customize your preferences for files to be ignored.

So, we have learned about the basic commands in Git and how to implement them in
PyCharm. In the last discussion of this chapter, we will consider an advanced functionality
of the version control process in PyCharm—creating diagrams.

Version control diagrams
As we have seen, before any changes to Git are committed, a commit message is required to
explain how the project being considered has been changed. This practice is quite useful, as
we can look through all the different commits in the future and see what progress each of
them accomplished.

However, when many changes are made across multiple files and folders within a project,
it can be quite difficult to wrap one's head around how the entire project has been altered.
This is when the ability to create diagrams to visualize changes across different files can be
significantly useful.

Version Control with Git in PyCharm Chapter 5

[155]

Similar to class diagrams, which are integral in object-oriented programming, version
control diagrams, also drawn in UML style, show any changes that have been made locally
in a systematic way across files and folders. This action is called Show Local Changes as
UML, which can be accessed via right-clicking items in the Default Changelist in the
Version Control panel, as illustrated in the following screenshot:

Creating UML diagrams for local changes

When the action is evoked, a window will appear, displaying the UML diagram that
visualizes the changes made to the project. Following is a sample class diagram provided
by JetBrains in their documentation:

Sample UML diagram for version control

Version Control with Git in PyCharm Chapter 5

[156]

As indicated, any changes in a class diagram will be color-coded so that modified items are
highlighted in blue, newly added items in green, and deleted ones in gray. From any UML
diagram, you can further interact with elements in it (for example, dragging and dropping),
or even save the diagram for future reference. All in all, it is a great feature for
documenting and reporting changes that you have made to, say, a work group project or an
open source project.

Also, note that since our current project only contains the main.py file, the usefulness of
the feature cannot be illustrated. With that said, you can try using it on other projects you
might have or after creating some additional sample files in your project.

And that is it! You have learned the process of working with Git and GitHub for version
control within PyCharm projects. As you have probably noticed, the options offered by
PyCharm allow a more intuitive way of thinking as well as a dynamic workflow in the
version control process for your applications.

Summary
In this chapter, we have covered two main topics—the idea of version control in application
development and programming and its importance, as well as how to practice it using Git
and GitHub within PyCharm. Specifically, we have learned how to carry out version
control using Git and GitHub in two different ways: manually and with PyCharm.

With this knowledge, PyCharm users can apply version control to their own projects in a
flexible way, skipping over the manual and tedious process in the Terminal/command line.
We see that, by offering these features, PyCharm allows us to focus on the actual
development process in any given software engineering project.

Aside from version control, there are other practices in application development— which
PyCharm provides intuitive, straightforward commands to facilitate. Without these
commands, application development be quite complex and intimidating. These processes
are testing, debugging, and profiling, all of which will be discussed in the next chapter.

Version Control with Git in PyCharm Chapter 5

[157]

Questions
What does the term version control entail, specifically in the context of1.
programming?
What are the benefits of doing version control?2.
What are the basic steps to version control for your own projects with Git and3.
GitHub? What additional steps are needed for collaborative work?
What are the options that PyCharm's Version Control panel provides?4.
What is the significance of being able to create version control UML diagrams for5.
changes in files and folders in a project?

Further reading
More information can be found in the following articles and literature:

Getting Started - About Version Control, Git (git-scm.com/book/en/v2/Getting-
Started-About-Version-Control)
PyCharm documentation: GitHub, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/github.html)
PyCharm documentation: Version Control with PyCharm, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/version-control-integration.html)
PyCharm documentation: Viewing Changes as Diagram, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/viewing-changes-as-diagram.html)

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://www.jetbrains.com/help/pycharm/github.html
https://www.jetbrains.com/help/pycharm/version-control-integration.html
https://www.jetbrains.com/help/pycharm/viewing-changes-as-diagram.html

6
Seamless Testing, Debugging,

and Profiling
esting, debugging, and profiling are three of the more advanced practices in programming.
They are generally difficult to implement, and there can be significant confusion regarding
how to facilitate them.

This chapter goes through a myriad of PyCharm tools that can streamline these three
processes, and make them as seamless as possible. PyCharm users who take advantage of
these features can greatly improve their productivity.

The following topics will be covered in this chapter:

Testing in general and specifically unit testing
How to facilitate debugging in PyCharm
Code optimization in PyCharm with performance survey and profiling

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download this book's GitHub repository at https:/​/​github.​com/
PacktPublishing/​Hands-​on-​Application-​Development-​with-​PyCharm

In this chapter, we will be working with the subfolder named Chapter06 in the
downloaded code repository

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Seamless Testing, Debugging, and Profiling Chapter 6

[159]

Testing
We will open this chapter with the topic of testing, specifically unit testing. As usual, we
will examine the theoretical background of the practice in Python and then move on to
learn about how PyCharm helps facilitate the process. You are welcome to skim through
the theoretical discussion if you are already familiar with the concept and practice of unit
testing, but a full read-through is still encouraged.

Unit testing fundamentals
Intuitively, testing in software development is used to look for inconsistencies and errors in
our programs and code. The difference between testing and debugging, which is discussed
in the next section of this chapter, is that testing is about looking for the indication of bugs
in our code, while debugging is when we hope to identify the bugs themselves.

As we will see later in this section, testing mostly involves the comparison between the
results that are produced by our programs and what they should actually be. In short,
testing is all about determining whether our programs are functioning as we intended.

Again, the main goal of testing is to raise any potential bugs and errors in our programs.
However, if a test does not look for specific bugs in its logic, chances are it will not be able
to offer the programmer any indication of those bugs. This is to say that test results are only
as good as the tests themselves, and effective testing is equivalent to effective test design.

The question is, then, how to design effective tests that can give us a good indication of the
performance of our programs. One of the most common ways to do this is unit testing,
where, as the term suggests, individual units of a specific program will be considered and
tested (a unit here indicates the smallest testable component of the said program—this can
be a class, method, or function.).

Unit testing offers us a systematic way to write and implement tests for our programs: since
we are going to look at individual program units, if an error is to arise, we will be able to
easily narrow down which specific individual unit is responsible for the error. From there,
we only have to focus on debugging that specific unit. This ability to isolate errors and bugs
to individual units can save developers significant time during the testing process.

Seamless Testing, Debugging, and Profiling Chapter 6

[160]

Of course, aside from unit testing, there are other methods with which you can design tests
for your programs: integration testing (where groups of program units are tested while
working together) or system testing (where the whole piece of software is considered).
However, all these testing methods are higher leveled than unit testing, and should only be
used after the program has passed all of its unit testing cases. For the same reason, these
methods do not offer the same insights as unit testing (that is, the mentioned isolation of
bugs and errors to individual units).

Overall, unit testing is the first—and sometimes the most important—step to a complete,
systematic testing procedure for your software. Therefore, we will only concern ourselves
with unit testing in this chapter, which, in fact, is highly supported by PyCharm. Next, we
will move on to see how unit tests are implemented in Python.

Unit testing in Python
In this section, we will be using examples from the Chapter06/Testing subfolder in this
book's code repository. Go ahead and import the folder into PyCharm as a project, or create
a new project and enter the code as we move along with our discussions.

First and foremost, unit testing in Python is supported by the unittest module, which
offers similar functionalities to those in common unit testing frameworks in other
programming languages. Generally, tests for a specific unit component of a program are
organized into a subclass of the TestCase class from the module.

As an example, consider the test_example.py file in this book's repository, which
contains the following code:

from unittest import TestCase

class MathTest(TestCase):
 def test_add(self):
 self.assertEqual(1 + 1, 2)

 def test_mul(self):
 self.assertEqual(2 * 5, 10)

class StringTest(TestCase):
 def test_stringcase(self):
 self.assertTrue('FOO'.isupper())
 self.assertFalse('Bar'.isupper())

Seamless Testing, Debugging, and Profiling Chapter 6

[161]

As we mentioned earlier, the MathTest and StringTest classes, where our unit tests are
stored, both inherit from the TestCase class of the unittest module. To implement
different unit tests, we simply put testing methods in the corresponding classes. For
example, the test_add() method in the MathTest class tests for the equation 1 + 1 = 2
(which, obviously, is just a toy example), while the test_stringcase() method in the
StringTest class tests for the uppercase-ness of the FOO and Bar strings.

Note that in each of these methods, we use various asserting methods from the TestCase
class. For example, assertEqual() looks to see if the two arguments that are passed to it
are indeed equal, while assertTrue() and assertFalse() make sure that the arguments
that are passed to them are true and false booleans, respectively.

The most common way to run these Python unit tests is via the command line; in fact, the
unittest module is designed to have a good command-line interface. Specifically, the
module can be included in a python command to run tests from modules/files, classes, and
even individual test methods via the following interfaces:

python -m unittest test_file1 test_file2
python -m unittest test_file.TestClass
python -m unittest test_file.TestClass.test_method

With this interface in mind, let's try running our tests via the command line. Either use the
Terminal panel of your PyCharm or open the actual command line of your system and
navigate to the folder we are working with. First, we can run the whole file by using the
following command:

>> python -m unittest test_example
...
--
Ran 3 tests in 0.000s

OK

We can see that three tests were run in total (which is consistent with the fact that we have
three tests in our current Python script) and that all of them were successful. Again, we can
also run individual test classes and methods, as opposed to the whole test file. For example,
run the following command in the command line to only run tests in the MathTest class:

>> python -m unittest test_example.MathTest
..
--
Ran 2 tests in 0.000s

OK

Seamless Testing, Debugging, and Profiling Chapter 6

[162]

To run the test_stringcase() method in the StringTest class, use the following
command:

>> python -m unittest test_example.StringTest.test_stringcase
.
--
Ran 1 test in 0.000s

OK

We have seen how to run unit tests in Python via the command-line interface for the
unittest module. In the next subsection, we will learn how to implement the same
process using PyCharm's powerful testing features.

Unit testing in PyCharm
Still considering the test_example.py file in the Chapter06/Testing folder, let's see
how PyCharm helps facilitate the process of unit testing in Python.

PyCharm's run arrows
Since you have the file opened in the editor within PyCharm, you will see multiple green
arrows to the left of your code, as illustrated here:

Run arrows in PyCharm

Seamless Testing, Debugging, and Profiling Chapter 6

[163]

You might remember from Chapter 2, Installing and Configuring PyCharm, that by using a
similar green arrow located at the beginning of the main scope of a Python program (the if
__name__ == '__main__' condition), we can run the whole program. In general, these
green arrows are indeed used to run, not just whole Python programs, but also code
snippets and, in this case, unit tests. I personally like to call them run arrows.

As you click on any of these run arrows, a list of options will appear, displaying various
actions you can have PyCharm perform with the code snippet that corresponds to that
arrow:

Running tests in PyCharm

For now, we can select the first option, Run 'Unittests for test_e...', to execute a specific test
class or method. For example, when I chose the option to run the test_mul() method in
the MathTest class, PyCharm executed that specific test method and opened the Run panel
to display the output that's produced by the test. The following is my output after the
execution:

Testing started at 14:17 ...
/usr/local/bin/python3.7
/Applications/PyCharm.app/Contents/helpers/pycharm/_jb_unittest_runner.py -
-target test_example.MathTest.test_mul
Launching unittests with arguments python -m unittest
test_example.MathTest.test_mul in
/Users/quannguyen/PycharmProjects/PyCharm-Book/Chapter06/Testing

Ran 1 test in 0.001s

OK

Process finished with exit code 0

Seamless Testing, Debugging, and Profiling Chapter 6

[164]

Looking closely at the output, specifically the line that starts with Launching unittests...,
we can see that PyCharm is acting as the middleman between the programmer and the
command line. In particular, PyCharm specified that the argument that was used was
python -m unittest test_example.MathTest.test_mul, which is the exact
command we would use via the command line to execute the same test.

This is quite a useful feature: instead of having to type out the whole command in the
command line, we can now simply visually locate the specific tests that we'd like to run and
take advantage of the corresponding run arrows to execute them in PyCharm. This visual,
graphical approach is also friendlier toward new Python programmers/testers.

The Run panel in the context of unit testing
We have said that, when we choose to run a specific set of unit tests, PyCharm will open up
the Run panel to display the results. You may have already noticed that this Run panel is
different from ones that display the output of regular Python programs. Specifically, the
Run panel for the execution of unit tests should look similar to the following:

PyCharm's Run panel when unit testing

Aside from the output section on the right (which is what the Run panel typically displays),
we can also see other additional navigation options on the left in the panel. Firstly, we can
see a toolbar at the top of this section (highlighted in the preceding screenshot). Among the
buttons in this toolbar, there are a number of noteworthy features:

Displaying passed tests (disabled by default, since we typically only care about
failed tests)
Displaying ignored tests
Sorting test results alphabetically

Seamless Testing, Debugging, and Profiling Chapter 6

[165]

Sorting test results by the time the tests took (that is, test duration)
Expanding/collapsing test suites
Exporting test results to an output file

Directly following the toolbar on the left-hand side section of the Run panel, is a tree view
of the results of the tests we just ran. Again, only results from failed tests will show up in
this view by default (this behavior can be changed using the toolbar), so you shouldn't see
anything in this section for now.

Let's look at an example of a failed test. Go ahead and enter the following test method inside
the MathTest class of your code:

def test_exp(self):
 self.assertEqual(2 ** 3, 9)

Alternatively, you can enter your own custom tests however you like; keep in mind that we
are trying to look at an example of a test that would fail upon being executed. Using the
test_exp() test method, I obtained the following output after hitting the run button that
corresponds to the whole MathTest class:

Testing started at 13:48 ...
/usr/local/bin/python3.7
/Applications/PyCharm.app/Contents/helpers/pycharm/_jb_unittest_runner.py -
-target test_example.MathTest
Launching unittests with arguments python -m unittest test_example.MathTest
in /Users/quannguyen/PycharmProjects/PyCharm-Book/Chapter06/Testing

Ran 3 tests in 0.013s

FAILED (failures=1)

9 != 8

Expected :8
Actual :9
 <Click to see difference>

[...]

Process finished with exit code 1

Seamless Testing, Debugging, and Profiling Chapter 6

[166]

We can see that this output is rather long, but not entirely unreadable. Specifically, we can
see that, out of the three tests that were run, one failed at an AssertionError, where a
value of 9 was returned when 8 was expected.

Additionally, in the tree view on the left-hand side of the panel, you can expand the tree
deep enough to get to the specific tests that failed. For example, my PyCharm showed the
test_exp test, as follows:

Failed tests in PyCharm's Run panel

We can see that by combining the printed output on the right and the comprehensive view
on the left of the Run panel, PyCharm offers its users an easy way to navigate through
Python test results, especially when there are failed tests.

Another great feature in PyCharm when working with tests is the option to examine
differences between entities when a test using an assertEqual() method fails.
Specifically, right-click on the failed test—in this case, this is test_exp—and choose the
View assertEquals Difference option (note that you can also click on the corresponding
link, <Click to see difference>, in the printed output on the right, to evoke the feature).

A popup window will open, detailing the differences between the two quantities that
should have been equal. Using the toolbar of this popup window, you can customize how
these differences are displayed (for example, in a side-by-side view or a unified view, or to
highlight lines or words that are different, and so on).

Seamless Testing, Debugging, and Profiling Chapter 6

[167]

Creating unit tests with PyCharm
We have talked about various features when it comes to examining the results from
previously created unit tests in PyCharm. However, the support for testing from PyCharm
does not stop there, and in this section, we will learn how to create unit tests within
PyCharm.

In the same folder that we have been working with, Chapter06/Testing, open the
counter.py file, which contains the following code:

import threading
import sys; sys.setswitchinterval(.000001)

class Counter:
 def __init__(self, target, num_threads):
 self.value = 0
 self.target = target
 self.num_threads = num_threads

 def update(self):
 current_value = self.value
 self.value = current_value + 1

 def run(self):
 threads = [threading.Thread(target=self.update)
 for _ in range(self.target)]

 for t in threads:
 t.start()

 for t in threads:
 t.join()

This file contains a class called Counter, which is a multi-threaded class utilizing the
threading module. Note that you don't need to understand this code in depth; we will
only be using this class as the starting point to create our tests in PyCharm. With that said,
the following are a few more details regarding the Counter class:

Upon initialization, the class takes in two integers: target and num_thread.
When the run() class method is invoked, it will increment its value field (which
starts at 0) until the field reaches the target parameter using the update() class
method.
The value field will be incremented across multiple threads (the number of
which is specified by the num_threads parameter).

Seamless Testing, Debugging, and Profiling Chapter 6

[168]

At the beginning, we are setting the switch interval of the system to 0.000001
seconds. Don't worry about this for now.

Now, we would like to test this class to see whether it is actually able to do the
incrementation process we described previously correctly, using unit tests. To do that,
perform the following steps:

Move your cursor/caret to the class declaration (line 5 in the original file).1.
From the menu bar, choose Navigate > Test or evoke the corresponding2.
keyboard shortcut. From here, a small popup window will appear, listing all
available tests that involve the Counter class:

Creating tests in PyCharm

As we illustrated previously, there should already be one available test called3.
TestCounter (stored in the test_counter_reference.py file). This is a
reference script for the tests that we are attempting to create, so ignore that
option for now and go ahead and choose the Create New Test option.
Another popup window will appear, this time listing out the specifications of the4.
test file. In this window, you can customize the test file name, its location, and
the name of the test class. Generally, the default options that are automatically
filled in by PyCharm are already appropriate.

The most important option in this window is the Test method section, in which
we can choose which methods are to be tested. As you select a specific method in
this section, a corresponding boilerplate test method will be generated inside the
target test class. For now, we will simply hit the OK button without choosing
either of the two methods included.
PyCharm will then generate the test file accordingly and open it in the editor.5.
The code that's included in this file should be similar to the following:

from unittest import TestCase

class TestCounter(TestCase):
 pass

Seamless Testing, Debugging, and Profiling Chapter 6

[169]

The preceding is the skeleton for our test class, which is named TestCounter6.
and inherits from the TestCase superclass from the unittest module. To
complete this test file, our job is to design individual test methods in the
TestCounter class. In each test method, we need to check whether a Counter
object (in the counter.py file) can correctly increment its value to the desired
target.

With that in mind, modify your current TestCounter class in the newly created
test file to contain the following test methods (you can also reference the
test_counter_reference.py file):

from unittest import TestCase
from counter import Counter

class TestCounter(TestCase):

 def test_small(self):
 small_counter = Counter(5, 5)
 small_counter.run()

 self.assertEqual(small_counter.value, 5)

 def test_med(self):
 med_counter = Counter(10, 8)
 med_counter.run()

 self.assertEqual(med_counter.value, 10)

 def test_large(self):
 large_counter = Counter(500, 20)
 large_counter.run()

 self.assertEqual(large_counter.value, 500)

And that is how unit tests are created in PyCharm. We can see that, with the generation of
boilerplate code and a code skeleton, PyCharm offers ways for developers to effectively
save time from manually creating scripts and entering repetitive code patterns, thus
increasing their productivity.

Additionally, there is a theoretical discussion on the test methods we just created for the
Counter class, which I include in the next subsection. This discussion does not pertain to
PyCharm and its usage, but covers some abstract points about generally designing test
cases, as well as specifically in concurrent Python programs.

Seamless Testing, Debugging, and Profiling Chapter 6

[170]

I recommend going through this if you are interested in learning more about the theory of
testing in programming. If, on the other hand, you would like to simply move on to the
next main sections, you can do so—we will be discussing the process of debugging in
PyCharm.

Tests for the Counter class
Unlike unit tests that you might have seen from other sources, where you typically only
have a single test for a given class, method, or function, in the example of the
preceding Counter class, we entered three different unit tests in our test class to test the
same functionality.

Recall the point that we made earlier—the test results are only as good as the test
themselves, and it is entirely possible for the tests we design to be unable to detect some
specific bug that the program to be tested has. Therefore, it is good practice to have
multiple test cases for the same functionality that you'd like to test so that we can see
whether that functionality is able to handle various different situations and edge cases. This
is especially true for concurrent programs, where the working between multiple
components might give rise to bugs in some situations but not others.

Indeed, if you run the whole TestCounter class, you might see a peculiar case where the
first two tests (test_small and test_med) pass successfully, but the third test
(test_large) fails. (Sometimes, the third test may successfully pass as well; you can re-run
the whole test class multiple times until you see the test fail.)

This is an example of an infamous bug in concurrent systems called race condition, which
tends to manifest itself when a concurrent system has to handle a large number of
components (this is why the large test encounters this bug while the smaller two tests do
not).

The lesson here is that, in order to catch as many potential errors in a program as possible,
we need to try to anticipate various scenarios in which our program might fail, and test
those scenarios in our unit tests. Additionally, if you are interested in the design and
implementation of concurrent programs in Python, I highly recommend the Mastering
Concurrency in Python book, which is included in the list of Further reading section of this
chapter.

This discussion also concludes the topic of testing in PyCharm. In the next section, we will
begin talking about the process of debugging.

Seamless Testing, Debugging, and Profiling Chapter 6

[171]

Debugging
After completing the process of testing your programs, if no bug or error has been found,
you can feel confident enough to move forward with code review, deployment, or
production. However, if there are issues that need addressing, the next step in the
application development pipeline is debugging. In this section, we will learn more about
the theoretical background of the practice and then the various ways of debugging using
PyCharm.

Debugging fundamentals
As we mentioned previously, debugging typically comes after testing, when errors and
bugs are detected. The general goal of debugging is to identify the specific causes of those
bugs and errors that are detected in testing processes, and, from there, adjust the program
accordingly.

More specifically, in a debugging process, a developer watches the interactions between,
and the changes taking place in, the variables of their program. By seeing how each
different function, method, or even line of code alters the value and functionality of the
variables, the developer can narrow down the potential causes for the bugs and errors in
the program. To that end, there are a number of common debugging methods that
programmers utilize in Python:

Print debugging: This is the simplest yet most intuitive debugging method. In
print debugging, we simply add in print statements between commands in our
programs to display the values of the variables that we think are causing the
bugs. By looping through the printed values of the variables and how they
change over time, we can visually see the effects of each different line of code on
the variables under consideration.
Logging: In the most general sense, logging is equivalent to the process of
keeping track of various events that take place during the execution of the
program we are trying to debug. In terms of the output logs that are produced in
this process, it is quite similar to print debugging, but programmers typically
store the output in log files that can be viewed later on. Logging is quite common
among server administrators, who often have to handle server crashes and other
site-reliability issues.

Seamless Testing, Debugging, and Profiling Chapter 6

[172]

Tracing: In the process of tracing, low-level machine language details regarding
the execution of the program to be debugged are tracked. The results that are
produced in this process are fairly useful in terms of actually getting to the
bottom of the cause for a specific bug that is embedded deep in a programming
language.
Using a debugger: The last common method of debugging is to utilize a separate
program to debug your own program; these programs are called debuggers. This
is typically the most powerful method as debuggers are designed to be
multipurpose and to provide various approaches when it comes to keeping track
of the changes taking place in your programs.

Most of the time, print debugging might be sufficient for your debugging purposes in small
to medium programs. However, in a large system with many moving parts interacting with
each other, using a debugger might prove useful to save time and improve your
productivity. In the following subsection, we will be learning how to use the debugger
provided by PyCharm and the various interactive functionalities it offers in the process of
debugging.

Debugging in PyCharm
Let's see how we can implement various debugging practices while working with
PyCharm. In this subsection, we will be working with the example that's included in the
Chapter06/Debugging folder of this book's code repository. Specifically, we will consider
the main.py file inside this folder, which contains the following code:

def change_middle(my_list):
 print('Start function')
 x = int(input('Enter a number: '))
 my_list[1] = x
 print('End function')

if __name__ == '__main__':
 a = [0, 1, 2]
 b = a

 change_middle(a)

 print(a)
 print(b)

Seamless Testing, Debugging, and Profiling Chapter 6

[173]

The preceding code is a simple Python program where we can explore the referencing
mechanism in Python while learning about PyCharm's debugging functionalities. Either
copy the code directly into a PyCharm project or import the file into your PyCharm.

In this file, we have a function called change_middle(), which takes in a Python list as the
only parameter, asks for a number in the console using the input() function, and finally
assigns that numerical value to the second element in the input list.

In the main scope of our program, we initialize a list of three numbers (0, 1, and 2) and
assign it to the a variable. The a variable is assigned to the b variable so that the two have
the same value (the list of three mentioned numbers). Next, we call change_middle() on a
so that we can modify the second element in the list from the console. Finally, we print out
the values of both a and b.

Without running the programming, let's hypothesize about the output that will be
produced by our program. For example, you might—especially if you are familiar with C
and C++—expect that, in the end, since we called change_middle() on a, the list will be
[0, x, 2] (x is whatever we input in the console), and b will simply remain [0, 1, 2].

However, as we run the program, the output that we will obtain (if we were to input, say, 3
in the console when asked) is as follows:

Start function
Enter a number: 3
End function
[0, 3, 2]
[0, 3, 2]

We can see that both a and b have been modified, which contradicts our initial hypothesis.
In the rest of this subsection, we will explore various debugging tools in PyCharm and
attempt to debug this problem. (If you already know the cause of the aforementioned
behavior, simply follow the discussions to learn about PyCharm's debugging features.)

Starting a debugging session and the Debug panel
One of the many great things about PyCharm is that relevant features and functionalities
can be found under the same interface so that even if you don't remember how to navigate
to a specific feature, you will have no problem finding it again. One example is the run
arrows, which we discussed earlier in the Testing section.

In the same way that we start a test in PyCharm (or even run a program, for that matter),
run arrows can be used to start a debugging session. When you click on the run arrow at
the beginning of the main scope, choose the Debug 'main' option, as shown here:

Seamless Testing, Debugging, and Profiling Chapter 6

[174]

Starting a debugging session in PyCharm

The Debug panel will then automatically open (most likely in the bottom section of your
project window), which should look similar to the following:

The Debug panel in PyCharm

With that, your debugging session has started. The first thing to notice in the Debug panel
is that you can switch between two tabs, the debugger and the console, that are located at
the top of the panel by clicking on them. Their roles are as follows:

The Debugger tab lists various information and statistics regarding the execution
of our program and any variables it might have.
The Console tab, in essence, has the same functionalities as the normal console in
the Run tab. In other words, it is used to display the printed output of the
program as well as where we can enter any input.

Seamless Testing, Debugging, and Profiling Chapter 6

[175]

Since we are already familiar with the console, let's turn our attention to the Debugger tab.
By default, the tab should have two separate sections (similar to the preceding screenshot)
called Frames and Variables:

The Frames section allows us to view, examine, and navigate between different
items in the stack frame of a specific thread of your program. In most
programming languages, when a program is run, the execution takes place in the
execution stack, and the components of your program (method/function calls,
different scopes) are arranged in order in this stack. The stack frame, as such,
gives you the ability to see this aspect when the program you'd like to debug is
executed.
In the dropdown menu at the top of the Frames section, you also have the option
to switch between different threads of your program. In this example, since our
program runs on a single thread, we only have the Main Thread option in this
menu.
The Variables section on the right displays the value of any and all variables that
are in the selected frame on the left. You can use this Variables section to inspect
the changes in your variables while debugging a program.

Aside from these sections, we should also take note of the toolbars along the left and the
top edges of the Debug panel, as highlighted in the following screenshot:

Debugging toolbars in PyCharm

Seamless Testing, Debugging, and Profiling Chapter 6

[176]

These two toolbars contain different sets of functionalities:

The vertical toolbar along the left edge of the panel provides general control
options for your debugging session. Specifically, the important options are
rerunning sessions, pausing, resuming, and stopping sessions.
The horizontal toolbar at the top offers stepping features while a specific Python
program is being debugged. We will look into these features later in this section.

One thing to note about debugging sessions, both generally and in PyCharm specifically, is
that the execution of a given program is to be paused at various places. For example, in the
session for our example, the execution of our sample program is currently paused (you can
see this because, in the console, the program is not asking for our input in the
change_middle() function yet).

So, to resume the execution of the program, we need to continually click on the resume

button in the vertical toolbar we discussed previously. Alternatively, you can choose
the corresponding action, that is, Run > Resume Program, in the menu bar. As you evoke
this action over and over, you will notice, in the Frames section, that the execution of our
program is moving across the different frames in the stack.

At one point, the frame stack will display a message stating Frames are not available.
Switch to the Console tab; we will see that we have reached the point that we discussed
earlier (when the change_middle() function asks for our input integer). Here, simply
enter any number other than 1 (again, 3 is what I use throughout this example), and the
entire program will be executed as normal.

Remember that our goal is to find out how our variables (a and b) are changed during the
execution of our program. However, as of now, we are not able to gain any insight
regarding how those changes take place. Therefore, we need to add breakpoints into our
debugging process, which we will discuss in the next subsection.

Placing breakpoints
Breakpoints, as the term suggests, are markers to be placed in our programs to indicate
places where the execution in a debugging session should pause. While a program being
debugged is paused, developers then can examine that frozen state of the program as well
as its variables, with the goal of gaining insight into how those variables are mutated at a
specific step of the program. We will see that this is the exact tool we need to debug our
example program.

Seamless Testing, Debugging, and Profiling Chapter 6

[177]

Breakpoints are to be placed at specific lines of code in our program. To insert a breakpoint
in PyCharm's editor, click on the region between the line numbers and the actual code,
called the gutter, at a line where you'd like to place a breakpoint. Once placed, PyCharm's
breakpoints are represented as red circles. In our current example, let's place breakpoints at
lines 3, 5, and 12, as shown here:

Placing breakpoints in PyCharm

The general strategy of using breakpoints is to freeze the program after each time the
variables we are interested in are mutated. Again, we are trying to see what happens when
the a variable is changed inside the change_middle() function, and why the b variable is
also changed. For this reason, we have the following breakpoints:

The breakpoint at line 12 pauses the program before the function is called
The ones at lines 3 and 5 help us inspect the program right before and after the
mutation of the a variable at line 4

Now, let's start our debugging session with these breakpoints added. Slowly, click on the
resume button to step through the program again, but stop when you have reached the
frame that displays <module>, main.py:12. This is the first breakpoint that our program
reaches (at line 12):

Seamless Testing, Debugging, and Profiling Chapter 6

[178]

Walking through a program in debugging mode

There are a number of elements that we should notice:

The line highlighted in blue is where the execution is currently at. Again in our
example, it should be at line 12.
The Variables section in the Debug panel: At the current frame, we can see that
this section displays the corresponding variables, which are a and b. We can see
that they both hold the same value—a Python list, [0, 1, 2], as shown here:

Variables at breakpoints

Notice that you can also expand each variable in this section to further inspect the
individual elements in the list.

Seamless Testing, Debugging, and Profiling Chapter 6

[179]

Inline debugging: Information regarding the variables of our program is also
displayed inside the editor. For example, at this point, you will notice the
following at lines 9 and 10 of your editor:

Inline debugging in PyCharm

These comment-like codes are automatically inserted into your editor to display the current
variable values at each specific breakpoint. After you have fully examined your program at
a breakpoint and want to move on with the execution, you can use the resume button
again.

After clicking the resume button once, the current execution should move into the
change_middle() function and jump to line 3 (which is our second breakpoint). Let's keep
our debugging session paused at this point to discuss other debugging features in
PyCharm—specifically the various stepping functionalities in the next subsection.

Stepping functionalities
Stepping functionalities are a way to control how the execution of your program should
proceed. Going from left to right in the toolbar, we have the following functionalities:

Show execution point/Show the current program execution point : This will
move the caret in the editor to the line where the execution is currently at, as well
as jump to the corresponding frame in the Debug panel.

Step over/Step to the next line in this file : This will move the execution to the
next line of code in the current scope (function or the main scope). If it is the last
line of a function, the execution will return to the parent scope that called the
current function.

Step into/Step to the next line executed : This will move the execution into any
method that's called at the current line of code. This feature is useful when we'd
like to inspect external APIs, and we will come back to it after this list.

Seamless Testing, Debugging, and Profiling Chapter 6

[180]

Step into my code/Step to the next line executed ignoring libraries : This is
somewhat the opposite of the previous functionality. This will move the
execution to the next line of your own code.
Force step into/Step into, ignore stepping filters for libraries, constructors, and so
on : This will allow the execution to step into any external method that's being
used in the current line of code, even if the method was previously ignored. This
button is appropriately disabled if you haven't ignored an API yet (which is the
case in our example).

Step out/Step to the first line that's executed after returning from this method :
This will have the execution step out of the current function or method and
return to the parent scope.

Let's look at some of these functionalities in action:

With the execution of our example program currently at line 3 (where the built-in1.
input() function is used), click on the step into button, and you will see that
the parse.py file, which implements the input() function, is opened in the
editor, and the execution moves to the first line of the quote() method in that
file.

Again, this functionality is quite useful when you'd like to inspect built-in or
external APIs that you are not familiar with.

Now, click on the step out button, and the execution will return to our own2.
code. Here, the console is waiting for our input, so simply enter a number and
move forward with our debugging session. Note that after entering your input,
other built-in files might be opened in the editor by PyCharm. This is because the
step into button is still active. Simply use the step out button until you get back
to our example file, which should now look similar to the following:

Inline debugging inside a function

Seamless Testing, Debugging, and Profiling Chapter 6

[181]

Let's focus on the current inline debugging output inside our change_middle()3.
function: at line 1, we can see the value of the my_list parameter that's been
passed to the function, which is the list [0, 1, 2]; at line 3, we can see the
value of the x variable that's been entered by the user from the console.
Again, this inline debugging feature is significantly helpful, especially in large
functions and programs where there are many values for the debugging
programmer to keep track of.
We have discussed the most common stepping functionalities in support for4.
debugging purposes in PyCharm. For now, simply step through the rest of the
example program using either the resume button or the step over button.

In the rest of this section, we will look into more advanced features when it comes to
keeping track of variables.

Watches
Regarding the stepping functionalities we discussed earlier, they are significantly useful for
controlling the execution of the program we'd like to debug, but we were unable to truly
examine the value of the variables we care about (a and b), even if we could control our
program execution, in our current example. To do this, we can use watches.

Watches in debugging are a mechanism that programmers can use to follow the changes
that are taking place in specific variables. Once a watch has been created for a variable, the
value of that variable will be updated at each stage as you step through the program you
are debugging. In comparison to inline debugging, watches are a more active and in-depth
way to monitor your variables.

Much like the Variables section, watches will display the specified variables and their
respective values. But these variables are kept throughout the program, as opposed to in
the Variables section, where the list of displayed variables is changed with respect to the
frame the program execution is currently at.

In the Debug panel, you may only have the Frames section and the Variables section.
There is also an additional section called Watches, which is activated when the watches
button (located in the top right corner of the panel) is clicked. Let's get started:

Once the Watches section is open, click on the + button, and you will see a1.
prompt appear where you can enter the names of the variables you'd like to
track.

Seamless Testing, Debugging, and Profiling Chapter 6

[182]

If you click on the dropdown button in this prompt, all the available variables in2.
our program will be listed, as shown here:

Watches in PyCharm

Here, enter a and b individually to specify that you'd like to track these variables3.
through the debugging process.
Now, start a debugging session as normal. First, you will see messages stating4.
that the variables associated with the watches we have specified are not (yet)
defined. Simply step through these first few frames.
Having reached the first breakpoint (at line 12), you will see that our watches will5.
be updated accordingly. Specifically, both watches will display the correct values
of the variables and the Python list, [0, 1, 2].
Focusing on the Watches section, slowly step through the second and third6.
breakpoints. Note that you will have to enter some input into the console
between these two breakpoints. Now, when the execution of my program is at
the third breakpoint (line 5), my Watches are as follows:

Updated watches in PyCharm

This indicates that, as soon as the a variable is changed inside7.
change_middle(), the b variable is also changed in the same way.

Seamless Testing, Debugging, and Profiling Chapter 6

[183]

This is because of how referencing in Python is implemented—when a is assigned to b (line
10), these variable names, in essence, reference, or point to, the same Python object. So,
when a is mutated inside change_middle(), it is the object referenced by a ([0, 1, 2])
that is changed. Since b references the same object, the value of b is also changed in the
same way.

This is a common source of confusion for beginner Python programmers, so we have seen
how PyCharm's debugging features help us examine this behavior more closely. Before
ending your debugging session, we will consider another powerful debugging feature in
PyCharm.

Evaluating expressions at all times
During a debugging session, you can take advantage of the evaluate expression feature.
This is evoked with the button, which is located on the far right of the stepping toolbar,
at the top of the Debug panel. A popup window will appear to facilitate this process. In the
prompt at the top of the window, you can enter any Python expression (variables,
operations on and between variables, built-in methods, and functions) to evaluate and
examine your program on the fly.

For example, the following is my output after entering sum(b) to get the sum of the
elements in b (when the program execution is at line 5, after the two variables have already
been changed):

The window for evaluating expressions

This feature is helpful when you'd like to apply more complex logic on the current
variables of your program, as opposed to simply printing their values.

Seamless Testing, Debugging, and Profiling Chapter 6

[184]

As indicated in the popup window, you can additionally add the expressions you have

entered to the Watches section as well (in macOS, you can use the ↩ keyboard
combination), and these expressions will be updated as the execution of the program
proceeds throughout a debugging session.

Evaluating expressions in the middle of a debugging process marks the end of our
discussion on the debugging support that PyCharm offers. In general, PyCharm
purposefully provides a wide range of debugging tools that facilitate different
functionalities, and programmers can combine them in a dynamic way during their
debugging sessions.

In the final section of this chapter, we will be learning about the process of profiling in
Python, and how PyCharm streamlines and supports the process.

Profiling
Aside from testing and debugging, profiling is another high-level process where
programmers analyze their applications to find ways to improve them. However, as
opposed to errors and bugs, the goal of profiling is to analyze the performance of our
program, identify potential bottlenecks, and, in general, find where the actual execution of
the program can be improved efficiency-wise.

Profiling fundamentals
As you probably already know, making sure that your programs work as intended and
compute the correct outputs (testing and debugging) is only part of the development
process; there is also an additional aspect that's equally as important—optimizing the
actual performance of your programs.

This process is typically called profiling, where various statistics regarding the execution of
a specific program are computed and analyzed so that programmers can identify potential
bottlenecks and other performance-related inefficiencies and address them to improve the
overall quality of the software. In turn, a profile is a set of statistics representing the overall
performance-related quality of that program.

Performance—especially execution time is an important factor to keep in mind when you
work on your software projects. In the tech industry, sometimes speed is even valued more
than accuracy, given that the computed outputs are in an acceptable range of accuracy.

Seamless Testing, Debugging, and Profiling Chapter 6

[185]

For example, in a large system that interacts with a corresponding database, it is fairly
inefficient to have the system update its data each time there is an update for the database.
Specifically, most of the computing resources will be allocated to facilitate this updating
process, and other tasks that the system is also responsible for might be negatively affected.
It is more desirable if the system is updated not as often as its database (for example, every
hour, every day, for every 10 updates made to the database, and so on). This is actually the
case for many systems in real life.

Performance is even more important in Python, which is typically viewed as one of the
slower programming languages. In Chapter 1, Introduction to PyCharm – the Most Popular
IDE for Python, we discussed the fact that this is one of the very few disadvantages of using
Python for your development, and that is why Python developers need to pay special
attention to profiling and performance analysis.

In Python, there are a number of profiling tools that are favored and commonly used by the
community—yappi, cProfile, and VMProf, to name a few. cProfile is the most simple and
fundamental profiling tool in Python, and it is also a built-in feature of the language. yappi
contains similar functionalities but further supports multithread and CPU time profiling,
while VMProf offers statistical sampling features to achieve a more comprehensive profile
for your programs.

Luckily, all of these profiling tools are supported by PyCharm. However, it is important to
note that PyCharm will look through all the Python profilers that you have installed within
your project and will see if yappi or VMProf is included or not (remember that cProfile is
already built-in). The default option, when a profiling session is started, is VMProf if it is
available, yappi if it is available, or cProfile.

The discussion in the next subsection will examine the usage of cProfile within PyCharm so
that you can profile your code as it is the most fundamental option of the three, on top of
already being built into Python.

Profiling in PyCharm
For this discussion, we will be considering the example that's included in the
Chapter06/Profiling subfolder of this book's repository. This subfolder contains a
main.py script, which provides the following code:

def custom_sum(n=1000000):
 result = 0
 for i in range(n):
 result += i

Seamless Testing, Debugging, and Profiling Chapter 6

[186]

 return result

def built_sum(n=1000000):
 result = sum(range(n))
 return result

if __name__ == '__main__':
 print(custom_sum())
 #print(built_sum())

As you can probably guess from the code, we will be comparing and contrasting the two
ways of computing the sum of the integers going from one to a specific n (whose default
value is 1,000,000). The first way (the custom_sum() function) is to loop through all the
elements to be summed and add them to a running sum. The second way (the
built_sum() function) utilizes the built-in sum() method of Python.

In the main scope, we will be commenting/uncommenting one of the two function calls to
test both methods. We will be looking at our custom summing function first, so the call to
built_sum() is commented out for now.

The typical claim is that built-in functions are generally faster than custom ones; in this
example, we will be able to fact-check that claim and further qualify it with runtime
statistics through our profiling process. Let's get started:

Just like in testing and debugging, we can start a profiling session by using the1.
run arrow:

Starting a profile in PyCharm

Seamless Testing, Debugging, and Profiling Chapter 6

[187]

When the profile has completed, another tab will be opened inside the PyCharm2.
editor, listing various statistics about the runtime of our program. Your output
should look similar to the following screenshot:

A generated profile in PyCharm

This list contains all the functions that are used during the execution of our
program and their respective running time. The list is sorted by Own Time (the
last column in the report) in descending order by default. As you can see from my
report, the program on my system took 72 ms to run (almost), all of which was
done by the custom_sum() function.

Now, let's go back to our original script and switch to the call to the built-in3.
function (comment out line 15 and uncomment line 16). Start a profiling session
in the same way that we did earlier. A similar report will be generated, this time
for our second summing function.

On my computer, this version of the program took only 24 ms to complete; this is strong
evidence suggesting that the built-in summing function is somewhat three times faster than
our custom one.

Within any given generated report, you can also navigate between the two tabs, that
is, Statistics and Call Graph. While the Statistics tab, as we saw, includes the running time
of the functions that were executed by the program, the Call Graph visualizes the flow of
execution of that program, helping developers follow its logic better. For example, the
following is the call graph for the call to the first summing function, custom_sum():

Seamless Testing, Debugging, and Profiling Chapter 6

[188]

Call graph in PyCharm

Within this Call Graph tab, you can move around, zoom in and out, and even print out the
graph as you like, using the toolbar at the top of the tab.

Additionally, emphasizing the ease of navigation, PyCharm also offers developers the
option to further examine a specific method or function in the context of a profile.
Specifically, in the Statistics tab of a profile, you can right-click on a specific entry that
you'd like to examine in detail, as shown here:

Examining a specific function in a profile

As you can see, you are given two options:

You can navigate straight to the source code of the function that's currently
selected. This is particularly useful when you'd like to find out, for example,
which specific part of your code is causing a bottleneck in execution.

Seamless Testing, Debugging, and Profiling Chapter 6

[189]

You can also jump to that specific function in the call graph. This offers a bird's-
eye view of the execution flow of your program, as well as the role of the
function you are considering within that flow.

With that, our discussion on profiling in PyCharm has been concluded. We can see that
with the various dynamic features PyCharm provides, not only in profiling tasks but also in
debugging and testing, programmers are well equipped to examine the behavior of their
programs and look into potential bottlenecks, bugs, and errors productively.

Summary
Testing, debugging, and profiling are high-level tasks we can use to analyze applications to
look for improvements in correctness and performance, but they can be quite confusing to
beginner developers. PyCharm offers straightforward and intuitive interfaces for these
processes, thus making them more accessible and streamlined.

Unit testing is the process of making sure individual components of a large system work as
intended. PyCharm has convenient commands to generate test skeletons/boilerplate code
that usually takes time for developers to manually write. While testing a program, it is
important to anticipate and test for edge cases to ensure the overall correctness of that
program.

In a debugging session, developers attempt to narrow down and identify the causes of bugs
and errors that are detected during testing. With a graphical interface combined with
various options to track the values of variables throughout a program, PyCharm allows us
to debug our programs in a dynamic way with considerable freedom. The various stepping
functions also provide a flexible way for us to step through the program we are trying to
debug.

Lastly, the goal of profiling is to analyze the performance of a program and find ways to
improve it. This can be looking for faster ways to compute a value or identifying a
bottleneck in the program. With the ability to generate comprehensive statistics on the
running time of each function executed as well as call graphs, PyCharm helps developers
navigate through the different components of a profiled program with ease.

