Learn by doing: less theory, more results

Game Programming
Using Qt

A complete guide to designing and building fun games with
Qt and Qt Quick 2 using their associated toolsets

Beginner's Guide

Witold Wysota

open source

PUBLISHING

Lorenz Haas

A complete guide to designing and building fun games
with Qt and Qt Quick 2 using their associated toolsets

Witold Wysota

Lorenz Haas

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016
Production Reference: 1210116

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-887-4

www . packtpub.com

www.packtpub.com

Authors Project Coordinator
Witold Wysota Sanjeet Rao

Lorenz Haas

Proofreader
Reviewers Safis Editing
Simone Angeloni
Rahul De Indexer

Monica Ajmera Mehta
Pooya Eimandar)

Shaveen Kumar
Graphics

M. Cihan Ozer Disha Haria

Jason Monterio
Acquisition Editor

Vinay Argekar
Production Coordinator

Conidon Miranda
Content Development Editor

Pooja Mhapsekar
Cover Work

Conidon Miranda
Technical Editor

Mrunmayee Patil

Copy Editor
Neha Vyas

Witold Wysota is a software architect and developer living in Poland. He started his
adventure with Qt in 2004 when he joined QtForum.org and started answering questions
about programming with Qt. Shortly afterwards, he became part of the moderator group of
the forum. In 2006, together with the moderator team, he established QtCentre.org, which
quickly became the largest community-driven support site devoted to Qt. For a number of
years, he conducted commercial, academic, and public trainings and workshops and has
been giving lectures on Qt, Qt Quick, and related technologies. He is a certified Qt developer
and was a member of Qt Education Advisory Board with Nokia, where he helped prepare
materials in order to use Qt in educational activities.

Witold was also a technical reviewer for Foundations of Qt Development, Johan Thelin,
Apress Publishing, a book about Qt 4, and an author of a couple of articles on programming
with Qt.

In real life, he is a passionate adept of Seven Star Praying Mantis, a traditional style of
Chinese martial arts.

I would like to thank all the people who have worked on Qt's development
over the years for creating such a great programming framework, which
was the main force that helped me to shape my programming career.

| would also like to thank Lorenz for helping me with the book as well as
the team at Packt Publishing for having a magnitude of patience for me
during the process of the creation of this book.

Lorenz Haas is a passionate programmer who started his Qt career with Qt 3. Thrilled
by Qt's great community, especially the one at QtCentre.org, he immersed himself in this
framework, became one of the first certified Qt developers and specialists, and turned his
love for Qt into his profession.

Lorenz is now working at a medium-sized IT company based in Erlangen, Germany, as a lead
software architect. He mainly develops machine controls and their user interfaces as well
as general solutions for the industry sector. Additionally, he runs his own small consultancy
and programming business called Histomatics (http://www.histomatics.de).

A few years ago, he started contributing to Qt Creator. He added a couple of refactoring
options that you probably rely on a regular basis if you use Qt Creator. He is also the author
of the Beautifier plugin.

| would like to thank Witold who guided me through my first steps into the
Qt world back in the days and who still assists me with any problems that
arise. | am also very grateful to him for taking me on board for this book
writing project. He's an excellent teacher and tutor!

Secondly, | would like to thank the team at Packt Publishing, who helped
and guided us through the entire process of writing this book.

http://www.histomatics.de

Simone Angeloni is a software developer and consultant with over a decade of experience
in C++ and scripting languages. He is a passionate gamer, but an even more passionate
modder and game designer.

He is currently working for Crytek GmbH and developing the Ul of the free-to-play, award-
winning video game Warface. Before this, he was realizing configuration systems for railway
signaling and creating standalone applications with Qt. Later, he worked with universities
and the National Institute of Nuclear Physics to realize fast data acquisition for particle
accelerators.

Recently, he founded Clockwise Interactive, a game company that is currently working on the
production of its first title.

Rahul De is a 23-year-old systems and server-side engineer from Kolkata, India. He recently
graduated from the Vellore Institute of Technology with a bachelor of technology degree

in computer science and now works with ThoughtWorks. Being a tech and open source
enthusiast and a proper "geeks geek", Rahul took up programming at a very young age and
quickly matured from developing small-time native applications for desktops to maintaining
servers, writing compilers, building IDEs, and enhancing Qt. His latest pet projects involve
Medusa—a JIT compiler for Python using Qt, which aims to provide up to a 1500 percent
boost for Python projects.

Being an avid gamer, he has already dabbled quite a bit with various engines such as Unreal
and Cry. He likes to play and develop games in his spare time.

Pooya Eimandar was born on 7th January 1986. He graduated in computer science and
has a hardware engineering degree from Shomal University. He is also the author of DirectX
11.1 Game Programming, Packt Publishing.

He began his career working on various 3D simulation applications. In 2010, he founded
BaziPardaz Game Studio, and since then, he has been leading an open source game engine
(https://persianengine.codeplex.com/) at Bazipardaz.

He is currently working on a playout and CG editor tool for Alalam News Network. You can
find more information about him at http: //PooyaEimandar. com/.

Shaveen Kumar is a computer scientist and engineer. He graduated from Carnegie Mellon
University in 2013 with a master's degree in entertainment technology and is working at
Google. He works there as a graphics engineer and technical artist. His main interests are in
GPU programming, parallel computing, game engine development, robotics, and computer
vision.

More information about his work can be found at http://www.shaveenk.com.

M. Cihan Ozer s a game developer and researcher in computer graphics. He started his
career in game development and worked for several mobile and game companies.

He got his bachelor's degree from Ankara University, Turkey, and he is currently an MS
student at Université de Montréal, Canada. Cihan's work focuses on realistic rendering and
interactive techniques.

| would like to thank the authors of this book. It will help a lot of people
who want to learn Qt and work with it. Also, | would like to thank the great
people at Packt Publishing for giving me the opportunity to review this
book.

https://persianengine.codeplex.com/
http://PooyaEimandar.com/
http://www.shaveenk.com

For support files and downloads related to your book, please visit www . PacktPub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. Packt Pub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscrihe?
¢ Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content

¢ Ondemand and accessible via a web browser

If you have an account with Packt at www . PacktPub. com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
service@packtpub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Tahle of Contents

Preface Xi
Chapter 1: Introduction to Qt 1
The cross-platform programming 1
Qt Platform Abstraction 2
Supported platforms 3

A journey through time 3
New in Qt5 5
Restructured codebase 5

Qt Essentials 6

Qt Add-ons 7

Qt Quick 2.0 7
Meta-objects 8
C++11 support 8
Choosing the right license 8
An open source license 8

A commercial license 9
Summary 9
Chapter 2: Installation 11
Installing the Qt SDK 11
Time for action - installing Qt using an online installer 12
Setting up Qt Creator 15
Time for action — loading an example project 16
Time for action — running the Affine Transformations project 17
Building Qt from sources 20
Time for action — setting up Qt sources using Git 20
Time for action — configuring and building Qt 21
Summary 22

Table of Contents

Chapter 3: Qt GUI Programming 23
Windows and dialogs 23
Creating a Qt project 23
Time for action — creating a Qt Desktop project 24
Adding child widgets to a window 27
Managing widget content 28
Time for action — implementing a tic-tac-toe game board 30
Qt meta-objects 33
Signals and slots 34
Time for action — functionality of a tic-tac-toe board 38
Properties 41
Declaring a property 41
Using a property 42
Time for action — adding properties to the board class 42
Designing GUIs 43
Time for action — designing the game configuration dialog 46
Time for action — polishing the dialog 48
Accelerators and label buddies 48
The tab order 49
Signals and slots 50
Using designer forms 53
Direct approach 53

The multiple-inheritance approach 54

The single inheritance approach 54
Time for action — the logic of the dialog 55
An application's main window 57
The Qt resource system 58
Time for action — the main window of the application 58
Time for action — adding a pull-down menu 61
Time for action — creating a toolbar 62
Time for action —filling in the central widget 62
Time for action — putting it all together 64
Summary 67
Chapter 4: Qt Core Essentials 69
Text handling 69
Manipulating strings 70
Encoding and decoding text 70
Basic string operations 71

The string search and lookup 72
Dissecting strings 73
Converting between numbers and strings 74
Using arguments in strings 75
Regular expressions 75

Table of Contents

Time for action — a simple quiz game 76
Extracting information out of a string 78
Finding all pattern occurrences 80

Data storage 81
Files and devices 81

Traversing directories 81
Getting access to the basic file 83
Devices 84

Time for action — implementing a device to encrypt data 85
Text streams 88
Data serialization 90

Binary streams 91
Time for action — serialization of a custom structure 91
XML streams 92
Time for action — implementing an XML parser for player data 93
JSON files 99
Time for action — the player data JSON serializer 100
Time for action — implementing a JSON parser 102
QSettings 104
Summary 106
Chapter 5: Graphics with Qt 107

Raster painting 107
Painter attributes 108
Widget painting 114

Time for action — custom-painted widgets 115

Time for action — transforming the viewport 117

Time for action — drawing an oscillogram 118

Input events 120

Time for action — making oscillograms selectable 120

Working with images 123
Loading 124
Modifying 125
Painting 126

Painting text 126
Static text 127
Rich text 128

Optimized drawing 129

Time for action — optimizing oscillogram drawing 129

Time for action — developing the game architecture 131

Time for action — implementing the game board class 135

Time for action — understanding the ChessView class 139

Time for action — rendering the pieces 145

Time for action — making the chess game interactive 148

Table of Contents

Time for action — connecting the game algorithm 156
OpenGL 163
Introduction to OpenGL with Qt 164
Time for action — drawing a triangle using Qt and OpenGL 165
Time for action — scene-based rendering 167
Time for action — drawing a textured cube 168
Modern OpenGL with Qt 173
Shaders 173
Time for action — shaded objects 175
GL buffers 181
Off-screen rendering 183
Summary 183
Chapter 6: Graphics View 185
Graphics View architecture 185
ltems 187
Parent child relationship 187
Appearance 189
Time for action — creating a black, rectangular item 189
Time for action — reacting to an item's selection state 191
Time for action — making the item's size definable 192
Standard items 193
Coordinate system of the items 195
Time for action — creating items with different origins 196
Time for action — rotating an item 197
Scenes 198
Adding items to the scene 198
Time for action — adding an item to a scene 199
Interacting with items on the scene 200
Rendering 203
Time for action — rendering the scene's content to an image 203
Coordinate system of the scene 204
Time for action — transforming parent items and child items 206
View 208
Time for action — putting it all together! 209
Showing specific areas of the scene 211
Transforming the scene 213
Time for action — creating an item where transformations can easily be seen 213
Time for action — implementing the ability to scale the scene 214
Time for action — implementing the ability to move the scene 215
Time for action — taking the zoom level into account 217
Questions you should keep in mind 218

Table of Contents

The jumping elephant or how to animate the scene 218
The game play 218
The player item 219

Time for action — creating an item for Benjamin 219
The playing field 221
The scene 222

Time for action — making Benjamin move 222
Parallax scrolling 227

Time for action — moving the background 228
QObject and items 229

Time for action — using properties, signals, and slots with items 229
Property animations 230

Time for action — using animations to move items smoothly 230

Time for action — keeping multiple animations in sync 232
Item collision detection 233

Time for action — making the coins explode 233
Setting up the playing field 235
A third way of animation 236

Widgets inside Graphics View 236

Optimization 238
A binary space partition tree 238
Caching the item's paint function 239
Optimizing the view 239

Summary 241

Chapter 7: Networking 243

QNetworkAccessManager 243
Downloading files over HTTP 244

Time for action — downloading a file 245
Error handling 247

Time for action — displaying a proper error message 248
Downloading files over FTP 250
Downloading files in parallel 250

The finished signal 251
Time for action — writing the OOP conform code using QSignalMapper 252
The error signal 253
The readyRead signal 253
The downloadProgress method 254

Time for action — showing the download progress 254

Using a proxy 255

Table of Contents

Connecting to Google, Facebook, Twitter, and co. 256
Time for action — using Google's Distance Matrix API 256
Time for action — constructing the query 257
Time for action — parsing the server's reply 259
Controlling the connectivity state 264
QNetworkConfigurationManager 264
QNetworkConfiguration 266
QNetworkSession 266
QNetworklInterface 268
Communicating between games 268
Time for action — realizing a simple chat program 268
The server — QTcpServer 269
Time for action — setting up the server 269
Time for action — reacting on a new pending connection 270
Time for action — forwarding a new message 271
Time for action — detecting a disconnect 273
The client 274
Time for action — setting up the client 274
Time for action — receiving text messages 275
Time for action — sending text messages 276
Improvements 277
Using UDP 278
Time for action — sending a text via UDP 278
Summary 280
Chapter 8: Scripting 281
Why script? 281
The basics of Qt Script 282
Evaluating JavaScript expressions 282
Time for action — creating a Qt Script editor 284
Time for action — sandboxed script evaluation 289
Integrating Qt and Qt Script 290
Exposing objects 290
Time for action — employing scripting for npc Al 291
Exposing functions 297
Exposing C++ functions to scripts 297
Exposing script functions to C++ 300
Time for action — storing the script 300
Time for action — providing an initialization function 302
Time for action — implementing the heartbeat event 303
Using signals and slots in scripts 304

Table of Contents

Creating Qt objects in scripts 306
Error recovery and debugging 307
Extensions 309
The other Qt JavaScript environment 310
Alternatives to JavaScript 310
Python 310
Time for action — writing a Qt wrapper for embedding Python 311
Time for action — converting data between C++ and Python 313
Time for action — calling functions and returning values 317
Summary 321
Chapter 9: Qt Quick Basics 323
Fluid user interfaces 323
Declarative Ul programming 324
Element properties 325
Group properties 327
Object hierarchies 328
Time for action — creating a button component 332
Time for action — adding button content 334
Time for action — sizing the button properly 335
Time for action — making the button a reusable component 335
Event handlers 337
Mouse input 337
Time for action — making the button clickable 337
Time for action — visualizing button states 339
Time for action — notifying the environment about button states 340
Touch input 342
Time for action — dragging an item around 342
Time for action — rotating and scaling a picture by pinching 343
Keyboard input 345
Using components in Qt Quick 350
Time for action — a simple analog clock application 350
Time for action — adding needles to the clock 354
Time for action — making the clock functional 356
Dynamic objects 357
Using components in detail 357
Creating objects on request 358
Delaying item creation 360
Accessing your item's component functionality 361
Imperative painting 363

Time for action — preparing Canvas for heartbeat visualization 363

Table of Contents

Time for action — drawing a heartbeat 364
Time for action — making the diagram more colorful 367
Qt Quick and C++ 369
Creating QML objects from C++ 369
Pulling QML objects to C++ 372
Pushing C++ objects to QML 375
Time for action — self-updating car dashboard 380
Time for action — grouping engine properties 389
Extending QML 390
Registering classes as QML elements 390
Time for action — making Carinfo instantiable from QML 391
Custom Qt Quick items 394
OpenGL items 394
Time for action — creating a regular polygon item 395
Painted items 402
Time for action — creating an item for drawing outlined text 402
Summary 407
Chapter 10: Qt Quick 409
Bringing life into static user interfaces 409
Animating elements 410
Generic animations 410
Time for action — scene for an action game 411
Time for action — animating the sun's horizontal movement 412
Composing animations 414
Time for action — making the sun rise and set 416
Non-linear animations 417
Time for action — improving the path of the sun 418
Property value sources 420
Time for action — adjusting the sun's color 420
Time for action — furnishing sun animation 421
Behaviors 424
Time for action — animating the car dashboard 426
States and transitions 427
More animation types 430
Quick game programming 431
Game loops 432
Time for action — character navigation 433
Time for action — another approach to character navigation 434
Time for action — generating coins 436
Sprite animation 437
Time for action — implementing simple character animation 438

Table of Contents

Time for action — animating characters using sprites 441
Time for action — adding jumping with sprite transitions 443
Parallax scrolling 445
Time for action — revisiting parallax scrolling 446
Collision detection 448
Time for action — collecting coins 449
Notes on collision detection 452

Eye candy 452
Auto-scaling user interfaces 453
Graphical effects 455
Particle systems 459
Tuning the emitter 460
Rendering particles 463
Making particles move 464
Time for action — vanishing coins spawning particles 470
Summary 471
Appendix: Pop Quiz Answers 473
Chapter 3, Qt GUI Programming 473
Chapter 4, Qt Core Essentials 474
Chapter 6, Graphics View 474
Chapter 7, Networking 475
Chapter 8, Scripting 475
Chapter 11, Miscellaneous and Advanced Concepts 476

Index

477

As a leading cross-platform toolkit for all significant desktop, mobile, and embedded
platforms, Qt is becoming more popular by the day. This book will help you learn the
nitty-gritty of Qt and will equip you with the necessary toolsets to build apps and games.
This book is designed as a beginner's guide to take programmers that are new to Qt from
the basics, such as objects, core classes, widgets, and so on, and new features in version 5.4,
to a level where they can create a custom application with best practices when it comes to
programming with Qt.

With a brief introduction on how to create an application and prepare a working
environment for both desktop and mobile platforms, we will dive deeper into the basics of
creating graphical interfaces and Qt's core concepts of data processing and display before
you try to create a game. As you progress through the chapters, you'll learn to enrich your
games by implementing network connectivity and employing scripting. Delve into Qt Quick,
OpenGL, and various other tools to add game logic, design animation, add game physics, and
build astonishing Uls for games. Toward the end of this book, you'll learn to exploit mobile
device features, such as accelerators and sensors, to build engaging user experiences.

Chapter 1, Introduction to Qt, will familiarize you with the standard behavior that is required
when creating cross-platform applications as well as show you a bit of history of Qt and how
it evolved over time with an emphasis on the most recent architectural changes in Qt.

Chapter 2, Installation, will guide you through the process of installing a Qt binary release for
desktop platforms, setting up the bundled IDE, and looking at various configuration options
related to cross-platform programming.

Chapter 3, Qt GUI Programming, will show you how to create classic user interfaces with the
Qt Widgets module. It will also familiarize you with the process of compiling applications
using Qt.

Preface

Chapter 4, Qt Core Essentials, will familiarize you with the concepts related to data
processing and display in Qt—file handling in different formats, Unicode text handling and
displaying user-visible strings in different languages, and regular expression matching.

Chapter 5, Graphics with Qt, describes the whole mechanism related to creating and using
graphics in Qt in 2D and 3D. It also presents multimedia capabilities for audio and video
(capturing, processing, and output)

Chapter 6, Graphics View, will familiarize you with 2D-object-oriented graphics in Qt. You will
learn how to use built-in items to compose the final results as well as create your own items
supplementing what is already available and possibly animate them.

Chapter 7, Networking, will demonstrate the IP networking technologies that are available
in Qt. It will teach you how to connect to TCP servers, implement a reliable server using TCP,
and implement an unreliable server using UDP.

Chapter 8, Scripting, shows you the benefits of scripting in applications. It will teach you
how to employ a scripting engine for a game by using JavaScript. It will also suggest some
alternatives to JavaScript for scripting that can be easily integrated with Qt.

Chapter 9, Qt Quick Basics, will teach you to program resolution-independent fluid user
interfaces using a QML declarative engine and Qt Quick 2 scene graph environment. In
addition, you will learn how to implement new graphical items in your scenes.

Chapter 10, Qt Quick, will show you how to bring dynamics to various aspects of a Ul. You
will see how to create fancy graphics and animations in Qt Quick by using the particle engine,
GLSL shaders and built-in animation, and state machine capabilities, and you will learn how
to use these techniques in games.

Chapter 11, Miscellaneous and Advanced Concepts, covers the important aspects of Qt
programming that didn't make it into the other chapters but may be important for game
programming. This chapter is available online at the link https: //www.packtpub.com/
sites/default/files/downloads/Advanced Concepts.pdf.

All you need for this book is a Windows machine with the latest version of Qt installed. The
examples presented in this book are based on Qt 5.4.

Qt can be downloaded from http://www.gt.io/download-open-source/.

[xii]

https://www.packtpub.com/sites/default/files/downloads/Advanced_Concepts.pdf
https://www.packtpub.com/sites/default/files/downloads/Advanced_Concepts.pdf
http://www.qt.io/download-open-source/

Preface

The expected readers of this book will be application and Ul developers/programmers who
have basic/intermediate functional knowledge of C++. The target audience also includes
C++ programmers. No previous experience with Qt is required for you to read this book.
Developers with up to a year of Qt experience will also benefit from the topics covered in
this book.

In this book, you will find several headings that appear frequently (Time for action,
What just happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action - heading

1. Actionl
2. Action?2
3. Action3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?

This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

These are short multiple-choice questions intended to help you test your own
understanding.

These are practical challenges that give you ideas to experiment with what you have learned.

[xiii]

Preface

You will also find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This API
is centered on QNetworkAccessManager, Which handles the complete communication
between your game and the Internet."

A block of code is set as follows:

ONetworkRequest request;
request.setUrl (QUrl ("http://localhost/version.txt")) ;

request . setHeader (QNetworkRequest : :UserAgentHeader, "MyGame") ;
m_nam->get (request) ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

void FileDownload::downloadFinished (QNetworkReply *reply) {
const QByteArray content = reply->readAll();
m_edit->setPlainText (content) ;
reply->deletelater() ;

}
Any command-line input or output is written as follows:
git clone git://code.qt.io/gt/qt5.git
cd gt5
perl init-repository
New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

[xiv]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

You can download the example code files from your account at http: //www.packtpub.
com for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this hook

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/GameProgrammingUsingQt ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we

would be grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

[xv]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/GameProgrammingUsingQt_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/GameProgrammingUsingQt_ColoredImages.pdf
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub. com, and we will do our best to address the problem.

[xvi]

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

In this chapter, you will learn what Qt is and how it evolved. We will pay special
attention to the differences between Qt's major versions 4 and 5. Finally, you
will learn to decide on which of the available Qt licensing schemes to choose for
our projects.

The cross-platform programming

Qt is an application programming framework that is used to develop cross-platform
applications. What this means is that software written for one platform can be ported

and executed on another platform with little or no effort. This is obtained by limiting

the application source code to a set of calls to routines and libraries available to all the
supported platforms, and by delegating all tasks that may differ between platforms (such as
drawing on the screen and accessing system data or hardware) to Qt. This effectively creates
a layered environment (as shown in the following figure), where Qt hides all platform-
dependent aspects from the application code:

APPLICATION

Qt
OPERATING SYSTEM
HARDWARE

1l

Introduction to Qt

Of course, at times we need to use some functionality that Qt doesn't provide. In such
situations, it is important to use conditional compilation like the one used in the following
code:

#ifdef Q OS WIN32
// Windows specific code

#elif defined(Q OS _LINUX) || defined(Q OS_MAC)
// Mac and Linux specific code
#endif

Downloading the example code

packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visithttp: //www.packtpub.
com/support and register there to have the files e-mailed directly to you.

élQ You can download the example code files from your account at http: //www.

What just happened?

Before the code is compiled, it is first fed to a preprocessor that may change the final text
that is going to be sent to a compiler. When it encounters a #ifdef directive, it checks for
the existence of a label that will follow (such as 0_0s_WIN32), and only includes a block of
code in compilation if the label is defined. Qt makes sure to provide proper definitions for
each system and compiler so that we can use them in such situations.

s . . .
‘Q You can find a list of all such macros in the Qt reference manual under the

term "QtGlobal".

Ot Platform Ahstraction

Qt itself is separated into two layers. One is the core Qt functionality that is implemented

in a standard C++ language, which is essentially platform-independent. The other is a set of
small plugins that implement a so-called Qt Platform Abstraction (QPA) that contains all the
platform-specific code related to creating windows, drawing on surfaces, using fonts, and

so on. Therefore, porting Qt to a new platform in practice boils down to implementing the
QPA plugin for it, provided the platform uses one of the supported standard C++ compilers.
Because of this, providing basic support for a new platform is work that can possibly be done
in a matter of hours.

21

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

Supported platforms

The framework is available for a number of platforms, ranging from classical desktop

environments through embedded systems to mobile phones. The following table lists down
all the platforms and compiler families that Qt supports at the time of writing. It is possible
that when you are reading this, a couple more rows could have been added to this table:

Platform QPA plugins Supported compilers
Linux XCB (X11) and GCC, LLVM (clang), and ICC
Wayland
Windows XP, Vista, 7, 8, and 10 Windows MinGW, MSVC, and ICC
Mac 0S X Cocoa LLVM (clang) and GCC
Linux Embedded DirectFB, EGLFS, KMS, | GCC
and Wayland
Windows Embedded Windows MSVC
Android Android GCC
i0S i0S LLVM (clang) and GCC
Unix XCB (X11) GCC
RTOS (QNX, VxWorks, and INTEGRITY) | gnx gcc, dcc, and GCC
BlackBerry 10 gnx gcc
Windows 8 (WinRT) winrt MSVC
Maemo, MeeGo, and Sailfish OS XCB (X11) GCC
Google Native Client (unsupported) pepper GCC

The development of Qt was started in 1991 by two Norwegians—Eirik Chambe-Eng and

Haavard Nord, who were looking to create a cross-platform GUI programming toolkit.
The first commercial client of Trolltech (the company that created the Qt toolkit) was

the European Space Agency. The commercial use of Qt helped Trolltech sustain further
development. At that time, Qt was available for two platforms—Unix/X11 and Windows;
however, developing with Qt for Windows required buying a proprietary license, which was a
significant drawback in porting the existing Unix/Qt applications.

Introduction to Qt

A major step forward was the release of Qt Version 3.0 in 2001, which saw the initial support
for Mac as well as an option to use Qt for Unix and Mac under a liberal GPL license. Still,

Qt for Windows was only available under a paid license. Nevertheless, at that time, Qt had
support for all the important players in the market—Windows, Mac, and Unix desktops, with
Trolltech's mainstream product and Qt for embedded Linux.

In 2005, Qt 4.0 was released, which was a real breakthrough for a number of reasons.

First, the Qt APl was completely redesigned, which made it cleaner and more coherent.
Unfortunately, at the same time, it made the existing Qt-based code incompatible with 4.0,
and many applications needed to be rewritten from scratch or required much effort to be
adapted to the new API. It was a difficult decision, but from the time perspective, we can see
it was worth it. Difficulties caused by changes in the APl were well countered by the fact that
Qt for Windows was finally released under GPL. Many optimizations were introduced that
made Qt significantly faster. Lastly, Qt, which was a single library until now, was divided into
a number of modules:

Qt Declarative

Qt : Qt Xml
WebK
OpenGL Qt WebKit Patterns
Qt GUI Net%:/[ork ot soL || ot Script ||t xml

Qt Core

This allowed programmers to only link to the functionality that they used in their
applications, reducing the memory footprint and dependencies of their software.

In 2008, Trolltech was sold to Nokia, which at that time was looking for a software framework
to help it expand and replace its Symbian platform in the future. The Qt community became
divided, some people were thrilled, others worried after seeing Qt's development get
transferred to Nokia. Either way, new funds were pumped into Qt, speeding up its progress
and opening it for mobile platforms—Symbian and then Maemo and MeeGo.

(a1

Chapter 1

For Nokia, Qt was not considered a product of its own, but rather a tool. Therefore, they
decided to introduce Qt to more developers by adding a very liberal LGPL license that
allowed the usage of the framework for both open and closed source development.

Bringing Qt to new platforms and less powerful hardware required a new approach to create
user interfaces and to make them more lightweight, fluid, and eye candy. Nokia engineers
working on Qt came up with a new declarative language to develop such interfaces—the Qt
Modeling Language (QML) and a Qt runtime for it called Qt Quick.

The latter became the primary focus of the further development of Qt, practically stalling
all nonmobile-related work, channeling all efforts to make Qt Quick faster, easier, and more
widespread. Qt 4 was already in the market for 7 years and it became obvious that another
major version of Qt had to be released. It was decided to bring more engineers to Qt by
allowing anyone to contribute to the project.

Nokia did not manage to finish working on Qt 5.0. As a result of an unexpected turn over

of Nokia toward different technology in 2011, the Qt division was sold in mid-2012 to the
Finnish company Digia that managed to complete the effort and release Qt 5.0 in December
of the same year.

The APl of Qt 5 does not differ much from that of Qt 4. Therefore, Qt 5 is almost completely
source compatible with its predecessor, which means that we only need a minimal effort

to port the existing applications to Qt 5. This section gives a brief introduction to the major
changes between versions 4 and 5 of Qt. If you are already familiar with Qt 4, this can serve
as a small compendium of what you need to pay attention to if you want to use the features
of Qt 5 to their fullest extent.

Restructured codehase

The biggest change compared to the previous major release of Qt and the one that is
immediately visible when we try to build an older application against Qt 5 is that the whole
framework was refactored into a different set of modules. Because it expanded over time
and became harder to maintain and update for the growing number of platforms that

it supported, a decision was made to split the framework into much smaller modules
contained in two module groups—Qt Essentials and Qt Add-ons. A major decision relating to
the split was that each module could now have its own independent release schedule.

Introduction to Qt

Ot Essentials

The Essentials group contains modules that are mandatory to implement for every
supported platform. This implies that if you are implementing your system using modules
from this group only, you can be sure that it can be easily ported to any other platform that
Qt supports. Some of the modules are explained as follows:

*

The QtCore module contains the most basic Qt functionality that all other modules
rely on. It provides support for event processing, meta-objects, data 1/0, text
processing, and threading. It also brings a number of frameworks such as the
animation framework, the State Machine framework, and the plugin framework.

The Qt GUI module provides basic cross-platform support to build user interfaces.

It is much smaller compared with the same module from Qt 4, as the support for
widgets and printing has been moved to separate modules. Qt GUI contains classes
that are used to manipulate windows that can be rendered using either the raster
engine (by specifying QSurface: :RasterSurface as the surface type) or OpenGL
(osurface: :OpenGLSurface). Qt supports desktop OpenGL as well as OpenGL ES
1.1and 2.0.

The Qt Network module brings support for IPv4 and IPv6 networking using TCP and
UDP as well as by controlling the device connectivity state. Compared to Qt 4, this
module improves IPv6 support, adds support for opaque SSL keys (such as hardware
key devices) and UDP multicast, and assembles MIME multipart messages to be sent
over HTTP. It also extends support for DNS lookups.

Qt Multimedia allows programmers to access audio and video hardware (including
cameras and FM radio) to record and play multimedia content.

Qt SQL brings a framework that is used to manipulate SQL databases in an abstract
way.

Qt WebKit is a port of the WebKit 2 web browser engine to Qt. It provides classes to
display and manipulate web content and integrates with your desktop application.

Qt Widgets extends the GUI module with the ability to create a user interface

using widgets, such as buttons, edit boxes, labels, data views, dialog boxes, menus,
and toolbars that are arranged using a special layout engine. It also contains the
implementation of an object-oriented 2D graphics canvas called Graphics View.
When porting Qt 4 applications to Qt 5, it is a good idea to start by enabling support
of the widgets module (by adding QT += widgets to the project file) and then work
your way down from here.

Qt Quick is an extension of Qt GUI, which provides means to create lightweight fluid
user interfaces using QML. It is described in more detail later in this chapter as well
as in Chapter 9, Qt Quick Basics.

Chapter 1

M There are also other modules in this group, but we will not focus on them in
Q this book. If you want to learn more about them, you can look them up in the
Qt reference manual.

This group contains modules that are optional for any platform. This means that if a
particular functionality is not available on some platform or there is nobody willing to spend
time working on this functionality for a platform, it will not prevent Qt from supporting this
platform.

Some of the most important modules are QtConcurrent for parallel processing, Qt Script
that allows us to use JavaScript in C++ applications, Qt3D that provides high-level OpenGL
building blocks, and Qt XML Patterns that helps us to access XML data. Many others are also
available, but we will not cover them here.

0t Quick 2.0

The largest upgrade to Qt functionality-wise is Qt Quick 2.0. In Qt 4, the framework was
implemented on top of Graphics View. This proved to be too slow when used with low-end
hardware even with OpenGL ES acceleration enabled. This is because of the way Graphics
View renders its content—it iterates all the items in sequence, calculates and sets its
transformation matrix, paints the item, recalculates and resets the matrix for the next item,
paints it, and so on. Since an item can contain any generic content drawn in an arbitrary
order, it requires frequent changes to the GL pipeline, causing major slowdown:s.

The new version of Qt Quick instead uses a scene-graph approach. It describes the whole
scene as a graph of attributes and well-known operations. To paint the scene, information
about the current state of the graph is gathered and the scene is rendered in a more optimal
way. For example, it can first draw triangle strips from all items, then render fonts from all
items, and so on. Furthermore, since the state of each item is represented by a subgraph,
changes to each item can be tracked and it can be decided whether the visual representation
of a particular item needs to be updated or not.

The old QDeclarativeItem class was replaced by QQuickItem, which has no ties to the
Graphics View architecture. There is no routine available where you can directly paint the
item, but there is a QQuickPaintedItem class available that aids in porting old code by
rendering content based on Qpainter to a texture and then rendering that texture using
a scene-graph. Such items are, however, significantly slower than those directly using the
graph approach, so if performance is important, they should be avoided.

Qt Quick plays an important role in Qt 5 and it is very useful to create games. We will cover
this technology in detail in Chapters 9, Qt Quick Basics and Chapter 10, Qt Quick.

71

Introduction to Qt

Meta-ohjects

In Qt 4, adding signals and slots to a class required the presence of a meta-object (that is, an
instance of a class that describes another class) for that class. This was done by subclassing
QObject, adding the 9 OBJECT macro to it, and declaring signals and slots in special scopes
of the class. In Qt 5, this is still possible and advised in many situations, but we now have
new interesting possibilities.

It is now acceptable to connect a signal to any compatible member function of a class or any
callable entity, such as a standalone function or function object (functor). A side-effect is a
compile-time compatibility check of the signal and the slot (as opposed to the runtime check
of the "old" syntax).

C++11support

In August 2011, ISO approved a new standard for C++, commonly referred to as C++11. It
provides a number of optimizations and makes it easier for programmers to create effective
code. While you could use C++11 together with Qt 4, it didn't provide any dedicated support
for it. This has changed with Qt 5, which is now aware of C++11 and supports many of the
constructs introduced by the new version of the language. In this book, we will sometimes
use C++11 features in our code. Some compilers have C++11 support enabled by default, in
others, you need to enable it. Don't worry if your compiler doesn't support C++11. Each time
we use such features, | will make you aware of it.

Qt is available under two different licensing schemes—you can choose between a
commercial license and an open source one. We will discuss both here to make it easier
for you to choose. If you have any doubts regarding whether a particular licensing scheme
applies to your use case, better consult a professional lawyer.

The advantage of open source licenses is that we don't have to pay anyone to use Qt;
however, the downside is that there are some limitations imposed on how it can be used.

When choosing the open source edition, we have to decide between GPL 3.0 and LGPL 2.1 or
3. Since LGPL is more liberal, in this chapter we will focus on it. Choosing LGPL allows you to
use Qt to implement systems that are either open source or closed source—you don't have
to reveal the sources of your application to anyone if you don't want to.

Chapter 1

However, there are a number of restrictions you need to be aware of:

¢ Any modifications that you make to Qt itself need to be made public, for example,
by distributing source code patches alongside your application binary.

¢ LGPLrequires that users of your application must be able to replace Qt libraries that
you provide them with other libraries with the same functionality (for example, a
different version of Qt). This usually means that you have to dynamically link your
application against Qt so that the user can simply replace Qt libraries with his own.
You should be aware that such substitutions can decrease the security of your
system, thus, if you need it to be very secure, open source might not be the option
for you.

¢ LGPLis incompatible with a number of licenses, especially proprietary ones, so it is
possible that you won't be able to use Qt with some commercial components.

The open source edition of Qt can be downloaded directly from http://www.gt . io.

A commercial license

All these restrictions are lifted if you decide to buy a commercial license for Qt. This allows
you to keep the entire source code a secret, including any changes you may want to
incorporate in Qt. You can freely link your application statically against Qt, which means
fewer dependencies, a smaller deployment bundle size, and a faster startup. It also increases
the security of your application, as end users cannot inject their own code into the
application by replacing a dynamically loaded library with their own.

To buy a commercial license, goto http://
s gt .io/buy.

sSummary

In this chapter, you learned about the architecture of Qt. We saw how it evolved over time
and we had a brief overview of what it looks like now. Qt is a complex framework and we

will not manage to cover it all, as some parts of its functionality are more important for game
programming than others that you can learn on your own in case you ever need them. Now
that you know what Qt is, we can proceed with the next chapter where you will learn how to
install Qt on your development machine.

http://www.qt.io

In this chapter, you will learn how to install Qt on your development machine,
including Qt Creator, an IDE tailored to use with Qt. You will see how to configure
the IDE for your needs and learn the basic skills to use that environment. In
addition to this, the chapter will describe the process of building Qt from the
source code, which can be useful for customizing your Qt installation as well as
getting a working Qt installation for embedded platforms. By the end of this
chapter, you will be able to prepare your working environment for both desktop
and embedded platforms using tools included in the Qt release.

Installing the Qt SDK

Before you can start using Qt on your machine, it needs to be downloaded and installed.
Qt can be installed using dedicated installers that come in two flavors—the online installer,
which downloads all the needed components on the fly, and a much larger offline installer,
which already contains all the required components. Using an online installer is easier for
regular desktop installs, so we will prefer this approach.

nl

Installation

Time for action - installing Qt using an online installer

First, go to http://gt.io and click on Download. This should bring you to a page
containing a list of options for different licensing schemes. To use the open source version,
choose the Open Source edition licensed under GPL and LGPL. Then, you can click on the
Download Now button to retrieve the online installer for the platform that you are currently
running on or you can click on any of the header sections to reach a more comprehensive
list of options. The links to online installers are at the beginning of the list, as shown in the
following screenshot. Click and download the one suited to your host machine:

Recommended

rating s m as: Linux
I: Qt Online Installer for Linux

Before you begin your download, please make sure you:

learn about the obligations of the LGPL.

read the FAQ about developing with the LGPL.

“internet

and latest

When the download completes, run the installer, as shown:

121

http://qt.io

Chapter 2

[i QL Setup

Setup - Qt

—

Code less.
Create more.
Deploy everywhere.

Settings

Welcome to the Qt Setup Wizard.

| Next> |[qut |

Click on Next and after a while of waiting as the downloader checks remote repositories,
you'll be asked for the installation path. Be sure to choose a path where you have write
access (it's best to put Qt into your personal directory unless you ran the installer as

the system administrator user). Clicking on Next again will present you with choices of
components that you wish to install, as shown in the following screenshot. You will be given

different choices depending on your platform.

[= QF Setup

Select Components

7 Qt5.1.1

=1 [
+ Android =86
#-] Android armv?
+- |« gcc 64-bit
+ Source Components
+ QEs51.0
+ Qt5.0.2
+- ¥ Tools
Default H Select All HQesetectAll]

Please select the components vou want to install.

N

This component will occupy
approximately 788.08 MIiB on
wour hard disk drive.

[< Back H MNext > H Cancel

1131

Installation

Choose whichever platforms you need, for example, to build native and Android applications
on Linux, choose both gcc-based installation and one for the desired Android platform. When
on Windows, you have to make additional choices. When using Microsoft compilers, you can
choose whether to use native OpenGL drivers (the versions with the OpenGL suffix) or to
emulate OpenGL ES using DirectX calls. If you don't have a Microsoft compiler or you simply
don't want to use it, choose the version of Qt for the MinGW compiler. If you don't have a
MinGW installation, don't worry—the installer will also install it for you.

After choosing the needed components and clicking on Next again, you will have to accept
the licensing terms for Qt by marking an appropriate choice, as shown in the following
screenshot. After clicking on Install, the installer will begin downloading and installing the
required packages. Once this is done, your Qt installation will be ready. At the end of the
process, you will be given an option to launch Qt Creator.

[Cl® Qt Setup D @ Qt Setup DNONSNES
License Agreement v Installing Qt v
Please read the following license agreements. You must accept the terms Q]l (]l
contained in these agreements before continuing with the installation
Qt Installer LGPL Agreement GMU LESSER GENERAL PUBLIC - 10%
Qt Installer FOL Agreement LICENSE
Qt Installer GPL Agreement Downloading archive for compenent: Qt Creator
Qt Installer LGPL Exception Agreement | The gt Toolkit is Copvright (C) 2013 2454 of 53.72 MiB (5.45 MiB/sec) - 5 seconds remaining
Digia Plc and/or its subsidiarv(-ies). "
Contact: htkp:/fwww.qt- Show Details

project.org/legal

You may use, distribute and copy the
Qb GUI Toolkit under the terms of
GMU Lesser General Public License
version 2.1, which is displaved below

Ihave read and agree to the Follawing terms conkained in the license agreements accompanying the GE installer and
@ additional ivems. 1agres i is govemed inthese
license agreements.

1do not accept the terms and canditions of the above listed license agreements Please note by checking the box, you
must cancel the installation or downloading the QF and must dest oy all capies, o7 partions thereaf, ofthe Qrin your
possessions.

<ack |[Mext-][cancel Back Install

What just happened?

The process we went through results in the whole Qt infrastructure appearing on your disk.
You can examine the directory you pointed to the installer to see that it created a number
of subdirectories in this directory—one for each version of Qt chosen with the installer and
another one called Tools that contains Qt Creator. You can see that if you ever decide to
install another version of Qt, it will not conflict with your existing installation. Furthermore,
for each version, you can have a number of platform subdirectories that contain the actual
Qt installations for particular platforms.

(1]

Chapter 2

After Qt Creator starts, you should be presented with the following screen:

B Qk Creator &

File Edit Build Debug Analyze Tools Window Help

m- | Qt Creator
&

S Getting Started Develop Examples Tutorials
v
n
@
Debug CREATE -
- o, Tutarials 2
v IR
Ly ‘;;_ e
. [Qf.) S)) EEEE
|:| 2 & - [| [|
Analyze w) A . . D D
(7)) —
Help IDE Overview User Interface Building and Running an Start Developing

Example Application

> Q -
- []) i . ‘
- A Jser Guide Online Community Elogs

| Nl £~ Tvpe to locate (CErl+K) Search . ADDlica . CumDile... QML/JS . To-Do E... !

The program should already be configured properly for you to use the version of Qt and
compiler that were just installed, but let's verify that anyway. From the Tools menu,
choose Options. Once a dialog box pops up, choose Build & Run from the side list. This

is the place where we can configure the way Qt Creator builds our project. A complete
build configuration is called a kit. It consists of a Qt installation and a compiler that will be
executed to perform the build. You can see tabs for all the three entities in the Build & Run

section of the Options dialog box.

Let's start with the Compilers tab. If your compiler was not autodetected properly and is not
in the list, click on the Add button, choose your compiler type from the list, and fill the name
and path to the compiler. If the settings were entered correctly, Creator will autofill all the
other details. Then, you can click on Apply to save the changes.

151

Installation

Next, you can switch to the Qt Versions tab. Again, if your Qt installation was not detected
automatically, you can click on Add. This will open a file dialog box where you will need to
find your Qt installation's directory wherein all the binary executables are stored (usually in
the bin directory) and select a binary called gmake. Qt Creator will warn you if you choose
a wrong file. Otherwise, your Qt installation and version should be detected properly. If you
want, you can adjust the version name in the appropriate box.

The last tab to look at is the Kits tab. It allows you to pair a compiler with the Qt version to
be used for compilation. In addition to this, for embedded and mobile platforms, you can
specify a device to deploy to and a sysroot directory containing all the files needed to build
the software for the specified embedded platform.

Time for action - loading an example project

Qt comes with a lot of examples. Let's try building one to check whether the installation and
configuration were done correctly. In Qt Creator, click on the Welcome button on the top-
left corner of the window to go the initial screen of the IDE. On the right-hand side of the
page that appears (refer to the previous screenshot) there are a couple of tabs among which
one of them happens to be called Examples. Clicking on that tab will open a list of examples
with a search box. Make sure that the version of Qt you just installed is chosen in the list
next to the search box. In the box, enter af £ to filter the list of examples and click on Affine
Transformations to open the project. If you are asked whether you want to copy the project
to a new folder, agree. Qt Creator will then present you with the following window:

E main.cpp - affine - GF Creator 2 e

filo Edn Buld Debug Anabze ool Window Help
e a’B N Y % d mancep +" <8olect Symbal>

£'Line: 5, Coli 14

B ® GotoHelpMode & # b

Affine Transformations

o+ sform.cpp
» BB Resources

| Prsicets

| Analyze

®

Halp

1161

Chapter 2

What just happened?

Qt Creator loaded the project and set a view that will help us to learn from example projects.
The view is divided into four parts. Let's enumerate them starting from the left side. First
there is Qt Creator's working mode selector that contains an action bar, which allows us to
toggle between different modes of the IDE. Then, there is the project view that contains a
list of files for the project. Next comes the source code editor, displaying the main part of the
project's source code. Finally, far to the right, you can see the online help window displaying
the documentation for the opened example.

Time for action - running the Affine Transformations project

Let's try building and running the project to check whether the building environment is
configured properly. First, click on the icon in the action bar directly over the green triangle
icon to open the build configuration popup, as shown in the following screenshot:

Project: affine
Deploy: Deploy locally
Run: affine

affine Kit | Build

!El v | Desktop ; Debug ;

p Qt 5.1.1 GCC B4hit

P- Type to locate (Ctrl4K)

[l

Installation

The exact content that you get may vary depending on your installation, but in general, on
the left-hand side you will see the list of kits configured for the project and on the right-
hand side you will see the list of build configurations defined for that kit. Choose a kit for
your desktop installation and any of the configurations defined for that kit. You can adjust
configurations by switching Qt Creator to the project management mode by clicking on the
Projects button in the working mode selector bar. There, you can add and remove kits from
the project and manage build configurations for each of the kits, as shown in the following
screenshot:

B main.cpp - affine - Qt Creator AR Ve

File Edit Build Debug Analyze Tools Window Help

Ql EERAELS | Editor | Code Style | Dependencies |
Welcome
Add Kit
Desktop Desktop Ot 5.1.1 GCC 6...
E |Manage Kits.‘.‘ Build | Run Build Run
Edit
4 }v Build Settings
+*
an Edit build configuration: | Debug ~ Add ~|| Remowe Rename...
‘9 General
Debug
Shadew build: v
E Build directery: |.1.1/gcc_64jexamplesfwidgetsfpainting/build-affine-Desktop_Qt_5_1 1 GCC_&4bit-Debug|| Browse...
Analyze
@ Build Steps
Hel
3 qgmake: gmake affine.pro -r -spec linux-g++ COMFIG+=debug CONFIG+=declarative_debug Details «
Make: make in fhomefwysota/Qt/5.1.1/gec_B4fexampleswidgets/painting/build-affine-Desktop Details +

|add Build step -

Clean Steps
affine
!EI Make: make clean in fhomejwysota/Qt/s.1.1/gcc_64/examples/widgets/painting/build-affine-Desktop_ Details «
3 ———
Debug |Add Clean Step "
~ Build Environment
> Use System Environment Details
S

| A ©- Type to locate (Ctrl+k) \ssuesSearch R‘..Apphcati‘.‘ 1L} compile ‘..QMLJJS c...li& o-Do En..‘!

You can adjust, build, and clean steps, and toggle shadow building (that is, building your
project outside the source code directory tree).

[181

Chapter 2

To build the project, click on the hammer icon at the bottom of the action bar. You can also
click on the green triangle icon to build and run the project. If everything works, after some
time, the application should be launched, as shown in the next screenshot:

Ao Affine TransFormation

B Affine Transformations. o

P . FOLoLE . pa

TTTREEETTTTT
@ ‘ector Image
@ Pixmap
Q Text

rmation Example

What just happened?

How exactly was the project built? If you open the Projects mode and look at Build Settings
for a kit assigned to the project (as seen in one of the previous screenshots), you will notice
that a number of build steps were defined. The first step for Qt projects is usually the gmake
step, which runs a special tool that generates a Makefile for the project that is fed in

the second step to a classic make tool. You can expand each of the steps by clicking on the
respective Details button to see configuration options for each of the steps.

While make is considered as a standard tool for building software projects, qgmake is a
custom tool provided with Qt. If you go back to the Edit mode and see which files are listed
in the project contents, you will notice a file with a pro extension. This is the main project
file that contains a list of source and headers files in the project, definitions of Qt modules
active for the project, and optionally, external libraries that the project needs to link against.
If you want to learn the details of how such project files are managed, you can switch to

the Help mode, choose Index from the drop-down list on the top of the window, and type
gmake Manual to find the manual for the tool. Otherwise, just let Qt Creator manage your
project for you. For self-contained Qt projects, you don't need to be a gmake expert.

1191

Installation

Building Qt from sources

In most cases for desktop and mobile platforms, the binary release of Qt you download
from the webpage is sufficient for all your needs. However, for embedded systems,
especially for those ARM-based systems, there is no binary release available or it is too
heavy resource-wise for such a lightweight system. In such cases, a custom Qt build needs
to be performed. There are two ways to do such a build. One is to download the sources

as a compressed archive just like the binary package. The other is to download the code
directly from a Git repository. Since the first way is pretty much self-explanatory, we'll focus
on the second approach.

Time for action - setting up Qt sources using Git

First, you need to install Git on your system if you don't already have it. How to do that
depends on your operating system. For Windows, simply download an installer from
https://git-for-windows.github. io. For Mac, the installer is available at
http://code.google.com/p/git-osx-installer. For Linux, the simplest way
is to use your system's package manager. For instance, on Debian-based distributions,
just issue the sudo apt-get install git command on a terminal and wait until
the installation gets completed.

Afterwards, you need to clone Qt's Git repository. Since Git is a command-line tool,
we'll be using the command line from now on. To clone Qt's repository to a directory
where you want to keep the sources, issue the following command:

git clone git://code.qt.io/gt/qt5.git

If all goes well, Git will download a lot of source code from the network and create a gt5
directory, containing all the files that were downloaded. Then, change the current working
directory to the one containing the freshly downloaded code:

cd gt5s

Then you need to run a Perl script that will set up all the additional repositories for you. If
you don't have Perl installed, you should do that now (you can get Perl for Windows from

http://www.activestate.com/activeperl/downloads). Then, issue the following
command:

perl init-repository

The script will start downloading all the modules required for Qt and should complete
successfully after a period dependent on your network link speed.

[201

https://git-for-windows.github.io
http://code.google.com/p/git-osx-installer
http://www.activestate.com/activeperl/downloads

Chapter 2

What just happened?

At this point in the gt 5 directory, you have a number of subdirectories for different Qt
modules (some of them were mentioned in Chapter 1, Introduction to Qt) each with a local
Git repository containing the source code for the respective Qt modules and tools. Each of
the modules can be updated separately if required.

Time for action - configuring and huilding Qt

Having the sources in place, we can start building the framework. To do that, in addition

to a supported compiler, you will need Perl and Python (Version 2.7 or later) installed. For
Windows, you will also need Ruby. If you are missing any of the tools, it's a good time to
install them. Afterwards, open the command line and change the current working directory
to the one containing the Qt source code. Then, issue the following command:

configure -opensource -nomake tests

This will launch a tool that detects whether all the requirements are met and will report any
inconsistencies. It will also report the exact configuration of the build. You can customize the
build (for example, if you need to enable or disable some features or cross-compile Qt for an
embedded platform) by passing additional options to configure. You can see the available
options by running configure with the -help switch.

If configure reports problems, you will have to fix them and restart the tool. Otherwise,
start the build process by invoking make (or an equivalent like mingw32-make if using
MinGW or nmake if using MSVC).

\ Instead of nmake, you can use a tool called jom that is bundled with Qt. It will

~ reduce the compilation time on multicore machines, which is what the default

Q nmake tool can't do. For make and mingw32-make, you can pass the -j N
parameter, where N stands for the number of cores in your machine.

What just happened?

After some time (usually less than an hour), if all goes well, the build should be complete and
you will be ready to add the compiled framework to the list of kits available in Qt Creator.

M In Unix systems after the build gets completed, you can invoke a make install
Q command with super-user privileges (obtained for example, with sudo) to
copy the framework to a more appropriate place.

21

Installation

By now, you should be able to install Qt on your development machine. You can now use Qt
Creator to browse the existing examples and learn from them or to read the Qt reference
manual to gain additional knowledge. You can also just start a new C++ project and start
writing code for it, build, and execute it. Once you become an experienced Qt developer, you
will also be able to make your own custom build of Qt. In the next chapter, we will finally
start using the framework and you will learn how to create graphical user interfaces by
implementing our very first simple game.

[22]

This chapter will help you learn how to use Qt to develop applications with a
graphical user interface using the Qt Creator IDE. We will get familiar with the
core Qt functionality, property system, and the signals and slots mechanism
that we will later use to create complex systems such as games. We will also
cover the various actions and resource system of Qt. By the end of this chapter,
you will be able to write your own programs that communicate with the user
through windows and widgets.

The most basic skill that you need to learn is creating windows, showing them on a screen,
and managing their content.

The first step to develop an application with Qt Creator is to create a project using one of the
templates provided by the editor.

[231

Qt GUI Programming

Time for action - creating a Qt Desktop project

When you first start Qt Creator, you will see a welcome screen. From the File menu, choose
New File or Project. There are a number of project types to choose from. follow the given
steps for creating a Qt Desktop project:

1. For a widget-based application, choose the Applications group and the Qt Gui
Application template:

D we New ¥ & X
Choose a template: All Templates v
P t t Gui Application o

el Mb'l licati Creates a Qt application For the desktop.
@ Mobi E.Q PP 'c? \o.n o Includes a Qt Designer-based main
Libeari Qt Quick 1 Application (Built-in Elements) | indow.
ibraries
| Qt Quick 2 Application (Built-in Elements)
Other P (4 ildi
er Projec! 1 Qt Quick 1 Application For MeeGo Harmatt Presl_elegts a_rdeskliongt for building the
Non-Qt Project)) o o application if available.
<7 QtQuick 1 Application (from Existing QML
Import Preject . Qt Console Application Supported Platforms: Desktop
Files and Classes E HTMLS Application
C+] QtQuick1UI
Qt <] QrQuick2zul
GLSL
General
4 »
Choose... Cancel

2. The next step is to choose a name and location for your new project:

[WESRE) Qt Gui Application & & 2

Introduction and Project Location

= Location
This wizard generates a Qt GUI applicatien project. The
application derives by default from QApplication and includes
an empkty widget.

Name: |tictactoe

Create in: | /opt/projects Browse...

Use as default project location

Next = Cancel

[24]

Chapter 3

3. We are going to create a simple tic-tac-toe game, so we will name our project
tictactoe and provide a nice location for it.

\ If you have a common directory where you put all your projects, you
~ can tick the Use as default project location checkbox for Creator to
Q remember the location and suggest it the next time when you start a
new project.

4. When you click on Next, you will be presented with a window that lets you choose
one or more of the defined compilation kits for the project. Proceed to the next step
without changing anything. You will be presented with the option of creating the
first widget for your project. Fill in the data as shown in the following screenshot:

B & Qt Gui Application w2 LS

Class Information

Location

Kits Specify basic information about the classes For which you want

) to generate skeleton source code Files.
g Details
Class name: | TicTacToeWidget
Base class: Qwidget b
Header file: tictactoewidget.h
Source file: tictactoewidget.cpp
Generate form:
Form file:
< Back Mext = Cancel

5. Then, click on Next and Finish.

1251

Qt GUI Programming

What just happened?

Creator created a new subdirectory in the directory that you previously chose for

the location of the project and where you put a number of files. Two of these files
(tictactoewidget.h and tictactoewidget .cpp)implement the TicTacToeWidget
class as the subclass of gWwidget. The third file called main. cpp contains code for the entry
point of the application:

#include "tictactoewidget.h"
#include <QApplications>

int main(int argc, char *argvl[]) {
QApplication a(argc, argv) ;
TicTacToeWidget w;
w.show () ;
return a.exec() ;

}

This file creates an instance of the QApplication class and feeds it with standard
arguments to the main () function. Then, it instantiates our TicTacToeWidget class, calls
its show method, and finally returns a value returned by the exec method of the application
object.

QApplication is a singleton class that manages the whole application. In particular, it is
responsible for processing events that come from within the application or from external
sources. For events to be processed, an event loop needs to be running. The loop waits for
incoming events and dispatches them to proper routines. Most things in Qt are done through
events—input handling, redrawing, receiving data over the network, triggering timers, and
so on. This is the reason we say that Qt is an event-oriented framework. Without an active
event loop, nothing would function properly. The exec call in QApplication (or to be more
specific, in its base class—QCoreApplication) is responsible for entering the main event
loop of the application. The function does not return until your application requests the
event loop to be terminated. When this eventually happens, the main function returns and
your application ends.

The final file that was generated is called tictactoe.pro and is the project configuration
file. It contains all the information that is required to build your project using the tools Qt
provides. Let's analyze this file:

QT += core gui

greaterThan (QT MAJOR VERSION, 4): QT += widgets
TARGET = tictactoe

TEMPLATE = app

SOURCES += main.cpp tictactoewidget.cpp

HEADERS += tictactoewidget.h

1261

Chapter 3

The first two lines enable Qt's core, gui, and widgets modules. The next two lines specify
that your project file describes an application (as opposed to, for example, a library) and
declares the name of the target that is executable to be tictactoe. The last two lines add
files that Creator generated for us to build the process.

What we have now is a complete minimal Qt GUI project. To build and run it, simply choose
the Run entry from the Build drop-down menu or click on the green triangle icon on the left-
hand side of the Qt Creator window. After a while, you should see a window pop up. Since
we didn't add anything to the window, it is blank.

Adding child widgets to a window

After we managed to get a blank window on screen, the next step is to add some content
to it. To do this, you need to create widgets and tell Qt to position them in the window. The
basic way to do this is to provide a parent to a widget.

In Qt, we group objects (such as widgets) into parent-child relationships. This scheme is
defined in the superclass of QWidget —QObject, which is the most important class in Qt,
and we will cover it in more detail later in this chapter. What is important now is that each
object can have a parent object and an arbitrary number of children. In the case of widgets,
there is a rule that a child occupies a subarea of its parent. If it doesn't have a parent, then
it becomes a top-level window that can usually be dragged around, resized, and closed.

We can set a parent for an object in two ways. One way is to call the setParent method
defined in QObject that accepts a Q0bject pointer. Because of the rule mentioned earlier,
QWidget wants to have other widgets as parents, so the method is overloaded in QWwidget
to accept a QWwidget pointer. The other way is to pass a pointer to the parent object to

the Qwidget constructor of the child object. If you look at the code of the widget that was
generated by Creator, you will notice that the constructor also accepts a pointer to a widget
as its last (optional) argument:

TicTacToeWidget: :TicTacToeWidget (QWidget *parent)
: QWidget (parent)

{

}

It then passes that pointer to the constructor of its base class. Therefore, it is important that
you always remember to create a constructor for your widgets that accepts a pointer to a
Qwidget instance and passes it up the inheritance tree. All standard Qt widgets also behave
this way.

[21]

Qt GUI Programming

Managing widget content

Making a widget display as part of its parent is not enough to make a good user interface.
You also need to set its position and size and react to the changes that happen to its content
and to the content of its parent widget. In Qt, we do this using a mechanism called layouts.

Layouts allow us to arrange the content of a widget, making sure that its space is used
efficiently. When we set a layout on a widget, we can start adding widgets and even other
layouts, and the mechanism will resize and reposition them according to the rules that we
specify. When something happens in the user interface that influences how widgets should
be displayed (for example, the button text is replaced with longer text, which makes the
button require more space to show its content; if not, one of the widgets gets hidden), the
layout is triggered again, which recalculates all positions and sizes and updates widgets

as necessary.

Qt comes with a predefined set of layouts that are derived from the QLayout class, but you
can also create your own. Those that we already have at our disposal are QHBoxLayout

and QVBoxLayout, which position items horizontally and vertically; QGridLayout, which
arranges items in a grid so that an item can span across columns or rows; and QFormLayout,
which creates two columns of items with item descriptions in one column and item content
in the other. There is also QStackedLayout, which is rarely used directly and which makes
one of the items assigned to it possess all the available space. You can see the most common
layouts in action in the following figure:

Mame:

Address:

Phone ne.:

OHBoxLayout QVBoxLayout OGridLayout OFormLayout

To use a layout, we need to create an instance of it and pass a pointer to a widget that we
want it to manage. Then, we can start adding widgets to the layout:

QHBoxLayout *layout = new QHBoxLayout (parentWidget) ;
QPushButton *buttonl = new QPushButton;

QPushButton *button2 = new QPushButton;
layout->addWidget (buttonl) ;

layout->addWidget (button2) ;

1281

Chapter 3

We can even move widgets further from each other by setting spacing on the layout and
setting custom margins on the layout:

layout->setSpacing(10) ;
layout->setMargins (10, 5, 10, 5); // left, top, right, bottom

After building and running this code, you see two buttons that are evenly distributed in their
parent space. Note that, even though we didn't explicitly pass the parent widget pointer,
adding a widget to a layout makes it reparent the newly added widget to the widget that the
layout manages. Resizing the parent horizontally would also cause buttons to resize again,
covering all the space available. However, if you resize parentwWidget vertically, buttons will
change their position but not their height.

This is because each widget has an attribute called a size policy, which decides how a widget
is to be resized by a layout. You can set separate size policies for horizontal and vertical
directions. A button has a vertical size policy of Fixed, which means that the height of

the widget will not change from the default height regardless of how much space there is
available. The following are the available size policies:

¢ Ignore: In this, the default size of the widget is ighored and the widget can freely
grow and shrink

Fixed: In this, the default size is the only allowed size of the widget

Preferred: In this, the default size is the desired size, but both smaller and bigger
sizes are acceptable

¢ Minimum: In this, the default size is the smallest acceptable size for the widget, but
the widget can be made larger without hurting its functionality

¢ Maximum: In this, the default size is the largest size of the widget and the widget can
be shrunk (even to nothing) without hurting its functionality

¢ Expanding: In this, the default size is the desired size; a smaller size (even zero) is
acceptable but the widget is able to increase its usefulness when more and more
space is assigned to it

¢ MinimumExpanding: This is a combination of Minimum and Expanding—the
widget is greedy in terms of space and it cannot be made smaller than its default
size

How do we determine the default size? The answer is by the size returned by the sizeHint
virtual method. For layouts, the size is calculated based on the sizes and size policies of
their child widgets and nested layouts. For basic widgets, the value returned by sizeHint
depends on the content of the widget. In the case of a button, if it holds a line of text and an
icon, sizeHint will return the size that is required to fully encompass the text, icon, some
space between them, the button frame, and the padding between the frame and

content itself.

1291

Qt GUI Programming

Time for action - implementing a tic-tac-toe game hoard

We will now create a widget that implements a game board for tic-tac-toe using buttons.

Open the tictactoewidget .h file in Creator and update it by adding the highlighted code:

#ifndef TICTACTOEWIDGET H
#define TICTACTOEWIDGET H
#include <QWidget>
class QPushButton;

class TicTacToeWidget : public QWidget

{

Q OBJECT

public:
TicTacToeWidget (QWidget *parent = 0) ;
~TicTacToeWidget () ;

private:
QList<QPushButton*> board;

Vi

#endif // TICTACTOEWIDGET H

Our additions create a list that can hold pointers to instances of the QpushButton class,
which is the most commonly used button class in Qt. It will represent our game board. We
have to teach the compiler to understand the classes that we use; thus, we add a forward
declaration of the QpushButton class.

The next step is to create a method that will help us create all the buttons and use a layout
to manage their geometries. Go to the header file again and add a void setupBoard () ;
declaration in the private section of the class. To quickly implement a freshly declared
method, we can ask Qt Creator to create the skeleton code for us by positioning the text
cursor just before after the method declaration (before the semicolon), pressing Alt + Enter
on the keyboard, and choosing Add definition in tictactoewidget.cpp from the pop-up.

\ It also works the other way around. You can write the method body first and

~ then position the cursor on the method signature, press Alt + Enter, and choose
Add public declaration from the quick fix menu. There are also various other
context-dependent fixes that are available in Creator.

Chapter 3

Because in the header file we only forward-declared QPushButton, we now need to provide
a full class definition for it by including an appropriate header file. In Qt, all classes are
declared in the header files that are called exactly the same as the classes themselves. Thus,
to include a header file for QPushButton, we need to add a #include <QPushButtons
line to the implementation file. We are also going to use the QGridLayout class to manage
the space in our widget, so we need #include <QGridLayouts> aswell.

\ From now on, this book will not remind you about adding the include
~ directives to your source code—you will have to take care of this by yourself.
Q This is really easy, just remember that to use a Qt class, you need to include a
file named after that class.