This chapter also marks the end of the second part of our book, where we focused on
improving our development productivity. From here, we will be considering the usage of
PyCharm in more specialized fields, namely web development and data science projects. In
the next chapter, we will cover the basics of three universal web dev tools—JavaScript,
HTML, and CSS within the context of PyCharm.

Seamless Testing, Debugging, and Profiling Chapter 6

[190]

Questions
What is testing in the context of software development? What are the different1.
testing methods?
How does PyCharm support testing processes?2.
What is debugging in the context of software development?3.
How does PyCharm support debugging processes?4.
What is profiling in the context of software development?5.
How does PyCharm support profiling processes?6.
What is the significance of run arrows in PyCharm's editor?7.

Further reading
More information can be found in the following articles and readings:

PyCharm documentation: Testing, JetBrains s.r.o. (https:/​/​www.​jetbrains.​com/
help/​pycharm/​testing.​html)
Unit testing, Software Testing Fundamentals (http:/​/
softwaretestingfundamentals.​com/​unit-​testing/​)
Python documentation: Unit testing framework (https:/​/​docs.​python.​org/​3/
library/​unittest.​html)
PyCharm documentation: Debugging Python Code, JetBrains s.r.o. (https:/​/​www.
jetbrains.​com/​help/​pycharm/​part-​1-​debugging-​python-​code.​html)
PyCharm documentation: Thread Concurrency Visualization, JetBrains s.r.o. (https:/
/​www.​jetbrains.​com/​help/​pycharm/​thread-​concurrency-​visualization.​html)
Python documentation: The Python Profilers (https:/​/​docs.​python.​org/​3/
library/​profile.​html)
PyCharm documentation: Optimize your code using profilers, JetBrains s.r.o. (https:/
/​www.​jetbrains.​com/​help/​pycharm/​profiler.​html)
Mastering Concurrency in Python, by Quan Nguyen, Packt Publishing (https:/​/
www.​packtpub.​com/​application-​development/​mastering-​concurrency-​python)

https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
https://www.jetbrains.com/help/pycharm/testing.html
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/part-1-debugging-python-code.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.jetbrains.com/help/pycharm/profiler.html
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python
https://www.packtpub.com/application-development/mastering-concurrency-python

3
Section 3: Web Development in

PyCharm
This section starts with Chapter 7, Web Development with JavaScript, HTML, and CSS. This
section mainly deals with various aspects of web development projects in Python and how
PyCharm facilitates support in those regards. First, we will discuss editing web
development languages such as JavaScript, HTML, and CSS, as well as how to work with
the Django framework (which is one of the two most popular web frameworks in Python,
along with Flask) within PyCharm. We will look at all of the important features in
PyCharm that help to streamline and support Python web development tasks.

We will learn how to use PyCharm to work with databases and integrate them into our web
development projects. We will also look at options in PyCharm that allow the visualization
of relational databases, making thinking/rationalizing about the data included in databases
easier and more intuitive. We will finally end the section by going through a specific use
case of developing a complete Python web application using PyCharm.

This section includes the following chapters:

Chapter 7, Web Development with JavaScript, HTML, and CSS
Chapter 8, Integrating Django in PyCharm
Chapter 9, Understanding Database Management with PyCharm
Chapter 10, Building a Web Application in PyCharm

7
Web Development with

JavaScript, HTML, and CSS
This chapter marks the beginning of a series of four chapters on web programming with
PyCharm, covering the development of general web applications. The topics discussed in
this chapter include the integration of common web programming languages (JavaScript,
HTML, and CSS) in PyCharm and how to debug them in straightforward and intuitive
ways. By the end of the chapter, you will have gained a comprehensive knowledge of how
to use the three languages to get started with a web development project using PyCharm.

The following topics will be covered in this chapter:

Introducing JavaScript, HTML, and CSS in the process of web development
The options for working with JavaScript, HTML, and CSS code in PyCharm
How to implement live editing and debugging for web projects

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your
computer.
Download the GitHub repository at github.com/PacktPublishing/Hands-on-
Application-Development-with-PyCharm.

We will be working with the Chapter07 subfolder in the downloaded code
repository.

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Web Development with JavaScript, HTML, and CSS Chapter 7

[193]

Introduction to JavaScript, HTML, and CSS
To understand and appreciate the benefits PyCharm brings to the process of web
development, we will examine the general use of the three most common web development
languages—JavaScript, HTML, and CSS—in this section. If you are already familiar with
these languages, feel free to skip ahead to the next section to see how PyCharm supports
them.

The examples discussed in this section are included in the Chapter07/Intro subfolder of
the code repository for this book.

Understanding the importance of HTML and CSS
In general, HTML and CSS serve to provide customizations for the appearance of a web
application or page. Hypertext Markup Language (HTML) concerns itself with the overall
structure of the web elements, while Cascading Style Sheets (CSS) is used to specify the
visual presentation of those elements. It is important to note that HTML and CSS are not
programming languages; they are simply types of markup tools that are used to style the
data that one wants to display.

Writing our code with HTML
In an HTML file, individual elements are included inside tags, which are a way to specify
the type of content each element contains. For example, HTML tags can be <p></p> for
paragraphs, <table></table> for tables, or for lists. As you can see, HTML
tags are typically created in pairs to indicate the beginning and the end of each element.

HTML files are directly interpretable by web browsers; in fact, one can use web browsing
software to read custom HTML code. For example, in the current subfolder of our
repository, there is an HTML file named index.html that contains the following code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>HTML Test</title>
</head>
<body>
<p style="color: red">Hello, World!</p>
</body>
</html>

Web Development with JavaScript, HTML, and CSS Chapter 7

[194]

Regarding the HTML code itself, aside from some particularities (for example, the UTF-8
character encoding scheme in the meta tag, which we don't need to worry about), we can
speculate, to some extent, the contents of the web page created with this file:

The <title></title> tag: A title saying HTML Test, which will be displayed
as the name of the tab in your browser
The <p></p> tag: A sentence saying Hello, World! that is also red in color

Note that just like any text-based files that contain code, HTML files can
be opened and edited with most text editors and IDEs. For now, feel free
to open the file with your favorite text editor (Atom, Sublime, Notepad,
and so on), as we will save PyCharm for the discussion in the next section.

As we have said before, HTML files can be interpreted and displayed by most browsers.
With your favorite browser, evoke the Open action (File | Open), and navigate to the
index.html file that we are considering, and you will see data specified by HTML code
interpreted by a web browser. For example, the following screenshot is from my Chrome
browser:

Opening HTML files in web browsers

Similar to how one refreshes a web page so that any potential updates to the website can be
displayed, you can also refresh this offline HTML page to reflect any changes. For example,
you can change the <p> tag in line 8 of the previous HTML code to the following and then
refresh the page:

<p style="color: red; text-align: center">Hello, World!</p>

After doing this, the displayed content will be updated so that the text is appropriately
center-aligned.

We have considered the most basic aspects of the HTML language. In the next subsection,
we will learn more about CSS and how it works together with HTML in a web application.

Web Development with JavaScript, HTML, and CSS Chapter 7

[195]

Writing our code with CSS
While HTML can be responsible for specifying the actual content of a web page, CSS
is again about customizing the visual aspects of that content. Looking at the <p></p> tag in
the previous HTML example, you might say that we already have the ability to customize
the styling of HTML content (for example, the color and the alignment of the text).

However, the way we applied the style to the text in the previous example—while it can
work for small, simple web pages—is not efficient and extensible in large web projects.
Instead, we can have a separate file to specify the styling of individual HTML elements in a
systematic way, and that is the problem CSS addresses.

Inspect the external.html file in our current folder, which contains the following HTML
code:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>External CSS</title>
 <link rel="stylesheet" href="styles.css">
</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

The thing to notice in this file is the <link></link> tag inside the <head></head> tag:

<link rel="stylesheet" href="styles.css">

This code is used to specify that we would like to use the styles.css file as a style sheet
for this HTML file. In the same folder, you should see that particular CSS file:

body {
 background-color: powderblue;
}
h1 {
 color: blue;
}
p {
 color: red;
}

Web Development with JavaScript, HTML, and CSS Chapter 7

[196]

A typical CSS file, similar to the preceding one, contains separate sections, each specifying
how an HTML element should be styled. In our current example, we have the whole
background of the body of our web page as a powder blue color, while the text in
the <h1></h1> (heading) tags should be in blue, and the regular <p></p> text should be in
red.

In the same way, as we did before, use your browser to open this external.html file to
see how the resultant web page is styled accordingly.

With that, we have learned the basics of the HTML and CSS languages. Next, we will
discuss the final one of the three common web development tools: JavaScript.

Understanding the importance of JavaScript
Despite the similarity in their names, JavaScript and Java barely share any commonalities in
their purpose and usage. JavaScript (or JS for short), unlike HTML and CSS, is indeed a
programming language, typically used to process and manipulate data, which is then to be
displayed by HTML and CSS. What makes it so universal among web projects is its ability
to integrate and work with HTML/CSS as well as other web development tools so well.

In our current folder, let's examine the script.js file, which contains the following code:

class Person {
 constructor(name) {
 this.name = name;
 }

 sayHi() {
 alert("Hello, I'm " + this.name)
 }
}

let p = new Person("Quan");
p.sayHi();
//document.body.innerHTML = "<p>Hello, I'm " + p.name + "</p>"

Being a programming language, JS allows web developers to implement object-oriented
development ideas, which, in this case, is the design of classes.

Web Development with JavaScript, HTML, and CSS Chapter 7

[197]

In this example, we have a class named Person, whose constructor takes in a string as the
name of the person. The Person class also has a method called sayHi(), which will create
an alert on the web page that implements it with a hello message. Outside of the class
declaration, we initialize an instance of the Person class with the Quan name, and then call
the aforementioned sayHi() method.

This file on its own cannot create and display a web page; instead, it would have to be
called from an HTML file. Let's turn our attention to an example of such a file,
person.html:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Person</title>
</head>
<body>
</body>
<script src="script.js"></script>

</html>

Different from the other HTML examples we have seen so far, this file has a
<script></script> tag that, via the src attribute, points to a JavaScript script, which in
this case is our script.js file. Now, open the HTML file in a browser, and you will see the
effect of the JS code we entered in the action. Specifically, the alert() function in JS creates
a pop-up window in a web page with a specified message:

The alert function in JavaScript

Web Development with JavaScript, HTML, and CSS Chapter 7

[198]

Additionally, JS can modify the HTML content of a web page in its code. For example, in
the script.js file, uncomment the last line of code by removing the // double forward
slashes from the last line of code, and put the slashes in front of the second-to-last line
(where we used the alert() function) so that the code becomes as follows:

let p = new Person("Quan");
//p.sayHi();
document.body.innerHTML = "<p>Hello, I'm " + p.name + "</p>"

As you can see, instead of creating an alert pop-up, this time, we are using JS to create an
actual HTML element inside a <p></p> tag. Since JS is a programming language, we are
free to perform string concatenation and access attributes of class objects (p.name). We see
that we are able to include the <p></p> tag inside the string itself, which is a convenient
method of manipulating the content of our HTML code within JavaScript.

This discussion concludes our brief introduction to the web development trio: JavaScript,
HTML, and CSS. We see that with JS, web developers can dynamically perform complex
calculations and data processing and then finally display the results using customizations
in HTML and CSS.

In the next section, we will find out how PyCharm supports web development with these
languages through various features and functionalities.

Implementing web pages in PyCharm
Similar to the approach we have taken many times in this book, we will now try to contrast
the topics/tools we are discussing with and without the support of PyCharm. In this
section, we will examine various features in PyCharm that facilitate faster and more
efficient web development with JavaScript, HTML, and CSS.

As for the code examples used in this section, we will be looking at the
Chapter07/PyCharmSupport subfolder. First, we will discuss the features that apply to
HTML and CSS.

Using HTML and CSS in PyCharm
In this subsection, we will go over a number of ways that PyCharm streamlines the process
of writing HTML and CSS code. You will see that, with the help of PyCharm, working with
HTML and CSS code is significantly easier than doing so in a minimal text editor.

Web Development with JavaScript, HTML, and CSS Chapter 7

[199]

Creating new HTML files
Generating boilerplate code has been a recurring theme about the advantage of using an
IDE during software development processes in this book, and web development is not an
exception. Here, let's see how PyCharm can help us generate HTML boilerplate code:

Now, within a newly created PyCharm project (or it can be any project that you1.
currently have opened), right-click on the project name within the Project panel
(the project directory) and choose New > HTML File, as illustrated here:

Creating HTML files in PyCharm

After entering any name for our new HTML file, it will be opened within the2.
PyCharm editor. You will see the HTML-specific boilerplate code that was
automatically generated:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Title</title>
</head>
<body>

</body>
</html>

With this skeleton, we can continue to add in further HTML code with ease.

Web Development with JavaScript, HTML, and CSS Chapter 7

[200]

Including external files in HTML code
We have seen in the previous section that in order to use the code implemented in JS and
CSS files in our resultant web page, we would need to specify them in the corresponding
HTML file. PyCharm provides easy navigation to facilitate this process. Let's say we'd like
to include a JS script in an HTML file within the same PyCharm project (in the
Chapter07/PyCharmSupport folder, it is the script.js file):

You may recall that we need to wrap the JS file inside a <script></script>1.
tag. You will find that as you type in the tag, PyCharm's code completion engine
will be able to generate a suggestion list that only consists of relevant scripts:

Code completion in HTML

Alternatively, from the Project panel (mostly on the left-hand side of your project2.
window), you can drag a file that you'd like to reference and drop it in the HTML
file in the editor, and PyCharm will automatically generate the appropriate tag
for the element to be included.

Web Development with JavaScript, HTML, and CSS Chapter 7

[201]

For example, the following is the result produced after I dragged and dropped the
styles.css file inside the sample.html file (note the new line at line 6):

Dragging and dropping files into HTML

The second method is extremely convenient, especially in large projects where specifying
the path to a specific file can be time-consuming if the path is long and complex.

Furthermore, in addition to JS scripts and CSS style sheets, we can apply these two
methods to image files as well (in the second method, the width and height attributes will
be automatically generated along with the tag).

Viewing documentation
If you are somewhat familiar with HTML tags and attributes, you will most likely agree
when I say that there are too many of them, and sometimes it can be quite confusing to
know which is the correct one to use in a specific situation.

To address this problem, PyCharm offers a way to dynamically view documentation for
these tags and attributes as we write them. For example, in the previous section, we
skipped over the purpose of the <meta> tag in our examples; we now would like to find
out what it is:

Move the cursor/caret to the tag and go to View | Quick Documentation (or its1.
corresponding keyboard shortcut), and you will see something similar to the
following screenshot:

Web Development with JavaScript, HTML, and CSS Chapter 7

[202]

Viewing documentation for HTML code

Additionally, there are particular HTML tags that are only supported by some2.
browsers and not others. The preceding documentation pop-up window will
display which browsers support the tag for the documentation we are reading.
If a tag is supported by all standard browsers, like the <meta> tag in our3.
example, then this information will be excluded. One can also click on the link
included at the end of the pop-up window to go to the Mozilla Developer
Network (MDN) documentation web page.

Emmet
If you are an experienced web programmer, you know that Emmet is a valuable tool in web
development. In essence, Emmet provides powerful options to shorthand while writing
HTML and CSS code; the support Emmet offers allows for faster writing and editing. Quite
similar to general code completion, you type the shorthand for a piece of code in PyCharm
and hit the Tab key, and the complete code will be inserted.

For example, you'd like to create an HTML table of two rows and three columns, which
typically corresponds to the following code:

<table>
 <tr>
 <td></td>
 <td></td>
 <td></td>

Web Development with JavaScript, HTML, and CSS Chapter 7

[203]

 </tr>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
</table>

In this case, with Emmet, you can simply type table>tr*2>td*3 in an HTML file and hit
the Tab key, and you will see that the appropriate code is generated.

Emmet is not a part of the Python web development process or of the PyCharm IDE. It is
simply a general toolkit that can be installed and utilized in web projects. However, since
Emmet is such a powerful and widely used tool, PyCharm offers its full support for Emmet
in its web development projects. Additionally, you can configure the behavior of Emmet
within PyCharm by going to the settings and navigating to Editor | Emmet.

To learn more about Emmet itself outside the context of Python and PyCharm, you can also
go to https:/​/​emmet.​io/​.

Viewing HTML output in browsers
As discussed in the previous section, to be able to see how a browser will display code in a
given HTML file, we normally have to open the HTML file from the browser. This process
can be very time-consuming (and frustrating) if the file you want to display is buried deep
inside a project directory. Let's see how PyCharm streamlines that process in the following
steps:

In PyCharm, as you hover your cursor over the top-right corner of the editor, a1.
pop-up toolbar will appear with icons for various browsers:

Opening HTML in browsers

https://emmet.io/
https://emmet.io/
https://emmet.io/
https://emmet.io/
https://emmet.io/
https://emmet.io/
https://emmet.io/
https://emmet.io/

Web Development with JavaScript, HTML, and CSS Chapter 7

[204]

Simply click on the desired browser to have the HTML file displayed. Unlike2.
manually using a browser to open an HTML file offline, PyCharm automatically
creates a local server on your machine to host the HTML code (note the URL
when the HTML file is opened).
Additionally, it is possible to configure this list of browsers available to use. Go3.
to the PyCharm settings and navigate to Tools | Web Browsers, and you will be
taken to this window:

Customizing browsers in PyCharm

From here, you can check/uncheck items in the list displayed to customize the items in the
pop-up toolbar, and add in browsers that are not yet included.

Extracting HTML source code in PyCharm
As you are working on your web project, you might notice a display or feature from
another website that you'd also like for your own site. Typically, you would go to that web
page, inspect its source code, and try to apply the appropriate portion of code to your own
project.

Web Development with JavaScript, HTML, and CSS Chapter 7

[205]

When using PyCharm, you can have the IDE facilitate this process and fetch the HTML
source code for you:

Go to File | Open URL.1.
Type in the address of the website from which you'd like to extract the HTML2.
source code.
Hit OK.3.
A scratch HTML file will be populated with the HTML source code of the site,4.
and opened in the editor. For example, the following screenshot is my output
after fetching the source code of https:/​/​www.​packtpub.​com/​:

Fetching HTML code in PyCharm

Again, this feature is particularly useful when you have to inspect the source code of a
specific web page, either for the process of simulating the same features for your own site,
or for web scraping.

We have considered a number of important features in PyCharm when it comes to writing
and editing HTML and CSS code. In the next subsection, we will learn about the options
available for JavaScript and how they can help us become more productive in our web
projects.

Using JavaScript in PyCharm
In this section, we will see features that facilitate developing JavaScript code within
PyCharm. With JavaScript being a programming language, we will focus on familiar topics
such as editing, code completion, and debugging.

https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/
https://www.packtpub.com/

Web Development with JavaScript, HTML, and CSS Chapter 7

[206]

Choosing the version for JavaScript
There are multiple versions for the JavaScript language, just as for Python (2.7, 3.5, 3.6, and
so on). It is obvious that in order to produce a correct and reliable web program in
JavaScript, you need to configure the correct version for the language:

Go to the PyCharm settings.1.
Navigate to Languages and Frameworks | JavaScript.2.
From the drop-down menu at the top of the main window, you can now select3.
the version of JavaScript that you are using, as illustrated here:

Choosing JavaScript version

From the main window, you can further customize various aspects of the code completion
logic for JavaScript.

Hints about parameters
PyCharm offers the feature that displays parameter names when methods, functions, or
classes are called, which can improve the readability of our code considerably. Let's
consider the script.js file in our current code folder:

class Person {
 constructor(name) {
 this.name = name;
 }

 sayHi() {
 alert("Hello, I'm " + this.name)
 }
}

Web Development with JavaScript, HTML, and CSS Chapter 7

[207]

This file contains the same Person class that we saw in the example in the previous section.
Now, in a new line in this file, we will initialize a new Person instance by entering the
following code:

let p = new Person("Quan");

You will see that as you type in the initialization of the new Person instance, PyCharm
automatically reformats the appearance of our current line of code:

Parameter hints in JavaScript

As always, you can further configure this behavior in the PyCharm settings:

Navigate to Editor | General | Appearance.1.
Click on the Configure button next to the Show parameter name hints option.2.
Another window will open. Check the appropriate boxes in the bottom Options3.
section of the window.

Debugging the code
Debugging is perhaps one of the most important features of any IDE. As it turns out,
debugging JavaScript code is quite similar to debugging Python code, especially for
graphical interface and navigation.

As discussed in the Debugging section in Chapter 6, Seamless Testing, Debugging, and
Profiling, there are specific steps to a debugging session in PyCharm. If you want a refresher
on the specifics during such a debugging session, give the Debugging section in Chapter
6, Seamless Testing, Debugging, and Profiling, a quick read-through before continuing.

Web Development with JavaScript, HTML, and CSS Chapter 7

[208]

With that said, to debug JavaScript code, you can do the following:

Place breakpoints at specific stages of the code you'd like to debug. The execution1.
of the program will stop at each breakpoint so that you can examine its current
state. Breakpoints are represented as big red dots in the left-hand gutter of the
PyCharm editor.
Find the HTML file that contains the JS script you'd like to debug in the Project2.
panel (the project directory tree, typically on the left-hand side of the window).
Right-click on the file, and choose Debug 'sample.html', as illustrated here:3.

Debugging JavaScript from an HTML file

PyCharm will open that HTML file in a web browser, and the Debug panel will4.
appear in your PyCharm window, much like a debugging session with
traditional Python code.

With the web browser and various control features in the Debug panel, you can choose to
step through your JavaScript code in multiple ways and examine the behavior of the code
at each placed breakpoint.

Web Development with JavaScript, HTML, and CSS Chapter 7

[209]

Live editing
Recall what we saw earlier in the first section: when an HTML file you are working with is
being displayed by your browser and a change has just been made to the file, you will have
to manually refresh the page in your browser for the displayed content to be updated.

LiveEdit is a PyCharm feature that updates the web page for you automatically every time
there is a change to the source code. This is quite a useful feature, as it will save web
developers significant time, not having to manually reload a web page. It is also important
to note that LiveEdit can only be utilized during a debugging session.

With that said, LiveEdit does not come with PyCharm by default, but it is a free plugin
developed by JetBrains that can be installed free of charge. Note that we will go into the
details regarding PyCharm plugins in Chapter 14, More Possibilities with PyCharm Plugins,
and for now we will only consider the process of installing LiveEdit specifically:

Go to the PyCharm settings and navigate to the Plugins tab. You should see the1.
following window:

PyCharm plugin manager

Note the three tabs available in this window, highlighted in the preceding2.
screenshot: we are currently in the Installed tab. Since LiveEdit is not installed by
default, we will have to navigate to the Marketplace tab.

Web Development with JavaScript, HTML, and CSS Chapter 7

[210]

In the Marketplace tab, you will see various plugins that you can install for your3.
PyCharm. Type in LiveEdit (no spaces) in the search bar, and choose the option
LiveEdit by JetBrains, as illustrated here:

Searching for and installing LiveEdit

Click on the Install button in the next window to install LiveEdit. You might also4.
have to restart your PyCharm for the plugin to activate.
After the restart, you can further customize the behavior of LiveEdit. From the5.
settings, go to Build, Execution, Deployment | Debugger | Live Edit, and you
will see this window:

LiveEdit settings

Web Development with JavaScript, HTML, and CSS Chapter 7

[211]

The options are relatively self-explanatory, and the default selections are generally optimal
for most web development projects:

If you are working with a Node.js application within PyCharm, you could
potentially enable the corresponding setting as well.
By default, LiveEdit will only update the displayed web page when changes in
HTML and CSS are made, but not JS—this is because changes in JS might require
a complete restart of a given web application. However, you still have the option
to apply LiveEdit to JS in this setting window.

With that, you are ready to utilize LiveEdit in your web applications. Within the current
repository folder, start a debugging session with the sample.html file, or any HTML file
you are interested in, to see LiveEdit in action.

Specifying a framework for new applications
In this last subsection on the PyCharm support for JavaScript, we will discuss the various
frameworks available to be implemented in PyCharm for web projects. As mentioned
before, if you are using the professional edition of PyCharm, you will be asked to specify
the project type when you create a new PyCharm project:

Project types in PyCharm

Web Development with JavaScript, HTML, and CSS Chapter 7

[212]

In this window, you can choose any project type that facilitates JavaScript application
development, such as Angular CLI, AngularJS, React App, or React Native. As a specific
option is chosen, you can further customize the initiation of your project in the More
Settings section of the window.

We have covered a number of important features in PyCharm that facilitate
the development of web applications. Overall, PyCharm offers extensive and convenient
functionalities that streamline various processes in web development.

Summary
Throughout this chapter, we have learned the basics of the three most common web
development languages: JavaScript, HTML, and CSS. While HTML and CSS deal with the
display and styling of a web page, JavaScript is mainly used to process and manipulate
data that will produce the final content of the page.

PyCharm offers numerous options in terms of streamlining web development processes.
HTML and CSS can be written and edited with higher accuracy and speed using
PyCharm's boilerplate code generation, documentation viewing features, integration of
Emmet, and live editing options. JavaScript, on the other hand, is supported by multiple
versions, a hands-on, graphic debugging toolset, as well as a wide range of available JS
frameworks.

With this knowledge, we are now able to start developing simple, bare-bones web
applications with PyCharm. However, this process does not involve our main language of
choice, Python, just yet. In the next chapter, we will move on to the topic of web
development with Python and Django specifically. We will discuss the ecosystem of Python
web applications, the specifics of the Django web framework, and finally how PyCharm
supports Django web projects.

Questions
What is the purpose of HTML code? How is an HTML file structured?1.
What is the purpose of CSS code? How is a CSS file structured?2.
What is the purpose of JavaScript code? In general, what makes it one of the most3.
popular web programming languages?
How can one include a CSS style sheet or a JS script in an HTML file in4.
PyCharm?

Web Development with JavaScript, HTML, and CSS Chapter 7

[213]

What is Emmet? How is it supported by PyCharm?5.
What options are available when it comes to debugging JavaScript in PyCharm?6.
What is the purpose of the LiveEdit feature in PyCharm?7.

Further reading
More information can be found in the following articles and documents:

PyCharm documentation: Web Frameworks, JetBrains s.r.o. (https:/​/​www.
jetbrains.​com/​help/​pycharm/​web-​frameworks.​html)
Web Design 101: How HTML, CSS, and JavaScript Work, HubSpot (https:/​/​blog.
hubspot.​com/​marketing/​web-​design-​html-​css-​javascript)
Emmet documentation: Emmet — the essential toolkit for web-developers, (https:/​/
docs.​emmet.​io)

https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://www.jetbrains.com/help/pycharm/web-frameworks.html
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://blog.hubspot.com/marketing/web-design-html-css-javascript
https://docs.emmet.io
https://docs.emmet.io
https://docs.emmet.io
https://docs.emmet.io
https://docs.emmet.io
https://docs.emmet.io
https://docs.emmet.io
https://docs.emmet.io

8
Integrating Django in PyCharm

The Django framework is one of the most common, if not the most common, web
development tools in Python. However, due to the wide range of functionalities it offers,
Django can be very confusing and frustrating to work with, especially for beginners.

This chapter discusses various ways PyCharm addresses this problem, showing us why the
PyCharm IDE is known as one of the best support systems for Django. By the end of the
chapter, you will be able to fully integrate and work with the Django framework in
PyCharm web projects.

The following topics will be covered in this chapter:

A brief introduction to the Django framework and some preliminary
comparisons with its counterpart, Flask
Various features and functionalities offered by PyCharm that make Django easy
to work with, including Jinja and the run/debug configuration for a PyCharm
project

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your
computer.
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm.​

During this chapter, we will be working with the Chapter08 subfolder in the
downloaded code repository.

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Integrating Django in PyCharm Chapter 8

[215]

An overview of Django
To fully appreciate how PyCharm simplifies various processes in a specific Python
programming task, we will first briefly discuss the given task outside of PyCharm. In this
section, you will learn about the basics of the Django web framework, which Python web
development problems it addresses, and its pros and cons with respect to the other most
popular Python web framework, Flask.

As always, if you are already familiar with the workings of Django, simply skip forward to
the next section about the PyCharm support.

Django and the idea of web frameworks
First of all, let's discuss the idea of a framework, specifically in the context of web
development. As you already know, a web application consists of multiple interconnected
aspects—frontend code specifying the appearance of web pages, backend logic to process
and handle data, and a server to keep the application online so that others can access and
interact with it.

A web framework handles the heavy-lifting and repetitive aspects of this process. This
allows web developers to focus on the specific logic of their applications. Web frameworks
usually implement common design patterns and good practices into their structure, so that
a web application developed with a framework will be up to common standards by default,
without its developer having to manually integrate those standards into the application.

Django, titled the web framework for perfectionists with deadlines, is a Python web framework
dedicated to building robust, complex web applications in simple and minimal APIs. The
following are a few notable high-level priorities accommodated by Django, as outlined in
its documentation:

Speed: Similar to Python itself, Django emphasizes the ease of developing and
translating ideas into actual code. With straightforward yet extensive APIs,
Django aims to accommodate a wide range of web applications and features.
Security: Web development is one of the topics in programming in which
security is the highest priority. The Django framework offers features that
navigate web developers, beginners, and experts alike, away from security flaws
in their applications.
Scalability: When a website gains more clients, scalability becomes more and
more important. Scalability in Django can be achieved in flexible and intuitive
ways; in fact, some of the largest sites on the internet (Bitbucket, Instagram,
Pinterest, and so on) are built with Django for that reason.

Integrating Django in PyCharm Chapter 8

[216]

Needless to say, there are other web frameworks aside from Django, both in general web
development and in Python web development, specifically. For example, AngularJS is one
of the most popular frameworks for JavaScript projects, while Flask, as mentioned, is
another commonly used Python web framework.

Each web framework is typically set out to solve a specific problem, and, in the next
subsection, we will learn about the specific features of the Django framework.

What makes Django special?
Going from other web frameworks to Django, you will notice the following differences,
which distinguish Django in special ways.

Django models
Django uses models to structure and organize the data of a web application. Typically
written as a class in Python inheriting from the django.db.models.Model class, a model
supports object-oriented thinking in a web development project, containing attributes and
class methods that are used to store and process data for the given website.

For example, the following code is for a Django model, implementing the same Person
class that we considered in the previous chapter:

from django.db import models

class Person(models.Model):
 name = models.CharField(max_length=30)

 def say_hi(self):
 return f"Hello, I'm {self.name}."

Additionally, each model corresponds to a database table in the backend of a Django
project, and Django handles the creation of any database table automatically. Still looking at
the preceding class model, the equivalent of the following SQL code will be executed by
Django:

create table myapp_person (
 "id" serial not null primary key,
 "name" varchar(30) not null
);

Integrating Django in PyCharm Chapter 8

[217]

Additionally, Django can specify relationships between different tables, commonly used in
database management. Specifically, the following are used:

django.db.models.ForeignKey can be used instead of a regular Field type
to indicate a many-to-one relationship in the class model declaration.
django.db.models.ManyToManyField can be used instead of a regular Field
type to indicate a many-to-many relationship in the class model declaration.
The same goes for django.db.models.OneToOneField and a one-to-one
relationship.

All in all, the Django Pythonic model design makes it as easy as possible for Python
developers to get into the field of web development, while still ensuring the correctness and
robustness of the project structure.

Admin access in Django
One aspect of creating a website that some might not think about often is designing and
implementing administrative access. An example of an admin access can be to add, change,
or delete content in an online blog. Since setting up admin privileges (and the
corresponding interface) is somewhat tedious and repetitive, Django believes it should be
automated.

After you have created a Django application in your website, you can access the admin
page by going to the /admin/ site (this is applicable even to the Django server run locally).
After logging in successfully, you will be taken to a dashboard where you can customize
the content available on your website. The following screenshot in the official Django
documentation shows an example of this dashboard:

Django's admin access

Integrating Django in PyCharm Chapter 8

[218]

Again, this graphical interface allows for faster and more accurate customization of data for
your web application.

Django templates
The third notable feature that Django provides is the ability to generate HTML code in a
dynamic way—with Python. Specifically, you would have a basic structure for your web
page in an HTML file, parts of which are static and can be specified directly within the
HTML file, and parts are the dynamic content that will be populated later on by Django,
working with Python in the backend.

For example, within a Python file, you can have the framework load the base HTML file
and directly feed to it some data specified in a Python dictionary (if you are familiar with
sending web requests via Python, this process is quite similar to making a POST request to a
website). For example, in the following code snippet, we are using the
render_to_string() method to load the base_template.html file and pass in a
variable named foo that is holding the 'bar' string:

from django.template.loader import render_to_string

rendered = render_to_string('base_template.html', {'foo': 'bar'})

Notice that this is the opposite way of having backend and HTML code interact with each
other—compared with the JavaScript example in the previous chapter—instead of
including an HTML tag that points a given web page to a specific backend code, we are
now loading an HTML template and rendering it with our backend data.

The resulting HTML code will be the same for client browsers; in other words, they will
receive the same information either way. However, using HTML files as base templates
makes them more readable.

Jinja
This is the last feature to be discussed that makes Django a special web development
framework in Python. It is also quite relevant to the idea of HTML templates discussed
previously.

In general, Jinja is a template engine in Python, independent of the Django framework.
However, it is inspired by the Django template system to provide web developers with a
powerful Python syntax for working with web templates. Jinja2 (the second version of Jinja)
is considered to be one of the most popular template engines for Python, and Jinja is used
by tech giants such as Mozilla, Instagram, and SourceForge.

Integrating Django in PyCharm Chapter 8

[219]

The most attractive feature of Jinja, again, is its Pythonic syntax, which results in the ability
to interact with and process data in ways that Python programmers are already used to.
The following example is provided in the official documentation of Jinja code:

{% extends "layout.html" %}
{% block body %}

 {% for user in users %}
 {{ user.username }}
 {% endfor %}

{% endblock %}

As you can see from the preceding snippet, Jinja supports the following powerful features:

Extending a base template: In our example, we are extending the layout.html
file. By extending a base HTML file, we produce a web page that includes both
the base template and the output of code specified in the current file.
Looping: Notice the {% for user in users %} line of code. Here, users
might be a variable specified by the Django backend via a template (similar to the
example we saw in the preceding subsection). As you can see, the syntax for this
for loop is identical to one in Python, thus providing a powerful way to read
through iterable data.
Combining HTML tags: Inside the same for loop, we see the code attributes of
each element in users (such as url and username) are being placed into various
HTML elements. This is quite a convenient feature, facilitating a dynamic and
flexible generation of HTML code.

Jinja is the perfect way to tie Pythonic syntax in the context of web development. It gives
traditional Python programmers an approachable method to tackle web projects, as well as
web developers a dynamic way to process, manipulate, and display their data.

Overall, models, admin functionalities, templates, and Jinja create a powerful combination
that sets Django apart as the premiere web framework in Python. With that said, there are
still considerations regarding the pros and cons of Django, specifically in comparison with
another Python web framework—Flask. In the next subsection, we will look into the
differences further.

Integrating Django in PyCharm Chapter 8

[220]

Django versus Flask
Normally when comparing it with Flask, Django users point to a feature of the framework
that emphasizes the biggest difference between the two: Django is to be used with the
batteries-included approach. The term batteries included denotes the fact that Django comes
with considerable support for common repetitive tasks such as user authentication, URL
routing, or even the migration of database schema.

Flask, on the other hand, is significantly more lightweight, offering minimal design
structures. As a result, web applications developed with Flask are relatively simple and can
be easily plugged into other types of applications. However, a lot of heavy-lifting features
that we mentioned earlier have to be implemented by the web developers themselves.

The distinction between Django and Flask is also mirrored in the one between PyCharm
and other editors/IDEs. As we discussed extensively at the beginning of the book, the wide
range of features offered by PyCharm, while incredibly useful, can be intimidating for
beginner programmers, who should only focus on the core structure and syntax of the
language. In Django, one could easily get lost in the complex project structure and various
powerful functionalities that will streamline large web applications, especially if one is new
to web programming.

For that reason, the same answer can be applied to the question of which one is better,
Django or Flask—it depends on your current level of expertise and the end result you want
from your chosen framework. Flask will keep your applications to the minimum and
emphasize the core functionality of the application logic, while Django will build upon that
core and add in multiple layers that will produce a full-fledged web application with
features conforming to current standards in the industry.

If you are new to Python web programming, it is advisable to look at Flask first. After you
have familiarized yourself with the process with Flask, Django will prove to be even more
useful, especially if a full-stack application is what you want to achieve.

If you are starting out with Django straightaway, don't be discouraged—even though the
learning curve might be relatively steep at the beginning, having to learn the core concepts
of web development as well as how to implement them with Django, things will become
much clearer after you have mastered the core concepts.

This discussion also marks the end of our brief overview on Django and its place in the
ecosystem of Python web development. In the next section, we will look at PyCharm and
how it integrates the framework into its projects.

Integrating Django in PyCharm Chapter 8

[221]

Django in PyCharm
PyCharm provides powerful and convenient support for Django projects through various
functionalities. Following an example of an online library containing information on books
and authors, we will be examining these functionalities one by one. After this section, we
will have a better understanding of the way PyCharm facilitates the process of developing
web applications in Django.

You can additionally find the complete code for this section in the Chapter08/mysite
subfolder in the repository of the book. Note that, if you do decide to import the whole
project instead of doing the steps yourself while following the discussion, you will need to
create an appropriate virtual environment for the project to be imported. With that in mind,
you can utilize the requirements.txt file of the project to correctly install all
dependencies.

(You can head back to the Importing an external project into PyCharm section in Chapter 3,
Customizing Interpreters and Virtual Environments if you need a refresher on this process.)

Typically, it is important to make sure the version of Django you will be using is
compatible with that of the Python interpreter you have. This is because similar to other
Python external libraries such as OpenCV or TensorFlow, not all versions of Django are
compatible with all versions of Python. You can head to the official Django documentation
at https:/​/​docs.​djangoproject.​com/​en/​2.​2/​faq/​install/​#what-​python-​version-​can-
i-​use-​with-​django for the complete list of compatibility between Django and Python.

With that in mind, let us start this section with our first step—creating a Django project.

Starting a Django project
As discussed many times previously, to create a new Django project in PyCharm, you can
start with either step 1 or step 2 in the following list:

Choose Create New Project from the welcome window.1.
Go to File | New Project within an existing workspace.2.
In the New Project window, choose Django in the left-hand side menu as your3.
project type.
In the main window, expand the available two sections, Project Interpreter and4.
More Settings, as illustrated here:

https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/2.2/faq/install/#what-python-version-can-i-use-with-django

Integrating Django in PyCharm Chapter 8

[222]

Creating a Django project

We will then make the following selections:

At the top of the window, you can specify the name of your project and its path.
Note that mysite is the convention for Django project names, so that is what I
named the project in the code repository as well.
Typically, we would like to create a new virtual environment for any web
project, so choose the New environment option in the Project Interpret section.
Check the two boxes in the same section if you want to include all the packages
installed with your global Python interpreter in this project, and have this
interpreter available for other PyCharm projects.
In the Template language prompt in the More Settings section, you can have
your templates managed by either Django or Jinja2. For our purposes, we will
use the default option, Django.
You can also rename the folder containing the templates of your project. Again,
we will simply use the default name.

Integrating Django in PyCharm Chapter 8

[223]

In the Application name prompt, you can specify if you'd like to start an
application for your project at this point. Since we already know we'd like to
implement our library application, we will input library in this prompt.
The Enable Django admin box, if enabled, allows us to have an admin interface
after the project is created (this is the admin feature discussed in the previous
section). We will thus leave this box checked.

With everything ready, we will now click the Create button, and PyCharm will start the
process of creating the project with the specified settings for us. You might notice that
during this process, PyCharm makes sure to install the appropriate version of Django.

In the next subsection, we will take a closer look at the generated project and its structure.

Structure of a Django project
When PyCharm finishes creating our Django project, we will be taken to the corresponding
project window. Let's now examine the various elements in this window. First, if you
expand the directory tree in the Project panel on the left-hand side, you will see the general
structure of the generated Django project:

Django project structure

Integrating Django in PyCharm Chapter 8

[224]

Let's have a look at some of the folders we see in this directory:

mysite contains information and customizations for the general project.
library contains settings for the library application itself. Note that a Django
site can contain multiple applications, and library is the only one we currently
have for mysite.
migrations (a subfolder inside library) contains scripts that apply
customizations and changes in your models to the corresponding databases.
templates contains templates for the whole web project. A brief discussion on
the Django template engine was included in the previous section.

Notice that most of the files in the folders are empty for now. As we move forward with the
development of our application, we will be editing a number of the files to implement
various features of the application.

In addition to the directory tree, you can also see that PyCharm automatically opens
settings.py and urls.py in the editor. These files, included in the mysite folder,
specify the configurations and URL routings for our project, respectively. Since we will be
working with these files quite frequently, it is generally a good idea to keep them opened in
the editor.

Initial configurations
For now, we can briefly consider the settings.py file and look through all the various
settings that we currently have, for example, as follows:

Production-related configurations (lines 22 - 26):

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = ...

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

The information included in these lines should be changed when we are at the
production stage of our site. However, we can leave it as is for now.

Database configurations (lines 75 - 83):

Database
https://docs.djangoproject.com/en/2.2/ref/settings/#databases

DATABASES = {

Integrating Django in PyCharm Chapter 8

[225]

 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Note that we are using sqlite3 as our database engine. Aside from that, you can of course
utilize other engines such as MySQL or Oracle by specifying the value of 'ENGINE' (line
80); for now, we will stick with sqlite3. On the other hand, you can freely customize the
name of the database, as specified by the value of 'NAME' (line 81). In particular, simply
change the second parameter string (which is currently 'db.sqlite3') to the desired
name. (I personally changed it to 'LibraryDatabase'.)

Running manage.py and launching the server
Next, we will see how we can interact with the manage.py file in Django. If you are
experienced with Django, you might remember that we typically work with the manage.py
file when we'd like to run project-wide tasks, such as launching the server or applying
database migrations.

Typically, you would have to run a terminal command to evoke functionalities in the
manage.py file. For example, to launch the server for your Django project, you would run
the following:

python manage.py runserver

In PyCharm, you can open a separate panel within your Django project window that is
solely dedicated to interacting with the manage.py file. This is quite similar to having a
panel for the terminal within our project window; since manage.py is something we would
have to work with frequently, this feature will prove convenient in any Django project.

To open the panel, go to Tools | Run manage.py Task from the menu bar, and you will see
the manage.py panel for the current Django project pop up, similar to the following:

Integrating Django in PyCharm Chapter 8

[226]

The manage.py panel for Django

Much like any other panel (tool window) in your project, you have the ability to relocate
this manage.py panel around your project window however you want.

Finally, let's see how we can launch the server of our current Django project using this
panel. In the prompt, type in the command:

runserver

After hitting Enter, you will obtain an output that is completely identical to the one
produced by the native Django/terminal manage.py command:

The manage.py panel for Django

Integrating Django in PyCharm Chapter 8

[227]

Now, if you go to the URL of our local server (which, in my case, was
http://127.0.0.1:8080/), you will see the Django welcome webpage for our project:

The Django welcome webpage

This webpage tells us that everything is working perfectly, and we can implement
additional features into our web project. Again, everything we did could be achieved with
the terminal, but the PyCharm manage.py panel makes it more convenient for us to have,
and organize, all the tools we need in one window while working on the project.

Creating Django models
We have discussed in the previous section that Django's logic is implemented in a model-
oriented way, which means that each entity in our web application should be designed as a
Django model. In this section, we will examine the specific process of writing a model in
Django.

Navigate to the library folder within our project, and open up its models.py file, which
was generated automatically when the library application was created. As the name
suggests, we will keep all the models that pertain to the library application and their
respective logic in this file. The file should already contain the following code:

from django.db import models

Create your models here.

Integrating Django in PyCharm Chapter 8

[228]

Now, we will implement two separate models—Author and Book. Imagine the kind of
information we would like for our library to hold; a library should consist of multiple
books, and each book in turn should be written by a specific author. We will thus have a
model for the books and one for the authors.

While you can copy the following code and paste it in your current project, or you can even
simply import the project from the code repository of the book, I highly recommend
manually typing the code in your models.py file; doing this will help you mentally walk
through the code as you type each line in, and you will also be able to experience first-hand
PyCharm's powerful code-completion features.

First, the Author model will contain various information about the author. Its
implementation is as follows:

class Author(models.Model):
 first_name = models.CharField(max_length=100)
 last_name = models.CharField(max_length=100)

 def __str__(self):
 return f'{self.last_name}, {self.first_name}'

Considering the implementation of the preceding simple Author model, we see that it has
two fields—first and last name of the author. We are also overwriting the __str__()
method to return the string representation of an Author instance in the format we have
specified.

Note that all the data structures commonly used in web applications are incorporated in
Django. Specifically, we see that models.CharField (and models.DateTimeField in the
next code block) handle nicely all the logic behind the respective data structures (text string
and timestamp data); Django developers simply need to import and use them in an
appropriate way.

Next, we implement the model for the choices to the questions:

import datetime
from django.utils import timezone

class Book(models.Model):
 title = models.CharField(max_length=200)
 author = models.ForeignKey(Author, on_delete=models.DO_NOTHING,)
 pub_date = models.DateTimeField('date published')

 def __str__(self):
 return f'{self.title} by {self.author}'

Integrating Django in PyCharm Chapter 8

[229]

 def was_published_recently(self):
 now = timezone.now()
 return now - datetime.timedelta(days=1) <= self.pub_date <= now

In the Book model, we have a text field for the title of a given book, as well as a
DateTimeField attribute holding the time the given book is/was published. In addition,
each book has a many-to-one relationship with an author in our library (since each author
might have one or more book that they have written), so we are using
models.ForeignKey to implement this relationship just online. The behind-the-scenes
implementation of the corresponding database logic is all handled by Django.

Again, these two models are both implemented inside the models.py file of the library
application, keeping a simple and straightforward yet powerful structure for our web
project.

Making migrations
As mentioned before, each model will be associated with a database table, which needs to
be implemented via migrations:

This task is also done using the manage.py panel; therefore, if it is not in your1.
project window already, go ahead and open it up via Tools | Run manage.py
Task or its corresponding keyboard shortcut.
Next, type in the following command in the manage.py panel:2.

makemigrations library

(As you type in the command, notice the intelligent code-completion
suggestions.) You should get the following output in the manage.py panel:

Tracking file by folder pattern: migrations
Migrations for 'library':
 library/migrations/0001_initial.py
 - Create model Author
 - Create model Book

Following files were affected
[...]/mysite/library/migrations/0001_initial.py

Integrating Django in PyCharm Chapter 8

[230]

After this, data for the two models we implemented has been registered inside the
library/migrations/0001_initial.py file. You can navigate to that file and
examine its content; in general, that file is used by the Django backend to handle
the implementing of the database tables, which we don't need to worry about.

In the manage.py panel again, type in the following command:3.

sqlmigrate library 0001

This command will, in turn, run SQL-related functions to create the database
tables with the specified fields. You will see the following output, which contains
SQL commands:

Tracking file by folder pattern: migrations
BEGIN;
--
-- Create model Author
--
CREATE TABLE "library_author" ("id" integer NOT NULL PRIMARY KEY
AUTOINCREMENT, "first_name" varchar(100) NOT NULL, "last_name"
varchar(100) NOT NULL);
--
-- Create model Book
--
CREATE TABLE "library_book" ("id" integer NOT NULL PRIMARY KEY
AUTOINCREMENT, "title" varchar(200) NOT NULL, "pub_date" datetime
NOT NULL, "author_id" integer NOT NULL REFERENCES "library_author"
("id") DEFERRABLE INITIALLY DEFERRED);
CREATE INDEX "library_book_author_id_d9a3b67e" ON "library_book"
("author_id");
COMMIT;

With that, the specifications for the database tables in the backend have been
registered.

Integrating Django in PyCharm Chapter 8

[231]

Finally, we apply all the changes and create the preceding tables by running4.
migrate in the manage.py panel. At this point, you should see something
similar to the following screenshot in your manage.py panel:

Applying migrations in PyCharm

We have thus learned how to apply migrations within PyCharm. Again, we see the
considerable convenience achieved via using the manage.py panel, which is also supported
by the PyCharm intelligent code-completion engine.

The admin interface
We briefly discussed the admin feature of Django in the previous section. Again, Django
automatically sets up a powerful interface for admins of a given web project, making the
process of customizing various specifications of our website effortless. There are several
steps to the process of managing our website via the admin interface, which will be
discussed in the following sections.

Integrating Django in PyCharm Chapter 8

[232]

Creating a superuser and logging in
The first step is to declare an admin user for our website in the backend using the
manage.py panel:

In the manage.py panel, type in the following command to create a superuser:1.

createsuperuser

Django will then also ask for your email address and password for the superuser.
You will obtain an output saying Superuser created successfully. when the
process is completed.

Now, we will take a look at the admin interface that Django has prepared for us.2.
From the manage.py panel, execute the runserver command.
From your localhost (where the current web project is being hosted), add3.
/admin to the URL to go to our admin interface. For example, since my site was
running on the 8000 port, my URL was http://127.0.0.1:8000/admin.
From here you will see an admin login page:4.

Django's admin login page

Integrating Django in PyCharm Chapter 8

[233]

Enter the information for the superuser you just created, and you will be taken to5.
the admin dashboard for your website:

Django's admin dashboard

We see that, even with the simple web application we just created, Django automatically
generates a fully functioning admin interface for the app. This goes to show the extent to
which Django supports its users with its powerful features.

Connecting the admin interface to models
You might have noticed from the preceding admin dashboard that there is a section called
AUTHENTICATION AND AUTHORIZATION, in which we, as an admin, could add and
customize privileges of various groups of users. However, the models that we created
(Book and Author) are not there.

This is because, as a result of the automatic nature of its generation, the admin interface was
created independently of our models. Therefore, we will need to connect our models to this
admin interface, which, in fact, is also a Django application in itself, called admin.

First, we will implement the Author model:

Make sure that our current server is still running.1.
In the admin.py file of the library folder, enter the following code (note that2.
the first line should already be added in automatically by Django):

from django.contrib import admin

Register your models here.
from .models import Author
admin.site.register(Author)

Integrating Django in PyCharm Chapter 8

[234]

Here we are registering the Author model with the admin application using
admin.site.register().

Go to your browser and refresh the page of your admin interface, and you3.
should see that the Author model has been successfully added to the dashboard:

New models in the admin dashboard

From here, click on the Add button in the Authors section to create some entries for our
author database table. You will see the Add author prompt, which will ask you to enter the
attributes for each author that we specified in our Django Author model, namely, the first
and last names.

Go ahead and enter the sample authors for your database. As an example, I entered the
following four names:

A view on created database entries

Integrating Django in PyCharm Chapter 8

[235]

And that's how we populate a simple database table for our Django application. It is
important to note that we did not implement the same logic for the Book model, since each
Book instance has to reference one instance from the Author model (due to the many-to-
one relationship between these models). This is also why we needed to create entries for the
Author table first in a way that was independent from the Book table.

Next, we will populate the Book table:

Stop the server on your localhost by using the Ctrl + C keyboard combination or1.
clicking on the stop button in the toolbar on the left in the manage.py panel.
Modify the library/admin.py file so that it now contains the following code:2.

from django.contrib import admin

Register your models here.
from .models import Author, Book

class BookInLine(admin.TabularInline):
 model = Book
 extra = 1

 fieldsets = [
 (None, {'fields': ['title']}),
 ('Date information', {'fields': ['pub_date']})
]

class AuthorAdmin(admin.ModelAdmin):
 inlines = [BookInLine]

admin.site.register(Author, AuthorAdmin)

The preceding code implements the Book model in the admin interface, while
ensuring the many-to-one relationship between itself and the Author model is
preserved.

From the manage.py panel, execute runserver.3.
Go to the /admin site of our web application.4.

You will still initially see that there is only the section to add and edit our
Author table. This is because we technically cannot create an instance of
the Book model without involving the Author model (due to the Book
model referencing the Author model).

Integrating Django in PyCharm Chapter 8

[236]

Click on the Authors section (or go to /admin/library/author) to go to our5.
current Author table.
Click on any author that you have previously created, and you will see a6.
different interface that was implemented by our changes to the admin.py file.
Specifically, you will notice a new section in which you can customize the books
that are associated with the given author:

Customizing books and authors from the admin interface

Additionally, when we choose to create a completely new author, the7.
corresponding book section is still included.

In short, in order to enter a new instance of the Book model, we can do either of the
following:

Add a new book to the list of books of a given author by modifying the specific
author entry, if the new book we are creating is written by an author who is
already in the Author table.
Add a new author and specify the corresponding book during the process, if
the Author table does not contain the author for the book.

Integrating Django in PyCharm Chapter 8

[237]

The limitation set out by this process, again, makes sure that the many-to-one relationship
between Book and Author is preserved. Specifically, we have seen that a new instance of
the Book model cannot be created without referencing an Author instance. For now, go
ahead and add any number of Book instances that you like; we will be seeing an example
where we work with the Book entries in the next section.

This concludes our overview of the admin interface provided by Django. Overall, the
admin interface offers powerful options in terms of creating and customizing entries in our
database tables, while still protecting any constraints implemented by the design of our
models.

For the rest of the subsections in this chapter, we will turn our attention to frontend-related
aspects of the Django web development process. Next, we will examine the PyCharm
support for creating views for our web applications.

Creating Django views
Views are the way for users of our web applications to see the information we would like to
display from our models and databases. In the simplest sense, the purpose of views is to
connect the data accessed and computed from the backend to the templates in the frontend.
In this section, we will learn the process of creating initial views for our current web project
example:

Open the views.py file in the library folder, and enter the following code:1.

from django.http import HttpResponse

Create your views here.
def index(request):
 return HttpResponse('Currently at the library index')

The preceding index() function specifies the output one will see when visiting
the /library site.

Next, we need to register this view with our library application. To do this, create2.
a new file within the library folder named urls.py, which will contain the
following code:

from django.conf.urls import url
from . import views

Integrating Django in PyCharm Chapter 8

[238]

urlpatterns = [
 url(r'^$', views.index, name='index'),
]

You can see that we are including the index() function of the views.py file
inside the urlpatterns variable, which will let Django know to use the specific
function we just wrote.

Now, open the mysite/urls.py file and add a line pointing to our newly3.
created library/urls.py file. In the end, we should have the following code:

from django.contrib import admin
from django.urls import path
from django.conf.urls import url, include # add this line

urlpatterns = [
 path('admin/', admin.site.urls),
 url(r'^library/', include('library.urls')) # add this line
]

Doing this, we are connecting the URL pattern of our library application with the
main project.

Finally, run the server and go to the /library site and you will be able to see the4.
message Currently at the library index that we specified in our views earlier
within the browser.

You might have noticed that, if you simply go to the main site of our web project (for
example, http://127.0.0.1:8000/ as opposed to http://127.0.0.1:8000/library),
Django will display an error message indicating that a view is not available for this page
yet. This is to be expected since, in the URL pattern of our main site (the mysite/urls.py
file), we are only handling the /admin and /library sites.

Since we are only considering the library application at the moment, we would like to
customize the default page of the web project to the /library site, so that we will not have
to enter the URL ourselves every time we run the server. Fortunately, PyCharm offers the
ability to do this via its run/debug configuration, which we will discuss next.

Integrating Django in PyCharm Chapter 8

[239]

Customizing the run/debug configuration
Among various other advantages, customizing the run/debug configuration of a PyCharm
project is helpful when it is a web development one and we would like to specify the
default page for our web application, as explained in the previous subsection.

To open the configuration window, select the following section within the main1.
toolbar of your project window, and choose Edit configurations as illustrated
here:

Opening the run/debug configuration

In the new window that just appeared, enable the Run browser option, and edit2.
the corresponding URL so that it points to our desired default page, which, in
this case, is http://127.0.0.1:8000/library and hit Apply:

Specifying the default page for a Django project

Integrating Django in PyCharm Chapter 8

[240]

Now, whenever we would like to run the server, we can utilize this run3.
configuration by clicking on the Run button (instead of using the manage.py
panel, whose default page is still http://127.0.0.1:8000/) and PyCharm will
take us to the page that we specified earlier:

Running a Django server using a run configuration

In this case, we will be taken to the index of our library application and we'll see the
Currently at the library index message again.

Note that clicking on this Run button is a significantly faster process than opening the
manage.py panel and executing the runserver command. So, even within PyCharm, we
still have a wide range of options to achieve the same goal. Most of the time, customizing a
run/debug configuration for your web project will prove to be more efficient in the long
run.

Making templates
In the final section of this chapter, we will see how PyCharm supports the process of
making Django templates within a web project. To see the power of these features in action,
we will be extending the index view of our current library application.

Open the library/views.py file and modify its content to the following:1.

from django.shortcuts import render
from .models import Book

Create your views here.
def index(request):
 latest_books = Book.objects.order_by('-pub_date')[:5]
 context = {'latest_books': latest_books}
 return render(request, 'library/index.html', context)

Here we are creating a dynamic view for our library application. Specifically, we
access the Book database table and retrieve the latest five entries, according to
their publication date (the pub_date attribute in reverse, hence the minus sign).
Finally, we send that information to a template named library/index.html via
the render() function.

Integrating Django in PyCharm Chapter 8

[241]

Notice that there is now a warning within the current library/views.py file,2.
saying that the template library/index.html we specified does not exist:

Django template not found warning

If you have worked with Django before, you know that we now need to manually
create this file within the templates folder of our web project. However, since
we are using PyCharm, things are much simpler!

With your cursor at the error, click on the corresponding intention action icon3.
(the yellow lightbulb to the left), and select the first option from the drop-down
list to create the template in question:

Django-specific intention actions

Choose to create a new folder in the templates folder in the pop-up window if4.
prompted, and, after the process, the library/index.html template should be
created accordingly. It will also be opened in the editor automatically.

Integrating Django in PyCharm Chapter 8

[242]

Now, enter the following code for our template, which lists all the entries we5.
currently have in our Book database table:

{% if latest_books %}

 {% for book in latest_books %}
 {{ book }}
 {% endfor %}

{% else %}
 <p>No books available.</p>
{% endif %}

Again, I highly recommend manually writing the code yourself, so that you can
experience PyCharm's excellent code-completion features. In this case, we see that
code completion is able to support HTML and Jinja syntax, making writing
Django templates an effortless process.

Now, either use the run configuration customized earlier, or run the server6.
directly from the manage.py panel and go to the /library page. Here, you
should see the corresponding output that we specified in our views and
templates—a list of entries from our Book database table, printed out via the
__str__() method of the Book model.

The last element of note while working on a Django project with PyCharm is the convenient
navigation between views and templates. Specifically, notice the icons at the top of the

gutter of our current views and templates: in the templates/library/index.html

file, and in the library/views.py file.

As we know, one is a Django view that utilizes another, which is a template. These two
kinds of files are therefore interconnected in their logic and are likely to be worked on
concurrently by Django developers generally. Via the aforementioned icons, you can jump
back and forth between a view and its corresponding template with a mouse click, which
will undoubtedly prove considerably useful.

And that concludes our current discussion on the PyCharm support for Django
applications. Note that there are a number of other great features that we can explore, and
we will come back and further expand on this topic later in Chapter 10, Building a Web
Application in PyCharm.

Integrating Django in PyCharm Chapter 8

[243]

Summary
In this chapter, we examined various PyCharm features regarding supporting and
automating tasks in the process of web development with Django. While this list of features
is in no way exhaustive, I hope it can offer you a solid starting point to continue
discovering other powerful features for your web development process.

First, we see that, by specifying the PyCharm project type as Django, an extensive project
skeleton will be generated with convenient boilerplate code already filled out. With the
implementation of the manage.py panel inside the project window as well as its run/debug
configuration, PyCharm additionally allows for a higher level of development, with various
tasks traditionally achieved via the command line, such as running the server or making
migrations. Finally, by acknowledging integrated views and templates in Django, PyCharm
makes it as easy as possible for developers to work with them in the editor—be it
generating a missing template, code completion even in HTML and Jinja, or even
dynamically switching between views and templates.

In the next chapter, we will tackle the last major component of any web application:
database. We will see which tools and features from PyCharm can help with the
management of databases in web applications.

Questions
What are the major characteristics of Django, and how do they set Django apart1.
from another popular Python web framework, Flask?
What is the purpose of the PyCharm manage.py panel in a Django project, and2.
how does one open and utilize it?
What is the purpose of the Django admin interface? How does one create an3.
instance of a model (that is, a new entry in a database table) in this interface?
How does the process change if the model references another model?
What is the purpose of the run/debug configuration in PyCharm in the context of4.
running a Django server?
Does PyCharm's code completion logic only apply to Python code in Django5.
projects?
What is the significance of being able to switch between Django views and6.
corresponding templates in PyCharm?

Integrating Django in PyCharm Chapter 8

[244]

Further reading
More information can be found in the following articles and readings:

Modern Python Development with PyCharm, by Pedro Kroger (https:/​/
pedrokroger.​net/​pycharm-​book/​)
Two Scoops of Django: Best Practices for Django, by Audrey Roy and Daniel Roy
Greenfeld (www.twoscoopspress.com/)
PyCharm documentation: Creating and Running Your First Django Project, JetBrains
s.r.o.
(www.jetbrains.com/help/pycharm/creating-and-running-your-first-django
-project.html)
PyCharm documentation: Django, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/django-support7.html)
Django: Keeping logic out of templates (and views) (https:/​/​openfolder.​sh/​django-
keeping-​logic-​out-​of-​templates-​and-​views)

https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://www.twoscoopspress.com/
https://www.jetbrains.com/help/pycharm/creating-and-running-your-first-django-project.html
https://www.jetbrains.com/help/pycharm/creating-and-running-your-first-django-project.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views
https://openfolder.sh/django-keeping-logic-out-of-templates-and-views

9
Understanding Database

Management with PyCharm
Databases are ubiquitous, not only in web applications but also in data and business
analytics projects. Throughout this chapter, we will learn about the various tools and
features available in PyCharm that facilitate the process of working with the database
systems used by your Python projects. These tools include powerful features such as the
SQL editor, graphical interfaces with data sources, and making query diagrams.

All web developers should have a solid understanding of how to work with databases, and
learning how to do that with PyCharm will be a good conclusion to our discussions on the
process of web development in Python with PyCharm.

The following topics will be covered in this chapter:

Connecting PyCharm to a given database
Relational databases
Utilizing the Database panel in PyCharm
Data manipulation via the SQL console
Creating database-related diagrams

By the end of the chapter, you will have a comprehensive understanding of how to utilize
PyCharm's powerful support for database management processes.

Understanding Database Management with PyCharm Chapter 9

[246]

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your
computer.
Download the Database Tools and SQL plugin for PyCharm.
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm.
During this chapter, we will be working with the Chapter09 subfolder in the
downloaded code repository.

The first step in working with any database is to import the corresponding data source into
our environment.

Connecting to a data source
First, the term data source indicates a given method of accessing a database from a server.
Recall from the previous chapter that the database used by our web project is named
LibraryDatabase. There is a file with the same name within the project folder, which is
the data source for that database.

Throughout this chapter, we will be working with the corresponding folder in the code
repository Chapter09/DatabaseTutorial. Go ahead and import the folder into your
PyCharm workspace. As the first step of the database management process, we will learn
how to import a data source into a PyCharm project:

In general, if the data source file you'd like to work with is not in your current1.
project, then open up the Database panel by going to View | Tool Windows |
Database and click on the + icon within the window, as illustrated in the
following screenshot:

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Understanding Database Management with PyCharm Chapter 9

[247]

Adding new data sources into PyCharm

In our current example, we already have a file named2.
Chinook_Sqlite.sqlite, which is the data source that we will be working
with, so the preceding step is not applicable to our specific case.

Chinook is a sample database, commonly used for demo and testing tasks
for database projects and tools. It is available for SQL Server, Oracle,
MySQL, and many more. You can find more information regarding
Chinook at https:/​/​archive.​codeplex.​com/​?​p=​chinookdatabase.

From the Project panel of your PyCharm window, double-click on the file to3.
open the PyCharm Database panel. You can do this because PyCharm can
automatically detect that the file you are opening is a data source. Your Database
panel should look similar to the following:

Imported data source in PyCharm

https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase
https://archive.codeplex.com/?p=chinookdatabase

Understanding Database Management with PyCharm Chapter 9

[248]

We cannot interact with this data source just yet, as some initial configurations4.
are necessary. Within the toolbar at the top of the Database panel, click on the
Data Source Properties icon, which will open the configuration window for our
data source.
The first thing you might notice is the bottom section of the window indicating5.
that the driver appropriate for our data source is currently missing, as
highlighted in the following screenshot:

Missing driver files for PyCharm's data sources

Understanding Database Management with PyCharm Chapter 9

[249]

The beauty of PyCharm is that, as we have seen multiple times, not only does it6.
look for potential errors and warnings for our programs (as in the previous
screenshot), but it also provides simple commands to address the problems. In
this case, a simple click on the hyperlink in Download, and PyCharm will take
care of all of the nitty-gritty details on its own. If, on the other hand, you don't
see this message, it means your PyCharm already has all the necessary driver
files for your data source, and you can simply move on to the next steps.

Note that in our current example, the data source corresponds to an
SQLite database, but the same process applies for other database systems
such as Oracle, MySQL, or PostgreSQL.

With the driver files downloaded, we have successfully imported our data source7.
into PyCharm. We can test out the connection to this data source by clicking on
the Test Connection button in the configuration window we opened earlier. If
everything goes well, you will see the following output:

Testing connection to a data source

Now, simply click Apply and OK in the configuration window to apply the8.
specifications we have made to our data source.
Now, we need to customize the schema for our data source. In the Database9.
panel, click on the icon next to our current data source highlighted (note that
instead of saying 0 of 1, the icon can display ... as well):

Choosing the schema for the data source

Understanding Database Management with PyCharm Chapter 9

[250]

This will open up a pop-up window with a number of checkboxes. Select the10.
Current schema (main) option within the window, and you will see that with the
correct schema our data source can now be expanded and examined within the
Database panel:

Examining database schemas

With that, we have successfully connected a sample data source to our PyCharm project.
The different sections in the main schema are the database tables included in the data
source. So in our current Chinook example, we have various different database tables such
as Album, Artist, Customer, and so on.

We see that the Database panel offers quite a powerful feature, giving us the ability to
inspect not only the different tables we have but also their respective fields (as well as any
relationship between the tables). For example, the preceding Album table has a foreign key
referencing the Artist table, indicating the creator of the given album. If you are not
familiar with these concepts involving relational databases, don't worry because we will
have that discussion later in this chapter.

Understanding Database Management with PyCharm Chapter 9

[251]

Additionally, if you have gone through the last chapter where we worked on a Django web
project, you might remember that we also implemented our own data source called
LibraryDatabase. If you were to go back to the project and walk through the same steps
for that data source (still using SQLite), you would be able to examine the schema for the
database tables created, as shown here:

Inspecting a Django data source

Again, we are able to inspect all the fields in any given database table from the data source,
including the many-to-one relationship via a foreign key from the Book table to the Author
table. You might also notice that there are multiple other tables in a Django data source,
such as auth_group, django_admin_log, or sqlite_sequence. These are database
tables used by Django to handle complex backend logic such as user authentication or
logging for admin users.

We have seen how to import a given data source into our PyCharm projects. Still using the
current Chinook example, we will discuss the various options to work with our database
tables via the PyCharm Database panel in the next section.

Understanding Database Management with PyCharm Chapter 9

[252]

Working with a database in PyCharm
When a data source has been added to PyCharm via the Database panel, PyCharm users
will have multiple options to view, interact, and even change the content of the tables
included in the data source via PyCharm's intuitive interface. In this section, we will go
over the details of these features, starting with creating and submitting SQL queries.

Working with SQL
If you are not familiar with the technology, SQL (short for Structured Query Language) is
the most common tool for developers and data engineers who interact with databases, as
well as the standard language for relational database management systems, according to
the American National Standards Institute (ANSI). With SQL queries, you can retrieve
data from and submit changes to a database table.

First, let's briefly discuss the basic usage of this language.

SQL fundamentals
A comprehensive discussion on SQL will not be covered here, as it is beyond the scope of
this book. However, there are a few common SQL commands to create and manipulate
entries in a database table that you can try on our current data. They are as follows:

SELECT: This command is used to query data from one or multiple tables. By
specifying attribute (row) names in this command, you can specify which
attributes from the tables to be queried should be returned. You can also use * to
indicate that all attributes should be returned.
INSERT: This command adds new entries (rows) into a given database table.
Within an INSERT command, you specify the value of each attribute the new
entry should hold; otherwise, the default values (which are determined by the
database table) will be used.
UPDATE: This command is used to modify entries that already exist in a given
database table. Using this command, we are able to assign specific attributes of
any entry to new values. This command is typically used with a SET command
for that assignment process (as we will see later).
DELETE: Finally, this command deletes specific entries from a given table. Once a
DELETE command is executed, there is no way to recover the deleted data.

Understanding Database Management with PyCharm Chapter 9

[253]

When using these commands, we typically combine them with a WHERE clause, with which
we can specify a condition to filter out the entries in a database table we want to
manipulate. For example, with the following command we can go into the database table
named student, look for the entries that have the location attribute holding "Indiana",
and finally change the value of the age attribute to 18:

UPDATE student
SET age = 18
WHERE location = "Indiana";

Additionally, to execute SQL commands, we need a platform in which we can enter and
run the commands. Normally, these platforms come preinstalled with any database
management tool that you use for your databases. However, as we will see later on,
PyCharm actually offers an editor for SQL as well as the option to execute them within a
given PyCharm project.

Needless to say, this is simply a brief overview of what SQL is and what a number of SQL
commands can help us achieve. To learn more about this tool on your own, I recommend
tutorials from https:/​/​www.​codecademy.​com/​learn/​learn-​sql or https:/​/​www.
khanacademy.​org/​computing/​computer-​programming/​sql.

Next, let's see how PyCharm supports the use of SQL.

Using SQL in PyCharm
PyCharm allows us to write, edit, and run SQL commands within a console. In addition to
being able to work with the console as a simple text file, PyCharm users also have the
added bonus of code completion and syntax checking when using the console.

Let's see an example of this by following the steps mentioned here:

First, to open the console in our PyCharm workspace, click on the Jump to1.
Console icon from the toolbar of the Database panel as illustrated here:

Opening a database console

https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.codecademy.com/learn/learn-sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql
https://www.khanacademy.org/computing/computer-programming/sql

Understanding Database Management with PyCharm Chapter 9

[254]

If there is more than one available console within your project, select the one that2.
corresponds to the database that you would like to work with. In the current
Chinook example, we simply have a SQLite database, so the corresponding
console will be opened in the editor.

To send a query to your database and have it executed, enter the actual query into
the console. For example, enter the following SQL command:

SELECT a.Title FROM Album a

This command queries and returns all the entries in the Title column of the
Album table. Note that the a variable in the command here is being used as a
placeholder for Album. In other words, a.Title is a shorthand for Album.Title,
which, again, corresponds to the data in the Title column of Album.
Similar to what we have discussed for Python, JavaScript, and HTML, it is
recommended that you manually type in the command to experience PyCharm's
code completion support, in this case, for SQL. Now, let's execute the query and
see what is returned afterward:

Click on the Execute button in the toolbar of the console:3.

Executing a query

As the query executes and returns, PyCharm's Database Console panel will pop4.
up (most likely at the bottom of your project window), displaying the output of
our query:

Understanding Database Management with PyCharm Chapter 9

[255]

The output from database queries

This panel will contain any output produced by your database queries. You might also
notice that there are multiple tabs within this panel—the tab in the preceding screenshot
displays the actual result of the executed query, while the Output tab (to the left) contains
performance-related information about the queries.

Additionally, you can save SQL commands in a console to a SQL script file; simply go
to File | Save as and select the location to which you would like to save the file:

Saving SQL queries

Conversely, we can open a given SQL file, edit, and execute it in our PyCharm console in
the same way. We have seen this ability to work with scripts of different languages
simultaneously in the PyCharm editor multiple times before with JavaScript, HTML, and
Jinja in previous chapters; this ability is quite powerful while working with databases as
well.

Understanding Database Management with PyCharm Chapter 9

[256]

The PyCharm table view
In the previous subsection, we saw that when using a query console we can execute queries
to a database included in a given data source in PyCharm. This means that we can retrieve
data as well as submit changes to our connected database tables using the console.
Alternatively, as we will see in this subsection, PyCharm offers another way to work with
database tables—the table view—that is more graphical and thus more intuitive:

To evoke the table view and apply it to a given table in our database, we can1.
simply double-click on the table in the PyCharm Database panel, and the table
view will be opened in the editor. For example, I obtained the following
screenshot after double-clicking on the Album table in the Database panel:

The table view in PyCharm

Notice that the corresponding executed query is displayed in the Database
Console panel (at the bottom of the project window). Since I opened the whole
Album table in my table view, the query executed was SELECT t.* FROM Album
t.

Understanding Database Management with PyCharm Chapter 9

[257]

You might have noticed that this table view is identical to the output we obtain by
running queries from the console in the Database Console panel, discussed in the
previous subsection. In fact, all the features included in the following discussion
also apply to that table view as well.

Now, using the toolbar at the top of the table view, we have multiple ways to2.
display the result table we have in our view. For example, we can transpose the
result table, sort the rows using ORDER BY, or apply a custom filter, using the
following options:

Different options to manipulate a table in the table view

Specifically, we can insert a new row or remove a row from the table, using the3.
buttons in the following console toolbar, highlighted:

Adding/removing a row in the table view

Similar to how we can make changes to a database table via queries, we
can also achieve the same results via this graphical interface of the table
view.

We can also double-click on a specific cell to alter the content of that cell. Simply4.
try this feature with any cell in the current table in our table view.
Note that by changing the content of a cell, we have not made any actual changes5.
to the corresponding database table. To manually submit the changes we have
made to the actual database, click on the Submit icon, also included in the
console toolbar.

Understanding Database Management with PyCharm Chapter 9

[258]

You will also see the corresponding query to mutate the database in
the Database Console panel.

With that said, you can also tell PyCharm that you want all changes made to the6.
table in the table view to also be applied to the actual database. To do this, go to
the settings and navigate to Tools | Database | Data Views, and enable the
Submit changes immediately box.

Now, you might think submitting changes automatically made to database tables is a
convenient feature. However, doing so would prevent us from being able to revert any
unintentional changes made in the table view. Specifically, we can use the keyboard
shortcut ⌥ ⌘ Z in macOS (or Ctrl + Alt + Z in Windows) to revert a change that has not been
applied to the actual database yet.

Comparing and exporting query output
While considering the result from multiple queries as well as table views, we might want to
compare two tables to further understand the effects of two given queries. To do this, from
the toolbar at the top of one table view, click on the Compare with icon.

If you are following the examples used in our current discussion, then follow these steps:

Evoke this feature from either the table view (the graphically created one or the1.
one resulting from running the SQL query).
Select the other table view from the drop-down menu that appears subsequently:2.

Comparing table views

Understanding Database Management with PyCharm Chapter 9

[259]

This will, in turn, open a pop-up window displaying the two selected result3.
tables with any differences highlighted. Again, this feature is quite useful for the
process of comparing two different queries and their effects on a given database
table.
While the PyCharm table view offers a wide range of options in terms of viewing4.
and manipulating tables resulting from queries, sometimes we would like to
simply copy or export those tables to files. From the table view toolbar, click on
the Dump Data icon. Here, you can choose to either export the data to a file or
copy it to a clipboard:

Dumping data from the table view

If you choose to export a given table to a file, note that the default format for the output file
is .tsv. You can change the format of your table in the corresponding drop-down list in the
table view toolbar:

Changing table format

Understanding Database Management with PyCharm Chapter 9

[260]

We can see that there are multiple options available, including HTML, tab-separated
values (TSV), CSV, and so on, further proving PyCharm's dynamic features, especially in
the context of web development.

Diagrams for databases
In the last discussion of the chapter, we will examine the creation and use of diagrams
while working with databases in PyCharm. But first, since diagrams are mostly used to
explain and represent relationships among database tables, let's briefly discuss that topic.

Relational database
In general, the term relational database denotes a specific form of storing and managing
data. In a relational model, databases (which might be related to each other) are stored as
tables, in the same way as we have seen in the various tables from our current example
(Album, Artist, Customer, and so on). Each attribute of an entry in the database is
formalized as a column in the database table, and all entries in the table must therefore
share the same set of attributes.

In a database table, each entry must have a unique identifier, which will be used by the
underlying data management system to keep track of all the existing entries. Such a unique
identifier can often be referred to as the key of the database table, and no two unique keys
can hold the same value in a common database table. In the Album database we considered
earlier, the AlbumId attribute is used as the key for the table.

The most important aspect of a relational database is the ability to represent any
relationships between different databases. A relationship is represented as a reference by an
entry in a given database table to one in another table. Generally, a relationship denotes a
connection between entries in different database tables.

For example, in the database system of a university, there are two different database tables:
one containing information on its students, and one on professors that teach there. Each
student has a faculty advisor assigned to him or her, which is one of the professors in the
university, and we would like to store that information in the first database for the
students. Each entry in that database should then have an attribute that references a
professor or, in other words, an entry in the second database.

Understanding Database Management with PyCharm Chapter 9

[261]

This kind of reference is typically done via a foreign key. Basically, in the attribute for the
advisor information, each student entry will hold the identifier for the corresponding
professor entry in the professor database. This way the underlying system can always go
from a student entry in the first database and look up the information on their advisor in
the second database. The term foreign key is used since the keys in another table are being
used as data for an attribute in a given table.

This design is illustrated in the following diagram:

Student-advisor relation diagram

We can interpret the preceding information as the following:

Alice has Professor Ken as her advisor.
Bob has Professor Richard as his advisor.
Caroll also has Professor Ken as her advisor.

Coming back to our current example with the Album database table, we see that each entry
denoting each album object has an attribute called ArtistId, which references the Artist
table. This relationship denotes an album and the artist that produced that album.

Now, we see that by visualizing the student-advisor relationship with arrows pointing
from the referencing table (the student database) to the referenced table (the professor
database), we can quickly understand the nature of the relationship. In the next subsection,
let's see how PyCharm can streamline that process for us.

Diagrams for database objects
When you are working with a database system, there might be multiple tables that are
connected to one another via different relationships (one-to-one, many-to-one, or many-to-
many). Most of the time, keeping track of these relationships analytically might prove to be
very difficult, but graphically visualizing them in a diagram can offer easy ways to
understand and gain valuable insights into our database tables.

Understanding Database Management with PyCharm Chapter 9

[262]

Let's see an example of creating a visualization for our current database tables:

To create a diagram for database objects, be it individual tables or the whole1.
schema, right-click on an object in the PyCharm Database panel, and
choose Diagrams | Show Visualization. For example, I right-clicked on the main
schema in the following screenshot to create a diagram for all the available
database tables:

Creating diagrams for database objects

This will open the corresponding diagram in the editor. If you choose to visualize2.
the whole schema as I did, you should obtain a diagram similar to the following:

Understanding Database Management with PyCharm Chapter 9

[263]

Database diagrams

The blue arrows in the diagram denote relationships between different database tables.
Similar to the preceding diagram, most of the time we will have one-directional arrows
indicating many-to-one relationships. For example, we see a blue arrow going from the
Album table to the Artist table, which corresponds to the foreign key in Album that
references Artist.

Finally, from the toolbar on top of a diagram (as highlighted in the previous screenshot), we
can choose to exclude key columns or other columns from our diagram to obtain a simpler
visualization. Various options to export or print the diagram are also included in the
toolbar.

Understanding Database Management with PyCharm Chapter 9

[264]

Diagrams for queries
While visualizing relationships between database tables is quite a convenient feature,
PyCharm further offers the ability to create diagrams for your queries:

For example, in your SQLite console, enter the following query that asks for the1.
title of each album in our database as well as its corresponding artist:

SELECT a.Title, ar.Name FROM Album a, Artist ar WHERE a.ArtistId =
ar.ArtistId;

Within the console, right-click on the command you just entered, and2.
select Explain Plan. Doing this will open a new tab in the Database
Console panel named Plan.
From this tab, click on the Show Visualization button within the toolbar on the3.
left of the tab, and you should obtain the following diagram the corresponds to
our query:

Visualization of a query plan

With this ability to visualize the logic of a query, which is especially valuable for reporting
purposes, PyCharm makes working with SQL commands significantly more intuitive.
Similar to what we saw with other diagrams, we can also print or export this visualization
to a file using the corresponding toolbar.

Summary
We have thoroughly discussed some of the most powerful features in PyCharm that allow
us to work with databases seamlessly. These include the ability to create, retrieve data
from, and make changes to database tables via console queries and a graphical interface
with the table view. Furthermore, PyCharm offers the ability to create diagrams that
visually explain database relations, as well as query logic. All of these features combined
help streamline the process of working with and analyzing databases and their relations.

Understanding Database Management with PyCharm Chapter 9

[265]

By using the tools we have discussed, Python web developers can effortlessly interact and
work with databases from within PyCharm. Given the important role that database
management plays in medium- to large-sized web projects, this ability will significantly
improve the level of productivity for any web developers using Python.

In the next chapter, we will conclude this part of the book on web development by walking
through a hands-on example of building an actual web application in PyCharm.
Specifically, we will combine what we have learned throughout the last few chapters to
build a complete web project, as well as consider the process of deploying your Python web
applications. This process will serve as the conclusion for the topic of web development in
PyCharm, and it will solidify what we have learned so far about the different features and
tools PyCharm offers to help us build Python web applications.

Questions
In the context of database management, what is a data source, and how do we1.
connect to one in PyCharm?
What purpose does the PyCharm Database panel serve?2.
What is SQL?3.
What purpose does the Database Console serve in PyCharm?4.
How is the table view different from the Database Console in PyCharm?5.
In the context of database management, what kinds of diagrams can one make in6.
PyCharm?

Further reading
More information can be found in the following articles and documents:

PyCharm official documentation: Databases and SQL, by JetBrains s.r.o. https:/​/
www.​jetbrains.​com/​help/​pycharm/​relational-​databases.​html

PyCharm official documentation: Database Tool Window, by JetBrains s.r.o. https:/​/
www.​jetbrains.​com/​help/​pycharm/​database-​tool-​window.​html

What is SQL? Structured Query Language explained, by Martin Heller. https:/​/
www.​infoworld.​com/​article/​3219795/​what-​is-​sql-​the-​first-​language-​of-
data-​analysis.​html

PyCharm official documentation: Creating diagrams, by JetBrains s.r.o. https:/​/​www.
jetbrains.​com/​help/​pycharm/​creating-​diagrams.​html

https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/relational-databases.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.jetbrains.com/help/pycharm/database-tool-window.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.infoworld.com/article/3219795/what-is-sql-the-first-language-of-data-analysis.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html
https://www.jetbrains.com/help/pycharm/creating-diagrams.html

10
Building a Web Application in

PyCharm
This chapter will walk you through the entire process of building a Django blog application
from scratch in PyCharm. It combines all the topics that we discussed in the previous
chapters regarding Python web development while introducing a number of new
technologies from the Django web framework and explaining how they are integrated by
PyCharm.

The following topics will be covered in this chapter:

Understanding the model-view diagram in Django
Working and interacting with a database
The deployment of a Python web project

This discussion will help us tie in several important topics we have learned about so far in
the context of web development, and serve as a conclusion for this section of this book. By
the end of this chapter, you will also have a working version of a new web application in
PyCharm that can also be extended further so that you can use it for similar projects that
you might work on in the future.

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm

During this chapter, we will be working with the Chapter10 subfolder in this
book's downloadable code repository

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Building a Web Application in PyCharm Chapter 10

[267]

Starting a web project in PyCharm
To build a blog application with the Django web development framework in PyCharm, it is
recommended that you follow the discussions in this chapter and create the project on your
own system. That way, you will be able to experience first-hand the support options that
PyCharm offers during the process of building the application.

With that said, all the code for this project is included in the Chapter10/mysite folder of
this book's repository, which you can use as a reference point while following our
discussions. If you are already familiar with the various topics we've discussed in this
chapter, you can also simply make use of that folder as a base for your web project and
plug in additional features.

Furthermore, note that I will be making many references to the topics we discussed in
previous chapters regarding Django and general web development in Python. I highly
suggest that you read through the previous three chapters on Python web development,
especially Chapter 8, Integrating Django in PyCharm, which includes in-depth discussions
about working with Django in PyCharm, before moving forward with this chapter.

With that out of the way, we will begin building our blog application.

Creating a Django project
As a refresher, Django is a heavy-duty, battery-included web framework in Python. It is
one of the most (if not the most) common web development tools in the language. While
there are multiple aspects in the ecosystem of a Django project such as the model-view-
template paradigm, writing templates, and database integration, PyCharm can actually
take care of a significant amount of the heavy lifting, leaving us free to focus on high-level
ideas.

As we have seen in previous chapters, to create a new PyCharm project, we need to follow
these instructions:

We can click on the Create New Project button from the welcome window, or go1.
to File | New Project within an existing project window.
Within the next window, choose Django as our project type, mysite for the name2.
of the project (as per Django convention), as well as the option to create a new
virtual environment for our project:

Building a Web Application in PyCharm Chapter 10

[268]

Creating an isolated Django project

As the creation of our new project finishes, our project window will open with3.
two files, mysite/settings.py and mysite/urls.py, in the editor. For now,
we don't need to worry about these two files, but feel free to keep them in your
editor.
To finalize the process of setting up our Django application, open the manage.py4.
panel in PyCharm (by going to Tools | Run manage.py task or by using its
corresponding keyboard shortcut), and enter the following command to apply
various initial migrations for our project:

manage.py@mysite > migrate

Finally, we will run the server for our project to make sure everything is working5.
perfectly. In the same manage.py panel, enter the following command:

manage.py@mysite > runserver

Building a Web Application in PyCharm Chapter 10

[269]

Now, either go to http://127.0.0.1:8000/ directly from your browser or6.
simply click on the URL in the output of the manage.py panel. From here, you
should see the following web page, which is Django's version of a Hello,
World! program:

Django's welcome web page

That is how we start a Django project and get it up and running in PyCharm. In the next
subsection, we will begin working on our blog application and its models.

Creating a Django application and models
In this section, we will implement our blog application as well as a Django model
called Post, which contains the object-oriented logic for the posts in our blog:

First, in the manage.py panel, enter the following command:1.

manage.py@mysite > startapp blog

This, as we have seen, will create a subfolder within our current project directory2.
named blog with all the various Django-specific Python scripts for our blog
application. Now, within the blog/models.py file, enter the following code
(again, manually typing in the code is highly recommended):

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User

Building a Web Application in PyCharm Chapter 10

[270]

class Post(models.Model):
 STATUS_CHOICES = {
 ('draft', 'Draft'),
 ('published', 'Published'),
 }

 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250,
 unique_for_date='publish_date')
 author = models.ForeignKey(User, related_name='blog_posts',
 on_delete=models.DO_NOTHING)
 body = models.TextField()

 publish_date = models.DateTimeField(default=timezone.now)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)
 status = models.CharField(max_length=10,
 choices=STATUS_CHOICES,
default='draft')

 class Meta:
 ordering = ('-publish_date',)

 def __str__(self):
 return self.title

This Post class (which inherits from the models.Model class in Django)
implements the model for our post objects.

While most of the preceding code is self-explanatory, there are a few things we
should note within the model:

All of the attributes of the Post class (for example, title, slug, author,
and so on) are implemented by Django's built-in classes. Once again, we can
see the powerful features that Django offers when it comes to implementing
complex data structures for our web applications.
We haven't seen the models.SlugField class before in this book. This class
offers a way to generate a valid and readable URL from other attributes of a
specific class instance. We will look at an example of this feature later on in
this chapter when we launch this blog application.
The author attribute is a foreign key referencing the built-in User model of
Django.
Finally, in the Meta class, we specify that we want the order of these Post
instances to be descending (using the minus sign) with respect to the
publish_date attribute so that newly added instances will appear first.

Building a Web Application in PyCharm Chapter 10

[271]

Next, we need to register this new blog application with our main project. To do3.
that, locate the INSTALLED_APPS list variable in the mysite/settings.py file
and add the 'blog' string to that list. The variable should now look as follows:

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog'
]

Finally, we will apply the relevant migrations and create a corresponding4.
database table for our new model. From the manage.py panel, run the following
commands sequentially:

manage.py@mysite > makemigrations blog
manage.py@mysite > sqlmigrate blog 0001
manage.py@mysite > migrate

While executing these commands, you will see corresponding SQL statements being used
to generate our table in the printed output of the manage.py panel. With everything
executing successfully, our blog application has been officially created and set up.