Now, let's add the code to the body of the setupBoard method. First, let's create a layout
that will hold our buttons:

QGridLayout *gridLayout = new QGridLayout;
Then, we can start adding buttons to the layout:

for(int row = 0; row < 3; ++row)
for(int column = 0; column < 3; ++column) {
QPushButton *button = new QPushButton;
button->setSizePolicy (QSizePolicy: :Minimum,
QSizePolicy: :Minimum) ;
button->setText (" ") ;
gridLayout->addWidget (button, row, column) ;
board.append (button) ;
}
}

The code creates a loop over rows and columns of the board. In each iteration, it creates an
instance of the QPushButton class and sets the button's size policy to Minimum/Minimum
so that when we resize the widget, buttons also get resized. A button is assigned a single
space as its content so that it gets the correct initial size. Then, we add the button to the
layout in row and column. At the end, we store the pointer to the button in the list that was
declared earlier. This lets us reference any of the buttons later on. They are stored in the list
in such an order that the first three buttons of the first row are stored first, then the buttons
from the second row, and finally those from the last row.

The last thing to do is to tell our widget that gridLayout is going to manage its size:
setLayout (gridLayout) ;

Alternatively, we might have passed this as a parameter to the layout's constructor.

[311

Qt GUI Programming

Now that we have code that will prepare our board, we need to have it invoked somewhere.
A good place to do this is the class constructor:

TicTacToeWidget: :TicTacToeWidget (QWidget *parent)
: QWidget (parent)

{

setupBoard () ;

}

Now, build and run the program.

What just happened?

You should get a window containing nine buttons positioned in a grid-like fashion. If you start
resizing the window, the buttons are going to be resized as well. This is because we set a grid
layout with three columns and three rows that evenly distributes widgets in the managed
area, as shown in the following figure:

2 bictactoe ot O ot L 22

While we're here, add another public method to the class and name it initNewGame. We
will use this method to clear the board when a new game is started. The body of the method
should look as follows:

void TicTacToeWidget::initNewGame () {
for(int i=0; i<9; ++1) board.at (i) ->setText (" ");

}

[321

Chapter 3

You might have noticed that although we created a number of objects in
setupBoard using the new operator, we didn't destroy those objects
anywhere (for example, in the destructor). This is because of the way
the memory is managed by Qt. Qt doesn't do any garbage collecting (as
\\l Java does), but it has this nice feature related to QObject parent-child
hierarchies. The rule is that whenever a QObject instance is destroyed, it
also deletes all its children. Since both the layout object and the buttons are
the children of the TicTacToeWidget instance, they will all be deleted
when the main widget is destroyed. This is another reason to set parents
to the objects that we create—if we do this, we don't have to care about
explicitly freeing any memory.

Most of the special functionality that Qt offers revolves around the QObject class and the
meta-object paradigm that we will take a closer look at now. The paradigm says that with
every QObject subclass, there is a special object associated that contains information about
that class. It allows us to make runtime queries to learn useful things about the class—the
class name, superclass, constructors, methods, fields, enumerations, and so on. The meta-
object is generated for the class at compile time when three conditions are met:

¢ Theclassis a descendant of Q0bject
¢ It contains a special Q OBJECT macro in a private section of its definition

¢ Code of the class is preprocessed by a special Meta-Object Compiler (moc) tool

We can comply to the first two conditions ourselves by writing proper code for the class just
like Qt Creator does when we create a class derived from QObject. The last condition is met
automatically when you use a tool chain that comes with Qt (and Qt Creator) to build your
project. Then, it is enough to make sure that the file containing the class definition is added
to the HEADERS variable of the project file and Qt will take care of the rest. What really
happens is that moc generates some code for us that is later compiled in the main program.

All features discussed in this section of the chapter require a meta-object for the class.
Therefore, it is essential to make sure that the three conditions | mentioned are met if you
want a class to use any of those features.

Qt GUI Programming

Signals and slots

To trigger functionality as a response to something that happens in an application, Qt uses
a mechanism of signals and slots. This is based on connecting a notification (which we call a
signal) about a change of state in some object with a function or method (called a slot) that
is executed when such a notification arises.

Signals and slots can be used with all classes that inherit Q0bject. A signal can be connected
to a slot, member function, or functor (which includes a regular global function). When an
object emits a signal, any of these entities that are connected to that signal will be called.

A signal can also be connected to another signal in which case, emitting the first signal will
make the other signal be emitted as well. You can connect any number of slots to a single
signal and any number of signals to a single slot.

A signal slot connection is defined by the following four attributes:

An object that changes its state (sender)
A signal in the sender object

An object that contains the function to be called (receiver)

* 6 o o

A slot in the receiver

To declare a signal, we put its declaration, that is, a regular member function declaration in
a special class scope called signals. However, we don't implement such a function—this will
be done automatically by moc. To declare a slot, we put the declaration in the class scope
of either public slots, protected slots, or private slots. Slots are regular methods and can be
called directly in code just like any other method. Contrary to signals, we need to provide
bodies for slot methods.

A sample class implementing some signals and slots looks like as shown in the following
code:

class ObjectWithSignalsAndSlots : public QObject
Q OBJECT

public:
ObjectWithSignalsAndSlots (QObject *parent = 0) : QObject (parent) {
}

public slots:
void setvalue(int v) { .. }
void setColor (QColor c¢) { .. }

private slots:
void doSomethingPrivate() ;

signals:

[3a1

Chapter 3

void valueChanged (int) ;
void colorChanged (QColor) ;

}i

void ObjectWithSignalsAndSlots::doSomethingPrivate()
/]
}

Signals and slots can be connected and disconnected dynamically using the connect () and
disconnect () statements.

The classic connect statement looks as follows:

connect (spinBox, SIGNAL(valueChanged(int)), dial,
SLOT (setValue (int))) ;

This statement establishes a connection between SIGNAL of the spinBox object called
valueChanged that carries an int parameter and a setValue slot in the dial object
that accepts an int parameter. It is forbidden to put variable names or values in a connect
statement. You can only make a connection between a signal and slot that have matching
signatures, which means that they accept the same types of arguments (any type casts are
not allowed, and type names have to match exactly) with the exception that the slot can
omit an arbitrary number of last arguments. Therefore, the following connect statement is
valid:

connect (spinBox, SIGNAL (valueChanged(int)), lineEdit,
SLOT (clear())) ;

This is because the parameter of the valueChanged signal can be discarded before clear
is called. However, the following statement is invalid:

connect (button, SIGNAL(clicked()), lineEdit,
SLOT (setText (QString))) ;

There is nowhere to get the value that is to be passed to setText, so such a connection
will fail.

M It is important that you wrap signal and slot signatures into the SIGNAL and
Q SLOT macros and that when you specify signatures, you only pass argument
types and not values or variable names. Otherwise, the connection will fail.

Since Qt 5, there are a couple of different connect syntax available that don't require a meta-
object for the class implementing the slot. The Q0bject legacy is still a requirement though,
and the meta-object is still required for the class that emits the signal.

Qt GUI Programming

The first additional syntax that we can use is the one where we pass a pointer to the signal
method and a pointer to the slot method instead of wrapping signatures in the SIGNAL and
SLOT macros:

connect (button, &QPushButton::clicked, lineEdit,
&QLineEdit: :clear) ;

In this situation, the slot can be any member function of any QObject subclass that has
argument types that match the signal or such that can be converted to match the signal. This
means that you can, for example, connect a signal carrying a double value with a slot taking
an int parameter:

class MyClass : public QObject ({
Q OBJECT
public:
MyClass (QObject *parent = 0) : QObject (parent) {
connect (this, &MyClass::somethingHappened, this,
&MyClass: :setValue) ;

}

void setValue(int v) { .. }
signals:

void somethingHappened (double) ;

An important aspect is that you cannot freely mix meta-object-based and

~ function-pointer-based approaches. If you decide to use pointers to member
Q methods in a particular connection, you have to do that for both the signal

and the slot.

We can even go a step further and have a signal connected to a standalone function:

connect (button, &QPushButton::clicked, &someFunction) ;

If you use C++11, the function can also be a lambda expression in which case, it is possible to
write the body of the slot directly in the connect statement:

connect (pushButton, SIGNAL(clicked()), []()
{ std::cout << "clicked!" << std::endl; });

It is especially useful if you want to invoke a slot with a fixed argument value that can't be
carried by a signal because it has less arguments. A solution is to invoke the slot from a
lambda function (or a standalone function):

connect (pushButton, SIGNAL(clicked()), [label] ()
{ label->setText ("button was clicked"); });

Chapter 3

A function can even be replaced with a function object (functor). To do this, we create a class
for which we overload the call operator that is compatible with the signal that we wish to
connect to, as shown in the following snippet:

class Functor ({
public:
Functor (Object *object, const QString &str)
m_object (object), m_str(str) {}
void operator() (int x, int y) const {
m_object->set(x, y, m_str);
}
private:
Object *m object;
QString m_str;

bi

connect (objl, SIGNAL (coordChanged (int, int)),
Functor ("Some Text")) ;

This is often a nice way to execute a slot with an additional parameter that is not carried by
the signal, as this is much cleaner than using a lambda expression.

There are some aspects of signals and slots that we have not covered here. We will come
back to them later when we deal with multithreading.

Pop quiz - making signal-siot connections

Q1. For which of the following do you have to provide your own implementation?

1. Asignal
2. Aslot
3. Both

Q2. Which of the following statements are valid?
1. connect (sender, SIGNAL (textEdited(QString)), receiver,
SLOT (setText ("foo")))

2. connect (sender, SIGNAL (toggled(bool)), receiver,
SLOT (clear())) ;

3. connect (sender, SIGNAL (valueChanged(7)), receiver,
SLOT (setValue (int))) ;

4. connect (sender, &QPushButton::clicked, receiver,
&QLineEdit: :clear) ;

[311

Qt GUI Programming

Time for action - functionality of a tic-tac-toe hoard

We need to implement a function that will be called upon by clicking on any of the nine
buttons on the board. It has to change the text of the button that was clicked on—either X or
0—based on which player made the move; then, it has to check whether the move resulted
in winning the game by the player (or a draw if no more moves are possible), and if the game
ended, it should emit an appropriate signal, informing the environment about the event.

When the user clicks on a button, the c1icked () signal is emitted. Connecting this signal

to a custom slot lets us implement the mentioned functionality, but since the signal doesn't
carry any parameters, how do we tell which button caused the slot to be triggered? We
could connect each button to a separate slot but that's an ugly solution. Fortunately, there
are two ways of working around this problem. When a slot is invoked, a pointer to the object
that caused the signal to be sent is accessible through a special method in Q0object called
sender (). We can use that pointer to find out which of the nine buttons stored in the board
list is the one that caused the signal to fire:

void TicTacToeWidget: :someSlot ()
QObject *btn = sender();
int idx = board.indexOf (btn) ;
QPushButton *button = board.at (idx) ;
//

}

While sender () is a useful call, we should try to avoid it in our own code as it breaks some
principles of object-oriented programming. Moreover, there are situations where calling this
function is not safe. A better way is to use a dedicated class called QSignalMapper, which
lets us achieve a similar result without using sender () directly. Modify the setupBoard ()
method in TicTacToeWidget as follows:

QGridLayout *gridLayout = new QGridLayout;
QSignalMapper *mapper = new QSignalMapper (this) ;
for (int row = 0; row < 3; ++row) {
for (int column = 0; column < 3; ++column) {
QPushButton *button = new QPushButton;
button->setSizePolicy (QSizePolicy: :Minimum,
QSizePolicy: :Minimum) ;
button->setText (" ") ;
gridLayout->addWidget (button, row, column) ;
board.append (button) ;
mapper->setMapping (button, board.count()-1);
connect (button, SIGNAL(clicked()), mapper, SLOT (map())):;

Chapter 3

connect (mapper, SIGNAL (mapped(int)), this,
SLOT (handleButtonClick (int))) ;

setLayout (gridLayout) ;

Here, we first created an instance of QSignalMapper and passed a pointer to the board
widget as its parent so that the mapper is deleted when the widget is deleted. Then, when
we create buttons, we "teach" the mapper that each of the buttons has a number associated
with it—the first button will have the number 0, the second one will be bound to the
number 1, and so on. By connecting the clicked () signal from the button to mapper's
map () slot, we tell the mapper to do its magic upon receiving that signal. What the mapper
will do is that it will then find the mapping of the sender of the signal and emit another
signal—mapped () —with the mapped number as its parameter. This allows us to connect

to that signal with a slot (handleButtonClick) that takes the index of the button in the
board list.

Now it is time to implement the slot itself (remember to declare it in the header file!).
However, before we do that, let's add a useful enum and a few helper methods to the class:

enum Player
Invalid, Playerl, Player2, Draw

}i

This enum lets us specify information about players in the game. We can use it immediately
to mark whose move it is now. To do so, add a private field to the class:

Player m_currentPlayer;
Then, add the two public methods to manipulate the value of this field:

Player currentPlayer() const { return m currentPlayer; }
void setCurrentPlayer (Player p) {

if (m_currentPlayer == p) return;

m_currentPlayer = p;

emit currentPlayerChanged(p) ;

}

The last method emits a signal, so we have to add the signal declaration to the class
definition along with another signal that we are going to use:

signals:
void currentPlayerChanged (Player) ;
void gameOver (TicTacToeWidget: :Player) ;

Qt GUI Programming

Note that we only emit the current PlayerChanged signal when the
current player really changes. You always have to pay attention that you don't
M emit a "changed" signal when you set a value to a field to the same value that
Q it had before the function was called. Users of your classes expect that if a
signal is called changed, it is emitted when the value really changes. Otherwise,
this can lead to an infinite loop in signal emissions if you have two objects that
connect their value setters to the other object's changed signal.

Now let's declare the handleButtonClick slot:

public slots:
void handleButtonClick (int) ;

And then implement it in the . cpp file:

void TicTacToeWidget::handleButtonClick (int index) {
if (index < 0 || index >= board.size()) return;
// out of bounds check
QPushButton *button = board.at (index) ;
if (button->text () != " ") return;
// invalid move
button->setText (currentPlayer () == Playerl ? "X" : "O");
Player winner = checkWinCondition (index / 3, index % 3);
if (winner == Invalid) {
setCurrentPlayer (currentPlayer () == Playerl ? Player2 : Playerl);
return;
} else {
emit gameOver (winner) ;

}

Here, we first retrieve a pointer to the button based on its index. Then, we check whether
the button contains any text—if so, then this means that it doesn't participate in the game
anymore, so we return from the method so that the player can pick another field in the
board. Next, we set the current player's mark on the button. Then, we check whether

the player has won the game, passing it the row (index / 3)and column (index % 3)
index of the current move. If the game didn't end, we switch the current player and return.
Otherwise, we emit a gameOver () signal, telling our environment who won the game. The
checkWinCondition () method returns Playeril, Player2, or Draw if the game has
ended and Invalid otherwise. We will not show the implementation of this method here
as it is quite complex. Try implementing it on your own and if you encounter problems, you
can see the solution in the code bundle that accompanies this book.

[401

Chapter 3

Apart from signals and slots, Qt meta-objects also give programmers an ability to use the
so-called properties that are essentially named attributes that can be assigned values of a
particular type. They are useful to express important features of an object—like text of a
button, size of a widget, player names in games, and so on.

Declaring a property

To create a property, we first need to declare it in a private section of a class that inherits
QObject using a special 0 PROPERTY macro, which lets Qt know how to use the property.
A minimal declaration contains the type of the property, its name, and information about

a method name that is used to retrieve a value of the property. For example, the following
code declares a property of the type double that is called height and uses a method called
height to read the property value:

Q PROPERTY (double height READ height)

The getter method has to be declared and implemented as usual. Its prototype has to
comply with these rules: it has to be a public method that returns a value or constant
reference of a type of the property, and it can't take any input parameters and the method
itself has to be constant. Typically, a property will manipulate a private member variable of
the class:

class Tower : public QObject {
Q OBJECT // enable meta-object generation

Q PROPERTY (double height READ height)
// declare the property
public:
Tower (QObject *parent = 0) : QObject (parent)
{ m_height = 6.28; }
double height () const { return m height; }
// return property value
private:
double m_height;
// internal member variable holding the property value

Vi

Such a property is practically useless because there is no way to change its value. Luckily,
we can extend the declaration to include the information about how to write a value to the
property:

Q PROPERTY (double height READ height WRITE setHeight)

[al]

Qt GUI Programming

Again, we have to declare and implement setHeight so that it behaves as the setter
method for the property—it needs to be a public method that takes a value or constant
reference of the type of the property and returns void:

void setHeight (double newHeight) { m_height = newHeight; }

! . . .
~ Property setters are good candidates for public slots so that you can easily
manipulate property values using signals and slots.

We will learn about some of the other extensions to 0 PROPERTY declarations in the later
chapters of this book.

Using a property

There are two ways in which you can access properties. One is of course, to use getter
and setter methods that we declared with READ and WRITE keywords in the 9 PROPERTY
macro—this will naturally work since they are regular C++ methods.

The other way is to use facilities offered by Q0bject and the meta-object system. They allow
to us access properties by name using two methods that accept property names as strings.
A generic property getter (which returns the property value) is a method called property.
Its setter counterpart (that takes the value and returns void) is set Property. Since we can
have properties with different data types, what is the data structure that is used by those
two methods that hold values for different kinds of properties? Qt has a special class for
this called Qvariant, which behaves a lot like a C union in the way that it can store values
of different types. There are a couple of advantages to using a union though—the three
most important are that you can ask the object what type of data it currently holds, you can
convert some of the types to other types (for example, a string to an integer), and you can
teach it to operate on your own custom types.

Time for action - adding properties to the hoard class

In this exercise, we will be adding a useful property to the board class. The property is going
to hold information about the player who should make the next move. The type of the
property is going to be the TicTacToeWidget : : Player enumeration that we created
earlier. For the getter and the setter methods, we are going to use the two functions that we
created earlier: currentPlayer () and setCurrentPlayer ().

[42]

Chapter 3

Open the header file for our class and modify the class definition as shown in the following
code:

class TicTacToeWidget : public QWidget ({
Q OBJECT
Q ENUMS (Player)
Q PROPERTY (Player currentPlayer READ currentPlayer
WRITE setCurrentPlayer
NOTIFY currentPlayerChanged)
public:
enum Player { Invalid, Playerl, Player2, Draw };

What just happened?

Since we want to use an enumeration as a type of a property, we have to inform Qt's meta-
object system about the enum. This is done with the 9 ENUMS macro. Then, we declare a
property called currentPlayer and mark our two existing methods as getter and setter
for the property. We also use the NOTIFY keyword to mark currentPlayerChanged as a
signal that is sent to inform about a change in the value of the property. We won't be using
this extra information in our small game, and we don't require currentPlayer to be a
property at all, but it is always a good idea to try and find good candidates for properties and
expose them because some day, someone might want to use our class in a way we hadn't
predicted and a particular property might become useful.

So far, we have coded all the user interfaces manually by writing C++ code that instantiates
widgets, arranges them in layouts, and connects signals to slots. It is not that hard for
simple widgets, but becomes tedious and time-consuming when the Ul becomes more and
more complex. Fortunately, Qt provides tools to do all this in a more pleasant way. Instead
of writing C++ code, we can create forms using a graphical tool by dragging and dropping
widgets on a canvas, applying layouts to them, and even establishing signal-slot connections
using the point-and-click technique. Later during the compilation, such forms will get
converted into C++ code for us and will be ready for applying onto a widget.

The tool is called Qt Designer and is integrated with Qt Creator. To use it, select New File or
Project from the File menu and choose the Qt Designer Form Class template available after
selecting Qt in the Files and Classes section of the dialog box. You get to choose a template
for the form and configure details such as the names of the files to create. In the end, three
files will get created—two of them implement a C++ class derived from QWidget or one of
its subclasses and the last one contains data for the form itself.

[431

Qt GUI Programming

After closing the wizard, we are taken to Qt Creator's Design mode that looks as shown in
the following screenshot:

Dwa dialog.vi- Qt Creator W L8
File Edit ©uic Debug Analyze Tools Window Help

dialog.ui s R ER M= M I i B3

qt

Welcome |=

Dialog ; QDialog
QObject
QWidget i
windowModality NonModal
enabled.
b ge ¥ [(0, 0), 400 ..
~ sizePolicy [Preferred, Pr.
Horizontal P... Preferred
Vertical Policy Preferred
Herizontal St....

| R O~ Type to locate (Cirl+k)

The Design mode consists of four major parts that are marked on the preceding figure with
numbers.

The area marked as 1 is the main worksheet. It contains a graphical representation of the
form being designed where you can move widgets around, compose them into layouts, and
see how they react. It also allows further manipulation of the form using the point-and-click
method that we will learn later.

The second area 2 is the widget box. It contains a list of available types of widget that are
arranged into groups containing items with a related or similar functionality. Over the list,
you can see a box that lets you filter widgets that are displayed in the list to only show those
that match the entered expression. In the beginning of the list, there are also items that are
not really widgets—one group contains layouts and the other one contains so-called spacers,
which are a way to push other items away from each other.

Chapter 3

The main purpose of the widget box is to add widgets to the form in the worksheet. You
can do that by grabbing a widget from the list with the mouse, dragging it to the canvas,
and releasing the mouse button. The widget will appear in the form and can be further
manipulated with further tools in Creator's Design mode.

The next area 3, which we are going to talk about, is situated on the right-hand side of the
window and consists of two parts. At the top of the figure, you can see Object Inspector.

It presents the parent-child relationship of all widgets that are currently present in the
edited form. Each line contains the name of the object and the name of its class as seen by
the meta-object system. If you click on an entry, a corresponding widget in the form gets
selected (and vice versa).

The lower part of the figure shows the property editor. You can use it to change the values of
all the properties that each object has. Properties are grouped by their classes that they have
been declared in, starting from QObject (the base class implementing properties), which
declares only one but an important property—objectName. Following Q0bject, there are
properties declared in QWidget, which is a direct descendant of QObject. They are mainly
related to the geometry and layout policies of the widget. Lower in the list, you can find
properties that come from further derivations of Qwidget. If you prefer a pure alphabetical
order where properties are not grouped by their class, you can switch the view using a pop-
up menu that becomes available after you click on the wrench icon positioned over the
property list; however, once you get familiar with the hierarchy of Qt classes, it will be much
easier to navigate the list when it is sorted by a class.

Having a closer look at the property editor, you can see that some of them have arrows
beneath them that reveal new rows when clicked. These are composed properties where

the complete property value is determined from more than one subproperty values; for
example, if there is a property called geometry that defines a rectangle, it can be expanded
to show four subproperties: %, y, width, and height. Another thing that you should quickly
notice is that some property names are displayed in bold. This means that the property value
was modified and is different from the default value for this property. This lets you quickly
find those properties that you have modified.

The last group of functionality 4 that we will explain now is the one positioned in the lower
part of the window. By default, you will see two tabs—Action Editor and Signal/Slot Editor.
They allow us to create helper entities such as actions for the menus and toolbars or signal-
slot connections between widgets using a clean tabular interface.

What was described here is the basic tool layout. If you don't like it, you can invoke the
context menu from the main worksheet, uncheck the Locked entry, and rearrange all the
windows to your liking or even close the ones you currently don't need.

451

Qt GUI Programming

Time for action - designing the game configuration dialoy

Now, we will use Qt Designer forms to build a simple game configuration dialog that will let
us choose names for our players.

First, invoke the new file dialog from the menu and choose to create a new Qt Designer
Form Class as shown in the following screenshot:

[(S New Y o) &
Choose a template: All Templates -
Project ; ;

prlfises D Creates a Qt Designer Form along with a
Applications __,J Qt Designer Form matching class (C++ header and source File)
] Forimplementation purposes. You can add

: : Qt Resource File ==)
Libraries J)) the Form and class to an existing Qt Widget
Other Project | QmLFile (Qt Quick1) Project.

X QML File (Qt Quick 2)

Man-QE P 4 "J

on-Qt Projec _J J5File Supported PlatForms: Desktop

Import Projeck
Files and Classes
C++
GLSL

General

| Choose... Cancel
In the window that appears, choose Dialog with Buttons Bottom:
[Qt Designer Form Class EIRCINCIRtS
Choose a Form Template
E» Form Template
- templates/Forms
Dialog with Buttons Right
Dialog without Buttons
Main Window
Widget
» Widgets
Embedded Design
Device; None
Screen Size: | Default size -
< Back Mexk > Cancel

1461

Chapter 3

Adjust the class name to ConfigurationDialog, leave the rest of the settings at their
default values, and complete the wizard.

Drag and drop two labels and two line edits on the form, position them roughly in a grid,
double-click on each of the labels, and adjust their captions to receive a result similar to the
following figure:

Player 1 Mame:

Player 2 Mame:
[[

QK Cancel

Select the first line to edit and look at the property editor. Find a property called
objectName and change it to player1Name. Do the same for the other line and call it
player2Name. Then, click on some empty space in the form and choose the Layout in a grid
entry in the upper toolbar. You should see the widgets snap into place—that's because you
have just applied a layout to the form. When you're done, open the Tools menu, go to the
Form Editor submenu, and choose the Preview entry.

What just happened?

You can see a new window open that looks exactly like the form we just designed. You

can resize the window and interact with the objects inside to monitor the behavior of the
layouts and widgets. What really happened here is that Qt Creator built a real window for
us based on the description that we provided in all the areas of the design mode. Without
any compilation, in a blink of an eye we received a fully working window with all the layouts
working and all the properties adjusted to our liking. This is a very important tool so make
sure to use it often to verify that your layouts are controlling all the widgets as you intended
them to—it is much faster than compiling and running the whole application just to check
whether the widgets stretch or squeeze properly. It's all possible thanks to Qt's meta-object
system.

(411

Qt GUI Programming

Time for action - polishing the dialoy

Now that the GUI itself works as we intended it to, we can focus on giving the dialog some
more polish.

The first thing we are going to do is add accelerators to our widgets. These are keyboard
shortcuts that, when activated, cause particular widgets to gain keyboard focus or perform
a predetermined action (for example, toggle a checkbox or push a button). Accelerators are
usually marked by underlining them, as shown in the following figure:

Mame: ||

We will set accelerators to our line edits so that when the user activates an accelerator for
the first field, it will gain focus. Through this we can enter the name of the first player, and
similarly, when the accelerator for the second line edit is triggered, we can start typing in the
name for the second player.

Start by selecting the label on the left-hand side of the first line edit. Press F2 or double-
click on the label (alternatively, find the text property of the label in the property editor and
activate its value field). This enables us to change the text of the label. Navigate using cursor
keys so that the text cursor is placed before the character 1 and type the & character. This
character marks the character directly after it as an accelerator for the widget. For widgets
that are composed of both text and the actual functionality (for example, a button), this

is enough to make accelerators work. However, since QLineEdit does not have any text
associated with it, we have to use a separate widget for that. This is why we have set the
accelerator on the label. Now, we need to associate the label with the line edit so that the
activation of the label's accelerator will forward it to the widget of our choice. This is done by
setting a so-called buddy for the label. You can do this in code using the setBuddy method
of the QLabel class or using Creator's form designer. Since we're already in the Design
mode, we'll use the latter approach. For that, we need to activate a dedicated mode in the
form designer.

[481

Chapter 3

Look at the upper part of Creator's window; directly above the form, you will find a toolbar
containing a couple of icons. Click on the one labeled Edit buddies or just press F5 on your
keyboard. Now, move the mouse cursor over the label, press the mouse button, and drag
from the label towards the line edit. When you drag the label over the line edit, you'll see a
graphical visualization of a connection being set between the label and the line edit. If you
release the button now, the association will be made permanent. You should notice that
when such an association is made, the ampersand character (&) vanishes from the label and
the character behind it gets an underscore. Repeat this for the other label and corresponding
line edit. Now, you can preview the form again and check whether accelerators work as
expected.

The tah order

While you're previewing the form, you can check another aspect of the Ul design. Start by
pressing the Tab key and see how the focus moves from widget to widget. There is a good
chance that the focus will start jumping back and forth between buttons and line edits
instead of a linear progress from top to bottom (which is an intuitive order for this particular
dialog). To check and modify the order of focus, leave the preview and switch to the tab
order editing mode by clicking on the icon called Edit Tab Order in the toolbar.

This mode associates a box with a number to each focusable widget. By clicking on the
rectangle in the order you wish the widgets to gain focus, you can reorder values, thus
reordering focus. Now, make it so that the order is as shown in the following figure:

Player 1 Nami‘_‘
m Player 2 NamD u

| oK | Cancel

Enter the preview again and check whether the focus changes according to what you've set.

1491

Qt GUI Programming

When deciding about the tab order, it is good to consider which fields in
the dialog are mandatory and which are optional. It is a good habit to allow
N the user to tab through all the mandatory fields first, then to the dialog
~ confirmation button (for example, one that says OK or Accept), and then
Q cycle through all the optional fields. Thanks to this, the user will be able to
quickly fill all the mandatory fields and accept the dialog without the need

to cycle through all the optional fields that the user wants to leave at their
default values.

The last thing we are going to do right now is make sure that the signal-slot connections are
set up properly. To do this, switch to the signal-slot editor mode by pressing F4 or choosing
Edit Signals/Slots from the toolbar. The Dialog with Buttons Bottom widget template

predefines two connections for us, which should now become visible in the main canvas
area:

|] -
Playgrttigaccept() | [reject()
B Playkr 2 Name: ’ n

u% I (o].4 I Cance
S

The ghialog class that implements dialogs in Qt has two useful slots—accept () and
reject () —which inform the caller whether the action represented by the dialog was
accepted or not. For our convenience, these slots should already be connected to the
respective accepted () and rejected () signals from the group of buttons (which is an
instance of the QDialogButtonBox class) that by default, contain the OK and Cancel

buttons. If you click on any of them signal accepted () or respectively, rejected () will be
emitted by the box.

| |
ted()
]

Chapter 3

At this point, we can add some more connections to make our dialog more functional.
Let's make it such that the button to accept the dialog is only enabled when neither of the
two line edits is empty (that is, when both the fields contain player names). While we will
implement the logic itself later, we can now make connections to a slot that will perform
the task.

Since no such slot exists by default, we need to inform the form editor that such a slot will
exist at the time when the application is compiled. To do this, we need to switch back to the
default mode of the form editor by pressing F3 or choosing Edit Widgets from the toolbar.
Then, you can invoke the form's context menu and choose Change signals/slots. A window
will pop up such as the one shown in the following figure that lists the available signals and
slots:

B G Signals/Slots of Dialog B g e 2

Slots

.

w
r
Signals
=

0K Cancel

[51]

Qt GUI Programming

Click on the + button in the Slots group and create a slot called updateOKButtonState () :

Signals/Slots of QWidget B X
Slots
ower(-
open(
exec
done(int
accept(
reject B
showExtension{bco "
updateOKButtonState() i
B
Signals
-
1 =
i
| ,
| oK | ‘ Cancel |

Then, accept the dialog and go back to the Signals/Slots mode. Create a new connection

by grabbing one of the line edits with your mouse. When you move the cursor outside the
widget, you will notice a red line following your pointer. If the line encounters a valid target,
the line will change to an arrow and the target object will be highlighted. The form itself can
also be a target (or a source); in this case, the line will end with a ground mark (two short
horizontal lines).

When you release the mouse button, a window will pop up, listing all the signals of the
source object and all the slots of the target object. Choose the textChanged (QString)
signal. Note that when you do this, some of the available slots will disappear. This is because
the tool only allows us to choose from slots that are compatible with the highlighted signal.
Select our newly created slot and accept the dialog. Repeat the same for the other line edit.

What we have done here is that we've created two connections that will trigger when the
text of either of the two line edits is changed. They will execute a slot that doesn't exist yet—
by "creating" the slot, we only declared our intention to implement it in a QDialog subclass
that was also created for us. You can now go ahead and save the form.

521

Chapter 3

What just happened?

We performed a number of tasks that make our form follow standard behaviors known from
many applications—this makes form navigation easy and shows the user which actions can
be undertaken and which are currently not available.

If you open the form in a text editor (for example, by switching to the Creator's Edit pane),
you will notice that it is really an XML file. So how do we use this file?

As part of the build process, Qt calls a special tool called User Interface Compiler (uic) that
reads the file and generates a C++ class that contains a setupUi () method. This method
accepts a pointer to a widget and contains code, which instantiates all the widgets, sets
their properties, and establishes signal-slot connections, and it is our responsibility to call it
to prepare the GUL. The class itself, which is named after your form (that is after the value
of the objectName property of the form object) with a Ui namespace prepended to it (for
example, Ui: :MyForm) is not derived from a widget class but is rather meant to be used
with one. There are basically three ways of doing this.

The most basic way to use a Qt Designer form is to instantiate a widget and the form object
and to call setupUi on the widget, like this:

QWidget *widget = new QWidget
Ui form ui * = new Ui form;
ui->setupUi (widget) ;

This approach has a number of flaws. First of all, it creates a potential memory leak of the
ui object (remember, it is not QObject, so you can't set a parent to it so that it's deleted
when the parent is deleted). Second, since all the widgets of the form are variables of the ui
object that is not tied to the widget object, it breaks encapsulation, which is one of the most
important paradigms of object-oriented programming. However, there is a situation when
such a construct is acceptable. This is when you create a simple short-lived modal dialog.
You surely need to remember that to show regular widgets, we have been using the show ()
method. This is fine for non-modal widgets, but for modal dialogs you should instead call the
exec () method that is defined in the gDialog class. This is a blocking method that doesn't
return until the dialog is closed. This allows us to modify the code so that it becomes:

QDialog dialog;

Ui form ui;
ui.setupUi (&dialog) ;
dialog.exec () ;

531

Qt GUI Programming

Since we're creating objects on the stack, the compiler will take care of deleting them when
the local scope ends.

The multiple-inheritance approach

The second way of using Designer forms is to create a class derived from both Qwidget
(or one of its subclasses) and the form class itself. We can then call setupUi from the
constructor:

class Widget : public QWidget, private Ui::MyForm {
public:
Widget (QWidget *parent = 0) : QWidget (parent) {
setupUi (this) ;
}
bi

This way, we keep the encapsulation as our class inherits fields and methods from the Ui
class, and we can call any of them directly from within the class code while restricting access
from the outside world by using private inheritance. The drawback of this approach is that
we pollute the class namespace, for example, if we had a name object in Ui : :MyForm, we
wouldn't be able to create a name method in Widget.

The single inheritance approach

Fortunately, we can work around this using the composition instead of inheritance. We can
derive our widget class only from gWwidget and instead of also subclassing Ui : :MyForm, we
can make an instance of it a private member of the new class:

class Widget : public QWidget {
public:
Widget (QWidget *parent = 0) : QWidget (parent) {
ui = new Ui::MyForm;
ui->setupUi (this) ;
}
~Widget () { delete ui; }
private:
Ui::MyForm *ui;

bi

At the cost of having to manually create and destroy the instance of Ui : :MyForm, we can
have the additional benefit of containing all variables and code of the form in a dedicated
object, which prevents the aforementioned namespace pollution.

This is the recommended way of using Designer forms, and it's also the default mode of
operation when you tell Qt Creator to generate a Designer form class for you.

[541

Chapter 3

Time for action - the logic of the dialog

Now, it is time to make our game settings dialog work. Earlier, we declared a signal-slot
connection but now the slot itself needs to be implemented.

Open the form class generated by Creator. If you're still in the Design mode, you can quickly
jump to the respective form class file using the Shift + F4 keyboard shortcut. Create a public
slots section of the class and declare a void updateOKButtonState () slot. Open the
refactorization menu (Alt + Enter) and ask Creator to create the skeleton implementation of
the slot for you. Fill the function body with the following code:

void ConfigurationDialog::updateOKButtonState() {
bool pllNameEmpty = ui->playerlName->text () .isEmpty () ;
bool pl2NameEmpty = ui->player2Name->text () .isEmpty () ;
QPushButton *okButton = uil->buttonBox
->button (QDialogButtonBox: :0k) ;

okButton->setDisabled (pllNameEmpty || pl2NameEmpty) ;

}

This code retrieves player names and checks whether either of them is empty. Then, it asks
the button box that currently contains the OK and Cancel buttons to give a pointer to the
button that accepts the dialog. Then, we set the button's disabled state based on whether
both player names contain valid values or not. The button state also needs to be updated
when we first create the dialog, so add invocation of updateOKButtonState () to the
constructor of the dialog:

ConfigurationDialog: :ConfigurationDialog (QWidget *parent)
QDialog (parent), ui(new Ui::ConfigurationDialog)

{

ui->setupUi (this) ;
updateOKButtonState () ;

}

The next thing to do is to allow to store and read player names from outside the dialog—
since the ui component is private, there is no access to it from outside the class code. This
is a common situation and one that Qt is also compliant with. Each data field in almost
every Qt class is private and may contain accessors (a getter and optionally a setter), which
are public methods that allow to read and store values for data fields. Our dialog has two
such fields—the names for the two players. At this point, we should note that they are good
candidates for properties so at the end, we'll declare them as such. But first, let's start by
implementing the accessors.

[551

Qt GUI Programming

Setter methods in Qt are usually named using the lowercase pattern, for example, set
followed by the name of the property with the first letter converted to uppercase. In our
situation, the two setters will be called setPlayeriName and setPlayer2Name and they
will both accept QString and return void. Declare them in the class header as shown in the

following code snippet:

void setPlayerlName (const QString &plname) ;
void setPlayer2Name (const QString &p2name) ;

Implement their bodies in the . cpp file:

void ConfiguratiosDialog::setPlayerlName (const QString &plname) {
ui->playerlName->setText (plname) ;

}

void ConfigurationDialog::setPlayer2Name (const QString &p2name) {
ui->player2Name->setText (p2name) ;

}

Getter methods in Qt are usually called the same as the property that they are related
to—playeriName and player2Name. Put the following code in the header file:

QString playerlName () const;
QString player2Name () const;

Put the following code in the implementation file:

QString ConfigurationDialog: :playerlName () const

{ return ui-splayeriName->text (); }
QString ConfigurationDialog: :player2Name () const
{ return ui-splayer2Name->text (); }

The only thing left to do now is to declare the properties. Add the highlighted lines to the
class declaration:

class ConfigurationDialog : public QDialog {
Q OBJECT

Q PROPERTY (QString playerlName READ
playerlName WRITE setPlayerlName)

Q PROPERTY (QString player2Name READ
player2Name WRITE setPlayer2Name)

public:
ConfigurationDialog (QWidget *parent = 0);

Our dialog is now ready. You can test it by creating an instance of itin main () and calling

show () or exec ().

Chapter 3

We already have two major components in our game—the game board and configuration
dialog. Now, we will need to bind them together. To do this, we will use another important
component—the QMainWindow class. A "main window" represents the control center of
an application. It can contain menus, toolbars, docking widgets, a status bar, and the actual
widget content called a "central widget", as presented in the following diagram:

Dock Widgets

Central Widget

The central widget part doesn't need any extra explanation—it is a regular widget like

any other. We will also not focus on dock widgets or the status bar here. They are useful
components but they are so easy to master that you can learn about them yourself. Instead,
we will spend some time mastering menus and toolbars. You have surely seen and used

toolbars and menus in many applications and you know how important they are for good
user experience.

[511

Qt GUI Programming

The main hero shared by both these concepts is a class called Qaction, which represents

a functionality that can be invoked by a user. A single action can have more than one
incarnation—it can be an entry in a menu (the QMenu instances), a toolbar (QToolBar),
button, or keyboard shortcut (0Shortcut). Manipulating the action (for example, changing
its text) causes all its incarnations to update. For example, if you have a Save entry in the
menu (with a keyboard shortcut bound to it), a Save icon in the toolbar, and maybe also

a Save button somewhere else in your user interface and you want to disallow saving the
document (for example, a map in your dungeons and dragons game level editor) because

its contents haven't changed since the document was last loaded. In this case, if, the menu
entry, toolbar icon, and button are all linked to the same Qaction instance then, once you
set the enabled property of the action to false, all the three entities will become disabled
as well. This is an easy way to keep different parts of your application in sync—if you disable
an action object, you can be sure that all entries that trigger the functionality represented by
the action are also disabled. Actions can be instantiated in code or created graphically using
Action Editor in Qt Creator. An action can have different pieces of data associated with it—a
text, tooltip, status bar tip, icons, and others that are less often used. All these are used by
incarnations of your actions.

The Qt resource system

While speaking of icons, there is an important feature in Qt that you should learn. A natural
way of creating icons is by loading images from the filesystem. The problem with this is that
you have to install a bunch of files together with your application and you need to always
know where they are located to be able to provide paths to access them. This is difficult but
fortunately, Qt has a solution to this—it allows you to embed arbitrary files (such as images
for icons) directly in the application that is executable. This is done by preparing resource
files that are later compiled in the binary. Fortunately, Qt Creator provides a graphical tool
for this as well.

Time for action — the main window of the application

Create a new Qt Designer Form Class application. As a template, choose Main Window.
Accept the default values for the rest of the wizard.

Create an action using the action editor and enter the following values in the dialog:

Chapter 3

Mew ackion & o &

Text: Mew Game

Object name: ackionMewGame

ToolTip: Skart new game

lcan theme: +

lcon: Mormal FF = | .. ™

Checkable:

shortecuk: | |]
oK Cancel

Now, create another action and fill it with the values shown in the following screenshot:

['.‘J ki Mew ackion .

Text: Quit

Objeckt name: ackionQuit

ToolTip: Exit the program

lcon Eheme: +
lcon: Mormal OFF = || .. ™

Checkable:

Shortecut: | | +

oK Cancel

Qt GUI Programming

We want our game to look nice, so we will provide icons for the actions and we will embed
images for them in our application using the resource system. Create a new file and make it
Qt Resource File. Call it resources.grc. Click on the Add button and choose Add Prefix.
Change the value for the prefix to /. Then, click on the Add button again and choose Add
Files. Find appropriate images for your actions and add them to the resource file. A dialog
will appear asking whether you want to copy the files to the project directory. Agree by
choosing Copy.

@ . Invalid File locaktion b S

The File fusrfshareficons/oxygen/32x32/actions/application-exit.png is
nokt in a subdireckory of the resource File. You now have the option ko
= copy this File to avalid location.

| Copy | Abort

Now, edit the actions again in the Action Editor and choose icons for them.

What just happened?

We added a resource file to our project. In that resource file, we created entries for a
number of images. Each of the images is put under a / prefix, which stands for the root

node of the artificial filesystem that we create. Each entry in a resource file can be accessed
directly from the manually written code as a file with a special name. This name is assembled
from three components. First comes a colon character (:), which identifies the resource
filesystem. This is followed by a prefix (for example, /) and a full path of the entry in the
resource (for example, exit .png). This makes an image called exit .png accessible
through the : /exit.png path. When we build the project, the file will be transformed into
a C data array code and integrated with the application binary. Having prepared the resource
file, we used images embedded there as icons for our actions.

The next step is to add these actions to a menu and toolbar.

Chapter 3

Time for action - adding a pull-down menu

To create a menu for the window, double-click on the Type Here text on the top of the form
and replace the text with &File. Then, drag the New Game action from the action editor
over the newly created menu but do not drop it there yet. The menu should open now and
you can drag the action so that a red bar appears in the submenu in the position where you
want the menu entry to appear—now you can release the mouse button to create the entry.
Afterwards, open the menu again by clicking on File and choose Add Separator. Then, repeat
the drag-and-drop operation for the Quit action to insert a menu entry for it just below the
separator in the File menu, as shown in the following figure:

A Mew Game Ly
k4 Quit 3]
Type Here
Add Separator

What just happened?

Using graphical tools, we created a menu for our program and added a number of actions
(that were automatically transformed into menu items) to that menu. Each menu entry
received some text and an icon specified by the action that was dropped in the menu.

\ To create submenus, first create a menu entry by clicking on the Type Here line
~ and entering the submenu name. Then, drag and hover an action over such a
Q submenu. After a short time, a submenu will pop up and you will be able to
drop your action there to create an entry in the second-level menu.

611

Qt GUI Programming

Time for action - creating a toolhar

To create a toolbar, invoke the context menu on the form and choose Add Tool Bar. Then,
drag the New Game action over the toolbar and drop it there. Open a context menu for the
toolbar and choose Append Separator. Then, drag the Quit action from the Action Editor
and drop it in the toolbar behind the separator. The following figure presents the final layout
that you should have now:

File Type Here

\ B3

What just happened?

Creating toolbars is very similar to creating menus. You first create the container (the
toolbar) and then drag-and-drop actions from the action editor. You can even drag an action
from the menu bar and drop it on the toolbar and vice versa!

Time for action - filling in the central widget

Add two labels in the main window area—one at the top for the first player name and one
at the bottom of the form for the second player name—and then change their cbjectName
property to playerl and player2, respectively. Clear their text property so that they don't
display anything. Then, drag Widget from the widget box, drop it between the two labels'
and set its object name to gameBoard. Invoke the context menu on the widget that you
just dropped and choose Promote to. This allows us to substitute a widget in the form with
another class; in our case, we will want to replace the empty widget with our game board.
Fill the dialog that has just appeared with the values shown in the following figure:

[621

Chapter 3

['3 Promoted Widgets)) K
Promoted Classes

Mame Header File Globalinclude Usage

Mew Promoked Class

Base class name: Qwidget - | Add
Promoted class name: |TicTacToeWidget | Reset
Header File: tictactoewidget.h

Globalinclude

Promote Close

Then, click on the button labeled Add and then Promote to close the dialog and confirm the
promotion. You will not notice any changes in the form because the replacement only takes
place during compilation. Now, apply a vertical layout on the form so that the labels and the
empty widget snap into place.

What just happened?

Not all widget types are directly available in the form designer. Sometimes, we need to use
widget classes that will only be created in the project that is being built. The simplest way to
be able to put custom widgets on a form is to ask the designer to replace class names with
some of the objects when C++ code for the form is to be generated. By promoting an object
to a different class, we saved a lot of work trying to otherwise fit our game board into the
user interface.

Qt GUI Programming

Time for action — putting it all together

The visual part of the game is ready and what remains is to complete the logic of the

main window and put all the pieces together. Add a public slot to the class and call it
startNewGame. In the class constructor, connect the New Game action's triggered signal to
this slot and connect the application's quit slot to the other action:

connect (ui->actionNewGame, SIGNAL (triggered()),
this, SLOT(startNewGame())) ;

connect (ui->actionQuit, SIGNAL (triggered()),
gApp, SLOT (quit()));

The g2pp special macro represents a pointer to the application object instance, so the
preceding code will call the quit () slot on the QApplication object created inmain (),
which in turn will eventually cause the application to end.

Let's implement the startNewGame slot as follows:

void MainWindow: :startNewGame () {
ConfigurationDialog dlg(this) ;
if (dlg.exec() == QDialog::Rejected) ({

return; // do nothing if dialog rejected

}
ui->playerl->setText (dlg.playerlName ()) ;
ui->player2->setText (dlg.player2Name ()) ;
ui->gameBoard->initNewGame () ;
ui->gameBoard->setEnabled (true) ;

}

In this slot, we create the settings dialog and show it to the user, forcing him to enter player
names. If the dialog was canceled, we abandon the creation of a new game. Otherwise, we
ask the dialog for player names and set them on appropriate labels. Finally, we initialize the
board and enable it so that users can interact with it.

While writing a turn-based board game, it is a good idea to always clearly mark whose turn it
is now to make a move. We will do this by marking the moving player's name in bold. There
is already a signal in the board class that tells us that a valid move was made, which we can
react to in order to update the labels. Let's add an appropriate code into the constructor of
the main window class:

connect (ui->gameBoard, SIGNAL (currentPlayerChanged (Player)),
this, SLOT (updateNameLabels())) ;

1641

Chapter 3

Now for the slot itself; let add a private slot's section to the class and declare the slot there:

private slots:
void updateNameLabels () ;

Now, we can implement it:

void MainWindow: :updateNameLabels () {
QFont f = ui-s>playerl->font();

f.setBold (ui->gameBoard->currentPlayer ()
TicTacToeWidget: :Playerl) ;

ui->playerl->setFont (f) ;

f.setBold (ui->gameBoard->currentPlayer ()
TicTacToeWidget: :Player2) ;

ui->player2->setFont (f) ;

}

In addition to the slot being called after a signal is emitted, we can also use it to set the initial
data for the labels when the game is starting. Since all the slots are also regular methods,

we can simply call updateNameLabels () from startNewGame () —go ahead and invoke
updateNameLabels () at the end of startNewGame ().

The last thing that needs to be done is to handle the situation when the game ends. Connect
the gameOver () signal from the board to a new slot in the main window class. Implement
the slot as follows:

void MainWindow: :handleGameOver (TicTacToeWidget: :Player winner) {
ui->gameBoard->setEnabled (false) ;
QString message;

if (winner == TicTacToeWidget: :Draw) {
message = "Game ended with a draw.";
} else {
message = QString("$1l wins") .arg(winner ==
TicTacToeWidget: :Playerl
? ul-s>playerl->text() : ui-splayer2->text());
}
QMessageBox: :information (this, "Info", message);

Qt GUI Programming

What just happened?

Our code does two things. First, it disables the board so that players can no longer

interact with it. Second, it checks who won the game, assembles the message (we will

learn more about QString in the next chapter), and shows it using a static method
QMessageBox: : information () that shows a modal dialog containing the message and a
button that allows us to close the dialog. The last thing that remains is to update the main ()
function in order to create an instance of our MainWindow class:

#include "mainwindow.h"
#include <QApplication>
int main(int argc, char *argvl(])
{
QApplication a(argc, argv) ;
MainWindow w;
w.show () ;
return a.exec();

}

Now, you can run your first Qt game.

As an additional exercise, you can try to modify the code we have written in this chapter to
allow playing the game on boards bigger than 3 x 3. Let the user decide about the size of the
board (you can modify the game options dialog for that and use QSlider and QSpinBox to
allow the user to choose the size of the board) and you can then instruct TicTacToeWidget
to build the board based on the size it gets. Remember to adjust the game winning logic! If
at any point you run into a dead end and do not know which classes and functions to use,
consult the reference manual.

To quickly find the documentation for a class (or any other page in the docs),
switch to the Help pane, choose Index from the drop-down list on top of
.\l the sidebar, and type in the search term, such as QAction. Also, the F1 key
Q is very helpful for browsing the manual. Position the mouse pointer or text
cursor in the code editor over the name of a class, function, or object and
press F1 on your keyboard. By doing this, Qt Creator will happily show you
the available help information on the chosen subject.

Chapter 3

Q1. A method that returns the preferred size of a widget is called:

1. preferredSize
2. sizeHint

3. defaultSize
Q2. What is the name of a Qt class that can carry values for any property?

1. Qvariant
2. QUnion

3. QPropertyValue
Q3. What is the purpose of the Qaction object?

1. It represents a functionality that a user can invoke in the program.
2. It holds a key sequence to move the focus on a widget.

3. ltis a base class for all forms generated using Qt Designer.

In this chapter, you learned how to create simple graphical user interfaces with Qt. We went
through two approaches—creating user interface classes by writing all the code directly

and designing the user interface with a graphical tool that generates most of the code for
us. There is no telling which of the two approaches is better; each of them is better in some
areas and worse in others. In general, you should prefer using Qt Designer forms to write
code directly because it's faster and less prone to errors as most of the code is generated.
However, if you want to retain more control over the code or your GUI is highly dynamic,
writing all the code yourself will be easier, especially when you gain enough experience with
Qt to avoid common pitfalls and learn to use advanced programming constructs.

We also learned how the heart of Qt—the meta-object system—works. You should now be
able to create simple user interfaces and fill them with logic by connecting signals to slots—
predefined ones as well as custom ones that you now know how to define and fill with code.

Qt contains many widget types but | didn't introduce them to you one by one. There is a
really nice explanation of many widget types in the Qt manual called Qt Widget Gallery,
which shows most of them in action.

611

Qt GUI Programming

If you have any doubts about using any of those widgets, you can check the example code
and also look up the appropriate class in the Qt reference manual to learn more about them.

Using Qt is much more than just dragging-and-dropping widgets on forms and providing
some code to glue the pieces together. In the next chapter, you will learn about some of the
most useful functionalities that Qt has to offer; they do not relate to showing graphics on
screen, but rather let you manipulate various kind of data. This is essential for any game that
is more complicated than a simple tic-tac-toe.

This chapter will help you master Qt ways of basic data processing and storage.
First of all, you will learn how to handle textual data and how to match text
against regular expressions. Then, you will see how to store and fetch data from
files and how to use different storage formats for text and binary data. By the
end of this chapter, you will be able to implement non-trivial logic and data
processing in your games efficiently. You will also know how to load external
data in your games and how to save your own data in permanent storage for
future use.

Text handling

Applications with a graphical user interface (and games surely fall into this category) are
able to interact with users by displaying text and by expecting textual input from the user.
We have already scratched the surface of this topic in the previous chapter by using the
QString class. Now, we will go into more details.

Qt Core Essentials

Manipulating strings

Text in Qt is internally encoded using Unicode, which allows to represent characters in
almost all languages spoken in the world and is de facto standard for native encoding of
text in most modern operating systems. You have to be aware though that contrary to

the QString class, the C++ language does not use Unicode by default. Thus, each string
literal (that is, each bare text you wrap in quotation marks) that you enter in your code
needs to be converted to Unicode first before it can be stored in any of Qt's string handling
classes. By default, this is done implicitly assuming that the string literal is UTF-8 encoded,
but 9string provides a number of static methods to convert from other encodings such
as QString: :fromLatinl () or QString: : fromUt£f16 (). This conversion is done at
runtime, which adds an overhead to the program execution time, especially if you tend to do
a lot of such conversions in your programs. Luckily, there is a solution for this:

QString str = QStringlLiteral("I'm writing my games using Qt");

You can wrap your string literal in a call to QStringLiteral, as shown in the preceding
code, which if your compiler supports, will perform the conversion at compile time. It's a
good habit to wrap all your string literals into QStringLiteral but it is not required, so
don't worry if you forget to do that.

We will not go into great detail here when describing the QString class, as in many aspects
it is similar to std: : string, which is part of the standard C++. Instead, we will focus on the
differences between the two classes.

The first difference has already been mentioned—Qstring keeps the data encoded as
Unicode. This has the advantage of being able to express text in virtually any language at the
cost of having to convert from other encodings. Most popular encodings—UTF-8, UTF-16,
and Latinl—have convenience methods in QString for converting from and to the internal
representation. But, Qt knows how to handle many other encodings as well. This is done
using the QTextCodec class.

M You can list the codecs supported on your installation by using the
Q QTextCodec: :availableCodecs () static method. In most installations,
Qt can handle almost 1,000 different text codecs.

701

Chapter 4

Most Qt entities that handle text can access instances of this class to transparently perform
the conversion. If you want to perform such conversion manually, you can ask Qt for an
instance of a codec by its name and make use of the fromUnicode () and toUnicode ()
methods:

QOByteArray big5Encoded = "{R4f";

QTextCodec *big5Codec = QTextCodec::codecForName ("Big5") ;
QString text = big5Codec->toUnicode (big5Encoded) ;

QTextCodec *utf8Codec = QTextCodec::codecForMib(106); // UTF-8
QByteArray utf8Encoded = utf8Codec->fromUnicode (text) ;

The most basic tasks that involve text strings are those where you add or remove characters
from the string, concatenate strings, and access the string's content. In this regard, QString
offers an interface that is compatible with std: : string, but it also goes beyond that,
exposing many more useful methods.

Adding data at the beginning or at the end of the string can be done using the prepend ()
and append () methods, which have a couple of overloads that accept different objects that
can hold textual data, including the classic const char* array. Inserting data in the middle
of a string can be done with the insert () method that takes the position of the character
where we need to start inserting as its first argument and the actual text as its second
argument. The insert method has exactly the same overloads as prepend and append,
excluding const char*. Removing characters from a string is similar. The basic way to do
this is to use the remove () method that accepts the position at which we need to delete
characters and the number of characters to delete is as shown:

QString str = QStringLiteral ("abcdefghij") ;
str.remove (2, 4); // str = "abghij"

There is also a remove overload that accepts another string. When called, all its occurrences
are removed from the original string. This overload has an optional argument that states
whether comparison should be done in the default case-sensitive (Qt : : CaseSensitive) or
case-insensitive (Qt : : CaseInsensitive) way:

QString str = QStringLiteral ("Abracadabra") ;
str.remove (QStringLiteral ("ab"), Qt::Caselnsensitive);
// str = "racadra"

ni

Qt Core Essentials

To concatenate strings, you can either simply add two strings together or you can append
one string to the other:

QString strl = QStringLiteral ("abc");
QString str2 = QStringLiteral ("def");
QString strl 2 strl+str2;

QString str2_1 = str2;

str2 1.append(strl);

Accessing strings can be divided into two use cases. The first is when you wish to extract a
part of the string. For this, you can use one of these three methods: 1eft (), right (), and
mid () that return the given number of characters from the beginning or end of the string or
extract a substring of a specified length, starting from a given position in the string:

QString original = QStringLiteral ("abcdefghij") ;
QString 1 = original.left(3); // "abc"

QString r = original.right(2); // "ij"

QString m = original.mid (2, 5); // "cdefg"

The second use case is when you wish to access a single character of the string. The use of
the index operator works with QString in a similar fashion as with std: : string, returning
a copy or non-const reference to a given character that is represented by the QChar class, as
shown in the following code:

QString str = "foo";
QChar f = str[0]; // const
str[0] = 'g'; // non-const

In addition to this, Qt offers a dedicated method—at () —that returns a copy of the
character:

QChar f = str.at(0);

1
‘Q You should prefer to use at () instead of the index operator for operations

that do not modify the character, as this explicitly sets the operation.

The string search and lookup

The second group of functionality is related to searching for the string. You can use methods
such as startsWith(), endsWith (), and contains () to search for substrings in the
beginning or end or in an arbitrary place in the string. The number of occurrences of a
substring in the string can be retrieved by using the count () method.

121

Chapter 4

Y .
‘Q Be careful, there is also a count () method that doesn't take any parameters

and returns the number of characters in the string.

If you need to know the exact position of the match, you can use index0Of () or
lastIndexOf () to receive the position in the string where the match occurs. The first call
works by searching forward and the other one searches backwards. Each of these calls takes
two optional parameters—the second one determines whether the search is case-sensitive
(similar to how remove works). The first one is the position in the string where the search
begins. It lets you find all the occurrences of a given substring:

#include <QtDebugs>

//
int pos = -1;
QString str = QStringLiteral ("Orangutans like bananas.");
do {
pos = str.indexOf ("an", pos+1l);
gDebug () << "'an' found starts at position" << pos;

} while(pos!=-1);

Dissecting strings

There is one more group of useful string functionalities that makes QString different from
std: :string. That s, cutting strings into smaller parts and building larger strings from
smaller pieces.

Very often, a string contains substrings that are glued together by a repeating separator. A
common case is the Comma-separated Values (CSV) format where a data record is encoded
in a single string where fields in the record are separated by commas. While you could
extract each field from the record using functions that you already know (for example,
indexOf), an easier way exists. QString contains a split () method that takes the
separator string as its parameter and returns a list of strings that are represented in Qt by
the QstringList class. Then, dissecting the record into separate fields is as easy as calling
the following code:

QString record = "1,4,8,15,16,24,42";

QStringList fields = record.split(",");

for(int i=0; i< fields.count(); ++i){
gDebug () << fields.at (i) ;

}

131

Qt Core Essentials

The inverse of this method is the join () method present in the QstringList class, which
returns all the items in the list as a single string merged together with a given separator:

QStringList fields = { nin, mgmw, "8", nisn, "16", ||24n’ ngon };
// C++11 syntax!
QString record = fields.join(",");

QString also provides some methods for convenient conversion between textual and
numerical values. Methods such as toInt (), toDouble (), or toLongLong () make it easy
to extract numerical values from strings. Apart from toDouble (), they all take two optional
parameters—the first one is a pointer to a bool variable that is set to true or false
depending on whether the conversion was successful or not. The second parameter specifies
the numerical base (for example, binary, octal, decimal, or hexadecimal) of the value. The
toDouble () method only takes a bool pointer to mark the success or failure as shown in
the following code:

bool ok;

int vl = QString("42") .toInt (&ok, 10);
// vl = 42, ok = true

long long v2 = QString("OxFFFFFF") .toInt (&ok, 16);
// v2 = 16777215, ok = true

double v3 = QString("not really a number") .toDouble (&ok) ;
//v3 = 0.0, ok = false

A static method called number () performs the conversion in the other direction—it takes a
numerical value and number base and returns the textual representation of the value:

QString txt = QString::number (255, 16); // txt = "OxFF"

If you have to combine both Qstring and std: : string in one program, QString offers
you the tostdstring () and fromStdString () methods to perform an adequate
conversion.

M Some of the other classes that represent values also provide conversions to
Q and from QString. An example of such a class is QDate, which represents
a date and provides the fromString () and toString () methods.

nl

Chapter 4

A common task is to have a string that needs to be dynamic in such a way that its content
depends on the value of some external variable—for instance, you would like to inform the
user about the number of files being copied, showing "copying file 1 of 2" or "copying file 2
of 5" depending on the value of counters that denote the current file and total number of
files. It might be tempting to do this by assembling all the pieces together using one of the
available approaches:

QString str = "Copying file " + QString::number (current)
+ " of "+QString::number (total) ;

There are a number of drawbacks to such an approach; the biggest of them is the problem of
translating the string into other languages (this will be discussed later in this chapter) where
in different languages their grammar might require the two arguments to be positioned
differently than in English.

Instead, Qt allows us to specify positional parameters in strings and then replace them with
real values. Positions in the string are marked with the % sign (for example, %1, %2, and so
on) and they are replaced by making a call to arg () and passing it the value that is used to
replace the next lowest marker in the string. Our file copy message construction code then
becomes:

QString str = QStringLiteral ("Copying file %1 of %2")
.arg(current) .arg(total) ;

The arg method can accept single characters, strings, integers, and real numbers and its
syntax is similar to that of QString: :number ().

Let's briefly talk about regular expressions—usually shortened as regex or regexp. You will
need these regular expressions whenever you have to check whether a string or parts of it
matches a given pattern or when you want to find specific parts inside the text and possibly
want to extract them. Both the validity check and the finding/extraction are based on the so-
called pattern of the regular expression, which describes the format a string must have to be
valid, to be found, or to be extracted. Since this book is focused on Qt, there is unfortunately
no time to cover regular expressions in depth. This is not a huge problem, however, since
you can find plenty of good websites that provide introductions to regular expressions on the
Internet. A short introduction can be found in Qt's documentation of QrRegExp as well.

Even though there are many flavors of the regular expression's syntax, the one that Perl uses
has become the de facto standard. According to QRegularExpression, Qt offers Perl-
compatible regular expressions.

1751

Qt Core Essentials

QRegularExpression was first introduced with Qt 5. In the previous
_versions, you'll find the older QRegExp class. Since QRegularExpression
% is closer to the Perl standard and since its execution speed is much faster
s compared to QRegExp, we advise you to use QRegularExpression
whenever possible. Nevertheless, you can read the QRegExp documentation
about the general introduction of regular expressions.

Time for action - a simple quiz game

To introduce you to the main usage of QRegularExpression, let's imagine this game: a
photo, showing an object, is shown to multiple players and each of them has to estimate
the object's weight. The player whose estimate is closest to the actual weight wins. The
estimates will be submitted via QL.ineEdit. Since you can write anything in a line edit,
we have to make sure that the content is valid.

So what does valid mean? In this example, we define that a value between 1 g and 999 kg

is valid. Knowing this specification, we can construct a regular expression that will verify the
format. The first part of the text is a number, which can be between 1 and 999. Thus, the
corresponding pattern looks like [1-9] [0-9] {0, 2}, where [1-9] allows—and demands—
exactly one digit, except zero, which is optionally followed by up to two digits including

zero. This is expressed through [0-9] {0, 2}. The last part of the input is the weight's

unit. With a pattern such as (mg|g|kg), we allow the weight to be input in milligrams
(mg), grams (g), or kilograms (kg). With [1?2, we finally allow an optional space between
the number and unit. Combined together, the pattern and construction of the related
QRegularExpression object looks like this:

QRegularExpression regex ("[1-9]1[0-9]1{0,2}[1? (mg|g|kg)");
regex.setPatternOptions (QRegularExpression:: CaselInsensitiveOption) ;

What just happened?