Using the admin interface
To be able to create and edit different blog posts in our application, the easiest way is to
make ourselves a superuser and create those posts via Django's admin interface. Let's walk
through that process with the following steps:

In the manage.py panel, enter the following command:1.

manage.py@mysite > createsuperuser

Django will then ask for the login credentials for this superuser. Simply input2.
your information to finalize this process. Next, we have to register our Post
model with the admin interface. To do this, go to blog/admin.py and enter the
following code:

from django.contrib import admin
from .models import Post

Building a Web Application in PyCharm Chapter 10

[272]

Register your models here.
admin.site.register(Post)

This script basically lets Django know that the Post model that we implemented
should be included in the admin interface.

Now, we will launch the server by using the manage.py panel:3.

manage.py@mysite > runserver

When the server has been launched, navigate to the /admin/ site (typically4.
http://127.0.0.1:8000/admin/) to access Django's admin interface. Here,
you will see a login prompt:

Django's admin login page

Now, enter the credentials that you used to create the superuser in step 2. You5.
will be taken to your admin dashboard, which should look similar to the
following screenshot:

Django's admin dashboard with registered models

Building a Web Application in PyCharm Chapter 10

[273]

Note that we are seeing a section named BLOG that contains Post objects,
as highlighted in the preceding screenshot. This section would not be
available if we did not register the Post model in the blog/admin.py file.

From the dashboard, we can now create an entirely new blog post by clicking on6.
the Add button that corresponds to the Post model. To create a new Post object,
we will be filling in the information in the following creation form (note that the
user interface is handled by Django):

Creating a new blog post

Recall that each instance of the Post model has a foreign key referencing an7.
instance of the built-in User model in Django. That is why we have to select the
data for our Author field from a dropdown containing the valid users (which
should be just the superuser you created, as illustrated in the preceding
screenshot).

Building a Web Application in PyCharm Chapter 10

[274]

The same also goes for the Status field of the Post model, this time because we8.
have specified the choices in our implementation in the blog/models.py file.
Go ahead and create a sample blog post with any appropriate data that you'd
like. For example, the following is what I filled in for my sample post:

Creating a sample blog post

Note that we are able to customize the slug attribute of our Post object to correspond to its
title, and I specified mine as hello-world. Again, this slug attribute will help generate
the URL to this specific post later on. As you finalize the creation of this post, the data of the
Post object will be saved to the corresponding database table. As such, we will consider the
process of database management in the next subsection.

Building a Web Application in PyCharm Chapter 10

[275]

Working with the Database panel
In the previous chapter, we saw that the Database panel in PyCharm offers a convenient
graphical interface so that we can interact with our databases. Let's see how we can do the
same for our current project:

Within the Project panel of your project window, locate the db.sqlite3 file,1.
which is the data source for our databases:

A data source file in a Django project

Double-click on the file and it will be opened in the Database panel. If you have2.
walked through our discussions in Chapter 9, Understanding Database
Management with PyCharm, it's likely that your version of PyCharm has been
configured to be able to interpret the schema for this specific SQLite data source
already. If not, head back to that chapter for the specific steps on how to do so.
After everything has been successfully configured, you should be able to expand3.
the main schema of our current database, which will look similar to the following
screenshot:

Building a Web Application in PyCharm Chapter 10

[276]

Inspecting a data source in the Database panel

As highlighted in the preceding screenshot, this database contains the table for4.
our Post objects. Double-clicking on this item in the Database panel will open
up the table view in our editor, which should only contain the post that we
created earlier.
Additionally, we can insert a new entry into this table using the graphical5.
interface of the table view by clicking on the Add New Row button from the
toolbar:

Adding a new database entry using the table view

After a new row has been created, you can directly edit the data in individual6.
cells (except for the id cell, whose data will be determined by the database itself).
Just like in any other table-editing software such as Microsoft Excel or Google
Spreadsheets, you can copy and paste the data among different cells (which is
what I did for the cells holding date-time information, from the first we entry
created earlier to the one currently being created).

Building a Web Application in PyCharm Chapter 10

[277]

Also note that for the author_id cell, we have to input 1 to reference the
only User object that we have created. Alternatively, you can also create
another user.

Finally, click on the Submit button (in the table view toolbar) to add that new7.
row to your database. For example, I specified the second post in my project to
hold the following information (note that 2 in the id cell was automatically
generated):

Editing a database table via the table view

Now, if you run the server again, go back to your admin dashboard, and look at8.
the entries of our Post objects, you will see that this second post has been
successfully added to our database.

That is how we modify our database entries using the powerful graphical interface that
PyCharm offers. In the next section, we will look at how we can interact with and
manipulate database objects using actual Python code.

Making queries via Python code
Database objects in a Django project can also be accessed and modified in a Python script
using various Django APIs. In this section, we will automate the process of populating our
Post database table using this feature.

We will be making Python queries to our database table via the Python Console panel. To
access it, go to View | Tool Windows | Python Console. Now, we will create a few Post
objects in our database manually by entering in the following code, line by line:

>>> from django.contrib.auth.models import User
>>> from blog.models import Post

>>> user = User.objects.get(username='quannguyen') # replace with your
 username

Building a Web Application in PyCharm Chapter 10

[278]

>>> for i in range(10):
... post = Post.objects.create(
... title=f'Automated post number {i}',
... slug=f'auto-post-{i}',
... body=f'This is the body of post number {i}',
... author=user
...)

>>> post.save()

In essence, we are creating 10 new Post objects using the Post.objects.create()
method (within the for loop). Each of these new posts also references our superuser, which
is queried via the User.objects.get() method. Just like how changes to a database table
in the table view are not committed to the actual database automatically by default, in order
to apply these new posts to the Post database table, we call the save() method on each
object.

Again, you can confirm the creation of the new posts, view the database table in the table
view, and access the objects via the admin dashboard. So far, we have examined a number
of ways to create and edit database objects for our web applications. In the next section, we
will implement a view for these blog posts that we created.

Creating Django's list views
We briefly considered the creation of a Django view in Chapter 8, Integrating Django in
PyCharm. However, there are a number of different options when it comes to designing a
view for your applications. In this subsection, we will implement an aggregated view for
multiple blog posts (a list view) so that users of the application can see and iterate through
all the available blog posts in our Django project.

As we have learned, a Django view is defined as a function that takes in a web request and
returns some form of response. The logic within the function specifies the data included in
the response, as well as how it might be structured. First, let's create that list view:

Open the blog/views.py file and edit it to include the following code:1.

from django.shortcuts import render
from .models import Post

Create your views here.
def post_list(request):
 posts = Post.objects.filter(status='published')
 return render(request, 'blog/post_list.html', {'posts': posts})

Building a Web Application in PyCharm Chapter 10

[279]

Here, we are querying all the blog posts we created whose status is also
published. Then, we're using the render() method to send the queried list of
posts to the blog/post_list.html template file. There should actually be a
warning from PyCharm saying that this template file is currently unavailable
(since we haven't created it yet).

As we saw in Chapter 8, Integrating Django in PyCharm, here, we can utilize
PyCharm's Intention feature to automatically create this template:

Creating templates with Intention

Inside this newly created HTML template (in the templates folder at the root of2.
our entire project), enter the following code:

{% extends "blog/base.html" %}
{% block title %}My Blog{% endblock %}
{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>

 <p class="date">
 Published {{ post.publish }} by {{ post.author }}
 </p>

 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
{% endblock %}

Building a Web Application in PyCharm Chapter 10

[280]

In the content block, we use Jinja logic to loop through the list of posts (stored in
the posts variable) and display various pieces of information regarding each
item. Each blog post also has a get_absolute_url() method that we will
implement later on in our detail views.

We can see several instances of the block keyword in this template; this
keyword (together with the extends keyword) offers a way to define a
section in a parent template that can be filled in (or extended) by one of its
child templates. Here, blog/post_list.html is a child template of
blog/base.html (as specified in the first line of code), which we will
come back to immediately after this.

Now, let's work on the parent template (the blog/base.html file that we are extending
from in the preceding file):

Utilize the Intention feature again or manually create the1.
templates/blog/base.html file and input the following code:

{% load staticfiles %}
<!DOCTYPE html>
<html lang="en">
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "blog.css" %}" rel="stylesheet">
</head>

<body>
<div id="content">
 {% block content %}
 {% endblock %}
</div>

<div id="sidebar">
 <h2>My blog</h2>
 <p>This is my blog.</p>
</div>

</body>
</html>

Here, the relationship of parent-child templates becomes clear to us: in
base.html, various blocks are defined as placeholders so that the general
structure of the template is specified, but the child templates can still fill in their
own data in a dynamic way when they are used by the application.

Building a Web Application in PyCharm Chapter 10

[281]

You might see a warning given by PyCharm at this point, indicating that
we currently don't have the blog.css static file (which we are using as
the style sheet for this template) defined yet.

Static files in a Django project can be CSS style sheets, images, or any other form
of non-dynamic data that is used by individual Django applications.

To implement this static file, create a folder named static at the root of your2.
Django project and create the blog.css file inside this folder. Since this style
sheet contains various styling options that are not quite relevant to our
discussions, you can simply copy the code from our repository to your own
project.
Furthermore, in the main settings of our project (the mysite/settings.py file),3.
add in the following code:

STATICFILES_DIRS = (
 os.path.join(BASE_DIR, 'static'),
)

This points the main Django engine to the folder we just created for static files. If,
in the future, you would like to have multiple folders to store your static files (for
example, if you want to have a separate folder in each Django app), then you can
add the path to those folders to the STATICFILES_DIRS tuple variable in the
same manner.

That's how we can create a list view and the appropriate templates in a Django project.
Now, we will configure the URL of our blog application, as well as this list view:

First, add the following code to the mysite/urls.py file, which specifies that1.
any URL that starts with blog will be redirected to the logic in the
blog/urls.py file:

from django.contrib import admin
from django.conf.urls import include, url
from django.urls import path

urlpatterns = [
 path('admin/', admin.site.urls),
 url(r'^blog/', include(('blog.urls', 'blog'),
namespace='blog'))
]

Building a Web Application in PyCharm Chapter 10

[282]

As such, we will edit the blog/urls.py file further, as follows:2.

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^$', views.post_list, name='post_list'), # list view
]

The urlpatterns variable in any Django urls.py file specifies which view is
associated with which URL. Here, we are saying that any time the base URL of
the blog application is accessed, we will serve the post_list view. That is the
entire process of creating a (list) view in Django.

To see what we have implemented, launch the server and go to the /blog/ site.
You will see the following screen:

A list view in Django

If you are wondering why we are only seeing those two posts that we
manually created (and not the others that we created via the Python
queries), it is because the latter posts were created as drafts. Recall that the
default status for a Post object is a draft, and in our list view, we only
query the published posts.

Building a Web Application in PyCharm Chapter 10

[283]

Here, we can choose to publish all of those blog posts by making the appropriate
Python queries in the Python Console panel. Open the Python Console panel
and enter the following code (line by line):

>>> from blog.models import Post

>>> for post in Post.objects.all():
... post.status = 'published'
... post.save()

With this code, we are essentially accessing each object in the Post database and
changing its status to 'published', thereby effectively making it available in our
views.

Reload the current web page and you will see that all the blog posts are now3.
included in our list view. At this point, we are faced with another potential
problem—as the number of published blog posts increases, our list view becomes
longer and longer, making navigation more difficult.
Here, we would like to implement pagination for this list view so that all the4.
available posts can be viewed and accessed across multiple pages. To do this, go
to the blog/views.py file and extend our current list view, as follows:

from django.shortcuts import render
from .models import Post
from django.core.paginator import Paginator, EmptyPage,
PageNotAnInteger

Create your views here.
def post_list(request):
 all_posts = Post.objects.filter(status='published')
 my_paginator = Paginator(all_posts, 5) # each page will contain
5 posts

 temp_page = request.GET.get('page')
 try:
 posts = my_paginator.page(temp_page)
 except PageNotAnInteger:
 posts = my_paginator.page(1)
 except EmptyPage:
 posts = my_paginator.page(my_paginator.num_pages)

 return render(request, 'blog/post_list.html', {'posts': posts})

Building a Web Application in PyCharm Chapter 10

[284]

Similar to the powerful features offered by Django we have seen so far, we are using
various Django built-in interfaces to implement pagination for our list view. Specifically,
the Paginator class provides easy APIs to handle the backend page logic, and we simply
need to pass in the number of items we want on a single page (in this case, it is five items).
We are also using two different exception classes to handle situations where things can go
wrong with pagination.

Note that the posts variable that we are passing to our list view is no
longer simply an iterator of Post objects; instead, it is an object that's
returned by a Paginator instance.

Now, let's extend the HTML template for this view and see how we can utilize this posts
variable. Add the following code at the end of the content block in the post_list.html
template (right before {% endblock %}):

<div class="pagination">

 {% if posts.has_previous %}
 <a href="?page={{ posts.previous_page_number
}}">Previous
 {% endif %}

 Page {{ posts.number }} of {{ posts.paginator.num_pages }}.

 {% if posts.has_next %}
 Next
 {% endif %}

</div>

This is to specify that if we are currently at a page that is not the first (determined via the
posts.has_previous method), we will create a button to go to the previous page, and the
same goes for the potential next page. We can also access the current page number that we
are on, as well as the total page number (via posts.number and
posts.paginator.num_pages, respectively).

Building a Web Application in PyCharm Chapter 10

[285]

We can do this because, again, posts is now a pagination-specific object, offering those
mentioned convenient APIs. Furthermore, we can still iterate through this posts variable
to access the individual queried Post objects. That's why we don't have to modify the Jinja
for loop that we have in our current same template. This all goes to show the powerful
features and capabilities of the Paginator class, as well as Django.

From this web page, if we were to click on any blog post, we would be taken to the home
page of this blog application. This is because the URLs were defined with the
get_absolute_url() method from the Post objects, which we will implement
immediately in the next subsection.

Creating Django's detail views
A detail view is a way to specify what should be included and displayed on a web page.
This corresponds to one specific model object. Here, we will add in the logic for listing and
viewing the content of the individual blog posts that have been saved in our database. First,
we need to extend the logic of the Post class:

In the blog/models.py file, add the following method to our current Post class:1.

from django.urls import reverse

class Post(models.Model):
 ...
 def get_absolute_url(self):
 return reverse('blog:post_detail', args=[
 self.publish_date.year,
 self.publish_date.strftime('%m'),
 self.publish_date.strftime('%d'),
 self.slug
])

Here, we are specifying that when a Post object calls its get_absolute_url()
method, we will redirect that request to the post_detail view of the blog
application, with a set of arguments for the date-time data for that post, as well as
its slug.

Building a Web Application in PyCharm Chapter 10

[286]

As such, we will continue by creating the post_detail view (which is a detail2.
view for individual blog posts in our application) by adding the following code
to the blog/views.py file:

from django.shortcuts import render, get_object_or_404

def post_detail(request, year, month, day, post):
 post = get_object_or_404(Post, slug=post, status='published',
 publish_date__year=year,
 publish_date__month=month,
 publish_date__day=day)

 return render(request, 'blog/post_detail.html', {'post': post})

With the arguments passed from the get_absolute_url() method, we use the
get_object_or_404() function to query for that specific post from our Post
database table. This function offers a shortcut for implementing the task of
querying an object with specific information or raising a 404 error if there is no
such object.

Note that, in the three last arguments for the get_object_or_404()
function, we add __year (with double underscores), __month, and __day
to the publish_date attribute of the Post class. This is to specify to
Django that we are only considering the year, month, and day of the
DateTimeField object that is stored in the publish_date attribute of a
given Post object.

Finally, we send this queried post to the blog/post_detail.html template,3.
which has not been created yet. Again, utilize PyCharm's Intention feature to
quickly create and open this file in your editor, and input the following code:

{% extends "blog/base.html" %}
{% block title %}{{ post.title }}{% endblock %}
{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }}
 </p>
 {{ post.body|linebreaks }}
{% endblock %}

Building a Web Application in PyCharm Chapter 10

[287]

This file is also a child template of blog/base.html (as we can see in the first
line). Additionally, we specify the title of the current web page to be the title of
the blog post in the title block while populating the content block with the
appropriate information.

We need to specify the URL pattern for these individual detail views within our4.
blog/urls.py file:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^$', views.post_list, name='post_list'), # list view
 url(
 r'^(?P<year>\d{4})/(?P<month>\d{2})/
 (?P<day>\d{2})/(?P<post>[-\w]+)/$',
 views.post_detail, name='post_detail'
) # detail view
]

In the detail view, we are using a regular expression to specify that if a URL is in the form
of "{year}/{month}/{day}/slug", then we will return the post_detail view that we
just implemented. This is also the last step of the process for creating a detail view for our
Django application.

Next, let's see what we have implemented in action when the application is launched:

Run the server and access the list view by going to the /blog/ page. Here, as you1.
hover over the title of any blog post, you will notice that the hyperlink now
contains the URL to the list view of that specific post. For example, the URL for
the Hello, World! post is /blog/2019/05/07/hello-world/, which is also in
the correct format that we specified in our URL patterns.
Finally, as you click on a specific blog post, you will be taken to its individual2.
web page, which was not available until just now. For example, the following
screenshot is the web page that I obtained for the Hello, World! blog post:

A detail view in Django

Building a Web Application in PyCharm Chapter 10

[288]

We can also see that by using the parent template (the base.html file) as a base, we have a
unified appearance across multiple views in our blog application. Implementing these
parent-child templates is a general good practice in web development, and Django
facilitates this task very well.

Throughout this section, we have successfully implemented the foundation for a blog
application using Django and PyCharm. However, there are still a number of aspects in
building a functional web project that we need to discuss.

In the next section, we will see how we can implement a sharing-via-email feature in our
current blog application.

Forms and emails
In this section, we will create a feature that lets a blog reader share a post with another
person. Specifically, this reader will fill out a form, entering the email address of the person
with whom they'd like to share the given blog post, and our website will send an
automatically generated email to that address. This is a common feature in modern blogs
and it will be a good addition to our web project.

Now, let's see how the share feature works.

Creating the interface for the share feature
We will implement the form feature, which, in essence, is another view in our blog
application. To do this, perform the following steps:

First, create a new Python script inside the blog folder in the forms.py1.
directory, as follows:

from django import forms

class EmailPostForm(forms.Form):
 name = forms.CharField(max_length=25)
 email = forms.EmailField()
 to = forms.EmailField()
 comments = forms.CharField(required=False,
widget=forms.Textarea)

Building a Web Application in PyCharm Chapter 10

[289]

You can see that this file resembles a model declaration in Django; while the basic
implementation is similar, Django forms are organized in the forms.py directory,
separate from models. Here, we can see that, once again, Django offers an easy
and straightforward API that implements the backend logic for complex tasks. In
this case, this is for the input field for emails, as well as for specifying widgets for
character fields (for the comments).

Next, we will implement a view for this form by adding the following code to2.
the blog/views.py file:

from .forms import EmailPostForm
from django.core.mail import send_mail

def post_share(request, post_id):
 post = get_object_or_404(Post, id=post_id, status='published')
 sent = False

 if request.method == 'POST':
 form = EmailPostForm(request.POST)

 if form.is_valid():
 cd = form.cleaned_data
 post_url =
request.build_absolute_uri(post.get_absolute_url())
 subject = f'{cd["name"]} ({cd["email"]}) sent you
 a blog post: "{post.title}"'
 message = f'Read "{post.title}" at {post_url}\n\n'
 message += f'Comments from {cd["name"]}:
 {cd["comments"]}'
 send_mail(subject, message, 'quannguyen@mysite.com',
 [cd['to']])
 sent = True
 else:
 form = EmailPostForm()

 return render(
 request,
 'blog/post_share.html',
 {'post': post, 'form': form, 'sent': sent}
)

Here, our new view, post_share(), takes in an ID number for a specific blog
post (in addition to a request). Then, we query our database to obtain this post
and check to see if it is indeed a published one.

Building a Web Application in PyCharm Chapter 10

[290]

Next, there are two possible scenarios/cases that we need to handle in this view:

If the request that's passed to the view is a POST request (checked by
the first if statement), then that indicates to us that a reader has
submitted their data via the implemented form. In this case, we will
retrieve the submitted data by wrapping the EmailPostForm class
around the POST request and accessing its cleaned_data attribute.
After this, we need to write the code that actually sends out an email to
the intended receiver. From the submitted data, we obtain the
appropriate information, such as sender name (cd['name']) and email
(cd['email']), what specific post to share (post.title and
post_url), as well as any potential comments (cd['comments']).
Finally, we pass all of this information to the send_mail() method
from Django, which will facilitate the actual process of sending the
email. Note that I'm specifying the sender of the email to be
quannguyen@mysite.com, which will not be the case for you. Don't
worry about this for now, as we will come back to this point in the next
section.
If this view did not receive a POST request, we simply initialize a new
EmailPostForm object to be displayed on the appropriate page.

As always, we will pass the processed data, along with the template that3.
corresponds to this view, to a file. In this case, we are talking about the
blog/post_share.html file, which hasn't been created yet. Simply use
PyCharm's Intention feature to create and open the template in the editor. Enter
the following code into the template:

{% extends "blog/base.html" %}
{% block title %}Share a post{% endblock %}
{% block content %}
 {% if sent %}
 <h1>E-mail successfully sent</h1>
 <p>
 "{{ post.title }}" was successfully sent to {{ cd.to
 }}.
 </p>
 {% else %}
 <h1>Share "{{ post.title }}" by e-mail</h1>
 <form action="." method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="submit" value="Send e-mail">
 </form>

Building a Web Application in PyCharm Chapter 10

[291]

 {% endif %}
{% endblock %}

In this template, we are also handling the two cases that correspond to the logic
we discussed in the view. The distinction between these two cases is stored in the
variable that's sent (initialized in the post_share view), which indicates whether
an email has been successfully sent from a submitted form or whether a reader is
simply requesting a new form.

In the former case, we simply display an appropriate message indicating that an
email has been sent. In the latter case, we render the form variable as a paragraph
HTML element using the as_p method inside a <form></form> tag that contains
a POST method.

Additionally, the {% csrf_token %} tag is a way to generate a token that
counters CSRF (short for cross-site request forgery) attacks. Keeping things at a
high level, we don't need to understand this point in depth, but it is important to
remember that this tag is required in a Django application in any given form
element.

Next, we need to add the link we just implemented in each detail view. In the4.
post_detail.html template, add the following code, just before the {%
endblock %} tag at the end of the file:

<p>

 Share this post

</p>

Finally, we specify another item in our list of URL patterns, redirecting any5.
applicable request to the post_share view in the blog/urls.py file:

urlpatterns = [
 ...
 url(r'^(?P<post_id>\d+)/share/$', views.post_share,
 name='post_share'), # share view
]

With that, the interface for our share feature is complete.

Go ahead and launch the server and go to any individual blog post. Here, you6.
will see the share button at the end of the post, as highlighted in the following
screenshot:

Building a Web Application in PyCharm Chapter 10

[292]

The share button in the blog application

Next, click on the URL. You will be taken to the page associated with the share7.
feature. Since we are filling out a new form for the first time (as opposed to
submitting a form), we will see the following page:

A form element rendered in Django

This is when we can fully appreciate the powerful as_p method that we used earlier—our
form element is automatically rendered with the individual questions (attributes of
the EmailPostForm class) with the appropriate response sections.

Furthermore, since name, email, and to are required questions, you won't be able to
submit a form if any of those questions are not answered. Similarly, email and to are
email fields, so if their responses are not in the correct email format (for example, not
containing an @ character), then those responses will not be accepted either.

Now, say you have filled out this form with responses of the correct format and click the
Send Email button to submit the form. At this point, we will receive
a ConnectionRefusedError exception, which has been raised by Django. This is because
we haven't configured the backend of our emailing protocols yet. We will discuss this in the
next section.

Building a Web Application in PyCharm Chapter 10

[293]

Configuring Django emails
In this subsection, we will finish the share feature for our blog application by configuring
the underlying protocols for Django's emailing APIs. First of all, we will need to add a
number of variables to the main settings.py file of our Django project, namely the
following:

EMAIL_HOST: This variable specifies your SMTP host server
EMAIL_PORT: This variable specifies your SMTP port
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD: This pair of variables specifies
the credentials for the SMTP server
EMAIL_USE_TLS: This variable specifies whether a Transport Layer Security
(TLS) protocol should be used

The values of these variables depend on your Simple Mail Transfer Protocol (SMTP)
usage. If you already have, or will have, your own custom SMTP server set up and
associated with this web application, you can simply input that custom information in the
aforementioned variables.

If you are like me and would like to use the SMTP server of your email provider (in my
case, Gmail), then you don't have to set anything up. Instead, you will specify those
variables, as follows:

SMTP credentials for emailing
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = ... # your own Gmail address
EMAIL_HOST_PASSWORD = ... # password to the Gmail address
EMAIL_PORT = 587
EMAIL_USE_TLS = True

Coming back to the code where emails are actually sent out, we now need to change the
post_share() view in the blog/views.py file. Specifically, when the send_mail()
method is called, change the sender address to the same address that the
EMAIL_HOST_USER variable holds:

send_mail(subject, message, 'EMAIL ADDRESS GOES HERE', [cd['to']])

Note that if you are indeed using Gmail as your SMTP server, you will need to go into the
settings of that specific Gmail account and allow external applications to access the account.
This is required because Gmail automatically blocks unrecognized applications from
signing in to its accounts; more information can be found at https:/​/​support.​google.​com/
mail/​answer/​7126229.

https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229
https://support.google.com/mail/answer/7126229

Building a Web Application in PyCharm Chapter 10

[294]

Now, with everything set up, go back to the form and try submitting it again, this time
sending it to an email account that you also have access to so that you can verify the receipt
of the email. After the form has been submitted successfully, you will see the following
message:

Email successfully sent

Note that the current page is still at the same address as the initial form (for me, it was
blog/1/share/) and that this is the output that's produced by our template when a form
is successfully submitted. Again, by using the if statement inside the view function, as well
as in the template, we can handle the two cases we mentioned in one web page.

Furthermore, if you check the recipient email that you used in the form (in response to the
To: question), you will also see the corresponding email that was generated by the
submitted form. For example, I received the following email from a Gmail SMTP server:

Email sent via the Gmail SMTP server

And that is how a sharing feature is implemented in a Django project. Now, when a reader
of your blog would like to share your content with others via email, he or she can do that
using this feature via Django's SMTP protocols.

Note that, so far, we have only worked on and examined our web project in our local server
(localhost or 127.0.0.1). In the next and final section of this chapter, we will discuss the
process of deploying a complete Django web application online.

Building a Web Application in PyCharm Chapter 10

[295]

Deploying your web project
To be able to make our website available for other people globally, we need to deploy our
project into the cloud. In this section, we will discuss various aspects of this process,
namely the different hosting services you can choose from, as well as Django-specific
considerations when going to the production stage.

Hosting services
As you can imagine, there are a large number of hosting services that you can deploy your
Django web project on. In this section, we will consider some of the most common methods
to do so and weigh the pros and cons of each option.

Amazon Web Services
Amazon Web Services (AWS) is undoubtedly one of the biggest, most common options
when it comes to anything cloud-related. In terms of hosting a Django project, AWS offers a
powerful capacity for processing large amounts of requests and processing power.
Additionally, as it is an extensive web service, AWS provides analytics and mobile tools
that can be applied to your website, which will prove useful as the website grows in size
and demand. Other advantages of using AWS include considerable security measures and
a fast, responsive support team.

With that said, AWS can sometimes be quite difficult for beginner web developers to use as
the options it offers come in large numbers. Furthermore, the amount of money that's
charged to your account for using the service has been reported to be hard to predict, and
sometimes users have to pay for more than they anticipated. All in all, AWS is suitable for
medium-to-large projects that can take advantage of the extensive features AWS provides
and require significant processing power.

Google Cloud
Another one of the biggest online computing platforms on the internet, Google Cloud also
offers a way to host your Django website in the cloud. The advantages of using this specific
service are powerful analytics and storage capabilities. A unique feature of using Google
Cloud is the fact that you can integrate other Google products (such as Google Docs or
Spreadsheets) into your website with ease; this is because Google's cloud platform is an
overarching system extending to multiple tools.

Building a Web Application in PyCharm Chapter 10

[296]

Similarly to using AWS, you may find it difficult to predict how much you will be charged
when hosting an application on Google Cloud. The service also doesn't have the extensive
features and capabilities that AWS offers. However, if the Django website is a small- or
medium-sized one, Google Cloud will be able to host it in the cloud perfectly (and most
likely with a very small price as well).

DigitalOcean
Albeit not from a big tech company like the two services we've discussed, DigitalOcean is
just as powerful and straightforward as those two. It is commonly utilized by web
developers for its simplicity, responsiveness, and security. One notable aspect of
DigitalOcean is that it's likely that it won't have any hidden charges that might surprise its
users.

Overall, this tool is perfect for beginners as well as professionals with simple websites and
processing needs.

Heroku
The last hosting service we will discuss is Heroku, a straightforward, to-the-point tool that
you will find extremely simple to use. Even though some might call it too simple of a
service for complex websites, Heroku still offers powerful features such as application
rollback and analytics. Furthermore, Heroku works closely with GitHub, so you can
integrate version control and the deployment of your web project with Heroku effortlessly.

On the other hand, since Heroku is intended for small-to-medium websites, it charges
significantly more when a website grows larger; therefore, it is only really suitable for basic
web applications and experiments. I personally deployed my first Django project to Heroku
and I still use it today to run miscellaneous applications in the cloud.

The hosting services we've mentioned here are among the most commonly used platforms
that you can use to deploy your web applications. Needless to say, there are other good
services out there that I am not mentioning, such as Microsoft Azure or PythonAnywhere,
that will host your Django website just as well as the other tools. In the end, your decision
will depend on your needs, that is, the specific size and requirements of the website.
Finally, you shouldn't be afraid to switch to a new hosting service if the one you're using
isn't suitable.

Overall, choosing your hosting service is only the first step of the deployment process. In
the next section, we will consider aspects that are specific to Django when our project is
moved to production.

Building a Web Application in PyCharm Chapter 10

[297]

Production-specific settings
There are particular settings in our current Django project that we will need to change. In
general, our current settings allow a significant amount of data to be leaked across various
components of our project. This is because, while being developed locally, we can afford to
have these settings the way they are so that the debugging and testing processes will be
easier and more intuitive.

In production, potential attackers and malicious users might be able to take advantage of
those data leaks. Furthermore, since no debugging or testing will be done in production,
those settings need to be modified accordingly.

These settings are generally called the Django deployment checklist, which needs to be
completed regardless of which hosting service you're using. They include the following:

Hiding keys and passwords: It is no surprise that we shouldn't hardcode various
keys and passwords for our project within the actual project code. This includes
the secret key of our whole project (in mysite/settings.py), as well as any
passwords and secret credentials that are used by any of our applications (such
as the email address and password for our SMTP emailing server).
One of the easiest ways to address this problem is to hide these keys and
passwords in environment variables that are specific to the hosting platform or
text file.
Disabling debugging: Simply change the value of the DEBUG variable in
mysite/settings.py to False.
Listing valid hosts: Use the ALLOWED_HOSTS list variable to include the domain
of the sites that will serve your web applications. Any site not listed in this
variable will be rejected by Django if it attempts to access the project code.
Implementing logging: As you push your fully functioning website to
production, there is still a chance that it will encounter some error in the future.
Make sure to configure your logging settings so that you can obtain the
appropriate information after potential crashes.
Making views for errors: We saw an example of a site displaying various pieces
of information when an error was encountered in our earlier discussions. This is
undesirable in production as that output might include important information
that will make our website vulnerable to attacks. Instead, we would like to
simply create an appropriate view for each of the potential errors that might
occur.

Building a Web Application in PyCharm Chapter 10

[298]

To do this, simply create the following files in our templates folders: 404.html,
500.html, 403.html, and 400.html. Then, put in any error message that you'd
like. Django will automatically know to use these templates accordingly should
an error occur.

The aforementioned points apply for most Django web applications, but your project might
have other particularities that need to be addressed. Refer to the official documentation
from Django to learn more: https:/​/​docs.​djangoproject.​com/​en/​2.​2/​howto/​deployment/
checklist/​.

Most of the time, the process of deploying your Django project into the cloud, including
these Django-related settings, will be very specific to the hosting service you are using.
However, most services have extensive documentation and guides that will walk you
through the whole process.

This concludes our discussion on building an example web application using Django and
PyCharm. Moving forward, you can choose to either create new Django projects while
referencing what we have learned here or simply use the blog application that we built,
extend it further, and add more applications to the project itself.

Summary
Creating a website in Django is an involved and complex process, but we have seen that
PyCharm offers great support features that streamline various tasks in this process. In this
chapter, we have considered a high-level view of using Django in PyCharm by walking
through the complex process of building a blog application.

Most notably, we have learned how to generate the basic skeleton for the project directory
when a new Django project is to be created, which includes various code-completion
features that ensure the consistency between models, views, and templates in a Django
project. Furthermore, there are multiple tools in PyCharm, such as the manage.py panel or
the Database panel, that allow for a hands-on and intuitive method of working with swap
components of a web project.

Overall, we can see that the combination of Django and PyCharm makes implementing a
website and achieving those specific web-oriented goals easy. Now, you are ready to
leverage PyCharm to create the perfect Django application for your website.

https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/

Building a Web Application in PyCharm Chapter 10

[299]

This hands-on guide also concludes the web development section of our book. Moving
forward, we will consider the second of the most common use cases in Python
programming: data science projects. In particular, the next chapter will examine various
interface options and navigation aspects when we turn on Scientific Mode in PyCharm.

Questions
Aside from SQL queries and using the graphical table view, what is another1.
option we can use to make changes to database records in a PyCharm project?
What is the significance of double underscores in the context of working with2.
database records?
What is the significance of the {% csrf_token %} tag in a form element in3.
Django?
What configurations are necessary for the main settings.py file if we wish to4.
set up an emailing feature in a Django project?
What is the Django deployment checklist and what does it include?5.

Further reading
More information regarding what was covered in this chapter can be found in the following
articles and readings:

Django by Example [Video], by Antonio Melé, Packt Publishing (https:/​/​www.
packtpub.​com/​in/​application-​development/​django-​example-​video)
Django official documentation: Managing static files (for example, images, JavaScript,
and CSS) (https:/​/​docs.​djangoproject.​com/​en/​2.​2/​howto/​static-​files/​)
Modern Python Development with PyCharm, by Pedro Kroger (https:/​/
pedrokroger.​net/​pycharm-​book/​)
Two Scoops of Django: Best Practices for Django, by Audrey Roy and Daniel Roy
Greenfeld (https:/​/​www.​twoscoopspress.​com/​)
PyCharm official documentation: Django, JetBrains s.r.o. (https:/​/​www.​jetbrains.
com/​help/​pycharm/​django-​support7.​html

https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://www.packtpub.com/in/application-development/django-example-video
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://docs.djangoproject.com/en/2.2/howto/static-files/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://pedrokroger.net/pycharm-book/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.twoscoopspress.com/
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html
https://www.jetbrains.com/help/pycharm/django-support7.html

Building a Web Application in PyCharm Chapter 10

[300]

Django official documentation: Deployment
checklist (https://docs.djangoproject.com/en/2.2/howto/deployment/checkli
st/)
MDN web documentation: Deploying Django to production (https:/​/​developer.
mozilla.​org/​en-​US/​docs/​Learn/​Server-​side/​Django/​Deployment)
Django Starts: Top 6 Django Compatible Hosting Services (https:/​/​djangostars.
com/​blog/​top-​django-​compatible-​hosting-​services/​)

https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Deployment
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/
https://djangostars.com/blog/top-django-compatible-hosting-services/

4
Section 4: Data Science with

PyCharm
This section starts with Chapter 11, Turning on Scientific Mode. Data science is arguably the
field that has made Python increasingly popular in the programming community in the
past few years (and the trend is projected to continue further). This is why a focus on data
science and scientific computing tools is necessary for any good editor/IDE for Python
programming. This section is therefore dedicated to the analysis of PyCharm's support for
various scientific computing tasks.

The chapters in this section will discuss the specifics of SciView, the unique view in
PyCharm that facilitates scientific computing practices. The integration of widely used
scientific tools such as NumPy, pandas, IPython, and Jupyter Notebook will also be
discussed in detail. At the end of the final chapter, we will analyze the process of building a
complete data pipeline for a Python project using various functionalities of PyCharm.

This section includes the following chapters:

Chapter 11, Turning on Scientific Mode
Chapter 12, Dynamic Data Viewing with SciView and Jupyter
Chapter 13, Building a Data Pipeline in PyCharm

11
Turning on Scientific Mode

We are now starting the third main section of this book, Data Science with PyCharm. In this
chapter, we will discuss the various features of PyCharm that support scientific computing
and data analysis projects. These include a specialized Scientific Mode that streamlines the
process of working with data structures, variables, and documentation.

The following topics will be covered in this chapter:

Starting a scientific project in PyCharm
Understanding the advanced features of PyCharm's scientific projects

By the end of this chapter, you will understand how these features can improve
productivity in scientific computing projects. This chapter will serve as a general, high-level
discussion on the various tools PyCharm offers and will help you understand scientific
computing and how these tools are integrated and work with each other.

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm

In this chapter, we will be working with the Chapter11 subfolder, which can be
found in this book's downloadable code repository

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Turning on Scientific Mode Chapter 11

[303]

Starting a scientific project in PyCharm
Not all PyCharm projects are created equally; this is especially true for any scientific/data
science projects. While examining the various features in PyCharm's Scientific Mode in this
section, we will consider the process of starting a scientific project in PyCharm.

Additionally, all the projects and code that are used as materials during the discussions in
this chapter are included in the Chapter11 folder of this book's GitHub repository. Again,
following the actual discussions and working with your own environment is
recommended, but the files in the code repository can always be used for further reference.

Creating a scientific project in PyCharm
Similar to what we have seen at various points in this book, PyCharm has a whole project
type dedicated to scientific computing. Let's see how we can create such a project:

From PyCharm's welcome window, click on the Create New Project button.1.
Alternatively, if you are already within an existing project, go to File | New
Project.
From the New Project window, select the Scientific item from the left-hand2.
panel to create a new scientific project. Here, I am creating a project with the
name SciTest that's in the Chapter11 folder of our code repository with a
Virtualenv virtual environment:

Creating a scientific project in PyCharm

Turning on Scientific Mode Chapter 11

[304]

Note that in the More Settings section of this window (as highlighted in
the preceding screenshot), you can specify the name of the default folder
containing all the data for the project to be created.

With everything specified to your preferences, simply click on the Create button3.
to have PyCharm generate this new project. Once completed, the resultant
project window will open. Let's explore the Project panel, which contains our
current directory tree:

Generated directory tree of scientific projects

We can see that, apart from the boilerplate files (main.py, README.md, and
requirements.txt), the three folders (data, models, and notebooks) that are
commonly used in scientific and data science projects have been automatically
generated by PyCharm. (A brief discussion on the README.md file is included in
the next section of this chapter, just in case you're not familiar with it.)

Furthermore, the data folder is excluded from version control tasks by default;
this is because this folder will likely contain significantly large files that are
unsuitable for a typical version control workflow with Git and GitHub. In the last
chapter of this data science section, Chapter 13, Building a Data Pipeline in
PyCharm, we will discuss the process of applying version control to large data
files in detail.

Turning on Scientific Mode Chapter 11

[305]

On the other hand, if you would still like to include the data folder in your4.
version control and/or GitHub repository, right-click on the folder within the
Project panel and choose Mark Directory as | Cancel Exclusion, as shown here:

Adding the data folder to VSC

So far, we have learned how to create a scientific project in PyCharm. In the next
subsection, we will explore the various aspects of our current project.

Setting up a scientific project
In the project that's generated by PyCharm, there are a couple of elements that we should
pay attention to before actually diving into any specific development. First, we will
consider the README.md file, which you might have already noticed among the generated
files and folders within our new project (at the root of the project directory).

The README.md file
This is a markdown file that will be displayed on the main page of the repository by
GitHub, as well as other cloud version control services. In other words, README.md is the
summary of a given repository, and is used to introduce other developers to that repository
using the markdown markup language.

To be able to take full advantage of PyCharm's support for markdown files, you will need
to download its Markdown plugin (if you haven't already). Let's see how we can do that:

Open PyCharm's settings, go to Plugins, and click on the Marketplace tab. From1.
here, you can look for and install the plugin by typing markdown in the search
bar at the top of the window, as follows:

Turning on Scientific Mode Chapter 11

[306]

Installing PyCharm's Markdown plugin

Now, go ahead and open the README.md file in the editor. You can see that when2.
a markdown file is edited within PyCharm's editor, the changes that are being
made to the file are displayed in real time. For example, as markdown code is
entered in the left-hand section of the editor (which contains the actual source
code of a given markdown file), the right-hand section will display the
corresponding output, as illustrated here:

Working with markdown in PyCharm

Turning on Scientific Mode Chapter 11

[307]

This is quite a powerful feature that PyCharm offers, allowing for real-time markdown
editing and adjusting. To find out more about the syntax of the markdown language, you
can reference the cheat sheet at https:/​/​github.​com/​adam-​p/​markdown-​here/​wiki/
Markdown-​Cheatsheet.

Installing packages
Next, we will install two Python packages that are required for our scientific project:
NumPy and Matplotlib. As a refresher, PyCharm offers various methods so that you can
install libraries and packages for your project environment. You need to do the following:

Go to Project | Project Interpreter in Settings and use the graphical package1.
manager.
Alternatively, you can open the Terminal panel and execute the appropriate pip2.
commands.
As another alternative, you can enter the package names in the3.
requirements.txt file and use the Install requirements button, as shown here:

Installing packages via the requirements.txt file

The same process can be applied if you wish to install any other external libraries and
packages that you need.

Running the code
Following our discussion on working with a scientific project in PyCharm, in the main.py
file, we will input the following sample code:

import numpy as np
import matplotlib.pyplot as plt

N = 100
x = np.random.normal(0, 1, N)

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Turning on Scientific Mode Chapter 11

[308]

y = np.random.normal(2, 3, N)

plt.hist(x, alpha=0.5, label='x')
plt.hist(y, alpha=0.5, label='y')
plt.legend(loc='upper right')
plt.show()

Using NumPy, we are simply creating two sample 100-element datasets from normal
distributions (x from a distribution with a mean of 0 and a standard deviation of 1, y from a
distribution with a mean of 2 and a standard deviation of 3). Then, we draw
their corresponding histograms using Matplotlib.

Now, execute the program. You will see the corresponding output appear in your project
window, similar to the following screenshot (the histograms might be somewhat different
from my own due to randomness):

An example scientific project in PyCharm

Turning on Scientific Mode Chapter 11

[309]

Note that, by default, a scientific project might be run in the Python Console (as opposed to
being run via the Run panel that we've seen in the previous examples in this
book). Additionally, you can right-click on the background of the editor and choose Run
'SciTest' to run the program normally via the Run panel. You can also set the default run
configuration of your project by accessing the Edit Configurations feature, which is located
in the top window toolbar, as illustrated here:

Editing run configurations in PyCharm

You might have noticed that the generated plot is being opened in a panel called SciView.
This panel is a powerful feature that's specific to PyCharm's scientific projects. For this
reason, we are saving it as a topic for the next chapter.

Additionally, we also have the Documentation panel in our project window. This panel is
likely to be located directly below the SciView panel (similar to the preceding screenshot)
and be a part of Scientific Mode in PyCharm. It is also one of our discussion topics in
the Understanding the advanced features of PyCharm's scientific projects section of this chapter,
but for now, we will consider Scientific Mode in more depth.

Toggling Scientific Mode
I have mentioned the term Scientific Mode a couple of times before; now, we will see the
significance of this mode in PyCharm projects.

Turning on Scientific Mode Chapter 11

[310]

In PyCharm, Scientific Mode consists of multiple components that we will be exploring in
this and the upcoming chapters, the most notable being the SciView and Documentation
panels. It is important to note that this special mode in PyCharm is not equivalent to having
a scientific project. Moreover, it is more of a configuration setting where various PyCharm
features that support scientific computing are easier to access and use.

You might be familiar with the idea of a focus or distraction-free mode in Google Chrome
(or even programming IDEs) where various components in a window are hidden away to
maintain a focused, minimal interface. Scientific Mode uses the same idea, but the interface
in this mode is optimized for scientific computing practices such as viewing variables and
documentation. Specifically, it reorganizes the panels in your PyCharm workspace and
displays the commonly used tools in scientific projects.

By default, this mode is enabled in any PyCharm scientific project, but you can turn it on
and off by navigating to View | Scientific Mode from PyCharm's menu bar.

After turning Scientific Mode off in our current project, you will see that the SciView panel
becomes a floating element instead of a pinned section within our project window. The
Documentation panel is also hidden away when Scientific Mode is turned off. Turning it
on again will restore these panels.

Scientific Mode can also be turned on in non-scientific projects in PyCharm using the same
navigation. What's more, if you are using NumPy, one of the most common scientific-
computing libraries in Python, and don't have this mode turned on in a project, PyCharm
will even display a message suggesting that you use this mode, as shown in the following
screenshot:

PyCharm's automatic detection of NumPy

Overall, Scientific Mode offers an intuitive interface that can improve your productivity in
scientific computing projects. In the next section, we will examine other advanced features
within a scientific project in more detail, namely the Documentation panel and PyCharm's
code cells.

Turning on Scientific Mode Chapter 11

[311]

Understanding the advanced features of
PyCharm's scientific projects
Equipped with the features we discussed in the previous section, you can navigate and
work with PyCharm's scientific projects efficiently and productively. However, there are
still other subtle features that PyCharm offers that can prove to be useful in this context.
First, we will consider the Documentation panel and its usage.

The documentation viewer
As we discussed in Chapter 4, Editing and Formatting with Ease in PyCharm, documentation
is an essential part of programming and software development, and PyCharm offers the
most powerful and straightforward features to support the task of working with
documentation in Python.

In a scientific project, the Documentation panel, as we have seen, is pinned as one of the
main panels of the project window. This documentation viewer displays real-time
documentation data in a dynamic way. Specifically, as you move your caret to a particular
method or function call in the editor, the Documentation panel will show the official
documentation corresponding to that method/function.

For example, the following screenshot was taken when my cursor was at the legend()
method from the Matplotlib library (line 11 of our current code):

Dynamic documentation in PyCharm

Turning on Scientific Mode Chapter 11

[312]

This functionality is also applicable mid-editing: this means that as you type in part or all of
a method or function, the Documentation panel will also display its corresponding
documentation. Combined with an intelligent real-time code-completion feature, this
Documentation panel allows PyCharm users to have comprehensive knowledge of what
they are typing at a given moment.

Additionally, you can use the toolbar of the Documentation panel—specifically the Show
Options Menu icon—to adjust how the output should be displayed in terms of font size or
location and size of the panel. There is also an option in the Edit Source icon that allows
users to jump directly to the source code of the method/function that's currently being
displayed in the panel.

Next, we will examine a unique feature in PyCharm when it comes to executing Python
code, that is, implementing code cells.

Using code cells in PyCharm
PyCharm's code cells are a way to separate and execute different portions of a large Python
program sequentially. If you are familiar with Jupyter notebooks, code cells are, in essence,
the bare-bones version of executing Python code (if you're not familiar with Jupyter
notebooks, then don't worry—we will be discussing them in the next chapter). This ability
is specifically valuable in scientific computing projects when different sections of a program
are run in order, allowing programmers to follow the logic of the program in an
incremental way.

Implementing PyCharm code cells
Code cells in PyCharm are defined by lines of code that start with the following
characters: #%%. These lines are treated as standard comments in the low-level execution of
Python, but PyCharm will recognize them as code cell separators in its editor. Let's see this
feature in action:

In our current program, add those lines so that your program is similar to the1.
following:

import numpy as np
import matplotlib.pyplot as plt

#%% generate random data
N = 100

Turning on Scientific Mode Chapter 11

[313]

x = np.random.normal(0, 1, N)
y = np.random.normal(2, 3, N)

#%% plot data in histograms
plt.hist(x, alpha=0.5, label='x')
plt.hist(y, alpha=0.5, label='y')
plt.legend(loc='upper right')
plt.show()

As you can see, we can actually put comments in these code cell separators, which
will help with readability in the future.

More importantly, looking at the left-hand gutter of our editor, we will see2.
several Run buttons at the beginning of each code cell that we defined via the
separators:

Code cells in PyCharm

Now, we can execute individual code cells by clicking on the Run buttons in
sequence.

Turning on Scientific Mode Chapter 11

[314]

Note that these buttons will execute the code they correspond to in the
Python Console (as opposed to in the Run panel). Using these Run buttons
will achieve the same effect as typing and running individual lines of code in
the console.

On the topic of code cells, there is also a PyCharm plugin available for download3.
that is dedicated to working with Python code cells. From the Plugins settings,
you can search for and download the plugin named PyCharm cell mode in the
same way as the Markdown plugin:

PyCharm cell mode plugin

This plugin provides an easier interface and more options when it comes to
executing individual code cells. For example, you can simply use a double pound
sign ## (no spaces) to indicate the beginning of a code cell.

Turning on Scientific Mode Chapter 11

[315]

What's more, when you click on a Run button corresponding to a specific cell,4.
you can choose to either simply run that cell or to move to the next one
afterward. The preceding screenshot was taken from the cell_mode_test.py
file in our current code folder, which contains the same code that we have been
looking at but with double pound signs to separate code cells:

More options with the Cell Mode plugin

The Cell Mode plugin also offers even more options when it comes to executing5.
your code cells. It's located in Code | Cell Mode from PyCharm's menu bar:

More options with the Cell Mode plugin

Another great feature that is accessible when we use these code cells is that we6.
also have the option to debug the cells in the same way that we would debug a
whole program. Specifically, we can still place the breakpoints in the gutter to the
left of a code cell, as follows:

Turning on Scientific Mode Chapter 11

[316]

Combining code cells with debugging

When this specific code cell is run, the program's execution will still pause at those
particular breakpoints, at which time we can inspect the current values of our variables.
Considering that, while debugging, we might need to narrow down a specific portion of
our code and inspect the changes it makes to our variables, we can see that the use of a code
cell in a debugging process perfectly helps us in that regard.

Overall, we can see that this plugin offers all the advantages of using Jupyter notebooks
without having to actually switch to Jupyter applications (again, if you are not familiar with
Jupyter notebooks, we will be discussing them in detail in the next chapter).

Working with CSV data
While working on a scientific computing/data science project, it's likely that you'll need to
interact with datasets that have been saved in CSV files. In the context of examining the
data within a CSV file, a simple text editor can only display that data in text format, which
isn't very readable. On the other hand, software that can show the content of CSV files in a
nicely formatted table (such as Microsoft Excel) can be quite troublesome to work with in
addition to the current IDE or text editor that's being used for code development.

As the premier IDE for Python, one of the most popular programming languages for
scientific computing and data science, PyCharm looks to address that problem by offering
its own table viewer via the CSV plugin. This plugin allows us to inspect CSV files in
formatted tables within PyCharm's editor.

First, we need to install the plugin since it doesn't come with PyCharm by default. Similar
to the process of installing the Markdown plugin in the previous section of this chapter,
you can go to the Plugins section in Settings to have the CSV plugin installed in your
version of PyCharm.

Turning on Scientific Mode Chapter 11

[317]

Using the CSV plugin
To see the CSV plugin in action, let's consider a sample CSV file:

In the data folder of our current project code folder, open the sample.csv file in1.
PyCharm's editor (alternatively, you can also use any other CSV file that you'd
like). The sample.csv file contains the following sample data:

a,b,c
1,2,3
4,5,6

With the file open in the editor, you will see that the preceding raw data is2.
displayed by default in Text mode. However, if we were to switch to Table
Editor mode (using the navigation bar at the bottom of the editor, as highlighted
in the following screenshot), we would be taken to the graphical display of the
table data:

The table editor in PyCharm

As you can see, the CSV data being displayed in the formatted table will allow3.
data scientists to inspect their data better.

Furthermore, you can edit the content of the considered CSV file by clicking on4.
the individual cells of the displayed table and directly changing their values. This
method of altering the data in a CSV file is considerably better than doing so via
a text editor, where it could be quite difficult to identify which column a specific
data point belongs to.

Turning on Scientific Mode Chapter 11

[318]

The toolbar at the top of this Table Editor also allows for various navigation and5.
display options. For example, the Header row fixed checkbox specifies whether
the first row should be used as the header of the table, while adjusting the
number in the Text-lines per row prompt will change how compact or loose the
rows appear.
Finally, it is also possible to work with files in other delimiter-separated formats6.
such as tab-separated values (TSV) in the same manner. However, most data
files are formatted to CSV in data science projects, so chances are, you will only
need to worry about CSV files.

Note that one potential downside to using the CSV plugin is that it is
unable to parse extremely large files (for obvious reasons). Most of the
time, the plugin can handle tens of thousands of CSV rows, so most
scientific computing/data science projects will have no problem taking
advantage of the CSV plugin.

The Table Editor is also the last feature we will consider in this chapter regarding
PyCharm's Scientific Mode. In general, by combining and using the features we have
discussed simultaneously in a scientific computing/data science project, we gain the
dynamic ability to view and work with both the code and the data within the project.

Summary
A scientific project in PyCharm is created with a general structure that is common among
projects in real life, including good practices such as a data folder that is excluded from
version control, the README.md file, and the requirements.txt file. As you can imagine,
having to manually create this setup for every project can prove to be difficult and time-
consuming. This feature helps PyCharm users get right down to the development process
after the project has been created so that they don't have to worry about taking care
of miscellaneous details. This will allow us to be faster and more productive in our
development workflow.

Additionally, PyCharm's Scientific Mode includes various features that support the
development process of scientific computing or data science projects, namely the
Documentation and SciView panels. In combination with this mode, you can also take
advantage of other powerful features, such as code cells and the CSV plugin, to streamline
various tasks and effectively improve your productivity in data science projects.

Turning on Scientific Mode Chapter 11

[319]

However, these features only mark the beginning of what PyCharm has to offer when
assisting us in data-related projects. Building on these topics, in the next chapter, we will
look into the usage of the SciView panel and Jupyter notebooks, which are a big part of the
Python data science ecosystem within PyCharm.

Questions
What is the markdown language? What purpose does a README.md file in a1.
GitHub repository serve?
Why is the data folder in a scientific project in PyCharm excluded from version2.
control?
How can you turn Scientific Mode on and off in PyCharm? What effect will this3.
have on a given project window?
What features are available within PyCharm's Documentation panel?4.
What are code cells in PyCharm and how can you implement them?5.
What features are available within the CSV plugin in PyCharm?6.

Further reading
More information regarding the subjects we covered in this chapter can be found in the
following articles:

JetBrains official documentation: Scientific Mode, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/matplotlib-support.html)
Mastering PyCharm online course, by Michael Kennedy, https:/​/​training.
talkpython.​fm/​courses/​explore_​pycharm/​mastering-​pycharm-​ide

JetBrains official documentation: Scientific Tools, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/scientific-tools.html)
JetBrains official documentation: Editing CSV and TSV files as tables, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/editing-csv-and-tsv-files.html)
NumPy official documentation home page, SciPy.org (https:/​/​docs.​scipy.​org/​doc/
)

https://www.jetbrains.com/help/pycharm/matplotlib-support.html
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://training.talkpython.fm/courses/explore_pycharm/mastering-pycharm-ide
https://www.jetbrains.com/help/pycharm/scientific-tools.html
https://www.jetbrains.com/help/pycharm/editing-csv-and-tsv-files.html
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/
https://docs.scipy.org/doc/

12
Dynamic Data Viewing with

SciView and Jupyter
This chapter walks you through two of the most important functionalities of PyCharm in
the context of data science projects—the SciView panel and Jupyter notebooks. Both of
these functionalities offer a great interface so that we can view and work with the data and
variables we have in a given data science project.

First, we will discuss the process of using the SciView panel, another PyCharm-specific
panel or window tool, to inspect common data science-related data structures such as
NumPy arrays and Pandas DataFrames. We will then learn about the integration of
interactive Python computing tools such as Jupyter notebooks in PyCharm and how to use
them in our own projects.

The following topics will be covered in this chapter:

Viewing and interacting with data via the SciView panel
Understanding the integration of Interactive Python (IPython) within PyCharm
Using Jupyter notebooks for interactive programming, especially in a PyCharm
project

By the end of this chapter, you will be armed with the knowledge of how to integrate
PyCharm into your scientific computing workflow using two of its most powerful
features—the SciView panel and support for Jupyter.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[321]

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your computer
Download this book's GitHub repository at https:/​/​github.​com/
PacktPublishing/​Hands-​on-​Application-​Development-​with-​PyCharm

You need to know how to install NumPy, Pandas, and Matplotlib in a Python
project
In this chapter, we will be working with the subfolder named Chapter12 from
this book's downloaded code repository

Data viewing made easy with PyCharm's
SciView
We already encountered the SciView panel in PyCharm briefly in the previous chapter. In
this section, we will fully explore the support for data-related tasks offered by this feature.
By the end of this section, I hope you will be able to appreciate the SciView panel, which I
personally consider to be PyCharm's best feature when it comes to scientific computing and
data science projects.

The code example we will be working with in this section is included in the
Chapter12/SciViewPanel folder of our code repository and looks as follows. In essence,
this program is the same as the one we were working with in the previous chapter.

However, instead of simply plotting the histogram to indicate the distribution of
the x and y variables once, here, we will randomly generate x and y five times using
the range function and draw the corresponding histogram at each iteration of the for loop,
as we will see immediately after this section:

import numpy as np
import matplotlib.pyplot as plt

N = 100
for _ in range(5):
 x = np.random.normal(0, 1, N)
 y = np.random.normal(2, 3, N)

 plt.hist(x, alpha=0.5, label='x')
 plt.hist(y, alpha=0.5, label='y')

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[322]

 plt.legend(loc='upper right')
 plt.show()

Note that, as per Python's best practices, we are assigning the iterator
to _ in our for loop since we don't need that value anywhere.

We will be using this program to examine various features in the next section, starting with
a more in-depth look at the Plots tab of the SciView panel.

Viewing and working with plots
The Plots tab offers a convenient way to browse through and manage any and all plots that
are generated by our Python programs. Now, let's see it in action by executing our current
program to generate the plots.

Note that, in order to take full advantage of the various features we are discussing, we will
run this program in the console. To do this, right-click on the background of your editor
and choose the Run File in Console option. As the program executes, you will see that the
histograms that Matplotlib generates are included in the SciView panel, specifically in its
Plots tab (as highlighted here):

Viewing plots in PyCharm's SciView panel

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[323]

The first thing you will notice here is that each time a plot was generated, its output was
appended and shown to the SciView panel, and the program continued its execution. In
the end, we were left with a whole array of plots, which you can navigate through by
clicking on the different icons on the right-hand side of the panel.

The same program, when running via a traditional Python interpreter, would pause to
display each of the generated plots and only move on after any interaction from the user
(typically, when the Q key is pressed). This is because plt.show(), by default, blocks the
execution of any program that contains the method call.

Here, our program ran in one go and all the generated plots were saved to the SciView
panel. This feature is more useful than some might think. For example, when we want to
generate a large number of plots that will be viewed and compared with one another, the
way PyCharm handles the execution is optimal for that purpose. When using a regular
Python interpreter, we would need to save the plots to files manually to achieve the same
effect.

Getting back to the SciView panel, as you click on and display a given plot, you also have
the option to zoom in and out using the toolbar at the top of the panel, remove the plot
from view using the X button to the right of its icon, or save the plot to an image file, or
remove all the plots from view by right-clicking on the plot icon, as follows:

More options for working with plots in PyCharm

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[324]

Working with plots in PyCharm via the SciView panel is arguably better than interacting
with a bare-bones Python interpreter, for many reasons that we have already discussed.
However, this is not the only use for the SciView panel. We have mentioned that all the
plots that are generated by our Python program are included in the Plots tab of the
SciView panel. The other tab, as you might have noticed, is the Data tab, which we will
discuss in the next subsection.

Viewing and working with data
The Data tab offers us a nice and clean way to inspect the values of the variables in the
Python program. In the following steps, we will explore its capabilities with our example
program:

First, let's shift our attention to the Python Console panel, which appeared (most1.
likely) at the bottom of the project window when we ran our program in the
console. On the right-hand side of the panel, we can see a section that lists all the
variables in our program and their respective values. Our variables should look
similar to the following:

Variable viewer in the Python Console panel

Now, we can inspect the values of simple values such as N or the iterative index2.
_ using this variable viewer just fine. However, for x and y—which are NumPy
arrays—how their values are being represented here might not be readable
enough for our purposes. Furthermore, in the context of data science projects,
complex data structures such as NumPy multidimensional arrays or Pandas
DataFrames need to be displayed in a better manner.

Here is where the SciView panel comes into play—in the variable viewer of the
Python Console panel, click on the View as Array button that corresponds to
either x or y (or both), as highlighted in the preceding screenshot (you can also
right-click on the variable and select the option with the same name to achieve
the same effect).

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[325]

This action will open a subtab in the Data tab of the SciView panel for each3.
variable you want to inspect. The panel in your project window should look
similar to the following screenshot:

Viewing data in PyCharm's SciView panel

As you can see, the middle section of the panel displays the value of the NumPy
array (x, in this case) in a table format with row and column numbers. This is
evidently more graphical and thus more readable than its string representation in
the viewer of the Python Console panel. You can also scroll left and right to go
through and inspect individual values within this array.

The next element of note in this panel is the search bar and the formatting4.
prompt at the bottom of the section:

Within the search bar, you can type in the name of a variable you would like
to inspect and hit Enter; the current tab will then refresh and display the
value of the new variable. This means that a given subtab within this Data
tab of the SciView panel is not tied to the original variable it was created
with—another testament to the dynamic features PyCharm offers.
The formatting prompt specifies how the content of the variable should be
formatted. The prompt currently has .5f as its value, so 5 digits after the
decimal will be displayed. As you can see, the formatting syntax is identical
to that of string formatting in Python.

You can read more about the topic in Python's official
documentation: https:/​/​docs.​python.​org/​2/​library/​stdtypes.
html#string-​formatting.

Multiple variables can be displayed at the same time in different tabs. As
highlighted in the preceding screenshot, both x and y are in my SciView panel.

https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#string-formatting

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[326]

You can also use the shortcuts for the Select Previous Tab and Select
Next Tab actions to quickly switch between the available tabs to inspect
the registered variables.

It is important to note that the data viewer of the SciView panel is only applicable
for NumPy arrays and Pandas DataFrames. If you were to, say, enter N, which is
an integer variable in our program, in the search bar, you would obtain an error
message, as follows:

Unsupported data structures in the data viewer

However, since the arrays and DataFrames are typically the variables we need to
inspect in a graphical table format, there is actually no need for the data viewer to
support other, simpler data structures that can be inspected via the variable
viewer of the Python Console panel.

The last feature we will discuss regarding this data viewer is the coloring of the5.
individual cells. As you can see, in a specific variable displayed in the viewer,
cells with high values are filled with warmer colors, while the ones with low
values are filled with cooler colors. In the Viewing data in PyCharm's SciView panel
screenshot, -1.072 has a deep blue color, while 1.47 has a deep red color.
This heatmap coloring feature is significantly useful in various scenarios in data6.
science projects, namely while considering a correlation matrix. To see this
feature in action, let's consider the corr_test.py file within our current
repository folder, which contains the following code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[327]

#%% generate sample data
x and z are randomly generated
y is loosely two times of x
x = np.random.rand(50,)
y = x * 2 + np.random.normal(0, 0.3, 50)
z = np.random.rand(50,)

df = pd.DataFrame({
 'x': x,
 'y': y,
 'z': z
})

#%% compute the correlation matrix
corr_mat = df.corr()

#%% plot the heatmap
plt.matshow(corr_mat)
plt.show()

In this program, we are creating a Pandas DataFrame with three different
attributes (x, y, and z) that we generate ourselves. Then, we compute the
correlation matrix of this dataset using the corr() method. Finally, we display
this correlation matrix as a heatmap using the matshow() method from
Matplotlib.

On the theoretical side, a correlation matrix tells us how much an attribute
in a given dataset is correlated to another; a higher value means a higher
correlation between a pair of attributes. Generally, knowing which
attributes are highly correlated to each other will offer valuable insights
into the dataset of a data science project.

To demonstrate this point, we generate the y attribute to be roughly two times the
size of the x attribute, thus artificially creating a correlation between these two
attributes. The z attribute, on the other hand, is generated randomly and
independently from x and y, so there should not be a high correlation between z
and either of the other attributes.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[328]

Keeping all of this in mind, go ahead and run this program in the console (by7.
right-clicking on the editor's background and choosing the corresponding
option). The first output you will notice is the heatmap of the correlation matrix
for our dataset in the Plots tab of the SciView panel, as shown here:

Heatmap plot in PyCharm

Note that these are the following things that we expected:

The first and second attributes are highly correlated, so the
color in the corresponding cells in the correlation matrix (row 1
column 2 and row 2 column 1) is bright
The correlation between the third attribute with the other two is
low, indicated by a dark color
Naturally, each attribute is perfectly correlated with itself,
hence the bright yellow color in the diagonal cells

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[329]

To inspect the actual values within the computed correlation matrix, we can use8.
the variable viewer of the Python Console panel using the following steps:

Expand the corr_mat variable in the viewer and scroll down. You will1.
see something similar to the highlighted section of the following
screenshot:

Actual value of the correlation matrix

Then, inspect the corr_mat variable in the data viewer of the SciView2.
panel by clicking on the View as DataFrame button within the Python
Console panel. You will see the following output:

Correlation matrix in the SciView panel

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[330]

We can see that—thanks to the default coloring logic of the data viewer of the SciView
panel—our correlation matrix is displayed as a heatmap automatically. So, by using the
SciView panel, we do not have to even draw the correlation matrix as a plot using
Matplotlib.

Furthermore, the heatmap we have here also contains the actual values of the correlation
matrix, making it even more readable; implementing this in Matplotlib requires more code
than what we currently have.

Overall, the data viewer in the SciView panel offers powerful and dynamic methods to
inspect and make sense of the data we have in our data science projects. As you can
imagine, this feature is also specifically useful in the context of debugging tasks, where
variables and data are inspected mid-execution. Specifically, as you are stepping through a
program in debug mode, you can still use the View as Array/DataFrame option to open a
given applicable variable and inspect it in the SciView panel.

And that concludes our discussion on the fantastic SciView panel in PyCharm. In the next
section, we will be introduced to another common tool in data science projects, IPython,
and will learn how to use it in PyCharm.

Understanding IPython and magic
commands
IPython is a variation of the Python Console that emphasizes the interactivity of writing
code in a Python shell. As we will see later on, IPython offers some convenient options so
that we can explore and manipulate Python variables. These options are more flexible than
their counterparts in a regular Python Console and are a great help for data scientists in
general.

In addition to this, we will also consider the use of magic commands in IPython, which is
an interactive API that allows us to facilitate complex tasks in a quick and flexible
manner. First, let's see how we can install and set up IPython.

Installing and setting up IPython
The process of installing IPython is fairly simple:

We can install IPython for our Python project via the familiar pip command:1.

pip install ipython

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[331]

Then, you can run the ipython command in your Terminal to start an IPython2.
session (similar to how we can run python in the Terminal to evoke the Python
Console). Alternatively, we can initiate IPython within the Python Console
panel in PyCharm, as follows:

Go to PyCharm's settings and navigate to Build, Execution,1.
Deployment | Console. Make sure that the Use IPython if
available box is checked, and finally, click OK to confirm the selection.
Open the Python Console panel and click on the Rerun button in the2.
top-left corner of the panel, which will initiate a console with a slightly
different interface, which is the IPython console:

Running IPython

Specifically, we can see that the input prompt begins with In[N] (with N denoting the
order of each command that's entered), instead of the >>> symbol in a regular Python
Console panel. From here, you can enter in individual Python commands and use the
IPython console in the same way as a Python Console panel.

Next, we will see what functionalities IPython has that set it apart from regular Python
Console panels.

Introducing IPython magic commands
Magic commands in IPython denote a set of specific syntactic options that allow for
considerably convenient APIs that make working with IPython seamless. Here, we will be
going over some of these magic commands to get a feel of the options that IPython offers:

object_name?: Say you are using an IPython console to execute a sequence of
Python commands, and at one point, you'd like to inspect the value of a variable
that was created earlier. You can use the variable view right next to the console,
but you can also take advantage of the object_name? command in IPython to
list detailed information about that variable.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[332]

For example, as illustrated in the following screenshot, number 1 was assigned to
the a variable, and when we type a? in the IPython console, we obtain an
extensive explanation regarding the data type of a, as shown here:

The object_name? command in IPython

%precision: Still on the topic of inspecting the value of your variables, if you
are working with numerical data that contains many decimal digits (fractional
numbers), then the %precision magic command might come in handy. This
command is used to specify how many numbers after the decimal point should
be displayed in the IPython console.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[333]

For example, as the following screenshot illustrates, when I print out the value
for e (a famous constant in math) after specifying that the precision should be 4,
the printed output is formatted accordingly, as shown here:

The %precision command in IPython

%%timeit: As we saw in Chapter 6, Seamless Testing, Debugging, and Profiling,
keeping track of the time it takes for a specific command to run is an essential
task in any profiling process. For that reason, IPython also offers a quick magic
command to time the execution of any code that's entered in the IPython
console—the %%timeit command.
For example, I used the following code to profile the speed of the sort()
function in Python with a completely reversed ordered list of numbers, as shown
here:

The %%timeit command in IPython

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[334]

From the output, we obtain an estimation of the speed (with the mean and
standard deviation) from the entered block of code to 1 million iterations of the
code. Again, this feature is quite useful in profiling tasks.

Here, we have considered three of the most common magic commands in IPython. Of
course, there are many other useful commands that you can take advantage of, which can
be found in IPython's official documentation: https:/​/​ipython.​readthedocs.​io/​en/
stable/​index.​html.

With that said, the main purpose of IPython is not simply the ability to utilize convenient
APIs to facilitate specific tasks such as variable inspection, formatting, or
profiling—IPython actually uses those functionalities to power its underlying interactive
characteristics. In the context of data science projects, IPython, when used in PyCharm,
offers a great way for us to inspect and test small blocks of code before using them in a
large program.

With that, let's move on to the next section, where we will consider the other notable
support PyCharm offers for scientific computing—Jupyter notebooks.

Leveraging Jupyter notebooks
Jupyter notebooks are arguably the most-used tool in Python scientific computing and data
science projects. In this section, we will briefly discuss the basics of Jupyter notebooks as
well as the reasons why it is a great tool for data analysis purposes. Then, we will consider
the way PyCharm supports the usage of these notebooks.

We will be working with the code examples from the Chapter12/JupyterNotebooks
folder of this book's code repository. In its requirements.txt file, we have Pandas,
NumPy, Matplotlib, and Jupyter as the external libraries that need to be installed. Whether
you are creating a new project or importing the folder into your PyCharm, go ahead and
install those libraries in your environment.

Even though we will be writing code in Jupyter notebooks, it is beneficial to first consider a
bare-bones program in a traditional Python script so that we can fully appreciate the
advantages of using a notebook later on. Let's look at the main.py file and see how we can
work with it. We can see that this file contains the same program from the previous section,
where we randomly generate a dataset of three attributes (x, y, and z) and consider their
correlation matrix:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[335]

Generate sample data
x = np.random.rand(50,)
y = x * 2 + np.random.normal(0, 0.3, 50)
z = np.random.rand(50,)

df = pd.DataFrame({
 'x': x,
 'y': y,
 'z': z
})

Compute and show correlation matrix
corr_mat = df.corr()

plt.matshow(corr_mat)
plt.show()

In addition to this, we also have two extra lines of code to show a scatter plot of x and y:

Plot x and y
plt.scatter(df['x'], df['y'])
plt.show()

Because of the way we generated these two data columns, the scatter plot will most likely
produce a nice relationship. When the program is run, we would roughly obtain the
following plot at the end:

Sample scatter plot

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[336]

We will come back to this program during our discussions in the following subsections.

Now, for those who are unfamiliar with Jupyter notebooks, let's move on to our first
subsection, where we will be discussing the fundamentals. If, on the other hand, you are
ready to learn how to integrate Jupyter into PyCharm, you can skip to the Jupyter notebooks
in PyCharm section of this chapter.

Understanding Jupyter basics
Jupyter notebooks are built on the idea of iterative development. Specifically, by separating
a given program into individual sections that can be written and run (roughly)
independently from each other, programmers (in general) and data scientists (specifically)
can work on the logic of their programs in an incremental way. Let's briefly talk about that
in the following subsection.

The idea of iterative development
A Jupyter Notebook consists of multiple code cells, each containing only a block of code
that achieves a specific goal. The output of a code cell is displayed immediately after that
cell in the notebook, making the process of debugging easier than in traditional programs.
We will see more examples of code cells later in this subsection.

Furthermore, this incremental characteristic of Jupyter notebooks makes them considerably
popular among data scientists and enthusiasts. For example, imagine that, during a process
of exploratory data analysis, you notice that a dataset you have read in the middle of the
program needs to be encoded in a different way. Now, in a traditional Python program,
you would have to adjust the reading function for that dataset and the whole program
would need to be rerun.

In general, starting off a program you want to implement with a low number of
functionalities and adding in features in an incremental and robust way later on, are good
practices to have. This is the general idea of iterative development, and it can be applied to
general programming as well.

Getting back to Jupyter notebooks, you would simply need to make the appropriate
changes in the code cell that reads in the dataset and rerun the subsequent cells, as opposed
to rerunning the code before it. As a tribute to its users, Jupyter notebooks were named
after the three most common scientific programming languages: Julia, Python, and R.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[337]

Another integral part of Jupyter notebooks is the support for the Markdown language. As
we mentioned previously, at the beginning of the previous chapter, Markdown is a markup
language that's commonly used in README.md files in GitHub. Furthermore, because of
its ability to work with LaTeX (which is typically used for writing mathematical equations
and scientific papers in general), Markdown is heavily favored by the data science
community.

Next, let's see how we can use a Jupyter Notebook in a regular Python project.

Editing Jupyter notebooks
For this task, we will be translating the program we have in the main.py file into a Jupyter
Notebook so that we can see the interface that Jupyter offers compared to a traditional
Python script. Again, note that we will not be using PyCharm during this process. Now,
let's look at the following steps:

First, we will create a regular folder to follow this example without using1.
PyCharm. Go ahead and open a Terminal at this directory as well.
Then, we will need to install Jupyter, which can be done via the pip package2.
manager:

pip install jupyter

We will also be using the regular scientific libraries, that is, NumPy,
Pandas, and Matplotlib, all of which can be installed using pip as well.

Next, since Jupyter is, in essence, a web application, we need to serve it via our3.
local server by running the following command in the Terminal:

jupyter notebook

This command will open a new tab in your web browser, displaying the current4.
directory where you ran the command. For example, my Jupyter page opens at
our current folder:

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[338]

Jupyter welcome page

From here, you can create new notebooks or upload existing ones from your local5.
machine using the two buttons highlighted in the preceding screenshot. For now,
we will use the New button and choose the Python 3 option to create a new
notebook.
Another tab in your browser will open, displaying the newly created notebook6.
for you to edit:

A new Jupyter notebook

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[339]

We can edit the name of the notebook in the top-left corner of the window.7.
Furthermore, what we currently have inside the notebook is a code cell. As we
mentioned previously, we would only enter a part of our code in a cell. Each cell
can also be run independently from each other. For now, we will use this code
cell to import the libraries that our program will be using. Enter the following
code into the cell:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

To run a code cell, you can click on the Run button, as shown here, or simply use8.
the Shift + Enter shortcut:

Running a code cell

If no error message appears when the cell is run, that means we have
successfully imported our libraries. You might have noticed that, as you
run the first code cell, another one is inserted immediately after it.
Alternatively, you can manually insert extra code cells in your notebook
by using the Insert menu from the menu bar.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[340]

Next, simply type in individual parts of the program we have, into separate code9.
cells. By the end, you should have the following notebook:

A Jupyter notebook example

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[341]

As we can see, any code output (be it printed output or visualization) is displayed
immediately following the code that produces it. This, again, allows Jupyter users
to read and edit their notebooks in a sequential and incremental way.

To improve the readability of our notebook even further, let's add some10.
Markdown to our code. Go ahead and insert a cell in front of our first one (using
the Insert menu).

A newly inserted cell is a code cell by default. We need to convert it into a text
cell to be able to enter Markdown code. To do that, select the new cell, click on
the drop-down menu on the menu bar like so and choose the Markdown option:

Changing the cell type in Jupyter

After this, enter the following Markdown code: 11.

Importing libraries

When this code runs, a level three Markdown heading will be produced.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[342]

Here, we are using these headings to describe our individual code cells. In the12.
same manner, insert a Markdown heading above each of your code cells, like so:

Combining Markdown headings with code in Jupyter

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[343]

We mentioned earlier that one reason for the popularity of Markdown is its13.
support for mathematical equations in LaTeX. Let's see how that plays out in
Jupyter. Insert a Markdown cell right before the Correlation matrix in heatmap
section and enter the following code:

Pearson correlation formula

$r_{XY}
= \frac{\sum^n_{i=1}{(X_i - \bar{X})(Y_i - \bar{Y})}}
{\sqrt{\sum^n_{i=1}{(X_i - \bar{X})^2}}\sqrt{\sum^n_{i=1}{(Y_i -
\bar{Y})^2}}}$

In Markdown, the preceding code produces the formula for the Pearson correlation
between two given arrays of numbers, which is what the corr() method in our code
computes. After running the preceding code, you will obtain the following Markdown:

LaTeX in Jupyter Markdown

The ability to combine LaTeX and general Markdown text with live code makes Jupyter
notebooks a flexible tool in data science projects. Being able to display the code in between
text explanations of a data analysis process can help readers of a Jupyter Notebook follow
what is being done to that data much more easily. This is why Jupyter notebooks are a
common tool for making presentations and reports in data science teams.

Finally, when you finish working on your notebooks, you can come back to the Terminal
and terminate the Jupyter server by using the Ctrl + C shortcut. Now, we have gone
through the different basic uses of Jupyter notebooks. In the next section, we'll see how
PyCharm supports this tool.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[344]

Jupyter notebooks in PyCharm
If you had the chance to work with Jupyter notebooks in PyCharm before 2019, you may
remember that the features from PyCharm that supported Jupyter were subpar and left
much to be desired. However, with the big update at the beginning of 2019, PyCharm has
proven itself to be one of the best Python IDEs once again by completely revamping its
support for Jupyter. In this section, we will go over these support features to see how
integrated Jupyter is in PyCharm:

First, we can create a new notebook inside the PyCharm editor by right-clicking1.
on a folder inside the directory tree and choosing the New option, as follows:

Creating a new Jupyter notebook in PyCharm

This will open the notebook file inside the editor, which means that you can run2.
your notebooks from within PyCharm, as opposed to having to use a web
browser as in the previous subsection. Moreover, if, at this point, you don't have
Jupyter installed in your environment, PyCharm will also let you know as soon
as the notebook is opened:

Installing Jupyter with PyCharm

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[345]

With the notebook opened in the editor, we can see that editing Jupyter3.
notebooks is similar to editing Markdown text—we can edit the code using the
left panel of the editor, and the right panel will display the rendered output. The
rendering of the notebook output is done in real time, so it will adjust as you
enter code into your notebook.

One thing to keep in mind is that any printed output or visualization
that's produced by code will only be displayed in the right-hand panel
when the code cell is actually executed, which we will do in a later step.

The beginning of each code cell in the notebook is indicated by the #%% symbol4.
(there is already one in the blank notebook we created). The code cell lasts until
there is another #%% symbol. If you want to specify a Markdown cell, you can use
#%% md at the beginning of a given cell.
Now, open the basics.ipynb file inside the notebooks folder of the current5.
chapter's code directory in the editor in PyCharm. This file contains the Jupyter
code for the notebook we considered in the previous subsection. Go ahead and
copy it over the new notebook we just created. Your workspace will look similar
to the following:

Jupyter notebooks in PyCharm

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[346]

The first thing we notice is the Run buttons for the individual code cells.
Markdown cells can be processed in real time, but as we mentioned earlier, code
cells need to be run to produce their effects.

To run a code cell, simply click on its Run button and choose the Run Cell6.
option.
This action will initiate a Jupyter server that handles the backend execution of7.
our notebook. Additionally, a new Jupyter panel will appear (most likely at the
bottom of your window), displaying information about the execution of the
Jupyter server:

The Jupyter panel in PyCharm

There are multiple tabs in this panel that you can navigate between using the
section that's highlighted in the preceding screenshot. The Server Log tab is
basically the Terminal when we use Jupyter outside of PyCharm. In other words,
you can use this tab to access the server in an actual web browser (by clicking on
the link that was printed in the preceding screenshot) or close the server with the
Control + C shortcut.

The other Variables tab in this panel display information about the variables that
are declared in their respective notebooks. As you execute the second code cell of
our current notebook, you will see that the tab is populated in the same way as a
regular Variables panel.

As we execute the code cells in our notebook, the right-hand panel of the Jupyter8.
editor in PyCharm also updates its display accordingly in real time. Specifically,
we can see the visualizations inside this panel as the cells producing them are
run.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[347]

We have gone through the main features of PyCharm in the context of Jupyter notebooks.
In general, one of the biggest drawbacks of using traditional Jupyter notebooks is the lack
of syntax formatting and code completion while writing code in individual code cells.
Specifically, when we write code in Jupyter notebooks in our browser, the process is very
similar to writing code in a simple text editor with limited support.

However, as we work with Jupyter notebooks directly inside the PyCharm editor, we will
see that all the code-writing support features that are available to regular Python scripts are
also available here. In other words, when using PyCharm to write Jupyter notebooks, we
get the best of both worlds—powerful, intelligent support from PyCharm and an iterative
development style from Jupyter.

Summary
A Python programmer typically works on a data science project in two ways—writing a
traditional Python script or using a Jupyter Notebook, both of which are heavily supported
by PyCharm. Specifically, the SciView panel in PyCharm is a comprehensive and dynamic
way to view, manage, and inspect data within a data science project. It offers a great way
for us to display visualizations that have been produced by Python scripts as well as to
inspect the values within Pandas DataFrames and NumPy arrays.

On the other hand, Jupyter notebooks are a great tool for facilitating iterative development
in Python, allowing users to make incremental steps toward analyzing and extracting
insights from their datasets. Jupyter notebooks are also well supported by PyCharm, being
able to be edited directly inside the PyCharm editor. This allows us to skip the middle step
of using a web browser to run our Jupyter notebooks while being able to utilize the
powerful code-writing support features that PyCharm provides.

By going in-depth into what PyCharm helps with regarding the process of viewing and
working with data, either via the SciView panel or with Jupyter notebooks, we have
learned how to use PyCharm to facilitate various data science tasks in Python. With this,
we have equipped ourselves with enough knowledge and tools to tackle real-life projects
using PyCharm.

In the next chapter, we will combine all the knowledge we have learned so far regarding
the topic of data science and scientific computing and walk through the process of building
a data science pipeline in PyCharm.

Dynamic Data Viewing with SciView and Jupyter Chapter 12

[348]

Questions
What two main features does the SciView panel contain?1.
What is the advantage of using the plot viewer in the SciView panel when2.
multiple visualizations are generated by a Python program?
What kind of data structures does the data viewer in the SciView panel support?3.
What is the idea of iterative development and how do Jupyter notebooks support4.
that?
What are Markdown and LaTeX? Why is it beneficial to have support for them in5.
Jupyter notebooks?
How is a Jupyter code cell represented in the PyCharm editor?6.
What are the benefits of writing Jupyter notebooks in the PyCharm editor?7.

Further reading
More information can be found in the following articles and readings:

JetBrains official documentation: Scientific Mode Tutorial, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/matplotlib-tutorial.html)
JetBrains official documentation: Running and Debugging Jupyter Notebook Cells,
JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/running-jupyter-notebook-cells.html)
Jetbrains official documentation: SciView, JetBrains s.r.o.
(www.jetbrains.com/help/pycharm/data-view.html)
Jupyter home page: (https:/​/​jupyter.​org)

https://www.jetbrains.com/help/pycharm/matplotlib-tutorial.html
https://www.jetbrains.com/help/pycharm/running-jupyter-notebook-cells.html
https://www.jetbrains.com/help/pycharm/data-view.html
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org

13
Building a Data Pipeline in

PyCharm
This chapter covers a step-by-step process of building a Python data pipeline within
PyCharm via a hands-on example. The term data pipeline generally denotes a set of actions
or steps in a procedure to collect, process, and analyze data. This term is widely used in the
industry to express the need for a reliable workflow of taking raw data and converting it
into actionable insights.

On a smaller scale, this includes working with and maintaining data for your data science
projects, pre-processing methods, and the visualization of data. In addition to the practical
know-how of using PyCharm in this process, you will also be able to gain knowledge on
the general workflow, as well as common practices in a complete data science project.

The following topics will be covered in this chapter:

Working with and maintaining datasets
Data cleaning and processing
Data visualizations
Machine learning

Throughout this chapter, you will be able to apply what you have learned on the topic of
scientific computing so far to a real project with PyCharm. This serves as a hands-on
discussion to conclude this topic of working with scientific computing and data science
projects.

Building a Data Pipeline in PyCharm Chapter 13

[350]

Technical requirements
The following is a list of prerequisites for this chapter:

Ensure that you have both Python 3.6+ and PyCharm installed on your
computer.
Download the GitHub repository at https:/​/​github.​com/​PacktPublishing/
Hands-​on-​Application-​Development-​with-​PyCharm.

First of all, we will be using the PyCharm project inside the Chapter13/Pipeline folder
in our code repository during our discussions. Let's now start our discussion with the
central element of any data science project—the data.

Working with datasets
Datasets are the backbone of any data science project—with a good, well-structured
dataset, we will have more chances to explore and discover important insights from the
data; conversely, a bad dataset can lead to erroneous and harmful conclusions and
decision-making. This is why we need to pay extra attention to see what kind of data we
are working with, well before starting developing code to analyze it.

In this section, we will go over some things to keep in mind in terms of the data for our
projects, as well as some hands-on practices of working with datasets. These practices will
help us to form good habits that place us at a good starting point when working on a data-
related project.

Now, the first step we need to take to start a data science pipeline is to actually determine
what question and/or problem we are trying to address. After that, we will briefly discuss
the different ways to collect data and facilitate version control.

Starting with a question
For this step, in total, there can be two situations—either we have a specific question in
mind and we need to find an appropriate dataset to analyze to answer that question, or we
already have a dataset and the content of that dataset gives rise to a question we want to
answer.

https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm
https://github.com/PacktPublishing/Hands-on-Application-Development-with-PyCharm

Building a Data Pipeline in PyCharm Chapter 13

[351]

Either way, we need to have a specific direction to move forward even before starting the
data science project.

Needless to say, as we continue to work on and explore a dataset, new questions and
insights might come up that can alter our original direction. However, it is always better to
start with a clear question in mind so that the dataset can be analyzed deliberately.

As an example, we will be working with a dataset provided by Kaggle, which can be found
at www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients.

Kaggle is an online data community designed for data scientists and
machine learning engineers. The site provides competitions, datasets,
playgrounds, and other educational activities to promote the growth of
data science, both in academia and the industry. More information on the
website can be found on its homepage: https:/​/​www.​kaggle.​com/​.

As you can find out from the website, this dataset was used in a research study on the early
detection of Parkinson's disease using time-based finger movement data while typing.
Specifically, the dataset contains the time it takes for 200 subjects to perform normal typing
activities on a custom keystroke recording application on their own computer. The data
was then collected over several weeks or months. Via the analysis of this dataset,
researchers hope to find a correlation between typing speed and other characteristics of
finger movements and the fact that a patient has Parkinson's disease. A robust statistical or
machine learning model that can learn from that correlation might help doctors to
streamline the process of detecting the disease in its early stages.

More details on the context of this dataset could be found in one of the
Further readings sections at the end of this chapter.

In our project directory, the data files are saved in two separate folders in
the data subfolder (Archived users and Tappy Data). If you started a PyCharm
scientific project from scratch, instead of importing the project from our code repository,
simply copy these two folders to the data folder in your own project. While we are at it,
let's double-click on some of the data files in these two folders to see what kind of data we
are working with.

https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/

Building a Data Pipeline in PyCharm Chapter 13

[352]

We can see that the individual data files in these two folders are text files with the .txt
extension. This prevents us from taking advantage of our CSV plugin to inspect the files via
a graphical interface. For example, the first file in the Archived users might look as
follows:

From this preceding data, we can speculate that the data in this Archived users folder
contains administrative information about specific patients. In particular, we see that the
preceding patient was born in 1952, is a female, and was indeed diagnosed with
Parkinson's.

Furthermore, each patient is assigned a unique identification string that is the name of their
corresponding text file. For example, the patient whose data we showed in the preceding
screenshot has an ID of 0EA27ICBLF. This ID is very important as we will need to use it,
later on, to combine the data from our two data folders.

Turning our attention to the second data folder, Tappy Data, we see that the names of the
files in this folder are formatted as [patient ID]_[year][month], denoting the time that
data was collected from a specific patient. For example, the first
file, 0EA27ICBLF_1607.txt, contains data from patient 0EA27ICBLF that was collected in
July 2016. For this reason, a patient can have more than one file in this folder associated
with them.