In the first line, we constructed the aforementioned QRegularExpression object while
passing the regular expression's pattern as a parameter to the constructor. We also could
have called setPattern () to set the pattern:

QRegularExpression regex;
regex.setPattern (" [1-9] [0-9]1{0,2}[1?2 (mg|glkg)");

1761

Chapter 4

Both the approaches are equivalent. If you have a closer look at the unit, you can see

that right now, the unit is only allowed to be entered in lowercase. We want, however,

to also allow it to be in uppercase or mixed case. To achieve this, we can of course write

(mg | mG|Mg|MG|g|G|kg|kG|Kg|KG). Not only is this a hell of a work when you have more
units, this is also very error-prone, and so we opt for a cleaner and more readable solution.
On the second line of the initial code example, you see the answer: a pattern option. We used
setPatternOptions () to setthe QReqularExpression: :CaselnsensitiveOption
option, which does not respect the case of the characters used. Of course, there are a few
more options that you can read about in Qt's documentation on QRegularExpression: : P
atternOption. Instead of calling setPatternOptions (), we could have also passed the
option as a second parameter to the constructor of QRegularExpression:

QRegularExpression regex ("[1-9][0-9]1{0,2}[1?(mg|g|kg)™",
QRegularExpression: :CaseInsensitiveOption) ;

Now, let's see how to use this expression to verify the validity of a string. For the sake of
simplicity and better illustration, we simply declared a string called input:

QString input = "23kg";
QRegularExpressionMatch match = regex.match (input) ;
bool isValid = match.hasMatch() ;

All we have to do is call match (), passing the string we would like to check against it.
In return, we get an object of the QRegularExpressionMatch type that contains

all the information that is further needed—and not only to check the validity. With
QRegularExpressionMatch: :hasMatch (), we then can determine whether the
input matches our criteria, as it returns true if the pattern could be found. Otherwise,
of course, false is returned.

Attentive readers surely will have noticed that our pattern is not quite finished. The
hasMatch () method would also return true if we matched it against "foo 142g bar".
So, we have to define that the pattern is checked from the beginning to the end of the
matched string. This is done by the \A and \ z anchors. The former marks the start of a
string and the latter the end of a string. Don't forget to escape the slashes when you use
such anchors. The correct pattern would then look as follows:

QRegularExpression regex ("\\A[1-9][0-91{0,2}[1?(mg|g|kg)\\z",
QRegularExpression: :CaseInsensitiveOption) ;

¥1]]

Qt Core Essentials

Extracting information out of a string

After we have checked that the sent guess is well formed, we have to extract the actual
weight from the string. In order to be able to easily compare the different guesses, we
further need to transform all values to a common reference unit. In this case, it should be a
milligram, the lowest unit. So, let's see what QRegularExpressionMatch can offer us for
this task.

With capturedTexts (), we get a string list of the pattern's captured groups. In our
example, this list would contain "23kg" and "kg". The first element is always the string

that was fully matched by the pattern followed by all the sub strings captured by the used
brackets. Since we are missing the actual number, we have to alter the pattern's beginning to
([1-91[0-91{0,2}).Now, the list's second element is the number and the third element
is the unit. Thus, we can write the following:

int getWeight (const QString &input) {
QRegularExpression regex ("\\A([1-9][0-9]1{0,2}) [12 (mg|g|kg)\\z");
regex.setPatternOptions (QRegularExpression:: CaselInsensitiveOption) ;
QRegularExpressionMatch match = regex.match (input) ;
if (match.hasMatch()) {
const QString number = match.captured(l) ;
int weight = number.toInt () ;
const QString unit = match.captured(2) .toLower() ;

if (unit == "g") {
weight *= 1000;
} else if (unit == "kg") {

weight *= 1000000 ;
}
return weight;
} else {
return -1;
}
}

In the function's first two lines, we set up the pattern and its option. Then, we match it
against the passed argument. If QRegularExpressionMatch: :hasMatch () returns
true, the input is valid and we extract the number and unit. Instead of fetching the entire
list of captured text with capturedTexts (), we query specific elements directly by calling
QRegularExpressionMatch: :captured (). The passed integer argument signifies the
element's position inside the list. So, calling captured (1) returns the matched digits as a
QString.

7181

Chapter 4

QRegularExpressionMatch: :captured () alsotakes QString as
the argument's type. This is useful if you have used named groups inside the

N pattern, for example, if you have written (? <number>[1-9] [0-9]1{0,2}),

= then you can get the digits by calling match. captured ("number").

Q Named groups pay off if you have long patterns or when there is a high
probability that further brackets will be added in future. Be aware that adding
a group at a later time will shift the indices of all the following groups by 1 and
you will have to adjust your code!

To be able to calculate using the extracted number, we need to convert QString into

an integer. This is done by calling 9String: : toInt (). The result of this conversion is
then stored in the weight variable. Next, we fetch the unit and transform it to lowercase
characters on-the-fly. This way, we can, for example, easily determine whether the user's

guess is expressed in grams by checking the unit against the lowercase "g". We do not need
to take care of the capital "G" or the variants "KG", "Kg", and the unusual "kG" for kilogram.

To get the standardized weight in milligrams, we multiply weight by 1,000 or 1,000,000,
depending on whether this was expressed in g or kg. Lastly, we return this standardized
weight. If the string wasn't well formed, we return -1 to indicate that the given guess was
invalid. It is then the caller's duty to determinate which player's guess was the best.

Pay attention to whether your chosen integer type can handle the weight's
. value. For our example, 100,000,000 is the biggest possible value that can be
% held by a signed integer on a 32-bit system. If you are not sure whether your
s code will be compiled on a 32-bit system, use gint32, which is guaranteed
to be a 32-bit integer on every system that Qt supports, allowing decimal
notations.

As an exercise, try to extend the example by allowing decimal numbers so that 23.5g is a
valid guess. To achieve this, you have to alter the pattern in order to enter decimal numbers
and you also have to deal with double instead of int for the standardized weight.

17191

Qt Core Essentials

Finding all pattern occurrences

Lastly, let's have a final look at how to find, for example, all numbers inside a string, even
those leading with zeros:

QString input = "123 foo 09 la 3";

QRegularExpression regex ("\\b[0-9]+\\b") ;
QRegularExpressionMatchIterator i = regex.globalMatch (input) ;
while (i.hasNext()) {

QORegularExpressionMatch match = i.next();
gWarning () << match.capturedTexts() ;

}

The input QString instance contains an exemplary text in which we would like to find

all numbers. The "foo" as well as "1a" variables should not be found by the pattern since
these are not valid numbers. Therefore, we set up the pattern defining that we require at
least one digit, [0-9] +, and that this digit—or these digits—should be wrapped by word
boundaries, \b. Note that you have to escape the slash. With this pattern, we initiate the
QRegularExpression object and call globalMatch () onit. Inside the passed argument,
the pattern will be searched. This time, we do not get QRegularExpressionMatch

back but, instead, an iterator of the QRegularExpressionMatchIterator type. Since
QRegularExpressionMatchIterator behaves like a Java iterator, with hasNext (),
we check whether there is a further match and if so we bring up the next match by calling
next (). The type of the returned match is then QRegularExpressionMatch, which you
already know.

M If you need to know about the next match inside the while loop, you can use
Q QRegularExpressionMatchIterator: :peekNext () to receive it.
The upside of this function is that it does not move the iterator.

This way, you can iterate all pattern occurrences in the string. This is helpful if you, for
example, want to highlight a search string in text.

Our example would give the output: ("123"), ("09") and ("3").

Taking into account that this was just a brief introduction to regular expressions,

we would like to encourage you to read the Detailed Description section in the
documentation to QRegularExpression, QRegularExpressionMatch, and
QRegularExpressionMatchIterator. Regular expressions are very powerful and useful,
so, in your daily programming life, you can benefit from the profound knowledge of regular
expressions!

Chapter 4

When implementing games, you will often have to work with persistent data—you will need
to store the saved game data, load maps, and so on. For that, you have to learn about the
mechanisms that let you use the data stored on digital media.

Files and devices

The most basic and low-level mechanism that is used to access data is to save and load it
from the files. While you can use the classic file access approaches provided by C and C++,
such as stdio or iostream, Qt provides its own wrapper over the file abstraction that
hides platform-dependent details and provides a clean API that works across all platforms in
a uniform manner.

The two basic classes that you will work with when using files are QDir and Qrile. The
former represents the contents of a directory, lets you traverse filesystems, creates and
remove directories, and finally, access all files in a particular directory.

Traversing directories

Traversing directories with QDir is really easy. The first thing to do is to have an instance of
oDir in the first place. The easiest way to do this is to pass the directory path to the QDir
constructor.

Qt handles file paths in a platform-independent way. Even though the regular
directory separator on Windows is a backwards slash character (\) and on other
platforms it is the forward slash (/), Qt accepts forward slash as a directory
M separator on Windows platforms as well. Therefore, you can always use / to
Q separate directories when you pass paths to Qt functions.

You can learn the native directory separator for the current platform is by calling
the QDir: : separator () static function. You can transform between native
and non-native separators with the QDir: : toNativeSeparators () and
QDir: :fromNativeSeparators () functions.

Qt provides a number of static methods to access some special directories. The following
table lists these special directories and functions that access them:

Access function Directory

QDir::current () The current working directory

QDir: :home () The home directory of the current user

QDir: :root () The root directory—usually / for Unix and C: \ for Windows
QDir::temp () The system temporary directory

811

Qt Core Essentials

When you already have a valid QDir object, you can start moving between directories.
To do that, you can use the cd () and cdup () methods. The former moves to the named
subdirectory, while the latter moves to the parent directory.

To list files and subdirectories in a particular directory, you can use the entryList ()
method, which returns a list of entries in the directory that match the criteria passed to
entryList (). This method has two overloads. The basic version takes a list of flags that
correspond to the different attributes that an entry needs to have to be included in the result
and a set of flags that determine the order in which entries are included in the set. The other
overload also accepts a list of file name patterns in the form of QstringList as its first
parameter. The most commonly used filter and sort flags are listed as follows:

Filter flags

QDir::Dirs, QDir::Files, List directories, files, drives (or all) that match

QDir::Drives, QDir::AllEntries the filters

QDir::AllDirs List all subdirectories regardless of whether they
match the filter or not

QDir::Readable, QDir::Writable, List entries that can be read, written, or executed

QDir: :Executable

QDir::Hidden, QDir::System List hidden files and system files

Sort flags

QDir: :Unsorted The order of entries is undefined

QDir::Name, QDir::Time, Sort by appropriate entry attributes

QDir::Size, QDir::Type

QDir::DirsFirst, QDir::DirsLast Determines whether directories should be listed
before or after files

Here is an example call that returns all JPEG files in the user's home directory sorted by size:

QDir dir = QDir::home() ;

QStringList nameFilters;

nameFilters << QStringLiteral ("*.jpg") << QStringLiteral ("*.jpeg");

QStringlList entries = dir.entrylList (nameFilters,
QDir::Files|QDir::Readable, QDir::Size);

sl . . .
‘Q The << operator is a nice and fast way to append entries to

QStringList.

1821

Chapter 4

Once you know the path to a file (either by using QDir: :entryList (), from some external
source, or even by hardcoding the file path in code), you can pass it to QFile to receive

an object that acts as a handle to the file. Before the file contents can be accessed, the file
needs to be opened using the open () method. The basic variant of this method takes a
mode in which we need to open the file. The following table explains the modes that are
available:

Mode Description

ReadOnly This file can be read from

WriteOnly This file can be written to

ReadWrite This file can be read from and written to

Append All data writes will be written at the end of the file
Truncate If the file is present, its content is deleted before we open it
Text Native line endings are transformed to \n and back
Unbuffered The flag prevents the file from being buffered by the system

The open () method returns true or false depending on whether the file was opened or
not. The current status of the file can be checked by calling 1sOpen () on the file object.
Once the file is open, it can be read from or written to depending on the options that are
passed when the file is opened. Reading and writing is done using the read () and write ()
methods. These methods have a number of overloads, but | suggest that you focus on using
those variants that accept or return a QByteArray object, which is essentially a series of
bytes—it can hold both textual and nontextual data. If you are working with plain text, then
a useful overload for write is the one that accepts the text directly as input. Just remember
that the text has to be null or terminated. When reading from a file, Qt offers a number

of other methods that might come in handy in some situations. One of these methods is
readLine (), which tries to read from the file until it encounters a new line character. If you
use it together with the atEnd () method that tells you whether you have reached the end
of the file, you can realize the line-by-line reading of a text file:

QStringList lines;

while(!file.atEnd()) {
OByteArray line = file.readLine() ;
lines.append (QString: :fromUtf8 (line)) ;

}

Another useful method is readall (), which simply returns the file content, starting from
the current position of the file pointer until the end of the file.

Qt Core Essentials

You have to remember though that when using these helper methods, you should be really
careful if you don't know how much data the file contains. It might happen that when
reading line by line or trying to read the whole file into memory in one step, you exhaust the
amount of memory that is available for your process (you can check the size of the file by
calling size () onthe QFile instance). Instead, you should process the file's data in steps,
reading only as much as you require at a time. This makes the code more complex but allows
us to better manage the available resources. If you require constant access to some part of
the file, you can use the map () and unmap () calls that add and remove mappings of the
parts of a file to a memory address that you can then use like a regular array of bytes:

QFile f ("myfile");

if (!f.open(QFile: :ReadWrite)) return;
uchar *addr = f.map(0, f.size());

if (!laddr) return;

f.close() ;
doSomeComplexOperationOn (addr) ;
f.unmap (addr) ;

Devices

QFile is really a descendant class of QTODevice, which is a Qt interface that is used to
abstract entities related to reading and writing. There are two types of devices: sequential
and random access devices. QFile belongs to the latter group—it has the concepts of start,
end, size, and current position that can be changed by the user with the seek () method.
Sequential devices, such as sockets and pipes, represent streams of data—there is no way to
rewind the stream or check its size; you can only keep reading the data sequentially—piece
by piece, and you can check how far away you currently are from the end of data.

All'1/0O devices can be opened and closed. They all implement open (), read (), and

write () interfaces. Writing to the device queues the data for writing; when the data is
actually written, the bytesWritten () signal is emitted that carries the amount of data that
was written to the device. If more data becomes available in the sequential device, it emits
the readyRead () signal, which informs you that if you call read now, you can expect to
receive some data from the device.

[8a1

Chapter 4

Time for action - implementing a device to encrypt data

Let's implement a really simple device that encrypts or decrypts the data that is streamed
through it using a very simple algorithm—the Caesar cipher. What it does is that when
encrypting, it shifts each character in the plaintext by a number of characters defined by the
key and does the reverse when decrypting. Thus, if the key is 2 and the plaintext character is
a, the ciphertext becomes c. Decrypting z with the key 4 will yield the value v.

We will start by creating a new empty project and adding a class derived from QIODevice.
The basic interface of the class is going to accept an integer key and set an underlying device
that serves as the source or destination of data. This is all simple coding that you should
already understand, so it shouldn't need any extra explanation, as shown:

class CaesarCipherDevice : public QIODevice

{

Q OBJECT
Q PROPERTY (int key READ key WRITE setKey)
public:
explicit CaesarCipherDevice (QObject *parent = 0)
QIODevice (parent)
m key = 0;
m device = 0;

}

void setBaseDevice (QIODevice *dev) { m_device = dev; }
QIODevice *baseDevice() const { return m device; }
void setKey(int k) { m_key = k; }
inline int key() const { return m key; }

private:
int m_key;
QIODevice *m device;

}i

The next thing is to make sure that the device cannot be used if there is no device to
operate on (that is, whenm_device == 0). For this, we have to reimplement the
QIODevice: :open () method and return false when we want to prevent operating on
our device:

bool open (OpenMode mode)
if (!baseDevice())
return false;
if (baseDevice () ->openMode () != mode)
return false;
return QIODevice: :open (mode) ;

}

1851

Qt Core Essentials

The method accepts the mode that the user wants to open the device with. We perform an
additional check to verify that the base device was opened in the same mode before calling
the base class implementation that will mark the device as open.

To have a fully functional device, we still need to implement the two protected pure virtual
methods, which do the actual reading and writing. These methods are called by Qt from
other methods of the class when needed. Let's start with writeData (), which accepts a
pointer to a buffer containing the data and size of that a buffer:

gint64 CaesarCipherDevice::writeData (const char *data, ginté4 len) {
QOByteArray ba(data, 1len);
for(int i=0;i<len;++1)
ba.data() [i] += m_key;
int written = m device->write (ba);
emit bytesWritten (written) ;
return written;

}

First, we copy the data into a local byte array. Then, we iterate the array, adding to each byte
the value of the key (which effectively performs the encryption). Finally, we try to write the
byte array to the underlying device. Before informing the caller about the amount of data
that was really written, we emit a signal that carries the same information.

The last method that we need to implement is the one that performs decryption by

reading from the base device and adding the key to each cell of the data. This is done by
implementing readData (), which accepts a pointer to the buffer that the method needs to
write to and the size of the buffer. The code is quite similar to that of writeData () except
that we are subtracting the key value instead of adding it:

gint64 CaesarCipherDevice::readData (char *data, ginté64 maxlen) {
QByteArray baseData = m device->read(maxlen) ;
const int s = baseData.size() ;
for(int i=0;i<s;++1)
data[i] = baseDatal[i]-m key;

return s;

}

First, we read from the underlying device as much as we can fit into the buffer and store the
data in a byte array. Then, we iterate the array and set subsequent bytes of data buffer to the
decrypted value. Finally, we return the amount of data that was really read.

Chapter 4

A simple main () function that can test the class looks as follows:

int main(int argc, char **argv) {
QOByteArray ba = "plaintext";
QBuffer buf;
buf .open (QIODevice: :WriteOnly) ;
CaesarCipherDevice encrypt;
encrypt.setKey (3) ;
encrypt.setBaseDevice (&buf) ;
encrypt.open (buf.openMode ()) ;
encrypt.write (ba) ;
gDebug () << buf.data() ;

CaesarCipherDevice decrypt;
decrypt.setKey (3) ;
decrypt.setBaseDevice (&buf) ;
buf .open (QIODevice: :ReadOnly) ;
decrypt.open (buf.openMode ()) ;
gDebug () << decrypt.readAll () ;
return 0O;

}

We use the gBuf fer class that implements the QI0Device API and acts as an adapter for
QOByteArray Or QString.

What just happened?

We created an encryption object and set its key to 3. We also told it to use a QBuffer
instance to store the processed content. After opening it for writing, we sent some data to

it that gets encrypted and written to the base device. Then, we created a similar device,
passing the same buffer again as the base device, but now, we open the device for reading.
This means that the base device contains ciphertext. After this, we read all data from the
device, which results in reading data from the buffer, decrypting it, and returning the data so
that it can be written to the debug console.

1811

Qt Core Essentials

You can combine what you already know by implementing a full-blown GUI application that
is able to encrypt or decrypt files using the Caesar cipher QI0Device class that we just
implemented. Remember that QFile is also QIODevice, so you can pass its pointer directly
to setBaseDevice ().

This is just a starting point for you. The QI0ODevice APl is quite rich and contains numerous
methods that are virtual, so you can reimplement them in subclasses.

Text streams

Much of the data produced by computers nowadays is based on text. You can create such
files using a mechanism that you already know—opening QFile to write, converting all
data into strings using QString: :arg (), optionally encoding strings using QTextCodec,
and dumping the resulting bytes to the file by calling write. However, Qt provides a nice
mechanism that does most of this automatically for you in a way similar to how the standard
C++ iostream classes work. The QTextStream class operates on any QIODevice APlin a
stream-oriented way. You can send tokens to the stream using the << operator, where they
get converted into strings, separated by spaces, encoded using a codec of your choice, and
written to the underlying device. It also works the other way round; using the >> operator,
you can stream data from a text file, transparently converting it from strings to appropriate
variable types. If the conversion fails, you can discover it by inspecting the result of the
status () method—if you get ReadPastEnd or ReadCorruptData, then this means that
the read has failed.

M While QIODevice is the main class that QText St ream operates on, it can
Q also manipulate QString or QByteArray, which makes it useful for us to
compose or parse strings.

Using QTextStream is simple—you just have to pass it the device that you want it to
operate on and you're good to go. The stream accepts strings and numerical values:

QFile file("output.txt");
file.open(QFile: :WriteOnly|QFile: :Text) ;
QTextStream stream(&file) ;

stream << "Today is " << QDate::currentDate() .toString() << endl;
QTime t = QTime::currentTime () ;
stream << "Current time is " << t.hour() << " h and " << t.minute()

<< "m." << endl;

Chapter 4

Apart from directing content into the stream, the stream can accept a number of
manipulators, such as end1, which have a direct or indirect influence on how the stream
behaves. For instance, you can tell the stream to display a number as decimal and another as
hexadecimal with uppercase digits using the following code (highlighted in the code are all
manipulators):

for(int i=0;i<10;++1i)
int num = grand() % 100000; // random number between 0 and 99999
stream << dec << num << showbase << hex << uppercasedigits << num

<< endl;

}

This is not the end of the capabilities of QTextStream. It also allows us to display data in a
tabular manner by defining column widths and alignments. Suppose that you have a set of
records for game players that is defined by the following structure:

struct Player ({
QString name;
gint64 experience;
QPoint position;
char direction;

Vi

QList<Player> players;
Let's dump such info into a file in a tabular manner:

QFile file("players.txt");
file.open(QFile: :WriteOnly|QFile: :Text) ;
QTextStream stream(&file) ;

stream << center;

stream << gSetFieldWidth
stream << gSetFieldWidth

(16) << "Player" << gSetFieldWidth(0) << " ";
(
<< gSetFieldwidth/(
(
(

16
10) << "Experience"
0) << " ";
stream << gSetFieldWidth(13) << "Position"
<< gSetFieldwidth(0) << " ";
stream << "Direction" << endl;
for(int i=0;i<players.size();++i)
const Player &p = players.at(i);
stream << left << gSetFieldWidth(16) << p.name
<< gSetFieldwidth(0) << " ";
stream << right << gSetFieldWidth(10) << p.experience
<< gSetFieldwidth(0) << " ";
stream << right << gSetFieldWidth(6) << p.position.x()
<< gSetFieldwWidth(0) << " " << gSetFieldwidth (6)
<< p.position.y() << gSetFieldWidth(0) << " ";

Qt Core Essentials

stream << center << gSetFieldWidth(10) ;
switch(p.direction) {

case 'n' : stream << "north"; break;
case 's' : stream << "south"; break;
case 'e' : stream << "east"; break;
case 'w' : stream << "west"; break;

default: stream << "unknown"; break;

}

stream << gSetFieldWidth(0) << endl;

}

After running the program, you should get a result similar to the one shown in the following
screenshot:

i players.kxt - KWrite & & %
File Edit View Bookmarks Tools Settings Help

Flayer Experience Position Direction
Gondael 45783 10 -5 north
Olrael 123648 -5 103 east
MNazaal 99372641 48 634 south

One last thing about QTextStream is that it can operate on standard C file structures, which
makes it possible for us to use QTextStream to, for example, write to stdout or read from
stdin, as shown in the following code:

QTextStream gout (stdout) ;
gout << "This text goes to process standard output." << endl;

More than often, we have to store object data in a device-independent way so that it can
be restored later, possibly on a different machine with a different data layout and so on. In
computer science, this is called serialization. Qt provides several serialization mechanisms
and now we will have a brief look at some of them.

Chapter 4

Binary streams

If you look at QTextStream from a distance, you will notice that what it really does is
serialize and deserialize data to a text format. Its close cousin is the QDataStream class that
handles serialization and deserialization of arbitrary data to a binary format. It uses a custom
data format to store and retrieve data from QIODevice in a platform-independent way. It
stores enough data so that a stream written on one platform can be successfully read on a
different platform.

QDataStream is used in a similar fashion as QText St ream—the operators << and >>
are used to redirect data into or out of the stream. The class supports most of the built-in
Qt types so that you can operate on classes such as QColor, QPoint, or QStringList
directly:

QFile file("outfile.dat");

file.open(QFile: :WriteOnly|QFile: :Truncate) ;

QDataStream stream(&file) ;

double dbl = 3.14159265359;

QColor color = Qt::red;

QPoint point (10, -4);

QStringList stringlList = QStringList() << "foo" << "bar";
stream << dbl << color << point << stringList;

If you want to serialize custom data types, you can teach QDataStream to do that by
implementing proper redirection operators.

Time for action - serialization of a custom structure

Let's perform another small exercise by implementing functions that are required to use
QDataStream to serialize the same simple structure that contains the player information
that we used for text streaming:

struct Player ({
QString name;
gint64 experience;
QPoint position;
char direction;

911

Qt Core Essentials

For this, two functions need to be implemented, both returning a QDataStream reference
that was taken earlier as an argument to the call. Apart from the stream itself, the serialization
operator accepts a constant reference to the class that is being saved. The most simple
implementation just streams each member into the stream and returns the stream afterwards:

QDataStream& operator<< (QDataStream &stream, const Player &p) {
stream << p.name;
stream << p.experience;
stream << p.position;
stream << p.direction;

return stream;

}

Complementary to this, deserializing is done by implementing a redirection operator that
accepts a mutable reference to the structure that is filled by data that is read from the stream:

QDataStream& operators>>(QDataStream &stream, Player &p)
stream >> p.name;
stream >> p.experience;
stream >> p.position;
stream >> p.direction;

return stream;

}

Again, at the end, the stream itself is returned.

What just happened?

We provided two standalone functions that define redirection operators for the Player
class to and from a QDataStream instance. This lets your class be serialized and deserialized
using mechanisms offered and used by Qt.

KML streams

XML has become one of the most popular standards that is used to store hierarchical data.
Despite its verbosity and difficulty to read by human eye, it is used in virtually any domain
where data persistency is required, as it is very easy to read by machines. Qt provides
support for reading and writing XML documents in two modules. First, the QtXm1 module
provides access using the Document Object Model (DOM) standard with classes such as
QDomDocument, QDomElement, and others. We will not discuss this approach here, as now
the recommended approach is to use streaming classes from the QtCore module. One of
the downsides of QDomDocument is that it requires us to load the whole XML tree into the
memory before parsing it. In some situations, this is compensated for by the ease of use of
the DOM approach as compared to a streamed approach, so you can consider using it if you
feel you have found the right task for it.

1921

Chapter 4

M If you want to use the DOM access to XML in Qt, remember to enable
Q the QtXm1l module in your applications by addinga QT += xml linein
the project configuration files.

As already said, we will focus on the stream approach implemented by the
OXmlStreamReader and QXmlStreamWriter classes.

Time for action - implementing an XML parser for player data

In this exercise, we are going to create a parser to fill data that represents players and their
inventory in an RPG game:

struct InventoryItem {
enum Type { Weapon, Armor, Gem, Book, Other } type;
QString subType;
int durability;

bi

struct Player ({
QString name;
QString password;
int experience;
int hitPoints;
QList<Item> inventory;
QString location;
QPoint position;

bi

struct PlayerInfo {
QList<Player> players;
bi

Save the following document somewhere. We will use it to test whether the parser can
read it:

<PlayerInfos>
<Player hp="40" exp="23456">
<Name>Gandalf</Name>
<Passwords>mithrandir</Passwords>
<Inventory>
<Invitem type="weapon" durability="3">
<SubType>Long sword</SubType>
</InvIitem>
<Invitem type="armor" durability="10">
<SubType>Chain mail</SubType>

Qt Core Essentials

</InvIitem>
</Inventory>
<Location name="rooml">
<Position x="1" y="0"/>
</Location>
</Player>
</PlayerInfo>

Let's create a class called PlayerInfoReader that will wrap QXxmlStreamReader and
expose a parser interface for the PlayerInfo instances. The class will contain two private
members—the reader itself and a PlayerInfo instance that acts as a container for the data
that is currently being read. We'll provide a result () method that returns this object once
the parsing is complete, as shown in the following code:

class PlayerInfoReader ({
public:

PlayerInfoReader (QIODevice *);

inline const PlayerInfo& result() const { return m pinfo; }
private:

QXmlStreamReader reader;

PlayerInfo m pinfo;

Vi

The class constructor accepts a QI0Device pointer that the reader is going to use to retrieve
data as it needs it. The constructor is trivial, as it simply passes the device to the reader
object:

PlayerInfoReader (QIODevice *device) {
reader.setDevice (device) ;

}

Before we go into parsing, let's prepare some code to help us with the process. First, let's
add an enumeration type to the class that will list all the possible tokens—tag names that we
want to handle in the parser:

enum Token ({

T Invalid = -1,

T PlayerInfo, /* root tag */

T Player, /* in PlayerInfo */
T Name, T Password, T Inventory, T Location, /* in Player */

T Position, /* in Location */

T InvItem /* in Inventory */

[9a1

Chapter 4

To use these tags, we'll add a static method to the class that returns the token type based on
its textual representation:

static Token PlayerInfoReader::tokenByName (const QStringRef &r) {
static QStringList tokenList = QStringList ()
<< "PlayerInfo" << "Player"

<< "Name" << "Password"

<< "Inventory" << "Location"

<< "Pogition" << "InvItem";
int idx = tokenList.indexOf (r.toString()) ;
return (Token)idx;

}

You can notice that we are using a class called QstringRef. It represents a string
reference—a substring in an existing string—and is implemented in a way that avoids
expensive string construction; therefore, it is very fast. We're using this class here because
that's how QxmlStreamReader reports tag names. Inside this static method, we are
converting the string reference to a real string and trying to match it against a list of known
tags. If the matching fails, -1 is returned, which corresponds to our T Invalid token.

Now, let's add an entry point to start the parsing process. Add a public read method that
initializes the data structure and performs initial checks on the input stream:

bool PlayerInfoReader::read()
m pinfo = PlayerInfo();
if (reader.readNextStartElement () &&
tokenByName (reader.name ()) == T PlayerInfo) {
return readPlayerInfo() ;
} else {
return false;
}
}

After clearing the data structure, we call readNextStartElement () on the reader to make
it find the starting tag of the first element, and if it is found, we check whether the root tag
of the document is what we expect it to be. If so, we call the readPlayerInfo () method
and return its result, denoting whether the parsing was successful. Otherwise, we bail out,
reporting an error.

The gXmlStreamReader subclasses usually follow the same pattern. Each parsing method
first checks whether it operates on a tag that it expects to find. Then, it iterates all the
starting elements, handling those it knows and ignoring all others. Such an approach lets us
maintain forward compatibility, since all tags introduced in newer versions of the document
are silently skipped by an older parser.

Qt Core Essentials

Now, let's implement the readPlayerInfo method:

bool readPlayerInfo() {
if (tokenByName (reader.name()) != T PlayerInfo)
return false;
while (reader.readNextStartElement ()) {
if (tokenByName (reader.name()) == T Player) {
Player p = readPlayer();
m pinfo.players.append(p) ;
} else
reader.skipCurrentElement () ;

}

return true;

}

After verifying that we are working on a PlayerInfo tag, we iterate all the starting
subelements of the current tag. For each of them, we check whether it is a P1ayer tag and
call readPlayer () to descend into the level of parsing data for a single player. Otherwise,
we call skipCurrentElement (), which fast-forwards the stream until a matching ending
element is encountered.

The structure of readpPlayer () is similar; however, it is more complicated as we also want
to read data from attributes of the Player tag itself. Let's take a look at the function piece
by piece:

Player readPlayer() {
if (tokenByName (reader.name()) != T Player) return Player();
Player p;
const QXmlStreamAttributes& playerAttrs = reader.attributes() ;
p.-hitPoints = playerAttrs.value("hp") .toString() .toInt () ;
p.experience = playerAttrs.value ("exp") .toString() .toInt() ;

After checking for the right tag, we get the list of attributes associated with the opening
tag and ask for values of the two attributes that we are interested in. After this, we loop all
child tags and fill the P1ayer structure based on the tag names. By converting tag names
to tokens, we can use a switch statement to neatly structure the code in order to extract
information from different tag types, as shown in the following code:

while (reader.readNextStartElement ()) {

Token t = tokenByName (reader.name()) ;
switch (t) {
case Name: p.name = reader.readElementText (); break;

case Password: p.password = reader.readElementText (); break;
case Inventory: p.inventory = readInventory(); break;

Chapter 4

If we are interested in the textual content of the tag, we can use readElementText ()
to extract it. This method reads until it encounters the closing tag and returns the text

contained within it. For the Inventory tag, we call the dedicated readInventory ()

method.

For the Location tag, the code is more complex than before as we again descend into
reading child tags, extracting the required information and skipping all unknown tags:

case T Location: ({
p.location = reader.attributes() .
value ("name") .toString() ;
while (reader.readNextStartElement ()) {
if (tokenByName (reader.name()) == T Position) ({
const QXmlStreamAttributes& attrs
= reader.attributes() ;
p.position.setX (attrs.value ("x")
.toString() .toInt());
p.position.setY (attrs.value("y").
toString () .toInt ());
reader.skipCurrentElement () ;
} else
reader.skipCurrentElement () ;
}
}: break;
default:
reader.skipCurrentElement () ;

}

return p;

}

The last method is similar in structure to the previous one—iterate all the tags, skip
everything that we don't want to handle (everything that is not an inventory item), fill the
inventory item data structure, and append the item to the list of already parsed items, as
shown in the following code:

QList<InventoryItem> readInventory () {
QList<InventoryItem> inventory;
while (reader.readNextStartElement ()) {
if (tokenByName (reader.name()) != T InvItem) {

reader.skipCurrentElement () ;
continue;
InventoryItem item;
const QXmlStreamAttributes& attrs = reader.attributes() ;

1971

Qt Core Essentials

item.

durability = attrs.value("durability").

toString() .toInt () ;
QStringRef typeRef = attrs.value("type");

if (typeRef == "weapon") {
item.type = InventoryItem::Weapon;
} else if (typeRef == "armor") ({
item.type = InventoryItem: :Armor;
} else if (typeRef == "gem") {
item.type = InventoryItem: :Gem;
} else if (typeRef == "book") ({
item.type = InventoryItem: :Book;

} else

item.type = InventoryItem: :0Other;

while (reader.readNextStartElement ()) {

if (reader.name() == "SubType")

item.
else

subType = reader.readElementText () ;

reader.skipCurrentElement () ;

}

inventory << item;

}

return inventory;

}

Inmain () of your project, write some code that will check whether the parser works
correctly. You can use the gbDebug () statements to output the sizes of lists and contents of
variables. Take a look at the following code for an example:

gDebug () <<
gDebug () <<
<<
gDebug () <<
<<

"Count:" << playerInfo.players.count () ;

"Size of inventory:"
playerInfo.players.first () .inventory.size() ;
"Room: " << playerInfo.players.first().location
playerInfo.players.first () .position;

What just happened?

The code you just wrote implements a full top-down parser of the XML data. First, the data
goes through a tokenizer, which returns identifiers that are much easier to handle than
strings. Then, each method can easily check whether the token it receives is an acceptable
input for the current parsing stage. Based on the child token, the next parsing function is
determined and the parser descends to a lower level until there is nowhere to descend

to. Then, the flow

goes back up one level and processes the next child. If at any point an

unknown tag is found, it gets ignored. This approach supports a situation when a new
version of software introduces new tags to the file format specification, but an old version of
software can still read the file by skipping all the tags that it doesn't understand.

Chapter 4

Have a go hero — an KML serializer for player data

Now that you know how to parse XML data, you can create the complementary

part—a module that will serialize P1layerInfo structures into XML documents

using QxmlStreamWriter. Use methods such as writeStartDocument (),
writeStartElement (), writeCharacters (), and writeEndElement () for this
Verify that the documents saved with your code can be parsed with what we implemented
together.

1SON files

JSON stands for JavaScript Object Notation, which is a popular lightweight textual format
that is used to store object-oriented data in a human-readable form. It comes from JavaScript
where it is the native format used to store object information; however, it is commonly used
across many programming languages and a popular format for web data exchange. A simple
JSON-formatted definition looks as follows:

{ "name": "Joe",
"age": 14,
"inventory: [
{ "type": "gold; "amount": "144000" },
{ "type": "short sword"; "material": "iron" }

}

JSON can express two kinds of entities: objects (enclosed in braces) and arrays (enclosed in
square brackets) where an object is defined as a set of key-value pairs, where a value can
be a simple string, an object, or array. In the previous example, we had an object containing
three properties—name, age, and inventory. The first two properties are simple values and
the last property is an array that contains two objects with two properties each.

Qt can create and read JSON descriptions using the QdsonDocument class. A document

can be created from the UTF-8-encoded text using the QdsonDocument : : fromJson ()
static method and can later be stored in a textual form again using toJdson (). Since the
structure of JSON closely resembles that of Qvariant (which can also hold key-value pairs
using QVariantMap and arrays using QVariantList), conversion methods to this class
also exist using a set of fromvariant () and tovariant () calls. Once a JSON document

is created, you can check whether it represents an object or an array using one of the
isArray and isObject calls. Then, the document can be transformed into QJsonArray or
QJsonObject using the toArray and toObject methods.

Qt Core Essentials

QJsonObject is an iterable type that can be queried for a list of keys (using keys ()) or
asked for a value of a specific key (with a value () method). Values are represented using
the Qusonvalue class, which can store simple values, an array, or object. New properties
can be added to the object using the insert () method that takes a key as a string, a value
can be added as QusonVvalue, and the existing properties can be removed using remove ().

QJsonArray is also an iterable type that contains a classic list API—it contains methods
such as append (), insert (), removeAt (), at (), and size () to manipulate entries in
the array, again working on QJsonValue as the item type.

Time for action - the player data ISON serializer

Our next exercise is to create a serializer of the same PlayerInfo structure as we used for
the XML exercise, but this time the destination data format is going to be JSON.

Start by creating a PlayerInfoJSON class and give it an interface similar to the one shown
in the following code:

class PlayerInfoJSON {
public:
PlayerInfoJdSON () {}
QByteArray writePlayerInfo(const PlayerInfo &pinfo) const;

Vi

All that is really required is to implement the writePlayerInfo method. This method will
use QJsonDocument : : fromVariant () to perform the serialization; thus, what we really
have to do is convert our player data to a variant. Let's add a protected method to do that:

QVariant PlayerInfoJSON::toVariant (const PlayerInfo &pinfo) const
QVariantList players;
foreach(const Player &p, pinfo.players) players << toVariant (p) ;
return players;

}

Since the structure is really a list of players, we can iterate the list of players, serialize each
player to a variant, and append the result to QvariantList. Having this function ready,
we can descend a level and implement an overload for tovariant () that takes a Player
object:

QVariant PlayerInfoJSON::toVariant (const Player &player) const {
QVariantMap map;

map ["name"] = player.name;

map ["password"] = player.password;
map ["experience"] = player.experience;
map ["hitpoints"] = player.hitPoints;

[100]

Chapter 4

map ["location"]

player.location;

QVariantMap ({ {"x", player.position.x()},
{"y", player.position.y()} });

map ["inventory"] = toVariant (player.inventory) ;

return map;

map ["position"]

Qt's foreach macro takes two parameters—a declaration of a variable and a
container to iterate. At each iteration, the macro assigns subsequent elements
to the declared variable and executes the statement located directly after the

macro. A C++11 equivalent of foreach is a range that is based for construct:

for (const Player &p: pinfo.players)
players << toVariant (p);

This time, we are using QVariantMap as our base type, since we want to associate values
with keys. For each key, we use the index operator to add entries to the map. The position
key holds a Qpoint value, which is supported natively by Qvariant; however, such a variant
can't be automatically encoded in JSON, so we convert the point to a variant map using the
C++11 initializer list. The situation is different with the inventory—again, we have to write an
overload for tovariant that will perform the conversion:

QVariant PlayerInfoJSON::toVariant (const QList<InventoryItem> &items)
const {

}

QVariantList list;

foreach(const InventoryItem &item, items) list << toVariant (item) ;
return list;

The code is almost identical to the one handling P1layerInfo objects, so let's focus on the
last overload of tovariant —the one that accepts Item instances:

QVariant PlayerInfoJSON::toVariant (const Inventoryltem &item) const

}

QVariantMap map;

map["type"] = (int)item.type;

map ["subtype"] = item.subType;

map ["durability"] = item.durability;
return map;

There is not much to comment here—we add all keys to the map, treating the item type as
an integer for simplicity (this is not the best approach in a general case, as if we serialize our
data and then change the order of values in the original enumeration, we will not get the
proper item types after deserialization).

1011

Qt Core Essentials

What remains is to use the code we have just written in the writePlayerInfo method:

QOByteArray PlayerInfoJSON::writePlayerInfo (const PlayerInfo &pinfo)
const {

QJsonDocument doc = QJsonDocument::fromVariant (toVariant (pinfo)) ;
return doc.todson() ;

Time for action - implementing a JSON parser

Let's extend the PlayerInfoJSON class and equip it with a reverse conversion:

PlayerInfo PlayerInfodSON::readPlayerInfo (const QByteArray &ba) const

{

QJsonDocument doc = QJsonDocument::fromJson (ba) ;
if (doc.isEmpty () || !doc.isArray()) return PlayerInfo();
return readPlayerInfo(doc.array()) ;

}

First, we read the document and check whether it is valid and holds the expected array.
Upon failure, an empty structure is returned; otherwise, readPlayerInfois called and is
given QdsonArray to work with:

PlayerInfo PlayerInfodSON::readPlayerInfo (const QJsonArray &array)
const {

PlayerInfo pinfo;
foreach (QJdsonvalue value, array)

pinfo.players << readPlayer (value.toObject()) ;
return pinfo;

}

Since the array is iterable, we can again use foreach to iterate it and use another method—
readPlayer—to extract all the needed data:

Player PlayerInfoJSON::readPlayer (const QJsonObject &object) const {
Player player;
player.name = object.value("name") .toString() ;
player.password = object.value ("password") .toString() ;
player.experience = object.value ("experience") .toDouble() ;
player.hitPoints = object.value("hitpoints") .toDouble () ;
player.location = object.value("location") .toString() ;

11021

Chapter 4

QVariantMap positionMap = object.value("position")
.tovVariant () .toMap () ;
player.position = QPoint (positionMap["x"].toInt (),
positionMap ["y"].toInt());

player.inventory = readInventory (
object.value ("inventory") .toArray()) ;

return player;

}

In this function, we used QJsonObject: :value () to extract data from the object and
then we used different functions to convert the data to the desired type. Note that in order
to convert to QPoint, we first converted it to QvariantMap and then extracted the values
before using them to build QPoint. In each case, if the conversion fails, we get a default
value for that type (for example, an empty string). To read the inventory, we employ a
custom method:

QList<InventoryItem> PlayerInfoJSON: :readInventory (const QJsonArray
&array) const {
QList<InventoryItems> inventory;

foreach(QJdsonvalue value, array)
inventory << readItem(value.toObject()) ;

return inventory;

}
What remains is to implement readItem():

InventoryItem PlayerInfoJSON::readItem(const QJsonObject &object)
const {
Item item;
item.type = (InventoryItem::Type)object.value("type") .toDouble() ;
item.subType = object.value ("subtype") .toString() ;
item.durability = object.value ("durability") .toDouble () ;
return item;

What just happened?

The class that was implemented can be used for bidirectional conversion between Item
instances and a QByteArray object, which contains the object data in the JSON format. We
didn't do any error checking here; instead, we relied on automatic type conversion handling
in QJsonObject and QVariant.

[1031

Qt Core Essentials

QSettings

While not strictly a serialization issue, the aspect of storing application settings is closely
related to the described subject. A Qt solution for this is the QSet tings class. By default,
it uses different backends on different platforms, such as system registry on Windows or INI
files on Linux. The basic use of QSettings is very easy—you just need to create the object
and use setValue () and value () to store and load data from it:

QSettings settings;

settings.setValue ("windowWidth", 80) ;
settings.setValue ("windowTitle", "MySuperbGame") ;
/]

int windowHeight = settings.value ("windowHeight") .toInt () ;

The only thing you need to remember is that it operates on Qvariant, so the return value
needs to be converted to the proper type if needed as shown in the last line of the preceding
code. A call to value () can take an additional argument that contains the value to be
returned if the requested key is not present in the map. This allows you to handle default
values, for example, in a situation when the application is first started and the settings are
not saved yet:

int windowHeight = settings.value ("windowHeight", 800) ;

The simplest scenario assumes that settings are "flat" in the way that all keys are defined
on the same level. However, this does not have to be the case—correlated settings can
be put into named groups. To operate on a group, you can use the beginGroup () and
endGroup () calls:

settings.beginGroup ("Server") ;

QString srvIP = settings.value("host") .toString() ;
int port = settings.value("port").toInt();
settings.endGroup () ;

When using this syntax, you have to remember to end the group after you are done with it.
An alternative to using the two mentioned methods is to pass the group name directly to
invocation of value ():

QString srvIP = settings.value ("Server/host").toString() ;
int port = settings.value("Server/port") .toInt();

As was mentioned earlier, QSettings can use different backends on different platforms;
however, we can have some influence on which is chosen and which options are passed to
it by passing appropriate options to the constructor of the settings object. By default,
the place where the settings for an application are stored is determined by two values—the
organization and the application name. Both are textual values and both can be passed

as arguments to the QSettings constructor or defined a priori using appropriate static
methods in QCoreApplication:

(1041

Chapter 4

QCoreApplication: :setOrganizationName ("Packt") ;
QCoreApplication: :setApplicationName ("Game Programming using QOt") ;
QSettings settings;

This code is equivalent to:

QSettings settings ("Packt", "Game Programming using Qt");

All of the preceding code use the default backend for the system. However, it is often
desirable to use a different backend. This can be done using the Format argument, where
we can pass one of the two options—NativeFormat or IniFormat. The former chooses
the default backend, while the latter forces the INI-file backend. When choosing the
backend, you can also decide whether settings should be saved in a system-wide location
or in the user's settings storage by passing one more argument—the scope of which can be
either UserScope or SystemScope. This can extend our final construction call to:

QSettings settings (QSettings::IniFormat, QSettings::UserScope,
"Packt", "Game Programming using Qt");

There is one more option available for total control of where the settings data resides—tell
the constructor directly where the data should be located:

QSettings settings(
QStandardPaths: :writableLocation (
QStandardPaths: :ConfigLocation
) +"/myapp.conf", QSettings::IniFormat
)i

sl . .
‘Q The QStandardPaths class provides methods to determine standard

locations for files depending on the task at hand.

QSettings also allows you to register your own formats so that you can control the way
your settings are stored—for example, by storing them using XML or by adding on-the-fly
encryption. This is done using QSettings: :registerFormat (), where you need to pass
the file extension and two pointers to functions that perform reading and writing of the
settings, respectively, as follows:

bool readCCFile (QIODevice &device, QSettings::SettingsMap &map) {
CeasarCipherDevice ccDevice;
ccDevice.setBaseDevice (&device) ;
//

return true;

}

bool writeCCFile (QIODevice &device, const QSettings::SettingsMap &map)
const QSettings::Format CCFormat = QSettings::registerFormat
("ccph", readCCFile, writeCCFile) ;

[1051

Qt Core Essentials

Pop quiz - Ot core essentials

Ql. What is the closest equivalent std: : stringin Qt?

1. QString
2. QByteArray
3. QStringLiteral

Q2. Which regular expression can be used to validate an IPv4 address, which is an address
composed of four dot-separated decimal numbers with values ranging from 0 to 255?

Q3. Which do you think is the best serialization mechanism to use if you expect the data
structure to evolve (gain new information) in future versions of the software?

1. JSON
2. XML
3. QDataStream

sSummary

In this chapter, you learned a number of core Qt technologies ranging from text
manipulation, to accessing devices that can be used to transfer or store data using a number
of popular technologies such as XML or JSON. You should be aware that we have barely
scratched the surface of what Qt offers and there are many other interesting classes you
should familiarize yourself with but this minimum amount of information should give you a
head start and show you the direction to follow with your future research.

In the next chapter, we will switch from describing data manipulation, which can be
visualized using text or only in your imagination, to a more appealing media. We will start
talking about graphics and how to transfer what you can see in your imagination to the
screen of your computer.

[1061]

When it comes to graphics, we have so far been using only ready-made widgets for the user
interface, which resulted in the crude approach of using buttons for a tic-tac-toe game.

In this chapter, you will learn about much of what Qt has to offer with regard to custom
graphics. This will let you not only create your own widgets, incorporating content that is
entirely customized, but also integrate multimedia in your programs. You will also learn
about employing your OpenGL skills to display fast 3D graphics. If you are not familiar with
OpenGL, this chapter should give you a kick-start for further research in this topic. By the end
of the chapter, you will be able to create 2D and 3D graphics for your games using classes
offered by Qt and integrate them with the rest of the user interface.

When it comes to graphics, Qt splits this domain into two separate parts. One of them

is raster graphics (used by widgets, for example). This part focuses on using high-level
operations (such as drawing lines or filling rectangles) to manipulate colors of a grid of points
that can be visualized on different devices, such as images or the display of your computer
device. The other is vector graphics, which involves manipulating vertices, triangles, and
textures. This is tailored for maximum speed of processing and display using hardware
acceleration provided by modern graphics cards. Qt abstracts graphics by using the concept
of a surface that it draws on. The surface (represented by the QSurface class) can be of one
of two types—RasterSurface or OpenGLSurface. The surface can be further customized
using the QSurfaceFormat class, but we will talk about that later as it is not important right
now.

When we talk about GUI frameworks, raster painting is usually associated with drawing on
widgets. However, since Qt is something more than a GUI toolkit, the scope of raster painting
that it offers is much broader.

11071

Graphics with Qt

In general, Qt's drawing architecture consists of three parts. The most important part

is the device the drawing takes place on, represented by the QpaintDevice class. Qt
provides a number of paint device subclasses such as QWidget or QImage and QPrinter
or QpdfWriter. You can see that the approach for drawing on a widget and printing

on a printer will be quite the same. The difference is in the second component of the
architecture—the paint engine (QPaintEngine). The engine is responsible for performing
the actual paint operations on a particular paint device. Different paint engines are used to
draw on images and to print on printers. This is completely hidden from you as a developer,
so you really don't need to worry about it.

For you, the most important piece is the third component—QpPainter—which is an

adapter for the whole painting framework. It contains a set of high-level operations that

can be invoked on the paint device. Behind the scenes, the whole work is delegated to an
appropriate paint engine. While talking about painting, we will be focusing solely on the
painter object as any painting code can be invoked on any of the target devices only by using
a painter initialized on a different paint device. This effectively makes painting in Qt device
agnostic, like in the following example:

void doSomePainting(QPainter *painter)
painter->drawLine (QPoint (0,0), QPoint (100, 40));

}

The same code can be executed on a painter working on any possible QpaintDevice class,
be it a widget, an image, or an OpenGL context (through the use of QOpenGLPaintDevice).

The QPainter class has a rich API that can basically be divided into three groups of
methods. The first group contains setters and getters for attributes of the painter. The
second group consists of methods, with names starting with draw and £111 that perform
drawing operations on the device. The last group has other methods, mostly ones that allow
manipulating the coordinate system of the painter.

Let's start with the attributes. The three most important ones are the font, pen, and brush.
The first is an instance of the QFont class. It contains a large number of methods for
controlling such font parameters as font family, style (italic or oblique), font weight, and font
size (either in points or device-dependent pixels). All the parameters are self-explanatory,

so we will not discuss them here in detail. It is important to note that QFont can use any
font installed on the system. In case more control over fonts is required or a font that is not
installed in the system needs to be used, one can take advantage of the QFontDatabase
class. It provides information about available fonts (such as whether a particular font is
scalable or bitmap or what writing systems it supports) and allows adding new fonts into the
registry by loading their definitions directly from files.

[108]

Chapter 5

An important class, when it comes to fonts, is the QFontMetrics class. It allows calculating
how much space is needed to paint particular text using a font or calculates text eliding. The
most common use case is to check how much space to allocate for a particular user-visible
string, for example:

QFontMetrics fm = painter.fontMetrics();
QRect rect = fm.boundingRect ("Game Programming using Qt") ;

This is especially useful when trying to determine sizeHint for a widget.

The pen and brush are two attributes that define how different drawing operations are
performed. The pen defines the outline, and the brush fills the shapes drawn using the
painter. The former is represented by the QPen class and the latter by 0Brush. Each of them
is really a set of parameters. The most simple one is the color defined either as a predefined
global color enumeration value (such as Qt : : red or Qt : : transparent) or an instance of
the QColor class. The effective color is made up of four attributes—three color components
(red, green, and blue) and an optional alpha channel value that determines transparency of
the color (the larger the value, the more opaque the color). By default, all components are
expressed as 8-bit values (0 to 255) but can also be expressed as real values representing

a percentage of the maximum saturation of the component; for example, 0.6 corresponds
to 153 (0.6*255). For convenience, one of the QColor constructors accepts hexadecimal
color codes used in HTML (with #0000FF being an opaque blue color) or even bare color
names (for example, blue) from a predefined list of colors returned by a static function
QColor: :colorNames (). Once a color object is defined using RGB components, it can be
queried using different color spaces (for example, CMYK or HSV). Also, a set of static methods
are available that act as constructors for colors expressed in different color spaces. For
example, to construct a clear magenta color, any of the following expressions can be used:

QColor ("magenta")

QColor ("#FFOOFF")

QColor (255, 0, 255)

QColor: :fromRgbF (1, 0, 1)
QColor: :fromHsv (300, 255, 255)
QColor: : fromCmyk (0, 255, 0, O0)

* & & 6 0 o o

Qt: :magenta

(1091

Graphics with Qt

Apart from the color, 9Brush has two additional ways of expressing the fill of a shape.

You can use QBrush: : setTexture () to set a pixmap that will be used as a stamp or
QBrush: :setGradient () to make the brush use a gradient to do the filling. For example,
to use a gradient that goes diagonally and starts yellow in the top-left corner of the shape,
becomes red in the middle of the shape, and ends magenta at the bottom-right corner of the
shape, the following code can be used:

QLinearGradient gradient (0, 0, width, height);
gradient.setColorAt (0, Qt::yellow) ;
gradient.setColorAt (0.5, Qt::red);
gradient.setColorAt (1.0, Qt::magenta);

OBrush brush = gradient;

When used with drawing a rectangle, this code will give the following output:

Qt can handle linear (QLinearGradient), radial (QRadialGradient), and conical
(oConicalGradient) gradients. It comes with a sample (shown in the following
screenshot) where you can see different gradients in action. This sample is located in
examples/widgets/painting/gradients.

(1101

Chapter 5

K) Gradients 2R

@ Linear Gradien
@ Radial Gradien
@ cConical Gradie

Spread Method
© Pad Spread
@ Repeat Spreac
@ Reflect Spread

Use OpenGL

\

As for the pen, its main attribute is its width (expressed in pixels), which determines the
thickness of the shape outline. A special width setting is 0, which constitutes a so-called
cosmetic pen that is always drawn as a 1 pixel-wide line no matter what transformations
are applied to the painter (we'll cover this later). A pen can of course have a color set but, in
addition to that, you can use any brush as a pen. The result of such an operation is that you
can draw thick outlines of shapes using gradients or textures.

There are three more important properties for a pen. The first of them is the pen style, set
using QPen: :setStyle (). It determines whether lines drawn by the pen are continuous or
somehow divided (dashes, dots, and so on). You can see available line styles together with
their corresponding constants in the following diagram:

e,

Qt:NoPen Qt::SolidLine Qt:DashLine Qt::Dotline Qt::DashDotLine Qt:DashDotDotLine

[l

Graphics with Qt

The second attribute is the cap style, which can be flat, square, or round. The

third attribute—the join style—is important for polyline outlines and dictates how

different segments of the polyline are connected. You can make the joins sharp (with

Qt: :MiterJoin), round (Qt : : RoundJoin), or a hybrid of the two (Qt : : BevelJoin). You
can see the different pen attribute configurations (including different join and cap styles) in
action by launching the pathstroke example shown in the following screenshot:

A Path Rroking S

@ Flat
& Square

“ @ round
= L) — S
e ||[gom
/ @ Round
' -f:éfdfx‘;iéi'l;':—

& .
f— = == - & — SRR

& Curves
& Lines

Uge OpenGl

Whats Thi?

The next important aspect of the painter is its coordinate system. The painter in fact has two
coordinate systems. One is its own logical coordinate system that operates on real numbers,
and the other is the physical coordinate system of the device the painter operates on. Each
operation on the logical coordinate system is mapped to physical coordinates in the device
and applied there. Let's start with explaining the logical coordinate system first, and then
we'll see how this relates to physical coordinates.

The painter represents an infinite Cartesian canvas with the horizontal axis pointing right and
the vertical axis pointing down by default. The system can be modified by applying affine
transformations to it—translating, rotating, scaling, and shearing. This way, you can draw

an analog clock face that marks each hour with a line by executing a loop that rotates the
coordinate system by 30 degrees for each hour and draws a line that is vertical in the newly
obtained coordinate system. Another example is when you wish to draw a simple plot with x
axis going right and y axis going up. To obtain the proper coordinate system, you would scale
the coordinate system by -1 in the vertical direction, effectively reversing the direction of
the vertical axis.

[n2]

Chapter 5

What we described here modifies the world transformation matrix for the painter
represented by an instance of the QTransform class. You can always query the current
state of the matrix by calling transform () on the painter and you can set a new matrix
by calling setTransform (). QTransform has methods such as scale (), rotate (),
and translate () that modify the matrix, but QPainter has equivalent methods for
manipulating the world matrix directly. In most cases, using these would be preferable.

Each painting operation is expressed in logical coordinates, goes through the world
transformation matrix, and reaches the second stage of coordinate manipulation, which is
the view matrix. The painter has the concept of viewport () and window () rectangles.
The viewport rectangle represents the physical coordinates of an arbitrary rectangle while
the window rectangle expresses the same rectangle but in logical coordinates. Mapping
one to another gives a transformation that needs to be applied to each drawn primitive to
calculate the area of the physical device that is to be painted. By default, the two rectangles
are identical to the rectangle of the underlying device (thus no window-viewport mapping
is done). Such transformation is useful if you wish to perform painting operations using
measurement units other than the pixels of the target device. For example, if you want to
express coordinates using percentages of the width and height of the target device, you
would set the window width and height both to 100. Then, to draw a line starting at 20% of
the width and 10% of the height and ending at 70% of the width and 30% of the height, you
would tell the painter to draw the line between (20, 10) and (70, 30). If you wanted those
percentages to apply not to the whole area of an image but rather to its left half, you set the
viewport rectangle only to the left half of the image.

\ Setting the window and viewport rectangles only defines coordinate
~ mapping; it does not prevent drawing operations from painting outside
Q the viewport rectangle. If you want such behavior, you have to set a
clipping rectangle on the painter.

Once you have the painter properly set, you can start issuing painting operations. Qpainter
has a rich set of operations for drawing different kinds of primitives. All of these operations
have the prefix draw in their names, followed by the name of the primitive that is to be
drawn. Thus, such operations as drawLine, drawRoundedRect, and drawText are
available with a number of overloads that usually allow us to express coordinates using
different data types. These may be pure values (either integer or real), Qt's classes, such

as QPoint and QRect, or their floating point equivalents—QPointF and QrRectF. Each
operation is performed using current painter settings (font, pen, and brush).

131

Graphics with Qt

U . .
‘Q Creator. From the drop-down list on top of the window, choose Index and then

To see the list of all drawing operations available, switch to the Help pane in Qt

type in gpainter. After confirming the search, you should see the reference
manual for the QPainter class with all the drawing operations listed.

Before you start drawing, you have to tell the painter what device you wish to draw on.

This is done using the begin () and end () methods. The former accepts a pointer to a
QPaintDevice instance and initializes the drawing infrastructure, and the latter marks

the drawing as complete. Usually, we don't have to use these methods directly as the
constructor of QPainter calls begin () for us and the destructor invokes end () . Thus, the
typical workflow is to instantiate a painter object, passing it the device, then do the drawing
by calling set and draw methods, and finally let the painter be destroyed by going out of
scope, as follows:

{

}

QPainter painter(this); // paint on the current object
QPen pen = Qt::red;

pen.setWidth(2) ;

painter.setPen (pen) ;

painter.setBrush (Qt::yellow) ;

painter.drawRect (0, 0, 100, 50);

We will cover more methods from the draw family in the following sections of this chapter.

It is time to actually get something onto the screen by painting on a widget. A widget is
repainted as a result of receiving an event called QEvent : : Paint, which is handled by
reimplementing the virtual method paintEvent (). This method accepts a pointer to the
event object of type QpaintEvent that contains various bits of information about the
repaint request. Remember that you can only paint on the widget from within that widget's
paintEvent () call.

[1al

Chapter 5

Time for action — custom-painted widgets

Let's immediately use our new skills in practice!

Start by creating a new Qt Widgets Application in Qt Creator, choosing QWidget as the base
class, and making sure the Generate Form box is unchecked.

Switch to the header file for the newly created class, add a protected section to the class
and type void paintEvent for the section. Then press Ctrl + spacebar on your keyboard
and Creator will suggest the parameters for the method. You should end up with the
following code:

protected:
void paintEvent (QPaintEvent ¥*);

Creator will leave the cursor positioned right before the semicolon. Pressing Alt + Enter will
open the refactoring menu, letting you add the definition in the implementation file. The
standard code for a paint event is one that instantiates a painter on the widget, as shown:

void Widget::paintEvent (QPaintEvent *)

{

QPainter painter (this) ;

}

If you run this code, the widget will remain blank. Now we can start adding the actual
painting code there:

void Widget::paintEvent (QPaintEvent *)
{
QPainter painter (this) ;
QPen pen(Qt::black);
pen.setWidth (4) ;
painter.setPen (pen) ;
QRect r = rect() .adjusted (10, 10, -10, -10);
painter.drawRoundedRect (r, 20, 10);

}

Build and run the code, and you'll obtain the following output:

(1151

Graphics with Qt

What just happened?

First we set a 2 pixel-wide black pen for the painter. Then we called rect () to retrieve the
geometry rectangle of the widget. By calling adjusted (), we received a new rectangle
with its coordinates (in left, top, right, and bottom order) modified by the given arguments,
effectively giving us a rectangle with a 10 pixel margin on each side.

Qt usually offers two methods that allow us to work with modified data.
W\ Calling adjusted () returns a new object with its attributes modified,
~ while if we had called adjust (), the modification would have been done
Q in place. Pay special attention to which method you use to avoid unexpected
results. It's best to always check the return value for a method—whether it
returns a copy or void.

Finally we call drawRoundedRect (), which paints a rectangle with its corners rounded

by the number of pixels (in x, y order) given as the second and third argument. If you look
closely, you will notice that the rectangle has nasty jagged rounded parts. This is caused by
the effect of aliasing, where a logical line is approximated using the limited resolution of the
screen; due to this, a pixel is either fully drawn or not drawn at all. Qt offers a mechanism
called antialiasing to counter this effect by using intermediate pixel colors where appropriate.
You can enable this mechanism by setting a proper render hint on the painter before you
draw the rounded rectangle, as shown:

void Widget::paintEvent (QPaintEvent *)

QPainter painter (this);
painter.setRenderHint (QPainter::Antialiasing, true);

/]
}

Now you'll get the following output:

Of course, this has a negative impact on performance, so use antialiasing only where the
aliasing effect is noticeable.

(1161

Chapter 5

Time for action - transforming the viewport

Let's extend our code so that all future operations focus only on drawing within the border
boundaries after the border is drawn. Use the window and viewport transformation as
follows:

void Widget::paintEvent (QPaintEvent *)
QPainter painter(this);
painter.setRenderHint (QPainter: :Antialiasing, true);
QPen pen(Qt::black) ;
pen.setWidth (4) ;
painter.setPen (pen) ;
QRect r = rect().adjusted(10, 10, -10, -10);
painter.drawRoundedRect (r, 20, 10);
painter.save() ;
r.adjust (2, 2, -2, -2);
painter.setViewport (r) ;
r.moveTo (0, -r.height()/2);
painter.setWindow(r) ;
drawChart (&painter, r);
painter.restore();

}
Also create a protected method called drawChart () :

void Widget::drawChart (QPainter *painter, const QRect &rect) {
painter->setPen (Qt: :red) ;
painter->drawLine (0, 0, rect.width(), 0);

}

Let's take a look at our output:

1111

Graphics with Qt

What just happened?

The first thing we did in the newly added code is call painter.save (). This call stores all
parameters of the painter in an internal stack. We can then modify the painter state (by
changing its attributes, applying transformations, and so on) and then, if at any point we
want to go back to the saved state, it is enough to call painter.restore () to undo all the
modifications in one go.

u The save () and restore () methods can be called as many times as
~ needed. Just remember to always pair a call to save () with a similar call
Q to restore (), or the internal painter state will get corrupted. Each call to
restore () will revert the painter to the last saved state.

After the state is saved, we modify the rectangle again by adjusting for the width of the
border. Then, we set the new rectangle as the viewport, informing the painter about the
physical range of coordinates to operate on. Then we move the rectangle by half its height
and set that as the painter window. This effectively puts the origin of the painter at half the
height of the widget. Then, the drawChart () method is called whereby a red line is drawn
on the x axis of the new coordinate system.