Building a Data Pipeline in PyCharm Chapter 13

[353]

Let's go ahead and open the preceding text file in our PyCharm editor to see what the data
inside looks like. You will have something similar to the following:

This data file is divided into different rows, each denoting information about a keystroke
that the patient performed, and different columns, which contain information such as the
following (respectively):

Patient ID
The date of data collection
The timestamp of each keystroke
Which hand performed the keystroke (L for left and R for right)
Hold time (time between press and release, in milliseconds)
The transition from the last keystroke
Latency time (time from pressing the previous key, in milliseconds)
Flight time (time from releasing the previous key, in milliseconds)

So, that is the general structure of the data that we will be working with. Again, our data
files are currently in text format, which we will need to process, combine, and convert into
some sort of tabular data as CSV files (which we will do in the next section). This is also
sometimes the case for real-life data, where our raw data does not come in the format that
we want.

For now, we will move on with our discussions. So, in this case, we are already provided
with a dataset and a potential question to answer (that is, can we establish patterns in
typing speed as an early symptom of Parkinson's disease?). In general, a data scientist
might have to manually collect, scrape, or use a third-party service to generate the data
they need for their project. Therefore, we will briefly discuss this topic of data collection
next.

Building a Data Pipeline in PyCharm Chapter 13

[354]

Collecting data
While the specifics of the different data collection techniques are outside of the scope of this
chapter, we can still briefly consider some of them:

Downloading from an external source: This is the case for our example dataset
since I downloaded it from Kaggle. When using a dataset downloaded from the
internet, we should always make sure to check its copyright license. Most of the
time, if it is in the public domain, we can freely use and distribute it without any
worry. The example dataset we are using is an instance of this. On the other
hand, if the dataset is copyrighted, you might still be able to use it by asking for
permission from the author/owner of the dataset. I have personally found that,
after reaching out to them via email and explaining how their datasets will be
used in detail, dataset owners are often willing to share their data with others.
Manually collecting / web scraping: If the data we want is available online but
not formatted in tables or CSV files, most of the time, we need to collect it and
manually put it in a dataset ourselves. At most, we can write a web scraper that
can send requests to the websites containing the target data and parse the
returned HTML text. When you have to collect your data this way, it is also
important to ensure that you are not doing it illegally. For example, it is against
the law to have a program scrape data off some websites; sometimes, you might
need to design the scraper so that only a certain number of requests are made at a
given point. An example of this was when LinkedIn filed a lawsuit against many
people who anonymously scraped their data in 2016. For this reason, it is always
a good practice to find the terms of use for the data you are trying to collect this
way.
Collecting data via a third party: Students and researchers who find that the
data they are looking for their study cannot be collected online often rely on
third-party services to collect that data for them (for example, via crowd-
sourcing). Amazon Mechanical Turk (MTurk) is one such service—you can
enter any form of questions to make a survey and MTurk will introduce that
survey to its users. Participants receive money for taking the survey, which is
paid by the owner of the survey. This option is, again, specifically applicable
when you want a representative dataset that is not available online anywhere.

Building a Data Pipeline in PyCharm Chapter 13

[355]

Making queries to a database: This is most likely the case if you are working
with data from your company or organization. Luckily, PyCharm offers many
useful features in terms of working with databases and their data sources. This
process was discussed in Chapter 9, Understanding Database Management with
PyCharm, and I highly recommend you to check it out if you haven't already.
Specifically, PyCharm provides a separate tool panel for the process of
connecting with a database source. Additionally, we can also use a graphical
interface to view and make changes to the data inside a database table in
PyCharm, as illustrated here:

Database table viewer in PyCharm

Overall, there are multiple ways for a data scientist to collect the data for her project; each
has its own pros and cons, depending on the purpose and the context of the project.

In the next section, we will talk about the process of version control for datasets.

Version control for datasets
Let's start with understanding the importance of version control in data science. Now, there
is somewhat of a crisis of reproducibility in the data science and scientific computing
community. This is when one data team can extract a specific insight from a dataset but
others cannot, even when using the same methods. Many instances of this are because the
data used across these different teams is not compatible with each other. Some might be
using the same, but an outdated dataset, while other datasets might have been collected
from a different source.

For this reason, version control for datasets is increasingly important. However, as we
discussed in Chapter 5, Version Control with Git in PyCharm, common version control tools
such as Git are not applicable for datasets, which are typically large files that are not
suitable for being stored with code. In particular, we are not allowed to push any file larger
than 100 MB onto our GitHub repositories.

Building a Data Pipeline in PyCharm Chapter 13

[356]

Luckily, there is another version of Git that is specifically designed for this purpose, Git
Large File Storage (Git LFS), which is also integrated nicely with traditional Git. The way it
works is that, when we register a file using Git LFS, the system will replace that file with a
pointer that simply references it. So, when the file is placed under version control, Git will
only have a reference to the actual file, which is now stored in an external server.

In short, Git LFS allows us to apply version control to large files (in this case, datasets) with
Git, without actually storing the files in Git. Now, let's go through the process of using Git
LFS through the following steps:

Git LFS is typically installed with Git if you download the Git Client from their1.
official website, https:/​/​git-​scm.​com/​. Otherwise, you can run the following
command to install the software:

git lfs install

To have Git LFS track files of a given extension, run the following command: 2.

git lfs track ".[extension]"

Git LFS will now keep track of any file with the same extension. Go ahead and
run the command with the .txt extension within our current project, which will
register our text data files with Git LFS.

We also need to add the .gitattributes file to Git. This is because this file3.
contains the information on the file extensions we are tracking:

git add .gitattributes

That is essentially the process of using Git LFS. Now, when a file with an extension tracked
by Git LFS is added by the regular Git, Git LFS will automatically handle all of the backend
referencing logic that we mentioned earlier. With this topic, we also conclude our
discussion on the topic of working with our datasets in a data science project.

In the next step, we will start the exploratory process with the dataset we have.

Data cleaning and pre-processing
In this section, we will attempt to clean and pre-process the dataset in our current project.
This process can also be called exploratory data analysis. In general, the term exploratory
data analysis denotes the process of exploring and analyzing a dataset at the same time.

https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/

Building a Data Pipeline in PyCharm Chapter 13

[357]

As we have said before, in an iterative development process with data, we need to take
incremental steps to learn about the specifics of a dataset and, from there, know how to
analyze it better.

For example, a dataset attribute that contains continuous numerical values (such as length
or area) should be handled differently than a discrete attribute (such as age or number of
siblings) or even categorical data (such as city, country, or gender). In this case, we will
apply various cleaning and pre-processing techniques to the attributes in our dataset per
their data types.

Data cleaning and pre-processing are important processes in a data pipeline. As we have
seen from our dataset (and this is certainly true in real-life projects), raw data often comes
in bad formats that are not fit for actual visualization or machine learning tasks. In data
cleaning and pre-processing, we need to reformat and transform our data into nicely
encoded attributes that can be fed to visualization functions as well as machine learning
models.

For this discussion, we will be considering the code stored inside the
data_clean.py file in the code repository. To be more specific, we will be looking at
individual code cells inside this file. First, we will start by reading in our dataset and
normalizing the data types for the attributes in the dataset.

Reading in dataset
First, we will import the libraries we need throughout the program and read in the data in
the Archived user folder. The Pandas and NumPy libraries in Python will be used, as
they are two of the most flexible and versatile tools in Python data analysis. Let's follow
these steps to achieve this:

Enter and run the following code block in PyCharm:1.

import pandas as pd
import numpy as np

import os
import gc

We are already familiar with Pandas and NumPy, which will be used for various
data manipulation tasks. We will also need os to iterate through the individual
data files in our data folders, as well as gc to perform some memory-
management-related functions.

Building a Data Pipeline in PyCharm Chapter 13

[358]

First, we have said that the Archived user folder contains files that are2.
dedicated to patient-specific information such as year of birth and diagnosis,
while the Tappy Data folder contains keystroke data collected from these
patients.
Now, we would like to eventually combine these two datasets, which requires us3.
to have a consistent set of patients. In other words, a set of patients included in
the first folder must match exactly with the set from the second folder.
To ensure this, we first compute the intersection of these two sets, extracted from4.
our raw data:

#%% Read in data

user_file_list = os.listdir('data/Archived users/')
user_set_v1 = set(map(lambda x: x[5: 15], user_file_list)) # [5:
15] to return just the user IDs

tappy_file_list = os.listdir('data/Tappy Data/')
user_set_v2 = set(map(lambda x: x[: 10], tappy_file_list)) # [: 10]
to return just the user IDs

user_set = user_set_v1.intersection(user_set_v2)

print(len(user_set))

In the preceding code, we extract the set of patient IDs from the Archived users
folder and assign it to variable user_set_v1 (and the same goes for the Tappy
Data folder and user_set_v2). Then, we finally take the intersection of these
two sets to obtain the set of patients that are present in both datasets.

After running this code cell, you should get 217 as the printed output (the5.
number of matched patients), as illustrated here:

Building a Data Pipeline in PyCharm Chapter 13

[359]

We will now actually read in the data from Archived users and convert it into6.
a tabular format in the next code block:

#%% Format into a pandas dataframe

def read_user_file(file_name):
 f = open('data/Archived users/' + file_name)
 data = [line.split(': ')[1][: -1] for line in f.readlines()]
 f.close()

 return data

files = os.listdir('data/Archived users/')

columns = [
 'BirthYear', 'Gender', 'Parkinsons', 'Tremors',
 'DiagnosisYear', 'Sided', 'UPDRS', 'Impact',
 'Levadopa', 'DA', 'MAOB', 'Other'
]

user_df = pd.DataFrame(columns=columns) # empty Data Frame for now

for user_id in user_set:
 temp_file_name = 'User_' + user_id + '.txt' # tappy file names
 have the format of `User_[UserID].txt`
 if temp_file_name in files: # check to see if the user ID is in
 our valid user set
 temp_data = read_user_file(temp_file_name)
 user_df.loc[user_id] = temp_data # adding data to our
 DataFrame

print(user_df.head())

Building a Data Pipeline in PyCharm Chapter 13

[360]

The read_user_file function takes in a filename (corresponding to a file in Archived
users), reads in the text data from that file, and returns it in separate lines stored in a
Python list.

In the for loop at the end of the cell, we loop through all of the patient IDs computed
earlier and stored in user_set to pass the appropriate filename to read_user_file. As
we obtain the returned data from the function in each iteration, we append it to the running
Pandas DataFrame (user_df), which was initialized with the appropriate column names,
using the accessor, loc. Basically, we are creating a new row with the appropriate patient
ID and data at each iteration of the for loop.

At the end of the code cell, we print out the first five rows of our final DataFrame, which
should look similar to the following:

So, our current data is now in a nice tabular format as a Pandas DataFrame. In the next
subsection, we will see how we can perform various data cleaning tasks.

Data cleaning
Real-life datasets often come with bad formatting schemes as well as a lot of missing data.
So, data cleaning and data imputation (the processing of filling in missing data) are
extremely crucial in any data science pipeline. In this subsection, we will go through some
techniques that can be applied to our dataset. Doing this will give you insights on how to
handle other situations in your own projects. With that said, let's get started:

Building a Data Pipeline in PyCharm Chapter 13

[361]

First, we will convert columns in our dataset that contain numerical values into1.
the correct format. These columns are BirthYear and DiagnosisYear, which
should both contain integer values denoting year numbers. To do this, we use to
to_numeric function in Pandas:

#%% Change numeric data into appropriate format

force some columns to have numeric data type
user_df['BirthYear'] = pd.to_numeric(user_df['BirthYear'],
errors='coerce')
user_df['DiagnosisYear'] = pd.to_numeric(user_df['DiagnosisYear'],
errors='coerce')

Here, we are also saying that, if there are errors in the conversion process (that is,
when there are invalid values that cannot be translated into a number), then we
forcibly replace those values with NaN, denoting that they are invalid.

We also see that our dataset contains a number of columns with true/false2.
data (Gender, Parkinsons, Tremors, and so on), and we would like to binarize
these columns. This is the process where we would convert a true/false
dataset into one containing just zeros (denoting false) and ones (denoting
true). Doing this will make the data we have much more machine-friendly for
our machine learning models later on:

#%% "Binarize" true-false data

user_df = user_df.rename(index=str, columns={'Gender': 'Female'}) #
renaming `Gender` to `Female`
user_df['Female'] = user_df['Female'] == 'Female' # change string data to
boolean data
user_df['Female'] = user_df['Female'].astype(int) # change boolean data to
binary data

str_to_binary_columns = ['Parkinsons', 'Tremors', 'Levadopa', 'DA', 'MAOB',
'Other'] # columns to be converted to binary data

for column in str_to_binary_columns:
 user_df[column] = user_df[column] == 'True'
 user_df[column] = user_df[column].astype(int)

Building a Data Pipeline in PyCharm Chapter 13

[362]

At this point, we can take a look at our current user_df3.
DataFrame using SciView. The following screenshot was what I had:

We see that this format is much more readable than what our raw data used to look like.
Additionally, SciView, with its highlighting feature, does a great job emphasizing different
numerical values in the columns of our dataset.

Of course, in a real data pipeline, you might have to face many more problems and
inconsistencies with your data, so that more extensive data cleaning tasks than data
conversion might be required. The preceding process, on the other hand, introduces some
of the common Pandas functions that you might find useful in your own data cleaning
process.

So, we have learned how to perform various cleaning techniques on our dataset at this step
in the pipeline. Next, we will discuss a specific data engineering technique called one-hot
encoding.

Building a Data Pipeline in PyCharm Chapter 13

[363]

One-hot encoding
In this context, an encoding technique is a method of converting the values of a dataset or
of an attribute into a dataset so that data analysis techniques and machine learning models
can process them more easily. One-hot encoding is a method that is to be used on
categorical data.

Let's discuss the theory of one-hot encoding first. Say we have a simple table with the
following data:

Sample tabular – categorical data

Now, the string data in the City column is not very machine-friendly. There are, of course,
a number of machine learning models that will have no problem processing this attribute
(for example, random forests), but there are models that can only take in numerical data.
We would like to transform this attribute so that we can still preserve the information we
have, but it will be in numerical form.

A simple solution can be to create a one-to-one mapping between the values in the
categorical attribute and a set of numbers. For example, we can replace every instance of
New York with the number 1, every instance of St. Louis with 2, and San Francisco with 3.
Doing this will result in the following table:

One-to-one encoding

Building a Data Pipeline in PyCharm Chapter 13

[364]

However, there is a potential problem to this approach—by replacing the categorical data
with numerical values, we are unintentionally creating an ordered relation between these
new values. For example, machine learning models might interpret that, in the City_v1
attribute, number 1 is somehow less than numbers 2 and 3 or number 3 comes after number
2, which, in turn, comes after number 1. Obviously, there is no such relation in the original
data with the actual city names, but, by using numerical values as we did, a number-related
connection between the encoded data might be made.

One-hot encoding addresses this problem for us. Specifically, via a one-hot encoding
process, each unique value inside the categorical attribute being considered will be used to
create a new attribute. These new attributes all contain binary data, indicating whether a
specific attribute is applicable for a given entry or not. For example, our original table, with
one-hot encoding, will be transformed into the following:

One-hot encoding

Since the City attribute of the first user is New York, the New York entry is set to 1
(indicating yes), while the rest of the entries are set to 0 (indicating no), and the same goes
for the other rows. We see that this method successfully avoids the problem of creating a
false ordering between our new numerical data since now we have separate attributes
containing independent data. We don't lose any information from our original categorical
attribute either.

A big drawback of using one-hot encoding is the fact that we are creating additional
attributes, one for each unique value in the set of the categorical attribute we'd like to
encode. So, if we have a categorical attribute that contains, say, 1,000 unique values, that
one-hot encoding will generate 1,000 additional new attributes—this is clearly not
desirable.

Building a Data Pipeline in PyCharm Chapter 13

[365]

In other words, one-hot encoding is quite a powerful tool, but it is only applicable for
categorical data that have a low number of unique values.

Now, let's see how to apply one-hot encoding in Python. Getting back to our example, in
Python, this process can be implemented using the get_dummies() method, callable from
a Pandas DataFrame. Here is one of the next code cells in our script; we have the following
code:

#%% Dummy variable (one-hot encoding)

prior processing for `Impact` column
user_df.loc[
 (user_df['Impact'] != 'Medium') &
 (user_df['Impact'] != 'Mild') &
 (user_df['Impact'] != 'Severe'), 'Impact'] = 'None'

to_dummy_column_indices = ['Sided', 'UPDRS', 'Impact'] # columns to be one-
hot encoded

for column in to_dummy_column_indices:
 user_df = pd.concat([
 user_df.iloc[:, : user_df.columns.get_loc(column)],
 pd.get_dummies(user_df[column], prefix=str(column)),
 user_df.iloc[:, user_df.columns.get_loc(column) + 1 :]
], axis=1)

print(user_df.head())

Here, we are applying one-hot encoding to three attributes: Sided, UPDRS, and Impact.
Basically, the get_dummies() method takes in a categorical column and returns encoded
data with the newly created attributes. This is why we need to insert back these new
attributes to our dataset (using concat()).

Building a Data Pipeline in PyCharm Chapter 13

[366]

Go ahead and run the code cells up until this point. When you inspect the current dataset,
you should see the following new attributes:

One-hot encoding in PyCharm

So, we have discussed the idea behind one-hot encoding, a popular data pre-processing
technique in data science, and how to implement it in Python. Next, we will bring in our
second dataset, explore its characteristics, and extend our discussion on data cleaning
further in the next subsection.

Problem-specific techniques
As the term suggests, problem-specific techniques are applied when we take into account
the particular characteristics of our current dataset and proceed to process it accordingly. In
general, there is no way to tell what particularities your dataset contains; the only approach
is to, again, extensively explore the dataset and address any problems as they arise.

In the following steps, we will go over some more pre-processing techniques that are
specific to our datasets, so that you will have more experience dealing with badly formatted
data. Note that, while the gist of each section of our code will be discussed, if you have
trouble understanding the effect of any specific command, you can examine it further in the
documentation of Pandas, included in the Further reading section of this chapter:

Building a Data Pipeline in PyCharm Chapter 13

[367]

First, let's read a sample file from the Tappy Data folder:1.

#%% Explore the second dataset

file_name = '0EA27ICBLF_1607.txt' # an arbitrary file to explore

df = pd.read_csv(
 'data/Tappy Data/' + file_name,
 delimiter = '\t',
 index_col = False,
 names = ['UserKey', 'Date', 'Timestamp', 'Hand', 'Hold time',
 'Direction', 'Latency time', 'Flight time']
)

df = df.drop('UserKey', axis=1)

print(df.head())

Now, use the SciView to inspect this df variable:2.

We see that this is the same data that we saw in the Working with datasets section
of this chapter, now formatted as a Pandas DataFrame. Next, we will need to
perform various preprocessing techniques on this dataset.

Building a Data Pipeline in PyCharm Chapter 13

[368]

From here, we can also see that we need to convert the datetime columns into3.
their appropriate data types:

#%% Format datetime data

df['Date'] = pd.to_datetime(df['Date'], errors='coerce',
format='%y%M%d').dt.date
converting time data to numeric
for column in ['Hold time', 'Latency time', 'Flight time']:
 df[column] = pd.to_numeric(df[column], errors='coerce')

df = df.dropna(axis=0)

print(df.head())

Now, each of the Hand and Direction columns have a fixed set of valid values.4.
In particular, each cell in Hand should hold the value of L (left), R (right), or S
(spacebar) and the data in Direction is one of the nine possibilities going from
one of the three values to another (LL, LR, LS, and so on). For this reason, we
would like to filter out the rows that don't hold one of these values in the two
columns, using the code in the next block:

#%% Remove incorrect data

cleaning data in Hand
df = df[
 (df['Hand'] == 'L') |
 (df['Hand'] == 'R') |
 (df['Hand'] == 'S')
]

cleaning data in Direction
df = df[
 (df['Direction'] == 'LL') |
 (df['Direction'] == 'LR') |
 (df['Direction'] == 'LS') |
 (df['Direction'] == 'RL') |
 (df['Direction'] == 'RR') |
 (df['Direction'] == 'RS') |
 (df['Direction'] == 'SL') |
 (df['Direction'] == 'SR') |
 (df['Direction'] == 'SS')
]

print(df.head())

Building a Data Pipeline in PyCharm Chapter 13

[369]

Note that our current data might not contain any of the invalid values as of now,
but it is good practice to have this filtering logic in our code in case our data is
changed or updated in the future, ensuring that our pipeline stays consistent.

Next, recall that what we have been working with so far is typing speed data for5.
a specific patient at a given time. A patient is simply a single data point within
our first dataset, and we would like to combine the two datasets together
somehow, so we need a way to aggregate our current data into a single data
point.

Since we are working with numerical data (typing time), we can take the average
(mean) of the time data across different columns as a way to summarize the data
of a given user. We can achieve this with the groupby() function from Pandas in
the next code cell:

#%% Group by direction (hand transition)

direction_group_df = df.groupby('Direction').mean()
print(direction_group_df)

Let's now inspect this direction_group_df DataFrame in SciView:6.

As we can see, this DataFrame is divided into rows of different Direction data
(LL, LR, LS, and so on), and its columns are the different time-based attributes.
This is what we want as a single data point that can be appended to our first
dataset.

Building a Data Pipeline in PyCharm Chapter 13

[370]

Now, remember that this dataset was computed with a single file in the Tappy7.
Data folder. However, we need to iterate through all of the files in that folder. To
do that, we first refactor all of the data-manipulation logic so far into a function
in the next code cell:

#%% Combine into one function

def read_tappy(file_name):
 df = pd.read_csv(
 'data/Tappy Data/' + file_name,
 delimiter='\t',
 index_col=False,
 names=['UserKey', 'Date', 'Timestamp', 'Hand', 'Hold time',
 'Direction', 'Latency time', 'Flight time']
)

 df = df.drop('UserKey', axis=1)

 df['Date'] = pd.to_datetime(df['Date'], errors='coerce',
format='%y%M%d').dt.date

 # Convert time data to numeric
 for column in ['Hold time', 'Latency time', 'Flight time']:
 df[column] = pd.to_numeric(df[column], errors='coerce')
 df = df.dropna(axis=0)

 # Clean data in `Hand`
 df = df[
 (df['Hand'] == 'L') |
 (df['Hand'] == 'R') |
 (df['Hand'] == 'S')
]

 # Clean data in `Direction`
 df = df[
 (df['Direction'] == 'LL') |
 (df['Direction'] == 'LR') |
 (df['Direction'] == 'LS') |
 (df['Direction'] == 'RL') |
 (df['Direction'] == 'RR') |
 (df['Direction'] == 'RS') |
 (df['Direction'] == 'SL') |
 (df['Direction'] == 'SR') |
 (df['Direction'] == 'SS')
]

 direction_group_df = df.groupby('Direction').mean()

Building a Data Pipeline in PyCharm Chapter 13

[371]

 del df
 gc.collect()

 direction_group_df = direction_group_df.reindex(
 ['LL', 'LR', 'LS', 'RL', 'RR', 'RS', 'SL', 'SR', 'SS'])
 direction_group_df = direction_group_df.sort_index() # to
 ensure correct order of data

 return direction_group_df.values.flatten() # returning a
 numpy array

Specifically, this read_tappy() function takes in a filename in the Tappy Data
folder and performs the same processing that we discussed in the previous steps.
This function will return the aggregated averaged time data that we saw as a
flattened (1-dimensional) NumPy array. This is necessary for us to be able to
append it to our first dataset.

Then, we have another function, process_user(), that iterates through all of8.
the files associated with a common patient and calls read_tappy() to process
those files:

def process_user(user_id, filenames):
 running_user_data = np.array([])

 for filename in filenames:
 if user_id in filename:
 running_user_data = np.append(running_user_data,
 read_tappy(filename))

 running_user_data = np.reshape(running_user_data, (-1, 27)) #
 flatten time data

 return np.nanmean(running_user_data, axis=0) # ignoring NaNs
 while calculating the mean

In the end, this function returns a summary of all of the time-related data of a
specific patient.

In the next code cell, we finally iterate through all of the valid patient IDs and call9.
process_user() using a for loop:

#%% Run through all available data

import warnings; warnings.filterwarnings("ignore")

filenames = os.listdir('data/Tappy Data/')

Building a Data Pipeline in PyCharm Chapter 13

[372]

column_names = [first_hand + second_hand + '_' + time
 for first_hand in ['L', 'R', 'S']
 for second_hand in ['L', 'R', 'S']
 for time in ['Hold time', 'Latency time', 'Flight
time']]

user_tappy_df = pd.DataFrame(columns=column_names)

for user_id in user_df.index:
 user_tappy_data = process_user(str(user_id), filenames)
 user_tappy_df.loc[user_id] = user_tappy_data

Some preliminary data cleaning
user_tappy_df = user_tappy_df.fillna(0)
user_tappy_df[user_tappy_df < 0] = 0

print(user_tappy_df.head())

As we iterate through the for loop, we call process_user() to obtain the
aggregated data and append it to a running DataFrame stored in
user_tappy_df.

When the code block finishes executing, let's open it in our SciView:10.

As you can see, our current DataFrame is indexed by the unique patient IDs and, at the
same time, contains data on their typing speed as individual columns. This is the exact
format that we want our data to be in.

That technique also concludes our discussion on data cleaning and pre-processing methods
that are specific to our example dataset. Next, we finally combine our two datasets and
write them to file.

Building a Data Pipeline in PyCharm Chapter 13

[373]

Saving and viewing processed data
As the last step of our process, let's combine our two datasets and write our processed
dataset to file so that we can start working on this cleaned version in the future, which is
achieved using the code in the next cell:

combined_user_df = pd.concat([user_df, user_tappy_df], axis=1)
print(combined_user_df.head())

combined_user_df.to_csv('data/combined_user.csv')

This is generally a good practice in a given data pipeline. Saving the processed, cleaned
version of a dataset can save data engineers a lot of effort if something goes wrong along
the way. It also offers flexibility, if and when we want to change or extend our pipeline
further.

One interesting note about this cleaned version of our data is that, when we open the CSV
file in the PyCharm editor, it can actually be displayed in the table viewer:

Cleaned data in the table viewer

Building a Data Pipeline in PyCharm Chapter 13

[374]

Recall that this option was not available for the raw version of the dataset. However, during
the cleaning process, we actually removed a large number of bad formatting and
inconsistencies from our dataset. After this combination of cleaning techniques, our dataset
can now be interpreted even by the PyCharm table viewer, again highlighting the crucial
roles data cleaning and pre-processing play in a data science pipeline.

With that, we are ready to start exploring our dataset and search for insights in the next
section of this chapter.

Data analysis and insights
Remember what we said about the importance of having a question in mind when starting
to work on a data science project? This is especially true during this phase where we
explore our dataset and extract insights, which should revolve around our initial
question—the connection between typing speed and whether a patient has Parkinson's or
not.

Throughout this section, we will be working with the EDA.ipynb file, located in the
notebooks folder of our current project. In the following subsections, we will be looking at
the code included in this notebooks folder. Go ahead and open this Jupyter notebook in
your PyCharm editor, or, if you are following our discussions and entering your own code,
create a new Jupyter notebook.

Starting the notebook and reading in data
As mentioned in the previous chapter, a Jupyter notebook being opened in the PyCharm
editor does not mean that it is active. This is indicated by the fact that the output panel (on
the right) does not contain any output from the code just yet. To start running Jupyter, use
the Run button for the first code cell in our notebook:

Running a Jupyter code cell in PyCharm

Building a Data Pipeline in PyCharm Chapter 13

[375]

Doing this will both initialize a Jupyter server in the backend and run the first code cell,
which imports the necessary libraries and reads in our cleaned dataset:

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

combined_user_df = pd.read_csv('../data/combined_user.csv', index_col=0)
combined_user_df.head()

Since we are specifying (in the last line of code) that we would like to print out the first five
rows of our dataset, that output is displayed in the right-hand-side panel. Note that you can
use the scrollbar at the bottom of the printed table (as indicated here) to scroll through the
different columns in our current dataset:

Navigating a big printed DataFrame in PyCharm

With our dataset being read in and organized this way, let's move on with our analysis,
starting from the next subsection, with various visualization techniques that will be applied
to our current dataset.

Using charts and graphs
One of the most common ways to visualize a dataset is through bar charts. The idea is that,
if we have an attribute that could only contain a specific set of values, seeing the
distribution of the counts of those unique values could give us an insight into which factor
could affect the dependent variable we are interested in (in this case, it is whether a person
has Parkinson's or not).

Building a Data Pipeline in PyCharm Chapter 13

[376]

But first, we will use bar charts to visualize the amount of missing data we have in our
current dataset:

#%%

missing_data = combined_user_df.isnull().sum()

g = sns.barplot(missing_data.index, missing_data)
g.set_xticklabels(labels=missing_data.index, rotation=90)

plt.show()

Running this code cell should produce the following visualization:

Building a Data Pipeline in PyCharm Chapter 13

[377]

From here, we see that besides the columns, BirthYear and DiagnosisYear, our dataset
does not contain a significant amount of missing data. The analysis of missing values is an
important one, and we will come back to the process of filling in these values later on. For
now, let's move on with our discussion on visualizations.

A great feature in Matplotlib is subplots, which allows us to generate multiple
visualizations side by side. In the next code cell, we will create multiple visualizations with
this feature, to highlight potential differences between patients with and without
Parkinson's:

#%%

f, ax = plt.subplots(2, 2, figsize=(20, 10))

sns.distplot(
 combined_user_df.loc[combined_user_df['Parkinsons'] == 0,
 'BirthYear'].dropna(axis=0),
 kde_kws = {'label': "Without Parkinson's"},
 ax = ax[0][0]
)
sns.distplot(
 combined_user_df.loc[combined_user_df['Parkinsons'] == 1,
 'BirthYear'].dropna(axis=0),
 kde_kws = {'label': "With Parkinson's"},
 ax = ax[0][1]
)

sns.countplot(x='Female', hue='Parkinsons', data=combined_user_df,
ax=ax[1][0])
sns.countplot(x='Tremors', hue='Parkinsons', data=combined_user_df,
ax=ax[1][1])

plt.show()

Building a Data Pipeline in PyCharm Chapter 13

[378]

After running the code cell, you will generate a visualization similar to the following:

Now, let's take a moment to break down what we have:

The top two visualizations represent the distribution in the year of birth of
people with (top-right) and without (top-left) Parkinson's. We see that these
distributions roughly follow the normal bell curve. In other instances and
projects, if you encounter a distribution that is skewed or in a strange shape, it
might be worthwhile to dig into that data further. Note that we can also apply
the same visualization for the DiagnosisYear column.
In the bottom-left visualization, we have a bar chart representing the count of
male patients (two bars on the left) and female patients (two bars on the right).
Patients with Parkinson's are counted with the orange bars, and patients without
are counted with the blue bars. In this visualization, we see that while there are
more patients with the disease than the ones without, the breakdown across the
two genders is roughly the same.

Building a Data Pipeline in PyCharm Chapter 13

[379]

The bottom-right visualization, on the other hand, illustrates the breakdown
between patients with tremors (two bars on the right) and without tremors (two
bars on the left). From this visualization, we can see that tremors are significantly
more common with patients with Parkinson's, which is quite intuitive and can
serve as a sanity check for our analyses so far.

Next, we will move on to box plots. Specifically, we will use box plots to visualize the
distributions of different time data (Hold time, Latency time, and Flight time)
among patients with and without Parkinson's. We will again use the subplots feature to
generate multiple visualizations at the same time:

#%%

column_names = [first_hand + second_hand + '_' + time
 for first_hand in ['L', 'R', 'S']
 for second_hand in ['L', 'R', 'S']
 for time in ['Hold time', 'Latency time', 'Flight time']]

f, ax = plt.subplots(3, 3, figsize=(10, 5))

plt.subplots_adjust(
 right = 3,
 top = 3
)

for i in range(9):
 temp_columns = column_names[3 * i : 3 * i + 3]
 stacked_df = combined_user_df[temp_columns].stack().reset_index()
 stacked_df = stacked_df.rename(
 columns={'level_0': 'index', 'level_1': 'Type', 0: 'Time'})
 stacked_df = stacked_df.set_index('index')

 for index in stacked_df.index:
 stacked_df.loc[index, 'Parkinsons'] = combined_user_df.loc[index,
 'Parkinsons']
 sns.boxplot(x='Type', y='Time',
 hue='Parkinsons',
 data=stacked_df,
 ax=ax[i // 3][i % 3]
).set_title(column_names[i * 3][: 2], fontsize=20)
plt.show()

Building a Data Pipeline in PyCharm Chapter 13

[380]

In this code cell, each subplot will visualize data of a specific direction type (LL, LR, LS, and
so on) and will contain different splits denoting patients with and without the disease. You
should obtain the following visualization:

What we can gather from this visualization is that, surprisingly, the distribution of typing
speed among patients without Parkinson's can span across higher values and have more
variance than that among patients with Parkinson's, which might contradict the intuition
some might have that patients with Parkinson's take more time to press keystrokes.

Overall, bar charts, distribution plots, and box plots are some of the most common
visualization techniques in data science tasks, mostly because they are both simple to
understand and powerful enough to highlight important patterns in our datasets. In the
next and final subsection on the topic of data analysis, we will consider more advanced
techniques, namely, the correlation matrix between attributes and leveraging machine
learning models.

Machine-learning-based insights
Unlike the previous analysis methods, the methods discussed in this subsection and others
similar are based on more complex mathematical models and machine learning algorithms.
Given the scope of this book, we will not be going into the specific theoretical details for
these models, but it's still worth seeing some of them in action by applying them to our
dataset:

Building a Data Pipeline in PyCharm Chapter 13

[381]

First, let's consider the feature correlation matrix for our dataset. As the name1.
suggests, this model is a matrix (a 2D table) that contains the correlation between
each pair of numerical attributes (or features) within our dataset. A correlation
between two features is a real number between -1 and 1, indicating the
magnitude and direction of the correlation. The higher the value is, the more
correlated the two features are.

To obtain the feature correlation matrix from a Pandas DataFrame, we call
the corr() method, like in our next code cell:

corr_matrix = combined_user_df.corr()

We usually visualize a correlation matrix using a heat map, as implemented in2.
the same code cell:

f, ax = plt.subplots(1, 1, figsize=(15, 10))
sns.heatmap(corr_matrix)

plt.show()

This code will produce the following visualization:

A feature correlation matrix heat map

Building a Data Pipeline in PyCharm Chapter 13

[382]

From this heat map, we can focus on the cells that are especially bright (which3.
indicates a strong positive correlation), as well as the ones that are especially
dark (which indicates a strong negative correlation). For example, we see high
correlations between the time-based attributes in the lower-right corner of the
heat map. This is reasonable as they all describe some statistics about a patient's
typing speed.
Next, we will try applying a machine learning model for our dataset. Contrary to4.
popular belief, in many data science projects, we don't take advantage of
machine learning models for predictive tasks, where we train our models to be
able to predict future data. Instead, we feed our dataset to a specific model so we
can extract more insights from that current dataset.

Here, we are using the linear Support Vector Classifier (SVC) model from scikit-
learn to analyze the data we have and return the feature importance list:

#%%

from sklearn.svm import LinearSVC

combined_user_df['BirthYear'].fillna(combined_user_df['BirthYear'].
mode(dropna=True)[0], inplace=True)
combined_user_df['DiagnosisYear'].fillna(combined_user_df['Diagnosi
sYear'].mode(dropna=True)[0], inplace=True)

X_train = combined_user_df.drop(['Parkinsons'], axis=1)
y_train = combined_user_df['Parkinsons']

clf = LinearSVC()
clf.fit(X_train, y_train)

nfeatures = 10

coef = clf.coef_.ravel()
top_positive_coefs = np.argsort(coef)[-nfeatures :]
top_negative_coefs = np.argsort(coef)[: nfeatures]
top_coefs = np.hstack([top_negative_coefs, top_positive_coefs])

Note that, before we feed the data we have to the machine learning model, we
need to fill in the missing values we have in the two columns we identified
earlier—BirthYear and DiagnosisYear. This is because some (if not most)
machine learning models cannot handle missing values very well, and it is up to
the data engineers to choose how these values should be filled.

Building a Data Pipeline in PyCharm Chapter 13

[383]

Here, we are using the mode (the most commonly occurring data point) of these
two columns to fill in the missing values. This is because the mode is one of the
statistics that tend to represent the range of different kinds of data well, especially
for discrete/nominal attributes (which is what we have here). If you are working
with numerical and continuous data such as length or area, it is also common
practice to use the mean of a given attribute. Finally, getting back to our current
process, this code trains the model on our dataset and obtains the coef_ attribute
of the model afterward.

This attribute contains the feature importance list, which is visualized by the last5.
section of the code:

plt.figure(figsize=(15, 5))
colors = ['red' if c < 0 else 'blue' for c in coef[top_coefs]]
plt.bar(np.arange(2 * nfeatures), coef[top_coefs], color = colors)
feature_names = np.array(X_train.columns)
plt.xticks(np.arange(0, 1 + 2 * nfeatures),
feature_names[top_coefs], rotation=60, ha='right')

plt.show()

This code produces the following graph:

Feature importance from SVC

Building a Data Pipeline in PyCharm Chapter 13

[384]

From the feature importance list, we can identify any features that were used6.
extensively by the machine learning model while training. A feature with a very
high importance value could be correlated with the target attribute (whether
someone has Parkinson's or not) in some interesting way. For example, we see
that Tremors (which we know are quite correlated to our target attribute) is the
third most important feature for our current machine learning model.

That's our last discussion point regarding the analysis of our dataset. In the last section of
our chapter, we will have a brief discussion on deciding how to write a script in a Python
data science project.

Scripts versus notebooks in data science
So, in the preceding data science pipeline we just went through, there are two main
sections—data cleaning (where we remove inconsistent data, fill in missing data, and
appropriately encode the attributes) and data analysis (where we generate visualizations
and insights from our cleaned dataset).

The data cleaning process was implemented by a Python script while the data analysis
process was done with a Jupyter notebook. In general, deciding whether a Python program
should be done in a script or in a notebook is quite an important, yet often overlooked
aspect, while working on a data science project.

As we have discussed in the previous chapter, Jupyter notebooks are perfect for iterative
development processes, where we can transform and manipulate our data as we go. A
Python script, on the other hand, offers no such dynamism—with a traditional Python
script, we need to enter all of the code necessary in the script and run it as a complete
program.

However, as illustrated in the Data cleaning and pre-processing section, PyCharm allows us to
divide a traditional Python script into separate code cells and inspect the data we have as
we go using the SciView panel. In other words, the dynamism in programming offered by
Jupyter notebook can also be found with PyCharm.

Now, another core difference between regular Python scripts and Jupyter notebooks is the
fact that printed output and visualizations are included inside a notebook, together with
the code cells that generated them. While looking at this from the perspective of data
scientists, we see that this feature is considerably useful when making reports and
presentations.

Building a Data Pipeline in PyCharm Chapter 13

[385]

Specifically, say you are tasked with finding actionable insights from a dataset in a
company project, and you need to present your final findings, as well as how you came
across them with your team. Here, a Jupyter notebook can serve as the main platform for
your presentation quite effectively—not only will people be able to see which specific
commands were used to process and manipulate the original data, you will also be able to
include Markdown texts to further explain any subtle discussion points.

Compared to that, regular Python scripts can simply be used for low-level tasks where the
general workflow has already been agreed upon, and you will not need to present it with
anyone else. In our current example, I chose to clean the dataset using a Python script, as
most of the cleaning and formatting changes we applied to the dataset don't generate any
actionable insights that can address our initial question. I only used a notebook for data
analysis tasks, where there are many visualizations and insights worthy of further
discussion.

Overall, the decision to use either a traditional Python script or a Jupyter notebook solely
depends on your tasks and purposes. We simply need to remember that, for whichever tool
we would like to use, PyCharm offers incredible support that can streamline our workflow.

Summary
In this chapter, we have walked through the hands-on process of working on a data science
pipeline. First, we discussed the importance of having version control for not just our code
and project-related files but also our datasets; we then learned how to use Git LFS to apply
version control to large files and datasets.

Next, we looked at various data cleaning and pre-processing techniques that are specific to
the example dataset. Using the SciView panel in PyCharm, we can dynamically inspect the
current state of our data and variables and see how they change after each command.

Finally, we considered several techniques to generate visualizations and extract insights
from our dataset. Using the Jupyter editor in PyCharm, we were able to avoid working
with a Jupyter server and work on our notebook entirely within PyCharm. Having walked
through this process, you are now ready to tackle real-life data science problems and
projects using the same tools and functionalities that we have discussed so far.

So, we have finished our discussion on using PyCharm in the context of scientific
computing and data science. In the next chapter, we will finally consider a topic that we
have mentioned multiple times through our previous chapters—PyCharm plugins.

Building a Data Pipeline in PyCharm Chapter 13

[386]

Questions
What are some of the main ways of collecting datasets for a data science project?1.
Can Git LFS be used with Git? If so, what is the overall process?2.
Which type of attribute can have their missing values filled out with the mean?3.
What about the mode?
What problem does one-hot encoding address? What problem can arise from4.
using one-hot encoding?
Which type of attribute can benefit from bar charts? What about distribution5.
plots?
Why is it important to consider the feature correlation matrix for a dataset?6.
Aside from predictive tasks, what can we use machine learning models for (like7.
we did in this chapter)?

Further reading
More information can be found in the following articles and readings:

The Tappy Keystroke Data with Parkinson's Patients data, uploaded by Patrick
DeKelly: (https:/​/​www.​kaggle.​com/​valkling/​tappy-​keystroke-​data-​with-
parkinsons-​patients)
Building a Data Pipeline from Scratch, by Alan Marazzi: (https:/​/​medium.​com/​the-
data-​experience/​building-​a-​data-​pipeline-​from-​scratch-​32b712cfb1db)
A Business Perspective to Designing an Enterprise-Level Data Science Pipeline,
by Vikram Reddy: (https:/​/​www.​datascience.​com/​blog/​designing-​an-
enterprise-​level-​data-​science-​pipeline)
Data Science for Startups: Data Pipelines, by Ben Weber: (https:/​/
towardsdatascience.​com/​data-​science-​for-​startups-​data-​pipelines-
786f6746a59a)
Documentation for the Pandas library: (https:/​/​pandas.​pydata.​org/​pandas-
docs/​stable/​)

https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://www.kaggle.com/valkling/tappy-keystroke-data-with-parkinsons-patients
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://www.datascience.com/blog/designing-an-enterprise-level-data-science-pipeline
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://towardsdatascience.com/data-science-for-startups-data-pipelines-786f6746a59a
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/

5
Section 5: Plugins and

Conclusion
This section starts with Chapter 14, More Possibilities with PyCharm Plugins. Consisting of
the final two chapters of this book, this section provides some parting thoughts regarding
the use of PyCharm and how to make the best of it while developing your Python projects.
Firstly, we will discuss the wide range of options when it comes to additional plugins that
you can add to your PyCharm software. These are further extensions of PyCharm you can
download and install that can help to improve your productivity even further.

In the final chapter, we will go through a compiled version of important topics and features
discussed throughout this book. We will then bring this book to a close with a few general
suggestions on how to effectively use PyCharm and a list of potential further reading.

This section includes the following chapters:

Chapter 14, More Possibilities with PyCharm Plugins
Chapter 15, Future Developments

14
More Possibilities with

PyCharm Plugins
This chapter will introduce you to the concept of PyCharm plugins and walk you through
the process of downloading plugins and adding them to the PyCharm environment. In
general, plugins are add-ons to PyCharm's core functionalities that can help improve your
productivity in specific tasks. We have seen examples of these plugins with database
management, when writing Markdown code, and when working with CSV data.

In this chapter, we will look in detail at the most popular PyCharm plugins and how they
can optimize our productivity. These discussions will help you to familiarize yourself
further with the concept of plugins, as well as learn more about the plugins that other
PyCharm users have found useful.

The following topics will be covered in this chapter:

Downloading and installing PyCharm plugins
Working with plugins
Using popular plugins for your projects

More Possibilities with PyCharm Plugins Chapter 14

[389]

By considering the collection of PyCharm plugins available online, we will again emphasize
the point of how extendable PyCharm is and that PyCharm users can always find new and
better ways to facilitate the development process. By the end of the chapter, you will be
ready to explore all the available plugins that can help you with your own projects.

Technical requirements
Please ensure that you have both Python 3.6+ and PyCharm installed on your computer.