Time for action - drawing an oscillogram

Let's further extend our widget to become a simple oscillogram renderer. For that we have to
make the widget remember a set of values and draw them as a series of lines.

Let's start by adding a QL.ist<quint16> member variable that holds a list of unsigned 16-
bit integer values. We will also add slots for adding values to the list and for clearing the list,
as shown:

class Widget : public QWidget
{
!/
public slots:
void addPoint (unsigned yVal) { m points << gMax(Ou, yVal); update(); }
void clear() { m points.clear(); update(); }
protected:
//

QList<quintl6é> m points;

}i

Note that each modification of the list invokes a method called update (). This schedules a
paint event so that our widget can be redrawn with the new values.

(1181

Chapter 5

Drawing code is also easy; we just iterate over the list and draw symmetric blue lines based
on the values from the list. Since the lines are vertical, they don't suffer from aliasing and so
we can disable this render hint, as shown:

void Widget::drawChart (QPainter *painter, const QRect &rect) {

painter-s>setPen (Qt: :red) ;

painter->drawLine (0, 0, rect.width(), 0);

painter->save() ;
painter->setRenderHint (QPainter::Antialiasing, false);

painter->setPen(Qt::blue);

for(int i=0;i < m points.size(); ++i) {

painter->drawLine(i, -m points.at(i), i, m points.at(i));

}

painter->restore() ;

}

To see the result add a loop to main as follows. This fills the widget with data:

for(int i=0;1<450;++1) w.addPoint (grand() % 120);

This loop takes a random number between 0 and 119 and adds it as a point to the widget. A
sample result from running such code can be seen in the following screenshot:

If you scale down the window, you will notice that the oscillogram extends
past the boundaries of the rounded rectangle. Remember about clipping?
You can use it now to constrain drawing by adding a simple painter.
setClipRect (r) call just before you call drawChart ().

(19l

Graphics with Qt

So far, the custom widget was not interactive at all. Although the widget content could be
manipulated from within the source code (say by adding new points to the plot), the widget
was deaf to any user actions (apart from resizing the widget, which caused a repaint). In Qt,
any interaction between the user and the widget is done by delivering events to the widget.
Such a family of events is generally called input events and contains events such as keyboard
events and different forms of pointing-device events—mouse, tablet, and touch events.

In a typical mouse event flow, a widget first receives a mouse press event, then a number

of mouse move events (when the user moves the mouse around while the mouse button is
kept pressed), and finally, a mouse release event. The widget can also receive an additional
mouse double-click event in addition to these events. It is important to remember that, by
default, mouse move events are only delivered if a mouse button is pressed when the mouse
is moved. To receive mouse move events when no button is pressed, a widget needs to
activate a feature called mouse tracking.

Time for action - making oscillograms selectable

It's time to make our oscillogram widget interactive. We will teach it to add a couple of lines
of code to it that let the user select part of the plot. Let's start with storage for the selection.
We'll need two integer variables that can be accessed via read-only properties; therefore,
add the following two properties to the class (you can initialize them both to -1) and
implement their getters:

Q PROPERTY (int selectionStart READ selectionStart
NOTIFY selectionChanged)

Q PROPERTY (int selectionEnd READ selectionEnd
NOTIFY selectionChanged)

The user can change the selection by dragging the mouse cursor over the plot. When the
user presses the mouse button over some place in the plot, we'll mark that place as the start
of the selection. Dragging the mouse will determine the end of the selection. The scheme
for naming events is similar to the paint event; therefore, we need to declare and implement
the following two protected methods:

void Widget: :mousePressEvent (QMouseEvent *mouseEvent) {

m_selectionStart = m selectionEnd = mouseEvent-s>pos().x() - 12;
emit selectionChanged() ;
update () ;

}

void Widget: :mouseMoveEvent (QMouseEvent *mouseEvent) {

m_selectionEnd = mouseEvent-spos().x() - 12;
emit selectionChanged() ;
update () ;

}

1201

Chapter 5

The structure of both event handlers is similar. We update the needed values, taking into
consideration the left padding (12 pixels) of the plot, similar to what we do while drawing.
Then, a signal is emitted and update () is called to schedule a repaint of the widget.

What remains is to introduce changes to the drawing code. | suggest you add a
drawSelection () method similar to drawChart () but that is called from the paint event
handler immediately before drawChart (), as shown:

void Widget::drawSelection (QPainter *painter, const QRect &rect) {
if (m_selectionStart < 0) return;
painter-s>save () ;
painter->setPen (Qt: :NoPen) ;
painter->setBrush(palette () .highlight()) ;
QRect selectionRect = rect;
selectionRect.setLeft (m_selectionStart) ;
selectionRect.setRight (m_selectionEnd) ;
painter->drawRect (selectionRect) ;
painter-s>restore() ;

}

First we check if there is any selection to be drawn at all. Then, we save the painter state

and adjust the pen and brush of the painter. The pen is set to Qt : : NoPen, which means

the painter should not draw any outline. To determine the brush, we use palette (); this
returns an object of type QPalette holding basic colors for a widget. One of the colors

held in the object is the color of the highlight often used for marking selections. If you use

an entry from the palette instead of manually specifying a color, you gain an advantage that
when the user of the class modifies the palette, this modification is taken into account by our
widget code.

M You can use other colors from the palette in the widget for other things we
Q draw in the widget. You can even define your own QPalette object in the
constructor of the widget to provide default colors for it.

Finally, we adjust the rectangle to be drawn and issue the drawing call.

When you run this program, you will notice that the selection color doesn't contrast very
well with the plot itself. To overcome this, a common approach is to draw the "selected"
content with a different (often inverted) color. This can easily be applied in this situation by
modifying the drawChart () code slightly:

for(int i=0; i < m points.size(); ++1) {
if (m_selectionStart <= i && m selectionEnd >=i) {
painter->setPen (Qt::white) ;

[1211

Graphics with Qt

} else
painter->setPen(Qt::blue);

painter->drawLine (i, -m points.at (i), i, m points.at(i));

}

Now you see the following output:

m
il

Have a go hero - reacting only to the left mouse button

As an exercise, you can modify the event handling code so that it only changes the selection
if the mouse event was triggered by the left mouse button. To see which button triggered
the mouse press event, you can use the QMouseEvent : :button () method, which returns
Qt: :LeftButton for the left button, ot : :RightButton for the right, and so on.

Handling touch events is different. For any such event, you receive a call to the
touchEvent () virtual method. The parameter of such a call is an object that can retrieve
a list of points currently touched by the user with additional information regarding the
history of user interaction (whether the touch was just initiated or the point was pressed
earlier and moved) and what force is applied to the point by the user. Note that this is a
low-level framework that allows you to precisely follow the history of touch interaction. If
you are more interested in higher-level gesture recognition (pan, pinch, and swipe), there
is a separate family of events available for it.

Handling gestures is a two-step procedure. First you need to activate gesture recognition
on your widget by calling grabGesture () and passing in the type of gesture you want to
handle. A good place for such code is the widget constructor.

11221

Chapter 5

Then your widget will start receiving gesture events. There are no dedicated handlers for
gesture events but, fortunately, all events for an object flow through its event () method,
which we can reimplement. Here is some example code that handles pan gestures:

bool Widget::event (QEvent *e)

if (e->type() == QEvent::Gesture) ({
QGestureEvent *gestureEvent = static cast<QGestureEvent*s (e) ;
QGesture *pan = gestureEvent-s>gesture (Qt::PanGesture) ;
if (pan)

handlePanGesture (static_ cast<QPanGesture*>(pan)) ;

}
}

return QWidget: :event (e) ;

}

First, a check for the event type is made; if it matches the expected value, the event object
is cast to QGestureEvent. Then, the event is asked if Qt : : PanGesture was recognized.
Finally, a handlePanGesture method is called. You can implement such a method to
handle your pan gestures.

Qt has two classes for handling images. The first one is QImage, more tailored towards
direct pixel manipulation. You can check the size of the image or check and modify the color
of each pixel. You can convert the image into a different internal representation (say from
8-bit color map to full 32-bit color with a premultiplied alpha channel). This type, however, is
not that fit for rendering. For that, we have a different class called QPixmap. The difference
between the two classes is that QImage is always kept in the application memory, while
QPixmap can only be a handle to a resource that may reside in the graphics card memory or
on a remote X server. Its main advantage over QImage is that it can be rendered very quickly
at the cost of the inability to access pixel data. You can freely convert between the two types
but bear in mind that, on some platforms, this might be an expensive operation. Always
consider which class serves your particular situation better. If you intend to crop the image,
tint it with some color, or paint over it, QImage is a better choice. But if you just want to
render a bunch of icons, it's best to keep them as QPixmap instances.

11231

Graphics with Qt

Loading

Loading images is very easy. Both QPixmap and QImage have constructors that simply
accept a path to a file containing the image. Qt accesses image data through plugins that
implement reading and writing operations for different image formats. Without going into
the details of plugins, it is enough to say that the default Qt installation supports reading the
following image types:

Type Description

BMP Windows bitmap

GIF Graphics Interchange Format
ICO Windows icon

JPEG Joint Photography Experts Group
MNG Multiple-image Network Graphics
PNG Portable Network Graphics
PPM/PBM/PGM Portable anymap

SVG Scalable Vector Graphics

TIFF Tagged Image File Format

XBM X Bitmap

XPM X Pixmap

As you can see, most popular image formats are available. The list can be further extended
by installing additional plugins.

\ You can ask Qt for a list of supported image types by calling a static method,
Ny QImageReader: : supportedImageFormats (), which returns a list of
Q formats that can be read by Qt. For a list of writable formats, call QImageWr
iter: :supportedFileFormats ().

An image can also be loaded directly from an existing memory buffer. This can be done in
two ways. The first one is to use the 1loadFrombData () method (it exists in both QPixmap
and QImage), which behaves the same as when loading an image from a file—you pass it a
data buffer and the size of the buffer and based on that, the loader determines the image
type by inspecting the header data and loads the picture into QImage or QPixmap. The
second situation is when you don't have images stored in a "filetype" such as JPEG or PNG
but rather you have raw pixel data itself. In such a situation, QImage offers a constructor that
takes a pointer to a block of data together with the size of the image and format of the data.
The format is not a file format such as the ones listed earlier but rather a memory layout for
data representing a single pixel.

[124]

Chapter 5

The most popular format is QImage: : Format ARGB32, which means that each pixel is
represented by 32-bits (4 bytes) of data divided equally between alpha, red, green, and

blue channels—8-bits per channel. Another popular format is QImage: : Format ARGB32
Premultiplied, where values for the red, green, and blue channels are stored after being
multiplied by the value of the alpha channel, which often results in faster rendering. You can
change the internal data representation using a call to convertToFormat (). For example,
the following code converts a true-color image to 256 colors, where color for each pixel is
represented by an index in a color table:

QImage trueColor (image.png) ;
QImage indexed = trueColor.convertToFormat (QImage::Format Indexed8) ;

The color table itself is a vector of color definitions that can be fetched using colorTable ()
and replaced using setColorTable (). The simplest way to convert an indexed image to
grayscale is to adjust its color table as follows:

QImage indexed = ..;

QVector<QRgb> ct = indexed.colorTable() ;

for(int i=0;i<ct.size();++1i) ct[i] = gGray(ctl[i]);
indexed.setColorTable (ct) ;

Modifying

There are two ways to modify image pixel data. The first one works only for gImage and
involves direct manipulation of pixels using the setPixel () call, which takes the pixel
coordinates and color to be set for that pixel. The second one works for both QImage

and Qpixmap and makes use of the fact that both these classes are subclasses of
QPaintDevice. Therefore, you can open QPainter on such objects and use its drawing
API. Here is an example of obtaining a pixmap with a blue rectangle and red circle painted
over it:

QPixmap px (256, 256);

px.f£ill (Qt: :transparent) ;

QPainter painter (&px) ;
painter.setPen (Qt: :NoPen) ;
painter.setBrush(Qt: :blue) ;

QRect r = px.rect().adjusted(10, 10, -10, -10);
painter.drawRect (r) ;

painter.setBrush(Qt::red) ;
painter.drawEllipse (r) ;

First we create a 256 x 256 pixmap and fill it with transparent color. Then we open a painter
on it and invoke a series of calls that draws a blue rectangle and red circle.

11251

Graphics with Qt

QImage also offers a number of methods for transforming the image, including scaled (),
mirrored (), transformed (), and copy (). Their APl is intuitive so we won't discuss them
here.

Painting images in its basic form is as simple as calling drawImage () or drawPixmap ()
from the Qpainter API. There are different variants of the two methods, but basically all
of them allow one to specify which portion of a given image or pixmap is to be drawn and
where. It is worth noting that painting pixmaps is preferred to painting images as an image
has to first be converted into a pixmap before it can be drawn.

If you have a lot of pixmaps to draw, a class called QPixmapCache may come in handy.
It provides an application-wide cache for pixmaps. By using it, you can speed up pixmap
loading while introducing a cap on memory usage.

Drawing text using QPainter deserves a separate explanation, not because it is complicated
but rather because Qt offers much flexibility in this regard. In general, painting text takes
place by calling Qpainter: :drawText () or QPainter: :drawStaticText (). Let's focus
on the former first, which allows the drawing of generic text.

The most basic call to paint some text is a variant of this method, which takes x and y
coordinates and the text to draw:

painter.drawText (10, 20, "Drawing some text at (10, 20)");

The preceding call draws the given text at position 10 horizontally and places the baseline
of the text at position 20 vertically. The text is drawn using the painter's current font and
pen. The coordinates can alternatively be passed as QPoint instances instead of being given
x and y values separately. The problem with this method is that it allows little control over
how the text is drawn. A much more flexible variant is one that lets us give a set of flags

and expresses the position of the text as a rectangle instead of a point. The flags can specify
alignment of the text within the given rectangle or instruct the rendering engine about
wrapping and clipping the text. You can see the result of giving a different combination of
flags to the call in the following image:

11261

Chapter 5

&ABC| qtualignRight Wery long text | QtualignHCenter
Qt::AIignTog wrapping QtualignvCenter
nAlgniop multiple lines | Qt:TextWordwrap

ery long text Qtualignjustify

rapping "
multiple lines QtiTextWordwrap

QtualignHCenter

&ABC QtualignvCenter

IBEC . | text
= Qtualignleft f;}[;p?:g &
Gt TextShowMnemonic nultiple lines qt

Toat T

QtuTextDontClip
TextWordwrap

ultiline text as))
kingle line with QtuTextSingleline
ord-wrapping QtuTextWordwrap

QtualignHCenter

pxt wrapping m QtualignvCenter

In order to obtain each of the preceding results, run code similar to the following:

painter.drawText (rect, Qt::AlignLeft|Qt::TextShoanemonic, "§&ABC") ;

You can see that, unless you set the Qt : : TextDontClip flag, the text is clipped to the given
rectangle; setting Ot : : TextWordWrap enables line wrapping and Qt : : TextSingleLine
makes the engine ignore any newline characters encountered.

Static text

Qt has to perform a number of calculations when laying out the text, and this has to be done
each time the text is rendered. This will be a waste of time if the text and its attributes have
not changed since the last time. To avoid the need to recalculate the layout, the concept of
static text was introduced.

To use it, instantiate QStaticText and initialize it with text you want to render along

with any options you might want it to have (kept as the QTextOption instance). Then,

store the object somewhere and, whenever you want the text to be rendered, just call
QPainter: :drawStaticText (), passing the static text object to it. If the layout of the
text has not changed since the previous time the text was drawn, it will not be recalculated,
resulting in improved performance. Here is an example of a custom widget that simply draws
text using the static text approach:

class TextWidget : public QWidget {
public:
TextWidget (QWidget *parent = 0) : QWidget (parent) {}
void setText (const QString &txt) {
m_staticText.setText (txt) ;
update () ;

}

1211

Graphics with Qt

protected:
void paintEvent (QPaintEvent ¥*) {
QPainter painter (this);
paitner.drawStaticText (0, 0, m staticText);
}
private:
QStaticText m staticText;

}i

So far, we have seen how to draw text where all the glyphs were rendered using the same
attributes (font, color, and style) and laid out as a contiguous flow of characters. While
useful, this doesn't handle situations where we want to mark out portions of the text using

a different color or align it differently. To make it work, we would have to execute a series of
drawText calls with modified painter attributes and with manually calculated text positions.
Fortunately, there are better solutions.

Qt supports complex document formatting using its QTextDocument class. With this we
can manipulate the text in a fashion similar to that of a text processor, applying formatting
to paragraphs of text or individual characters. Then we can lay out and render the resulting
document according to our needs.

While useful and powerful, building QTextDocument is too complicated if all we want is

to draw a small amount of text with simple customizations applied. The authors of Qt have
thought about that as well and have implemented a rich text mode for rendering text. After
enabling this mode, you can specify the formatted text to drawText directly using a subset
of HTML tags to obtain formatting effects such as changing the color of the text, underlining
it, or making it superscript. Drawing a centered underlined caption followed by a fully
justified description in a given rectangle is as easy as issuing the following call:

painter.drawText (rect,
"<div align='center's>Disclaimer</div>"
"<div align='justify'>You are using <i>this software</i> "
"at your own risk. The authors of the software do not give "
"any warranties that using this software will not ruin your "
"business.</div>") ;

11281

Chapter 5

Qt's rich text engine does not implement the full HTML specification; it will not
handle cascading style sheets, hyperlinks, tables, or JavaScript. The Supported
KY HTML Subset page in the Qt reference manual describes what parts of the HTML
Q 4 standard are supported. If you require full HTML support, you will have to use
Qt's web page and web browser classes contained in the webkitwidgets
(classes QWebPage and QWebView) or webenginewidgets (classes
QWebEnginePage and QWebEngineView) modules.

During game programming, performance is often a bottleneck. Qt tries its best to be as
efficient as possible, but sometimes the code needs additional tweaking to work even faster.
Using static text instead of regular text is one such tweak; use it whenever possible.

Another important trick is to avoid re-rendering the whole widget unless really required. One
thing is that the QPaintEvent object passed to paintEvent () contains information about
the region of the widget that needs to be redrawn. If the logic of your widget allows it, you
can optimize the process by rendering only the required part.

Time for action - optimizing oscillogram drawing

As an exercise, we will modify our oscillogram widget so that it only re-renders the part of
its data that is required. The first step is to modify the paint event handling code to fetch
information about the region that needs updating and pass it to the method drawing the
chart. The changed parts of the code have been highlighted here:

void Widget::paintEvent (QPaintEvent *pe)

{

QRect exposedRect = pe->rect();
drawSelection (&painter, r, exposedRect) ;

drawChart (&painter, r, exposedRect);
painter.restore() ;

11291

Graphics with Qt

The next step is to modify drawSelection () to only draw the part of the selection that
intersects with the exposed rectangle. Luckily, Qrect offers a method to calculate the
intersection for us:

void Widget::drawSelection (QPainter *painter, const QRect &rect,
const QRect &exposedRect)
//

QRect selectionRect = rect;
selectionRect.setLeft (m pressX) ;

selectionRect.setRight (m_releaseX) ;

painter->drawRect (selectionRect.intersected (exposedRect)) ;

painter->restore() ;

}
Finally, drawChart needs to be adjusted to omit the values outside the exposed rectangle:

void Widget::drawChart (QPainter *painter, const QRect &rect,
const QRect &exposedRect)
{
painter->setPen(Qt: :red) ;
painter->drawLine (exposedRect.left(), 0, exposedRect.width(), 0);
painter-s>save () ;
painter->setRenderHint (QPainter::Antialiasing, false);
const int lastPoint = gMin(m points.size(),
exposedRect.right () +1) ;
for (int i=exposedRect.left(); i < lastPoint; ++i) (
if (m_selectionStart <= i && m_selectionEnd >=i)
painter->setPen (Qt::white) ;
} else
painter->setPen(Qt: :blue) ;
painter->drawLine (i, -m points.at(i), i, m points.at(i));

}

painter->restore() ;

What just happened?

By implementing these changes, we have effectively reduced the painted area to the
rectangle received with the event. In this particular situation, we will not save much time as
drawing the plot is not that time-consuming; in many situations, however, you will be able to
save a lot of time using this approach. For example, if we were to plot a very detailed aerial
map of a game world, it would be very expensive to replot the whole map if only a small part
of it were modified. We can easily reduce the number of calculations and drawing calls by
taking advantage of the information about the exposed area.

[130]

Chapter 5

Making use of the exposed rectangle is already a good step towards efficiency, but we can go
a step further. The current approach requires that we redraw each and every line of the plot
within the exposed rectangle, which still takes some time. Instead, we can paint those lines
only once into a pixmap, and then, whenever the widget needs repainting, tell Qt to render
part of the pixmap to the widget. This approach is usually called "double-buffering" (the
second buffer being the pixmap acting as a cache).

It should be very easy for you now to implement this approach for our example widget.
The main difference is that each change to the plot contents should not result in a call to
update () but rather in a call that will re-render the pixmap and then call update (). The
paintEvent method then becomes simply this:

void Widget::paintEvent (QPaintEvent *pe)
{
QRect exposedRect = pe->rect();
QPainter painter (this) ;
painter.drawPixmap (exposedRect, pixmap (), exposedRect) ;

}

You'll also need to re-render the pixmap when the widget is resized. This can be done from
within the void resizeEvent (QResizeEvent*) method.

At this point, you are ready to employ your newly gained skills in rendering graphics with Qt
to create a game that uses widgets with custom graphics. The hero of today is going to be
chess and other chess-like games.

Time for action - developing the game architecture

Create a new Qt Widgets Application project. After the project infrastructure is ready,
choose New File or Project from the File menu and choose to create a C++ Class. Call the
new class ChessBoard and set Q0bject as its base class. Repeat the process to create a
GameAlgorithm class derived from Q0bject and another one called Chessview but, this
time, choose QWidget as the base class. You should end up with a file named main. cpp and
four classes—MainWindow, ChessView, ChessBoard, and ChessAlgorithm.

Now navigate to the header file for ChessAlgorithm and add the following methods to the
class:

public:
ChessBoard* board() const;

11311

Graphics with Qt

public slots:

virtual void newGame () ;
signals:

void boardChanged (ChessBoard¥) ;
protected:

virtual void setupBoard() ;

void setBoard (ChessBoard *board) ;

Also, add a private m_board field of type ChessBoard*. Remember to either include
chessboard.h or forward-declare the ChessBoard class. Implement board () as a simple
getter method for m_board. The setBoard () method is going to be a protected setter for
m board:

void ChessAlgorithm: :setBoard (ChessBoard *board)

{
if (board == m board) return;
if (m board) delete m board;
m_board = board;
emit boardChanged(m board) ;

}

Next, let's provide a base implementation for setupBoard () to create a default chess
board with eight ranks and eight columns:

void ChessAlgorithm: :setupBoard ()

{

setBoard (new ChessBoard(8,8, this));

}
The natural place to prepare the board is in a function executed when a new game is started:

void ChessAlgorithm: :newGame ()

{
}

The last addition to this class for now is to extend the provided constructor to initialize m
board to a null pointer.

setupBoard () ;

In the last method shown, we instantiated a ChessBoard object so let's focus on that class
now. First extend the constructor to accept two additional integer parameters besides the
regular parent argument. Store their values in private m_ranks and m_columns fields
(remember to declare the fields themselves in the class header file).

11321

Chapter 5

In the header file, just under the Q_OBJECT macro, add the following two lines as property
definitions:

Q PROPERTY (int ranks READ ranks NOTIFY ranksChanged)

Q_ PROPERTY (int columns READ columns NOTIFY columnsChanged)

Declare signals and implement getter methods to cooperate with those definitions. Also add
two protected methods:

protected:
void setRanks (int newRanks) ;
void setColumns (int newColumns) ;

These will be setters for ranks and columns properties, but we don't want to expose them to
the outside world so we will give them protected access scope.

Put the following code into the setRanks () method body:

void ChessBoard: :setRanks (int newRanks)

{

if (ranks () == newRanks) return;
m_ranks = newRanks;
emit ranksChanged(m_ ranks) ;

}

Next, in a similar way, you can implement setColumns ().

The last class we will deal with now is our custom widget, Chessview. For now, we will
provide only a rudimentary implementation for one method, but we will expand it later as
our implementation grows. Add a public setBoard (ChessBoard *) method with the
following body:

void ChessView: :setBoard (ChessBoard *board)

{

if (m _board == board) return;

if (m_board) {

// disconnect all signal-slot connections between m_board and this
m_board->disconnect (this) ;

}

m_board = board;

// connect signals (to be done later)

updateGeometry () ;

[1331

Graphics with Qt

Now let's declare the m_board member. Because we are not the owners of the board object
(the algorithm class is responsible for managing it) we will use the QPointer class, which
tracks the lifetime of Q0bject and sets itself to null once the object is destroyed:

private:
QPointer<ChessBoard> m_board;

QPointer initializes its value to null, so we don't have to do it ourselves in the constructor.
For completeness, let's provide a getter method for the board:

ChessBoard *ChessView: :board() const { return m_board; }

What just happened?

In the last exercise, we defined the base architecture for our solution. We can see that there
are three classes involved: ChessView acting as the user interface, ChessAlgorithm for
driving the actual game, and ChessBoard as a data structure shared between the view

and the engine. The algorithm is going to be responsible for setting up the board (through
setupBoard ()), making moves, checking win conditions, and so on. The view will be
rendering the current state of the board and will signal user interaction to the underlying logic.

Chest Algorithm

ChessBoard

Most of the code is self-explanatory. You can see in the ChessView: : setBoard () method
that we are disconnecting all signals from an old board object, attaching the new one (we
will come back to connecting the signals later when we have already defined them), and
finally telling the widget to update its size and redraw itself with the new board.

(1341

Chapter 5

Time for action - implementing the yame bhoard class

Now we will focus on our data structure. Add a new private member to ChessBoard, a
vector of characters that will contain information about pieces on the board:

QVector<char> m_boardData;

Consider the following table that shows the piece type and the letters used for it:

Piece type White | Black
{f(%-%? King K k
)
kA7 silfr | Queen Q q
W
% Rook R r
E X
N " Bishop B b
i Knight N n
) Al
£ Pawn P p
PN

You can see that white pieces use upper-case letters and black pieces use lower-case variants
of the same letters. In addition to that, we will use a space character (0x20 ASCII value) to
denote that a field is empty. We will add a protected method for setting up an empty board
based on the number of ranks and columns on the board and a boardReset () signal to
inform that the position on the board has changed:

void ChessBoard::initBoard()

{

m_boardData.fill(' ', ranks()*columns()) ;
emit boardReset () ;

[1351]

Graphics with Qt

We can update our methods for setting rank and column counts to make use of that method:

void ChessBoard: :setRanks (int newRanks)

{

if (ranks () == newRanks) return;
m_ranks = newRanks;
initBoard() ;

emit ranksChanged(m_ ranks) ;

void ChessBoard: :setColumns (int newColumns)

{

if (columns () == newColumns) return;
m_columns = newColumns;
initBoard() ;

emit columnsChanged(m_columns) ;

}

The initBoard () method should also be called from within the constructor, so place the
call there as well.

Next, we need a method to read which piece is positioned in the particular field of the board.

char ChessBoard::data(int column, int rank) const

{

return m boardData.at ((rank-1) *columns () + (column-1)) ;

}

Ranks and columns have indexes starting from 1, but the data structure is indexed starting
from 0; therefore, we have to subtract 1 from both the rank and column index. It is also
required to have a method to modify the data for the board. Implement the following public
method:

void ChessBoard: :setData(int column, int rank, char value)

{

if (setDataInternal (column, rank, wvalue))
emit dataChanged(column, rank) ;

}

The method makes use of another one that does the actual job. However, this method
should be declared with protected access scope. Again we adjust for index differences.

bool ChessBoard: :setDatalInternal (int column, int rank, char value)

{

int index = (rank-1)*columns()+ (column-1) ;

[1361

Chapter 5

if (m_boardData.at (index) == value) return false;
m_boardData[index] = value;
return true;

}
Since setData () makes use of a signal, we have to declare it as well:

signals:
void ranksChanged(int) ;
void columnsChanged (int) ;
void dataChanged(int c, int r);
void boardReset () ;

The signal will be emitted every time there is a successful change to the situation on the
board. We delegate the actual work to the protected method to be able to modify the board
without emitting the signal.

Having defined setData (), we can add another method for our convenience:

void ChessBoard: :movePiece (int fromColumn, int fromRank, int toColumn,
int toRank)

setData (toColumn, toRank, data (fromColumn, fromRank)) ;
setData (fromColumn, fromRank, ' ');

}

Can you guess what it does? That's right! It moves a piece from one field to another one
leaving an empty space behind.

There is still one more method worth implementing. A regular chess game contains 32
pieces, and there are variants of the game where starting positions for the pieces might be
different. Setting the position of each piece through a separate call to setData () would be
very cumbersome. Fortunately, there is a neat chess notation called the Forsyth-Edwards
Notation (FEN), with which the complete state of the game can be stored as a single line

of text. If you want the complete definition of the notation, you can look it up yourself. In
short, we can say that the textual string lists piece placement rank by rank, starting from
the last rank where each position is described by a single character interpreted as in our
internal data structure (K for white king, g for black queen, and so on). Each rank description
is separated by a / character. If there are empty fields on the board, they are not stored as
spaces but rather as a digit specifying the number of consecutive empty fields. Therefore,
the starting position for a standard game can be written as follows:

"rnbgkbnr/ppppprprpr/8/8/8/8/PPPPPPPP/RNBQKBNR"

11311

Graphics with Qt

This can be interpreted visually as follows:

Let's write a method called setFen () to set up the board based on an FEN string:

void ChessBoard: :setFen(const QString &fen)

int index = 0;
int skip = 0;

const int columnCount = columns () ;
QChar ch;
for(int rank = ranks(); rank >0; --rank) {

for(int column = 1; column <= columnCount; ++column) {
if (skip > 0) {
ch ="' "';
skip--;
} else {
ch = fen.at (index++) ;
if (ch.isDigit ()) {
skip = ch.tolLatinl()-'0"';
ch ="' "';

skip--;

}

setDataInternal (column, rank, ch.toLatinl()) ;

[1381]

Chapter 5

QChar next = fen.at (index++) ;
if (next != '/' && next != ' ') {
initBoard() ;

return; // fail on error

}
}

emit boardReset () ;

}

The method iterates over all fields on the board and determines whether it is currently in the
middle of inserting empty fields on the board or should rather read the next character from
the string. If a digit is encountered, it is converted into an integer by subtracting the ASCII
value of the 0 character (that is, 7-0 = 7). After setting each rank, we require that a slash or a
space be read from the string. Otherwise, we reset the board to an empty one and bail out
of the method.

What just happened?

We taught the ChessBoard class to store simple information about chess pieces using a
one-dimensional array of characters. We also equipped it with methods that allow querying
and modifying game data. We implemented a fast way of setting the current state of

the game by adopting the FEN standard. The game data itself is not tied to classic chess.
Although we comply with a standard notation for describing pieces, it is possible to use other
letters and characters outside the well-defined set for chess pieces. This creates a versatile
solution for storing information about chess-like games, such as checkers, and possibly

any other custom game played on a two-dimensional board of any size with ranks and
columns. The data structure we came up with is not a stupid one—it communicates with its
environment by emitting signals when the state of the game is modified.

Time for action — understanding the ChessView class

This is a chapter about doing graphics, so it is high time to focus on displaying our chess
game. Our widget currently displays nothing, and our first task is going to be to show a chess
board with rank and column symbols and fields colored appropriately.

By default, the widget does not have any proper size defined and we will have to fix that by
implementing sizeHint (). However, to be able to calculate the size, we have to decide
how big a single field on the board is going to be. Therefore, in ChessVview, you should
declare a property containing the size of the field, as shown:

Q PROPERTY (QSize fieldSize
READ fieldSize WRITE setFieldSize
NOTIFY fieldSizeChanged)

[1391

Graphics with Qt

To speed up coding, you can position the cursor over the property declaration, hit the Alt +
Enter combination, and choose the Generate missing Q_PROPERTY members fixup from the
pop-up menu. Creator will provide minor implementations for the getter and setter for you.
You can move the generated code to the implementation file by positioning the cursor over
each method, hitting Alt + Enter, and choosing the Move definition to chessview.cpp file
fixup. While the generated getter method is fine, the setter needs some adjusting. Modify it
by adding the following highlighted code:

void ChessView: :setFieldSize (QSize arg)

{
if (m_fieldSize == arg)
return;

m _fieldSize = arg;
emit fieldSizeChanged(arg) ;
updateGeometry () ;

}

This tells our widget to recalculate its size whenever the size of the field is modified. Now we
can implement sizeHint ():

QSize ChessView::sizeHint () const

{

if (Im _board) return QSize(100,100);
QSize boardSize = QSize(fieldSize () .width()

* m_board->columns () +1,
m _fieldSize.height() * m board-s>ranks/() +1) ;
int rankSize = fontMetrics().width('M')+4;
int columnSize = fontMetrics () .height()+4;

return boardSize+QSize (rankSize, columnSize) ;

}

First we check if we have a valid board definition and if not, return a sane size of 100 x 100
pixels. Otherwise, the method calculates the size of all the fields by multiplying the size of
each of the fields by the number of columns or ranks. We add one pixel to each dimension to
accommodate the right and bottom border. A chess board not only consists of not only the
fields themselves but also displays rank symbols on the left edge of the board and column
numbers on the bottom edge of the board. Since we use letters to enumerate ranks, we
check the width of the widest letter in the alphabet using the QFontMetrics class. We use
the same class to check how much space is required to render a line of text using the current
font so that we have enough space to put column numbers. In both cases, we add 4 to the
result to make a 2 pixel margin between the text and the edge of the board and another 2
pixel margin between the text and the edge of the widget.

(1101

Chapter 5

It is very useful to define a helper method for returning a rectangle that contains a particular
field, as shown:

QRect ChessView::fieldRect (int column, int rank) const

{

}

if (Im _board) return QRect();

const QSize fs = fieldSize();

QRect fRect = QRect (QPoint ((column-1)*fs.width(),
(m_board->ranks () -rank) *fs.height ()), £fs);

// offset rect by rank symbols

int offset = fontMetrics () .width('M');
// 'M' is the widest letter

return fRect.translated(offset+4, 0);

Since rank numbers decrease from the top towards the bottom of the board, we subtract the
desired rank from the maximum rank there is while calculating fRect. Then, we calculate
the horizontal offset for rank symbols just like we did in sizeHint () and translate the
rectangle by that offset before returning the result.

Finally, we can move on to implementing the event handler for the paint event. Declare the
paintEvent () method (the fixup menu available under the Alt + Enter keyboard shortcut
will let you generate a stub implementation of the method) and fill it with the following

code:

void ChessView: :paintEvent (QPaintEvent *event)

{

}

if (Im _board) return;
QPainter painter (this);
for(int r = m board->ranks(); r>0; --r)
painter.save() ;
drawRank (&painter, r);
painter.restore() ;
!
for(int ¢ = 1; c<=m board->columns () ;++c) {
painter.save() ;
drawColumn (&painter, c);
painter.restore() ;
!
for(int r = 1; r<=m board-sranks() ;++r)
for(int ¢ = 1; c<=m board->columns () ;++c) {
painter.save() ;
drawField (&painter, c, r);
painter.restore() ;

}
}

(a1l

Graphics with Qt

The handler is quite simple. First we instantiate the QPainter object that operates on

the widget. Then we have three loops—the first one iterates over ranks, the second over
columns, and the third over all fields. The body of each loop is very similar: there is a call

to a custom draw method that accepts a pointer to the painter and index of the rank,
column, or both of them, respectively. Each of the calls is surrounded by executing save ()
and restore () on our QPainter instance. What are the calls for here? The three draw
methods—drawRank (), drawColumn (), and drawField () —are going to be virtual
methods responsible for rendering the rank symbol, the column number, and the field
background. It will be possible to subclass Chessview and provide custom implementations
for those renderers so that it is possible to provide a different look of the chess board.
Since each of these methods takes the painter instance as its parameter, overrides of these
methods could alter attribute values of the painter behind our back. Calling save () before
handing the painter over to such override stores its state on an internal stack, and calling
restore () after returning from the override resets the painter to what was stored with
save (). This effectively gives us a failsafe to avoid breaking the painter in case the override
does not clean up after itself if it modifies the painter.

\ Calling save () and restore () very often introduces a performance hit, so
~ you should avoid saving and restoring painter states too often in time-critical
Q situations. As our painting is very simple, we don't have to worry about that
when painting our chess board.

Having introduced our three methods, we can start implementing them. Let's start with
drawRank and drawColumn. Remember to declare them as virtual and put them in
protected access scope (that's usually where Qt classes put such methods), as shown:

void ChessView: :drawRank (QPainter *painter, int rank)
{
QRect r = fieldRect (1, rank);
QRect rankRect = QRect (0, r.top(), r.left(),
r.height ()) .adjusted (2, 0, -2, 0);
QString rankText = QString::number (rank) ;
painter->drawText (rankRect,
Qt::AlignVCenter|Qt ::AlignRight, rankText) ;

void ChessView: :drawColumn (QPainter *painter, int column)
{
QRect r = fieldRect (column, 1);
QRect columnRect = QRect(r.left (), r.bottom(),
r.width(), height()-r.bottom()) .adjusted(0, 2, 0, -2);
painter->drawText (columnRect,
Qt:: AlignHCenter|Qt::AlignTop, QChar('a'+column-1));

[142]

Chapter 5

Both methods are very similar. We use fieldRect () to query for the left-most column and
bottom-most rank and based on that, we calculate where rank symbols and column numbers
should be placed. The call to QrRect : :adjusted () is to accommodate the 2 pixel margin
around the text to be drawn. Finally, we use drawText () to render appropriate text. For
the rank, we ask the painter to align the text to the right edge of the rectangle and center
the text vertically. In a similar way, when drawing the column we align to the top edge and
center the text horizontally.

Now we can implement the third draw method. It should also be declared protected and
virtual. Place the following code in the method body:

void ChessView: :drawField (QPainter *painter, int column, int rank)

{

QRect rect = fieldRect (column, rank) ;
QColor fillColor = (column+rank) % 2 ? palette().
color (QPalette: :Light) : palette() .color (QPalette::Mid) ;

painter->setPen(palette() .color (QPalette: :Dark)) ;
painter->setBrush(fillColor) ;
painter->drawRect (rect) ;

}

In this method, we use the QPalette object coupled with each widget to query for Light
(usually white) and Mid (darkish) color depending on whether the field we are drawing on
the chess board is considered white or black. We do that instead of hardcoding the colors

to make it possible to modify colors of the tiles without subclassing simply by adjusting the
palette object. Then we use the palette again to ask for the Dark color and use that as a pen
for our painter. When we draw a rectangle with such settings, the pen will stroke the border
of the rectangle to give it a more elegant look. Note how we modify attributes of the painter
in this method and we do not set them back afterwards. We can get away with it because of
the save () and restore () calls surrounding the drawField () execution.

We are ready now to see the results of our work. Let's switch to the MainWindow class and
equip it with the following two private variables:

ChessView *m view;
ChessAlgorithm *m_algorithm;

Then modify the constructor by adding the following highlighted code to set up the view and
the game engine:

MainWindow: :MainWindow (QWidget *parent)
OMainWindow (parent) ,

uil (new Ui::MainWindow)

(1431

Graphics with Qt

ui->setupUi (this) ;

m view = new ChessView;

m algorithm = new ChessAlgorithm(this);

m algorithm->newGame () ;

m view->setBoard(m algorithm->board()):;
setCentralWidget (m view) ;

m view->setSizePolicy (QSizePolicy::Fixed, QSizePolicy::Fixed);
m view->setFieldSize(QSize(50,50));

layout () ->setSizeConstraint (QLayout: : SetFixedSize) ;

}

Afterwards, you should be able to build the project. When you run it, you should see a result
similar to the one in the following screenshot:

What just happened?

In this exercise, we did two things. First we provided a number of methods for calculating
the geometry of important parts of the chess board and the size of the widget. Second, we
defined three virtual methods for rendering visual primitives of a chess board. By making the
methods virtual, we provided an infrastructure to let the look be customized by subclassing
and overriding base implementations. Furthermore, by reading color from Qralette, we
allowed customizing the colors of the primitives even without subclassing.

The last line of the main window constructor tells the layout of the window to force a fixed
size of the window equal to what the size hint of the widget inside it reports.

[114]

Chapter 5

Time for action - rendering the pieces

Now that we can see the board, it is time to put the pieces on it. We are going to use images
for that purpose. In my case, we found a number of SVG files with chess pieces and decided
to use them. SVG is a vector graphics format where all curves are defined not as a fixed set
of points but rather as mathematic curves. Their main benefit is that they scale very well
without causing an aliasing effect.

Let's equip our view with a registry of images to be used for "stamping" a particular piece
type. Since each piece type is identified with char, we can use it to generate keys for a map of
images. Let's put the following APl into ChessView:

public:
void setPiece(char type, const QIcon &icon) ;
QIcon piece(char type) const;

private:
OMap<char,QIcon> m pieces;

For the image type, we do not use QImage or QPixmap but rather QIcon. This is because
QIcon can store many pixmaps of different sizes and use the most appropriate one when we
request an icon of a given size to be painted. This doesn't matter if we use vector images, but
it does matter if you choose to use PNG or other types of image. In such cases, you can use
addFile () to add many images to a single icon.

Going back to our registry, the implementation is very simple. We just store the icon in a map
and ask the widget to repaint itself:

void ChessView: :setPiece (char type, const QIcon &icon)

m pieces.insert (type, icon);

update () ;

}

QIcon ChessView: :piece(char type) const

{

return m pieces.value(type, QIcon());

}

(1451

Graphics with Qt

Now we can fill the registry with actual images right after we create the view inside the
MainWindow constructor. Note that we stored all the images in a resource file, as shown:

m view->setPiece('P', QIcon(":/pieces/Chess plt45.svg")); // pawn
m view->setPiece('K', QIcon(":/pieces/Chess klt45.svg")); // king
m view->setPiece('Q', QIcon(":/pieces/Chess glt45.svg")); // queen
m view->setPiece('R', QIcon(":/pieces/Chess rlt45.svg")); // rook
m view->setPiece('N', QIcon(":/pieces/Chess nlt45.svg")); // knight
m view->setPiece('B', QIcon(":/pieces/Chess blt45.svg")); // bishop
m view->setPiece('p', QIcon(":/pieces/Chess pdt45.svg")); // pawn
m view->setPiece('k', QIcon(":/pieces/Chess kdt45.svg")); // king
m view->setPiece('q', QIcon(":/pieces/Chess gdt45.svg")); // queen
m view->setPiece('r', QIcon(":/pieces/Chess rdt45.svg")); // rook
m view->setPiece('n', QIcon(":/pieces/Chess ndt45.svg")); // knight
m view->setPiece('b', QIcon(":/pieces/Chess bdt45.svg")); // bishop

The next thing to do is to extend the paintEvent () method of the view to actually
render our pieces. For that, we will introduce another protected virtual method called
drawPiece (). We'll call it when iterating over all the ranks and columns of the board, as
shown:

void ChessView: :paintEvent (QPaintEvent *event)

{

//
for(int r = m board-s>ranks(); r>0; --r) {
for(int ¢ = 1; c<=m board->columns () ;++c) {
drawPiece (&painter, c, r);
}
}

}

It is not a coincidence that we start drawing from the highest (top) rank to the lowest
(bottom) one. By doing that, we allow a pseudo-3D effect: if a piece drawn extends past the
area of the field, it will intersect the field from the next rank (which is possibly occupied by
another piece). By drawing higher rank pieces first, we cause them to be partially covered by
pieces from the lower rank, which imitates the effect of depth. By thinking ahead, we allow
reimplementations of drawPiece () to have more freedom in what they can do.

(1461

Chapter 5

The final step is to provide a base implementation for this method, as follows:

void ChessView: :drawPiece (QPainter *painter, int column, int rank)

{

QRect rect = fieldRect (column, rank) ;
char value = m _board->data(column, rank);
if (value = ' ') {

QIcon icon = piece(value);
if (licon.isNull()) {
icon.paint (painter, rect, Qt::AlignCenter);
}
}
}

The method is very simple, it queries for the rectangle of a given column and rank, then asks
the ChessBoard instance about the piece occupying the given field. If there is a piece there,
we ask the registry for the proper icon; if we get a valid one, we call its paint () routine to
draw the piece centered in the field's rect. The image drawn will be scaled to the size of the
rectangle. It is important that you only use images with a transparent background (such as
PNG or SVG files and not JPEG files) so that the color of the field can be seen through the
piece.

What just happened?

To test the implementation, you can modify the algorithm to fill the board with the default
piece set up by introducing the following change to the ChessAlgorithm class:

void ChessAlgorithm: :newGame ()

{
setupBoard () ;
board () ->setFen (

"rnbgkbnr/pppprpprp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkg - 0 1"
)i

(1411

Graphics with Qt

Running the program should show the following result:

EQ oW)=
Yy Y W

6

=

3

ANARARAR
Houdad

The modification we did in this step was very simple. First we provided a way to tell the
board what each piece type looks like. This includes not only standard chess pieces but
anything that fits into char and can be set inside the ChessBoard class's internal data array.
Second, we made an abstraction for drawing the pieces with the simplest possible base
implementation: taking an icon from the registry and rendering it to the field. By making use
of QIcon, we can add several pixmaps of different sizes to be used with different sizes of a
single field. Alternatively, the icon can contain a single vector image that scales very well all
by itself.

Time for action — making the chess game interactive

We have managed to display the chess board but to actually play a game, we have to tell the
program what moves we want to play. We could do that by adding the QLineEdit widget
where we would input the move in algebraic form (for example, N3 to move a knight to £3),
but a more natural way is to click a piece with the mouse cursor (or tap it with a finger) and
then click again on the destination field. To obtain such functionality, the first thing to do is
to teach ChessVview to detect mouse clicks. Therefore, add the following method:

QPoint ChessView::fieldAt (const QPoint &pt) const

{
if (Im _board) return QPoint () ;
const QSize fs = fieldSize();

(181

Chapter 5

int offset = fontMetrics () .width('M')+4;
// 'M' is the widest letter

if (pt.x() < offset) return QPoint () ;

int ¢ = (pt.x()-offset) / fs.width();
int r = pt.y()/fs.height () ;
if(c < 0 || ¢ »= m board->columns() || r<0 ||

r >= m board->ranks())
return QPoint () ;
return QPoint (c+1, m board-s>ranks() - r);
// max rank - r

}

The code looks very similar to the implementation of fieldRect (). This is because
fieldat () implements its reverse operation—it transforms a point in the widget
coordinate space to the column and rank index of a field the point is contained in. The index
is calculated by dividing point coordinates by the size of the field. You surely remember that,
in the case of columns, the fields are offset by the size of the widest letter and a margin of

4 and we have to consider that in our calculations here as well. We do two checks: first we
check the horizontal point coordinate against the offset to detect if the user clicked on the
part of the widget where column symbols are displayed, and then we check if the rank and
column calculated fit the range represented in the board. Finally, we return the result as a
QPoint value since this is the easiest way in Qt to represent a two-dimensional value.

Now we need to find a way to make the widget notify its environment that a particular
field was clicked. We can do this through the signal-slot mechanism. Switch to the header
file of ChessView (if you currently have chessview.cpp opened in Qt Creator, you can
simply push the F4 key to be transferred to the corresponding header file) and declare a
clicked (const QPoint &) signal:

signals:
void clicked(const QPoint &) ;

To detect mouse input, we have to override one of the mouse event handlers a widget has,
either mousePressEvent or mouseReleaseEvent. It seems obvious we should choose
the former event; this would work, but it is not the best decision. Just think about the
semantics of a mouse click: it is a complex event composed of pushing and releasing the
mouse button. The actual "click" takes place after the mouse is released. Therefore let's use
mouseReleaseEvent as our event handler:

void ChessView: :mouseReleaseEvent (QMouseEvent *event)

{
QPoint pt = fieldAt (event->pos());
if (pt.isNull()) return;
emit clicked(pt) ;

}

(1491

Graphics with Qt

The code is simple; we use the method we just implemented and pass it the position read
from the QMouseEvent object. If the returned point is invalid, we quietly return from the
method. Otherwise, clicked () is emitted with the obtained column and rank values.

We can make use of the signal now. Go to the constructor of MainWindow and add the
following line to connect the widget's clicked signal to a custom slot:

connect (m_view, SIGNAL (clicked(QPoint)),
this, SLOT (viewClicked (QPoint))) ;

Declare the slot and implement it as follows:

void MainWindow: :viewClicked (const QPoint &field)

{

if (m_clickPoint.isNull()) {
m_clickPoint = field;
} else {
if (field != m_clickPoint)
m_view->board () ->movePiece (
m _clickPoint.x(), m _clickPoint.y (),
field.x (), field.y()
)i
}
m_clickPoint = QPoint () ;
}
}

The function uses a class member variable m_clickPoint to store the clicked field. The
variable value is made invalid after a move is made. Thus we can detect whether the click
we are currently handling has "select" or "move" semantics. In the first case, we store the
selectioninm_clickPoint; in the other case, we ask the board to make a move using the
helper method we implemented some time ago. Remember to declarem_clickPoint asa
private member variable of MasinWindow.

All should be working now. However, if you build the application, run it, and start clicking
around on the chess board, you will see that nothing happens. This is because we forgot
to tell the view to refresh itself when the game position on the board is changed. We
have to connect the signals the board emits to the update () slot of the view. Open the
setBoard () method of the widget class and fix it as follows:

void ChessView: :setBoard (ChessBoard *board)

{
//
m_board = board;
// connect signals
if (board) {
connect (board, SIGNAL (dataChanged (int,int)),
this, SLOT (update())):;

[1501

Chapter 5

connect (board, SIGNAL(boardReset()), this, SLOT (update())):;

}

updateGeometry () ;

}

If you run the program now, moves you make will be reflected in the widget, as shown:

At this point, we might consider the visual part of the game as finished, but there is still
one problem you might have spotted while testing our latest additions. When you click on
the board, there is no visual hint that any piece was actually selected. Let's fix that now by
introducing the ability to highlight any field on the board.

To do that, we will develop a generic system for different highlights. Begin by adding a
Highlight class as an internal class to ChessView:

class ChessView : public QWidget
//
public:
class Highlight {
public:
Highlight () {}
virtual ~Highlight() {}
virtual int type() const { return 0; }

[1511

Graphics with Qt

It is a minimalistic interface for highlights and only exposes a method returning the type of
the highlight using a virtual method. In our exercise, we will focus on just a basic type that
marks a single field with a given color. Such a situation is going to be represented by the
FieldHighlight class:

class FieldHighlight : public Highlight {
public:
enum { Type = 1 };
FieldHighlight (int column, int rank, QColor color)
m field(column, rank), m _color(color) {}
inline int column() const { return m field.x(); }
inline int rank() const { return m field.y(); }
inline QColor color() const { return m color; }
int type() const { return Type; }
private:
QPoint m_field;
QColor m_color;

Vi

You can see we provided a constructor that takes the column and rank indices and a color
for the highlight and stores them in private member variables. Also, type () is redefined to
return FieldHighlight: : Type, which we can use to easily identify the type of highlight.
The next step is to extend ChessView with abilities to add and remove highlights. As the
container declares a private QList<Highlight*> m_highlights member variable, add
method declarations:

public:
void addHighlight (Highlight *hl);
void removeHighlight (Highlight *hl) ;
inline Highlight *highlight (int index)
const {return m highlights.at (index); }
inline int highlightCount () const { return m highlights.size(); }

Next provide implementations for non-inline methods:

void ChessView: :addHighlight (ChessView: :Highlight *hl)
{ m_highlights.append(hl); update(); }

void ChessView: :removeHighlight (ChessView: :Highlight *hl)
{ m_highlights.removeOne (hl); update(); }

[1521

Chapter 5

Drawing the highlights is really easy: we will use yet another virtual draw method. Place the
following call in the paintEvent () implementation right before the loop that is responsible

for rendering pieces:
drawHighlights (&painter) ;
The implementation simply iterates over all the highlights and renders those it understands.

void ChessView::drawHighlights (QPainter *painter)
{
for (int idx=0; idx < highlightCount (); ++idx) {
Highlight *hl = highlight (idx) ;
if (hl->type() == FieldHighlight::Type) ({
FieldHighlight *fhl = static_cast<FieldHighlight*>(hl) ;
QRect rect = fieldRect (fhl->column (), fhl->rank());
painter->fillRect (rect, fhl->color());

}

}

By checking the type of the highlight, we know which class to cast the generic pointer to.
Then we can query the object for the needed data. Finally, we use QPainter: :fillRect ()
to fill the field with the given color. As drawHighlights () is called before the piece
painting loop and after the field painting loop, the highlight will cover the background but

not the piece.
That's the basic highlighting system. Let's make our viewClicked () slot use it:

void MainWindow: :viewClicked (const QPoint &field)
{
if (m_clickPoint.isNull()) {
if (m _view->board() ->data(field.x(), field.y()) t!= ' ') {
m_clickPoint = field;
m selectedField = new ChessView::FieldHighlight (
field.x(), field.y(), QColor (255, 0, 0, 50)
)i
m view->addHighlight (m selectedField) ;
}
} else {
if (field != m_clickPoint)
m_view->board () ->movePiece (
m _clickPoint.x(), m clickPoint.y (), field.x(), field.y()

[1531

Graphics with Qt

)i
}i
m_clickPoint = QPoint () ;
m view->removeHighlight (m selectedField) ;
delete m selectedField;
m selectedField = 0;
}
}

Notice how we check that a field can only be selected if it is not empty (that is, there is an
existing piece occupying that field)?

You should also add a ChessView: :FieldHighlight *m_selectedField private
member variable and initialize it with a null pointer in the constructor. You can now build the
game, execute it, and start moving pieces around.

(1541

Chapter 5

What just happened?

By adding a few lines of code, we managed to make the board clickable. We connected a
custom slot that reads which field was clicked and can highlight it with a semi-transparent
red color. Clicking on another field will move the highlighted piece there. The highlighting
system we developed is very generic. We use it to highlight a single field with a solid color,
but you can mark as many fields as you want with a number of different colors, for example,
to show valid moves after selecting a piece. The system can easily be extended with new
types of highlights; for example, you can draw arrows on the board using QpainterPath to
have a complex hinting system (say showing the player the suggested move).

[1551]

Graphics with Qt

Time for action - connecting the game algorithm

It would take us too long to implement a full chess game algorithm here, so we will instead
settle for a much simpler game called Fox and Hounds. One of the players has four pawns
(hounds) which can only move over black fields and the pawn can only move in a forward
fashion (toward higher ranks). The other player has just a single pawn (fox) which starts from
the opposite side of the board.

It can also move only over black fields; however it can move both forwards (toward higher
ranks) as well as backwards (toward lower ranks). Players move in turns by moving their
pawn by to a neighboring black field. The goal of the fox is to reach the opposite end of the
board; the goal of the hounds is to trap the fox so that it can't make a move.

Fox loses Fox wins

Chapter 5

Time to get to work! First we will extend the ChessAlgorithm class with the required
interface:

class ChessAlgorithm : public QObject

{

Q OBJECT
Q ENUMS (Result Player)
Q PROPERTY (Result result READ result)
Q PROPERTY (Player currentPlayer
READ currentPlayer
NOTIFY currentPlayerChanged)

public:

enum Result { NoResult, PlayerlWins, Draw, Player2Wins };
enum Player { NoPlayer, Playerl, Player2 };

explicit ChessAlgorithm(QObject *parent = 0);
ChessBoard* board() const;
inline Result result() const { return m result; }

inline Player currentPlayer() const { return m currentPlayer; }

signals:

void boardChanged (ChessBoard¥*) ;
void gameOver (Result) ;
void currentPlayerChanged (Player) ;

public slots:

virtual void newGame () ;

virtual bool move(int colFrom, int rankFrom, int colTo, int rankTo);

bool move (const QPoint &from, const QPoint &to);

protected:

virtual void setupBoard() ;

void setBoard(ChessBoard *board) ;
void setResult (Result) ;

void setCurrentPlayer (Player) ;

private:

Vi

ChessBoard *m_board;
Result m result;
Player m currentPlayer;

1571

Graphics with Qt

There are two sets of members here. First we have a number of enums, variables, signals,
and methods that are related to the state of the game: which player should make his move
now and what is currently the result of the game. The 9 ENUMS macro is used to register
enumerations in Qt's meta-type system so that they can be used as values for properties

or arguments in signals. Property declarations and getters for them don't need any extra
explanation. We have also declared protected methods for setting the variables from within
subclasses. Here is their suggested implementation:

void ChessAlgorithm::setResult (Result value)
{
if (result () == value) return;
if (result () == NoResult) ({
m_result = value;
emit gameOver (m_result) ;
} else { m_result = value; }

}

void ChessAlgorithm::setCurrentPlayer (Player value)
{
if (currentPlayer () == value) return;
m_currentPlayer = value;
emit currentPlayerChanged(m currentPlayer) ;

}

Remember about initializing m_currentPlayer and m result to NoPlayer and
NoResult in the constructor of the ChessAlgorithm class.

The second group of functions is methods that modify the state of the game—the two
variants of move () . The virtual variant is meant to be reimplemented by the real algorithm
to check whether a given move is valid in the current game state and if that is the case, to
perform the actual modification of the game board. In the base class, we can simply reject all
possible moves:

bool ChessAlgorithm::move (int colFrom, int rankFrom,
int colTo, int rankTo)
{
Q_ UNUSED (colFrom)
Q_UNUSED (rankFrom)
Q UNUSED (colTo)
Q_UNUSED (rankTo)
return false;

[158]

Chapter 5

sl . . L . .
‘Q Q_UNUSED is a macro to prevent the compiler from issuing warnings during

compilation if the enclosed local variable is never used in the scope.

The overload is simply a convenience method that accepts two QPoint objects instead of
four integers.

bool ChessAlgorithm::move (const QPoint &from, const QPoint &to)

{

return move (from.x (), from.y(), to.x(), to.y());

}

The interface for the algorithm is ready now and we can implement it for the Fox and
Hounds game. Subclass ChessAlgorithm to create a FoxAndHounds class:

class FoxAndHounds : public ChessAlgorithm

{

public:
FoxAndHounds (QObject *parent = 0);
void newGame () ;

bool move (int colFrom, int rankFrom, int colTo, int rankTo) ;

bi

The implementation of newGame () is pretty simple: we set up the board, place pieces on it,
and signal that it is time for the first player to make their move.

void FoxAndHounds: :newGame ()

{

setupBoard () ;
board () ->setFen("3p4/8/8/8/8/8/8/P1P1P1P1 w") ;
// 'w' - white to move

m_fox = QPoint(5,8) ;
setResult (NoResult) ;
setCurrentPlayer (Playerl) ;

}

The algorithm for the game is quite simple. Implement move () as follows:

bool FoxAndHounds::move (int colFrom, int rankFrom,
int colTo, int rankTo)

if (currentPlayer () == NoPlayer) return false;

[1591]

Graphics with Qt

// is there a piece of the right color?

char source = board()->data(colFrom, rankFrom) ;
if (currentPlayer () == Playerl && source != 'P') return false;
if (currentPlayer () == Player2 && source != 'p') return false;

// both can only move one column right or left
if (colTo != colFrom+l && colTo != colFrom-1) return false;

// do we move within the board?
if(colTo < 1 || colTo > board()->columns()) return false;
if (rankTo < 1 || rankTo > board()->ranks()) return false;

// 1s the destination field black?
if ((colTo + rankTo) % 2) return false;

// i1s the destination field empty?
char destination = board()->data(colTo, rankTo) ;

if (destination != ' ') return false;

// is white advancing?

if (currentPlayer () == Playerl && rankTo <= rankFrom) return false;
board () ->movePiece (colFrom, rankFrom, colTo, rankTo) ;
// make the move
if (currentPlayer () == Player2) ({
m_fox = QPoint (colTo, rankTo) ; // cache fox position

}

// check win condition

if (currentPlayer () == Player2 && rankTo == 1)
setResult (Player2Wins) ; // fox has escaped
} else if (currentPlayer() == Playerl && !foxCanMove()) ({
setResult (PlayerlWins) ; // fox can't move
} else {

// the other player makes the move now
setCurrentPlayer (currentPlayer () == Playerl ? Player2 : Playerl);

}

return true;

[160]

Chapter 5

Declare a protected foxCanMove () method and implement it using the following code:

bool FoxAndHounds: :foxCanMove () const
{
if (emptyByOffset (-1, -1)
| | emptyByOffset(1
return false;

emptyByOffset (-1, 1)
1

N
, -1) || emptyByOffset(1, 1)) return true;

}
Then do the same with emptyByOffset ():

bool FoxAndHounds: :emptyByOffset (int x, int y) const
{

const int destCol = m_fox.x()+x;

const int destRank = m _fox.y()+y;

if (destCol < 1 || destRank < 1

|| destCol > board()->columns ()
| | destRank > board()->ranks()) return false;

return (board()->data(destCol, destRank) == "' ');

}
Lastly declare a private QPoint m_fox member variable.

The simplest way to test the game is to make two changes to the code. First,
in the constructor of the main window class, replacem_algorithm = new

ChessAlgorithm(this) withm algorithm = new FoxAndHounds (this).Second,
modify the viewClicked () slot as follows:

void MainWindow: :viewClicked (const QPoint &field)
{

if (m_clickPoint.isNull()) {
//
} else {

if (field != m_clickPoint) {
m algorithm->move (m clickPoint, field);

//

}

You can also connect signals from the algorithm class to custom slots of the view or window

to notify about the end of the game and provide a visual hint as to which player should make
his move now.

11611

Graphics with Qt

What just happened?

We created a very simplistic API for implementing chess-like games by introducing the
newGame () and move () virtual methods to the algorithm class. The former method simply
sets everything up. The latter uses simple checks to determine whether a particular move is
valid and if the game has ended. We use the m_fox member variable to track the current
position of the fox to be able to quickly determine if it has any valid moves. When the game
ends, the gameOver () signal is emitted and the result of the game can be obtained from the
algorithm. You can use the exact same framework for implementing all chess rules.

Have a go hero - implementing the Ul around the chess hoard

During the exercise, we focused on developing the game board view and necessary classes
to make the game actually run. But we completely neglected the regular user interface the
game might possess, such as toolbars and menus. You can try designing a set of menus and
toolbars for the game. Make it possible to start a new game, save a game in progress (say

by implementing a FEN serializer), load a saved game (say by leveraging the existing FEN
string parser), or choose different game types that will spawn different ChessAlgorithm
subclasses. You can also provide a settings dialog for adjusting the look of the game board. If
you feel like it, you can add chess clocks or implement a simple tutorial system that will guide
the player through the basics of chess using text and visual hints via the highlight system we
implemented.

Have a go hero - connecting a UCI-compliant chess engine

If you really want to test your skills, you can implement a ChessAlgorithm subclass that
will connect to a Universal Chess Interface (UCI) chess engine such as StockFish (http://
stockfishchess.org) and provide a challenging artificial intelligence opponent for a
human player. UCl is the de facto standard for communication between a chess engine and a
chess frontend. Its specification is freely available, so you can study it on your own. To talk to
a UCl-compliant engine you can use QProcess, which will spawn the engine as an external
process and attach itself to its standard input and standard output. Then you can send
commands to the engine by writing to its standard input and read messages from the engine
by reading its standard output. To get you started, here is a short snippet of code that starts
the engine and attaches to its communication channels:

class UciEngine : public QObject ({
Q OBJECT

11621

http://stockfishchess.org
http://stockfishchess.org

Chapter 5

public:
UciEngine (QObject *parent = 0) : QObject (parent) {
m_uciEngine = new QProcess (this);
m_uciEngine->setReadChannel (QProcess:StandardOutput) ;
connect (m_uciEngine, SIGNAL (readyRead()), SLOT (readFromEngine())) ;
}
public slots:
void startEngine (const QString &enginePath) {
m_uciEngine->start (enginePath) ;
}
void sendCommand (const QString &command) {
m_uciEngine->write (command.toLatinl());
}
private slots:
void readFromEngine () {
while (m_uciEngine->canReadLine()) {
QString line = QString::fromLatinl (m uciEngine-s>readLine()) ;
emit messageReceived(line) ;

}

signals:

void messageReceived (QString) ;
private:

QProcess *m_uciEngine;

}i

OpenGL

We are not experts on OpenGlL, so in this part of the chapter we will not teach you to do

any fancy stuff with OpenGL and Qt but rather will show you how to enable the use of your
OpenGL skills in Qt applications. There are a lot of tutorials and courses on OpenGL out there
so if you're not that skilled with OpenGL, you can still benefit from what is described here by
employing the knowledge gained here to more easily learn fancy stuff. You can use external
materials and a high-level API offered by Qt, which is going to speed up many of the tasks
described in the tutorials.