Exploring PyCharm plugins
The level of customization PyCharm offers does not stop at what users can use from the
software upon installation. In fact, PyCharm users have the option of adding customized
plugins that can further improve productivity in many topics.

Let's start by checking out the plugin window.

Opening the plugin window
To open the main window from which we can work with PyCharm plugins, we go to the
settings in PyCharm and go to the Plugins tab. Or, if we are currently at the welcome
window, we can use the Configure menu, as illustrated here:

More Possibilities with PyCharm Plugins Chapter 14

[390]

Opening PyCharm plugins

More Possibilities with PyCharm Plugins Chapter 14

[391]

This will open up the main window, where we can manage our PyCharm plugins. There
are three tabs in this window (Marketplace, Installed, and Updates), as illustrated here:

Managing your PyCharm plugins

In the preceding screenshot, I was in the Installed tab of the window, which, as the name
suggests, displays the list of all the plugins that I have installed for my PyCharm. We are
already familiar with some of these plugins such as the CSV Plugin or PyCharm cell mode.
On the other hand, the last tab on the right lists all the updates available for the installed
plugins.

More Possibilities with PyCharm Plugins Chapter 14

[392]

From the Marketplace tab, we can browse through different plugins that are available for
download, which we will discuss in the next subsection.

Downloading and installing a plugin
In addition to browsing through the plugins in the Marketplace tab, you can also use the
search bar at the top of the window to find specific plugins. For example, if I'd like to search
for more themes for my PyCharm, I type in theme in the search bar and hit Enter, which
return the following results:

Searching for specific plugins

More Possibilities with PyCharm Plugins Chapter 14

[393]

By the way, to be able to search for the plugins in a more extensive and exhaustive way, we
can head to plugins.jetbrains.com/pycharm, which contains more categories and
searching capabilities for PyCharm plugins. Specifically, we can browse through the list of
plugins on the website in a web browser, and once we have decided on which plugin we
would like to install, we can go back to PyCharm and start the process.

Now, let's try installing one of these plugins. Here, I'm choosing to install the first and most
popular plugin theme in PyCharm: Material Theme UI. After clicking on the Install
button, the downloading process will start. Once the source code for a plugin has been
downloaded, we in most cases need to restart PyCharm so that the plugin can be used upon
the reboot. The Restart IDE button is typically included next to the plugin as follows:

Restarting PyCharm after installing a plugin

If you are following my example and installing the theme for yourself, once PyCharm
relaunches itself, we will have to go through a couple of steps and options to set up the
theme. Once this process finishes, we can see that the theme starts taking effect in
PyCharm.

https://plugins.jetbrains.com/pycharm

More Possibilities with PyCharm Plugins Chapter 14

[394]

For example, the following is a screenshot from my PyCharm workspace after this Material
Theme has taken effect, which has an entirely different feel from the regular theme:

Material Theme in PyCharm

For most of the other plugins, we can simply start using them upon restarting PyCharm.
This is the case for the various plugins we have seen throughout this book, such as the CSV
viewer and PyCharm code cell plugins.

Finally, as the last topic of this section, we will see how we can update or uninstall a plugin
in PyCharm.

More Possibilities with PyCharm Plugins Chapter 14

[395]

Updating and removing plugins
As we have seen before, to check whether there are any updates available for our installed
plugins, we can go to the Updates tab of the Plugins window in PyCharm. As for removing
a plugin, from the list of plugins in the Installed tab, you can right-click on the plugin you
would like to remove and choose either of the following options:

Removing a plugin in PyCharm

Disabling a plugin will simply deactivate its effect in your PyCharm work environment,
while uninstalling it will completely remove its source code from PyCharm.

So we have gone through the basic workflow of working with PyCharm plugins. Most of
the time, the effect a plugin has on your PyCharm will vary, depending on the purpose of
the plugin. However, the preceding steps we discussed should apply to all PyCharm
plugins. In the next section, we will go through some of the plugins that I think are the
most useful in Python projects.

More Possibilities with PyCharm Plugins Chapter 14

[396]

Best plugins to use for your PyCharm
projects
With the basic idea of how to install a PyCharm plugin in mind, let's go through a list of
some of the most popular PyCharm plugins and see the support they can provide for our
projects. Some of the plugins we are discussing might have already been mentioned in
previous chapters, so feel free to skip this section.

Note that for each of the plugins to be discussed, I will be including a URL
to the home page of the plugin on the official website of JetBrains, where
more information about these plugins as well as ratings and comments
can be found.

First, let's start with a plugin for database management.

Using Database Navigator
We saw some level of database support in PyCharm in Chapter 9, Understanding Database
Management with PyCharm, using the Database panel and the database viewer. This
PyCharm plugin takes working with databases to another level by providing more
extensive and powerful options to integrate databases into PyCharm. The plugin's interface
includes extensive navigations and features for viewing and manipulating data in database
tables.

As we have discussed, working with databases is a common task in web development and
even data science projects. Aside from having great support to view and make edits to the
data within a database table (as illustrated previously), the Database Navigator plugin also
offers options such as SQL editing, database connection management, database compiler
operations, and many more.

More details regarding this plugin can be found at plugins.jetbrains.com/plugin/1800-
database-navigator. Next, we will look at another plugin that is commonly used in web
development projects.

https://plugins.jetbrains.com/plugin/1800-database-navigator
https://plugins.jetbrains.com/plugin/1800-database-navigator

More Possibilities with PyCharm Plugins Chapter 14

[397]

Using LiveEdit
The specifics of this plugin were briefly discussed in Chapter 7, Web Development with
JavaScript, HTML, and CSS. In general, this plugin allows us to view the output of a
rendered web page in real time as we make edits to the source code in HTML and CSS.

This behavior normally can only be achieved by manually refreshing the output page, so
LiveEdit helps us skip that process, which can save a lot of time. If you are working on
a Node.js application, LiveEdit can also reset the application automatically when a new
change is applied.

The following setting window highlights some of these options that LiveEdit offers:

LiveEdit behavior customizations

Overall, this plugin can prove to be useful in the development process as well as debugging
sessions. It is a must-have feature if you are a Python web developer. For more information
about this tool, you can visit https:/​/​plugins.​jetbrains.​com/​plugin/​7007-​liveedit.

Moving along, the third plugin we will be discussing is the one we have mentioned many
times before: the CSV Plugin.

https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit
https://plugins.jetbrains.com/plugin/7007-liveedit

More Possibilities with PyCharm Plugins Chapter 14

[398]

Using the CSV Plugin
As discussed in the Advanced features in PyCharm's scientific projects section of Chapter 11,
Turning On Scientific Mode, this plugin offers a great way to work with CSV files in
PyCharm. The CSV Plugin allows us to view data using the same environment used for
code editing, while also providing a tabular interface that displays the data in a more user-
friendly manner, as shown here:

The table viewer from the CSV Plugin

Similar to the Database Navigator, this plugin also allows us to view and edit the data in a
CSV file in PyCharm as we go. In addition to CSV files, this plugin can also handle tabs,
commas, semicolons, or pipe characters (|) as the separators. As we have seen from the
previous chapter, there is a limit to the size of a file this plugin can handle; most of the time,
it can work just fine.

This plugin is a must-have for data scientists, specifically any Python developers that work
with CSV. More details on this plugin can be found at
plugins.jetbrains.com/plugin/7793-markdown.

Next, we will look at another plugin that we used in the book: Markdown.

https://plugins.jetbrains.com/plugin/7793-markdown

More Possibilities with PyCharm Plugins Chapter 14

[399]

Using Markdown
In Chapter 11, Turning On Scientific Mode, we were introduced to the Markdown plugin. In
general, Markdown is a markup language that is often used to generate introductory
GitHub documents as well as texts in Jupyter notebook. The Markdown plugin, integrated
with the PyCharm editor, streamlines the process of writing standalone Markdown
documents.

For example, as shown in the following screenshot, this plugin allows us to write
Markdown code and see what the final rendered output will look like in real time so that
we can make changes to the code in a dynamic manner:

The Markdown editor in PyCharm

As illustrated here, the editor is split into two sections when a Markdown file is being
opened:

The editing section on the left
The rendered output section on the right

The output section is rendered in real time with respect to the code in the editing section, so
we will be able to see the Markdown code in the end in a dynamic way. More details on the
plugin can be found at plugins.jetbrains.com/plugin/7793-markdown.

In the next subsection, we will look at the last most popular PyCharm plugin: String
Manipulation.

https://plugins.jetbrains.com/plugin/7793-markdown

More Possibilities with PyCharm Plugins Chapter 14

[400]

Using String Manipulation
This plugin offers powerful options in terms of editing and manipulating text, even in
large amounts. This includes toggling between different text styles, such as camelCase,
snake_case, dot.case, Words Capitalized, and so on.

As you know, programming languages have a set of standards in terms of naming for
variables, functions, and classes. For example, in Python, the variable and function names
should be in snake_case (for example, my_var and get_num()), while class names should
be in Pascal case (for example, MyClass and DataFrame). Variables in Java, on the other
hand, should be in camelCase (myVar and userAccount).

To have a string switch between these cases, we simply need to right-click on a selected
block of text, go to the String Manipulation section, and choose whatever editing option
we'd like to apply, as illustrated here:

String Manipulation in PyCharm

More Possibilities with PyCharm Plugins Chapter 14

[401]

The plugin can also handle more complex text-editing functionalities, such as sorting lines
of text alphabetically or randomly shuffling different lines of text, and incrementing and
decrementing all numbers in a block of text. Other editing options include
trimming/filtering out specific special characters, text alignment, and formatting as tables.

And that is a list of some of the most popular PyCharm plugins that you can use for your
projects. Of course, this list is entirely subjective and was compiled from my own
experience and research, and there are definitely other good plugins out there that you can
explore yourself.

In the next and last section of the chapter, we will briefly consider some advanced tasks
while working with plugins.

Advanced plugin-related options
Aside from installing, updating, and removing plugins in your PyCharm software, there
are more advanced options that we should keep in mind in terms of working with
PyCharm plugins. First, we can specify a particular plugin as a requirement of a PyCharm
project.

Required plugins
Similar to how we have a requirements.txt text file to list the names and versions of the
packages necessary for a Python project, we can specify given plugins as requirements for a
PyCharm project. This is because some PyCharm plugins not only assist programmers with
various tasks in their projects, but also can play a crucial role in the development of that
project:

Within a project, you can specify the required plugins by going to the Build,1.
Execution, Deployment option in the settings and selecting Required Plugins, as
illustrated here:

More Possibilities with PyCharm Plugins Chapter 14

[402]

From this window, we can add items to the list of required plugins for our2.
current project by clicking on the plus sign in the top-right corner:

Adding a required plugin to a project

More Possibilities with PyCharm Plugins Chapter 14

[403]

From there, we can specify which particular plugin we have that should be made3.
into a requirement for our project, as well as the actual version number of the
plugin, as illustrated here:

Adding a required plugin to a project

After confirming the selection, whenever the current project is opened in4.
PyCharm, we will be notified if and when a required plugin has somehow not
been installed, is disabled, or has an update pending.

Other advanced options to work with plugins are the ability to install one from disk, which
we will discuss next.

Installing plugins from disk
Downloading and installing your plugins from the Marketplace window in PyCharm via
the internet is the most common way to add a plugin to your work environment. However,
there is a less common method of installing a PyCharm plugin: from disk.

Specifically, PyCharm plugins can be saved as local archive files (for example, JAR or ZIP
files), and PyCharm can use the very source code to install those plugins. In order to install
a plugin from disk, follow these steps:

From the Plugins window, click on the icon and choose the appropriate1.
option, as illustrated here:

More Possibilities with PyCharm Plugins Chapter 14

[404]

Installing a PyCharm plugin from disk

From there, navigate the file browser to the local file that contains the source2.
code of the plugin you would like to install.

The rest of the process is very similar to installing a plugin from the internet. Moreover, we
can simply drag the archive file into PyCharm's welcome window, and the same
installation process will begin.

Finally, as the last topic in this chapter, we will very briefly discuss the process of
developing your own PyCharm plugins.

Developing custom plugins
Since PyCharm is written for the most part in Java, its plugins will actually need to be
developed with Java as well. For this reason, I will only go over very high-level points
regarding this process, as it does not actually pertain to Python programming, in the
following steps:

To start working on a PyCharm plugin, you will need to download the IntelliJ1.
IDEA software (the popular IDE for Java, also developed by JetBrains). You can
download either the Community or the Ultimate edition of this software.
While using this software to create a new project, choose Gradle as the project2.
type, Java 8 as the project SDK (basically the main language used in the project),
and select Java and IntelliJ Platform Plugin in the Additional Libraries and
Frameworks section.
From here, we can enter the Java code that implements the backend logic as well3.
as the frontend appearance of the plugin. Again, this process is entirely done
with Java, so I will not be going into it any further.
Before being able to publish your application as an official PyCharm plugin, you4.
will need to have your credentials for a JetBrains account ready.

More Possibilities with PyCharm Plugins Chapter 14

[405]

Then log into the portal for JetBrains plugin authors, which can be found5.
at plugins.jetbrains.com/author/me.
From your profile, click on the drop-down menu in the top-right corner of the6.
window and choose the Upload plugin option, as indicated here:

Uploading a custom plugin to JetBrains

With that (and maybe after a reviewing process as well), your very own7.
PyCharm plugin can be shared and used among many PyCharm users.

This also marks the end of our discussions on PyCharm plugins and their usage.

Summary
PyCharm plugins are customized add-ons that can further add to the list of features and
functionalities one can take advantage of while using PyCharm. We have seen how to
browse through, download, and manage different plugins in the PyCharm environment. By
taking advantage of these plugins, we can further customize our workspace and improve
our own productivity. Plugin management in PyCharm can be done in the Plugins tab in
the settings.

We also learned about a number of popular and commonly used plugins in PyCharm that
you can consider installing for your projects, namely Database Navigator, LiveEdit,
Markdown, CSV Plugin, and String Manipulation. Each of these plugins has a specific
usage and purpose, and all can further streamline your Python development process.

https://plugins.jetbrains.com/author/me

More Possibilities with PyCharm Plugins Chapter 14

[406]

This topic of Pycharm plugins also concludes our general discussions on PyCharm's main
features and functionalities. In the next and final chapter of this book, we will take a step
back and look at the topics we have discussed so far from a high-level perspective, while
also considering some miscellaneous topics regarding the use of PyCharm.

Questions
What is a PyCharm plugin?1.
How can one install or update a plugin in PyCharm?2.
Which options are available for removing a specific plugin from your personal3.
work environment?
Briefly describe the usage of some common PyCharm plugins discussed in this4.
chapter, namely, Database Navigator, LiveEdit, Markdown, CSV Plugin, and
String Manipulation.
How can you specify having a plugin as a requirement for a PyCharm project?5.

Further reading
More information can be found in the following articles and readings:

PyCharm Professional Plugins, the JetBrains official website (https:/​/​plugins.
jetbrains.​com/​pycharm)
JetBrains official documentation, Managing
plugins (www.jetbrains.com/help/pycharm/managing-plugins.html)
JetBrains official documentation, Creating Your First
Plugin (www.jetbrains.org/intellij/sdk/docs/basics/getting_started.html
)

https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://plugins.jetbrains.com/pycharm
https://www.jetbrains.com/help/pycharm/managing-plugins.html
http://www.jetbrains.org/intellij/sdk/docs/basics/getting_started.html

15
Future Developments

This chapter will gloss over the important topics discussed in the previous chapters of the
book and offer a comprehensive view of PyCharm's most popular feature. First, we will
discuss a number of miscellaneous topics, such as automation using macros or file
watchers. We will then conclude the book with a few general suggestions on how to
effectively use PyCharm, including keeping up to date with future updates and the
Educational Edition of PyCharm.

The following topics will be covered in this chapter:

Miscellaneous usage of PyCharm
Reviewing important information covered in previous chapters of the book
Concluding thoughts on how to use PyCharm

These discussions will tie up our book by offering you a general view on your whole
journey, and prepare you for your next steps in using PyCharm for your projects.

Technical requirements
As in previous chapters, ensure that you have both Python 3.6+ and PyCharm installed on
your computer.

Miscellaneous topics in PyCharm
Given the sheer number of features and functionalities that PyCharm software provides, it
goes without saying that we could not fit all of them into our structured discussions so far.
So in this section, I'd like to go over a number of topics that we haven't covered, but are still
important for us to know. First, let's start by looking at using a remote interpreter in
PyCharm.

Future Developments Chapter 15

[408]

Using remote Python interpreters
The general term remote is used to denote anything that is not physically connected to your
computer but can be connected and operated on. You might be familiar with the process of
logging in to a remote server via the ssh command.

In PyCharm, it is possible to connect the work environment with a Python interpreter in a
remote server. There might be many reasons why we would want to do this. For example,
using the remote interpreter means that our local computer does not need to execute any
command, thus saving us some computing resources. Moreover, since the interpreter is on
a remote server, other programmers might have access to it as well. In other words, many
people have the ability to share the same Python interpreter, which helps with ensuring
reproducibility.

Obviously, in order to take advantage of this feature, you will need to have access to a
remote server first. This can be your online computing server, such as AWS, from your
school or company's server, or from a free remote server service. If your access is password
protected, you will need to have your credentials ready as well.

Now, let's see how we can configure a remote Python interpreter within a specific PyCharm
project:

Go to Project | Project Interpreter from the settings. Here, we will then1.
customize the Python interpreter to be used by clicking on the icon in the top-
right corner of the window and choosing Add, as indicated here:

Adding a new interpreter to your project

Future Developments Chapter 15

[409]

Within the new window, select the SSH Interpreter option in the left-hand panel,2.
enter the host address and your username in the main section, and hit Next:

Adding a remote interpreter

In the next window, you might be prompted to enter your password for the3.
remote server:

Logging in to a remote server

Future Developments Chapter 15

[410]

Alternatively, you can use your credentials in other tools, such as OpenSSH or
PuTTY, to log in. After entering the password, click Next.

Finally, in the next window, enter in the path to the Python interpreter on the4.
remote server:

Locating the remote Python interpreter

You can also enable the checkbox below the prompt to run the interpreter using
root privileges. Click Finish to finalize the process.

Future Developments Chapter 15

[411]

Next, we need to set up a deployment process to automatically copy the code we5.
have in our local project to the remote server. Normally, programmers have to
facilitate this manually, but PyCharm allows us to streamline this process. From
the settings, navigate to Build, Execution, Deployment | Deployment |
Options, and check the Create empty directories box, illustrated as follows. This
option ensures synchronization between our local and remote directories:

Setting up options

Future Developments Chapter 15

[412]

Go back to Build, Execution, Deployment | Deployment in the settings. You6.
will see in the window that we don't have a configured development for our
remote server yet. To do that, click on the + button in the top-left corner and
choose the SFTP option to add in a new server as follows:

Selecting file source type

Future Developments Chapter 15

[413]

Next, enter a name you like for this server. We will also need to input our7.
credentials for this connection in the following prompt:

Entering connection details

Note that most of the time, the option in the Authentication prompt should be
either of the following:

Key pair (OpenSSH or PuTTY), in which case you will need to locate
your private key path. Depending on your operating system and the
SSH client you use, the path could be /Users/<your
username>/.ssh/id_rsa (for macOS) or %APPDATA%\SSH\UserKeys
(for Windows users).
OpenSSH config and authentication agent, in which case PyCharm
itself will look for the appropriate authentication method.

Future Developments Chapter 15

[414]

Another important aspect we need to consider is the Root path prompt in the8.
preceding window, which is used to specify the home directory of our remote
server. You can also use the corresponding Autodetect button to have PyCharm
look for a suitable directory.
Still in the same configuration window, click on the Mappings tab (highlighted9.
here), which is used to specify the deployment path of our remote server:

Enter mappings

In particular, in the Deployment path prompt, enter the path to the directory that
you want PyCharm to copy the files of your current project to (whose root
directory can be configured with the Local path prompt). Note that this path will
be relative to the remote root path we specified in the last step.

Future Developments Chapter 15

[415]

Finally, confirm all of your configurations by clicking OK or Apply. Our last step10.
in terms of setting things up for the remote server is to enable automatic uploads
of our local files to the remote server in Tools | Deployment | Automatic
Upload:

Setting automatic upload

To have a graphical directory explorer for your remote server, go to Tools |11.
Deployment | Browse Remote Host, which will open the Remote Host panel
that you can use to inspect the structure of your remote server.

So that is the complete procedure of adding a Python interpreter from a remote server to
our PyCharm workspace. As mentioned, this ability can prove useful in many situations,
especially in group settings. PyCharm also offers a number of automation-related features,
including working with macros, which we will discuss next.

Using macros
You might already be familiar with this term from other software, such as Microsoft Excel.
In essence, a macro is a sequence of instructions to be executed in order. If you have a
specific action that consists of multiple steps, a macro is a way to automate that sequence of
steps.

Future Developments Chapter 15

[416]

For example, we would like to create a macro to profile a selected block of code within a
Python file currently opened in the editor, and finally open the Terminal in the directory
that contains the Python file. We will go through the following steps:

Open any Python file in the editor and select any block of code as an example.1.
From the Edit menu, go to Macros | Start Macro Recording:2.

Recording a macro in PyCharm

This will start the macro recorder, which means every action that we will take
from now on will be recorded.

Future Developments Chapter 15

[417]

Right-click on the selected block of code in the editor and choose Profile [name3.
of file]. This is the first action in the sequence we would like to record in our
macro. If successful, you will notice a message in the bottom-right corner of your
window, indicating that the action has been recorded, as shown here:

Running a profiler, recorded by the macro recorder

Navigate back to the Python file in the editor, right-click on the selected code,4.
and choose Open in Terminal. This action should also be recorded as part of the
macro, indicated by a similar message in the corner.
Since our macro is finished, from the Edit menu, go to Macros | Stop Macro5.
Recording.
Here, a pop-up window will appear, asking us for the macro name. Enter a name6.
that you want for the macro or simply leave it blank (if the macro is intended for
temporary use).

Naming a macro

From now on, we can invoke the macro by going to Edit | Macros | [Name of4.
macro].
Even more conveniently, we can assign a specific keyboard shortcut to a given5.
macro. Open the settings and go to the Keymap section.

Future Developments Chapter 15

[418]

Expand the Macros item in the main section of the window and right-click on the6.
macro that you want to assign a keyboard shortcut to, as indicated here:

Assigning a shortcut to a macro

And that is the process of working with macros in PyCharm. In practice, you can create
macros to automate code-editing sequences and refactoring tasks, depending on your own
work and needs. In the next subsection, we will discuss another method of automation in
Pycharm: file watchers.

Future Developments Chapter 15

[419]

File watchers
File watchers, in general, are tools that allow us to monitor the changes taking place in a
given file and apply a specific action to the file when a change does take place. As an
example, let's say even though PyCharm is a great IDE, there are files where we only want
to use Atom (the text editor) to write code, and YAML files are one of them. So anytime
there is a change taking place in a YAML file within PyCharm, we would like to open it in
Atom instead.

To set up such a file watcher, we will go through the following:

From the settings, go to Tools | File Watchers. This will take you to the main1.
window to manage file watchers.
Click on the + button in the top-right corner of the window to add in a new file2.
watcher and choose to create a new custom file-watcher template:

Creating a file-watcher template

Future Developments Chapter 15

[420]

Now, enter the following information in the new pop-up window to specify our3.
file watcher:

Creating a file watcher in PyCharm

The name for the file watcher can be anything you like. The File type prompt4.
specifies the file extension that will be monitored by this file watcher (in our case,
it is YAML files). The Scope prompt, on the other hand, defines where this file
watcher is to take effect; here, I'm specifying it to be in all places in PyCharm.
The Program prompt should be the path to the program that we'd like to use in5.
the file watcher. Here, I'm specifying the path to the executable for Atom. In the
Arguments prompt, we use a macro ($FileName$) to dynamically specify the
name of a given YAML file.

To open a file in Atom, we run the atom [file name] command, so
that's why we specify the command as previously. You need to customize
the Program and Arguments prompts so that when combined, the
command can successfully achieve your goal.

Finalize your customization by clicking OK.6.

Future Developments Chapter 15

[421]

To see if this file watcher is working as intended, simply create a new YAML file within
PyCharm and attempt to edit it. You will see that the file will be opened in Atom as well.
As you can imagine, this feature is quite useful for automating tasks that run every time a
specific type of file is edited. For example, common files that you can apply file watchers to
are LESS files (which can be compiled into CSS) or CoffeeScript files (which can be
converted into JavaScript).

This discussion also concludes the miscellaneous topics in PyCharm that I wanted to cover.
In the next section, we will walk through the other topics that we have looked at
throughout this book.

Taking a step back
After a long journey, it is always important to look back and see what we have achieved.
This is especially true for this book, which consists of many different topics and discussions
on the various features and functionalities in PyCharm. Doing this will help us review and
solidify what we have learned so far.

The first few chapters introduced the software and the idea of using an IDE to write Python
code. Regarding the differences between PyCharm and other development tools, PyCharm
tends to come out on top in many respects. However, not everyone is ready to take full
advantage of the software; in other words, PyCharm is only applicable for a specific group
of users who have familiarized themselves with the main workflow of Python
programming. This is to say that you should make sure that PyCharm is indeed the most
suitable tool for your purposes, before fully committing to using the software.

In this section, we also talked about the differences between the Community edition and
the Professional edition of PyCharm. While the Community edition does retain a good deal
of features that will undoubtedly help you improve your productivity as a Python
programmer, the Professional edition is by far the better tool for extensive and fully
supported development. There is actually another, less-known edition of PyCharm –
Educational Edition, which we will discuss later in this chapter.

Finally, we walked through the process of downloading and installing PyCharm on our
local computer; this process is fairly straightforward. It was at this point that we also saw
the flexibility and customizability in PyCharm's keymap and keyboard shortcuts. Overall,
the software is designed to provide programmers with the best options and usability. After
this, we moved on to the topics of productivity-related features in PyCharm.

Future Developments Chapter 15

[422]

Improving your productivity
Here we got into the specific features in PyCharm that streamline various tasks and
processes in Python programming. From creating and managing virtual environments to
version control, testing, and debugging, PyCharm handles all the low-level, backend tasks,
leaving its users on a high level so that they can focus on the development side of things.

During these discussions, we saw that PyCharm can work well with external software and
tools such as Conda and Git/GitHub that are common elements of a Python project. On
another note, the testing and debugging options even extend to other non-traditional
Python scripts, such as PyCharm code cells and Jupyter notebooks. This feature allows
PyCharm users to combine the unique advantages of working with different tools in one
environment.

The point about PyCharm handling low-level repetitive tasks is also illustrated by the wide
range of different project types that PyCharm offers (simply Python projects, web
development such as Django or Flask, scientific computing, Angular, or even React
projects), as illustrated here:

PyCharm project types

Each type of project is created with various boilerplate files and folders automatically
generated so that the programmer can immediately start working.

Future Developments Chapter 15

[423]

One of the best supports that PyCharm offers must be its intelligent coding support engine.
Having the ability to adjust its scope, the code-completion engine in PyCharm allows users
to find the most relevant suggestions with respect to other files in the same project. The
quality of this coding support engine ensures that the code written in PyCharm is
compatible with all conventions and standards of the Python community.

Having learned about the various features and functionalities PyCharm offers to improve
our productivity, we thus move onto to the specific usage of PyCharm in web development
projects.

Web development with PyCharm
Web development has always been a big topic in general programming, and it has also
been growing in popularity in the Python community specifically. A direct result of this is
the wide range of support that PyCharm offers for web development projects and tasks. In
these chapters, we first saw that as a Python IDE PyCharm can also handle the
development of JavaScript, HTML, and CSS, which are the main web programming tools.

In this section, we also discussed the integration of the web framework Django into
PyCharm. Django is a heavy and batteries-included framework with numerous setting-up
tasks, so having PyCharm handle all the boilerplate code can save us a lot of time. The
model-view-template relationship that Django operates on is embedded in the logic of the
coding support engine from PyCharm, which ensures that the code we put in ourselves is
consistent with that relationship.

For example, when we create a view that does not have a corresponding template yet,
PyCharm will alert us with a message and offer a convenient interface to address the
problem. As you can see in the following screenshot, where we are creating a template for a
view we have just written:

Creating a template for a view

Future Developments Chapter 15

[424]

Another great feature in PyCharm to support web development projects (as well as others)
is its interface when working with data sources and databases. Specifically, when a
database connection has been established in PyCharm, the editor can be used to write and
submit SQL commands to that database. Even more impressively, the actual data in the
database can be opened within the editor, from which we can view and edit the data in
real-time.

So in this section, we saw the extensiveness of PyCharm's support for web development
projects. Other types of projects that can be optimized by PyCharm in terms of workflow
are scientific computing and data science projects.

Data science with PyCharm
Data science is undoubtedly one of the biggest reasons for the sudden growth in popularity
of the Python language, and for good reasons. With Python, data analysis models and
algorithms can be easily implemented; the community also already possesses a large
number of tools and support libraries, ready to be used. However, there are still ways to
improve your productivity in data science projects.

Specifically, the IDE offers a dedicated setting called Scientific Mode, which is highly
optimized for data analysis and scientific tasks. An element of this Scientific Mode is the
SciView panel, which allows PyCharm users to inspect common data structures in
scientific computing/data science projects such as Pandas DataFrames and NumPy arrays.

Much like the normal variable viewer in other PyCharm projects but more powerful, the
SciView panel is a great way to dig deep into the values within a specific variable, as
illustrated here:

Variable viewer in the SciView panel

Future Developments Chapter 15

[425]

Something that has to be discussed in terms of PyCharm supporting scientific computing
projects is how it handles Jupyter notebooks. The technology itself is already a great tool for
scientific computing and data science projects, and PyCharm takes it to the next level. The
support for iterative development—one of the best features of Jupyter notebook—is entirely
preserved in the PyCharm interface, with powerful code-completion and formatting
options added in.

Finally, in the previous chapter and this one, we looked at other additional features in
PyCharm that can assist with your projects, specifically plugins and other miscellaneous
topics.

So we have reminded ourselves of what was discussed throughout the book. Hopefully
doing this has given you a complete overview of the book and solidifies the knowledge you
have gained. In the next and final section of this book, we will consider some of the high-
level aspects of using PyCharm.

Moving forward with PyCharm
So far, we have considered specific features in PyCharm and how they can help you write
your Python applications. Now we will briefly go over a number of more general
discussion points on how to use the software at a high level. First, let's talk about a resource
for learning how to use PyCharm that I have included in further reading lists—the official
documentation from JetBrains.

Using official documentation
As with any great software out there, PyCharm comes with detailed and extensive official
documentation, which lays out the individual features and functionalities available in
PyCharm as well as how to use them. All of these resources can be found
at www.jetbrains.com/pycharm/documentation/.

For example, this link shows how to use the Python web framework Flask in
PyCharm: https:/​/​www.​jetbrains.​com/​help/​pycharm/​creating-​web-​application-​with-
flask.​html.

https://www.jetbrains.com/pycharm/documentation/
https://www.jetbrains.com/pycharm/documentation/
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html
https://www.jetbrains.com/help/pycharm/creating-web-application-with-flask.html

Future Developments Chapter 15

[426]

In general, here you can find tutorials, walk-throughs, forum discussions, and even hands-
on demonstration videos on how to use PyCharm. Other resources that you can find
include webinars, developers' blogs, keyboard shortcut reference cards, release notes for
different editions of PyCharm, and the early access program. Overall, it contains everything
and anything that you want to know about the PyCharm software.

It is important to note that the difference between a book on software such as this and the
official documentation is that while the documentation might contain very extensive
information regarding the usage of the software, it is not structured in a way that is
narration-based and beginner-friendly.

In other words, you need to know exactly what you are looking for when using the official
documentation. It is the same difference when you take an online course on a programming
language and reading through the documentation of that language.

That is to say that the official documentation, while a very useful reference, should be used
in conjunction with other resources. Another element that is included in the PyCharm
home page is the information on future updates and releases.

Future updates and releases
You might recall when we said in Chapter 4, Editing and Formatting with Ease in
PyCharm, that you have the option to send your data on runtime types in PyCharm to
JetBrains, and this data will then be used to design and implement other bug fixes and
features. This is to say that JetBrains constantly looks for new ways to improve the
PyCharm software, and as a result updates and new releases of PyCharm come out
regularly.

It is therefore beneficial to keep yourself up to date with future releases for your PyCharm
distribution. These releases might address a bug that you have been working with for a
while, or they can come with a new feature that might accelerate your work even more.

For example, the new PyCharm update 2019.2 (as shown in the following screenshot) that
came out at the time of writing this book contains an inline debugger for Jupyter notebooks,
which gives us the ability to dynamically debug Jupyter code cells separately. This greatly
adds to the flexibility that we already have with Jupyter notebooks in PyCharm.

Future Developments Chapter 15

[427]

A new release for PyCharm from JetBrains

Overall, it is generally beneficial to keep yourself informed about the happenings of the
software and technology that you use. The easiest way to do that with PyCharm and its
new updates is to follow the development team on the JetBrains official website or on
Twitter.

Future Developments Chapter 15

[428]

So, throughout this book, we have mentioned multiple times that there are two main
editions of PyCharm—the free Community edition and the paid Professional edition.
However, there is another edition of PyCharm that is less well known, the Educational
Edition, which we will take a look at in the next subsection.

PyCharm – the Educational Edition
Emphasizing the process of learning Python programming, the JetBrains educational tool
for PyCharm focuses on the specific needs of programming students and educators. The
Educational Edition of PyCharm is a completely free software that offers a flexible learning
platform. This edition includes most of the best features in PyCharm, while also including
additional functionalities that facilitate interactive learning processes.

For example, students can follow tutorials on Python programming and receive instant
feedback on coding challenges from the Educational Edition. Teachers and educators, on
the other hand, can design courses (as illustrated here), tests, and assignments, all within
this edition of PyCharm:

Creating a course in PyCharm Edu. Source: JetBrains

Future Developments Chapter 15

[429]

In short, the Educational Edition of PyCharm turns the IDE and its great functionalities into
a learning environment, providing an interactive platform for students and teachers alike.
Knowing how to use the main edition of PyCharm allows you to be more than equipped to
work with this edition to create your own learning platform. More details on the software
can be found at www.jetbrains.com/pycharm-edu/.

So, we have been talking about the great things in PyCharm and how it can significantly
improve your productivity as a programmer. However, there will be times when a
feature fails to do its job, or there is a bug within a specific element in PyCharm, causing
frustration. In the next subsection, we will discuss some ways to deal with these problems
when they occur.

Troubleshooting at a high level
We have already briefly discussed the topic of troubleshooting in PyCharm in Chapter
4, Editing and Formatting with Ease in PyCharm, but we only talked about various
troubleshooting methods to try with your PyCharm software if something goes wrong. In
this subsection, we will briefly cover some other ways to take advantage of the community
when a problem you are encountering cannot be solved with regular troubleshooting.

In general, if you are experiencing a bug in PyCharm, the chances are someone has already
or is currently experiencing the same problem. Searching for discussions online about the
bug in the JetBrains support forums or Stack Overflow will typically help you identify the
cause and address the root problem.

https://www.jetbrains.com/pycharm-edu/
https://www.jetbrains.com/pycharm-edu/

Future Developments Chapter 15

[430]

On the off-chance that there is no discussion regarding a problem or no solution is
available, we can turn to technical support from JetBrains itself. Typically, you can chat
with the support team or send them an email explaining the problem. More options to
troubleshoot can be found at https:/​/​intellij-​support.​jetbrains.​com/​hc/​en-​us/​?
pycharm.

Technical support for PyCharm

Specifically, we can submit a request to report the bug we are experiencing, which will
create an issue tracker that we can monitor later on.

Summary
In this chapter, we have covered various topics to conclude our book. First, we looked at
various miscellaneous topics in PyCharm, such as using remote PyCharm interpreters and
automation with PyCharm macros and file watchers. These features nicely add to the topics
that we discussed in previous chapters, and the combination of these features allows you to
further improve your productivity.

https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm
https://intellij-support.jetbrains.com/hc/en-us/?pycharm

Future Developments Chapter 15

[431]

Then we reminded ourselves of the big ideas and discussions throughout this book. These
include an introduction to PyCharm, general options when it comes to using the software,
and specific usage in web development and scientific computing—two of the most common
project types in Python programming. This walk-through offers a high-level perspective on
the discussions included in this book, thus helping us, again, solidify the knowledge we
have gained.

Finally, we went over various topics you should keep in mind when moving forward with
PyCharm, such as how to take advantage of the official documentation and the Educational
Edition, or how to get help if and when you encounter a bug while using the software.

And that is the end of Hands-on Application Development with PyCharm. Congratulations on
making it to the end, and I hope that this book has helped you learn.

Questions
What is the advantage of using a remote Python interpreter in PyCharm?1.
What is the purpose of PyCharm macros?2.
What can we use file watchers in PyCharm for?3.
What is the idea behind the Educational Edition of PyCharm?4.

Further reading
More information can be found in the following articles and readings:

JetBrains official documentation: Configure a remote interpreter using
SSH (www.jetbrains.com/help/pycharm/configuring-remote-interpreters-vi
a-ssh.html)
JetBrains official documentation:
Macros (www.jetbrains.com/help/pycharm/using-macros-in-the-editor.html)
JetBrains official documentation: Using File
Watchers (www.jetbrains.com/help/pycharm/using-file-watchers.html)
PyCharm: the Educational Edition (www.jetbrains.com/pycharm-edu/)

https://www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.html
https://www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.html
https://www.jetbrains.com/help/pycharm/using-macros-in-the-editor.html
https://www.jetbrains.com/help/pycharm/using-file-watchers.html
https://www.jetbrains.com/pycharm-edu/

Assessments

Chapter 1
An editor is a simple, minimal platform for editing text without any additional1.
highlighting or aligning functionalities. An example of an editor is Notepad. On
the other hand, an Integrated Development Environment (IDE) is a special piece
of software that has various features integrated within it; these typically include
syntax highlighting, automatic indention, debugging tools, and much more.
Development in Python does not require significant boilerplate code, which is2.
one of the aspects of programming that an IDE sets out to solve. Some have
argued that relying on an IDE too much can make programmers forget—or
altogether prevent them from learning—the core principles and syntax of a given
programming language.
A good strategy is to start off by using a simple editor to familiarize yourself3.
with the language and its core syntax structure; once a good understanding of
the language has been gained, you can then explore advanced functionalities that
an IDE provides to see whether they will be able to make you more productive.
Being familiar with a text editor can also help you learn how to use an IDE faster,
so that is one more reason to employ this strategy.
PyCharm operates on two main principles: improving the productivity of the4.
user and developing a good real-time coding assisting feature. PyCharm looks
set to incorporate several features that set itself above the rest of the Python
editors and IDEs: streamlined, graphical support for testing/debugging;
integrated web development tools; and support for scientific computing options.
PyCharm offers two versions: the free Community version and the paid5.
Professional version. The Professional version includes all the functionalities of
the Community version while having other exclusive features such as web
development tools and scientific computing support.
While there are some important features that are only included in the paid6.
Professional version, any Python programmer can still benefit from the free
Community version. However, if you are working with large, complex projects
with many moving parts (including database management, web development
languages, and viewability in scientific reports), then you will most likely benefit
from using the Professional version.

Assessments

[433]

Chapter 2
You can download either the free Community version, which has fewer1.
functionalities but is still convenient, or the paid Professional version, with fully
supported features. You can also qualify for a free license for the Professional
version if you're a student or teacher, or if you are working on an open source
project.
There are three ways to activate your license:2.

Using your JetBrains account information, which is used to simply log
you into the JetBrains server and verify your license.
Using your activation code, which was generated during your
purchase. For your information, at the time of writing, a PyCharm
license ID (also known as an activation code) is a string of 10 characters,
each character being either a digit or capital letter.
Using a JetBrains license server, which is used to manage licenses for
JetBrains products within a company. Most of the time, one of the two
aforementioned methods will be used to activate your license, so I will
not be discussing this method here.

In the Preferences window, you can change various aspects of the general theme3.
of PyCharm in the Appearance & Behavior > Appearance tab. The same can be
achieved for the PyCharm editor in the Editor tab.
A keymap, in the most general sense, is the way a computer system defines the4.
mappings of keys—this includes both keyboard keys and buttons from
additional external hardware such as the mouse.

As a programmer works with a specific development environment for a long
time, he or she will become accustomed to its keymap. This can potentially cause
problems when the programmer transitions to another environment with
different keymaps and shortcuts. PyCharm allows you to revert back to your
favorite keymap (in Eclipse, Emacs, NetBeans, and Visual Studio).
In the Keymap tab of the Preferences window, you can use the search bar to5.
search for specific actions by name. The result includes not only the actions
whose names match with the search terms but also their respective shortcuts (if
applicable).
Next to that search bar is a button called Find Actions by Shortcut, which can be
used to search for a particular action via its shortcut combination.

Assessments

[434]

From the starting welcome window of PyCharm, you can choose the Create New6.
Project option (choose the Pure Python option in the left panel if you're using the
Professional version, choose to use an existing Python interpreter for the project,
and click Create.

In a project window, you can right-click on the project name in the left panel and
choose New > Python File to add a new Python file to the current project. To run
a Python file, go to Run > Run (the second Run option). You can also take
advantage of the shortcut for the Run context configuration action to run the file.

Chapter 3
There are a number of panels/window tools that can be displayed and utilized in1.
PyCharm: project directory tree (Project), to-do items (TODO), version control
statistics (Version Control), database information (Database), the Python
Console, Terminal, and so on.
You can drag and drop a panel tag that corresponds to a specific panel along the
left, right, and bottom edges of the project window.
The bar denotes the indexing process where PyCharm scans through most files2.
and documents in your current project to support important functionalities such
as searching, syntax highlighting, and code completion. When this indexing
process is still running, some features might not be functional, which would
confuse new, unfamiliar users. Most of the time, the features will function as
normal as soon as the indexing process completes.
There is a number of different project types available to choose from when a3.
PyCharm project is being created: a Pure Python project, a Django project,
a Google App Engine project, a Flask project, a Web2Py project, and so on. These
options, however, are not available in the Community version. With that said,
everything achieved through the selection of a project type in Professional
PyCharm can be accomplished manually in Community PyCharm.
In the different types of PyCharm project (referenced in the previous question),4.
boilerplate code that is conventionally appropriate for a project type is generated
by PyCharm when that project is created. For example, a new Django project will
have a templates folder and a manage.py file, while a scientific computing
project will have commonly used folders such as data, models, and notebooks.

Assessments

[435]

A Python interpreter is a program that can take in Python code, then interpret5.
and translate that code into lower-level machine language, thus executing the
Python program. A Python virtual environment, on the other hand, is an
independent, isolated environment that manages its own libraries and packages.

Interpreters and virtual environments are independent of each other in Python.
This means multiple virtual environments can share the same Python interpreter,
and one environment can switch among and utilize multiple interpreters.
You can choose to create a virtual environment using Virtualenv, Pipenv, or6.
Conda. PyCharm takes care of the details regarding creating and managing the
source of the virtual environment, so whichever tool you use to create your
virtual environments, the subsequent details of managing the environments
remain consistent.

This means there is no preferred way to create and manage your virtual
environments in PyCharm out of the three options (Virtualenv, Pipenv, or
Conda). Therefore, you should keep using your go-to virtual environment tool,
as you yourself know best about the specifics of that tool.
You can go to Preferences (in macOS) or Settings (in Windows) and select7.
Project Interpreter to customize the interpreter for the current PyCharm project.
This ability is especially useful for testing and porting purposes, where the
working of libraries and packages might depend on which Python interpreter is
being used. These situations are fairly common in large group projects that have
been maintained for a long time.
To import an external project in PyCharm, you can simply go to Open and8.
navigate to the specific project to be imported. In this process, it is important to
make sure that the destination project has all the libraries and packages that are
required to execute the code included in the project. Reading data
from requirements.txt, PyCharm is able to suggest what unmet requirements
(if any) are still present, and even offers a way to download and install those
requirements in a streamlined way.

Chapter 4
There are, in total, three possible levels of severity indicated in the top-right1.
corner of the editor: errors (), warnings (), and nothing detected (). It is
generally good practice to address any problems in your code if the severity is
either error or warning before using it or committing it to GitHub.

Assessments

[436]

Some of the most common problems in Python code detected by PyCharm are2.
dead code, unused declarations, unresolved references, and PEP 8 style
suggestions. Each of these problems can be addressed with various simple and
convenient commands in PyCharm.
The approach of code completion support from JetBrains' products in general,3.
and not just PyCharm, is smart code completion, which only looks for the most
applicable and most likely APIs to suggest in the pop-up list. Additionally, the
logic that's used by code completion in PyCharm can be customized by users so
that they have particular behaviors that fit individual needs.