11631

Graphics with Qt

Introduction to OpenGL with Ot

There are basically two ways you can use OpenGL in Qt. The first approach is to use
QOpenGLWidget. This is mostly useful if your application heavily depends on other widgets
(for example. the 3D view is only one of the views in your application and is controlled

using a bunch of other widgets surrounding the main view). The other way is to use
QOpenGLWindow; this is most useful when the GL window is the dominant or even the only
part of the program. Both APIs are very similar; they use instances of the QOpenGLContext
class to access the GL context. The difference is practically only in how they render the
scene to the window. QOpenGLWindow renders directly to the given window, while
QOpenGLWidget first renders to an offscreen buffer that is then rendered to the widget. The
advantage of the latter approach is that Q0penGLWidget can be part of a more complex
widget layout while Q0penGLWindow is usually used as the sole, often fullscreen, window.
In this chapter we will be using the more direct approach (Q0penGLWindow); however, bear
in mind that you can do everything described here using the widget too. Just replace the
window classes with their widget equivalents and you should be good to go.

We said that the whole API revolves around the QOpenGLContext class. It represents the
overall state of the GL pipeline, which guides the process of data processing and rendering to
a particular device.

A related concept that needs explanation is the idea of a GL context being "current" in

a thread. The way OpenGL calls work is that they do not use any handle to any object
containing information on where and how to execute the series of low-level GL calls. Instead,
it is assumed that they are executed in the context of the current machine state. The state
may dictate whether to render a scene to a screen or to a frame buffer object, which
mechanisms are enabled, or the properties of the surface OpenGL is rendering on. Making
a context "current" means that all further OpenGL operations issued by a particular thread
will be applied to this context. To add to that, a context can be "current" only in one thread
at the same time; therefore, it is important to make the context current before making

any OpenGL calls and then marking it as available after you are done accessing OpenGL
resources.

QOpenGLWindow has a very simple APl that hides most of the unnecessary details from

the developer. Apart from constructors and a destructor, it provides a small number of

very useful methods. First there are auxiliary methods for managing the OpenGL context:
context (), which returns the context, and makeCurrent () as well as doneCurrent ()
for acquiring and releasing the context. The remaining methods of the class are a number of
virtual methods we can reimplement to display OpenGL graphics.

The first method is called initializeGL (), and it is invoked by the framework once before
any painting is actually done so that you can prepare any resources or initialize the context in
any way you require.

11641

Chapter 5

Then there are two most important methods: resizeGL () and paintGL (). The firstis a
callback invoked every time the window is resized. It accepts the width and height of the
window as parameters. You can make use of that method by reimplementing it so that
you can prepare yourself for the fact that the next call to the other method, paintGL (),
renders to a viewport of a different size. Speaking of paintGL (), this is the equivalent of
paintEvent () for the widget classes; it gets executed whenever the window needs to be
repainted. This is the function where you should put your OpenGL rendering code.

Time for action - drawing a triangle using Qt and OpenGl

For the first exercise, we will create a subclass of Q0penGLWindow that renders a triangle
using simple OpenGL calls. Create a new project starting with Empty gmake Project from the
Other Projects group as the template. In the project file, put the following content:

QT = core gui
TARGET = triangle
TEMPLATE = app

Having the basic project setup ready, let's define a SimpleGLWindow class as a subclass of
QOpenGLWindow and override the initializeGL () method to set white as the clear color
of our scene. We do this by calling an OpenGL function called glClearColor. Qt provides

a convenience class called QOpenGLFunctions that takes care of resolving most commonly
used OpenGL functions in a platform-independent way. This is the recommended approach
to access OpenGLES functions in a platform-independent manner. Our window is going to
inherit not only QOpenGLWindow but also Q0penGLFunctions. However, since we don't
want to allow external access to those functions, we use protected inheritance.

class SimpleGLWindow : public QOpenGLWindow,
protected QOpenGLFunctions
public:
SimpleGLWindow (QWindow *parent = 0)
QOpenGLWindow (NoPartialUpdate, parent) { }
protected:
void initializeGL() {
initializeOpenGLFunctions () ;
glClearColor(1,1,1,0);

}

IninitializeGL (), we first call initializeOpenGLFunctions (), which is a method
of the QOpenGLFunctions class, one of the base classes of our window class. The method
takes care of setting up all the functions according to the parameters of the current GL
context (thus it is important to first make the context current, which luckily is done for us
behind the scenes before initializeGL () is invoked). Then we set the clear color of the
scene to white.

11651

Graphics with Qt

The next step is to reimplement paintGL () and put the actual drawing code there:

void paintGL() {
glClear (GL_COLOR_BUFFER BIT) ;
glvViewport (0, 0, width(), height()) ;
glBegin (GL_TRIANGLES) ;
glColor3f (1, 0, 0);
glvertex3f(0.0f, 1.0f, 0.0f);
glColor3f (0, 1, 0);
glvertex3f(1.0f,-1.0f, 0.0f);
glColor3f (0, 0, 1);
glvertex3f(-1.0f,-1.0f, 0.0f);
glEnd () ;
}
i

This function first clears the color buffer and sets the GL viewport of the context to be
the size of the window. Then we tell OpenGL to start drawing using triangles with the
glBegin () call and passing GL_TRIANGLES as the drawing mode. Then we pass three

vertices along with their colors to form a triangle. Finally, we inform the pipeline by invoking
glEnd () that we are done drawing using the current mode.

What is left is a trivial main () function that sets up the window and starts the event loop.
Add a new C++ Source File, call it main.cpp, and implement main () as follows:

int main(int argc, char **argv)
QGuiApplication app(argc, argv) ;
SimpleGLWindow window;
window.resize (600,400) ;
window.show () ;

return app.exec();

(1661

Chapter 5

You can see the triangle has jagged edges. That's because of the aliasing effect.
You can counter it by enabling multisampling for the window, which will make
OpenGL render the contents multiple times and then average the result, which
~ acts as antialiasing. To do that, add the following code to the constructor of the
Q window:
QSurfaceFormat fmt = format () ;
fmt.setSamples (16); // multisampling set to 16
setFormat (fmt) ;

Drawing colored triangles is fun, but drawing textured cubes is even more fun so let's see
how we can use OpenGL textures with Qt.

Time for action - scene-hased rendering

Let's take our rendering code to a higher level. Putting OpenGL code directly into the
window class requires subclassing the window class and makes the window class more
and more complex. Let's follow good programming practice and separate rendering code
from window code.

Create a new class and call it AbstractGLScene. It is going to be the base class for
definitions of OpenGL scenes. You can derive the class (with protected scope) from
QOpenGLFunctions to make accessing different GL functions easier. Make the scene class
accept a pointer to Q0penGLWindow, either in the constructor or through a dedicated setter
method. Make sure the pointer is stored in the class for easier access as we are going to rely
on that pointer for accessing physical properties of the window. Add methods for querying
the window's OpenGL context. You should end up with code similar to the following:

class AbstractGLScene : protected QOpenGLFunctions {

public:
AbstractGLScene (QOpenGLWindow *wnd = 0) { m _window = wnd; }
QOpenGLWindow* window () const { return m window; }
QOpenGLContext* context ()

return window () ? window () ->context() : 0;
const QOpenGLContext* context () const {
return window () ? window () ->context() : 0;
private:

QOpenGLWindow *m_window = nullptr; // C++11l required for assignment

bi

11671

Graphics with Qt

Now the essential part begins. Add two pure virtual methods called paint () and
initialize (). Also remember about adding a virtual destructor.

Instead of making initialize () a pure virtual function, you can implement
M its body in such a way that it will call initializeOpenGLFunctions ()
Q to fulfill the requirements of the QOpenGFunctions class. Then, subclasses
of AbstractGLScene can make sure the functions are initialized properly by
calling the base class implementation of initialize ().

Next, create a subclass of Q0penGLWindow and call it SceneGLWindow. Equip it with setter
and getter methods to allow the object to operate on an AbstractGLScene instance.

Then reimplement the initializeGL () and paintGL () methods and make them call
appropriate equivalents in the scene:

void SceneGLWindow::initializeGL() { if (scene())
scene () ->initialize(); }
void SceneGLWindow: :paintGL() { if (scene()) scene()->paint(); }
What just happened?

We have just set up a class chain that separates the window code from the actual OpenGL
scene. The window forwards all calls related to scene contents to the scene object so that
when the window is requested to repaint itself, it delegates the task to the scene object.
Note that prior to doing that, the window will make the GL context current; therefore, all
OpenGL calls the scene makes will be related to that context. You can store the code created
in this exercise for later reuse in further exercises and your own projects.

Time for action - drawing a textured cube

Subclass AbstractGLScene and implement the constructor to match the one from
AbstractGLScene. Add a method to store a QImage object in the scene that will contain
texture data for the cube. Add a QOpenGLTexture pointer member as well, which will
contain the texture, initialize it to 0 in the constructor, and delete it in the destructor.

Let's call the image object m_tex and the texture m_texture. Now add a protected
initializeTexture () method and fill it with the following code:

void initializeTexture()
m_texture = new QOpenGLTexture (m tex.mirrored()) ;
m_texture->setMinificationFilter (QOpenGLTexture: :LinearMipMapLinear) ;
m_texture->setMagnificationFilter (QOpenGLTexture: :Linear) ;

}

[168]

Chapter 5

The function first mirrors the image vertically. This is because OpenGL expects the texture to
be "upside down". Then we create a QOpenGLTexture object, passing it our image. Then
we set minification and magnification filters so that the texture looks better when it is scaled.

We are now ready to implement the initialize () method that will take care of setting up
the texture and the scene itself.

void initialize() {
AbstractGLScene: :initialize () ;
m_initialized = true;
if (Im _tex.isNull()) initializeTexture();
glClearColor(1,1,1,0);
glShadeModel (GL_SMOOTH) ;

}

We make use of a flag called m_initialized. This flagis needed to prevent the texture
from being set up too early (when no GL context is available yet). Then we check if the
texture image is set (using the QImage: : isNull () method); if so, we initialize the texture.
Then we set some additional properties of the GL context.

In the setter form_tex, add code that checksif m_initializedissetto
Ry true andif so, calls initializeTexture (). This is to make certain that
Q the texture is properly set regardless of the order in which the setter and
initialize () are called. Also remembertosetm initializedto
false in the constructor.

The next step is to prepare the cube data. We will define a special data structure for the cube
that groups vertex coordinates and texture data in a single object. To store coordinates, we
are going to use classes tailored to that purpose—Qvector3D and QVector2D.

struct TexturedPoint {
QVector3D coord;
QVector2D uv;

TexturedPoint (const QVector3D& pcoord, const QVector2D& puv) {
coord = pcoord; uv = puv; }

Vi

QVector<TexturedPoint > will hold information for the whole cube. The vector is
initialized with data using the following code:

void CubeGLScene::initializeCubeData()
m_data = {
// FRONT FACE
{{-0.5, -0.5, ©0.5}, {0, o}}, {{ 0.5, -0.5, 0.5}, {1, 0}},

Graphics with Qt

{{ 0.5, 0.5, 0.5}, {1, 1}}, {{-0.5, 0.5, ©0.5}, {0, 1}},

// TOP FACE

{{-0.5, 0.5, 0.5}, {0, o}}, {{ 0.5, o0.5, 5}, {1, o}},
{{ 0.5, 0.5, -0.5}, {1, 1}}, {{-0.5, 0.5, -0.5}, {0, 1}},
// BACK FACE

{{-0.5, 0.5, -0.5}, {0, o}}, {{ 0.5, 0.5, -0.5}, {1, 0}},
{{ 0.5, -0.5, -0.5}, {1, 1}}, {{-0.5, -0.5, -0.5}, {0, 1}},
// BOTTOM FACE

{{-0.5, -0.5, -0.5}, {0, o}}, {{ 0.5, -0.5, -0.5}, {1, 0}},
{{ 0.5, -0.5, 0.5}, {1, 1}}, {{-0.5, -0.5, ©0.5}, {0, 1}},
// LEFT FACE

{{-0.5, -0.5, -0.5}, {0, o}}, {{-0.5, -0.5, 5}, {1, o}},
{{-0.5, 0.5, 0.5}, {1, 1}}, {{-0.5, 5, -0.5}, {0, 1}},
// RIGHT FACE

{{ 0.5, -0.5, 0.5}, {0, o}}, {{ 0.5, -0.5, -0.5}, {1, 0}},
{{ 0.5, 0.5, -0.5}, {1, 1}}, {{ o.5, 5, 5}, {0, 1}},

}i
}

The code uses C++11 syntax to operate on the vector. If you have an older compiler, you will
have to use Qvector: :append () instead.

m_data.append (TexturedPoint (QVector3D(...), QVector2D(...)));

The cube consists of six faces and is centered on the origin of the coordinate system.
The following image presents the same data in graphical form. Purple figures are texture
coordinates in UV coordinate space.

(1701

Chapter 5

050505 050505

0.505-05

0505 -05

050505 - © 05-0505

-0.5-05-05 0.5-0.5-0.5

initializeCubeData () should be called from the scene constructor or from the
initialize () method. What remains is the painting code.

void CubeGLScene: :paint () {

}

glClear (GL_COLOR_BUFFER BIT| GL DEPTH BUFFER BIT) ;
glvViewport (0, 0, window () ->width (), window()->height()) ;
glLoadIdentity () ;

glRotatef(45, 1.0, 0.0,
glRotatef (45, 0.0, 1.0,

glEnable (GL_DEPTH TEST) ;
glEnable (GL_CULL_FACE) ;
glCullFace (GL_BACK) ;
paintCube () ;

First we set up the viewport and then we rotate the view. Before calling paintCube (),
which is going to render the cube itself, we enable depth testing and face culling so that only
visible faces are drawn. The paintCube () routine looks as follows:

void CubeGLScene: :paintCube () {

if (m_texture)

m_texture->bind() ;

glEnable (GL_TEXTURE_2D) ;
glBegin (GL_QUADS) ;

1l

Graphics with Qt

for(int i=0;i<m data.size() ;++i) {

const TexturedPoint &pt = m data.at(i);

glTexCoord2d (pt.uv.x(), pt.uv.y());

glvVertex3f (pt.coord.x (), pt.coord.y(), pt.coord.z());
}
glEnd () ;

glDisable (GL_TEXTURE 2D) ;

}

First the texture is bound and texturing is enabled. Then we enter the quad drawing mode
and stream in data from our data structure. Finally, we disable texturing again.

For completeness, here is amain () function that executes the scene:

int main(int argc, char **argv) {
QGuiApplication app(argc, argv) ;
SceneGLWindow window;
QSurfaceFormat fmt;
fmt.setSamples (16) ;
window.setFormat (fmt) ;
CubeGLScene scene (&window) ;
window. setScene (&scene) ;
scene.setTexture (QImage (":/texture.jpg")) ;
window.resize (600,600) ;
window. show () ;
return app.exec() ;

}

Please note the use of QSurfaceFormat to enable multisample antialiasing for the scene.
We have also put the texture image into a resource file to avoid problems with the relative
path to the file.

Have a go hero - animating a cubhe

Try modifying the code to make the cube animated. To do that, have the scene inherit
QObject, add an angle property of type £1loat to it (remember about the 9 OBJECT
macro). Then modify one of the glRotatef () lines to use the angle value instead of a
constant value. Put the following code in main () right before calling app . exec ():

QPropertyAnimation anim(&scene, "angle");
anim.setStartValue (0) ;
anim.setEndValue (359) ;
anim.setDuration (5000) ;
anim.setLoopCount (-1) ;

anim.start () ;

[1721

Chapter 5

Remember to put a call to window () ->update () in the setter for the angle property so
that the scene is redrawn.

Modern OpenGL with Ot

OpenGL code shown in the previous section uses a very old technique of streaming vertices
one by one into a fixed OpenGL pipeline. Nowadays, modern hardware is much more feature
rich and not only does it allow faster processing of vertex data but it also offers the ability

to adjust different processing stages with the use of reprogrammable units called shaders.

In this section, we will take a look at what Qt has to offer in the domain of a "modern"
approach to using OpenGL.

Qt can make use of shaders through a set of classes based around
QOpenGLShaderProgram. This class allows compiling, linking, and executing shader
programs written in GLSL. You can check if your OpenGL implementation supports shaders
by inspecting the result of a static QOpenGLShaderProgram: : hasOpenGLShaderPro
grams () call that accepts a pointer to a GL context. All modern hardware and all decent
graphics drivers should have some support for shaders. A single shader is represented by

an instance of the Q0penGLShader class. Using it, you can decide on the type of shader,
associate, and shader source code. The latter is done by calling Q0penGLShader: : compile
SourceCode (), which has a number of overloads for handling different input formats.

Qt supports all kinds of shaders, with the most common being vertex and fragment shaders.
These are both part of the classic OpenGL pipeline. You can see an illustration of the pipeline
on the following diagram:

—){ Primitive Processing Vertex Shader Primitive Assembly ‘
Framebuffer] Fragment Shader

(1131

Graphics with Qt

When you have a set of shaders defined, you can assemble a complete program by using
QOpenCGLShaderProgram: : addShader (). After all shaders are added, you can 1ink ()
the program and bind () it to the current GL context. The program class has a number of
methods for setting values of different input parameters—uniforms and attributes both in
singular and array versions. Qt provides mappings between its own types (such as QSize or
QColor) to GLSL counterparts (for example, vec2 and vec4) to make the programmer's life
even easier.

A typical code flow for using shaders for rendering is as follows (first a vertex shader is
created and compiled):

QOpenGLShader vertexShader (QOpenGLShader: :Vertex) ;
QByteArray code = "uniform vec4 color;\n"

"uniform highp mat4 matrix;\n"

"void main(void) { gl Position = gl Vertex*matrix; }";
vertexShader.compileSourceCode (code) ;

The process is repeated for a fragment shader:

QOpenGLShader fragmentShader (QOpenGLShader: :Fragment) ;
code = "uniform vec4 color;\n"

"void main(void) { gl_FragColor = color; }";
fragmentShader.compileSourceCode (code) ;

Then shaders are linked into a single program in a given GL context:

QOpenGLShaderProgram program(context) ;
program.addShader (vertexShader) ;
program.addShader (fragmentShader) ;
program.link () ;

Whenever the program is used, it should be bound to the current GL context and filled with
required data:

program.bind() ;

QOMatrix4x4 m = ..;

QColor color = Qt::red;
program.setUniformvValue ("matrix", m) ;
program.setUniformvValue ("color", color);

After that, calls activating the render pipeline are going to use the bound program:

glBegin (GL_TRIANGLE STRIP) ;

glEnd () ;

1l

Chapter 5

Time for action - shaded ohjects

Let's convert our last program so that it uses shaders. To make the cube better, we will
implement a smooth lighting model using the Phong algorithm. At the same time, we will
learn to use some helper classes that Qt offers for use with OpenGL.

The basic goals for this mini-project are as follows:

¢ Use vertex and fragment shaders for rendering a complex object
¢ Handle model, view, and projection matrices

¢ Use attribute arrays for faster drawing

Start by creating a new subclass of AbstractGLScene. Let's give it the following interface:

class ShaderGLScene : public QObject, public AbstractGLScene {
Q OBJECT
public:
ShaderGLScene (SceneGLWindow *wnd) ;
void initialize() ;
void paint () ;
protected:
void initializeObjectDatal() ;
private:
struct ScenePoint
QVector3D coords;
QVector3D normal;
ScenePoint (const QVector3D &c, const QVector3D &n) ;
Vi
QOpenGLShaderProgram m shader;
QMatrix4x4 m modelMatrix;
QMatrix4x4 m viewMatrix;
QMatrix4x4 m projectionMatrix;
QVector<ScenePoint> m data;

Vi

Significant changes to the class interface in comparison with the previous project have been
highlighted. We're not using textures in this project so TexturedPoint was simplified to
ScenePoint with UV texture coordinates removed.

We can start implementing the interface with the initializeObjectData () function.
We're not going to go line by line explaining what the body of the method does. You can
implement it as you want; it is important that the method fill the m_data member with
information about vertices and their normals.

(1151

Graphics with Qt

In the sample code that comes with this book, you can find code that loads
data from a file in PLY format generated with the Blender 3D program. To
M export a model from Blender, make sure it consists of just triangles (for that,
Q select the model, go into the Edit mode by pressing Tab, open the Faces menu
with Ctrl + F, and choose Triangulate Faces). Then click on File and Export;
choose Stanford (.ply). You will end up with a text file containing vertex and
normal data as well as face definitions for the vertices.

You can always reuse the cube object from the previous project. Just be aware that its
normals are not calculated properly for smooth shading; thus, you will have to correct them.

Before we can set up the shader program, we have to be aware of what the actual shaders
look like. Shader code is going to be loaded from external files, so the first step is to add a
new file to the project. In Creator, click on File and choose New File or Project; from the
bottom pane, choose GLSL, and from the list of available templates choose Vertex Shader
(Desktop OpenGL). Call the new file phong.vert and input the following code:

uniform highp mat4 modelViewMatrix;
uniform highp mat3 normalMatrix;
uniform highp mat4 projectionMatrix;
uniform highp mat4 mvpMatrix;

attribute highp vec4 Vertex;
attribute mediump vec3 Normal;

varying mediump vec3 N;
varying highp vec3 v;

void main(void) {
N
v = vec3 (modelViewMatrix * Vertex) ;

normalize (normalMatrix * Normal) ;

gl Position = mvpMatrix*Vertex;

}

The code is very simple. We declare four matrices representing different stages of coordinate
mapping for the scene. We also define two input attributes—vertex and Normal—which
contain the vertex data. The shader is going to output two pieces of data—a normalized
vertex normal and a transformed vertex coordinate as seen by the camera. Of course, apart
from that we set g1_Position to be the final vertex coordinate. In each case, we want to
be compliant with the OpenGL/ES specification so we prefix each variable declaration with a
precision specifier.

(1761

Chapter 5

Next, add another file, call it phong . frag, and make it a Fragment Shader (Desktop
OpenGL). The content of the file is a typical ambient, diffuse, and specular calculation:

struct Material ({
lowp vec3 ka;
lowp vec3 kd;
lowp vec3 ks;
lowp float shininess;

Vi

struct Light ({
lowp vec4 position;
lowp vec3 intensity;

Vi

uniform Material mat;
uniform Light light;
varying mediump vec3 N;
varying highp vec3 v;

void main(void) {
mediump vec3 n = normalize (N) ;
highp vec3 L = normalize(light.position.xyz - v);
highp vec3 E = normalize(-v);
mediump vec3 R = normalize (reflect (-L, n));

lowp float LdotN = dot (L, n);
lowp float diffuse = max(LdotN, 0.0);
lowp vec3 spec = vec3(0,0,0);

if (LdotN > 0.0) {
float RdotE = max(dot(R, E), 0.0);
spec = light.intensity*pow(RdotE, mat.shininess) ;

}

vec3 color = light.intensity
* (mat.ka + mat.kd*diffuse + mat.ks*spec);
gl FragColor = vec4(color, 1.0);

}

Apart from using the two varying variables to obtain the interpolated normal (N) and
fragment (v) position, the shader declares two structures for keeping light and material
information. Without going into the details about how the shader itself works, it calculates
three components—ambient light, diffused light, and specular reflection—adds them
together, and sets that as the fragment color. Since all the per vertex input data is
interpolated for each fragment, the final color is calculated individually for each pixel.

[l

Graphics with Qt

Once we know what the shaders expect, we can set up the shader program object. Let's go
through the initialize () method:

void initialize()
AbstractGLScene: :initialize () ;
glClearColor(0,0,0,0);

First we call the base class implementation and set the background color of the scene to
black, as shown in the following code:

m shader.addShaderFromSourceCode
_(QOpenGLShader::Vertex, fileContent ("phong.vert")) ;
m shader.addShaderFromSourceCode
_(QOpenGLShader::Fragment, fileContent ("phong.frag")) ;
m_shader.link() ;

Then we add two shaders to the program reading their source code from external files with
the use of a custom helper function called fileContent (). This function essentially opens
a file and returns its content. Then we link the shader program. The 1ink () function returns
a Boolean value but for simplicity we skip the error check here. The next step is to prepare all
the input data for the shader, as shown:

m_shader.bind() ;

m_shader.setAttributeArray ("Vertex",
GL_FLOAT, m _data.constData(), 3, sizeof (ScenePoint)) ;

m_shader.enableAttributeArray ("Vertex") ;

m_shader.setAttributeArray ("Normal",
GL_FLOAT, &m_datal[0] .normal, 3, sizeof (ScenePoint));

m_shader.enableAttributeArray ("Normal") ;
m_shader.setUniformValue ("material.ka", QVector3D(0.1, 0, 0.0));

m_shader.setUniformvValue ("material.kd",
QVector3D(0.7, 0.0, 0.0));

m_shader.setUniformvValue ("material.ks",
QVector3D(1.0, 1.0, 1.0));

m_shader.setUniformValue ("material.shininess", 128.0f);
"light.position", QVector3D(2, 1, 1));
"light.intensity", QVector3D(1,1,1));

m_shader.setUniformvalue (
(

m_shader.setUniformvalue

(1181

Chapter 5

First the shader program is bound to the current context so that we can operate on it. Then
we enable the setup of two attribute arrays—one for vertex coordinates and the other for
their normals. We inform the program that an attribute called vertex consists of three
values of type GL._FLOAT. The first value is located at m_data.constData (), and data for
the next vertex is located sizeof (ScenePoint) bytes later than data for the current point.
Then we have a similar declaration for the Normal attribute, with the only exception that
the first piece of data is placed at &m_data [0] .normal. By informing the program about
layout of the data, we allow it to quickly read all the vertex information when needed.

After attribute arrays are set, we pass values for uniform variables to the shader program,
which concludes the shader program setup. You will notice that we didn't set values for
uniforms representing the various matrices; we will do that separately for each repaint. The
paint () method takes care of setting up all the matrices:

void ObjectGLScene: :paint () {
m projectionMatrix.setToIdentity () ;
greal ratio = greal (window () ->width())
/ greal (window () ->height ()) ;
m_projectionMatrix.perspective (90, ratio,
0.5, 40); // angle, ratio, near plane, far plane
m_viewMatrix.setToIdentity();
QVector3D eye = QVector3D(0,0,2);
QVector3D center = QVector3D(0,0,0);
QVector3D up = QVector3D(0, 1, 0);
m viewMatrix.lookAt (eye, center, up);

In this method, we make heavy use of the QMatrix4x4 class that represents a 4 x 4 matrix
in so-called row-major order, which is suited to use with OpenGL. At the beginning, we
reset the projection matrix and use the perspective () method to give it a perspective
transformation based on current window size. Afterwards, the view matrix is also reset
and the 1ookAt () method is used to prepare the transformation for the camera; center
value indicates the center of the view eye is looking at. The up vector dictates the vertical
orientation of the camera (with respect to the eye position).

The next couple of lines are similar to what we had in the previous project:

glClear (GL COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT) ;
glvViewport (0, 0, window () ->width(), window()->height()) ;
glEnable (GL_DEPTH TEST) ;

glEnable (GL_CULL_ FACE) ;

glCullFace (GL_BACK) ;

(191

Graphics with Qt

After that, we do the actual painting of the object:

m_modelMatrix.setToIdentity () ;

m_modelMatrix.rotate (45, 0, 1, 0);

OMatrix4x4 modelViewMatrix = m viewMatrix*m modelMatrix;
paintObject (modelViewMatrix) ;

}

We start by setting the model matrix, which dictates where the rendered object is positioned
relative to the center of the world (in this case, we say it is rotated 45 degrees around the y
axis). Then we assemble the model-view matrix (denoting the position of the object relative
to the camera) and pass it to the paintObject () method, as shown:

void paintCube (const QMatrix4x4& mvMatrix) {
m_shader.bind() ;
m_shader.setUniformvValue ("projectionMatrix",
m_projectionMatrix) ;
m_shader.setUniformValue ("modelViewMatrix",
mvMatrix) ;

m_shader.setUniformvValue ("mvpMatrix",
m_projectionMatrix*mvMatrix) ;

m_shader.setUniformvValue ("normalMatrix",
mvMatrix.normalMatrix()) ;

const int pointCount = m data.size();
glDrawArrays (GL_TRIANGLES, 0, pointCount) ;

}

This method is very easy since most of the work was done when setting up the shader
program. First the shader program is activated. Then all required matrices are set as uniforms
for the shader. Included is the normal matrix calculated from the model-view matrix. Finally,
a call to glDrawArrays () is issued telling it to render with the GL,_ TRIANGLES mode

using active arrays, starting from the beginning of the array (offset 0) and reading in the
pointCount entities from the array.

[1801]

Chapter 5

After you run the project, you should get a result similar to the following one, which happens
to contain the Blender monkey, Suzanne:

GL huffers

Using attribute arrays can speed up programming, but for rendering, all data still requires to
be copied to the graphics card on each use. This can be avoided with OpenGL buffer objects.
Qt provides a neat interface for such objects with its Q0penGLBuf fer class. Currently
supported buffer types are vertex buffers (where the buffer contains vertex information),
index buffers (where the content of the buffer is a set of indexes to other buffers that can

be used with glDrawElements ()), and also less commonly used pixel pack buffers and
pixel unpack buffers. The buffer is essentially a block of memory that can be uploaded to the
graphics card and stored there for faster access. There are different usage patterns available
that dictate how and when the buffer is transferred between the host memory and GPU
memory. The most common pattern is a one-time upload of vertex information to the GPU
that can later be referred to during rendering as many times as needed. Changing an existing
application that uses an attribute array to use vertex buffers is very easy. First a buffer needs
to be instantiated:

QOpenGLBuffer vbo (QOpenGLBuffer: :VertexBuffer) ;

11811

Graphics with Qt

Then its usage pattern needs to be set. In case of a one-time upload, the most appropriate
type is StaticDraw, as shown:

vbo.setUsagePattern (QOpenGLBuffer: :StaticDraw) ;

Then the buffer itself has to be created for the current context:

context->makeCurrent (this) ;
vbo.create() ;

The next step is to actually allocate some memory for the buffer:

vbo.allocate (vertexCount*sizeof (ScenePoint)) ;

To write data to the buffer, there are two options. First you can attach the buffer to the
application's memory space using a call to map () and then fill the data using a returned
pointer:

ScenePoint *buffer =
static_cast<ScenePoint*> (vbo.map (Q0penGLBuffer: :WriteOnly)) ;

assert (buffer!=0) ;
for(int i=0;i<vbo.size();++1i) { buffer[i] = m datalil; }
vbo.unmap () ;

An alternative approach is to write to the buffer directly using write ():

const int spSize = sizeof (ScenePoint) ;
for(int i=0;i<vbo.size();++i)
vbo.write (i*spSize, &m datal[i], spSize); }

Finally, the buffer can be used in the shader program in a way similar to an attribute array:

vbo.bind () ;

m_shader.setAttributeBuffer ("Vertex"", GL FLOAT, 0, 3,
sizeof (ScenePoint)) ;

m_shader.setAttributeBuffer ("Normal"", GL_FLOAT,
sizeof (QVector3D), 3, sizeof (ScenePoint)) ;

The result is that all the data is uploaded to the GPU once and then used as needed by the
current shader program or other OpenGL call supporting buffer objects.

11821

Chapter 5

Sometimes, it is useful to render a GL scene not to the screen but rather to some image
that can be later processed externally or used as a texture in some other part of rendering.
For that, the concept of Framebuffer Objects (FBO) was created. An FBO is a rendering
surface that behaves like the regular device frame buffer, with the only exception that the
resulting pixels do not land on the screen. An FBO target can be bound as a texture in an
existing scene or dumped as an image to regular computer memory. In Qt, such an entity is
represented by a QOpenGLFramebufferObject class.

Once you have a current OpenGL context, you can create an instance of
QOpenGLFramebufferObject using one of the available constructors. A mandatory
parameter to pass is the size of the canvas (either as a QSize object or as a pair of
integers describing the width and height of the frame). Different constructors accept
other parameters such as the type of texture the FBO is to generate or a set of parameters
encapsulated in QOpenGLFramebufferObjectFormat.

When the object is created, you can issue a bind () call on it, which switches the OpenGL
pipeline to render to the FBO instead of the default target. A complementary method

is release (), which restores the default rendering target. Afterwards, the FBO can be
queried to return the ID of the OpenGL texture (using the texture () method) or to convert
the texture to QImage (by invoking toImage ()).

In this chapter, we learned about using graphics with Qt. You should be aware we have only
scratched the surface of Qt capabilities in this regard. What was presented in this chapter
will let you implement custom widgets, do some basic painting on images, and render
OpenGL scenes. There are many more functionalities that we didn't go through, such as
composition modes, paths, SVG handling, and many others. We will come back to some

of these features in subsequent chapters, but we will leave most for you to discover on
your own.

In the next chapter, we will learn a more object-oriented approach to do graphics, called
Graphics View.

[1831]

Widgets are great for designing graphical user interfaces. However, you will
run into problems if you wish to animate multiple widgets at the same time by
constantly moving them around in the application. For these situations, or in
general for frequently transforming 2D graphics, Qt offers you Graphics View.
In this chapter, you will learn the basics of the Graphics View architecture and
its items. You also will learn how to combine widgets with Graphics View items.
Once you have acquired a basic understanding, we are next going to develop a
simple jump-and-run game illustrating how to animate the items. Finally, we'll
look into some possibilities for optimizing Graphics View's performance.

Graphics View architecture

Three components form the core of Graphics View: an instance of QGraphicsvView, which
is referred to as view; an instance of QGraphicsScene, which is referred to as scene; and
usually multiple instances of QGraphicsItem, which are referred to as items. The usual
workflow is to first create a couple of items, then add them to a scene, and finally set that
scene on a view.

(1851

Graphics View

In the following section, we will be discussing all three parts of the Graphics View
architecture one after the other, beginning with the items, followed by the scene, and
concluding with the view.

Scene

View

|/

Items —

An illustration of Graphics View components

However, because it is not possible to deal with one component as entirely separate from
the others, you need to get the big picture up front. This will help you to better understand
the description of the three single parts. And do not worry if you do not understand all the
details on their first occurrence. Be patient, work through the three parts, and all issues will
hopefully become clear in the end.

Think of the items as Post-it notes. You take a note and write a message on it, paint an

image on it, both write and paint on it or, quite possibly, just leave it blank. This is equivalent
to creating an item with a defined paint function, whether it is a default one or you have
customized it. Since the items do not have a predetermined size, you define a bounding
rectangle inside which all the painting of the item is done. As with a note, which does not
care where it is positioned or from which angle it is being looked at, the item always draws
its content as if it were in an untransformed state, where a length unit corresponds to 1 pixel.
The item exists in its own coordinate system. Although you can apply various transformations
to the item, such as rotating and scaling, it's not the job of the item's paint function to take
that into account; that's the scene's job.

What is the scene, then? Well, think of it as a larger sheet of paper onto which you attach
your smaller Post-its, that is, the notes. On the scene, you can freely move the items around
while applying funny transformations to them. It is the scene's responsibility to correctly
display the items' position and any transformations applied to them. The scene further
informs the items about any events that affect them and it has—as with the items—a
bounding rectangle within which the items can be positioned.

1861

Chapter 6

Last but not least, let's turn our attention to the view. Think of the view as an inspection
window or a person who holds the paper with the notes in their hands. You can watch the
paper as a whole or you can only look at specific parts. And as a person can rotate and shear
the paper with their hands, so the view can rotate and shear the scene and do a lot more
transformations with it.

You may look at the preceding diagram and be worried about all the items
being outside the view. Aren't they wasting GPU render time? Don't you need

& to take care of them by adding a so-called "view frustum culling" mechanism (to
detect which item not to draw/render because it is not visible)? Well, the short
answer is "no" because Qt is already taking care of this.

So, let's look at the items. The most fundamental characteristic of items in Graphics View is
their object-oriented approach. All items in the scene must inherit QGraphicsItem, which
is an abstract class with—amongst numerous other public functions—two pure virtual
functions called boundingRect () and paint (). Because of this simple and clear fact,
there are principles which apply to each item.

Parent child relationship

The constructor of QGraphicsItem takes a pointer to another item that is set as the item's
parent. If the pointer is 0, the item has no parent. This gives you the opportunity to organize
items in a tree structure similar to the Q0bject object even though the QGraphicsItem
element does not inherit from the QObject object. You can change the relationship

of items at any given time by calling the setParentItem() function. It takes the new
parent as an argument. If you want to remove a child item from its parent, simply call the
setParentItem(0) function on the child. The following code illustrates both possibilities
for creating a relationship between items. (Please note that this code will not compile since
QGraphicsItem s an abstract class. Here, it is just for the purpose of illustration, but it will
work with a real item class.)

QGraphicsItem *parentItem = new QGraphicsItem() ;
QGraphicsItem *firstChildItem = new QGraphicsItem(parentItem) ;
QGraphicsItem *secondChildItem = new QGraphicsItem() ;
secondChildItem->setParentItem(parentItem) ;

delete parentItem;

11871

Graphics View

First we create an item called parentItem, and since we do not use the constructor's
argument, the item has no parent or child. Next, we create another item called
firstChildItemand pass a pointer to the parentItemitem as an argument. Thus,

it has the parentItemitem as its parent, and the parentItemitem now has the
firstChildItem item as its child. Next we create a third item called secondCchildItem,
but since we do not pass anything to its constructor, it has no parent at this point. In the next
line, however, we change that by calling the setParentItem() function. Now it is also a
child of the parentItem item.

You can always check whether an item has a parent using the parentItem /()
M function and check the returned QGraphicsItem pointer against 0, which
Q means that the item does not have a parent. To figure out if there are any
children, call the childItems () function on the item. A QList method
with the QGraphicsItem pointers to all child items is returned.

parentltem

firstChildItem secondChildItem

The parent-child relationship

The benefit of this parent-child relationship is that specific actions performed on a parent
item also affect associated child items. For example, when you delete a parent item, all child
items will also be deleted. For that reason, it is sufficient to delete the parentItemitemin
the preceding code. The destructors of the firstChildItemand secondChildItem items
are called implicitly. The same applies when you add or remove a parent item from a scene.
All child items will then get added or removed as well. The same applies when you hide a
parent item or when you move a parent item. In both cases, the child items will behave the
same way the parent does. Think of the earlier example of Post-it notes; they would behave
the same. If you have a note with other notes attached to it, they will also move when you
move the parent note.

[1881]

Chapter 6

If you are not sure whether a function call on the parent item is propagated to
its child items, you can always have a look at the sources. You will find them in
your Qt installation if you checked the option to also install the sources at the
time of installation. You can also find them online at https://github.com/
gtproject/gtbase.
~ Even if there isn't a meaningful comment, you can spot the relevant code easily.
Q Just look for a children variable addressed through the d-pointer. Inside the
destructor of the QGraphicsItemitem, the relevant code fragment is as follows:
if (!d_ptr->children.isEmpty()) {
while (!d ptr->children.isEmpty())
delete d ptr->children.first();
Q ASSERT (d_ptr->children.isEmpty()) ;

= } -

You are probably wondering what a QGraphicsItem item looks like. Well, since it is an
abstract class (and unfortunately the paint function is a pure virtual one), it does not look
like anything. You will have to do all the painting yourself. Luckily, since the paint function of
the QGraphicsItemitem offers you a technique you already know, the QPainter pointer,
this is not very difficult.

Don't panic! You don't have to draw all items yourself though. Qt offers a lot of standard
shaped items you can use just out-of-the-box. You'll find them discussed in an upcoming
section titled Standard items. However, since we need to draw a custom item once in a
while, we go through this process.

Time for action - creating a black, rectangular item

As a first approach, let's create an item that paints a black rectangle:

class BlackRectangle : public QGraphicsItem {
public:
explicit BlackRectangle (QGraphicsItem *parent = 0)
QGraphicsItem(parent) {}
virtual ~BlackRectangle() {}

QRectF boundingRect () const {
return QRectF (0, 0, 75, 25);

(1891

https://github.com/qtproject/qtbase
https://github.com/qtproject/qtbase

Graphics View

void paint (QPainter *painter, const QStyleOptionGraphicsItem
*option, QWidget *widget) {
Q_UNUSED (option)
Q UNUSED (widget)
painter->fillRect (boundingRect (), Ot::black) ;
}
}i

What just happened?

First, we subclass QGraphicItemand call the new class BlackRectangle. The class'
constructor accepts a pointer to a QGraphicItem item. This pointer is then passed to the
constructor of the QGraphicItemitem. We do not have to worry about it; QGraphicItem
will take care of it and establish the parent-child relationship for our item, among other
things. Next, the virtual destructor makes sure that it gets called even if the class is getting
deleted through a base class pointer. This is a crucial point, as you will learn later when we
talk about the scene.

Next, we define the boundingRect () function of our item, where we return a rectangle 75
pixels wide and 25 pixels high. This returned rectangle is the canvas for the paint method
and simultaneously the promise to the scene that the item will only paint in this area. The
scene relies on the correctness of that information, so you should strictly obey that promise.
Otherwise, the scene will become cluttered up with relics of your drawing!

Lastly, we do the actual painting from QPainter in conjunction with a QWwidget item. There
is nothing different here except that the painter is already initialized with the appropriate
values given to us through the first argument. Even if it is not needed, | would suggest that
the painter be kept in the same state at the end of the function as it was in the beginning.

If you follow that advice, and if you only use custom items in the scene, you can later
optimize the render speed enormously. This especially applies to scenes with many items.
But let us go back to what we were actually doing. We have taken the painter and called
the £il1Rect () function, which does not touch the painter's internal state. As arguments,
we used the boundingRect () function, which defines the area to fill, and the ot : :black
parameter, which defines the fill color. Thus, by only filling the bounding rectangle of the
item, we obeyed the bounding rectangle promise.

In our example, we have not used the two other arguments of the paint function. To
suppress the compiler warnings about unused variables, we used Qt's Q_UNUSED macro.

[1901]

Chapter 6

Time for action - reacting to an item's selection state

The assigned pointer to a QStyleOptionGraphicsItemitem might become handy if you
want to alter the appearance of the item related to its state. For example, say you want to fill
the rectangle with red when it gets selected. To do so, you only have to type this:

void paint (QPainter *painter, const QStyleOptionGraphicsItem *option,
QWidget *widget)
Q UNUSED (widget)
if (option->state & QStyle::State Selected)
painter->fillRect (boundingRect (), Qt::red);
else
painter->fillRect (boundingRect (), OQt::black) ;

What just happened?

The state variable is a bitmask holding the possible states of the item. You can check its
value against the values of the Qstyle: : StateFlag parameter by using bitwise operators.
In the preceding case, the state variable is checked against the State Selected
parameter. If this flag is set, the rectangle is painted red.

The type of state is QFlags<StateFlags>. So, instead of using the
KY bitwise operator to test if a flag is set, you can use the convenient function
Q testFlag (). Used with the preceding example it would be as follows:

if (option->state.testFlag(QStyle::State Selected))

The most important states you can use with items are described in the following table:

State Description

State_Enabled Indicates that the item is enabled. If the item is disabled, you may
want to draw it as grayed out.

State_HasFocus Indicates that the item has the input focus. To receive this state, the
item needs to have the ITtemIsFocusable flag set.

State_MouseOver | Indicates that the cursor is currently hovering over the
item. To receive this state the item needs to have the
acceptHoverEvents variable set to true.

State_Selected Indicates that the item is selected. To receive this state, the item
needs to have the ITtemIsSelectable flag set. The normal
behavior would be to draw a dashed line around the item as a
selection marker.

11911

Graphics View

Besides the state, QStyleOptionGraphicsItem offers much more information about the
currently used style, such as the palette and the font used, accessible through the gstyle
OptionGraphicsItem: :palette and QStyleOptionGraphicsItem: : fontMetrics
parameters, respectively. If you aim for style-aware items, have a deeper look at this class in
the documentation.

Time for action — making the item’s size definahle

Let's push the example of the black rectangle a step further. So far, BlackRectangle draws
a fixed rectangle of size 75 x 25 pixels. It would be nice if one could define this size, so let

us add the ability to define the size of the rectangle. Remember, only painting the rectangle
larger does not help here because then you would break the promise regarding the bounding
rectangle. So we need also to change the bounding rectangle as follows:

class BlackRectangle : public QGraphicsItem {
public:
BlackRectangle (QGraphicsItem *parent = 0)
OGraphicsItem(parent), m rect(0, 0, 75, 25) {}
/...
QRectF boundingRect () const
return m_rect;
}
/...
QRectF rect() const
return m_rect;
}
void setRect (const QRectF& rect)
if (rect == m rect)
return;
prepareGeometryChange () ;
m_rect = rect;
}
private:

QRectF m_rect;

Vi

11921

Chapter 6

What just happened?

Since the destructor and the paint function are unchanged, they are omitted. What
exactly have we done here? First, we introduced a private member called m_rect to save
the current rectangle's value. In the initialization list, we set m_rect to a default value of
QRectF (0, 0, 75, 25) like we hard-coded it in the first example. Since the bounding
rectangle should be the same as m_rect, we altered boundingRect () to returnm_rect.
The same value is returned by the getter function rect (). For now it seems redundant to
have two functions returning the same value, but as soon as you draw a border around the
rectangle, you need to return a different bounding rectangle. It needs to be increased by
the used pen's width. Therefore, we leave this redundancy in place in order to make further
improvements easier. The last new part is the setter function, which is pretty standard.

We check if the value has changed, and if not we exit the function. Otherwise, we set a
new value, but this has to happen after the prepareGeometryChange () call. This call is
important to inform the scene about the coming geometry change. Then, the scene will ask
the item to redraw itself. We do not need to handle that part.

Have a go hero - customizing the item

As an exercise, you can try to add an option to change the background color. You can also
create a new item that allows you to set an image. If doing so, keep in mind that you have to
change the item's bounding rectangle according to the size of the image.

As you have seen, creating your own item involves some work, but overall it is not that
difficult. A big advantage is that you can use QPainter to draw the item, the same
technique you use to paint widgets. So there is nothing new you need to learn. Indeed,
even if it is easy to draw filled rectangles or any other shape, it is a lot of work to subclass
QGraphicsItem each time you need to create an item that does such basic tasks. And
that's the reason why Qt comes with the following standard items that make your life as a
developer much easier:

Standard item Description

QGraphicsLineItem Draws a simple line. You can define the line with
setLine (const QLineF&).

QGraphicsRectItem Draws a rectangle. You can define the rectangle's geometry with
setRect (const QRectF&).

[1931

Graphics View

Standard item

Description

QGraphicsEllipseItem

Draws an ellipse. You can define the rectangle within which the
ellipse is being drawn with setRect (const QRectF&).
Additionally, you can define whether only a segment of the
ellipse should be drawn by calling setStartAngle (int)
and setSpanAngle (int). The arguments of both functions
are in 16ths of a degree.

QGraphicsPolygonItem

Draws a polygon. You can define the polygon with
setPolygon (const QPolygonF&).

QGraphicsPathItem

Draws a path. You can define the path with setPath (const
QPainterPathé&).

QGraphicsSimpleTextItem

Draws a simple text path. You can define the text with
setText (const QStringé&) and the font with
setFont (const QFonté&). Thisitem is only for drawing
plain text without any modification.

QGraphicsTextItem

Draws text. Unlike QGraphicsSimpleTextItem, thisitem
can display HTML or render a QTextDocument element.
You can set HTML with setHtml (const QStringé&) and
the document with setDocument (QTextDocument*).
QGraphicsTextItemcan even interact with the displayed
text so that text editing or URL opening is possible.

QGraphicsPixmapItem

Draws a pixmap. You can define the pixmap with
setPixmap (const QPixmapé&).

Since the drawing of these items is done by a QPainter pointer you can also define which
pen and which brush should be used. The pen is set with setPen (const QPen&) and
the brush with setBrush (const QBrushé&). These two functions, however, do not exist
for QGraphicsTextItemand QGraphicsPixmapItem. To define the appearance of a
QGraphicsTextItem item you have to use setDefaultTextColor () or HTML tags
supported by Qt. Note that pixmaps usually do not have a pen or a brush.

a1

Use QGraphicsSimpleTextItem wherever possible and try to avoid
QGraphicsTextItemifitis not absolutely necessary. The reason is that
~ QGraphicsTextItemlugsa QTextDocument object around and it is,
Q besides being a subclass of QGraphicsItem, also a subclass of Q0bject.
This is definitely too much overhead and has too high a performance cost for
displaying simple text.

11941

Chapter 6

A word on how you set up items. Instead of writing two expressions, one for the
initialization of the item and one for setting up its key information such as the rectangle

for a QGraphicsRextItem item or the pixmap for a QGraphicsPixmapItem, almost all
standard items offer you the option to pass that key information as a first argument to their
constructors—besides the optional last argument for setting the item's parent. Say you
would have written the following code:

QGraphicsRectItem *item = new QGraphicsRectItem() ;
item->setRect (QRectF (0, 0, 25, 25));

You can now simply write this:

QGraphicsRectItem *item = new QGraphicsRectItem(QRectF (0, 0, 25, 25));

You can even just write this:

QGraphicsRectItem *item = new QGraphicsRectItem(0, 0, 25, 25);

This is very convenient, but keep in mind that compact code may be harder to maintain than
code that sets all variables through setter methods.

A last but very important note on the used coordinate system. Altogether, Graphics View
deals with three different but connected coordinate systems. There is the item's coordinate
system, the scene's coordinate system, and the view's coordinate system. All three
coordinate systems differ from the Cartesian coordinate systems regarding the y axis: in
Graphics View, like in Qpainter pointer's coordinate system, the y axis is orientated and
measured from the origin to the bottom. This means that a point below the origin has a
positive y value. For now, we only care about the item's coordinate system. Since Graphics
View is for 2D graphics, we have an x coordinate and a y coordinate with the origin at (0, 0).
All points, lines, rectangles, and so on are specified in the item's own coordinate system. This
applies to almost all occasions where you deal with values representing coordinates within
the QGraphicsItem class or its derived classes. If you define, for example, the rectangle of
a QGraphicsRectItem item, you use item coordinates. If an item receives a mouse press
event, QGraphicsSceneMouseEvent : :pos () is expressed in item coordinates. But there
are some easy-to-identify exceptions to this statement. The return value of scenePos ()
and sceneBoundingRect () is expressed in scene coordinates. Pretty obvious, isn't it? The
one thing that is a little bit tricky to identify is the returned QPointF pointer of pos (). The
coordinates of this point are expressed in the item's parent coordinate system. This can be
either the parent item's coordinate system or, more likely, the scene's coordinate system
when the item does not have a parent item.

(1951

Graphics View

For a better understanding of pos () and the involved coordinate systems, think of Post-it
notes again. If you put a note on a larger sheet of paper and then had to determine its exact
position, how would you do it? Probably somewhat like this: "The note's upper left corner

is positioned 3 cm to the right and 5 cm to the bottom from the paper's top left edge". In
the Graphics View world, this would correspond to a parentless item whose pos () function
returns a position in scene coordinates since the item's origin is directly pinned to the scene.
On the other hand, say you put a note A on top of a (larger) note B, which is already pinned
on a paper, and you have to determine A's position; how would you describe it this time?
Probably by saying that note A is placed on top of note B or "2 cm to the right and 1 cm to
the bottom from the top-left edge of note B". You most likely wouldn't use the underlying
paper as a reference since it is not the next point of reference. This is because, if you move
note B, A's position regarding the paper will change whereas A's relative position to B still
remains unchanged. To switch back to Graphics View, the equivalent situation is an item
that has a parent item. In this case, the pos () function's returned value is expressed in the
coordinate system of its parent. So setPos () and pos () specify the position of the item's
origin in relation to the next (higher) point of reference. This could be the scene or the item's
parent item.

Keep in mind, however, that changing an item's position does not affect the item's internal
coordinate system.

Time for action - creating items with different origins

Let's have a closer look at these three items defined by the following code snippet:

QGraphicsRectItem *itemA = QGraphicsRectItem(-10, -10, 20, 20);
QGraphicsRectItem *itemB = QGraphicsRectItem(0, 0, 20, 20);
QOGraphicsRectItem *itemC = QGraphicsRectItem(10, 10, 20, 20);

What just happened?

All three items are rectangles with a side length of 20 pixels. The difference between them
is the position of their coordinate origin points. i tema has its origin in the center of the
rectangle, itemB has its origin in the top-left corner of the rectangle, and itemcC has its
origin outside the drawn rectangle. In the following diagram, you see the origin points
marked as red dots.

itemA itemB itemC

[1961]

Chapter 6

So what's the deal with these origin points? On the one hand, the origin point is used to create
a relation between the item's coordinate system and the scene's coordinate system. As you
will see later in more detail, if you set the position of the item on the scene, the position on
the scene is the origin of the item. You can say scene (x, y) = item(0, 0). On the other hand, the
origin point is used as a center point for all transformations you can use with items, such as
scaling, rotating, or adding a freely definable transformation matrix of QTransform type. As
an additional feature, you always have the option to combine a new transformation with the
already applied ones or to replace the old transformation(s) with a new one.

Time for action - rotating an item

As an example, let's rotate itemB and itemC by 45 degrees counter-clockwise. For items,
the function call would look like this:

itemB->setRotation (-45) ;

The setRotation () function accepts greal as the argument value, so you can set very
precise values. The function interprets the number as degrees for a clockwise rotation
around the z coordinate. If you set a negative value, a counter-clockwise rotation is
performed. Even if it does not make much sense, you can rotate an item by 450 degrees,
which would result in a rotation of 90 degrees. Here is what the two items would look like
after the rotation by 45 degrees counter-clockwise:

itemB itemC

What just happened?

As you can see, the rotation has its center in the item's origin point. Now you could run into
the problem that you want to rotate the rectangle of i temC around its center point. In such
a situation, you can use setTransformOriginPoint (). For the described problem, the
relevant code would look like this:

QGraphicsRectItem *itemC = QGraphicsRectItem(10, 10, 20, 20);
itemC->setTransformOriginPoint (20, 20);
itemC->rotate (-45) ;

11971

Graphics View

Let us take this opportunity to recapitulate the item's coordinate system. The item's origin
point is in (0, 0). In the constructor of QGraphicsRectItem, you define that the rectangle
should have its top-left corner at (10, 10). And since you gave the rectangle a width and a
height of 20 pixels, its bottom-right corner is at (30, 30). This makes (20, 20) the center of
the rectangle. After setting the transformation's origin point to (20, 20), you rotate the item
around that point 45 degrees counter-clockwise. You will see the result in the following
image, where the transformation's origin point is marked with a cross.

Even if you "change" the item's origin point by such a transformation, this does not affect the
item's position on the scene. First, the scene positions the untransformed item with respect
to its origin point and only then are all transformations applied to the item.

Have a go hero - applying multiple transformations

To understand the concept of transformations and their origin point, go ahead and try it
yourself. Apply rotate () and scale () sequentially to an item. Also, change the point of
origin and see how the item will react. As a second step, use QTransform in conjunction
with setTransform() to add a custom transformation to an item.

Let us take a look at how we can improvise the scene.

Adding items to the scene

At this point, you should have a basic understanding of items. The next question is what

to do with them. As described earlier, you put the items on a QGraphicsScene method.
This is done by calling addItem (QGraphicsItem *item). Did you notice the type

of the argument? It's a pointer to a QGraphicsItem method. Since all items on the

scene must inherit QGraphicsItem, you can use this function with any item, be it a
QGraphicsRectItem item or any custom item. If you have a look at the documentation of
QGraphicsScene, you will notice that all functions returning items or dealing with them
expect pointers to a QGraphicsItem item. This universal usability is a huge advantage of
the object-orientated approach in Graphics View.

[198]

Chapter 6

If you have a pointer of the type QGraphicsItem pointing to an
instance of a QGraphicsRectItem and you want to use a function of
QGraphicsRectItem, use ggraphicsitem cast<> () to castthe
pointer. This is because it is safer and faster than using static_cast<> () or
dynamic_cast<> ().

QGraphicsItem *item = new QGraphicsRectItem(0, 0, 5, 5);

~\‘ QGraphicsRectItem *rectItem =
ggraphicsitem cast<QGraphicsRectItem*>(item) ;
if (rectItem)
rectItem->setRect (0, 0, 10, 15);

Please note that if you want to use ggraphicsitem cast<> () with your
own custom item, you have to make sure that QGraphicsItem: :type () is
reimplemented and that it returns a unique type for a particular item. To ensure a

unique type, use QGraphicsItem: :UserType + X asa returnvalue where
you count up x for every custom item you create.

Time for action - adding an item to a scene

Let's have a first try and add an item to the scene:

QGraphicsScene scene;
QGraphicsRectItem *rectItem = new QGraphicsRectItem(0,0,50,50);
scene.addItem(rectItem) ;

What just happened?

Nothing complicated here. You create a scene, create an item of type QGraphicsRectItem,
define the geometry of the item's rectangle, and then set the item to the scene by calling
addItem /(). Pretty straightforward. But what you do not see here is what this implies for
the scene. The scene is now responsible for the added item! First of all, the ownership of the
item is transferred to the scene. For you, this means that you do not have to worry about
freeing the item's memory because deleting the scene also deletes all items associated with
the scene. Now remember what we said about the destructor of a custom item: it must be
virtual! QGraphicsScene operates with pointers to QGraphicsItem. Thus, when it deletes
the assigned items, it does that by calling delete on the base class pointer. If you have not
declared the destructor of the derived class virtual, it will not be executed, which may cause
memory leaks. Therefore, form habit of declaring the destructor virtual.

[199]

Graphics View

Transferring the ownership of the item to the scene also means that an item can only be
added to one single scene. If the item was previously already added to another scene, it
gets removed from there before it will be added to the new scene. The following code will
demonstrate that:

QGraphicsScene firstScene;

QGraphicsScene secondScene;

QGraphicsRectItem *item = new QGraphicsRectItem;
firstScene.addItem(item) ;

gDebug () << firstScene.items().count(); // 1
secondScene.addItem(item) ;

gDebug () << firstScene.items().count(); // 0

After creating two scenes and one item, we add the item itemto the scene firstScene.
Then, with the debug message, we print out the number of associated items with that
firstScene scene. For this, we call items () on the scene, which returns a QList list
with pointers to all items of the scene. Calling count () on that list tells us the size of the
list, which is equivalent to the number of added items. As you can see after adding the
item on secondScene, the firstScene item count returns 0. Before i tem was added to
secondScene, it was first removed from firstScene.

If you want to remove an item from a scene without setting it directly to
M another scene or without deleting it, you can call removeItem (), which
Q takes a pointer for the item that should be removed. Be aware, however, that
now it is your responsibility to delete the item in order to free the allocated
memory!

When it takes ownership of an item, the scene also has to take care of a lot of other stuff.
The scene has to make sure that events get delivered to the right items. If you click on a
scene (to be precise, you click on a view that propagates the event to the scene), the scene
receives the mouse press event and it then becomes the scene's responsibility to determine
which item was meant by the click. In order to be able to do that, the scene always needs to
know where all the items are. Therefore, the scene keeps track of the items in a Binary Space
Partitioning tree.

[200]

Chapter 6

You can benefit from this knowledge too! If you want to know which item is shown at a
certain position, call itemat () with QPointF as an argument. You will receive the topmost
item at that position. If you want all items that are located at this position, say in cases
where multiple items are on top of each other, call an overloaded function of items ()
(which takes a QPointF pointer as an argument). It will return a list of all items that the
bounding rectangle contains that point. The items () function also accepts QrectF,
QPolygonF, and QPainterPath as arguments if you need all visible items of an area.

With the second argument of the type Ot : : ITtemSelectionMode, you can alter the mode
for how the items in the area will be determined. The following table shows the different
modes:

Mode Meaning

Qt::ContainsItemShape The item's shape must be completely inside the
selection area.

Qt::IntersectsItemShape Similar to Qt : : ContainsItemShape but also

returns items whose shapes intersect with the
selection area.

Qt::ContainsItemBoundingRect The item's bounding rectangle must be
completely inside the selection area.

Qt::IntersectsItemBoundingRect | Similarto
Qt::ContainsItemBoundingRect but
also returns items whose bounding rectangles
intersect with the selection area.

The scene's responsibility for delivering events does not only apply to mouse events; it also
applies to key events and all other sorts of events. The events that are passed to the items
are subclasses of QGraphicsSceneEvent. Thus, an item does not get a QMouseEvent
event like widgets; it gets a QGraphicsSceneMouseEvent event. In general, these scene
events behave like normal events, but instead of say a globalPos () function you have
scenePos ().

The scene also handles the selection of items. To be selectable, an item must have the
QGraphicsItem::ItemIsSelectable flag turned on. You can do that by calling
QGraphicsItem: :setFlag () with the flag and true as arguments. Besides that, there
are different ways to select items. There is the item's QGraphicsItem: :setSelected ()
function, which takes a bool value to toggle the selection state on or off, or you can call oG
raphicsScene: :setSelectionArea () on the scene, which takes a QpainterPath
parameter as argument, in which case all items get selected. With the mouse, you can click
on an item to select or deselect it or—if the view's rubber-band selection mode is enabled—
you can select multiple items with that rubber band.

2011

Graphics View

For activating the rubber band selection for the view, call setDragMode
(QGraphicsView: : RubberBandDrag) on the view. Then you can press
%j%‘\ the left mouse button and, while holding it down, move the mouse to define
’ the selection area. The selection rectangle is then defined by the point of the
first mouse press and the current mouse position.

With the scene's QGraphicsScene: : selectedItems () function, you can query the
actual selected items. The function returns a QList list holding QGraphicsItem pointers
to selected items. For example, calling QList : : count () on that list would give you the
number of selected items. To clear the selection, call 0gGraphicsScene: :clearSelect
ion (). To query the selection state of an item, use QGraphicsItem: :isSelected(),
which returns true if the item is selected and false otherwise. If you write a customized
paint function, do not forget to alter the item's appearance to indicate that it is selected.
Otherwise, the user cannot know this. The determination inside the paint function is done
by 0Style::State Selected, as shown earlier.

The standard items show a dashed rectangle around a selected item.

The item's handling of focus is done in a similar way. To be focusable an item must have the
QGraphicsItem: : ItemIsFocusable flag enabled. Then, the item can be focused by a
mouse click, through the item's QGraphicsItem: : setFocus () function, or through the
scene's QGraphicsScene: : setFocusItem () function, which expects a pointer to the
item you like to focus as a parameter. To determine if an item has focus, you again have two
possibilities. One is that you can call QGraphicsItem: :hasFocus () on an item, which
returns true if the item has focus or false otherwise. Alternatively, you can get the actual
focused item by calling the scene's QGraphicsScene: : focusItem() method. On the
other hand, if you call the item's QGraphicsItem: : focusItem() function, the focused
item is returned if the item itself or any descendant item has focus; otherwise, 0 is returned.
To remove focus, call clearFocus () on the focused item or click somewhere in the scene's
background or on an item that cannot get focus.

12021

Chapter 6

U . .
‘Q If you want a click on the scene's background not to cause the focused item to

lose its focus, set the scene's stickyFocus property to true.

It is also the scene's responsibility to render itself with all the assigned items.

Time for action - rendering the scene’s content to an image

Let's try to render a scene to an image. In order to do that, we take the following code
snippet from our first example where we tried to put items on a scene:

QGraphicsScene scene;

QGraphicsRectItem *rectItem = new QGraphicsRectItem() ;
rectItem->setRect (0,0,50,50) ;
rectItem->setBrush(Qt::green) ;
rectItem->setPen (QColor (255,0,0));
scene.addItem(rectItem) ;

The only change we make here is that we set a brush resulting in a green-filled rectangle with
a red border, which was defined through setBrush () and setPen (). You can also define
the thickness of the stroke by passing a QPen object with the corresponding arguments. To
render the scene, you only need to call render (), which takes a pointer to a Qpainter
pointer. This way, the scene can render its contents to any paint device the painter is pointing
to. For us, a simple PNG file will do the job.

QRect rect = scene.sceneRect () .toAlignedRect () ;
QImage image(rect.size(), QImage::Format ARGB32) ;
image.fill (Qt: :transparent) ;

QPainter painter (&image) ;

scene.render (&painter) ;

image.save ("scene.png", "PNG") ;

Result of the rendering

[2031

Graphics View

What just happened?

First you determined the rectangle of the scene with sceneRect (). Since this returns

a QRectF parameter and QImage can only handle Qrect, you transformed it on-the-

fly by calling toaAlignedRect (). The difference between the torect () function and
toAlignedRect () is that the former rounds to the nearest integer, which may result in a
smaller rectangle whereas the latter expands to the smallest possible rectangle containing
the original QrectF parameter. Then, you created a QImage file with the size of the aligned
scene's rectangle. Because the image is created with uninitialized data, you need to call
£111 () with Qt: :transparent to receive a transparent image. You can assign any color
you like as an argument both a value of Qt : : GlobalColor enumeration and an ordinary
QColor object; QColor (0, 0, 255) would resultin a blue background. Next, you create
a QrPainter object which points to the image. This painter object is now used in the scene's
render () function to draw the scene. After that, all you have to do is to save the image to a
place of your choice. The file name (which can also contain an absolute path such as /path/
to/image.png) is given by the first argument whereas the second argument determines
the format of the image. Here, we set the file name to scene.png and choose the PNG
format. Since we haven't specified a path, the image will be saved in the application's current
directory.

Have a go hero - rendering only specific parts of a scene

This example draws the whole scene. Of course, you can also render only specific parts of
the scene by using the other arguments of render () . We will not go into this here but you
may want to try it as an exercise.

Coordinate system of the scene

What is left is a look at the coordinate system of the scene. Like the items, the scene lives
in its own coordinate system with the origin at (0, 0). Now when you add an item via
addItem(), the item is positioned at the scene's (0, 0) coordinate. If you want to move the
item to another position on the scene, call setPos () on the item.

QGraphicsScene scene;

QGraphicsRectItem *item = QGraphicsRectItem(0, 0, 10, 10);
scene.addItem(item) ;

item.setPos (50,50) ;

12041

Chapter 6

After creating the scene and the item, you add the item to the scene by calling additem().
At this stage, the scene's origin and the item's origin are stacked on top of each other at (0,
0). By calling setPos (), you move the item 50 pixels right and down. Now the item's origin
is at (50, 50) in scene coordinates. If you need to know the position of the bottom-right
corner of the item's rectangle in scene coordinates, you have to do a quick calculation. In
the item's coordinate system, the bottom right corner is at (10, 10). The item's origin point is
(0, 0) in the item's coordinate system, which corresponds to the point (50, 50) in the scene's
coordinate system. So you just have to take (50, 50) and add (10,10) to get (60, 60) as the
scene's coordinates for the bottom-right corner of the item. This is an easy calculation, but it
quickly gets complicated when you rotate, scale, and/or shear the item. Because of this, you
should use one of the convenience functions provided by QGraphicsItem:

Function Description

mapToScene (const QPoint &point) Maps the point point thatis in the item's
coordinate system to the corresponding point in
the scene's coordinate system.

mapFromScene (const QPoint &point) | Maps the point point thatisin the scene's
coordinate system to the corresponding point in
the item's coordinate system. This function is the
reverse function to mapToScene ().

mapToParent (const QPoint &point) Maps the point point thatis in the item's
coordinate system to the corresponding

point in the coordinate system of the item's
parent. If the item does not have a parent, this
function behaves like mapToScene () ; thus, it
returns the corresponding point in the scene's
coordinate system.

mapFromParent (const QPoint Maps the point point that is in the coordinate
&point) system of the item's parent to the corresponding
point in the item's own coordinate system.

This function is the reverse function to
mapToParent ().

mapToltem(const QGraphicsItem Maps the point point thatis in the item's own

*item, const QPointF &point) coordinate system to the corresponding point in
the coordinate system of the item item.

mapFromItem(const QGraphicsItem Maps the point point which is in the

*item, const QPointF &point) coordinate system of the item item to the

corresponding point in the item's own coordinate
system. This function is the reverse function to
mapToItem().

[2051]

Graphics View

What is great about these functions is that they are not only available for QPointF. The
same functions are also available for QrRectF, QPolygonF, and QPainterPath. Not to
mention that these are of course convenience functions: If you call these functions with two
numbers of the type greal, the numbers get interpreted as the x and y coordinates of a
QPointF pointer; if you call the functions with four numbers, the numbers get interpreted
as the x and y coordinates and the width and the height of a QRectF parameter.

Since the positioning of the items is done by the items themselves, it is possible that an
item independently moves around. Do not worry; the scene will get notified about any item
position change. And not only the scene! Remember the parent-child relationship of items
and that parents delete their child items when they get destroyed themselves? It's the same
with setPos (). If you move a parent, all child items get moved as well. This can be very
useful if you have a bunch of items that should stay together. Instead of moving all items

by themselves, you only have to move one item. Since transformations that you apply on

a parent also affect the children, this might not be the best solution for grouping together
equal items that should be independently transformable but also transformable altogether.
The solution for such a case is QGraphicsItemGroup. It behaves like a parent in a parent-
child relationship. The QGraphicsItemGroup is an invisible parent item so that you can
alter the child items separately through their transformation functions or all together by
invoking the transformation functions of QGraphicsItemGroup.

Time for action - transforming parent items and child items

Have a look at the following code:

QGraphicsScene scene;

QOGraphicsRectItem *rectA new QGraphicsRectItem(0,0,45,45);
0,0,45,45);
0,0,45,45);

new QGraphicsRectItem(0,0,45,45);

QGraphicsRectItem *rectB

new QGraphicsRectItem

QGraphicsRectItem *rectC new QGraphicsRectItem

(
(
(
(

QGraphicsRectItem *rectD

rectB->moveBy (50, 0) ;
rectC->moveBy (0,50) ;
rectD->moveBy (50, 50) ;
QGraphicsItemGroup *group = new QGraphicsItemGroup;
group->addToGroup (recta) ;
group->addToGroup (rectB) ;
group->addToGroup (rectC) ;
rectD->setGroup (group) ;
group->setRotation(70) ;
rectA->setRotation(-25);
rectB->setRotation(-25);
rectC->setRotation(-25);
rectD->setRotation (-25) ;
scene.addItem(group) ;

[2061]

Chapter 6

What just happened?

After creating a scene, we create four rectangle items that are arranged in a 2 x 2 matrix.
This is done with the calls of the moveBy () function, which interprets the first argument
as a shift to the right or left when negative and the second argument as a shift to the
bottom or top when negative. Then we create a new QGraphicsItemGroup item which,
since it subclasses QGraphicsItem, is a regular item and can be used as such. By calling
addToGroup (), we add the items that we want to position inside that group. If you'd
like to remove an item from the group later on, simply call removeFromGroup () and
pass the respective item. The rectD parameter is added to the group in a different way.
By calling setGroup () on rectD, it gets assigned to group; this behavior is comparable
to setParent (). If you want to check whether an item is assigned to a group, just call
group () onit. It will return a pointer to the group or 0 if the item is not in a group. After
adding the group to the scene, and thus also the items, we rotate the whole group by 70
degrees clockwise. Afterward, all items are separately rotated 25 degrees counter-clockwise
around their top left corner. This will result in the following appearance:

P X

Here you see the initial state after moving the items, then after rotating the group by 70 degrees, and then after rotating
each item by -25 degrees

If we were to rotate the items more, they would overlap each other. But which item would
overlap which? This is defined by the item's z value; you can define the value by using
QGraphicsItem: :setZValue () otherwise it is 0. Based on that, the items get stacked.
Items with a higher z value are displayed on top of items with lower z values. If items have
the same z value, the order of insertion decides the placement: items added later overlap
those added earlier. Also, negative values are possible.

Have a go hero - playing with the z value

Take the item group from the example as a starting point and apply various transformations
to it as well as different z values for the item. You will be astonished at what crazy
geometrical figures you can create with these four items. Coding really is fun!

2071

Graphics View

For the sake of completeness, a word on the scene's bounding rectangle is required (set
through setSceneRect ()). Just as the offset of an item's bounding rectangle affects its
position on the scene, the offset of the scene's bounding rectangle affects the scene's
position on the view. More importantly, however, the bounding rectangle is used for various
internal computations, such as the calculation of the view's scroll bar value and position.
Even if you do not have to set the scene's bounding rectangle, it is recommended that you
do. This applies especially when your scene holds a lot of items. If you do not set a bounding
rectangle, the scene calculates this itself by going through all the items, retrieving their
positions and their bounding rectangles as well as their transformations to figure out the
maximum occupied space. This calculation is done by the function itemsBoundingRect ().
As you may imagine, this becomes increasingly resource-intensive the more items a scene
has. Furthermore, if you do not set the scene's rectangle, the scene checks on each item's
update if the item is still in the scene's rectangle. Otherwise, it enlarges the rectangle to
hold the item inside the bounding rectangle. The downside to is that it will never adjust by
shirking; it will only enlarge. Thus, when you move an item to the outside and then to the
inside again, you will mess up the scroll bars.

\ If you do not want to calculate the size of your scene yourself, you
~ can add all items to the scene and then call setSceneRect () with
Q itemsBoundingRect () asan argument. With this, you stop the scene from
checking and updating the maximum bounding rectangle on item updates.

View

With QGraphicsView, we are back in the world of widgets. Since QGraphicsView inherits
QwWidget, you can use the view like any other widget and place it into layouts for creating
neat graphical user interfaces. For the Graphics View architecture, QGraphicsView provides
an inspection window on a scene. With the view, you can display the whole scene or only
part of it, and by using a transformation matrix you can manipulate the scene's coordinate
system. Internally, the view uses QGraphicsScene: : render () to visualize the scene.

By default, the view uses a gWwidget element as a painting device. Since QGraphicsView
inherits QAbstractScrollArea, the widget is set as its viewport. Therefore, when the
rendered scene exceeds the view's geometry, scroll bars are automatically shown.

Instead of using the default QWidget element as the viewport widget, you can
set your own widget by calling setViewport () with the custom one as an
% argument. The view will then take ownership of the assigned widget, which is
’ accessible by viewport (). This also gives you the opportunity to use OpenGL
for rendering. Simply call setViewport (new QGLWidget).

[208]

Chapter 6

Time for action - putting it all together!

Before we go on, however, and after talking a lot about items and scenes, let's see how the
view, the scene, and the items all work together:

#include <QApplication>
#include <QGraphicsViews
#include <QGraphicsRectItem>
int main(int argc, char *argv([]) {
QApplication app(argc, argv);
QGraphicsScene scene;
scene.addEllipse (QRectF (0, 0, 100, 100), QColor(0, 0, 0));
scene.addLine (0, 50, 100, 50, QColor (0, 0, 255));
QGraphicsRectItem *item = scene.addRect (0, 0, 25, 25, Qt::NoPen,
Qt::red) ;
item->setPos (scene.sceneRect () .center() - item->rect () .center());
QGraphicsView view;
view.setScene (&scene) ;
view.show () ;
return app.exec() ;

}

Build and run this example and you will see following image in the middle of the view:

What just happened?

What have we done here? On top, we included the needed headers and then wrote a normal
main function and created a QApplication elment. Its event loop is started in the return
statement on the bottom. In between, we created a scene and added the first item to it by
calling addellipse (). This function is one of the many convenience functions of Qt and is,
in our case, equivalent to the following code:

QGraphicsEllipseItem *item = new QGraphicsEllipseltem;
item->setRect (0, 0, 100, 100);

[2091]

Graphics View

item->setPen (QColor (0, 0, 0));
scene.addItem(item) ;

We thus have put a circle with a radius of 50 pixels in the scene. The origins of the circle and
of the scene are stacked on top of each other. Next, by calling addLine (), we add a blue
line that goes through the center point of the circle, parallel to the scene's bottom line. The
first two arguments are the x and y coordinates of the line's starting point and the second
two arguments the x and y coordinates of the end point. With addrect (), we add a square
with a 25-pixel side at the top-left corner of the scene. This time, however, we fetch the
pointer, which is then returned by these functions. This is because we want to move the
rectangle to the center of the scene. In order to do that, we use setPos () and need to

do some arithmetic. Why? Because of the relationship between the scene's and the item's
coordinate systems. By simply calling item->setPos (scene.sceneRect () .center()),
the origin of the item (which is (0, 0) in the item's coordinates and thus the rectangle's

top left corner) would be in the middle of the scene, not the red square itself. Thus we

need to shift the rectangle back by half of its width and height. This is done by subtracting
its center point from the scene's center point. As you probably have already guessed,
QRectF: :center () returns the center point of a rectangle as a QPointF pointer. Lastly,
we create a view and declare that it should display the scene by calling setScene () with
the scene as an argument. Then we show the view. That's all you need to do to show a scene
with items.

Two things you will probably notice if you have a look at the result are that the drawing looks
pixelated and that it stays in the center of the view when you resize the view. The solution
for the first problem you should already know from what you learned in the previous
chapter. You have to turn on antialiasing. For the view, you do that with this line of code

view.setRenderHint (QPainter: :Antialiasing) ;

With setRenderHint (), you can set all hints you know from QPainter to the view. Before
the view renders the scene on its viewport widget, it initializes the internally used Qpainter
element with these hints. With the antialiasing flag turned on, the painting is done much
more smoothly. Unfortunately, the line is also painted antialiased (even though we do not
want this since now the line looks washy). To prevent the line from getting drawn antialiased,
you have to override the paint () function of the item and explicitly turn off antialiasing.
However, you might want to have a line with aliasing somewhere, so there is another

small and easy solution for that problem without the need for reimplementing the paint
function. All you have to do is to shift the position by half of the pen's width. For that, write
the following code:

QGraphicsLineItem *line = scene.addLine(0, 50, 100, 50,

QColor (0, 0, 255));
const greal shift = line-s>pen().widthF() / 2.0;
line->moveBy (-shift, -shift);

[210]

Chapter 6

By calling pen (), you get the pen that is used to draw the line. Then you determine its width
by calling width?F () and dividing it by 2. Then just move the line whereby the moveBy ()
function behaves as if we had called the following:

line->setPosition(item.pos() - QPointF(shift, shift))
To be pixel-perfect, you might need to alter the length of the line.

The second "problem" was that the scene is always visualized in the center of the

view, which is the default behavior of the view. You can change this setting with
setAlignment (), which accepts Qt: : Alignment flags as arguments. So, calling view.
setAlignment (Qt::AlignBottom | Qt::AlignRight); would resultin the scene
staying in the lower-right corner of the view.

As soon as the scene's bounding rectangle exceeds the viewport's size, the view will show
scroll bars. Besides using them with the mouse to navigate to a specific item or point on the
scene, you can also access them by code. Since the view inherits QAbstractScrollArea,
you can use all its functions for accessing the scroll bars. horizontalScrollBar () and
verticalScrollBar () return a pointer to QScrollBar, and thus you can query their
range with minimum () and maximum (). By invoking value () and setVvalue (), you get
and can set the current value, which results in scrolling the scene.

But normally, you do not need to control free scrolling inside the view from your source
code. The normal task would be to scroll to a specific item. In order to do that, you do not
need to do any calculations yourself; the view offers a pretty simple way to do that for you:
centerOn (). With centeroOn (), the view ensures that the item, which you have passed
as an argument, is centered on the view unless it is too close to the scene's border or even
outside. Then, the view tries to move it as far as possible on the center. The centeroOn ()
function does not only take a QGraphicsItemitem as argument; you can also center on a
QPointF pointer or as a convenience on an x and y coordinate.

If you do not care where an item is shown, you can simply call ensurevisible () with
the item as an argument. Then the view scrolls the scene as little as possible so that the
item's center remains or becomes visible. As a second and third argument, you can define
a horizontal and vertical margin, which are both the minimum space between the item's
bounding rectangle and the view's border. Both values have 50 pixels as their default value.
Beside a QGraphicsItemitem, you can also ensure the visibility of a QrectF element (of
course, there is also the convenience function taking four greal elements).

[21]

Graphics View

If you like to ensure the entire visibility of an item (since
M ensureVisible (item) only takes the item's center into account) use
Q ensureVisible (item->boundingRect ()). Alternatively, you can use
ensureVisible (item), but then you have to set the margins at least to
the item's half width or half height respectively.

centerOn () and ensureVisible () only scroll the scene but do not change its
transformation state. If you absolutely want to ensure the visibility of an item or a rectangle
that exceeds the size of the view, you have to transform the scene as well. With this task,
again the view will help you. By calling fitInView () with QGraphicsItemor a QRectF
element as argument, the view will scroll and scale the scene so that it fits in the viewport
size. As a second argument, you can control how the scaling is done. You have the following
options:

Value Description

Qt::IgnoreAspectRatio The scaling is done absolutely freely regardless of
the item's or rectangle's aspect ratio.

Qt: :KeepAspectRatio The item's or rectangle's aspect ratio is taken into
account while trying to expand as far as possible
while respecting the viewport's size.

Qt: :KeepAspectRatioByExpanding | The item's or rectangle's aspect ratio is taken
into account, but the view tries to fill the whole
viewport's size with the smallest overlap.

The £fitInView () function does not only scale larger items down to fit the viewport, it
also enlarges items to fill the whole viewport. The following picture illustrates the different
scaling options for an item that is enlarged:

Thecircleonthe leftisthe original item. Then, from left torightitisQt : : IgnoreAspectRatio,
Qt: :KeepAspectRatio, and Qt: : KeepAspectRatioByExpanding.

[212]

Chapter 6

Transforming the scene

In the view, you can transform the scene as you like. Besides the normal convenience
functions, such as rotate (), scale(), shear(),and translate (), you can also apply a
free definable QTransform parameter via setTransform (), where you also can decide if
the transformation should be combined with existing ones or if it should replace them. As an
example of probably the most used transformation on a view, let us have a look how you can
scale and move the scene inside the view.

Time for action - creating an item where transformations can

First we set up a playground. To do this, we subclass a QGraphicsRectItemitem and
customize its paint function as follows:

void Scaleltem: :paint (QPainter *painter, const
QStyleOptionGraphicsItem *option, QWidget *widget) {
Q_UNUSED (option)
Q UNUSED (widget)
const QPen oldPen = painter-spen() ;

const QRectF r = rect();
const QColor fillColor = Qt::red;

const greal square = r.width() / 10.0;

painter->fillRect (QRectF (0, 0, square, square), fillColor);

painter->fillRect (QRectF (r.width() - square, 0, square, square),
fillColor) ;

painter->fillRect (QRectF (0,r.height () - square, square, square),
fillColor) ;

painter->fillRect (QRectF (r.width() - square, r.height() - square,
square, square), fillColor) ;

painter->setPen (Qt: :black) ;

painter->drawRect (r) ;

painter->drawLine (r.topLeft (), r.bottomRight ()) ;

painter->drawLine (r.topRight (), r.bottomLeft ()) ;

const greal padding = r.width() / 4;

painter->drawRect (r.adjusted (padding, padding, -padding,
- padding)) ;

painter->setPen (oldPen) ;

[2131

Graphics View

What just happened?

By using the 9 UNUSED macro, we simply suppress compiler warnings about unused
variables. The macro expands to (void) x;, which does nothing. Then we cache the current
pen for putting it back at the end of the function. This gives painter back unchanged. Of
course, we could have called save () and restore () on the painter, but these functions
save a lot of other properties we do not want to change, so simply saving and restoring

the pen is much faster. Next, we draw four red rectangles at the corners of the bounding
rectangle (r) by calling fi11Rect (), which does not change the painter state. Then we set
a 1-pixel thick and solid black pen—because this changes the pen's state, we have saved the
old pen—and draw the bounding rectangle, the diagonals, and a centered rectangle, which
is a quarter of the size of the bounding rectangle. This will give us the following item, which
shows the transformations better than with a black-filled rectangle:

Time for action - implementing the ability to scale the scene

Let's do the scaling first. We add the item to a scene and put that scene on a custom
view we have subclassed from QGraphicsvView. In our customized view, we only need
to reimplement wheelEvent () as we want to scale the view by using the mouse's scroll
wheel.

void MyView: :wheelEvent (QWheelEvent *event) {
const greal factor = 1.1;
if (event-s>angleDelta().y() > 0)
scale (factor, factor);
else
scale(1/factor, 1/factor);

[214]

Chapter 6

What just happened?

The factor parameter for the zooming can be freely defined. You can also create a getter
and setter method for it. For us, 1.1 will do the work. With event - >angleDelta (),

you get the distance of the mouse's wheel rotation as a QPoint pointer. Since we only
care about vertical scrolling, just the y axis is relevant for us. In our example, we also do
not care about how far the wheel was turned because, normally, every step is delivered
separately to wheelEvent (). But if you should need it, it's in eighths of a degree, and since
a mouse works in general steps of 15 degrees, the value should be 120 or -120, depending
on whether you move the wheel forward or backward. On a forward wheel move, if v ()

is greater than zero, we zoom in by using the built-in scale () function. It takes the scale
factor for the x and the y coordinates. Otherwise, if the wheel was moved backwards,

we zoom out. That's all there is to it. When you try this example, you will notice that,

while zooming, the view zooms in and out on the center of the view, which is the default
behavior for the view. You can change this behavior with setTransformationAnchor ().
QGraphicsView: : AnchorViewCenter is, as described, the default behavior. With
QGraphicsView: :NoAnchor, the zoom center is in the top-left corner of the view, and
the value you probably want to use is QGraphicsView: : AnchorUnderMouse. With that
option, the point under the mouse builds the center of the zooming and thus stays at the
same position inside the view.

Time for action - implementing the ability to move the scene

Next it would be good to move the scene around without the need of using the scroll bars.
Let us add the functionality for pressing and holding the left mouse button. First, we add
two private members to the view: the m_pressed parameter of type bool and them
lastMousePos element of type Qpoint. Then, we reimplement the mousePressEvent ()
and mouseReleaseEvent () functions as follows:

void MyView: :mousePressEvent (QMouseEvent *event) {
if (Qt::LeftButton == event-s>button()) ({
m _pressed = true;
m_lastMousePos = event->pos|() ;

}

QGraphicsView: :mousePressEvent (event) ;

}

void MyView: :mouseReleaseEvent (QMouseEvent *event) {
if (Qt::LeftButton == event->button())
m _pressed = false;
QGraphicsView: :mouseReleaseEvent (event) ;

}

[215]

Graphics View

What just happened?

Within mousePressEvent (), we check whether the left mouse button was pressed.

If it was true, we then set m_pressed to true and save the current mouse position
inm_lastMousePos. Then we pass the event to the base class event handler. Within
mouseReleaseEvent (), we setm_pressed to false if it was the left button; then we
pass the event to the base class implementation. We do not need to alter m_pressPoint
here. With mouseMoveEvent (), we can then react on the value of those two variables:

void MyView: :mouseMoveEvent (QMouseEvent *event) {
if (!m _pressed)
return QGraphicsView::mouseMoveEvent (event) ;

QPoint diff = m_lastMousePos - event->pos();
if (QScrollBar *hbar = horizontalScrollBar())
hbar->setValue (hbar->value() + diff.x());
if (QScrollBar *vbar = verticalScrollBar())
vbar-s>setValue (vbar->value () + diff.y());

m_lastMousePos = event->pos/() ;
return QGraphicsView::mouseMoveEvent (event) ;

}

If m_pressed is false—this means the left button wasn't pressed and held—we will be
exiting the function while passing the event to the base class implementation. This is, by the
way, important for getting unhandled events propagated to the scene correctly. If the button
has been pressed, we first calculate the difference (diff) between the point where the
mouse was pressed and the current position. Thus we know how far the mouse was moved.
Now we simply move the scroll bars by that value. For the horizontal scroll bar, the pointer
to it is received by calling horizontalScrollBar (). The encapsulation in an if clause

is just a paranoid safety check to ensure that the pointer is not null. Normally, this should
never happen. Through that pointer, we set a new value by adding the old value, received
by value (), to the moved distance, diff.x (). We then do the same for the vertical scroll
bar. Last, we save the current mouse position tom_lastMousePos. That's all. Now you can
move the scene around while holding the left mouse button down. The downside of this
method is that the left mouse click does not reach the scene and, therefore, features such
as item selection do not work. If you need that or a similar functionality on the scene, check
for a keyboard modifier too. For example, if the Shift key must also be pressed to move the
scene, additionally check the events modifiers () for whether Qt : : ShiftModifier is set
to activate the mouse-moving functionality:

void MyView: :mousePressEvent (QMouseEvent *event) {
if (Qt::LeftButton == event->button|()
&& (event-s>modifiers() & Qt::ShiftModifier)) ({
m _pressed = true;

/...

(2161

Chapter 6

Time for action - taking the zoom level into account

As a last detail, | would like to mention that you can draw an item differently

depending on its scale. To do that, the level of detail can be used. You use the passed
pointer to QStyleOptionGraphicsItem of the item's paint function and call
levelOfDetailFromTransform () with the painter's world transformation. We change
the paint function of the ScaleItemitem to the following:

const greal detail = option->levelOfDetailFromTransform (
painter-s>worldTransform()) ;

const QColor fillColor = (detail >= 5) ? Qt::yellow : Qt::red;

What just happened?

The detail parameter now contains the maximum width of unity square, which was
mapped to the painter coordinate system via the painter's world transformation matrix.
Based on that value, we set the fill color of the border rectangles to yellow or red. The
expression detail >= 5 will become true if the rectangle is displayed at least five times
as large as in a normal state. The level of detail is helpful when you want to draw more detail
on an item only if it is visible. By using the level of detail, you can control when a possibly
resource-intensive drawing should be performed. It makes sense, for example, to make
difficult drawings only when you can see them.

When you zoom into the scene, the diagonal lines as well as the rectangle lines get zoomed.
But you may want to leave the stroke the same regardless of the zoom level. Here Qt also has
an easy approach to offer. In the paint function of the item we used earlier for exemplifying
the zoom functionality, locate the following line of code:

painter->setPen (Qt: :black) ;
Replace it with the following lines:

QPen p(Qt::black);
p.setCosmetic (true);
painter->setPen (p) ;

The important part is to make the painter cosmetic. Now, regardless of the zoom or any
other transformation, the pen's width stays the same. This can be very helpful for drawing
outlined shapes.

[2111

Graphics View

Questions you should keep in mind

Whenever you are going to use the Graphics View architecture, ask yourself these questions:
Which standard items are suited for my specific needs? Am | reinventing the wheel over

and over again? Do | need QGraphicsTextItem oris QGraphicsSimpleTextItem

good enough? Do | need the items to inherit Q0bject or will plain items not suffice?

(We will cover this topic in the next section.) Could | group items together for the sake of
cleaner and leaner code? Is the parent-child relationship sufficient or do | need to use a
QGraphicsItemGroup element?

Now you really know most of the functions of the Graphics View framework. With this
knowledge, you can already do a lot of cool stuff. But for a game, it is still too static. We will
change that next!

The jumping elephant or how to animate the scene

By now, you should have a good understanding about the items, the scene, and the view.
With your knowledge of how to create items, standard and custom ones, of how to position
them on the scene, and of how to set up the view to show the scene, you can make pretty
awesome things. You even can zoom and move the scene with the mouse. That's surely
good, but for a game, one crucial point is still missing: you have to animate the items. Instead
of going through all possibilities for how to animate a scene, let us develop a simple jump-
and-run game where we recap parts of the previous topics and learn how to animate items
on a screen. So let's meet Benjamin, the elephant:

E

The game play

The goal of the game is for Benjamin to collect the coins that are placed all over the game
field. Besides walking right and left, Benjamin can, of course, also jump. In the following
screenshot, you see what this minimalistic game should look like in the end:

[218]

Chapter 6

The player item

Let's now look at how we can mobilize Benjamin.

Time for action - creating an item for Benjamin

First we need a custom item class for Benjamin. We call the class Player and choose
QGraphicsPixmapItem as the base class because Benjamin is a PNG image. In the item's
Player class, we further create a property of integer type and call itm_direction. Its
value signifies in which direction Benjamin walks—left or right—or if he stands still. Of
course, we use a getter and setter function for this property. Since the header file is simple,
let's have a look at the implementation right away (you will find the whole source code at
the end of this book):

Player: :Player (QGraphicsItem *parent)
: QGraphicsPixmapItem(parent), m direction(0) {
setPixmap (QPixmap (":/elephant")) ;
setTransformOriginPoint (boundingRect () .center()) ;

[219]

Graphics View

In the constructor, we setm_direction to 0, which means that Benjamin isn't moving at
all. fm_directionis 1, Benjamin moves right, and if the value is -1, he moves left. In the
body of the constructor, we set the image for the item by calling setPixmap (). The image
of Benjamin is stored in the Qt Resource System; thus, we access it through QPixmap (" :/
elephant") with elephant as the given alias for the actual image of Benjamin. Last, we
set the point of origin for all transformations we are going to apply to the center of the item.
This equals the center of the image.

int Player::direction() const {
return m direction;

}

The direction () function is a standard getter function for m_direction returning its
value. The next function of this class is much more important:

void Player::addDirection(int direction) {
direction = gBound (-1, direction, 1);
m _direction += direction;
if (0 == m _direction)
return;

if (-1 == m _direction)

setTransform (QTransform(-1, 0, 0, 1, boundingRect ().width(), 0));
else

setTransform (QTransform()) ;

What just happened?

With addDirection (), one "sets" the direction of Benjamin's movement. "Set" is put in
quotes because you do not setm_direction to the passed value; instead, you add the
passed value tom_direction. Thisis done in the second line after we have ensured the
correctness of m_direction. For that, we use gBound (), which returns a value that is
bound by the first and last argument. The argument in the middle is the actual value that we
want to get bound. So the possible values form_direction are restricted to -1, 0, and 1. If
the property direction is 0, the player item does not move and the function exits.

12201

Chapter 6

If you haven't already done so earlier, you might wonder by now why not simply set the
value? Why that addition? Well, it is because of how we will use this function: Benjamin

is moved by the left and right arrow key. If the right key is pressed, 1 is added; if it gets
released, -1 is added. Think of it as an impulse to the right (1) and to the left (-1). The first
accelerates the player and the second slows him down. The same applies for the left key, but
only the other way around. As we do not allow multiple acceleration, we limit the value of
m_directionto 1and -1. The addition of the value rather than setting it is now necessary
because of the following situation: A user presses and holds the right key, and the value of
m_direction is therefore 1. Now, without releasing the right key, he also presses and holds
the left key. Therefore, the value of m_direction is getting decreased by one; the value is
now 0 and Benjamin stops. But remember, both keys are still being pressed. What happens
when the left key is released? How would you know in this situation in which direction
Benjamin should move? To achieve that, you would have to find out an additional bit of
information: whether the right key is still pressed down or not. That seems too much trouble
and overhead. In our implementation, when the left key is released, 1 is added and the value
of m_direction becomes 1, making Benjamin move right. Voila! All without any concern
about what the state of the other button might be.

Lastly, we check in which direction Benjamin is moving. If he is moving left, we need to flip
his image so that Benjamin looks to the left, the direction in which he is moving. Therefore,
we apply a QTransform matrix, which flips the image vertically. If he is moving towards the
right, we restore the normal state by assigning an empty QTransform object, which is an
identity matrix.

So we now have our item of class P1layer for the game's character, which shows the
image of Benjamin. The item also stores the current moving direction, and based on that
information, the image is flipped vertically if needed.

The playing field

To understand the following code, it might be good to know the composition of the
environment in which our elephant will be walking and jumping. Overall, we have a view
fixed in size holding a scene which is exactly as big as the view. We do not take size changes
into account since they would complicate the example too much, and when you develop a
game for a mobile device, you know the available size up front.

[221]

Graphics View

All animations inside the playing field are done by moving the items, not the scene. So we
have to distinguish between the view's, or rather the scene's width and the width of the
elephant's virtual "world" in which he can move. The width of this virtual world is defined
bym fieldwidth and has no (direct) correlation with the scene. Within the range of
m_fieldwidth, which is 500 pixels in the example, Benjamin or the graphics item can be
moved from the minimum x coordinate, defined by m_minX, to the maximum x coordinate,
defined by m_maxX. We keep track of his actual x position with the variable m_realPos.
Next, the minimum y coordinate the item is allowed to have is defined by m_groundLevel.
Form_maxX and m_groundLevel, we have to take into account that the position of the
item is determined by its top-left corner. Lastly, what is left is the view, which has a fixed size
defined by the scene's bounding rectangle size, which is not as wide asm_fieldwidth. So
the scene (and the view) follows the elephant while he walks through his virtual world of
the lengthm_fieldwidth. Have a look at the picture to see the variables in their graphical
representation:

m_fieldWidth

/ Scene = View

v

m_groundLevel

m_realPos

m_minX m_maxX

The scene

Since we will have to do some work on the scene, we subclass QGraphicsScene and name
the new class MyScene. There we implement one part of the game logic. This is convenient
since QGraphicsScene inherits QObject and thus we can use Qt's signal and slot
mechanism. Also, for the next code of the scene, we only go through the implementation of
the functions. For more information on the header, have a look at the sources bundled with
this book.

Time for action — making Benjamin move

The first thing we want to do is to make our elephant movable. In order to achieve that, we
use a QTimer parameter called m_timer, which is a private member of MyScene. In the
constructor we set up the timer with the following code:

m_timer.setInterval (30);
connect (&m_timer, &QTimer::timeout, this, &MyScene::movePlayer) ;

12221

Chapter 6

First we define that the timer emits a timeout signal every 30 milliseconds. Then we connect
that signal to the scene's slot called movePlayer (), but we do not start the timer yet.

This is done by the arrow keys in a way we have already discussed when the m_direction
variable of the class P1ayer was introduced. Here is the implementation of what was
described there:

void MyScene: :keyPressEvent (QKeyEvent *event)
if (event->isAutoRepeat ())
return;

switch (event-skey()) {

case Qt::Key Right:
m _player-s>addDirection (1) ;
checkTimer () ;
break;

case Qt::Key Left:
m_player->addDirection(-1);
checkTimer () ;
break;

// ...

default:
break;

As a small side note, whenever code snippets in the following code passages

% are irrelevant for the actual detail, | am going to skip the code but will indicate
e missing code with // . . . so that you know it is not the entire code. We will

cover the skipped parts later when it is more appropriate.

What just happened?

In the key press event handler, we first check if the key event was triggered because of an
auto repeat. If this is the case, we exit the function because we only want to react on the
first real key press event. We also do not call the base class implementation of that event
handler since no item on the scene needs to get a key press event. If you do have items that
could and should receive events, do not forget to forward them while reimplementing event
handlers at the scene.

12231

Graphics View

If you press and hold a key down, Qt will continuously deliver the key press
event. To determine if it was the first real key press or an auto-generated event,
%j%“ use QKeyEvent : : isAutoRepeat (). It returns true if the event was
’ automatically generated. There is no easy way to turn off the auto repeat since
it is platform-dependent and you have to use the platform API for that.

As soon as we know that the event was not delivered by an auto repeat, we react to the
different key presses. If the left key was pressed, we decrease the direction property of
the player item by one; if the right key was pressed, we increase it by one. Them_player
element is our instance of the player item. After calling addDirection (), we call
checkTimer () in both cases:

void MyScene: :checkTimer () {
if (0 == m player->direction())
m_timer.stop();
else if (!m timer.isActive())
m_timer.start();

}

This function first checks whether the player moves. If not, the timer is stopped because
nothing has to be updated when our elephant stands still. Otherwise, the timer gets started,
but only if it isn't already running. This we check by calling isActive () on the timer.

When the user presses the right key, for example at the beginning of the game,
checkTimer () will start m_timer. Since its time out signal was connected to

movePlayer (), the slot will be called every 30 milliseconds till the key is released. Since the
move () function is a bit longer, let's go through it step-by-step:

void MyScene: :movePlayer ()
const int direction = m player->direction() ;
if (0 == direction)
return;

First, we cache the player's current direction in a local variable to avoid multiple calls of
direction (). Then we check whether the player is moving at all. If they aren't, we exit the
function because there is nothing to animate.

const int dx = direction * m velocity;
greal newPos = m_realPos + dx;
newPos = gBound(m minX, newPos, m maxX) ;
if (newPos == m_realPos)

return;

m_realPos = newPos;

[224]

Chapter 6

Next we calculate the shift the player item should get and store it in dx. The distance the
player should move every 30 milliseconds is defined by the member variable m_velocity,
expressed in pixels. You can create setter and getter functions for that variable if you like.
For us, the default value of 4 pixels will do the job. Multiplied by the direction (which could
only be 1 or -1 at this point), we get a shift of the player by 4 pixels to the right or to the left.
Based on this shift, we calculate the new x position of the player and store it in newPos.
Next, we check whether that new position is inside the range of m_minX and m_maxX, two
member variables that are already calculated and set up properly at this point. Next, if the
new position is not equal to the actual position, which is stored inm_realPos, we proceed
by assigning the new position as the current one. Otherwise, we exit the function since there
is nothing to move.

const int leftBorder = 150;
const int rightBorder = 350 - m _player-sboundingRect () .width() ;

The next question to tackle is whether the view should always move when the elephant is
moving, which means that the elephant would always stay say in the middle of the view. No,
he shouldn't stay at a specific point inside the view. Rather, the view should be fixed when
the elephant is moving. Only if he reaches the borders should the view follow. The "non-
movable" center is defined by 1eftBorder and rightBorder, which are related to the
item's position; thus we must subtract the item's width from the rightBorder element. If
we don't take the item's width into account, the right side of a player with a width of more
than 150 pixels will disappear before the scrolling takes place. Please note that the values for
leftBorder and rightBorder are randomly chosen. You can alter them as you like. Here
we decided to set the border at 150 pixels. Of course, you can create a setter and getter for
these parameters too:

if (direction > 0) {
if (m_realPos > m fieldWidth - (width() - rightBorder)) {
m _player-s>moveBy (dx, 0);
} else {
if (m _realPos - m_skippedMoving < rightBorder) ({
m _player-s>moveBy (dx, 0);
} else {
m_skippedMoving += dx;
}
}

} else {
if (m_realPos < leftBorder && m realPos >= m minX) {
m _player-s>moveBy (dx, 0);
} else {
if (m _realPos - m_skippedMoving > leftBorder) ({
m _player-s>moveBy (dx, 0);
} else {

12251

Graphics View

m_skippedMoving = gMax (0, m_skippedMoving + dx);

}

}
/...

}

Ok, so what have we done here? Here we have calculated whether only the elephant moves
or the view as well so that the elephant does not walk out of the screen. The if clause
applies when the elephant is moving towards the right. For a better understanding, let's
begin at the end of this scope. There is a situation where we do not move the elephant but
simply add the shift dx to a variable named m_skippedMoving. What does that mean? It
means that the virtual "world" is moving but the elephant inside the view is not. This is the
case when the elephant moves too far to the borders. In other words, you move the view
with the elephant above the virtual world by dx to the left. Let's take a look at the following
figure:

Scene = View

dx

S

I_l_l

m_skippedMoving rightBorder

The m_skippedMoving element is the difference between the view's x coordinate and

the virtual world's x coordinate. So the i f clause m _realPos - m_skippedMoving <
rightBorder reads: If the position of the elephant in "view coordinates", calculated by

m _realPos - m_skippedMoving, is smaller than rightBorder, then move the elephant
by calling moveBy () since he is allowed to walk till rightBorder. m_realPos -
m_skippedMoving is the same asm_player->pos () .x() + dx.

Lastly, let's turn to the first clause: m_realPos > m_fieldWidth - (width() -
rightBorder). This returns true when the actual position is behind the rightBorder
element but the fictional world is moved to its maximum left. Then we also have to move
the elephant so that he can reach m_maxX. The expression width () - rightBorder
calculates the width between rightBorder and the scene's right border.

The same considerations and calculations apply for moving to the left, the other branch.

12261

Chapter 6

So far, we have accomplished two things. First, with a QTimer object, we trigger a slot

that moves an item; thus, we have animated the scene. Second, we have determined the
elephant's position in the virtual world. You might wonder why we have done this. To be able
to do parallax scrolling!

Parallax scrolling is a trick to add an illusion of depth to the background of the game. This
illusion occurs when the background has different layers which move at different speeds. The
nearest background must move faster than the ones farther away. In our case, we have these
four backgrounds ordered from the most distant to the nearest:

The sky

't £ 201

The trees

The grass

The ground

[2211

Graphics View

Time for action — moving the bhackground

Now the question is how to move them at different speeds. The solution is quite simple:
the slowest one, the sky, is the smallest image. The fastest background, the ground and the
grass, are the largest images. Now when we have a look at the end of the movePlayer ()
function's slot we see this:

greal ff = gMin(1.0, m_skippedMoving/(m fieldwidth - width()));
m_sky->setPos (- (m_sky->boundingRect () .width() - width()) * £f£, 0);
m_grass->setPos (- (m_grass->boundingRect () .width() - width()) *

ff, m grass->y());
m_trees->setPos (- (m_trees->boundingRect () .width() - width()) *

ff, m_trees->y());
m_ground-s>setPos (- (m_ground-s>boundingRect () .width() - width()) *

ff, m_ground->y());

What just happened?

What are we doing here? At the beginning, the sky's left border is the same as the view's left
border, both at point (0, 0). At the end, when Benjamin has walked to the maximum right,
the sky's right border should be the same as the view's right border. So the distance we have
to move the sky over time is the sky's width (m_sky->boundingRect () .width ()) minus
the width of the view (width ()). The shift of the sky depends on the position of the player:
If he is far to the left, the sky isn't shifted, if the player is far to the right, the sky is maximally
shifted. We thus have to multiply the sky's maximum shift value with a factor based on the
current position of the player. The relation to the player's position is the reason why this is
handled in the movePlayer () function. The factor we have to calculate has to be between
0 and 1. So we get the minimum shift (0 * shift, which equals 0) and the maximum shift (1 *
shift, which equals shift). This factor we name ££. The calculation reads: If we subtract the
width of the view (width ()) from the virtual field's width m_fieldwidth, we have the area
where the player isn't moved by (m_player->moveBy ()) because in that range only the
background should move.

How often the moving of the player was skipped is saved in m_skippedMoving. So by
dividing m_skippedMoving throughm fieldwidth - width (), we get the needed
factor. It is 0 when the player is to the far left and 1 if they are to the far right. Then we
simply have to multiply £ £ with the maximum shift of the sky. To avoid the backgrounds from
being moved too far, we ensure through gMin () that the factor is always lesser than, or
equal to, 1.0.

The same calculation is used for the other background items. The calculation also explains
why a smaller image is moving slower. It's because the overlap of the smaller image is less
than that of the larger one. And since the backgrounds are moved in the same time period,
the larger has to move faster.

12281

Chapter 6

Try to add additional background layers to the game following the preceding example. As an
idea, you can add a barn behind the trees or let an airplane fly through the sky.

QObject and items

The QGraphicsItemitem and all standard items introduced so far don't inherit Q0bject
and thus can't have slots or emit signals; they also don't benefit from the Q0bject property
system. But we can make them use QObject!

Time for action - using properties, signals, and slots with items

So let's alter the Player class to use QObject:

class Player : public QObject, public QGraphicsPixmapItem {
Q OBJECT

All you have to do is to add QObject as a base class and add the Q_OBJECT macro. Now you
can use signals and slots with items too. Be aware that QObject must be the first base class
of an item.

K If you want an item that inherits from QObject and QGraphicsItem, you
~ can directly inherit QGraphicsObject. Moreover, this class defines and
Q emits some useful signals such as xChanged () when the x coordinate of the
item has changed or scaleChanged () when the item is scaled.

A word of warning: Only use QObject with items if you really need its
% capabilities. Q0bject adds a lot of overhead to the item, which will have a
A noticeable impact on performance when you have many items. So use it wisely
and not only because you can.

Let us go back to our player item. After adding QObject, we define a property called
m_jumpFactor with a getter, a setter, and a change signal. We need that property to
make Benjamin jump, as we will see later on. In the header file, we define the property
as follows:

Q PROPERTY (greal jumpFactor READ jumpFactor WRITE setjumpFactor
NOTIFY jumpFactorChanged)

12291

Graphics View

The getter function jumpFactor () simply returns the private member m_jumpFactor,
which is used to store the actual position. The implementation of the setter looks like this:

void Player::setjumpFactor (const greal pos)
if (pos == m_jumpFactor)
return;
m_jumpFactor = pos;
emit jumpFactorChanged(m jumpFactor) ;

}

It is important to check if pos would change the current value of m_jumpFactor. If this is
not the case, exit the function because, otherwise, a change signal will be emitted even if
nothing has changed. Otherwise, we set m_jumpFactor to pos and emit the signal that
informs about the chance.

Property animations

The new jumpFactor property we use immediately with a QPropertyAnimation
element, a second way to animate items.

Time for action - using animations to move items smoothly

In order to use it, we add a new private member called m_animation of type
QPropertyAnimation and initialize it in the constructor of Player:

m_animation = new QPropertyAnimation(this);
m_animation->setTargetObject (this) ;
m_animation->setPropertyName ("jumpFactor") ;
m_animation->setStartValue(0) ;
m_animation->setKeyValueAt (0.5, 1);
m_animation->setEndValue (0) ;
m_animation->setDuration(800) ;
m_animation->setEasingCurve (QEasingCurve: :0OutInQuad) ;

2301

Chapter 6

What just happened?

For the instance of QPropertyAnimation created here, we define the item as parent; thus,
the animation will get deleted when the scene deletes the item and we don't have to worry
about freeing the used memory. Then we define the target of the animation—our Player
class—and the property that should be animated—jumpFactor, in this case. Then we
define the start and the end value of that property, and in addition to that we also define a
value in between by setting setKeyvalueAt (). The first argument of type greal defines
time inside the animation, where 0 is the beginning and 1 the end, and the second argument
defines the value that the animation should have at this time. So your jumpFactor

element will get animated from 0 to 1 and back to 0 in 800 milliseconds. This was defined

by setDuration (). Finally, we define how the interpolation between the start and end
value should be done and call setEasingCurve () with QEasingCurve: :OutInQuad as
an argument. Qt defines up to 41 different easing curves for linear, quadratic, cubic, quartic,
quintic, sinusoidal, exponential, circular, elastic, back easing, and bounce functions. These
are too many to describe here. Instead, have a look at the documentation. Simply search for
QEasingCurve: : Type. In our case, QEasingCurve: : Out InQuad makes sure that the
jump speed of Benjamin looks like an actual jump: fast in the beginning, slow at the top, and
fast at the end again. We start this animation with the jump function:

void Player::jump() {
if (QAbstractAnimation::Stopped == m _animation->state())
m_animation-sstart() ;

}

We only start the animation by calling start () when the animation isn't running.
Therefore, we check the animation's state to see if it is stopped. Other states could be
Paused or Running. We want this jump action to be activated whenever the player presses
the Space key on their keyboard. Therefore, we expand the switch statement inside the key
press event handler by using this code:

case Qt::Key Space:
m_player->jump () ;
break;

2311

Graphics View

Now the property gets animated but Benjamin will still not jump yet. Therefore, we connect
the jumpFactorChange () signal to a slot of the scene that handles the jump:

void MyScene: :jumpPlayer (greal factor) {

const greal y = (m_groundLevel - m player-s>boundingRect () .height())
- factor * m_jumpHeight;

m player-s>setPos(m _player-spos().x(), y);

/...

}

Inside that function, we calculate the y coordinate of the player item to respect the ground
level defined by m_groundLevel. This is done by subtracting the item's height from the
ground level's value since the item's origin point is the top-left corner. Then we subtract the
maximum jump height, defined by m_jumpHeight, which is multiplied by the actual jump
factor. Since the factor is in range from 0 to 1, the new y coordinate stays inside the allowed
jump height. Then we alter the player item's y position by calling setPos (), leaving the x
coordinate the same. Et voila, Benjamin is jumping!

Have a go hero - letting the scene handie Benjamin's jump

Of course, we could have done the property animation inside the scene's class without the
need to extend Player by Q0bject. But this should be an example of how to do it. So try to
put the logic of making Benjamin jump to the scene's class. This is, however, more consistent
as we already move Benjamin left and right there. Or, also consistent, do it the other way
around; move Benjamin's movement to the left and right also to the Player class.

Time for action - keeping multiple animations in sync

If you have a look at how the coins (their class being called Coin) are created, you see
similar structures. They inherit from QObject and QGraphicsEllipseItem and define
two properties: opacity of type greal and rect of type Qrect. This is done only by the
following code:

Q PROPERTY (greal opacity READ opacity WRITE setOpacity)
Q_PROPERTY(QRectF rect READ rect WRITE setRect)

No function or slot was added because we simply used built-in functions of QGraphicsItem
and "redeclared" them as properties. Then, these two properties are animated by

two QPropertyAnimation objects. One fades the coin out, while the other scales

the coin in. To ensure that both animations get started at the same time, we use
QParallelAnimationGroup as follows:

QPropertyAnimation *fadeAnimation = /* set up */
QPropertyAnimation *scaleAnimation = /* set up */

12321

Chapter 6

QParallelAnimationGroup *group = new QParallelAnimationGroup (this) ;
group->addAnimation (fadeAnimation) ;

group->addAnimation (scaleAnimation) ;

group->start () ;

What just happened?

After setting up each property animation, we add them to the group animation by calling
addAnimation () on the group while passing a pointer to the animation we would like
to add. Then, when we start the group, QParallelAnimationGroup makes sure that all
assigned animations start at the same time.

The animations are set up for when the coin explodes. You may want to have a look at the
explode () function of Coin in the sources. A coin should explode when Benjamin touches
the coin.

! . .
‘Q If you want to play animations one after the other you can use

QSequentialAnimationGroup.

Item collision detection
Whether the player item collides with a coin is checked by the scene's checkColliding ()

function, which is called after the player item has moved (movePlayer ()) or after Benjamin
jumped (jumpPlayer ()).

Time for action — making the coins explode

The implementation of checkColliding () looks like this:

QList<QGraphicsItem*> items = collidingItems(m player) ;
for (int i = 0, total = items.count(); i < total; ++i) {
if (Coin *c = ggraphicsitem cast<Coin*>(items.at(i)))

c->explode () ;

[2331]

Graphics View

What just happened?

First we call the scene's QGraphicsScene: :collidingItems () function, which takes
the item for which colliding items should be detected as a first argument. With the second,
optional argument, you could define how the collision should be detected. The type of that
argument is Qt : : TtemSelectionMode, which was explained earlier. In our case, a list of
all the items that collide with m_player will be returned. So we loop through that list and
check whether the current item is a Coin object. This is done by trying to cast the pointer to
Coin. Ifitis successful, we explode the coin by calling explode (). Calling the explode ()
function multiple times is no problem since it will not allow more than one explosion. This
is important since checkColliding () will be called after each movement of the player.
So the first time the player hits a coin, the coin will explode, but this takes time. During this
explosion, the player will most likely be moved again and thus collides with the coin once
more. In such a case, explode () may be called for a second, third, xth time.

The collidingItems () function will always return the background items as well since
the player item is above all of them most of the time. To avoid the continuous check if they
actually are coins, we use a trick. In the used BackgroundItem class for the background
items, implement the QGraphicsItemitem's virtual shape () function as follows:

QPainterPath BackgroundItem::shape() const
return QPainterPath() ;

}

Since the collision detection is done with the item's shape, the background items can't
collide with any other item since their shape is permanently empty. QpainterPath itself is
a class holding information about graphical shapes. For more information—since we do not
need anything special for our game—have a look at the documentation. The class is pretty
straightforward.

Had we done the jumping logic inside Player, we could have implemented the
item collision detection from within the item itself. QgGraphicsItem also offers
acollidingItems () function that checks against colliding items with itself. So
scene->collidingItems (item) is equivalentto item->collidingItems ().

If you are only interested in whether a item collides with another item, you can call
collidesWithItem() on the item passing the other item as an argument.

12341

Chapter 6

Setting up the playing field

The last function we have to discuss is the scene's initPlayField () function where all
is set up. Here we initialize the sky, trees, ground, and player item. Since there is nothing
special, we skip that and look directly at how the coins get initialized:

const int xrange = (m maxX - m minX) * 0.94;

m_coins = new QGraphicsRectItem(0,0,m fieldWidth, m jumpHeight) ;
m_coins->setPen (Qt: :NoPen) ;
for (int i = 0; i < 25; ++1) {

)
Coin *c = new Coin(m coins)
) $xrange, grand()%m_ jumpHeight) ;

c->setPos (m _minX + grand(
addItem(m_coins) ;
m_coins->setPos (0, m groundLevel - m_ jumpHeight) ;

In total, we are adding 25 coins. First we calculate the width between m_minX and m_maxX.
That is the space where Benjamin can move. To make it a little bit smaller, we only take 94
percent of that width. Then we set up an invisible item with the size of the virtual world
called m_coins. This item should be the parent to all coins. Then, in the for loop we create
a coin and randomly set its x and y position, ensuring that Benjamin can reach them by
calculating the modulo of the available width and of the maximal jump height. After all 25
coins are added, we place the parent item holding all coins on the scene. Since most coins
are outside the actual view's rectangle, we also need to move the coins while Benjamin is
moving. Therefore, m_coins must behave like any other background. For this, we simply add
the following code:

m_coins->setPos (- (m_coins->boundingRect () .width() - width()) * ff,
m_coins->y());

We add the preceding code to the movePlayer () function where we also move the sky by
the same pattern.

That is it. This is our little game. Of course, there is much room to improve and extend it. For
example, you can add some barricades Benjamin has to jump over. Then, you would have to
check if the player item collides with such a barricade item when moving forward, and if so,
refuse movement. You have learned all the necessary techniques you need for that task, so
try to implement some additional features to deepen your knowledge.

[2351]

Graphics View

A third way of animation

Besides QTimer and QPropertyAnimation, there is a third way to animate the scene.

The scene provides a slot called advance (). If you call that slot, the scene will forward that
call to all items it holds by calling advance () on each one. The scene does that twice. First,
all item advance () functions are called with 0 as an argument. This means that the items
are about to advance. Then in the second round, all items are called passing 1 to the item's
advance () function. In that phase each item should advance, whatever that means; maybe
moving, maybe a color change, and so on. The scene's slot advance is typically called by a
QTimeLine element; with this, you can define how many times during a specific period of
time the timeline should be triggered.

QTimeLine *timeLine = new QTimeLine (5000, this);
timeLine->setFrameRange (0, 10);

This timeline will emit the signal frameChanged () every 5 seconds for 10 times. All you
have to do is to connect that signal to the scene's advance () slot and the scene will
advance 10 times during 50 seconds. However, since all items receive two calls for each
advance, this may not be the best animation solution for scenes with a lot of items where
only a few should advance.

In order to show a neat feature of Graphics View, have a look at the following code snippet,
which adds a widget to the scene:

QSpinBox *box = new QSpinBox;

QGraphicsProxyWidget *proxyItem = new QGraphicsProxyWidget;
proxyItem->setWidget (box) ;

QGraphicsScene scene;

scene.addItem(proxyItem) ;

proxyltem->setScale(2) ;

proxyltem->setRotation (45) ;

First we create a QSpinBox and a QGraphicsProxyWidget element, which act as
containers for widgets and indirectly inherit QGraphicsItem. Then we add the spin

box to the the proxy widget by calling addwidget (). The ownership of the spin box isn't
transferred, but when QGraphicsProxyWidget gets deleted, it calls delete on all
assigned widgets. We thus do not have to worry about that ourselves. The widget you add
should be parentless and must not be shown elsewhere. After setting the widget to the
proxy, you can treat the proxy widget like any other item. Next, we add it to the scene and
apply a transformation for demonstration. As a result we get this:

[2361]

Chapter 6

*

A rotated and scaled spin box on a scene

Since it is a regular item, you can even animate it, for example, with a property animation.
Nevertheless, be aware that, originally, Graphics View wasn't designed for holding widgets.
So when you add a lot of widgets to the scene, you will quickly notice performance issues,
but in most situations it should be fast enough.

If you want to arrange some widgets in a layout, you can use QGraphicsAnchorLayout,
QGraphicsGridLayout, or QGraphicsLinearLayout. Create all widgets, create a layout
of your choice, add the widgets to that layout, and set the layout to a QGraphicsWidget
element, which is the base class for all widgets and is easily spoken the gwidget equivalent
for Graphics View by calling setLayout () :

QGraphicsScene scene;
QGraphicsProxyWidget *edit = scene.addWidget (

new QLineEdit ("Some Text"));
QGraphicsProxyWidget *button = scene.addWidget (

new QPushButton ("Click me!")) ;
QGraphicsLinearLayout *layout = new QGraphicsLinearLayout;
layout->addItem(edit) ;
layout->addItem(button) ;
QGraphicsWidget *graphicsWidget = new QGraphicsWidget;
graphicsWidget->setLayout (layout) ;
scene.addItem(graphicsWidget) ;

The scene's addwidget () function is a convenience function and behaves in the first usage
for QLineEdit, as shown in the following code snippet:

QGraphicsProxyWidget *proxy = new QGraphicsProxyWidget (0) ;
proxy->setWidget (new QLineEdit ("Some Text"));
scene.addItem(proxy) ;

2311

Graphics View

The item with the layout will look like this:

Some Text Click me!

Let us now take a look at some of the optimizations we can perform to speed up the scene.

A binary space partition tree

The scene constantly keeps record of the position of the item in its internal binary space
partition tree. Thus, on every move of an item, the scene has to update the tree, an
operation that can become quite time-and memory-consuming. This is especially true of
scenes with a large number of animated items. On the other hand, the tree enables you
to find an item (for example, with items () or itemAt ()) incredibly fast even if you have
thousands of items.

So when you do not need any positional information about the items—this also includes
collision detection—you can disable the index function by calling set ItemIndexMethod (
QGraphicsScene: :NoIndex). Be aware, however, that a call to items () or itemAt ()
results in a loop through all items in order to do the collision detection, which can cause
performance problems for scenes with many items. If you cannot relinquish the tree in
total, you still can adjust the depth of the tree with setBspTreeDepth (), taking the depth
as an argument. By default, the scene will guess a reasonable value after it takes several
parameters, such as the size and the number of items, into account.

2381

Chapter 6

Caching the item's paint function

If you have items with a time-consuming paint function, you can change the item's cache
mode. By default, no rendering is cached. With setCacheMode (), you can set the mode
to either ItemCoordinateCache or to DeviceCoordinateCache. The former renders
the the item in a cache of a given QSize element. The size of that cache can be controlled
with the second argument of setCacheMode (). So the quality depends on how much
space you assign. The cache is then used for every subsequent paint call. The cache is

even used for applying transformations. If the quality deteriorates too much, just adjust
the resolution by calling setCacheMode () again, but with a larger Qsize element.
DeviceCoordinateCache, on the other hand, does not cache the item on an item base
but rather on a device level. This is therefore optimal for items that do not get transformed
all the time, because every new transformation will cause a new caching. Moving the item,
however, does not end in a new cache. If you use this cache mode, you do not have to
define a resolution with the second argument. The caching is always performed at maximum
quality.

Since we are talking about the item's paint function, let's touch on something related. At
the beginning, when we discussed the item's appearance and made a black rectangle item,

| told you to return the painter as you get. If you have followed this advice, you can call set
OptimizationFlag(DontSavePainterState, true) on the view. By default, the view
ensures that the painter state is saved before calling the item's paint function and that the
state gets restored afterward. This will end up saving and restoring the painter state say 50
times if you have a scene with 50 items. If you prevent automatic saving and restoring, keep
in mind that now the standard items will alter the painter state. So if you use both standard
and custom items, either stay with the default behavior or set DontSavePainterState,
but then set up the pen and brush with a default value in each item's paint function.

Another flag that can be used with setOptimizationFlag ()

is DontAdjustForAntialiasing. By default, the view adjusts the painting

area of each item by 2 pixels in all directions. This is useful because when one paints
antialiased, one easily draws outside the bounding rectangle. Enable that optimization

if you do not paint antialiased or if you are sure your painting will stay inside the bounding
rectangle. If you enable this flag and spot painting artifacts on the view, you haven't
respected the item's bounding rectangle!

[2391]

Graphics View

As a further optimization, you can define how the view should update its viewport when

the scene changes. You can set the different modes with setViewportUpdateMode ().

By default (0GraphicsView: :MinimalViewportUpdate), the view tries to determinate
only those areas which need an update and repaints only these. However, sometimes it is
more time-consuming to find all the areas that need a redraw than to just paint the entire
viewport. This applies if you have many small updates. Then, QGraphicsView: : Fullvi
ewportUpdate is the better choice since it simply repaints the whole viewport. A kind of
combination of the last two modes is QGraphicsView: : BoundingRectViewportUpdate.
In this mode, Qt detects all areas that need a redraw and then it redraws a rectangle of the
viewport that covers all areas affected by the change. If the optimal update mode changes
over time, you can tell Qt to determine the best mode by using QGraphicsvView: : SmartVvi
ewportUpdate. The view then tries to find the best update mode.

As a last optimization, you can take advantage of OpenGL. Instead of using the default
viewport based on QWidget, advise Graphics View to use an OpenGL widget. This way, you
can use all the power that comes with OpenGL.

GraphicsView view;
view.setViewport (new QGLWidget (&view)) ;

Unfortunately, you have to do a little more than just putting in this line, but that goes beyond
the topic and scope of this chapter. You can, however, find more information about OpenGL
and Graphics View in Qt's documentation example under "Boxes" as well as in Rgdal's Qt
Quarterly article—issue 26—which can be found online at http://doc.qgt.digia.com/qq/
gg26-openglcanvas.html.

A general note on optimization: Unfortunately | can't say that you have to do
this or that to optimize Graphics View as it highly depends on your system and
view/scene. What | can tell you, however, is how to proceed. Once you have
finished your game based on Graphics View, measure the performance of your

%j%“ game using a profiler. Make an optimization you think may pay or simply guess

’ and then profile your game again. If the results are better, keep the change;

otherwise, reject it. This sounds simple and is the only way optimization can be
done. There are no hidden tricks or deeper knowledge. With time, however,
your forecasting will get better.

[2401

http://doc.qt.digia.com/qq/qq26-openglcanvas.html
http://doc.qt.digia.com/qq/qq26-openglcanvas.html

Chapter 6

After studying this chapter, you should be able to answer these questions as they are
important when it comes to designing the components of a game based on Graphics View:

Q1. What standard items does Qt offer?

Q2. How is the coordinate system of an item related to the coordinate system of the scene?
Next, how is the coordinate system of the scene related to the coordinate system of the
view?

Q3. How can one extend items to use properties as well as signals and slots?
Q4. How can one create realistic movements with the help of animations?

Q5. How can Graphics View's performance be improved?

sSummary

In the first part of this chapter, you have learned how the Graphics View architecture works.
First, we had a look at the items. There you learned how to create your own items by using
QPainter and which kinds of standard item Qt has to offer. Later on, we also discussed how
to transform these items and what the point of origin for that transformation has to do with
it. Next we went through the coordinate system of the items, the scene, and the view. We
also saw how these three parts work together, for example. how to put items on a scene.
Lastly, we learned how to scale and move the scene inside the view. At the same time, you
read about advanced topics, such as taking the zoom level into account when painting an
item.

In the second part you, deepened your knowledge about items, about the scene, and about
the view. While developing the game, you became familiar with different approaches on how
to animate items, and you were taught how to detect collisions. As an advanced topic, you
were introduced to parallax scrolling.

After having completed the entire chapter, you should now know almost everything about
Graphics View. You are able to create complete custom items, you can alter or extend
standard items, and with the information about the level of detail you even have the power
to alter an item's appearance, depending on its zoom level. You can transform items and the
scene, and you can animate items and, thus, the entire scene.

[241]

Graphics View

Furthermore, as you have seen while developing the game, your skills are good enough

to develop a jump-and-run game with parallax scrolling as it is used in highly professional
games. To keep your game fluid and highly responsive, finally we saw some tricks on how to
get the most out of Graphics View.

In order to build a bridge to the world of widgets, you also learned how to incorporate
items based on QwWidget into Graphics View. With that knowledge, you can create modern,
widget-based user interfaces.

[242]

In this chapter, you will be taught how to communicate with the

Internet servers and with sockets in general. First, we will have a look at
QNetworkAccessManager, which makes sending network requests and
receiving replies really easy. Building on this basic knowledge, we are then
going to use Google's Distance API to get information about the distance
between two locations and how long it would take to get from one to the
other. This technique and the respective knowledge can also be used to include
Facebook or Twitter in your application via their respective APIs. Then, we

will have a look at Qt's Bearer API, which provides information on a device's
connectivity state. In the last section, you will learn how to use sockets to create
your own server and clients using TCP or UDP as the network protocol.

The easiest way to access files on the Internet is to use Qt's Network Access API. This API
is centered on QNetworkAccessManager, Which handles the complete communication
between your game and the Internet.

[2431

Networking

When we now develop and test a network-enabled application, it is recommended that you
use a private, local network if feasible. This way, it is possible to debug both ends of the
connection and errors will not expose sensitive data. If you are not familiar with setting up

a web server locally on your machine, there are luckily a number of all-in-one installers that
are freely available. These will automatically configure Apache2, MySQL (or MariaDB), PHP,
and many more on your system. On Windows, for example, you could use XAMPP (http://
www . apachefriends.org) or the Uniform Server (http://www.uniformserver.com);
on Apple computers, there is MAMP (http://www.mamp.info); and on Linux you normally
don't have to do anything since there is already a localhost. If not, open your preferred
package manager, search for a package called Apache?2 or a similar one, and install it.
Alternatively, have a look at your distribution's documentation.