Finally, JetBrains always looks to improve its code completion logic by collecting
data regarding runtime types, if allowed by users. This allows PyCharm's code
completion to be always evolving and accommodate the changing needs of
Python programmers.
The following are common code completion options in PyCharm that can prove4.
useful for Python programmers:

Smart code completion: Suggests the most applicable APIs in the pop-up
list.
Postfix code completion: Helps programmers correctly format various
expressions without having to move their caret back and forth.
Hippie completion: Suggests the items that are in the visible scope and
context.
Intention: Allows complex transformations after code has already been
written. This feature can also be used outside the context of code
completion.

Common cases in which code completion support from PyCharm does not work5.
are listed here:

Running indexing: Wait until the indexing process is complete before using
any code completion features.
Power-save mode: Go to File > Power Save Mode to turn it off if your
PyCharm is in power-save mode, which prevents code completion from
working.
Out-of-scope files: Move external files and scripts into the current project to
have them scanned by PyCharm, or include external libraries in
requirements.txt.

Assessments

[437]

In PyCharm, programmers can perform the following refactoring tasks via6.
convenient shortcuts:

Renaming: This includes variables, functions, classes, methods, and even
files. PyCharm takes care of the renaming in all locations where the name to
be changed is used.
Extracting methods: This is used to move a specific block of code outside
the current scope and convert it into a function or method. All of
the parameters and return types for the function/method are automatically
generated by PyCharm.
Converting between methods and functions: This allows users to change a
class method into a function outside the scope of the class, and vice versa.
All calls to the new function are handled and converted accordingly as well.

Three main aspects of working with Python documentation in PyCharm are7.
listed here:

Creating documentation: This is done when a pair of triple-double quotes
are expanded into multiple lines. A Python docstring template is used to
generate specific formats for documentation created in this way.
Customizing docstring format: To change the way the default docstring is
generated in the aforementioned process, you can go to Tools > Python
Integrated Tools in PyCharm's general settings.
Viewing documentation: Quick Documentation and Quick Definition can
be used to dynamically view the documentation and definition of a specific
API in PyCharm. This can be applied to built-in functions, external packages
and libraries, as well as self-written functions, classes, and methods.

Chapter 5
Version control denotes the process of using a specific system to record and save1.
changes and overall progress in directories and files so that a programmer can
come back to it later. If multiple separate changes have been applied to a project
that is under version control, you can even switch between these different
changes (versions) in the development process.
Version control can offer the following benefits to programmers:2.

Being able to revert projects back to previous versions when a change is not
desirable (without having to manually change the project code)

Assessments

[438]

Having backups on the cloud, which allows us to avoid losing code when
local systems are damaged
Being able to collaborate with others in a systematic way

When you are using version control with Git, there is a specific3.
workflow that you need to follow: creating a GitHub repository, initializing a
local Git repository and linking it to the one created on GitHub remotely, adding
files to be version controlled to Git, committing any changes that have been made
to the local repository, and finally pushing the committed changes to GitHub.

While working with other people, you need to fork the original GitHub
repository to your own account. Any changes to be made to that original
repository would need to go through the forked one and be done via pull
requests.
The Version Control panel in PyCharm offers the same common Git commands4.
(setting up a local repository, add, commit, and push) in an accessible user
interface. It also displays a list of files at various stages in the version control
process (specifically, unversioned and added, but not yet committed) so that
developers can easily keep track of the changes they have made.
The ability to create a UML diagram for local changes in a PyCharm project5.
provides you with a unique method to visualize the progress you have made,
which can also be utilized in documentation and reporting processes.

Chapter 6
Testing in software development is looking for inconsistencies and errors in our1.
programs and code. There are several different testing methods with varying
levels of abstraction:

Unit testing: Looking at the individual unit components of a given program
Integration testing: Looking at groups of unit components while they're
working together
System testing: Looking at the complete software as a whole

PyCharm offers convenient commands to generate test skeletons/boilerplate code2.
that usually take time for developers to manually write.
Debugging is, in essence, narrowing down and identifying the causes for bugs3.
and errors that have been detected during testing.

Assessments

[439]

With a graphical interface combined with various options to track the values of4.
variables throughout a program (inline debugging, watchers, evaluating
expressions on the fly, and more), PyCharm allows us to debug our programs in
a dynamic way with considerable freedom. The various stepping functions also
provide a flexible way for you to step through the program you are trying to
debug.
Profiling is analyzing the performance of our program and finding ways to5.
further improve it. This can be looking for faster ways to compute a value and
identifying a performance bottleneck in the program.
With the ability to generate a comprehensive set of statistics on the running time6.
of each function that's executed, as well as a call graph that corresponds to the
program, PyCharm helps developers navigate through the different components
of a profiled program with ease.
Run arrows are essentially a convenient interface for PyCharm users to initiate7.
testing, debugging, and even profiling sessions. Run arrows are distributed
among different code blocks in a specific program, so you can utilize the
corresponding run arrow to analyze an individual set of commands instead of
having to execute the whole program.

Chapter 7
HTML is responsible for specifying the actual content and the general structure1.
of a web page. In an HTML file, individual elements are included inside tags,
which are a way to specify the type of content each element contains. For
example, HTML tags can be <p></p> for paragraphs, <table></table> for
tables, or for lists.
CSS is used to customize the visual aspects of the content of a given web page. A2.
typically CSS file, similar to HTML, contains separate sections, each specifying
how an HTML element should be styled.
JavaScript is typically used to process and manipulate data and feed it to the3.
HTML code that is responsible for displaying that data. Being a programming
language, JavaScript allows web developers to implement object-oriented
development ideas, specifically classes.

JavaScript is extremely popular among web projects due to its ability to integrate
and work with HTML/CSS, as well as other web development tools, so well.

Assessments

[440]

There are two methods we can use to include a stylesheet or a script within an4.
HTML file while using PyCharm:

Manually create a corresponding HTML tag and point it to the
stylesheet or the script in question. This method is supported by the
code completion features of PyCharm.
Drag and drop the stylesheet or the script from the directory tree (in
the Project panel) directly into the HTML file in the editor. PyCharm
will automatically create an appropriate tag pointing to the dropped
file.

With Emmet, web developers can enter shorthand for HTML and CSS code and5.
it will be converted into actual code. This allows for faster writing and
editing. Emmet is not a part of the Python web development process or the
PyCharm IDE. It is simply a general toolkit that can be installed and utilized in
web projects.

However, since Emmet is such as powerful and widely used tool, PyCharm
offers full support in its web development projects. Additionally, you can
configure the behavior of Emmet within PyCharm by going to the general
settings and navigating to Editor > Emmet.
A Python-native debugging session with all of its features (which were discussed6.
in Chapter 6, Seamless Testing, Debugging, and Profiling) can also be applied to a
JavaScript application. This includes breakpoints, stepping functions, and
watchers.
Furthermore, PyCharm creates a local server to execute the web application so
that developers can debug their applications in an appropriate environment.
LiveEdit is a PyCharm feature that updates the web page for you automatically7.
every time there is a change in the source code. This is quite a useful feature as it
will save web developers significant time from having to manually reload a web
page. The feature is nicely integrated into PyCharm's debugging functionalities.

Chapter 8
Some notable components of the Django framework are as follows:1.

Models, which offer the ability to implement database objects in an object-
oriented way. Django also handles the implementation of the corresponding
database table for a model in the backend automatically.
The admin interface, which is generated solely by Django to have a
straightforward yet extensive set of functionalities.

Assessments

[441]

Templates, which can be viewed as placeholder HTML code. Django views
can render a given template while sending information to it so that
placeholders within the template will be populated by that information
dynamically.

Overall, Django offers extensive support for Python web applications; you can
build a complex, fully functional website using Django, even with limited effort.
On the other hand, Flask is a lightweight web framework that consists of simple,
intuitive APIs that can help web developers quickly implement their ideas in the
context of a real web application. However, to incorporate complex features into
your Flask web application, you would have to spend significantly more effort
than in Django.

PyCharm's manage.py panel, similar to the Terminal panel, is a built-in interface2.
for the functionalities that are typically achieved via calling on the manage.py
file. By having the manage.py panel inside your project window, you can run the
server, make migrations, or execute any manage.py-specific task without having
to switch to another window.
To open the manage.py panel, go to Tools > Run manage.py Task or use the
corresponding keyboard shortcut.
Django's admin interface implements administrative privileges for superusers.3.
An example of an action requiring admin access may be to add, change, or delete
content in an online blog. Django's mindset is that since most of the work that
has to be done to set up admin privileges (and the corresponding interface) is
somewhat tedious and repetitive, it should be automated.

After registering and logging in as a superuser, to add an instance of an
implemented model within the admin interface, you can simply use the Add
button within the interface. An important thing to note is that the model will
need to be registered with the admin application in the mysite/admin.py file
(where mysite is the name of our Django project).

If the model references another model, the new instance can only be created with
respect to either an existing instance or a new one of the referenced model.
PyCharm's run/debug configuration feature is used to specify various elements4.
of the execution of a given Python program. With a Django project, we can
specify the default page that will be opened up when the server is launched.
PyCharm's intelligent code completion engine supports Python, HTML, and5.
Jinja, as well as other Django-specific syntax.

Assessments

[442]

Django views and templates are heavily connected to each other due to the6.
foundational design model of Django. For this reason, Django developers usually
work on a view and its corresponding template at the same time. PyCharm offers
us the ability to switch between views, and their respective templates can
significantly speed up this process.

Chapter 9
The term data source indicates a given method of accessing a database from a1.
server. You can connect to a data source in PyCharm by adding it via the
Database panel, downloading any missing driver files, and selecting an
appropriate schema.
Within the Database panel, you can manage different data sources for a project2.
(viewing, adding ,and/or removing), configure the underlying database system
and driver files, examine the structure of a given database, and open the database
console.
Structured Query Language, or SQL, is the most common tool developers and3.
data engineers use to interact with databases, as well as being the standard
language for relational database management systems. With SQL queries, you
can retrieve data from and submit changes to a database table.
PyCharm allows us to write, edit, and run SQL commands within a console. In4.
addition to being able to work with the console as a simple text file, PyCharm
users also have the added bonus of code completion and syntax checking when
using this console.
The table view offers the same options in terms of retrieving and changing data5.
from database tables. As opposed to writing and executing queries in the console,
the table view provides a graphical interface that is more intuitive and
straightforward.
Firstly, we can create diagrams for database objects and any potential6.
relationships between them. These include one-to-one, many-to-one, and many-
to-many relationships. Secondly, it is possible to visualize the underlying logic of
a query using a diagram, which makes working with SQL commands
significantly more intuitive.

Assessments

[443]

Chapter 10
Database objects in a Django project can also be accessed and modified in a1.
Python script using various Django APIs. For example,
the Table.objects.get() method (with Table being the name of a database
table) will return all the saved database records in a given table, while
the Table.objects.create() method, along with the appropriate arguments,
can be used to create a new record in a database table.
Double underscores (__) are used to look up the specific fields of an attribute of a2.
database record. In our example, we use __year, __month, and __day with
the publish_date attribute to look up the year, month, and day of that
attribute, respectively.
The {% csrf_token %} tag is a way to generate a token that counters cross-site3.
request forgery (CSRF) attacks. This tag is required in a Django application in
any given form element.
To set up an SMTP email server, you would need to specify the following4.
variables in the main settings.py file:

EMAIL_HOST: This variable specifies your SMTP host server.
EMAIL_PORT: This variable specifies your SMTP port.
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD: This pair of variables
specifies the credentials for the SMTP server.
EMAIL_USE_TLS: This variable specifies whether a Transport Layer
Security (TLS) protocol should be used.

The specific values of these variables will depend on our own SMTP server, be it a
custom one or one from an email provider such as Gmail.

The Django deployment checklist includes settings and configurations that you5.
need to implement before deploying a Django project to production. This is to
avoid unsecured communication and leaked information within our Django
applications. Items in this checklist include hiding keys and passwords, disabling
debugging mode, listing valid hosts that are allowed to serve the site,
implementing logging, and making views for potential errors.

Assessments

[444]

Chapter 11
Markdown is a markup language that is most commonly used in README.md1.
files in repositories on GitHub (and other version control platforms). The
README.md file that is stored at the root of a repository is displayed on the main
page of the repository. It is generally used to introduce other developers to that
repository.
The data folder is excluded from version control tasks by default. This is because2.
this folder is likely to contain significantly large files that are unsuitable for a
typical version control workflow with Git and GitHub. It is common practice to
exclude data folders from Git and GitHub.
Scientific Mode is on by default in a scientific project. To toggle this mode, you3.
can use the View > Scientific Mode option from PyCharm's menu bar. After
turning Scientific Mode off in our current project, you will see that the SciView
panel becomes a floating element instead of a pinned section within our project
window. The Documentation panel is also hidden away when Scientific Mode is
off. Turning it on again will restore these panels.
The Documentation panel displays real-time documentation data in a dynamic4.
way. Specifically, as you move your caret to a particular method or function call
in the editor, the panel will show the official documentation corresponding to
that method/function. This functionality is also applicable mid-editing.
PyCharm's code cells are a way to separate and execute different portions of a5.
large Python program sequentially. This ability is valuable in scientific
computing projects when different sections of a program are run in order,
allowing programmers to follow the logic of the program better in an
incremental way.

Code cells in PyCharm are defined by lines of code that start with the following
characters: #%%. These lines are treated as standard comments in the low-level
execution of Python, but PyCharm will recognize them as code cell separators in
its editor.
The CSV plugin can display CSV files in two separate formats: raw data (which is6.
typically done by text editors) and in table format (which is typically done by
heavy-duty software such as Microsoft Excel). This combined feature allows
users to inspect and edit CSV data in a graphical manner within the same
software that they use to develop their code.

Assessments

[445]

Chapter 12
The SciView panel contains the Plots tab, which displays all the visualizations1.
that have been generated by a Python program, and the Data tab, which can be
used to inspect the values of data-related variables.
All of the visualizations that are generated by a Python program are included in2.
the Plot viewer of the SciView panel, where a user can navigate through them
with a straightforward graphical interface. Since all of the visualizations are
temporarily saved to the panel, the whole program can run in one go. This also
allows us to avoid clicking through the Matplotlib plots in order to proceed with
the execution, which is the case when executing a Python program from, say, the
Terminal.
The data viewer of the SciView panel supports pandas DataFrames and NumPy3.
arrays.
Iterative development is done when a given program is split into different4.
sections so that the logic and execution of that program can be considered in an
incremental way. This idea is specifically appropriate for data science and
scientific computing tasks, where you need to consider the characteristics of a
dataset before applying different processing methods and algorithms.

Jupyter notebooks consist of multiple code cells, each containing only a block of
code that achieves a specific goal. The output of a code cell is displayed
immediately after that code cell when it is executed, making the process of
debugging easier than in traditional programs.
Markdown is a markup language that's typically used for writing README files5.
in GitHub repositories. LaTeX is a word processing system that is popular among
members of the academic community, who use LaTeX to write scientific research
papers.

The ability to combine LaTeX and general Markdown text with live code makes
Jupyter notebooks a flexible tool in data science projects. Being able to display
the code between text explanations of a data analysis process can help readers
follow what is being done to that data much more easily.
The beginning of a code cell is marked with the #%% symbol, while that of a6.
Markdown cell is marked with #%% md.

Assessments

[446]

Writing Jupyter notebooks in the PyCharm editor addresses the lack of code-7.
writing support in traditional, web-based Jupyter notebooks. In other words,
when using PyCharm to write Jupyter notebooks, we get the best of both worlds:
powerful, intelligent support from PyCharm and iterative development style
from Jupyter.

Chapter 13
To collect a dataset, you can do any of the following:1.

Download it from an external source
Manually collect it or use web scraping
Collect it via a third party
Work with a database

Git LFS can work seamlessly with Git. Specifically, we can use Git LFS to track2.
the extensions of large files that we want to have version control on, and Git will
work with Git LFS to delegate those files when we want to push our projects to
GitHub. Afterward, we simply need to use Git in the usual way.
An attribute that contains continuous, numerical data often has its missing3.
values filled out with the mean. On the other hand, attributes with discrete
numerical data as well as categorical data can use the mode to fill out their
missing values.
In a naive encoding scheme, you may inadvertently apply some sort of an4.
ordered relation to the data when the original data is replaced with numerical
values. With one-hot encoding, we can avoid this problem by creating new
binary attributes that contain the same data as the original attribute. However, in
an attribute with a large number of unique values, one-hot encoding might
greatly increase the dimensionality of our dataset, which is undesirable in many
cases.
Bar charts can be applied to categorical attributes while distribution plots can5.
visualize numerical attributes, both discrete and continuous.
The feature correlation matrix of a dataset can identify any attribute that is highly6.
correlated with the target attribute we are interested in, which can help us obtain
valuable insights regarding the dataset.

Assessments

[447]

Sometimes, we use specific machine learning models to analyze a dataset and7.
compute the feature importance of each dataset attribute. This feature
importance value denotes how important that attribute was during the learning
process of the mode, thus indicating some sort of correlation between that
attribute and our target attribute.

Chapter 14
PyCharm plugins are customized add-ons that can further add to the list of1.
features and functionalities you can take advantage of while using PyCharm. A
PyCharm plugin is much the same as a Google Chrome add-on, for example.
From the general settings in PyCharm, navigate to the Plugins section. Here, you2.
can choose to search for and install specific plugins in the Marketplace tab or
apply any pending updates to the plugins you already have installed. Then, a
complete reboot of PyCharm is required for the installation or the update to take
effect.
In the same Plugins section from the general settings, you can right-click on a3.
specific item in the Installed tab. Here, you can choose to either disable the
plugin or completely uninstall it from PyCharm.
The answers are listed here:4.

Database Navigator offers a more advanced interface for us to work1.
with databases in PyCharm. This includes data viewing and editing,
SQL editing, database connection management, and database compiler
operations.
LiveEdit allows for changes that were made to HTML and CSS files in2.
a web development project to automatically take effect in the rendered
output web page. This behavior can normally only be achieved by
manually refreshing the output page.
CSV Plugin combines the ease of viewing data using the same3.
development environment that our code is in and the graphical
interface that can only be found in dedicated applications. In short, it
provides a convenient way for us to work with CSV files with a
graphical interface.
Markdown is used for editing Markdown code in PyCharm. It renders4.
the output produced by Markdown in real time so that users can
adjust their code in a dynamic way.
Finally, string manipulation offers powerful options in terms of editing5.
and manipulating text. This includes toggling between different text
styles such as camel case, snake case, dot case, and more.

Assessments

[448]

Within a project, you can specify its required plugins by going to the Build,5.
Execution, Deployment option in the general settings and selecting the required
plugins. From this window, we can add items to the list of required plugins for
our current project by clicking on the plus sign in the top-right corner.

From there, we can specify which particular plugin we have that should be made
into a requirement for our project, as well as the actual version number of the
plugin. After confirming the selection, whenever the current project is opened in
PyCharm, we will be notified if and when a required plugin is somehow not
installed, disabled, or has an update pending.

Chapter 15
Using the remote interpreter means that our local computer does not need to1.
execute any command, thus saving us some computing resources. Moreover,
since the interpreter is on a remote server, other programmers might have access
to it as well. In other words, many people have the ability to share the same
Python interpreter, which would help with ensuring reproducibility.
A macro is a sequence of instructions that are to be executed in order. If you have2.
a specific action that consists of multiple steps, a macro is a way to automate that
sequence of steps. In practice, you can create macros to automate code-editing
sequences and refactoring tasks, depending on your own work and needs.
File watchers, in general, are tools that allow us to monitor the changes that3.
are taking place in a given file and apply a specific action to that file when a
change does take place. They are quite useful for automating tasks that are run
every time a specific type of file is edited. For example, common files that you
can apply file watchers to are LESS files (which can be compiled into CSS) or
CoffeeScript files (which can be converted into JavaScript).
The Educational Edition of PyCharm is a completely free piece of software that4.
offers a flexible learning platform. This version includes most of the best features
of PyCharm, while also including additional functionalities that facilitate
interactive learning processes.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Python by Building Data Science Applications
Philipp Kats & David Katz

ISBN: 978-1-78953-536-5

Code in Python using Jupyter and VS Code
Explore the basics of coding – loops, variables, functions, and classes
Deploy continuous integration with Git, Bash, and DVC
Get to grips with Pandas, NumPy, and scikit-learn
Perform data visualization with Matplotlib, Altair, and Datashader
Create a package out of your code using poetry and test it with PyTest
Make your machine learning model accessible to anyone with the web API

https://www.packtpub.com/programming/learn-python-by-building-data-science-applications

Other Books You May Enjoy

[450]

Mastering Object-oriented Python
Steven F. Lott

ISBN: 978-1-78328-097-1

Understand the different design patterns for the __init__() method
Discover the essential features of Python 3's abstract base classes and how you
can use them for your own applications
Design callable objects and context managers that leverage the with statement
Perform object serialization in formats such as JSON, YAML, Pickle, CSV, and
XML
Employ the Shelve module as a sophisticated local database
Map Python objects to a SQL database using the built-in SQLite module
Transmit Python objects via RESTful web services
Devise strategies for automated unit testing, including how to use the doctest
and the unittest.mock module
Parse command-line arguments and integrate this with configuration files and
environment variables

https://www.packtpub.com/in/application-development/mastering-object-oriented-python

Other Books You May Enjoy

[451]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
add command 143
adding remotes process 142
admin interface
 about 231
 connecting, to models 233, 234, 235, 236, 237
 logging in 232, 233
 superuser, creating 232, 233
 using 271, 272, 273, 274
advanced plugin-related options
 about 401
 custom plugins, developing 404, 405
 plugins, installing from disk 403
 required plugins 401, 403
Amazon Web Services (AWS) 295
American National Standards Institute (ANSI) 252

B
basic code completion
 versus smart code completion 98, 99, 100, 101
blog application
 admin interface, using 271, 272, 273, 274
 building, in PyCharm 267
 Database panel, working with 275, 276, 277
 Django application, creating 269, 271
 Django model, creating 269, 271
 Django project, creating 267, 268, 269
 Django's detail views, creating 285, 286, 287,

288

 Django's list views, creating 278, 279, 280, 281,
282, 283, 284, 285

 queries, creating via Python code 277, 278
branching process 146

C
Cascading Style Sheets (CSS)
 about 193
 code, writing with 195, 196
 need for 193
 using, in PyCharm 198
code analyzer
 specifications 90
code completion engine
 customizing 107, 109
 intentions 111, 112
 item documentation, displaying 110
 Match case options 109
 parameter information 110
 suggestions, sorting in alphabetical order 109
code completion issues, in PyCharm
 about 114
 indexing process 114
 out-of-scope files 115
 power save mode 114
code completion support, in PyCharm
 about 98
 basic code completion, versus smart code

completion 98, 99, 100, 101
 customizing 95
 hippie completion 103, 104
 intentions 105, 106, 107
 postfix code completion 101, 102, 103
 use case 96, 97, 98
code inspection 90
code refactoring 116
commit command 143
Community edition
 reference link 18
Community PyCharm
 considerations 73

[453]

Counter class
 about 167
 tests 170
cProfile profiling tool 185
CSRF (cross-site request forgery) 291
CSV data
 working with 316
CSV plugin
 URL 398
 using 317, 318, 398

D
data science
 scripts, versus notebooks 384, 385
data source
 connecting to 246, 247, 248, 249, 250, 251
data
 cleaning 356
 collecting, techniques 354, 355
 pre-processing 356
 viewing 324, 325, 326, 328, 329, 330
 viewing, with plots 322, 323, 324
 viewing, with PyCharm's SciView 321, 322
 working with 324, 325, 326, 328, 329, 330
 working, with plots 322, 323, 324
Database Navigator
 reference link 396
 using 396
database objects
 diagrams for 261, 262, 263
Database panel
 working with 275, 276, 277
database
 diagrams 260
 working with, in PyCharm 252
datasets
 about 350, 352, 353, 374, 375
 charts, using 375, 377, 378, 380
 cleaning techniques 360, 362
 exploring 374
 graphs, using 375, 377, 378, 380
 insights, extracting 374
 one-hot encoding technique 363, 364, 365, 366
 problem-specific techniques 366, 367, 369,

371, 372

 reading 357, 358, 360
 version control 355, 356
 working with 350
debugger 172
debugging method
 debugger, using 172
 logging 171
 print debugging 171
 tracing 172
debugging, in PyCharm
 about 172, 173
 breakpoints, placing 176, 177, 178, 179
 Debug panel 173, 174, 175, 176
 debugging session, initiating 173, 174, 175, 176
 expressions, evaluating 183
 functionalities, stepping 179, 180, 181
 watches 181, 182, 183
debugging
 about 171
 fundamentals 171, 172
diagrams
 for database objects 261, 262, 263
 for databases 260
 for queries 264
DigitalOcean 296
distributed version control 140
Django application
 creating 269, 271
Django deployment checklist
 debugging, disabling 297
 errors views, creating 297
 keys and passwords, hiding 297
 logging implementation 297
 valid hosts, listing 297
Django model
 creating 269, 271
Django project
 creating 267, 268, 269
 creating, in PyCharm 71, 72
Django projects, in PyCharm
 about 221
 admin interface 231
 creating 221, 222, 223
 debug configuration, customizing 239, 240
 Django models, creating 227, 228, 229

[454]

 initial configurations 224, 225
 manage.py, running 225, 226, 227
 migrations, creating 229, 230, 231
 run configuration, customizing 239, 240
 server, launching 225, 226, 227
 structure 223, 224
 templates, creating 240, 241, 242
 views, creating 237, 238
Django web project
 deploying 295
 hosting services 295
 production-specific settings 297, 298
Django's detail views
 creating 285, 286, 287, 288
Django's list views
 creating 278, 279, 280, 281, 282, 283, 284,

285

Django
 about 215, 216
 administrative access, implementing 217, 218
 emails, configuring 293, 294
 Jinja, using 218, 219
 models, using 216, 217
 overview 215
 templates 218
 versus web frameworks 216
 vesus Flask 220
docstrings 130
documentation viewer 311, 312
documentation, for Python
 docstrings 130
documentation
 creating 130, 131, 132, 133
 dynamic approach 130
 Quick Definition 135
 Quick Documentation 134
 viewing 134, 201, 202
double-under (dunder) 118

E
emails 288
Emmet 202, 203
exploratory data analysis 357

F
factoring 116
Fetch 145
file watchers 419, 420, 421
files
 ignoring 146, 147, 154
Flask
 versus Django 220
foreign key 261
fork 143
forking process
 reference link 144
Frames section 175

G
Git essentials 139
Git Large File Storage (Git LFS) 356
Git tools
 setting up 141
Git
 about 141
 download link 141
 downloading 141
 repository, setting up 142
GitHub tools
 setting up 141
GitHub
 about 141
 account, reference link 141
 add command 142, 143
 branching process 146
 commit command 142, 143
 files, ignoring 146, 147
 merging process 146
 pull requests, creating 143, 144, 145
 push command 142, 143
 registering 141
 repository, cloning 143, 144, 145
 repository, forking 143, 144, 145
 source code, download link 50
 source code, obtaining from 49, 50
gitignore
 reference link 147
Google Cloud 295

[455]

gutter 177

H
Heroku 296
hippie completion 103, 104
horizontal toolbar 176
hosting services
 about 295
 Amazon Web Services (AWS) 295
 DigitalOcean 296
 Google Cloud 295
 Heroku 296
HTML code
 external files, including 200, 201
HTML files
 creating 199
HTML output
 viewing, in browsers 203, 204
HTML source code
 extracting, in PyCharm 204, 205
Hypertext Markup Language (HTML)
 about 193
 code, writing with 193, 194
 need for 193
 using, in PyCharm 198

I
IMAP, setup
 reference link 293
inlining variables 124
integrated development environments (IDEs)
 about 38
 comparison, reference link 18
 philosophy 12, 13
Interactive Python (IPython)
 about 330
 installing 330, 331
 reference link 334
 setting up 330, 331
interface
 creating, for share feature 288, 289, 290, 291,

292

IPython magic commands 330, 331, 332, 333,
334

J
Java Runtime Environment (JRE) 29
JavaScript, using in PyCharm
 about 205
 code, debugging 207, 208
 framework, specifying for applications 211, 212
 live editing 209, 210, 211
 parameters, hints 206, 207
 version, selecting 206
JavaScript
 about 193
 need for 196, 197, 198
JetBrains
 reference link 430
Jinja
 using 218
Jupyter notebooks
 about 374, 375
 basics 336
 editing 337, 338, 339, 340, 341, 342, 343
 in PyCharm 344, 345, 346, 347
 iterative development concept 336
 leveraging 334, 335, 336
 versus scripts, in data science 384, 385

K
Kaggle
 reference link 351

L
LiveEdit
 reference link 397
 using 397
local repository
 setting up 148
logging 171

M
machine learning models 380, 381, 382, 383, 384
macros
 using 415, 416, 417, 418
markdown language, syntax
 reference link 307
Markdown

[456]

 URL 399
 using 399
merging process 146
Monokai 35
Mozilla Developer Network (MDN) 202

O
one-hot encoding technique 363, 364, 365, 366
open source licenses
 reference link 19

P
packages
 installing, with PyCharm 64, 66
PEP 8 style suggestions
 reference link 94
plots
 data, viewing with 322, 323, 324
 data, working with 322, 323, 324
Post 269
postfix code completion 101, 102, 103
print debugging 171
processed dataset
 saving 373, 374
 viewing 373, 374
production-specific settings 297, 298
profiling
 about 184
 fundamentals 184, 185
 in PyCharm 185, 186, 187, 188
push command 143
PyCharm code cells
 debugging 312
 implementing 312, 313, 314, 315, 316
PyCharm plugins
 CSV plugin, using 398
 Database Navigator, using 396
 downloading 392, 393, 394
 exploring 389
 installing 392, 393, 394
 LiveEdit, using 397
 Markdown, using 399
 removing 395
 String Manipulation, using 400, 401
 updating 395

 using 396
 window, opening 389, 391
PyCharm project window
 about 55, 57, 58, 59
 panels, moving 66, 67, 68
PyCharm projects
 available interpreters, viewing 82, 83
 creating 44, 45, 46, 69
 interacting with 46, 47, 49
 navigating, to windows 59, 60
 project-specific boilerplate code 71, 72
 Python interpreter, configuring for 80, 81
 Python interpreters 73, 74
 Python virtual environment 73, 74, 75
 type, selecting 69, 70, 71
 virtual environments, with interpreters 75, 76
 working with 43, 44
PyCharm scientific project
 advanced features 311
 code, executing 307, 309
 creating 303, 304, 305
 CSV data, working with 316
 CSV plugin, using 317, 318
 documentation viewer 311, 312
 PyCharm code cells, debugging 312
 Python packages, installing 307
 README.md file 305, 306, 307
 Scientific Mode, toggling 309, 310
 setting up 305
PyCharm tool windows 60, 61, 62, 63, 64
PyCharm workspace
 customizing 55
PyCharm's code analyzer
 about 90, 91, 92
 dead code 92
 PEP 8 style suggestions 94, 95
 unresolved references 93
 unused declarations 92
PyCharm's SciView
 used, for viewing data 321, 322
PyCharm, core principles
 intelligent coding assistance 14
 productivity, improving 13
 real-time assistance 14
 scientific computing support 15

[457]

 streamlined programmer tools 14
 visual debugging 15
 web development options 14
PyCharm, editor
 about 34
 font settings 36
 line wrapping 37
 options 35
PyCharm, educational edition
 URL 429
PyCharm, general preferences
 about 32
 settings 33, 34
PyCharm, keymap
 about 37, 38
 selecting 38, 39
PyCharm
 about 9, 16, 425
 as Python IDE 13
 blog application, building 267
 Cascading Style Sheets (CSS), using 198
 Community Edition 18
 comparison, reference link 18
 data science with 424, 425
 database, working with 252
 debugging, using 172, 173
 differentiating, with editors 16, 17, 18
 differentiating, with IDEs 16, 17, 18
 Django project, creating 71, 72
 downloading 26, 28
 edition comparison, reference link 21
 edition, selecting for profession 21, 22
 educational edition 428, 429
 external project, importing into 83, 85, 86
 file watchers 419, 420, 421
 future updates 426, 427
 high level, troubleshooting 429, 430
 HTML source code, extracting 204, 205
 Hypertext Markup Language (HTML), using 198
 IDEs, philosophy 12, 13
 installing 26, 28, 29
 Jupyter notebooks 344, 345, 346, 347
 license activation 29, 31
 macros, using 415, 416, 417, 418
 miscellaneous topics 407

 official documentation, using 425, 426
 prices and licensing 18, 19
 productivity, improving 422, 423
 Professional Edition 18
 Professional Edition, support 20, 21
 Python 9, 10, 11
 Python interpreters, managing 77, 78, 80
 Python virtual environments, managing 77, 78,

80

 registering 26
 releases 426, 428
 remote Python interpreters, using 408, 409,

410, 411, 412, 413, 414, 415
 scientific project, initiating 303
 setting up 31
 shortcut customizations 39, 40, 41, 42, 43
 SQL, using 253, 254, 255
 system requirements 26
 table view 256, 257, 258
 unit testing, using 162
 used, for creating unit testing 167, 168, 169
 used, for installing packages 64, 65, 66
 version control 147
 web development with 423, 424
 web pages, implementing 198
Python code
 queries, creating via 277, 278
Python Developers Survey
 reference link 16
Python IDE 13
Python packages
 installing 307
Python Tools for Visual Studio (PTVS) 17
Python web framework Flask
 using, reference link 425
Python
 about 9, 10, 11
 reference link 10
 unit testing, using 160, 161, 162

Q
queries
 creating, via Python code 277, 278
 diagrams for 264
query output

[458]

 comparing, in PyCharm 258, 259, 260
 exporting, in PyCharm 258, 259, 260

R
race condition 170
README.md file 305, 307
refactoring 115, 116, 117, 118, 119
refactoring, in PyCharm
 about 119
 function, exporting to file 128, 129
 inline variable 123, 124
 method, converting to function 127, 128
 methods, extracting 125, 126
 renaming 120, 121, 122, 123
relational database 260, 261
remote Python interpreters
 using 408, 409, 410, 411, 412, 414, 415
repository
 about 142
 setting up 142
runtime types
 obtaining 112, 113

S
Scientific Mode
 toggling 310
Scientific Python Development Environment

(Spyder) 17
SciView 15
share feature
 interface, creating 288, 289, 290, 291, 292
Simple Mail Transfer Protocol (SMTP) 293
smart code completion
 versus basic code completion 98, 99, 100, 101
source code
 obtaining, from GitHub 49, 50
String Manipulation
 using 400, 401
Structured Query Language (SQL)
 fundamentals 252, 253
 using, in PyCharm 253, 254, 255
 working with 252

T
tab-separated values (TSV) 260, 318
table view
 in PyCharm 256, 257, 258
tracing 172
Transport Layer Security (TLS) 293

U
unit testing, in PyCharm
 about 162
 Counter class, tests 170
 creating 167, 168, 169
 run arrows 162, 163, 164
 Run panel, used for execution 164, 165, 166
unit testing
 about 159
 fundamentals 159, 160
 in Python 160, 161, 162

V
Variable explorer
 reference link 17
Variables section 175
version control diagrams 154, 155, 156
Version Control panel 148, 149
version control, in PyCharm
 about 147
 add command 149, 151, 152
 branching 153
 commit command 149, 150, 151, 152
 diagrams 154, 155, 156
 files, ignoring 154
 local repository, setting up 148
 merging 153
 push command 149, 150, 151, 152
 Version Control panel 148, 149
version control
 about 139, 140
 scenarios 140
vertical toolbar 176
VMProf profiling tool 185

W
watches 181
web frameworks
 idea 215, 216
 versus Django 216

web pages
 implementing, in PyCharm 198

Y
yappi profiling tool 185

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: The Basics of PyCharm
	Chapter 1: Introduction to PyCharm - the Most Popular IDE for Python
	The background of PyCharm
	The recent rise of Python
	The philosophy of IDEs
	PyCharm as a Python IDE

	PyCharm – an essential part of the Python community
	Differentiating PyCharm from other editors/IDEs
	Understanding the Professional and Community editions
	Prices and licensing
	Further support in the Professional Edition
	Choosing a PyCharm edition that fits your profession

	Summary
	Questions
	Further reading

	Chapter 2: Installing and Configuring PyCharm
	Technical requirements
	Downloading, installing, and registration
	System requirements
	Downloading
	Installing
	License activation

	Setting up PyCharm
	General preferences
	What is included in the settings
	How to do it in PyCharm

	Editor
	What is included in the editor
	How to do it in PyCharm

	Keymap
	The background of keymap
	How to do it in PyCharm

	Shortcut customizations

	Getting started with PyCharm projects
	Creating a project
	Interacting with a PyCharm project

	Getting the source code from GitHub
	Summary
	Questions
	Further reading

	Section 2: Improving Your Productivity
	Chapter 3: Customizing Interpreters and Virtual Environments
	Technical requirements
	Customizing the PyCharm workspace
	Inside a project window
	Navigating within a project
	Panels in a project window
	Installing packages
	Moving panels within a project window

	Creating a PyCharm project – revisited
	Choosing a project type
	Project-specific boilerplate code
	Considerations about Community PyCharm

	Virtual environments and interpreters
	Understanding the concepts
	Python interpreters
	Virtual environments in Python
	Virtual environments and interpreters together

	Managing virtual environments and interpreters in PyCharm
	Configuring the interpreter for a created project
	Why does it matter?
	Options in PyCharm

	Importing an external project into PyCharm
	Summary
	Questions
	Further reading

	Chapter 4: Editing and Formatting with Ease in PyCharm
	Technical requirements
	Code inspection
	Specifics of the code analyzer
	Code inspection in a PyCharm project
	Dead code
	Unused declarations
	Unresolved references
	PEP 8 style suggestions

	Customizable code completion support
	The case for code completion support
	How is code completion different in PyCharm?
	Basics versus smart code completion
	Postfix code completion
	Hippie completion
	Intentions

	Customizing your code completion engine
	Match case
	Sorting suggestions alphabetically
	Showing the documentation popup in [...] ms
	Parameter information
	Intentions

	Collecting runtime types
	Troubleshooting
	Indexing process
	Power save mode
	Out-of-scope files

	Refactoring
	What is refactoring?
	Refactoring in PyCharm
	Renaming
	Inline variable
	Extracting methods
	Conversion between method and function
	Exporting a function to another file

	A dynamic approach to documentation
	Docstrings – documentation for Python
	Creating documentation
	Viewing documentation
	Quick Documentation
	Quick Definition

	Summary
	Questions
	Further reading

	Chapter 5: Version Control with Git in PyCharm
	Technical requirements
	Version control and Git essentials
	What does version control mean?
	Situations that require version control

	Git and GitHub
	Downloading Git and registering for GitHub
	Setting up a repository
	Add, commit, and push
	Fork, clone, and pull requests
	Branching and merging
	Ignoring files

	Version control in PyCharm
	Setting up a local repository
	The Version Control panel
	Add, commit, and push
	Branching and merging
	Ignoring files
	Version control diagrams

	Summary
	Questions
	Further reading

	Chapter 6: Seamless Testing, Debugging, and Profiling
	Technical requirements
	Testing
	Unit testing fundamentals
	Unit testing in Python
	Unit testing in PyCharm
	PyCharm's run arrows
	The Run panel in the context of unit testing
	Creating unit tests with PyCharm
	Tests for the Counter class

	Debugging
	Debugging fundamentals
	Debugging in PyCharm
	Starting a debugging session and the Debug panel
	Placing breakpoints
	Stepping functionalities
	Watches
	Evaluating expressions at all times

	Profiling
	Profiling fundamentals
	Profiling in PyCharm

	Summary
	Questions
	Further reading

	Section 3: Web Development in PyCharm
	Chapter 7: Web Development with JavaScript, HTML, and CSS
	Technical requirements
	Introduction to JavaScript, HTML, and CSS
	Understanding the importance of HTML and CSS
	Writing our code with HTML
	Writing our code with CSS

	Understanding the importance of JavaScript

	Implementing web pages in PyCharm
	Using HTML and CSS in PyCharm
	Creating new HTML files
	Including external files in HTML code
	Viewing documentation
	Emmet
	Viewing HTML output in browsers
	Extracting HTML source code in PyCharm

	Using JavaScript in PyCharm
	Choosing the version for JavaScript
	Hints about parameters
	Debugging the code
	Live editing
	Specifying a framework for new applications

	Summary
	Questions
	Further reading

	Chapter 8: Integrating Django in PyCharm
	Technical requirements
	An overview of Django
	Django and the idea of web frameworks
	What makes Django special?
	Django models
	Admin access in Django
	Django templates
	Jinja

	Django versus Flask

	Django in PyCharm
	Starting a Django project
	Structure of a Django project
	Initial configurations
	Running manage.py and launching the server
	Creating Django models
	Making migrations
	The admin interface
	Creating a superuser and logging in
	Connecting the admin interface to models

	Creating Django views
	Customizing the run/debug configuration
	Making templates

	Summary
	Questions
	Further reading

	Chapter 9: Understanding Database Management with PyCharm
	Technical requirements
	Connecting to a data source
	Working with a database in PyCharm
	Working with SQL
	SQL fundamentals
	Using SQL in PyCharm

	The PyCharm table view
	Comparing and exporting query output
	Diagrams for databases
	Relational database
	Diagrams for database objects
	Diagrams for queries

	Summary
	Questions
	Further reading

	Chapter 10: Building a Web Application in PyCharm
	Technical requirements
	Starting a web project in PyCharm
	Creating a Django project
	Creating a Django application and models
	Using the admin interface
	Working with the Database panel
	Making queries via Python code
	Creating Django's list views
	Creating Django's detail views

	Forms and emails
	Creating the interface for the share feature
	Configuring Django emails

	Deploying your web project
	Hosting services
	Amazon Web Services
	Google Cloud
	DigitalOcean
	Heroku

	Production-specific settings

	Summary
	Questions
	Further reading

	Section 4: Data Science with PyCharm
	Chapter 11: Turning on Scientific Mode
	Technical requirements
	Starting a scientific project in PyCharm
	Creating a scientific project in PyCharm
	Setting up a scientific project
	The README.md file
	Installing packages
	Running the code
	Toggling Scientific Mode

	Understanding the advanced features of PyCharm's scientific projects
	The documentation viewer
	Using code cells in PyCharm
	Implementing PyCharm code cells

	Working with CSV data
	Using the CSV plugin

	Summary
	Questions
	Further reading

	Chapter 12: Dynamic Data Viewing with SciView and Jupyter
	Technical requirements
	Data viewing made easy with PyCharm's SciView
	Viewing and working with plots
	Viewing and working with data

	Understanding IPython and magic commands
	Installing and setting up IPython
	Introducing IPython magic commands

	Leveraging Jupyter notebooks
	Understanding Jupyter basics
	The idea of iterative development
	Editing Jupyter notebooks

	Jupyter notebooks in PyCharm

	Summary
	Questions
	Further reading

	Chapter 13: Building a Data Pipeline in PyCharm
	Technical requirements
	Working with datasets
	Starting with a question
	Collecting data
	Version control for datasets

	Data cleaning and pre-processing
	Reading in dataset
	Data cleaning
	One-hot encoding
	Problem-specific techniques
	Saving and viewing processed data

	Data analysis and insights
	Starting the notebook and reading in data
	Using charts and graphs
	Machine-learning-based insights

	Scripts versus notebooks in data science
	Summary
	Questions
	Further reading

	Section 5: Plugins and Conclusion
	Chapter 14: More Possibilities with PyCharm Plugins
	Technical requirements
	Exploring PyCharm plugins
	Opening the plugin window
	Downloading and installing a plugin
	Updating and removing plugins

	Best plugins to use for your PyCharm projects
	Using Database Navigator
	Using LiveEdit
	Using the CSV Plugin
	Using Markdown
	Using String Manipulation

	Advanced plugin-related options
	Required plugins
	Installing plugins from disk
	Developing custom plugins

	Summary
	Questions
	Further reading

	Chapter 15: Future Developments
	Technical requirements
	Miscellaneous topics in PyCharm
	Using remote Python interpreters
	Using macros
	File watchers

	Taking a step back
	Improving your productivity
	Web development with PyCharm
	Data science with PyCharm

	Moving forward with PyCharm
	Using official documentation
	Future updates and releases
	PyCharm – the Educational Edition
	Troubleshooting at a high level

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