Before you install Apache on your machine, think about using a virtual machine such as
VirtualBox (http://www.virtualbox.org) for this task. This way, you keep your machine
clean and you can easily try different settings for your test server. With multiple virtual
machines, you can even test the interaction between different instances of your game. If you
are on Unix, Docker (http://www.docker.com) might be worth having a look at.

Downioading files over HTTP

For this, first try to set up a local server and create a file called version. txt in the root
directory of the installed server. This file should contain a small piece of text such as "l am a
file on localhost" or something similar. To test whether the server and the file are correctly
setup, start a web browser and open http://localhost/version. txt. You should
then see the file's content. Of course, if you have access to a domain, you can also use that.
Just alter the URL used in the example correspondingly. If this fails, it may be the case that
your server does not allow you to display text files. Instead of getting lost in the server's
configuration, just rename the file to version.html. This should do the trick!

iﬁ - htep:/flocalhost/version.kxt - rekong ot I e I 5
E htep:fflocalhostfversia... B
J':l C:, E http:fflocalhostfversion.txk e JE“'V

I am a file on localhost

Result of requesting http://localhost/version.txt on a browser

[244]

http://www.apachefriends.org
http://www.apachefriends.org
http://www.uniformserver.com
http://www.mamp.info
http://www.virtualbox.org
http://www.docker.com

Chapter 7

As you might have guessed, because of the file name a real-life scenario could be to check
whether there is an updated version of your game or application on the server. To get the

content of a file, only five lines of code are needed.

Time for action - downloading afile

First, create an instance of QNetworkAccessManager:

QONetworkAccessManager *m nam = new QNetworkAccessManager (this) ;

Since QNetworkAccessManager inherits Q0bject, it takes a pointer to QObject, which
is used as a parent. Thus, you do not have to take care of deleting the manager later on.
Furthermore, one single instance of QNetworkAccessManager is enough for an entire
application. So, either pass a pointer to the network access manager in your game or, for

ease of use, create a singleton pattern and access the manager through that.

would look like this (as a header file):

template <class T>
class Singleton
public:
static T& Instance()
static T _instance;
return _instance;

M)
private:
Singleton() ;
~Singleton() ;

Singleton(const Singleton &) ;
Singleton& operator=(const Singleton &) ;

}i

class called MyClass with:

MyClass *singleton = &Singleton<MyClass>::Instance();

If you are using Qt Quick—it will be explained in Chapter 9, Qt Quick
Basics—with QQuickView, you can directly use the view's instance of
QNetworkAccessManager:
QQuickView *view = new QQuickView;
QNetworkAccessManager *m_nam
= view->engine () - >networkAccessManager () ;

A singleton pattern ensures that a class is instantiated only once. The pattern
is useful for accessing application-wide configurations or—as in our case—an
instance of QNetworkAccessManager. On the wiki pages for http://
www.gtcentre.organd http://www.gt-project.org, you will find
examples for different singleton patterns. A simple template-based approach

In the source code, you will include that header file and acquire a singleton of a

[2451

http://www.qtcentre.org
http://www.qtcentre.org
http://www.qt-project.org

Networking

Secondly, we connect the manager's finished () signal to a slot of our choice; for example,
in our class, we have a slot called downloadFinished ():

connect (m_nam, SIGNAL (finished (QNetworkReply*)), this,
SLOT (downloadFinished (QNetworkReply*))) ;

Thirdly, we actually request the version. txt file from localhost:

m_nam->get (QNetworkRequest (QUrl ("http://localhost/version.txt"))) ;

With get (), a request to get the contents of the file, specified by the URL, is posted. The
function expects QNetworkRequest, which defines all the information needed to send

a request over the network. The main information for such a request is naturally the URL

of the file. This is the reason why QNetworkRequest takes QUrl as an argument in its
constructor. You can also set the URL with setUr1 () to a request. If you wish to define some
additional headers, you can either use setHeader () for the most common header or use
setRawHeader () to be fully flexible. If you want to set, for example, a custom user agent to
the request, the call will look like:

QONetworkRequest request;
request.setUrl (QUrl ("http://localhost/version.txt")) ;

request . setHeader (QNetworkRequest : :UserAgentHeader, "MyGame") ;
m_nam->get (request) ;

The setHeader () function takes two arguments, the first is a value of the
QNetworkRequest : : KnownHeaders enumeration, which holds the most common—self-
explanatory—headers such as LastModifiedHeader or ContentTypeHeader, and the
second is the actual value. You could also write the header using setRawHeader () :

request .setRawHeader ("User-Agent", "MyGame") ;

When you use setRawHeader (), you have to write the header field names yourself. Besides
this, it behaves like setHeader (). A list of all the available headers for the HTTP protocol
Version 1.1 can be found in section 14 of RFC 2616 (http://www.w3.org/Protocols/
rfc26l6/rfc26l6—secl4.html#secl4L

Back to our example: with the get () function, we requested the version. txt file from
the localhost. All we have to do from now on is to wait for the server to reply. As soon as the
server's reply is finished, the downloadFinished () slot will be called that was defined by
the preceding connection statement. As an argument, a reply of the QNetworkReply type is
transferred to the slot, and we can read the reply's data and set it tom_edit, an instance of
QPlainTextEdit, with:

void FileDownload::downloadFinished (QNetworkReply *reply) {
const QByteArray content = reply->readAll();
m_edit->setPlainText (content) ;
reply->deleteLater() ;

}
2461

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14

Chapter 7

Since QNetworkReply inherits QIODevice, there are also other possibilities to read the
contents of the reply including QDataStream or QTextStream to either read and interpret
binary data or textual data. Here, as the fourth command, QIODevice: :readall () is
used to get the full content of the requested file in QByteArray. The responsibility for the
transferred pointer to the corresponding QNetworkReply lies with us, so we need to delete
it at the end of the slot. This would be the fifth line of code that is needed to download a

file with Qt. However, be careful and do not call delete on the reply directly. Always use
deleteLater (), as the documentation suggests!

The full source code can be found in the FileDownload example bundled with this book. If
you start the small demo application and click on the Load File button you should see:

L FileDownload ot M TR .20

| am a File an localhosk

Load File

If you haven't set up a localhost, just alter the URL in the source code to download another
file. Of course, having to alter the source code in order to download another file is far from
an ideal approach. So, try to extend the dialog by adding a line edit in which you can specify
the URL you want to download. Also, you can offer a file dialog to choose the location to
where the downloaded file will be saved.

If you do not see the content of the file, something went wrong. Just as in real life, this can
often happen. So, we need to make sure that there is a good error handling mechanism in
such cases to inform the user about what is going on.

[247]

Networking

Time for action - displaying a proper error message

Fortunately, QNetworkReply offers several possibilities to do this. In the slot called
downloadFinished (), we first want to check whether an error occurred:

if (reply-serror() != QNetworkReply::NoError) {/* error occurred */}

The QNetworkReply: :error () function returns the error that occurred while handling
the request. The error is encoded as a value of the QNetworkReply: :NetworkError type.
The two most common errors are probably these:

Error code Meaning

ContentNotFoundError | This error indicates that the URL of the request could not be
found. It is similar to the HTTP error code 404.

ContentAccessDenied This error indicates that you do not have the permission to access
the requested file. It is similar to the HTTP error code 401.

You can look up the other 23 error codes in the documentation. But normally, you do not
need to know exactly what went wrong. You only need to know whether everything worked
out—QNetworkReply: :NoError would be the return value in this case—or if something
went wrong.

Since QNetworkReply: :NoError has the value 0, you can shorten
J the test phrase to check whether an error occurred to be:

if (reply-serror()) {
// an error occurred

To provide the user with a meaningful error description, you can use
QIODevice: :errorString (). The text is already set up with the corresponding error
message and we only have to display it:

if (reply-serror()) f{
const QString error = reply->errorString() ;
m_edit->setPlainText (error) ;
return;

[2481

Chapter 7

In our example, assuming we made an error in the URL and wrote versions. txt by
mistake, the application would look like this:

v FileDownload >)

Error downloading hekp:fflocalhostfversions.txt -
server replied: Mok Found

Load File

If the request was an HTTP request and the status code is of interest, it could be retrieved by
QNetworkReply: :attribute():

reply->attribute (QNetworkRequest: :HttpStatusCodeAttribute)

Since it returns QVariant, you can either use Qvariant: :toInt () to get the code as an
integer or QVariant: :toString () to get the number as QString. Beside the HTTP status
code, you can query a lot of other information through attribute (). Have a look at the
description of the QNetworkRequest : :Attribute enumeration in the documentation.
There, you will also find QNetworkRequest : : HttpReasonPhraseAttribute, which
holds a human-readable reason phrase for the HTTP status code. For example, "Not Found"
if an HTTP error 404 has occurred. The value of this attribute is used to set the error text

for QIODevice: :errorString (). So, you can either use the default error description
provided by errorString () or compose your own by interpreting the reply's attributes.

If a download failed and you want to resume it or if you only want to
download a specific part of a file, you can use the Range header:
Al QNetworkRequest req(QUrl("..."));

-~
reqg.setRawHeader ("Range", "bytes=300-500") ;
QNetworkReply *reply = m nam->get (req) ;

In this example, only the bytes from 300 to 500 would be downloaded.
However, the server must support this.

12491

Networking

Downloading files over FTP

Downloading a file over FTP is as simple as downloading files over HTTP. If it is an anonymous
FTP server for which you do not need an authentication, just use the URL like we did before.
Assuming that there is again a file called version. txt on the FTP server on the localhost,

type:

m_nam->get (QNetworkRequest (QUrl ("ftp://localhost/version.txt"))) ;

That is all, everything else stays the same. If the FTP server requires an authentication, you'll
get an error, for example:

AL FileDownload))

Logging in ko localhost Failed: authentication required

Load File

Setting the username and password to access an FTP server is likewise easy: either write it in
the URL, or use the setUserName () and setPassword () functions of Qurl. If the server
does not use a standard port, you can set the port explicitly with QUrl: : setPort ().

To upload a file to an FTP server, use QNetworkAccessManager: :put (),
which takes QNetworkRequest as its first argument, calling a URL that

.‘l defines the name of the new file on the server, and the actual data as its
second argument, which should be uploaded. For small uploads, you can pass
the content as QByteArray. For larger content, it's better to use a pointer to
QIODevice. Make sure that the device is open and stays available until the
upload is done.

A very important note on QNetworkAccessManager: it works asynchronously. This means
that you can post a network request without blocking the main event loop, and this is what
keeps the GUI responsive. If you post more than one request, they are put on the manager's
queue. Depending on the protocol used, they get processed in parallel. If you are sending
HTTP requests, normally up to six requests will be handled at a time. This will not block the
application. Therefore, there is really no need to encapsulate QNetworkAccessManager in
a thread; however, unfortunately, this unnecessary approach is frequently recommended all
over the Internet. QNetworkAccessManager already threads internally. Really, don't move
QNetworkAccessManager to a thread unless you know exactly what you are doing.

[2501]

Chapter 7

If you send multiple requests, the slot connected to the manager's finished () signal is
called in an arbitrary order depending on how quickly a request gets a reply from the server.
This is why you need to know to which request a reply belongs. This is one reason why
every QNetworkReply carries its related QNetworkRequest. It can be accessed through
QONetworkReply: :request ().

Even if the determination of the replies and their purpose may work for a small application
in a single slot, it will quickly get large and confusing if you send a lot of requests. This
problem is aggravated by the fact that all replies are delivered to only one slot. Since most
probably there are different types of replies that need different treatments, it would be
better to bundle them in specific slots that are specialized for a given task. Fortunately,

this can be achieved very easily. QNetworkAccessManager: :get () returns a pointer to
QNetworkReply, which will get all information about the request that you post with get ().
By using this pointer, you can then connect specific slots to the reply's signals.

For example, if you have several URLs and you want to save all linked images from these sites
to your hard drive, then you request all web pages via QNetworkAccessManager: :get ()
and connect their replies to a slot specialized for parsing the received HTML. If links to the
images are found, this slot will request them again with get (). However, this time the
replies to these requests will be connected to a second slot, which is designed for saving the
images to the disk. Thus, you can separate the two tasks: parsing HTML and saving data to a
local drive.

The most important signals of QNetworkReply are discussed next.

The finished signal

The finished () signal is an equivalent of the QNetworkAccessManager: : finished ()
signal that we used earlier. It is triggered as soon as a reply is returned—successfully or not.
After this signal is emitted, neither the reply's data nor its metadata will be altered anymore.
With this signal, you are now able to connect a reply to a specific slot. This way, you can
realize the scenario the scenario on saving images that was outlined in the previous section.

However, one problem remains: if you post simultaneous requests, you

do not know which one has finished and thus called the connected slot. Unlike
QNetworkAccessManager: : finished (), QNetworkReply: : finished () does

not pass a pointer to QNetworkReply; this would actually be a pointer to itself in this
case. A quick solution to solve this problem is to use sender (). It returns a pointer to the
QObject instance that has called the slot. Since we know that it was QNetworkReply, we
can write:

ONetworkReply *reply = gobject cast<QNetworkReply*>
(sender()) ;

if (!reply)
return;

[2511

Networking

This was done by casting sender () to a pointer of the QNetworkReply type.

M Whenever you're casting classes that inherit Q0Object, use gobject cast.
Q Unlike dynamic_cast, it does not use RTTI and works across the dynamic
library boundaries.

Although we can be pretty confident that the cast will work, do not forget to check whether
the pointer is valid. If it is a null pointer, exit the slot.

Time for action — writing the 00P conform code using

A more elegant way that does not rely on sender () would be to use QSignalMapper and
a local hash, in which all replies that are connected to that slot are stored. So, whenever you
call gNetworkAccessManager: :get (), store the returned pointer in a member variable
of the QHash<int, QNetworkReply*> type and set up the mapper. Let's assume that we
have the following member variables and that they are set up properly:

QNetworkAccessManager *m nam;
QSignalMapper *m mapper;
QHash<int, QNetworkReply*> m replies;

Then, you connect the finished () signal of a reply this way:

ONetworkReply *reply = m nam->get (QNetworkRequest (QUrl (/*...*/)));
connect (reply, SIGNAL(finished()), m mapper, SLOT (map()));

int id = /* unique id, not already used in m replies*/;
m_replies.insert (id, reply);

m_mapper-s>setMapping (reply, id);

What just happened?

First, we posted the request and fetched the pointer to QNetworkReply with reply. Then,
we connected the reply's finished signal to the mapper's slot map () . Next, we found a
unique ID, which must not already be in use in the m_replies variable. You can use random
numbers generated with grand () and fetch numbers as long as they are not unique. To
determine whether a key is already in use, call QHash: : contains (). It takes the key as

an argument against which it should be checked. Or even simpler, count up another private
member variable. Once we have a unique ID, we insert the pointer to QNetworkReply in
the hash using the ID as a key. Last, with setMapping (), we set up the mapper's mapping:
the ID's value corresponds to the actual reply.

[2521

Chapter 7

In a prominent place, most likely the constructor of the class, we already have connected the
mappers map () signal to a custom slot. For example:

connect (m_mapper, SIGNAL (mapped(int)), this,
SLOT (downloadFinished (int))) ;

When the downloadFinished () slot is called, we can get the corresponding reply with:

void SomeClass: :downloadFinished (int id) {
ONetworkReply *reply = m replies.take(id) ;
// do some stuff with reply here
reply->deletelater() ;

}

\ QSignalMapper also allows you to map with QString as an identifier
~ instead of an integer as used in the preceding code. So, you could rewrite the
Q example and use the URL to identify the corresponding QNetworkReply, at
least as long as the URLs are unique.

The error signal

If you download files sequentially, you can swap the error handling out. Instead of dealing
with errors in the slot connected to the £inished () signal, you can use the reply's

error () signal, which passes the error of the QNetworkReply: :NetworkError type to
the slot. After the error () signal has been emitted, the finished () signal will most likely
also be emitted shortly.

The readyRead signal

Until now, we have used the slot connected to the finished () signal to get the reply's
content. This works perfectly if you deal with small files. However, this approach is unsuitable
when dealing with large files, as they would unnecessarily bind too many resources. For
larger files, it is better to read and save the transferred data as soon as it is available. We are
informed by QIODevice: : readyRead () whenever new data is available to be read. So, for
large files you should use the following code:

connect (reply, SIGNAL (readyRead()), this, SLOT (readContent())) ;
file.open(QIODevice: :WriteOnly) ;

This will help you connect the reply's readyRead () signal to a slot, set up Qrile, and open
it. In the connected slot, type in the following snippet:

const QByteArray ba = reply->readAll() ;
file.write (ba) ;
file.flush() ;

[2531]

Networking

Now, you can fetch the content, which has been transferred so far, and save it to the (already
opened) file. This way, the resources needed are minimized. Don't forget to close the file
after the finished () signal is emitted.

In this context, it would be helpful if you knew upfront the size of the file you want to
download. Therefore, we can use QNetworkAccessManager: :head (). It behaves like
the get () function, but does not transfer the content of the file. Only the headers are
transferred. And if we are lucky, the server sends the "Content-Length" header, which holds
the file size in bytes. To get that information, we type:

reply->head (QNetworkRequest: :ContentLengthHeader) .toInt () ;

With this information, we can also check upfront whether there is enough space left on the
disk.

The downloadProgress method

Especially when a big file is downloaded, the user usually wants to know how much data has
already been downloaded and approximately how long it will take for the download to finish.

Time for action - showing the downioad progress

In order to achieve this, we can use the reply's downloadProgress () signal. As the first
argument, it passes the information on how many bytes have already been received and

as the second argument, how many bytes there are in total. This gives us the possibility to
indicate the progress of the download with QProgressBar. As the passed arguments are
of the gint64 type, we can't use them directly with QprogressBar, as it only accepts int.
So, in the connected slot, we first calculate the percentage of the download progress:

void SomeClass::downloadProgress (gint64 bytesReceived,
gint64 bytesTotal) {
greal progress = (bytesTotal < 1) ? 1.0
: bytesReceived * 100.0 / bytesTotal;
progressBar->setValue (progress * progressBar-s>maximum()) ;

}

What just happened?

With the percentage, we set the new value for the progress bar where progressBar is
the pointer to this bar. However, what value will progressBar->maximum () have and
where do we set the range for the progress bar? What is nice is that you do not have to set
it for every new download. It is only done once, for example, in the constructor of the class
containing the bar. As range values, | would recommend:

progressBar->setRange (0, 2048);

12541

Chapter 7

The reason is that if you take, for example, a range of 0 to 100 and the progress bar is 500
pixels wide, the bar would jump 5 pixels forward for every value change. This will look ugly.
To get a smooth progression where the bar expands by 1 pixel at a time, a range of 0 to
99.999.999 would surely work, but would be highly inefficient. This is because the current
value of the bar would change a lot without any graphical depiction. So, the best value for
the range would be 0 to the actual bar's width in pixels. Unfortunately, the width of the bar
can change depending on the actual widget width, and frequently querying the actual size of
the bar every time the value changes is also not a good solution. Why 2048, then? The idea
behind this value is the resolution of the screen. Full HD monitors normally have a width of
1920 pixels, thus taking 2211 (2048) ensures that the progress bar runs smoothly, even if it is
fully expanded. So, 2048 isn't the perfect number but is a fairly good compromise. If you are
targeting smaller devices, choose a smaller, more appropriate number.

To be able to calculate the remaining time for the download to finish, you have

to start a timer. In this case, use QElapsedTimer. After posting the request with
QNetworkAccessManager: :get (), start the timer by calling QElapsedTimer: :start ().
Assuming that the timer is called m_timer, the calculation will be:

ginté64 total = m timer.elapsed() / progress;
ginté64 remaining = (total - m timer.elapsed()) / 1000;

QElapsedTimer: :elapsed () returns the milliseconds that are counted from the moment
when the timer is started. This value divided by the progress equals the estimated total
download time. If you subtract the elapsed time and divide the result by 1,000, you'll get the
remaining time in seconds.

If you like to use a proxy, you first have to set up QNetworkProxy. You have to define

the type of the proxy with setType (). As arguments, you will most likely want to pass
QNetworkProxy: : Socks5Proxy or QNetworkProxy: : HttpProxy. Then, set up the
hostname with setHostName (), the username with setUserName (), and the password
with setPassword (). The last two properties are, of course, only needed if the proxy
requires an authentication. Once the proxy is set up, you can set it to the access manager via
QNetworkAccessManager: : set Proxy (). Now, all new requests will use this proxy.

[2551]

Networking

Connecting to Googyle, Facehook, Twitter, and co.

Since we discussed QNetworkAccessManager, you now have the knowledge you need

to integrate Facebook, Twitter, or similar sites into your application. They all use the HTTP
protocol and simple requests in order to retrieve data from them. For Facebook, you have

to use the so-called Graph API. It describes which interfaces are available and what options
they offer. If you want to search for users who are called "Helena", you have to request
https://graph.facebook.com/search?g=helena&type=user. Of course, you can do
this with QNetworkManager. You will find more information about the possible requests to
Facebook at http://developers.facebook.com/docs/graph-api.

If you wish to display tweets in your game, you have to use Twitter's REST or Search API.
Assuming that you know the ID of a tweet you would like to display, then you can get

it through https://api.twitter.com/1.1/statuses/show.json?id=12345,
where 12345 is the actual ID for the tweet. If you would like to find tweets mentioning
#Helena, you would write https://api.twitter.com/1.1/search/tweets.
json?g=%23Helena. You can find more information about the parameters and the other
possibilities of Twitter's APl at https://dev.twitter.com/docs/api.

Since both Facebook and Twitter need an authentication to use their APls, we will have a
look at Google instead. Let's use Google's Distance Matrix APl in order to get information
about how long it would take for us to get from one city to another. The technical
documentation for the APl we are going to use can be found at https://developers.
google.com/maps/documentation/distancematrix.

Time for action - using Google's Distance Matrix API

The GUI for this example is kept simple—the source code is attached with the book. It
consists of two line edits (ui->fromand ui->to) that allow you to enter the origin and
destination of the journey. It also provides you with a combo box (ui->vehicle) that allows
you to choose a mode of transportation—whether you want to drive a car, ride a bicycle, or
walk—a push button (ui->search) to start the request, and a text edit or (ui->result)to
show the results. The result will look like this:

[2561]

http://developers.facebook.com/docs/graph-api
https://dev.twitter.com/docs/api
https://developers.google.com/maps/documentation/distancematrix
https://developers.google.com/maps/documentation/distancematrix

Chapter 7

' SN Distance Matrix AP o) k) (%

From
Tao
Vehicle | driving b

Send Request

Resulk

MainWindow—a subclass of QMainWindow—is the application's main class that holds two
private members: m_nam, which is a pointer to QNetworkAccessManager, and m_reply,
which is a pointer to QNetworkReply.

Time for action - constructing the query

Whenever the button is pressed, the sendRequest () slotis called:

void MainWindow: : sendRequest ()

{
if (m_reply != 0 && m_reply->isRunning())
m_reply->abort () ;
ui->result->clear() ;

In this slot, we first check whether there is an old request, which was stored inm_reply,
and if it is still running. If that is true, we abort the old request as we are about to
schedule a new one. Then, we also wipe out the result of the last request by calling
QPlainTextEdit::clear () on the text edit.

Next, we will construct the URL for the request. We can do this by composing the string by
hand where we add the query parameters to the base URL similar to:

url = baseUrl + "?origin=" + ui->from->text() + "&...";

2571

Networking

Besides the problem that this quickly becomes hard to read when we include multiple
parameters, it is also rather error-prone. The values of the line edits have to be

encoded to fit the criteria for a valid URL. For every user value, we therefore have to call
QUrl::toPercentEncoding () explicitly. A much better approach, which is easier to read
and less error-prone, is to use QUr1Query. It circumvents the problem that may result from
you forgetting to encode the data. So, we do this:

QUrlQuery query;

query.addQueryItem("destinations", ui->to->text());

query.addQueryItem("sensor", "false");
query.addQueryItem("language", "en");
query.addQueryItem("units", "metric");
query.addQueryItem("origins", ui->from->text());
(
(

query.addQueryItem("mode", ui->vehicle->currentText ()) ;

The usage is pretty clear: we create an instance and then add the query parameters with
addQueryItem(). The first argument is taken as the key and the second as the value
resulting in a string such as "key=value". The value will be automatically encoded when we
use QUrlQuery in conjunction with QUr1. Other benefits of using QUrl1Query are that we
can check whether we have already set a key with hasQueryItem(), taking the key as an
argument, or removed a previous set key by calling removeQueryItem().

In a real situation, we would, of course, wrap all the preceding literals in QStringLiteral,
but this is omitted here in favor of a better reading. So, let's review which parameters we
have set. The sensor key is set to false as we are not using a GPS device to locate our
position. The 1anguage key is set to English, and for units, we favor metric over imperial.
Then, the search-related parameters are set. The origins key holds the places we want to
start from. As its value, the text of the ui - >from line edit is chosen. If you want to query
multiple starting positions, you just have to combine them using |. Equivalent to the origins,
we set up the value for destinations. Last, we pass the value of the combo box to mode,
which defines whether we want to go by a car, bicycle, or whether we want to walk, as
shown in the following code:

QUrl url

= ("http://maps.googleapis.com/maps/api/distancematrix/json") ;
url.setQuery (query) ;
m _reply = m nam->get (QNetworkRequest (url)) ;

}

Next, we create QUr1 that contains the address to which the query should be posted. By
including "json" at the end, we define that the server should transfer its reply using the
JSON format. Google also provides the option for us to get the result as XML. To achieve this,
simply replace "json" with "xml". However, since the APIs of Facebook and Twitter return
JSON, we will use this format.

[2581]

Chapter 7

Then, we set the previous constructed query to the URL by calling QUrl : : setQuery ().
This automatically encodes the values so we do not have to worry about that. Last, we post
the request by calling the get () function and store the returned QNetworkReply in
m_reply.

Time for action - parsing the server's reply

In the constructor, we have connected the manager's finish () signal to the finished ()
slot of the MainWindow class. It will thus be called after the request has been posted:

void MainWindow: :finished (QNetworkReply *reply)
{
if (m_reply != reply) ({
reply->deletelLater () ;
return;

}

First, we check whether the reply that was passed is the one that we have requested through
m_nam. If this is not the case, we delete reply and exit the function. This can happen if a
reply was aborted by the sendrRequest () slot:

m reply = 0;

if (reply-serror())
ui->result->setPlainText (reply->errorString()) ;
reply->deletelater() ;
return;

}

Since we are now sure that it is our request, we set m_reply to null because we have
handled it and do not need this information anymore. Next we check whether an error
occurred, and if it did, we put the reply's error string in the text edit, delete reply, and exit
the function:

const QByteArray content = reply-s>readAll();

QJdsonDocument doc = QJsonDocument::fromJson (content) ;

if (doc.isNull() || !doc.isObject()) {
ui->result->setPlainText ("Error while reading the JSON file.");
reply->deletelater() ;
return;

[2591]

Networking

With readall (), we get the content of the server's reply. Since the transferred data is

not large, we do not need to use partial reading with readyRead (). The content is then
converted to QIsonDocument using the QdsonDocument : : fromJson () static function,
which takes QByteArray as an argument and parses its data. If the document is null, the
server's reply wasn't valid, and then, we show an error message on the text edit, delete the
reply, and exit the function. We do the same if the document does not contain an object, as
the API call should respond with a single object, as shown:

QJsonObject obj = doc.object() ;
QVariantList origins = obj.value("origin addresses")
.toArray () .toVariantList () ;
QVariantList destinations = obj.value("destination addresses")
.toArray () .toVariantList () ;

Since we now made sure that there is an object, we store it in obj. Furthermore, due to
the API, we also know that the object holds the origin addresses and destination
addresses keys. Both values are arrays that hold the requested origins and destinations.
From this point on, we will skip any tests if the values exist and are valid since we trust the
API. The object also holds a key called status, whose' value can be used to check whether
the query may have failed and if yes, why? The last two lines of the source code store the
origins and destinations in two variant lists. With obj .value ("origin addresses"), we
get QJsonValue that holds the value of the pair specified by the origin addresses key.
QJsonValue: :toArray () converts this value to QJsonArray, which then is converted
to QVvariantList using QdsonArray: :toVariantList (). The returned JSON file for a
search requesting the distance from Warsaw or Erlangen to Birmingham will look like:

{

"destination addresses" : ["Birmingham, West Midlands, UK"],
"origin addresses" : ["Warsaw, Poland", "Erlangen, Germany"],
"rows" : [... 1,

"status" : "OK"

}

The rows key holds the actual results as an array. The first object in this array belongs to
the first origin, the second object to the second origin, and so on. Each object holds a key
named elements, whose' value is also an array of objects that belong to the corresponding
destinations:

"rows" : [
{
"elements" : [{...}, {...}]
b
{
"elements" : [{...}, {...}]

[260]

Chapter 7

Each JSON object for an origin-destination pair ({ . . . } in the preceding example) consists of
two pairs with the distance and duration keys. Both the values of these keys are arrays that
hold the text and value keys, where text is a human-readable phrase for value. The
object for the Warsaw-Birmingham search looks as shown in the following snippet:

{

"distance" : {
"text" : "1,835 km",
"value" : 1834751
I
"duration" : {
"text" : "16 hours 37 mins",
"value" : 59848
I
"status" : "OK"

}

As you can see, the value of value for distance is the distance expressed in meters—since
we have used units=metric in the request—and the value of text is value transformed
into kilometers with the post fix "km". The same applies to duration. Here, value is expressed
in seconds and text is value converted into hours and minutes.

Now that we know how the returned JSON is structured, we display the value of each origin-
destination pair in the text edit. Therefore, we loop through each possible pairing using
QVariantLists:

for (int i = 0; i < origins.count(); ++i) {
for (int j = 0; j < destinations.count(); ++3j) {

This scope will be reached for each combination. Think of the transferred result as a table
where the origins are rows and the destinations are columns:

QString output;

output += QString("From:") .leftJustified (10, ' ')
+ origins.at (i) .toString() + "\n";
output += QString("To:") .leftJustified (10, ' ')

+ destinations.at (j) .toString() + "\n";

We cache the constructed text in a local variable called output. First, we add the string
"From:" and the current origin to output. To make it look at least a little bit nicer, we call
leftJustified (). It causes "From:" to be filled with spaces until the size of the entire
string is 10. The output will then be aligned. The value of the current origin is normally
accessed through QList: :at (), and since it is QVvariantList, we need to convert the
returned Qvariant to QString. Thus, we call toString (). The same is done for the
destination, which results in the following as the value for output:

12611

Networking

From: Warsaw, Poland
To: Birmingham, West Midlands, UK

Next, we will read duration and distance from the corresponding QdsonObject from where
we call data:

QJsonObject data = obj.value("rows") .toArray () .at (i) .toObject ()
.value ("elements") .toArray () .at (j) .toObject () ;

Starting at the reply's root object, we fetch the value of rows and convert it to an array
(obj.value ("rows") .toArray ()). Then, we fetch the value of the current row

(.at (i)), convert it to a JSON object, and fetch its elements key (.toObject () .

value ("elements")). Since this value is also an array—the columns of the row—we
convert it to an array, fetch the current column (. toArray () .at ()), and convert it to an
object. This is the object that contains the distance and duration for an origin-destination
pair in the cell (1 ;). Beside these two keys, the object also holds a key called status. Its
value indicates whether the search was successful (0K), whether the origin or destination
could not be found (NOT FOUND), or whether the search could not find a route between the
origin and destination (ZERO_RESULTS):

QString status = data.value("status").toString() ;

We store the value of status in a local variable that is also named status:

if (status == "OK") {
output += QString("Distance:").leftJustified (10, ' ') +
data.value ("distance") .toObject () .value ("text") .toString()
+ "\n";
output += QString("Duration:").leftJustified(10, ' ') +

data.value ("duration") .toObject () .value ("text") .toString()
+ "\1’1";

}

If all goes well, we then add distance and duration to the output and also align
the labels as we did before using 1eftJustified (). For distance, we want to show
the phrased result. Therefore, we first get the JSON value of the distance key (data.
value ("distance")), convert it to an object, and request the value for the text key
(.toObject () .value ("text")). Lastly, we convert QJsonvalue to QString using
toString (). The same applies for duration:

else if (status == "NOT FOUND") ({
output += "Origin and/or destination of this
pairing could not be geocoded.\n";

} else if (status == "ZERO RESULTS") {
output += "No route could be found.\n";
} else {

12621

Chapter 7

output += "Unknown error.\n";

}

If the API returns errors, we set an appropriate error text as output:

output += QString("\n").£fill('=', 35) + "\n\n";
ui->result->moveCursor (QTextCursor: :End) ;
ui->result->insertPlainText (output) ;

}
}

reply->deletelater() ;

}

Finally, we add a line consisting of 35 equals signs (111 ('=', 35))to separate the resultin
one cell from the other cells. The output is then placed at the end of the text edit. This is done
by moving the cursor to the end of the edit, by calling moveCursor (QTextCursor: :End),
and inserting output into the edit with insertPlainText (output).

When the loops finish, we must not forget to delete the reply. The actual result then looks
as follows:

. ey Distance Maktrix API @ o) B

From |Warsaw|Erlangen

|
To |Elirminghan'|J UK |
Vehicle |driving - |
| Send Request |
Result
From: Warsaw, Poland =
To: Birmingham, HWest Midlands, UK

Distance: 1,835 knm
Duration: 16 hours 37 mins

From: Erlangen, Germany

To: Birmingham, Hest Midlands, UK
Distance: 1,173 knm

Duration: 11 hours 18 mins

12631

Networking

Have a go hero — choosing KML as the reply's format

To hone your XML skills, you can use http://maps.googleapis.com/maps/api/
distancematrix/xml as a URL to which you send the requests. Then, you can parse the
XML file as we did with JSON and display the retrieved data likewise.

As a matter of fact, you can only use QNetworkAccessManager if you have an active
connection to the Internet. Since you cannot theoretically know the connectivity state, you
have to check this at the runtime of the application. With the help of the Bearer API, you can
check whether the computer, mobile device, or tablet is online and you can even start a new
connection—if the operating system supports it.

The Bearer APl mainly consists of four classes. QNetworkConfigurationManager is

the base and starting point. It holds all network configurations available on the system.
Furthermore, it provides information about the network capabilities, for example,

whether you can start and stop interfaces. The network configurations found by it are
stored as QNetworkConfiguration classes. QNetworkConfiguration holds all
information about an access point but not about a network interface, as an interface

can provide multiple access points. This class also provides only the information

about network configurations. You can't configure an access point or a network

interface through QNetworkConfiguration. The network configuration is up to the
operating system, and therefore, QNetworkConfiguration is a read-only class. With
ONetworkConfiguration, however, you can determine whether the type of connection
is an Ethernet, WLAN, or 2G connection. This may influence what kind of data and, more
importantly, what size of data you are going to download. With QNetworkSession, you
can then start or stop system network interfaces, which are defined by the configurations.
This way, you gain control over an access point. QNetworkSession also provides session
management that is useful when a system's access point is used by more than one
application. The session ensures that the underlying interface only gets terminated after the
last session has been closed. Lastly, QNetworkInterface provides classic information such
as the hardware address or interface name.

ONetworkConfigurationManager manages all network configurations that are available
on a system. You can access these configurations by calling al1Configurations (). Of
course, you have to create an instance of the manager first:

ONetworkConfigurationManager manager;
QList<QNetworkConfiguration> cfgs = manager.allConfigurations() ;

12641

http://maps.googleapis.com/maps/api/distancematrix/xml
http://maps.googleapis.com/maps/api/distancematrix/xml

Chapter 7

The configurations are returned as a list. The default behavior of all1Configurations ()
is to return all possible configurations. However, you can also retrieve a filtered list. If
you pass QNetworkConfiguration: : Active as an argument, the list only contains
configurations that have at least one active session. If you create a new session based

on such a configuration, it will be active and connected. By passing QNetworkConfigu
ration: :Discovered as an argument, you will get a list with configurations that can
be used to immediately start a session. Note, however, that at this point, you cannot be
sure whether the underlying interface can be started. The last important argument is
QNetworkConfiguration: :Defined. With this argument, allConfigurations ()
returns a list of configurations that are known to the system but are not usable right now.
This may be a previously used WLAN hotspot, which is currently out of range.

You will be notified whenever the configurations change. If a new configuration becomes
available, the manager emits the configurationAdded () signal. This may happen, for
example, if mobile data transmission becomes available or if the user turns his/her device's
WLAN adapter on. If a configuration is removed, for example, if the WLAN adapter is turned
off, configurationRemoved () is emitted. Lastly, when a configuration gets changed,

you will be notified by the configurationChanged () signal. All three signals pass a
constant reference to the configuration about what was added, removed, or changed. The
configuration passed by the configurationRemoved () signal is, of course, invalid. It still
contains, the name and identifier of the removed configuration.

To find out whether any network interface of the system is active, call isOnline (). If you
want to be notified about a mode change, track the onlineStateChanged () signal.

Since a WLAN scan takes a certain amount of time, allConfigurations ()
\ may not return all the available configurations. To ensure that configurations
~ are completely populated, call updateConfigurations () first. Due
Q to the long time it may take to gather all of the information about the
system's network configurations, this call is asynchronous. Wait for the
updateCompleted () signal and only then, callallConfigurations ().

QNetworkConfigurationManager also informs you about the Bearer API's capabilities.
The capabilities () function returns a flag of the QNetworkConfigurationManager:
:Capabilities type and describes the available possibilities that are platform-specific. The
values you may be most interested in are as follows:

12651

Networking

Value Meaning
CanStartAndStopInterfaces | This means that you can start and stop access points.
ApplicationLevelRoaming This indicates that the system will inform you if a more

suitable access point is available, and that you can
actively change the access point if you think there is a
better one available.

DataStatistics With this capability, QNet workSession contains
information about the transmitted and received data.

ONetworkConfiguration holds, as mentioned earlier, information about an access point.
With name (), you get the user-visible name for a configuration, and with identifier ()
you get a unique, system-specific identifier. If you develop games for mobile devices, it

may be of advantage to you to know which type of connection is being used. This might
influence the data that you request; for example, the quality and thus, the size of a

video. With bearerType (), the type of bearer used by a configuration is returned. The
returned enumeration values are rather self-explanatory: BearerEthernet, BearerWLAN,
Bearer2G, BearerCDMA2000, BearerWCDMA, BearerHSPA, BearerBluetooth,
BearerWiMAX, and so on. You can look up the full-value list in the documentation for QNetw
orkConfiguration: :BearerType.

With purpose (), you get the purpose of the configuration, for example, whether it is
suitable to access a private network (QNetworkConfiguration: : PrivatePurpose) or to
access a public network (QNetworkConfiguration: : PublicPurpose). The state of the
configuration, if it is defined, discovered or active, as previously described, can be accessed
through state ().

To start a network interface or to tell the system to keep an interface connected for as long
as you need it, you have to start a session:

ONetworkConfigurationManager manager;

ONetworkConfiguration cfg = manager.defaultConfiguration() ;
QNetworkSession *session = new QNetworkSession (cfg, this);
session->open() ;

12661

Chapter 7

A session is based on a configuration. When there is more than one session and you are

not sure which one to use, use QNetworkConfigurationManager: :defaultConfi
guration (). It returns the system's default configuration. Based on this, you can create

an instance of QNetworkSession. The first argument, the configuration, is required.

The second is optional but is recommended since it sets a parent and we do not have to
take care of the deletion. You may want to check whether the configuration is valid (Qn
etworkConfiguration: :isvValid ()) first. Calling open () will start the session and
connect the interface if needed and supported. Since open () can take some time, the

call is asynchronous. So, either listen to the opened () signal, which is emitted as soon

as the session is open, or to the error () signal if an error happened. The error is of the
QNetworkSession: : SessionError type. Alternatively, instead of checking the opened ()
signal, you can also watch the stateChanged () signal. The possible states for a session

can be: Invalid, NotAvailable, Connecting, Connected, Closing, Disconnected,
and Roaming. If you want to make open () synchronous, call waitForOpened () right after
calling open () . It will block the event loop till the session is open. This function will return
true on success and false otherwise. To limit the waiting time, you can define a time-out.
Just pass the milliseconds that you are willing to wait as an argument to waitForOpened ().
To check whether a session is open, use isOpen ().

To close the session, call close (). If no session is left on the interface, it will be shot down.
To force an interface to disconnect, call stop (). This call will invalidate all the sessions that
are based on that interface.

You may receive the preferredConfigurationChanged () signal, which indicates that
the preferred configuration, that is, for example, the preferred access point, has changed.
This may be the case if a WLAN network is now in range and you do not have to use 2G
anymore. The new configuration is passed as the first argument and the second one
indicates whether changing the new access point will also alter the IP address. Besides
checking for the signal, you can also inquire whether roaming is available for a configuration
by calling QNetworkConfiguration: : isRoamingAvailable (). If roaming is available,
you have to decide to either reject the offer by calling ignore () or to accept it by calling
migrate (). If you accept roaming, it will emit newConfigurationActivated () when
the session is roamed. After you have checked the new connection, you can either accept
the new access point or reject it. The latter means that you will return to the previous access
point. If you accept the new access point, the previous one will be terminated.

12671

Networking

ONetworkinterface

To get the interface that is used by a session, call QNetworkSession: :interface ().

It will return the QNetworkInterface object, which describes the interface. With
hardwareAddress (), you get the low-level hardware address of the interface that is
normally the MAC address. The name of the interface can be obtained by name (), which

is a string such as "eth0" or "wlanQ". A list of IP addresses as well as their netmasks and
broadcast addresses registered with the interface is returned by addressEntries ().
Furthermore, information about whether the interface is a loopback or whether it supports
multicasting can be queried with £1ags () . The returned bitmask is a combination of
these values: IsUp, IsRunning, CanBroadcast, IsLoopBack, IsPointToPoint, and
CanMulticast.

After having discussed Qt's high-level network classes such as QNetworkAccessManager
and QNetworkConfigurationManager, we will now have a look at a lower-level network
classes and see how Qt supports you when it comes to implementing TCP or UDP servers and
clients. This becomes relevant when you plan to extend your game by including a multiplayer
mode. For such a task, Qt offers QTcpSocket, QUdpSocket, and QTcpServer.

Time for action - realizing a simple chat program

To get familiar with QTcpServer and QTcpSocket, let's develop a simple chat program.
This example will teach you the basic knowledge of network handling in Qt so that you can
use this skill later to connect two or more copies of a game. At the end of this exercise, we
want to see something like this:

A TepClient DRSO, §E TepServe S Ke
Server configuration Address: 127.0.0,1 Port: 52693 Disconnect Server configuration
Log

Address; |127.0.0. Address; |127.0.0.1

Port: * New connection: 127.0.0.1, port 34768 Port:
* New connection; 127.0.0.1, port 34769

Sending message: Client 1: Hi, how are you? User: |Client 2

User:

connect disconnect connect disconnect

Client 1: Hi, how are you?

Text Text!

[268]

Chapter 7

On both the left-hand side and the right-hand side of the preceding figure, you can see a
client, whereas the server is in the middle. We'll start by taking a closer look at the server.

The server — QTcpServer

As a protocol for communication, we will use Transmission Control Protocol (TCP). You may
know this network protocol from the two most popular Internet protocols: HTTP and FTP.
Both use TCP for their communication and so do the globally used protocols for e-mail traffic:
SMTP, POP3, and IMAP. The main advantage of TCP, however, is its reliability and connection-
based architecture. Data transferred by TCP is guaranteed to be complete, ordered, and
without any duplicates. The protocol is furthermore stream orientated, which allows us to
use QDataStream or QTextStream. A downside to TCP is its speed. This is because the
missing data has to be retransmitted until the receiver fully receives it. By default, this causes
a retransmission of all the data that was transmitted after the missing part. So, you should
only choose TCP as a protocol if speed is not your top priority, but rather the completeness
and correctness of the transmitted data. This applies if you send unique nonrepetitive data.

Time for action - setting up the server

A look at the server's GUI shows us that it principally consists of QPlainTextEdit
(ui->log)thatis used to display system messages and a button (ui->disconnectClients),
which allows us to disconnect all the current connected clients. On top, next to the button,

the server's address and port are displayed (ui->address and ui->port). After setting up
the user interface in the constructor of the server's class TcpServer, we initiate the internally
used QTcpServer, which is stored in the m_server private member variable:

if (!m server->listen(QHostAddress::LocalHost, 52693)) {
ui->log->setPlainText ("Failure while starting server: "
+ m_server-serrorString()) ;
return;

}

connect (m_server, SIGNAL (newConnectionf()),
this, SLOT (newConnection()));

What just happened?

With QTcpServer: :listen (), we defined that the server should listen to the

localhost and the 52693 port for new incoming connections. The value used here,
QHostAddress: : LocalHost of the QHostAddress: : SpecialAddress enumeration,
will resolve to 127.0.0. 1. If you instead pass QHostAddress: : Any, the server will listen
to all IPv4 interfaces as well as to IPv6 interfaces. If you only want to listen to a specific
address, just pass this address as QHostAddress:

m_server->listen(QHostAddress ("127.0.0.1"), 0);

12691

Networking

This will behave like the one in the preceding code only in that the server will now listen to

a port that will be chosen automatically. On success, 1isten () will return as true. So, if
something goes wrong in the example it will show an error message on the text edit and exit
the function. To compose the error message, we are using QTcpServer: :errorString(),
which holds a human-readable error phrase.

To handle the error in your game's code, the error string is not suitable. In any case where
you need to know the exact error, use QTcpServer: : serverError (), which returns

the enumeration value of QabstractSocket: : SocketError. Based on this, you know
exactly what went wrong, for example, QAbstractSocket : : HostNotFoundError. If
listen () was successful, we connect the server's newConnection () signal to the class's
newConnection () slot. The signal will be emitted every time a new connection is available:

ui->address->setText (m_server->serverAddress () .toString()) ;
uil->port->setText (QString: :number (m_server->serverPort()));

Lastly, we show the server's address a port number that can be accessed through
serverAddress () and serverPort (). This information is needed by the clients so that
they are able to connect to the server.

Time for action - reacting on a new pending connection

As soon as a client tries to connect to the server, the newConnection () slot will be called:

void TcpServer: :newConnection () {
while (m_server-shasPendingConnections()) {
QTcpSocket *con = m_server-snextPendingConnection() ;
m _clients << con;
uil->disconnectClients->setEnabled (true) ;

connect (con, SIGNAL(disconnected()), this,
SLOT (removeConnection())) ;

connect (con, SIGNAL(readyRead()), this, SLOT (newMessage()));
ui->log->insertPlainText (

QString("* New connection: %1, port %2\n")

.arg (con->peerAddress () .toString())

.arg (QString: :number (con->peerPort ()))) ;

12101

Chapter 7

What just happened?

Since more than one connection may be pending, we use hasPendingConnections () to
determine whether there is at least one more pending connection. Each one is then handled
inside the while loop. To get a pending connection of the QTcpSocket type, we call
nextPendingConnection () and add this connection to a private list called m_clients,
which holds all active connections. In the next line, as there is now at least one connection,
we enable the button that allows all connections to be closed. Therefore, the slot connected
to the button's click () signal will call QTcpSocket: :close () on each single connection.
When a connection is closed, its socket emits a disconnected () signal. We connect this
signal to our removeConnection () slot. With the last connection, we react to the socket's
readyRead () signal, which indicates that new data is available. In such a situation, our
newMessage () slotis called. Lastly, we print a system message that a new connection has
been established. The address and port of the connecting client and peer can be retrieved by
the socket's peerAddress () and peerPort () functions.

If a new connection can't be accepted, the acceptError () signalis
W emitted instead of newConnection (). It passes the reason for the failure
~ of the QAbstractSocket : : SocketError type as an argument. If you
Q want to temporarily decline new connections, call pauseAccepting ()
on QTcpServer. To resume accepting new connections, call
resumeAccepting ().

Time for action - forwarding a new message

When a connected client sends a new chat message, the underlying socket—since it inherits
QIODevice—emits readyRead (), and thus, our newMessage () slot will be called.

Before we have a look at this slot, there is something important that you need to keep in
mind. Even though TCP is ordered and without any duplicates, this does not mean that all
the data is delivered in one big chunk. So, before processing the received data, we need

to make sure that we get the entire message. Unfortunately, there is neither an easy way

to detect whether all data was transmitted nor a globally usable method for such a task.
Therefore, it is up to you to solve this problem, as it depends on the use case. Two common
solutions, however, are to either send magic tokens to indicate the start and the end of a
message, for example, single characters or XML tags, or you can send the size of the message
upfront. The second solution is shown in the Qt documentation where the length is put in a
quint1é6 in front of the message. We, on the other hand, will look at an approach that uses
a simple magic token to handle the messages correctly. As a delimiter, we use the "End of
Transmission Block" character—ASCII code 23-to indicate the end of a message.

[2nl

Networking

Since the processing of received data is quite complex, we will go through the code step by
step this time:

void TcpServer::newMessage ()
{
if (QTcpSocket *con = gobject cast<QTcpSocket*s(sender())) {
m_receivedData [con] .append (con->readAll()) ;

To determine which socket called the slot, we use sender (). If the cast to QTcpSocket
is successful, we enter the if scope and read the transferred—potentially fragmentary—
message with readall ().

% Please note that sender () is used for simplicity. If you write real-life code,
A it is better to use QSignalMapper.

The read data is then concatenated with the previously received data that is stored in the
QHash private member called m_receivedData, where the socket is used as a key:

if (!m receivedData[con] .contains (QChar(23)))
return;

Here we check whether the received data contains our special token, the "End of
Transmission Block". Otherwise, we exit and wait for the further data to arrive, which then
gets appended to the string. As soon as we have at least one special token, we proceed by
splitting the data into single messages:

QStringList messages = m_receivedData[con] .split (QChar (23)) ;
m_receivedData[con] = messages.takeLast();

The received data contains exactly one single message for which the "End of Transmission Block"
token is the last character, and thus, the messages list has two elements: the first one with the
actual message and the last one without any content. This way, m_receivedData [con] is
reset. What if 9Char (23) is not the last character of the received text? Then, the last element
is the beginning of the next, which is not yet complete, message. So, we store that message in
m_receivedData [con]. This guarantees that no data will be lost:

foreach (QString message, messages) {
ui->log->insertPlainText ("Sending message: " + message + "\n");

Since we do not know how many messages we will get with the last read from the socket, we
need to go through the list of messages. For every message, we display a short notice on the
server's log and then send it to the other clients:

message.append (QChar (23)) ;
foreach (QTcpSocket *socket, m_clients)

[2121

Chapter 7

if (socket == con)
continue;
if (socket->state() == QAbstractSocket::ConnectedState)

socket->write (message.toLocal8Bit ()) ;

}

Before sending the message, we append QChar (23) to indicate the end of the message, of
course, and then send it to all the connected clients, except the one who sent it in the first
place, by simply calling write on the socket. Since the socket inherits QTODevice, you can
use most of the functions that you know from QFile.

As discussed earlier, using sender () is a convenient, but not an object-orientated,
approach. Thus, try to use QSignalMapper instead to determine which socket called the
slot. To achieve this, you have to connect the socket's readyRead () signal to a mapper and
the slot directly. All the signal-mapper-related code will go into the newConnection () slot.

The same applies to the connection to the removeConnection () slot. Let's have a look at
it next.

Time for action - detecting a disconnect

When a client terminates the connection, we have to delete the socket from the local m_
clients list. Therefore, we have to connected the socket's disconnected () signal to:

void TcpServer: :removeConnection ()
{
if (QTcpSocket *con = gobject cast<QTcpSocket*s(sender())) ({
ui->log->insertPlainText (
QString ("* Connection removed: %1, port %2\n")
.arg (con->peerAddress () .toString())
.arg (QString: :number (con->peerPort ()))) ;
m_clients.removeOne (con) ;
con->deletelLater () ;
ui->disconnectClients->setEnabled(!m clients.isEmpty()) ;

}

[2131

Networking

What just happened?

After getting the socket that emitted the call through sender (), we post the information
that a socket is being removed. Then, we remove the socket fromm_clients and call
deleteLater () onit. Do not use delete. Lastly, if no client is left, the disconnect button is
disabled.

This is the first part. Now let's have a look at the client.

The client

The graphical user interface of the client (TcpClient) is pretty simple. It has three input
fields to define the server's address (ui->address), the server's port (ui->port), and a
username (ui->user). Of course, there is also a button to connect to (ui - >connect) and
disconnect from (ui->disconnect) the server. Finally, the GUI has a text edit that holds the
received messages (ui->chat) and a line edit (ui->text) to send messages.

Time for action - setting up the client

When the user has provided the server's address and port and has chosen a username, he/
she can connect to the server:

void TcpClient::on_ connect clicked()

{

/.

if (m_socket->state() != QAbstractSocket::ConnectedState) {
m_socket->connectToHost (ui->address->text (), ui-sport-s>value());
ui->chat->insertPlainText ("== Connecting...\n");

}

/..

[2:m]

Chapter 7

What just happened?

The private member variable m_socket holds an instance of QTcpSocket. If this socket

is already connected, nothing happens. Otherwise, the socket is connected to the given
address and port by calling connectToHost (). Besides the obligatory server address and
port number, you can pass a third argument to define the mode in which the socket will be
opened. For possible values, you can use OpenMode just like we did for QzODevice. Since
this call is asynchronous, we print a notification to the chat, so that the user is informed
that the application is currently trying to connect to the server. When the connection is
established, the socket sends the connected () signal that prints "Connected to server" on
the chat to indicate that we have connected to a slot. Besides the messages in the chat, we
also updated the GUI by, for example, disabling the connect button, but this is all basic stuff.
You won't have any trouble understanding this if you have had a look at the sources. So,
these details are left out here.

Of course, something could go wrong when trying to connect to a server, but luckily, we are
informed about a failure as well through the error () signal passing a description of error

in the form of QAbstractSocket: : SocketError. The most frequent errors will probably
be QabstractSocket: : ConnectionRefusedError if the peer refused the connection

or QAbstractSocket : :HostNotFoundError if the host address could not be found. If
the connection, however, was successfully established, it should be closed later on. You can
either call abort () to immediately close the socket, whereas disconnectFromHost () will
wait until all pending data has been written.

Time for action - receiving text messages

In the constructor, we have connected the socket's readyRead () signal to a local slot. So,
whenever the server sends a message through QTcpSocket: :write (), we read the data
and display it in the chat window:

m_receivedData.append(m_socket->readAll()) ;
if (!m receivedData.contains (QChar(23)))
return;

QStringList messages = m_receivedData.split (QChar (23));

m_receivedData = messages.takelast () ;

foreach (const QString &message, messages) {
ui->chat->insertPlainText (message + "\n");

}

[215]

Networking

As you already know, QTcpSocket inherits QIODevice, SO we use

QIODevice: :readAll () to get the entire text that was sent. Next, we store the received
data and determine whether the message was transmitted completely. This approach is the
same as we used previously for the server. Lastly, in the for loop, we add the messages to
the chat window.

Time for action - sending text messages

What is left is now is to describe how to send a chat massage. On hitting return inside the
line edit, a local slot will be called that checks whether there is actual text to send and
whether m_socket is still connected:

QString message = m user + ": " + ul->text->text();
m_socket->write (message.toLocal8Bit ()) ;
ui->text->clear();

If so, a message is composed that contains the self-given username, a colon, and the
text of the line edit. To send this string to the peer, the QTcpSocket: :write ()
server is called. Since write () only accepts const char* or QByteArray, we use
QString: :toLocal8Bit () to get QByteArray that we can send over the socket.

That's all. It's like writing and reading from a file. For the complete example, have a look at
the sources bundled with this book and run the server and several clients.

Have a go hero - extending the chat with a user list

This example has shown us how to send a simple text. If you now go on and define a
schema for how the communication should work, you can use it as a base for more complex
communication. For instance, if you want to enable the client to receive a list of all other
clients (and their usernames), you need to define that the server will return such a list if

it gets a message such as rq:allcClients from a client. Therefore, you have to parse all
messages received by the server before forwarding them to all the connected clients. Go
ahead and try to implement such a requirement yourself. By now, it is possible that multiple
users have chosen the same username. With the new functionality of getting a user list, you
can prevent this from happening. Therefore, you have to send the username to the server
that keeps track of them.

12161

Chapter 7

The example we explained uses a nonblocking, asynchronous approach. For example, after
asynchronous calls such as connectToHost (), we do not block the thread until we get a
result, but instead, we connect to the socket's signals to proceed. On the Internet as well

as Qt's documentation, on the other hand, you will find dozens of examples explaining

the blocking and the synchronous approaches. You will easily spot them by their use of
waitFor. .. () functions. These functions block the current thread until a function such

as connectToHost () has a result—the time connected () or error () will be emitted.
The corresponding blocking function to connectToHost () is waitForConnected (). The
other blocking functions that can be used are waitForReadyRead (), which waits until new
data is available on a socket for reading; waitForBytesWritten (), which waits until the
data has been written to the socket; and waitForDisconnected (), which waits until the
connection has been closed.

Look out; even if Qt offers these waitFor. .. () functions, do not use them! The
synchronous approach is not the smartest one since it will freeze your game's GUI. A frozen
GUl is the worst thing that can happen in your game and it will annoy every user. So, when
working inside the GUI thread, you are better to react to the QIODevice: : readyRead (),
QIODevice: :bytesWritten (), QAbstractSocket: :connected (), and
QAbstractSocket: :disconnected () corresponding signals.

QAbstractSocket is the base class of QTcpSocket as
i well as of QUdpSocket.

Following the asynchronous approach shown, the application will only become unresponsive
while both reading and writing to the socket as well as during determining whether a
message is complete. The optimum, however, would be to move the entire socket handling
to an extra thread. Then, the GUI thread would only get signals, passing the new messages,
and to send, it would simply pass QString to the worker thread. This way, you will get a
super fluent velvet GUI.

[2m1

Networking

In contrast to TCP, UDP is unreliable and connectionless. Neither the order of packets,

nor their delivery is guaranteed. UDP, however, is very fast. So, if you have frequent data,
which does not necessarily need to be received by the peer, use UDP. This data could,

for example, be real-time positions of a player that get updated frequently or live video/
audio streaming. Since QUdpSocket is mostly the same as QTcpSocket—both inherit
QAbstractSocket—there is not much to explain. The main difference between them is
that TCP is stream-orientated, whereas UDP is datagram-orientated. This means that the
data is sent in small packages, containing among the actual content, the sender's as well
as the receiver's IP address and port number. Due to the lack of QudpServer, you have to
use QAbstractSocket: :bind () instead of QTcpServer: :1listen (). Like listen(),
bind () takes the addresses and ports that are allowed to send datagrams as arguments.
Whenever a new package arrives, the QIODevice: : readyRead () signal is emitted. To
read the data, use the readDatagram () function, which takes four parameters. The first
one of the char* type is used to write the data in, the second specifies the amount of bytes
to be written, and the last two parameters of the QHostAddress* and quint16* types
are used to store the sender's IP address and port number. Sending data works likewise:
writeDatagram() sends the first argument's data of the char* type to the host, which
is defined by the third (address) and fourth (port number) argument. With the second
parameter, you can limit the amount of data to be sent.

Time for action - sending a text via UDP

As an example, let's assume that we have two sockets of the QUpSocket type. We will call
the first one socketA and the other socketB. Both are bound to the localhost, socketA to
the 52000 port and socketB to the 52001 port. So, if we want to send the string "Hello!"
from socketA to socketB, we have to write in the application that is holding socketA:

socketA->writeDatagram (QByteArray ("Hello!"),
QHostAddress ("127.0.0.1"), 52001);

Here, we have used the convenient function of writeDatagram (), which takes
QOByteArray instead of const char* and gint64. The class that holds socketB must have
the socket's readyRead () signal connected to a slot. This slot will then be called because of
our writeDatagram() call, assuming that the datagram is not lost! In the slots, we read the
datagram and the sender's address and port number with:

while (socketB->hasPendingDatagrams ()) {
QByteArray datagram;
datagram.resize (socketB->pendingDatagramSize ())
QHostAddress sender;
quintl6é senderPort;

12181

Chapter 7

socketB->readDatagram(datagram.data (), datagram.size(),
&sender, &senderPort) ;
// do something with datagram, sender and port.

}

As long as there are pending datagrams—this is checked by hasPendingbatagrams (),
which returns true as long as there are pending datagrams—we read them. This is done
by creating QByteArray, which is used to store the transferred datagram. To be able to
hold the entire transmitted data, it is resized to the length of the pending datagram. This
information is retrieved by pendingDatagramSize (). Next we create QHostAddress
and quint16 so that readDatagram () can store the sender's address and port number in
these variables. Now, all is set up to call readDatagram () so that we get the datagram.

Have a go hero - connecting players of the Benjamin game

With this introductory knowledge, you can go ahead and try some stuff by yourself. For
example, you can take the game Benjamin the elephant and send Benjamin's current
position from one client to another. This way, you can either clone the screen from one client
to the other or both clients can play the game and additionally can see where the elephant
of the other player currently is. For such a task, you would use UDP, as it is important that
the position is updated very fast while it isn't a disaster when one position gets lost.

Pop quiz - test your knowledge

Q1. Which three (main) classes do you need to download a file?
Q2. How can you download only the first 100 bytes of a file?

Q3. If you need to extend a URL by parameters with special characters, you need to escape
them with QUr1l: : toPercentEncoding (). Which other, more convenient, option does Qt
offer?

Q4. How do you delete QNetworkReply received from QNetworkAccessManager?

Q5. What is the type hierarchy of QTcpSocket and QUdpSocket and what's the big
advantage of this hierarchy?

Q6. The readDatagram () function belongs to QTcpSocket or QUdpSocket?

12191

Networking

In the first part of this chapter, you familiarized yourself with QNetworkAccessManager.
This class is at the heart of your code whenever you want to download or upload files to the
Internet. After having gone through the different signals that you can use to fetch errors, to
get notified about new data or to show the progress, you should now know everything you
need on that topic.

The example about the Distance Matrix APl depended your knowledge of
QONetworkAccessManager, and it shows you a real-life application case for it. Dealing with
JSON as the server's reply format was a recapitulation of Chapter 4, Qt Core Essentials, but
was highly needed since Facebook or Twitter only use JSON to format their network replies.

In the last section, you learned how to set up your own TCP server and clients. This enables
you to connect different instances of a game to provide the multiplayer functionality.
Alternatively, you were taught how to use UDP.

Please keep in mind that we only scratched the surface of this topic due to its complexity.
Covering it fully would have exceeded this beginner's guide. For a real game, which uses a
network, you should learn more about Qt's possibilities for establishing a secure connection
via SSL or some other mechanism.

In the next chapter, you'll learn how to extend your game with a scripting engine. This
allows you to, for example, easily change various aspects of your game without the need for
recompiling it.

[2801]

In this chapter, you will learn how to bring scripting facilities to your programs.
You will gain knowledge of how to use a language based on JavaScript to
implement the logic and details of your game without having to rebuild the
main game engine. Although the environment we are going to focus on

blends best with Qt applications, if you don't like JavaScript you will be given
suggestions about other languages that you can use to make your games
scriptable.

Why script?

You might ask yourself, why should | use any scripting language if | can implement everything

I need in C++? There are a number of benefits to providing a scripting environment to your
games. Most modern games really consist of two parts. One of them is the main game engine
that implements the core of the game (data structures, processing algorithms, and the
rendering layer) and exposes an API to the other component, which provides details, behavior
patterns, and action flows for the game. This other component is usually written in a scripting
language. The main benefit of this is that story designers can work independently from the
engine developers and they don't have to rebuild the whole game just to modify some of its
parameters or check whether the new quest fits well into the existing story. This makes the
development much quicker compared to the monolithic approach. Another benefit is that this
development opens the game to modding—skilled end users can extend or modify the game
to provide some added value to the game. It's also a way to make additional money on the
game by implementing extensions on it on top of the existing scripting APl without having to
redeploy the complete game binary to every player or to expose new scripting endpoints to
boost the creativity of the modders even more. Finally, you can reuse the same game driver
for other games and just replace the scripts to obtain a totally different product.

2811

Scripting

Qt provides two implementations of a JavaScript-based scripting environment. In this
chapter, we will be focusing on Qt Script. In the docs, you can see that the module is marked
as "deprecated"; however, it currently provides a richer API (albeit with slower execution)
than the other implementation. After we describe Qt Script, we will have a brief look at the
other implementation as well. We will not discuss the details of the JavaScript language
itself, as there are many good books and websites available out there where you can learn
JavaScript. Besides, the JavaScript syntax is very similar to that of C, and you shouldn't have
any problems understanding the scripts that we use in this chapter even if you haven't seen
any JavaScript code before.

The hasics of Ot Script

To use Qt Script in your programs, you have to enable the script module for your projects by
adding the QT += script line to the project file.

C++ compilers do not understand JavaScript. Therefore, to execute any script, you need to
have a running interpreter that will parse the script and evaluate it. In Qt, this is done with
the QScriptEngine class. This is a Qt Script runtime that handles the execution of script
code and manages all the resources related to scripts. It provides the evaluate () method,
which can be used to execute JavaScript expressions. Let's look at a "Hello World" program
in Qt Script:

#include <QCoreApplications>
#include <QScriptEngines

int main(int argc, char **argv) {
QCoreApplication app(argc, argv);
QScriptEngine engine;
engine.evaluate ("print ('Hello World!')");
return 0O;

}

This program is very simple. First, it creates an application object that is required for the
script environment to function properly, and then it just instantiates QScriptEngine and
invokes evaluate to execute the script source given to it as a parameter. After building and
running the program, you will see a well-known Hello World! printed to the console.

12821

Chapter 8

If you don't get any output, then this probably means that the script didn't get executed
properly, possibly because of an error in the script's source code. To verify that, we can
extend our simple program to check whether there were any problems with the execution of
the script. For this, we can query the engine state with hasUncaughtExceptions ():

#include <QCoreApplications>
#include <QScriptEngines
#include <QtDebug>

int main(int argc, char **argv)
QCoreApplication app(argc, argv);
QScriptEngine engine;
engine.evaluate ("print ('Hello World!')");
if (engine.hasUncaughtException()) {
QScriptValue exception = engine.uncaughtException() ;
gDebug () << exception.toString():;

}

return O;

}

The highlighted code checks whether there is an exception and if yes, it fetches the
exception object. You can see that its type is QScriptValue. This is a special type that is
used to exchange data between the script engine and the C++ world. It is somewhat similar
to Qvariant in the way that it is really a facade for a number of primitive types that the
script engine uses internally. One of the types is the type holding errors. We can check
whether a script value object is an error using its isError () method, but in this case, we
don't do that since uncaughtException () is meant to return error objects. Instead, we
immediately convert the error to a string representation and dump it to the console using
gDebug () . For example, if you omit the closing single quote in the script source text and run
the program, the following message will be displayed:

"SyntaxError: Parse error"

QScriptEngine: :evaluate () also returns QScriptvalue. This object represents the
result of the evaluated script. You can make a script calculate some value for you that you
can later use in your C++ code. For example, the script can calculate the amount of damage
done to a creature when it is hit with a particular weapon. Modifying our code to use

the result of the script is very simple. All that is required is to store the value returned by
evaluate () and then it can be used elsewhere in the code:

QScriptValue result = engine.evaluate (" (7+8)/2");
if (engine.hasUncaughtException()) {

//
} else {
gDebug () << result.toString();

}

[2831]

Scripting

Time for action - creating a Qt Script editor

Let's do a simple exercise and create a graphical editor to write and execute scripts. Start by
creating a new GUI project and implement a main window composed of two plain text edit
widgets (ui->codeEditor and ui->logWindow) that are separated using a vertical splitter.
One of the edit boxes will be used as an editor to input code and the other will be used as

a console to display script results. Then, add a menu and toolbar to the window and create
actions to open (ui->actionOpen) and save (ui->actionSave) the document, create a
new document (ui->actionNew), execute the script (ui->actionExecute), and to quit
the application (ui->actionQuit). Remember to add them to the menu and toolbar. As a
result, you should receive a window similar to the one shown in the following screenshot:

A Script Editor) s 2%

File Script

ﬁl‘:“lLﬂw A,

Connect the quit action to the QApplication: :quit () slot. Then, create an
openDocument () slot and connect it to the appropriate action. In the slot, use
QFileDialog: :getOpenFileName () to ask the user for a document path as follows:

void MainWindow: :openDocument () {
QString filePath = QFileDialog::getOpenFileName
(this, "Open Document", QDir::homePath(),
"JavaScript Documents (*.js)");

if (filePath.isEmpty()) return;
open (filePath) ;

}

12841

Chapter 8

In a similar fashion, implement the Save and Save As action handlers. Lastly, create the
open (const QString &filePath) slot, make it read the document, and put its contents
into the code editor:

void MainWindow: :open (const QString &filePath) {

QFile file(filePath) ;

if(!file.open(QFile::ReadOn1y|QFi1e::Text)) {
QMessageBox: :critical (this, "Error", "Can't open file.");
return;

}

setWindowFilePath (filePath) ;

uil->codeEditor->setPlainText (QTextStream(&file) .readall()) ;

ui->logWindow->clear() ;

The windowFilePath property of QWidget can be used to
\ associate a file with a window. You can then use it in actions related
~ to using the file—when saving a document, you can check whether
Q this property is empty and ask the user to provide a filename. Then,
you can reset this property when creating a new document or when
the user provides a new path for the document.

At this point, you should be able to run the program and use it to create scripts and save and
reload them in the editor.

Now, to execute the scripts, add a QScriptEngine m_engine member variable to the
window class. Create a new slot, call it run, and connect it to the execute action. Put the
following code in the body of the slot:

void Main Window::run() {
ui->logWindow->clear () ;
QScriptValue result
= m_engine.evaluate (scriptSourceCode, windowFilePath()) ;
if (m_engine.hasUncaughtException()) {
QScriptValue exception = m_engine.uncaughtException() ;
QTextCursor cursor = uil->logWindow->textCursor () ;
QTextCharFormat errFormat;
errFormat .setForeground (Qt: :red) ;
cursor.insertText (
QString ("Exception at line %1:")
.arg (m_engine.uncaughtExceptionLineNumber ()),
errFormat
)i

cursor.insertText (exception.toString(), errFormat) ;

[2851]

Scripting

QStringList trace = m _engine.uncaughtExceptionBacktrace () ;
errFormat .setForeground (Qt: :darkRed) ;
for(int i = 0; i < trace.size(); ++i) {
const QString & traceFrame = trace.at(i);
cursor.insertBlock () ;
cursor.insertText (QString ("#%1: %2")
.arg (i) .arg(traceFrame), errFormat) ;
}
} else {
QTextCursor cursor = uil->logWindow->textCursor () ;
QTextCharFormat resultFormat;
resultFormat .setForeground (Qt: :blue) ;
cursor.insertText (result.toString (), resultFormat) ;

}

Build and run the program. To do so, enter the following script in the editor:

function factorial(n) ({
if(n < 0) return undefined
if(n == 0) return 1
return n*factorial (n-1)

factorial(7)

Save the script in a file called factorial.js and then run it. You should get an output as
shown in the following screenshot:

e * Script Editor) &)

File Script
LM o

function factorialin) {
ifln =0} return undefined
ifln==0]returnl
return n*factorial(n-1)

}

factorial[?]|

5040

[2861]

Chapter 8

Next, replace the script with the following one:

function factorial(n)

factorial (7)

Running the script should yield the following result:

A Script Editor

File Script
PEHM o

function factorial{n) {
return M

}

factorial(7)

#0: factorialln = 7) at /tmp/factorial Js:2
#1: <global=() at /tmp/factorial J5:5

Exception at line 2:ReferenceError: Can't find variable: M

(<

What just happened?

The run () method clears the log window and evaluates the script using the method that
we learned earlier in this chapter. If the evaluation is successful, it prints the result in the log
window, which is what we see in the first screenshot shown in the previous section.

function() { return 42 }

12871

In the second attempt, we made an error in the script using a nonexistent variable.
Evaluating such code results in an exception. In addition to reporting the actual error, we
also use uncaughtExceptionLineNumber () to report the line that caused the problem.
Next, we call the engine's uncaught ExceptionBacktrace () method, which returns a list
of strings containing the backtrace (a stack of function calls) of the problem, which we also
print on the console.

Let's try another script. The following code defines the local variable fun, which is assigned
an anonymous function that returns a number:

Scripting

You can then call fun () like a regular function as follows:

AL * Script Editor v X
File Script

[F R
LA o
var fun = functionl) {return 42 }

funi)

42

Now, let's look at what happens if we delete the definition of fun from the script, but still
keep the invocation:

W * Script Editor AR ey

File Script
P EHA o

funi)

42

We still get the same result even though we didn't define what fun means! This is because
the QScriptEngine object keeps its state across evaluate () invocations. If you define a
variable in a script, it is kept in the current context of the engine. The next time evaluate ()
is called, it executes the script in the same context as before; therefore, all variables defined
earlier are still valid. Sometimes, this is a desired behavior; however, a malicious script

can wreck the context, which can cause trouble for subsequent evaluations in the engine.
Therefore, it is usually better to make sure that the engine is left in a clean state after a script
is done with the execution.

[2881]

Chapter 8

Time for action - sandboxed script evaluation

The next task for us is to modify our script editor so that it cleans up after the execution of
each script. As was said, each script is executed in the current context of the engine, so the
task of solving the problem boils down to making sure that each script executes in a separate
context. Incorporate the following code in the run () method:

void MainWindow: :run() {

ui->logWindow->clear() ;
QString scriptSourceCode = ui->codeEditor->toPlainText () ;
m_engine.pushContext () ;

QScriptvValue result = m _engine.evaluate

(scriptSourceCode, windowFilePath()) ;
if (m_engine.hasUncaughtException()) {
/]

}

m_engine.popContext () ;

}

Run the program and repeat the last test to see that fun no longer persists across
executions.

What just happened?

When a function is called, a new execution context is pushed to the top of the stack. When
the engine tries to resolve an object, it first looks for the object in the topmost context
(which is the context of the function call). If it is not found, the engine looks into the next
context on the stack and then the next until it finds the object or reaches the bottom of the
stack. When the function returns, the context is popped from the stack and all variables
defined there are destroyed. You can see how this works using the following script:

var foo = 7
function bar() { return foo }
bar ()

When bar is called, a new context is added to the stack. The script requests for the foo
object, which is not present in the current context, so the engine looks into the surrounding
context and finds a definition of foo. In our code, we follow this behavior by explicitly
creating a new context using pushContext () and then removing it with popContext ().

[Q You can retrieve the current context object with currentContext ().]

[2891]

Scripting

The context has two important objects associated with it: the activation object and the
this object. The former defines an object where all local variables are stored as the object's
properties. If you set any properties on the object before invoking a script, they will be
directly available to the script:

QScriptContext *context = engine.pushContext () ;

QScriptValue activationObject = context-s>activationObject () ;
activationObject.setProperty("foo", "bar");
engine.evaluate ("print (foo) ") ;

The this object works in a similar fashion—it determines the object to be used when the
script refers to an object called this. Any properties defined in C++ are accessible from the
script and the other way round:

QScriptContext *context = engine.pushContext () ;
QScriptValue thisObject = context->thisObject() ;
thisObject.setProperty ("foo", "bar");
engine.evaluate ("print (this.foo)") ;

So far, we were only evaluating some standalone scripts that could make use of the features
built in JavaScript. Now, it is time to learn to use data from your programs in the scripts.

This is done by exposing different kinds of entities to and from scripts.

EXposing objects

The simplest way to expose data to Qt Script is to take advantage of Qt's meta-object system.
Qt Script is able to inspect QObject instances and detect their properties and methods. To
use them in scripts, the object has to be visible to the script execution context. The easiest way
to make this happen is to add it to the engine's global object or to some context's activation
object. As you remember, all data between the script engine and C++ is exchanged using the
QScriptVvalue class, so first we have to obtain a script value handle for the C++ object:

QScriptEngine engine;

QPushButton *button = new QPushButton ("Button") ;

/]

QScriptValue scriptButton = engine.newQObject (button) ;
engine.globalObject () .setProperty ("pushButton", scriptButton) ;

[290]

Chapter 8

QScriptEngine: :newQObject () creates a script wrapper for an existing Q0bject
instance. We then set the wrapper as a property of the global object called pushButton.
This makes the button available in the global context of the engine as a JavaScript object. All
the properties defined with 9 PROPERTY are available as properties of the object and every
slot is accessible as a method of that object. Using this approach, you can share an existing
object between the C++ and JavaScript worlds:

int main(int argc, char **argv)

QApplication app(argc, argv);

QScriptEngine engine;

QPushButton button;

engine.globalObject () .setProperty

("pushButton", engine.newQObject (&button)) ;

QString script = "pushButton.text = 'My Scripted Button'\n"+
"pushButton.checkable = true\n" +
"pushButton.setChecked (true) "

engine.evaluate (script) ;

return app.exec();

}

There are cases when you want to provide a rich interface for a class to manipulate it from
within C++ easily, but to have a strict control over what can be done using scripting, you
want to prevent scripters from using some of the properties or methods of the class.

For methods, this is quite easy—just don't make them slots. Remember that you can
still use them as slots if you use the connect () variant, which takes a function pointer
as an argument.

For properties, you can mark a property as accessible or inaccessible from scripts using

the SCRIPTABLE keyword in the 9 PROPERTY declaration. By default, all properties are
scriptable, but you can forbid their exposure to scripts by setting SCRIPTABLE to false as
shown in the following example:

Q_ PROPERTY (QString internalName READ internalName SCRIPTABLE false)

Time for action — employing scripting for npc Al

Let's implement a script serving as artificial intelligence (Al) for a nonplayer character in a
simple Dungeons & Dragons game. The engine will periodically execute the script, exposing
two objects to it—the creature and the player. The script will be able to query the properties
of the player and invoke functions on the creature.

2911

Scripting

Let's create a new project. We'll start by implementing the C++ class for creatures in our
game world. Since both the NPC and player are living entities, we can have a common base
class for them. In Chapter 4, Qt Core Essentials, we already had a data structure for players,
so let's use that as a base by equipping our entities with similar attributes. Implement
LivingEntity as a subclass of Q0bject with the following properties:

Q PROPERTY (QString name READ name NOTIFY nameChanged)

Q PROPERTY (char direction READ direction NOTIFY directionChanged)
Q PROPERTY (QPoint position READ position NOTIFY positionChanged)

Q PROPERTY (int hp READ hp NOTIFY hpChanged)

Q PROPERTY (int maxHp READ maxHp NOTIFY maxHpChanged)

Q PROPERTY (int dex READ dex NOTIFY dexChanged)

Q PROPERTY (int baseAttack READ baseAttack NOTIFY baseAttackChanged)
Q PROPERTY (int armor READ armor NOTIFY armorChanged)

You can see that this interface is read only—you cannot modify any of the properties using
the LivingEntity class. Of course, we still need methods to change those values; so,
implement them in the public interface of the class:

public:
void setName (const QString &newName) ;
void setDirection (char newDirection) ;
void setPosition (const QPoint &newPosition) ;
void setHp (int newHp) ;
void setMaxHp (int newMaxHp) ;
void setBaseAttack (int newBaseAttack) ;
void setArmor (int newArmor) ;

void setDex (int newDex) ;

When you implement these methods, be sure to emit proper signals when you modify
property values. Let's add more methods that correspond to the actions that a creature
can take:

public:
void attack(LivingEntity *enemy) ;
void dodge () ;
void wait () ;
bool moveForward() ;
bool moveBackward() ;
void turnLeft () ;
void turnRight () ;

The last four methods are simple to implement; for the first three methods, use the
following code:

void LivingEntity::wait() { if(hp() < maxHp()) setHp(hp()+1); }

12921

Chapter 8

void LivingEntity::dodge() {

}

m_armorBonus += dex() ;
emit armorChanged(armor()); // m_baseArmor + m_armorBonus

void LivingEntity::attack(LivingEntity *enemy) {

}

(baseAttack () <=0) return;

)

int damage = grand() % baseAttack();

int enemyArmor = enemy->armor () ;

int inflictedDamage = gMax (0, damage-enemyArmor) ;
enemy->setHp (qMax (0, enemy->hp() - inflictedDamage)) ;

Essentially, if the creature chooses to wait, it regains one hit point. If it dodges, this increases
its chances to avoid damage when attacked. If it attacks another creature, this inflicts
damage based on its own attack and the opponent's defensive score.

The next step is to implement the subclasses of LivingEntity so that we can manipulate
the objects from Qt Script. To do this, implement the NPC class as follows:

class NPC : public LivingEntity {

Q OBJECT

public:

NPC(QObject *parent = 0) : LivingEntity(parent) {}

public slots:

Vi

void attack(LivingEntity *enemy) { LivingEntity::attack(enemy); }

void dodge () { LivingEntity::dodge(); }

void wait () { LivingEntity::wait(); }

bool moveForward() { return LivingEntity::moveForward(); }
bool moveBackward() { return LivingEntity::moveBackward(); }
void turnLeft () { LivingEntity::turnLeft(); }

void turnRight () { LivingEntity::turnRight(); }

What remains is to create a simple game engine to test our work. To do this, start by adding
a reset () method to LivingEntity that will reset the armor bonus before every turn.
Then, implement the GameEngine class:

class GameEngine : public QScriptEngine {

public:

GameEngine (QObject *parent = 0) : QScriptEngine (parent)

m_timerId = O;

m _player = new LivingCreature (this) ;

m_creature = new NPC(this) ;

QScriptValue go = globalObject () ;
go.setProperty ("player", newQObject (m player)) ;
go.setProperty("self", newQObject (m creature)) ;

12931

Scripting

LivingCreature *player() const {return m player; }
LivingCreature *npc() const { return m creature; }
void start (const QString &fileName) {
if (m _timerId) killTimer (m timerId);
m_npcProgram = readScriptFromFile (fileName) ;
m_timerId = startTimer(1000) ;
}
protected:

QScriptProgram readScriptFromFile (const QString &fileName) const {
QFile file(fileName) ;
if(lfile.open(QFile::ReadOn1y|QFi1e::Text))

return QScriptProgram() ;
return QScriptProgram(file.readAll (), fileName) ;

}

void timerEvent (QTimerEvent *te) {
if (te->timerId() != m_timerId) return;
m_creature-sreset () ;

m _player->reset () ;
evaluate (m_npcProgram) ;

}

private:

LivingEntity *m player;

NPC *m_creature;

QScriptProgram m npcProgram;

int m_timerId;

}i
Finally, write the main function:

int main(int argc, char **argv)
QCoreApplication app(argc, argv);
GameEngine engine;
engine.player () ->setMaxHp (50) ;
engine.player () ->setHp (50) ;
engine.player () ->setDex (10) ;
() ->setBaseAttack (12) ;
() ->setArmor (3) ;

engine.player
engine.player
engine.npc () ->setMaxHp (100) ;
engine.npc () ->setHp (100) ;
engine.npc () ->setDex (4) ;
() ->setBaseAttack (2) ;
() ->setArmor (1) ;

engine.npc
engine.npc

engine.start (argv([1l]) ;
return app.exec() ;

12941

Chapter 8

You can test the application using the following script:

print ("Player HP:", player.hp)
print ("Creature HP:", self.hp)
var val = Math.random() * 100
if (val < 50) {
print ("Attack!")
self.attack(player)
} else {
print ("Dodge!") ;
self.dodge() ;

}

What just happened?

We created two classes of objects: LivingCreature, which is the basic API to read data
about a creature, and NPC, which provides a richer API. We obtained this effect by redeclaring
the existing functions as slots. This is possible even when the methods are not virtual, as
when slots are executed using Qt's meta-object system, they are always treated as if they
were virtual methods—a declaration in the derived class always shadows the declaration

in the parent class. Having the two classes, we exposed their instances to the scripting
environment, and we use a timer to call a user-defined script every second. Of course, this

is a very simple approach to scripting, which can easily be abused if the user calls multiple
action functions in the script, for example, by calling attack () many times in one script,

the creature can perform multiple strikes on the opponent. Speaking of attack (), note

that it takes a LivingCreature pointer as its parameter. In the script, we fed it with the
player object that corresponds to the needed type in C++. The conversion is done by Qt Script
automatically. Therefore, you can define methods by taking Q0bject pointers and using
them with QObject instances that are exposed to scripts. In a similar fashion, you can define
functions by taking Qvariant or QScriptvalue and passing any value to them in the script.
If the script engine is able to convert the given value to the requested type, it will do so.

[2951]

Scripting

Have a go hero - extending the Dungeons & Dragons game

Here is a number of ideas that can be used to extend our small game. The first is to add a
script execution for the player as well so that it tries to defend against the creature. For that,
you'll need to expose the creature's data using the LivingCreature APl so that it is read
only and exposes the player using a read-write interface. There are many ways to obtain it;
the easiest is to provide two public Q0bject interfaces that operate on a shared pointer as
shown in the following diagram:

LivingCreatureRW

+attack ()
+moveForward ()
+moveBackward ()
4 +turnLeft ()
+turnRight ()

signals/slots r
Mals/slots

LivingCreatureData

shared pointer

LivingCreatureRO

The API already contains methods to move creatures. You can extend the fighting rules to
take into consideration the distance between opponents and their relative orientation (for
example, striking from behind usually yields more damage than when standing face-to-face
with the enemy). You can even introduce ranged combat. Extend the LivingCreature
interface with the properties and methods that manipulate the creature's inventory. Allow
the creature to change its active weapon.

The final modification that you can apply is to prevent cheating, using the mechanism
described earlier. Instead of executing an action immediately, mark which action the script
has chosen (along with its parameters) and only execute that action after the script finishes
executing, for example, like this:

void timerEvent (QTimerEvent *te) {
if (te->timerId() != m_timerId) return;
m_creature.reset () ;
m _player.reset () ;
evaluate (m_npcProgram) ;
evaluate (m_playerProgram) ;
m creature.executeAction();
m player.executeAction() ;

}
12961

Chapter 8

Another approach to this would be to assign action points to each creature's every turn and
allow the creature to spend them on different actions. If there are not enough points left to
execute an action, the script is notified about this and the action fails.

Until now, we have been exporting objects to scripts and calling their properties and
methods. However, there is also a way to call standalone C++ functions from scripts as well
as call functions written in JavaScript from within C++ code. Let's have a look at how this
works.

Exposing C++ functions to scripts

You can expose a standalone function to Qt Script with the help of the

QScriptEngine: :newFunction () call. It returns QScriptVvalue as any function in
JavaScript, is also an object, and can be represented by QScriptvalue. In C++, if a function
accepts three parameters, you have to pass exactly three parameters when calling it. In
JavaScript, this is different—you can always pass any number of parameters to a function,
and it is the function's responsibility to do a proper argument validation. Therefore, the
actual function that is exported should be wrapped in another function that will do what
JavaScript expects from it before calling the actual function. The wrapper function needs to
have an interface that is compatible with what newFunction () expects. It should take two
parameters: the script context and the script engine, and it should return QScriptvalue.
The context contains all the information regarding the parameters of the function, including
their count. Let's try wrapping a function that takes two integers and returns their sum:

int sum(int a, int b) { return a+b; }

QScriptValue sum wrapper (QScriptContext *context,
QScriptEngine *engine) {

if (context->argumentCount () != 2) return engine-s>undefinedvalue() ;
QScriptValue arg0 = context-s>argument (0) ;

QScriptValue argl = context-s>argument (1) ;

if (larg0.isNumber () || !argl.isNumber ())

return engine-s>undefinedvalue () ;
return sum(arg0.toNumber () +argl.toNumber ()) ;

}

Now that we have the wrapper, we can create a function object for it and export it to the
scripting environment in exactly the same way as we export regular objects—by making it a
property of the script's global object:

QScriptValue sumFunction = engine.newFunction (sum wrapper, 2);
engine.globalObject () .setProperty ("sum", sumFunction) ;

2971

Scripting

The second argument to newFunction () defines how many arguments the function
expects and is retrievable with the function object's length property. This is just for your
information, as the caller can pass as many arguments as he/she wants. Try evaluating the
following script after exporting the sum function:

print ("Arguments expected:", sum.length)
print (sum(1,2,3) // sum returns Undefined

We can make use of such behavior and extend the functionality of our sum function by
making it return a sum of all the parameters passed to it:

QScriptValue sum wrapper (QScriptContext *context,
QScriptEngine *engine) {
int result = 0;
for(int i=0; i<context-sargumentCount ();++1i) {
QScriptValue arg = context-sargument (i) ;
result = sum(result, arg.toNumber()) ;

}

return result;

}
Now, you can call the sum with any number of arguments:

print (sum()) ;
print (sum(1,2));
print (sum(1,2,3));

This brings us to an interesting question: can the function have different functionality
depending on how many parameters you pass to it? The answer is positive; you can
implement the function in any way you want, with the whole power of C++ at hand. There
is a specific case for JavaScript when such behavior makes particular sense. This is when the
function is supposed to work as a getter and setter for a property. Getters and setters are
functions that are called when the script wants to retrieve or set the value of a property in
some object. By attaching getters and setters to objects, you can control where the value is
stored (if at all) and how it is retrieved. This opens the possibility of adding properties to the
exported Qt objects that have not been declared with the 9 PROPERTY macro:

class CustomObject : public QObject {

Q OBJECT
public:
CustomObject (QObject *parent = 0) : QObject (parent)
{ m_value = 0; }

int value() const { return m value; }
void setValue(int v) { m value = v; }
private:

int m_value;

[298]

Chapter 8

}i

QScriptValue getSetValue (QScriptContext *, QScriptEngine*) ;

// function prototype

int main(int argc, char **argv)

}

QCoreApplication app(argc, argv);

QScriptEngine engine;

CustomObject object;

QScriptValue object value = engine.newQObject (&object) ;

QScriptValue getSetValue fun = engine.newFunction(getSetValue) ;

object value.setProperty("value", getSetValue fun,
QOScriptValue: :PropertyGetter|QScriptValue: : PropertySetter) ;

engine.globalObject () .setProperty ("customObject", object value) ;

engine.evaluate ("customObject.value = 42");

gDebug () << object.value() ;

return O;

Let's analyze this code; here, we expose an instance of CustomObject to the script engine
in a standard way. We also set the object's value property to a function, passing an additional
value to setProperty (), which contains a set of flags that tell the scripting environment
how it should treat the property. In this case, we tell it that the passed value should be used
as a getter and setter for the property. Let's see how the function itself is implemented:

QScriptValue getSetValue (QScriptContext *context,

QScriptEngine *engine) {
QScriptValue object = context->thisObject () ;
CustomObject *customObject =

gobject cast<CustomObject*>(object.toQObject()) ;
if (!customObject) return engine->undefinedvalue () ;
if (context->argumentCount () == 1) {

// property setter

customObject->setValue (context->argument (0) . toNumber ()) ;

return engine->undefinedvalue () ;
} else {

// property getter

return customObject->value() ;

[299]

Scripting

First, we ask the function the context for the value representing the object that the function
is called on. Then, we extract a CustomObject pointer from it using gobject cast. Next,
we check the number of arguments to the function call. In the case of a setter, the function is
passed one parameter—the value to be set to the property. In such a situation, we use a C++
method of the object to apply that value to the object. Otherwise, (no arguments are passed)
the function is used as a getter and we return the value after fetching it with the C++ method.

Exposing script functions to C++

In the same way as C++ functions are exported to Qt Script with the use of QScriptvalue,
JavaScript functions can be imported to C++. You can ask for a script value representing a
function like any other property. The following code asks the engine for the Math.pow ()
function, which performs the power operation on its arguments:

QScriptValue powFunction =
engine.globalObject () .property ("Math") .property ("pow") ;

Having QScriptvalue represent a function, you can invoke it using the value's call ()
method and pass any parameters as a list of script values:

QScriptValueList arguments = { QScriptValue(2), QScriptValue(10) };
QScriptValue result = powFunction.call (QScriptValue (), arguments) ;
gDebug () << result.toNumber(); // yields 1024

The first parameter to call () is the value that is to be used as the this object of

the function. In this particular case, we pass an empty object since the function is
standalone—it does not make any use of its environment. There are situations, however,
when you will want to set an existing object here, for example, to allow a function to directly
access the existing properties or define new properties of an object.

Let's use the newly learned functionality to improve our Dungeons & Dragons game in
order to use a richer set of scripting functionality that is based on JavaScript functions and
properties. The script used will contain a set of functions written in JavaScript that are going
to be stored in the program and called in various situations. We'll be focusing here only on
the scripting part. You will surely be able to fill in the C++ gaps yourself.

Time for action - storing the script

The first task is to read the script, extract the needed functions from it, and store them in a
safe place. Then, load the project for the game and add a new class with the following code:

class AlIScript ({
public:
QScriptProgram read(const QString &fileName) ;
bool evaluate (const QScriptProgram &program,
QScriptEngine *engine) ;

Chapter 8

QScriptValue initFunction;
QScriptValue heartbeatFunction;
QScriptValue defendFunction;

}i

The reading method can have the same content as the original readScriptFromFile
method. The evaluate method looks as follows:

bool AIScript::evaluate(const QScriptProgram &program,

QScriptEngine *engine) {

QScriptContext *context = engine->pushContext () ;

QScriptValue activationObject;

QScriptValue result = engine-sevaluate (program) ;

activationObject = context-sactivationObject () ;

if (lresult.isError())
initFunction = activationObject.property ("init") ;
heartbeatFunction = activationObject.property ("heartbeat") ;
defendFunction = activationObject.property("defend") ;

engine->popContext () ;
return !result.isError () ;

}

Modify the GameEngine class to make use of the new code (remember to add them_ai
class member):

void start (const QString &fileName) {
m ail = AIScript();
QScriptProgram program = m_ai.read(fileName) ;
m_ai.evaluate (program, this);
gDebug () << m_ai.initFunction.toString() ;
gDebug () << m_ai.heartbeatFunction.toString() ;
gDebug () << m_ai.defendFunction.toString() ;

}
Run the program by feeding it the following script:

function init () {
print ("This is init function")

}

function heartbeat () ({
print ("This is heartbeat function")

}

function defend() {
print ("This is defend function")

}

[3011

Scripting

What just happened?

The AIScript object contains information about the Al for a single entity. The start ()
method now loads a script from the file and evaluates it. The script is expected to define
a number of functions that are then retrieved from the activation object and stored in the
AIScript object.

Time for action - providing an initialization function

The task for this exercise is to make it possible for the Al to initialize itself by invoking the
init () function. Let's get right down to business. Extend the ATScript structure with yet
another field:

QScriptValue m_thisObject;

This object will represent the Al itself. The script will be able to store data or define functions
in it. Add the following code to the class as well:

void AIScript::initialize(QScriptEngine *engine) {
m_thisObject = engine->newObject();
engine->pushContext () ;
initFunction.call (m_thisObject) ;
engine->popContext () ;

}
Add acall to initialize () atthe end of start ():

void start (const QString &fileName) {
m_ai = AIScript();
QScriptProgram program = m_ai.read(fileName) ;
evaluate (program, this);
m ai.initialize (this);

}

Now, run the program using the following init () function:

function init () {
print ("This is init function™")
this.distance = function(pl, p2) ({
// Manhattan distance
return Math.abs(pl.x-p2.x)+Math.abs(pl.y-p2.Yy)

}

this.actionHistory = []

}

3021

Chapter 8

What just happened?

In initialize, we prepare the script object with an empty JavaScript object and we call the
function stored in initFunction, passing the script object as this. The function prints a
debug statement and defines two properties in this object—one is a function to calculate the
Manhattan distance and the other is an empty array where we will store a history of actions
that the Al has taken.

Manhattan distance is a metric to calculate the distance between objects;
this is much faster to calculate than the real Euclidean distance. It is
al based on the assumption that when traversing a large city with a grid of
=~ buildings, one can only follow streets that go along those buildings and
take 90 degree turns. The Manhattan distance between positions is then
the number of crossings one has to walk through to get from the source
to the destination. In C++ and Qt, you can compute this distance easily
using the manhattanLength () method in the QPoint class.

Time for action - implementing the heartheat event

The heart of Al is the heartbeat function that is executed at equal intervals of time to allow

the Al to decide about the actions of the object. The script that is executed will have access

to the creature that it operates on as well as its environment. It can also use anything that it
defines in the this object. Now, add a heartbeat function to ATScript:

void AIScript::heartbeat (QScriptEngine *engine, QObject *personObject,
QObject *otherObject) {
QScriptValuelList params;
params << engine-s>newQObject (personObject) ;
m_thisObject.setProperty ("enemy", engine->newQObject (otherObject)) ;
heartbeatFunction.call (m_thisObject, params) ;
m_thisObject.setProperty ("enemy", QScriptValue::UndefinedvValue) ;

}

Bring the timer back, set it to start (), and also enable the running heartbeat functionality
from within the timer event:

void timerEvent (QTimerEvent *te)
if (te->timerId() != m_timerId) return;
m_creature-s>reset () ;
m_player-s>reset () ;
m_ai.heartbeat (this, m creature, m player);

Scripting

Run the program, giving it the following heartbeat function:

function heartbeat (person) {
person.attack (this.enemy)
this.actionHistory.push ("ATTACK")

}

What just happened?

In heartbeat, we proceed in similar way as with init, but here, we pass the creature that
the Al works on as a parameter of the function and we set the other entity as the enemy
property of the this object, which makes it accessible to the function. After the call we
remove the enemy property from the this object. The function itself performs an attack on
the enemy and pushes an entry to the script object history. Unlike a direct invocation of
evaluate when making a function call we don't have to push and pop an execution context as
it is done for us automatically during QScriptvalue: :call.

You may have noticed that we left out the defend script. Try extending the game by calling

a script whenever the subject is attacked by the opponent. In the script, allow the creature
to take different defensive stances, such as evading, blocking, or parrying attacks. Make

each action have a different influence on the outcome of the strike. Also, apply all the
modifications that you made to the original game. Try expanding on the code that was
already written by providing additional hooks where scripts are run and adding new actions
and objects. How about adding more enemies to the game? What about organizing a contest
for the best Al algorithm?

Using signals and slots in scripts

Qt Script also offers the capability to use signals and slots. The slot can be either a C++
method or a JavaScript function. The connection can be made either in C++ or in the script.

First, let's see how to establish a connection within a script. When a QObject instance is
exposed to a script, the object's signals become the properties of the wrapping object. These
properties have a connect method that accepts a function object that is to be called when
the signal is emitted. The receiver can be a regular slot or a JavaScript function. To connect
the clicked () signal of an object called buttontoa clear () slot of another object called
lineEdit, you can use the following statement:

button.clicked.connect (lineEdit.clear)
If the receiver is a standalone function called clearLineEdit, the call becomes:

button.clicked. connect (clearLineEdit)

13041

Chapter 8

You can also connect a signal to an anonymous function that was defined directly in the
connection statement:

button.clicked.connect (function() { lineEdit.clear() })

There is additional syntax available where you can define the this object for the function:

var obj = { "name": "FooBar" }
button.clicked.connect (obj, function|() { print (this.name) D

If you need to disconnect a signal from within a script, just replace connect with
disconnect:

button.clicked.disconnect (clearLineEdit)

Emitting signals from within the script is also easy—just call the signal as a function and pass
to it any necessary parameters:

spinBox.valueChanged (7)

To create a signal-slot connection on the C++ side where the receiver is a script function,
instead of a regular connect () statement, use gScriptConnect (). Its first two
parameters are identical with the regular call and the two other parameters correspond to a
script value that represents an object that is to act as the this object and a script value that
represents a function to be called:

QScriptValue function = engine.evaluate (" (function() { })");
gScriptConnect (button, SIGNAL(clicked()), QScriptvValue(), function);

In this particular example, we pass an invalid object as the third parameter. In such a case,
the this object will point to the engine's global object.

As for disconnecting signals, of course, there is gScriptDisconnect () available.

As a task for yourself, try modifying the Dungeons & Dragons game so that the defend script
function is not called manually by the script engine, but instead is invoked using a signal-slot
connection. Have a creature emit the attacked () signal when it is attacked, and let the
script connect a handler to that signal. Use a variant of connect that defines the this object
for the connection.

Scripting

Creating Qt ohjects in scripts

Using existing objects from scripts sometimes is not enough to get a rich scripting
experience. It is also useful to be able to create new Qt objects from within scripts and
even return them to C++ so that they can be used by the game engine. There are two ways
to approach this problem. Before we describe them, it is important to understand how
JavaScript instantiates objects.

JavaScript has no notion of classes. It constructs objects using prototypes—a prototype is
an object whose properties are cloned into the new object. The object is constructed by
invoking a constructor, which can be any function. When you invoke a function using the
keyword new, the engine creates a new empty object, sets its constructor property to the
function serving as the constructor, sets the object prototype to the function's prototype,
and finally, invokes the function in the context of the new object, making that function act
as a factory function for objects with a particular set of properties. Therefore, to construct
objects of the type QLineEdit, there needs to be a function that can be called as a
constructor for objects that behave like Qt's widget to enter a single line of text.

We already know that functions can be stored in QScriptVvalue objects. There are
two ways to obtain a function that can act as a constructor for Qt objects. First, we can
implement it ourselves:

QScriptValue pushbutton ctor (QScriptContext *context,
QScriptEngine *engine) {
QScriptValue parentValue = context-s>argument (0) ;
QOWidget *parent = gscriptvalue cast<QWidget*s> (parentValue) ;
QPushButton *button = new QPushButton (parent) ;
QScriptValue buttonValue = engine->newQObject (button,
QScriptEngine: :AutoOwnership) ;
return buttonValue;

}

QScriptValue buttonConstructor = engine.newFunction (pushbutton ctor);
engine.globalObject () .setProperty ("QPushButton", buttonConstructor) ;

We did three things here. First, we defined a function that instantiates QPushButton with
a parent passed as the first argument to the function, wraps the object in QScriptvalue
(with an extra parameter noting that the environment responsible for deleting the object
should be determined by the parent object), and that returns QScriptvalue to the caller.
Secondly, we wrapped the function itself into QScriptvalue as we already did earlier with
other functions. Finally, we set the function as a property of the global object of the engine
so that it is always accessible.

The second way to obtain a constructor function is to make use of Qt's meta-object system.
You can use the following macro to define a constructor function very similar to what we
have written manually:

Q SCRIPT DECLARE QMETAOBJECT (QPushButton, QWidget*)

Chapter 8

Next, you can use the QScriptEngine: : scriptValueFromQMetaObject () template
method to get a script value wrapping that function:

QScriptValue pushButtonClass =
engine.scriptValueFromQMetaObject<QPushButtons> () ;

Lastly, you can set the obtained script value as a constructor in the script engine just like
before. Here is a complete code to make push buttons creatable from within the scripts:

#include <QtWidgetss
#include <QScriptEngines

Q SCRIPT DECLARE QMETAOBJECT (QPushButton, QWidget*)

int main(int argc, char **argv)

QApplication app(argc, argv);

QScriptEngine engine;

QScriptValue pushButtonClass

= engine.scriptValueFromQMetaObject<QPushButtons () ;

engine.globalObject () .setProperty ("QPushButton",

pushButtonClass) ;

QString script = "pushButton = new QPushButton\n"
"pushButton.text = 'Script Button'\n"
"pushButton.show () ";

engine.evaluate (script) ;

return app.exec() ;

The only error recovery we've talked about so far is checking whether a script has ended

up with an error and executing a script in a dedicated context to prevent polluting the
namespace with local variables that are not used anymore. This is already a lot; however,

we can do more. First, we can take care of preventing pollution of the global namespace.
Pushing and popping the execution context does not prevent a script from modifying the
engine's global object, and we should prevent situations when a script, for example, replaces
the Math object or the print function. The solution is to provide your own global object in
place of the original one. There are two easy ways to do this. First, you can use the class called
QScriptValuelterator to copy all the properties of the global object to a new object:

QScriptValue globalObject = engine.globalObject () ;
QScriptValue newGO = engine.newObject () ;
QScriptValuelterator iter (globalObject) ;
while (iter.hasNext ()) {

iter.next () ; newGO.setProperty(iter.key(), iter.value());

[3071

Scripting

Alternatively, you can set the original global object as an internal prototype of the
new object:

QScriptValue globalObject = engine.globalObject () ;
QScriptValue newGO = engine.newObject () ;
newGO.setPrototype (globalObject) ;

Either way, you will then need to replace the original global object with the temporary one:

engine.setGlobalObject (newGO) ;

The other big thing to do when talking about error recovery is to provide debugging
capabilities for scripts. Luckily, Qt contains a built-in component to debug scripts. If

you build your project with the QT+=scripttools option, you will gain access to the
QScriptEngineDebugger class. To start using the debugger with a script engine, you need
to attach and bind them:

QScriptEngine engine;
QScriptEngineDebugger debugger;
debugger.attachTo (&engine) ;

Whenever an uncaught exception occurs, the debugger will kick in and show its window:

Ot Script Debugger

Debug Bl View
R R
Loaded Scripls - Stack X
protatype-1.6.0.2 /s =5 = [Covot [Mameo Locition
L a eanonymonss protolype-1,6.0.2 |61
* For details. see the Profotype wed site: hitp
window = (|
navigator = | uzerAgent: m i
Berakpoinis &% docimont [Lacals £
- £ & 13 decument.createCvent = /i w Objeet(); | e =
lio: [iacaten 4 doouminl cradeElmon o s v Qfoaty; J; [ame Valoe |-
%1 prololype1.6.02)5:16 1 document create T exthiode new Doject]): J; r ot
(%] document.getElermentByld = furclion]) { rlurm mll;) Solootor undofinod
wvar Prototype = | 5 Tuncticn $50 |
slon: *18.0.2, T retum SelectorfinaChilg...
':-‘. Form undefined
Flaid undatinad
3 undatined F3
[T % Previous & MNext | |Case Sensiive || Whole words Evonl uncdofived -
Console EIFY
¢ QtScript debugger version 8,1 ++=
Debugger commands start with a . (period).
Any other input will be evaluated by the script interpreter.
Type ".help® for help.
Debugger invoked from prototype-1.6.8.2.j5. line 1.
1 debugger;
gudb>
Emorlog | Debug Output Consol .

Chapter 8

You can then set breakpoints in the script, inspect variables or the call stack, and continue or
break the execution. A good idea is to incorporate the debugger in your game so that script
designers can use it when developing scripts. Of course, the debugger should not be running
with the release version of the game.

QScriptEngine has the ability to import extensions that provide additional functionality
to the scripting environment (for example, a library of utility functions that can be used

in different parts of the game without having to redefine them here and there) using

the importExtension () method. The extension can be implemented in JavaScript by
providing a set of files that contain scripts, making the extension or in C++ by subclassing
QScriptExtensionPlugin. Now, we will focus on the second approach. Here is how a
simple C++ extension looks:

class SimpleExtension : public QScriptExtensionPlugin {

Q OBJECT

Q PLUGIN METADATA(IID "org.dgt- project.Qt.QScriptExtensionInterface")
public:

SimpleExtension (QObject *parent = 0)

QScriptExtensionPlugin (parent) {}

QStringList keys() const Q DECL OVERRIDE
{ return QStringList() << "simple"; }

void initialize(const QString &key, QScriptEngine *engine) {
QScriptValue simple = engine->newObject () ;
simple.setProperty("name", "This is text from Simple extension");
engine->globalObject () .setProperty ("Simple", simple);

}

}i

The extension defined here is simple—it only attaches one property to the engine's global
object, which has a name property returning as a text string. You should put the resulting
library in a subdirectory called Simple in a script subdirectory of a directory where your
application looks for plugins (for example, the application where your application binary is
placed). Then, you can import the plugin using importExtension ():

QScriptEngine engine;
engine.importExtension("Simple") ;

engine.evaluate ("print (Simple.name)")

M Refer to the Deploying Plugins section of the Qt reference manual for
Q more information about where you can put plugins and how you can
tell Qt where to look for them.

Scripting

The other Qt JavaScript environment

As mentioned at the beginning of this chapter, Qt provides two environments to use
JavaScript. We already talked about Qt Script; now it is time for us to tell you about its
counterpart: QdSEngine. The newer JavaScript engine in Qt, which is also used for QML,
about which you will learn in the next chapter. It has a different internal architecture than Qt
Script, but most of what we have taught you also applies to QdSEngine. The main difference
is that the root classes are named differently. Have a look at the following table, which shows
equivalent classes for the two engines:

QtScript QJSEngine
QScriptEngine QJSEngine
QScriptValue QJSValue
QScriptContext -

The QJSEngine class is the equivalent of QScriptEngine. It also has an evaluate ()
method that is used to evaluate scripts. This method can create objects, wrap Q0Object
instances, and use QJsSvalue (the equivalent of QScriptvalue) to store values used in scripts
in a way that they can be accessed from C++. You can also see that there is no equivalent to
QScriptContext and thus its functionality is not available in the implementation based on
QJSEngine. Another missing component is the integrated engine debugger. Also, at the time
of writing, there is no easy way to export your own classes to the QJSEngine-based JavaScript
environment to allow the creation of instances of those classes.

Qt Script is an environment that is designed to be part of the Qt world. Since not everyone
knows or likes JavaScript, we will present another language that can easily be used to
provide scripting environments for games that are created with Qt. Just be aware that this is
not going to be an in-depth description of the environment—we will just show you the basics
that can provide foundations for your own research.

A popular language used for scripting is Python. There are two variants of Qt bindings that
are available for Python: PySide and PyQt. PySide is the official binding that is available under
LGPL, but currently, it only work with Qt 4. PyQt is a third-party library that is available under
GPL v3 and commercial licenses that have variants for Qt 4 as well as Qt 5. Note that PyQt

is not available under LGPL, so for commercial closed-source products you need to obtain a
commercial license from Riverbank Computing!

3101

Chapter 8

These bindings allow you to use the Qt APl from within Python—you can write a complete
Qt application using just Python. However, to call Python code from within C++, you will
need a regular Python interpreter. Luckily, it is very easy to embed such an interpreterin a
C++ application.

First, you will need Python installed along with its development package. For example, for
Debian-based systems, it is easiest to simply install the 1ibpythonX.Y-dev (or a newer)
package, where X and Y stand for the version of Python:

sudo apt-get install libpython3.3-dev

Then, you need to tell your program to link it against the library:

LIBS += -lpython3.3m
INCLUDEPATH += /usr/include/python3.3m/

To call Python code from within a Qt app, the simplest way is to use the following code:

#include <Python.h>
#include <QtCores>

int main(int argc, char **argv) {
QApplication app(argc, argv);
Py SetProgramName (argv[0]) ;
Py Initialize();
const char *script = "print (\"Hello from Python\")"
PyRun SimpleString(script) ;
Py Finalize();
return app.exec() ;

}

This code initializes a Python interpreter, then invokes a script by passing it directly as a
string, and finally, it shuts down the interpreter before invoking Qt's event loop. Such code
makes sense only for simple scripting. In real life, you'd want to pass some data to the script
or fetch the result. For that, we have to write some more code. As the library exposes the C
API only, let's write a nice Qt wrapper for it.

Time for action — writing a Qt wrapper for embedding Python

As the first task, we will implement the last program using an object-oriented API. Create a
new console project and add the following class to it:

#include <Python.h>
#include <QObject>
#include <QStrings>

(3111

Scripting

class QtPython : public QObject ({
Q OBJECT

public:
QtPython (const char *progName, QObject *parent = 0)

QObject (parent)
if (progName != 0)
wchar t buf [strlen(progName+1)] ;
mbstowcs (buf, progName, strlen (progName)) ;
Py SetProgramName (buf) ;

}

Py InitializeEx(0);

}

~QtPython() { Py Finalize(); }
void run(const QString &program) {
PyRun SimpleString(gPrintable (program)) ;

}
}i

Then, add amain () function as shown in the following snippet:

#include "gtpython.h"

int main(int argc, char **argv) {
QtPython python(argv[0]) ;
python.run("print ('Hello from Python')") ;

return O;
}
Finally open the .pro file and tell Qt to link with the Python library. In case of Linux you can
use pkg-config by adding two lines to the file:
CONFIG += link pkgconfig
PKGCONFIG += python-3.3m # adjust the version number to suit your
needs

You might need to install Python library using a call equivalent to apt-get install
libpython3.4-dev. For Windows you need to manually pass information to the compiler:

INCLUDEPATH += C:\Python33\include
LIBS += -LC:\Python33\include -1lpython33

[3121

Chapter 8

What just happened?

We created a class called gt Python that wraps the Python C API for us.

Never use a Q prefix to call your custom classes, as this prefix is reserved

for official Qt classes. This is to make sure that your code will never have

a name clash with future code added to Qt. The Qt prefix on the other

~ hand is meant to be used with classes that are extensions to Qt. You
probably still shouldn't use it, but the probability of a name clash is much
smaller and yields a lesser impact than clashes with an official class. It is
best to come up with your own prefix (such as Qxy, where x and y are
your initials).

The class constructor creates a Python interpreter and the class destructor destroys it. We
use Py InitializeEx(0), which hasthe same functionality as Py Initialize (), butit
does not apply C signal handlers, as this is not something we would want when embedding
Python. Prior to this, we use Py SetProgramName () to inform the interpreter of our
context. We also defined a run () method, taking 9QString and returning void. It uses
gPrintable (), which is a convenience function that extracts a C string pointer from a
QString object, which is then fed into PyRun_SimpleString().

Never store the output of gPrintable () as it returns an internal
W pointer to a temporary byte array (this is equivalent to calling
=~ toLocal8Bit () .constData () on astring). It is safe to use
Q directly, but the byte array is destroyed immediately afterwards;
thus, if you store the pointer in a variable, the data may not be valid
later when you try using that pointer.

The hardest work when using embedded interpreters is to convert values between C++ and
the types that the interpreter expects. With Qt Script, the QScriptvalue type was used for
this. We can implement something similar for our Python scripting environment.

Time for action - converting data hetween G++ and Python

Create a new class and call it gt Pythonvalue. Then, add the following code to it:
#include <Python.h>
class QtPythonvValue ({

public:
OtPythonvalue () { incRef (Py None) ;}

[3131

Scripting

QtPythonValue (const QtPythonValue &other) { incRef (other.m _value) ; }
QtPythonvValue& operator=(const QtPythonvValue &other) {

if (m value == other.m value) return *this;

decRef () ;

incRef (other.m _value) ;

return *this;

}

QtPythonvValue (int wval) { m_value

= PyLong FromLong(val); }
QtPythonValue (const QString &str) {
P

m value = PyUnicode FromString(gPrintable(str)) ;
}
~QtPythonvalue () { decRef(); }
int toInt() const { return PyLong Check(m value) ? PyLong AsLong

(m_value) : 0; }
QString toString() const {
return PyUnicode Check (m value) ? QString::fromUtf8 (PyUnicode

AsUTF8 (m_value)) : QString() ;
}
bool isNone() const { return m value == Py None; }
private:

QtPythonvValue (PyObject *ptr) { m_value = ptr; }

void incRef () { if(m_value) Py INCREF (m_value); }

void incRef (PyObject *val) { m_value = val; incRef(); }
void decRef () { if (m_value) Py DECREF (m_value); }
PyObject *m_value;

friend class QtPython;

}i
Next, let's modify the main () function to test our new code:

#include "gtpython.h"
#include "gtpythonvalue.h"
#include <QtDebugs>

int main(int argc, char *argv([]) {
QtPython python(argv[0]) ;

QtPythonValue integer = 7, string = QStringLiteral ("foobar"),
none;

gDebug () << integer.toInt () << string.toString() << none.isNone () ;
return O;

}

When you run the program, you will see that the conversion between C++ and Python works
correctly in both directions.

(3141

Chapter 8

What just happened?

The otpPythonvalue class wraps a PyObject pointer (through the m_value member),
providing a nice interface to convert between what the interpreter expects and our Qt types.
Let's see how this is done. First, take a look at the three private methods: two versions of
incRef () and one decRef (). PyObject contains an internal reference counter that counts
the number of handles on the contained value. When that counter drops to 0, the object can
be destroyed. Our three methods use adequate Python C API calls to increase or decrease the
counter in order to prevent memory leaks and keep Python's garbage collector happy.

The second important aspect is that the class defines a private constructor that takes a
PyObject pointer, effectively creating a wrapper over the given value. The constructor

is private; however, the Qt Python class is declared as a friend of Qt Pythonvalue,
which means that only 9t Python and Qt Pythonvalue can instantiate values by passing
PyObject pointers to it. Now, let's have a look at public constructors.

The default constructor creates an object pointing to a None value, which is Python's
equivalent to the C++ null. The copy constructor and assignment operator are pretty
standard, taking care of bookkeeping of the reference counter. Then, we have two
constructors—one taking int and the other taking a QString value. They use appropriate
Python C API calls to obtain a PyObject representation of the value. Note that these calls
already increase the reference count for us, so we don't have to do it ourselves.

The code ends with a destructor that decreases the reference counter and three methods
that provide safe conversions from Qt Pythonvalue to appropriate Qt/C++ types.

Have a go hero - implementing the remaining conversions

Now, you should be able to implement other constructors and conversions for
QtPythonvValue that operates on the f1loat, bool, or even on QDate and QTime types. Try
implementing them yourself. If needed, have a look at https://docs.python.org/3/ to
find appropriate calls that you should use. We'll give you a head start by providing a skeleton
implementation of how to convert Qvariant to Qt Pythonvalue. This is especially important
because Python makes use of two types whose equivalents are not available in C++, namely,
tuples and dictionaries. We will need them later, so having a proper implementation is crucial.
Here is the code:

QtPythonValue: :QtPythonValue (const QVariant &variant)
switch (variant.type()) ({
case QVariant::Invalid: incRef (Py None) ;
return;
case QVariant::String: m_value

[315]

https://docs.python.org/3/

Scripting

= PyUnicode FromString(gPrintable (variant.toString()));
return;
case QVariant::Int: m value = PyLong FromLong(variant.toInt());
return;
case QVariant::LongLong: m value

= PyLong FromLongLong (variant.toLongLong()) ;
return;
case QVariant::List: {

QVariantList list = variant.toList();

const int listSize = list.size();

PyObject *tuple = PyTuple New(listSize);

for (int i=0;i<listSize;++i) {

PyTuple SetItem(tuple, i, QtPythonValue(list.at(i)).m value);

}

m value = tuple;

return;
}
case QVariant::Map: {

QVariantMap map = variant.toMap();

PyObject *dict = PyDict New();

for (QVariantMap: :const iterator iter = map.begin();

iter != map.end(); ++iter) {

PyDict SetItemString(dict,
gPrintable(iter.key()),
QtPythonValue (iter.value()) .m value

}
m value = dict;
return;
}
default: incRef (Py None); return;

}
}

The highlighted code shows how to create a tuple (which is a list of arbitrary elements)
from QvariantList and how to create a dictionary (which is an associative array) from
QVariantMap. Try adding constructors by taking QStringlList, QVariantList, and
QVariantMap directly and returning tuples or a dictionary, respectively.

We have written quite a lot of code now, but so far there is no way of binding any data from
our programs with Python scripting. Let's change that.

[316]

Chapter 8

Time for action - calling functions and returning values

The next task is to provide ways to invoke Python functions and return values from scripts.

Let's start by providing a richer run () API. Implement the following method in the
QtPython class:

QtPythonValue QtPython::run(const QString &program,
const QtPythonValue &globals, const QtPythonValue &locals)
{

PyObject *retVal = PyRun String(gPrintable (program) ,
Py file input, globals.m value, locals.m value);
return QtPythonValue (retVal) ;

}

We'll also need a functionality to import Python modules. Add the following methods
to the class:

QtPythonvValue QtPython::import (const QString &name) const {
return QtPythonValue (PyImport ImportModule (gPrintable (name))) ;
}

QtPythonValue QtPython::addModule (const QString &name) const {

PyObject *retVal = PyImport AddModule (gPrintable (name)) ;
Py INCREF (retVal) ;

return QtPythonValue (retVal) ;

}

QtPythonValue QtPython::dictionary (const QtPythonValue &module) const

{

PyObject *retVal = PyModule GetDict (module.m_value) ;
Py INCREF (retVal) ;

return QtPythonValue (retVal) ;

}

The last piece of the code is to extend Qt Pythonvalue with this code:

bool QtPythonValue::isCallable() const {
return PyCallable Check(m_value) ;

}

QtPythonValue QtPythonValue::attribute (const QString &name) const {

return QtPythonValue (PyObject GetAttrString(m value,
gPrintable (name))) ;

}

13171

Scripting

bool QtPythonValue: :setAttribute (const QString &name, const
QtPythonvalue &value)

int retVal = PyObject SetAttrString(m value, gPrintable (name),
value.m value) ;
return retval != -1;

QtPythonValue QtPythonValue::call (const QVariantList &arguments) const

{
return QtPythonValue (PyObject CallObject
(m_value, QtPythonValue (arguments).m value)) ;

QtPythonValue QtPythonValue::call (const QStringList &arguments) const

{
return QtPythonValue (PyObject CallObject
(m_value, QtPythonValue (arguments).m value)) ;
}

Finally, you can modify main () to test the new functionality:

int main(int argc, char *argv([]) {
QtPython python(argv[0]) ;

QtPythonValue mainModule = python.addModule (" main_");
QtPythonValue dict = python.dictionary (mainModule) ;
python.run("foo = (1, 2, 3)", dict, dict);

python.run ("print (foo)", dict, dict);

QtPythonvValue module = python.import ("os") ;
QtPythonValue chdir = module.attribute ("chdir") ;
chdir.call (QStringList () << "/home") ;
QtPythonValue func = module.attribute ("getcwd") ;
gDebug () << func.call (QVariantList()) .toString() ;

return O;

}

You can replace /home with a directory of your choice. Then, you can run the program.

3181

Chapter 8

What just happened?

We did two tests in the last program. First, we used the new run () method, passing to it the
code that is to be executed and two dictionaries that define the current execution context—
the first dictionary contains global symbols and the second contains local symbols. The
dictionaries come from Python's _main _ module (which among other things, defines the
print function). The run () method may modify the contents of the two dictionaries—the
first call defines the tuple called foo and the second call prints it to the standard output.

The second test calls a function from an imported module; in this case, we call two functions
from the os module—the first function, chdir, changes the current working directory and
the other called getcwd returns the current working directory. The convention is that we
should pass a tuple to call (), where we pass the needed parameters. The first function
takes a string as a parameter, therefore, we pass a QStringList object, assuming that
there is a Qt PythonValue constructor that converts QStringList to a tuple (you need
to implement it if you haven't done it already). Since the second function does not take any
parameters, we pass an empty tuple to the call. In the same way, you can provide your own
modules and call functions from them, query the results, inspect dictionaries, and so on.
This is a pretty good start for an embedded Python interpreter. Remember that a proper
component should have some error checking code to avoid crashing the whole application.

You can extend the functionality of the interpreter in many ways. You can even use PyQt5 to
use Qt bindings in scripts, combining Qt/C++ code with Qt/Python code.

Have a go hero — wrapping Ot ohjects into Python ohjects

At this point, you should be experienced enough to try and implement a wrapper for the
QObiject instances to expose signals and slots to Python scripting. If you decide to pursue
the goal, https://docs.python.org/3/ will be your best friend, especially the section
about extending Python with C++. Remember that gMetaObject provides information
about the properties and methods of Qt objects and QMetaObject: : invokeMethod ()
allows you to execute a method by its name. This is not an easy task, so don't be hard on
yourself if you are not able to complete it. You can always return to it once you gain more
experience in using Qt and Python.

Before you head on to the next chapter, try testing your knowledge about scripting in Qt.

[319]

https://docs.python.org/3/

Scripting

Q1. Which is the method that you can use to execute JavaScript statements?

1. QScriptEngine::run/()
2. QScriptEngine::evaluate ()

3. QScriptProgram: :execute ()
Q2. What is the name of the class that serves as a bridge to exchange data between Qt Script
and C++?

1. QScriptContext

2. QScriptValue

3. QVariant
Q3. What is the name of the class that serves as a bridge that is used to exchange data
between Python and C++?

1. Ppyvalue

2. PyObject

3. QVariant

Q4. How do execution contexts work?
1. They mark some variables as "executable" to prevent rogue code from being
executed.

2. They allow executing scripts in parallel, improving their speed.

3. They contain all the variables defined within a function invocation so that a set of
variables visible from within a script can be modified without affecting the global
environment (called sandboxing).

3201

Chapter 8

sSummary

In this chapter, you learned that providing a scripting environment to your games opens up
new possibilities. Implementing a functionality using scripting languages is usually faster
than doing the full write-compile-test cycle with C++ and you can even use the skills and
creativity of your users who have no understanding of the internals of your game engine to
make your games better and more feature-rich. You were shown how to use Qt Script, which
blends the C++ and JavaScript worlds together by exposing Qt objects to JavaScript and
making cross-language signal-slot connections. If you're not a JavaScript fan, you learned the
basics of scripting with Python. There are other scripting languages available (for example
Lua) and many of them can be used together with Qt. Using the experience gained in this
chapter, you should even be able to bring other scripting environments to your programs, as
most embeddable interpreters offer similar approaches to that of Python.

In the next chapter, you will be introduced to an environment very much like Qt Script
in the way that it is heavily based on JavaScript. However, the purpose of using it is
completely different—we will be using it to bleed edge-fancy graphics. Welcome to the
world of Qt Quick.

13211

In this chapter, you are going to be introduced to a technology called Qt Quick
that allows us to implement resolution-independent user interfaces with lots of
eye-candy, animations, and effects that can be combined with regular Qt code
that implements the logic of the application. You will learn the basics of the
QML declarative language that forms the foundation of Qt Quick. Using this
language, you can define fancy graphics and animations, make use of particle
engines, and structure your code using finite state machines. Pure QML code
can be complemented with JavaScript or C++ logic in a manner similar to what
you have learned in the previous chapter. By the end of this chapter, you should
have enough knowledge to quickly implement fantastic 2D games with custom
graphics, moving elements, and lots of visual special effects.

Fluid user interfaces

So far, we have been looking at graphical user interfaces as a set of panels embedded one into
another. This is well-reflected in the world of desktop utility programs composed of windows
and subwindows containing mostly static content scattered throughout a large desktop

area where the user can use a mouse pointer to move windows around or adjust their size.
However, this design doesn't correspond well with modern user interfaces that often try to
minimize the area they occupy (because of either a small display size like with embedded and
mobile devices or to avoid obscuring the main display panel like in games), at the same time
providing rich content with a lot of moving or dynamically resizing items. Such user interfaces
are often called "fluid" to signify that they are not formed as a number of separate different
screens, but rather contain dynamic content and layout where one screen fluently transforms
into another. Part of Qt 5 is the Qt Quick (Qt User Interface Creation Kit) module, which
provides a runtime to create rich applications with fluid user interfaces. It builds upon a two-
dimensional hardware accelerated canvas that contains a hierarchy of interconnected items.

[323]

Qt Quick Basics

Declarative Ul programming

Although it is technically possible to use Qt Quick by writing C++ code, the module is
accompanied by a dedicated programming language called QML (Qt Modeling Language).
QML is an easy to read and understand declarative language that describes the world as a
hierarchy of components that interact and relate to one another. It uses a JSON-like syntax
and allows us to use imperative JavaScript expressions as well as dynamic property bindings.
So, what is a declarative language, anyway?

Declarative programming is one of the programming paradigms that dictates that the
program describes the logic of the computation without specifying how this result should
be obtained. In contrast to imperative programming, where the logic is expressed as a list of
explicit steps forming an algorithm that directly modifies the intermediate program state, a
declarative approach focuses on what the ultimate result of the operation should be.

We use QML by creating one or more QML documents where we define hierarchies of
objects. Each document is composed of two sections.

You can follow every example we explain in Qt Creator by creating a new Qt Quick Ul project
and placing the presented code in the QML file created for you. The details about using this
project type will be described in a later section of this chapter.

_— -
If you can't see a Qt Quick Ul project in the Creator's wizard, you have to
enable a plugin called Qml ProjectManager by choosing the About
Plugins entry from the Creator's Help menu, then scrolling down to
the QtQuick section, and making sure the QmlProjectManager entry is
checked. If it is not, check it and restart Creator:

Name - Load Version Vendor -
Core v 3.4.2 (3.4.0) TheCtCompany Ld
v Debugger v 3.4.2 (3.4.0) TheCt Company Lid
+ Designer v 3.4.2 (3.4.0) The Ct Company Ld
‘ v DiffEditor v 3.4.2(3.4.0) TheCt Company Lid
N\ v Help v 3.4.2 (3.4.0) TheCt Company Lid
+ ImageViewer v 3.4.2(3.4.0) TheGt Company Lid
v Macros v 3.4.2(3.4.0) TheCt Company Lid
v ProjectExplorer v 3.4.2 (3.4.0) The CQt Company Lid
 ResourcsEdior v 3.4.2 (3.4.0) TheCtCompany Lid
v TextEditor v 3.4.2 (3.4.0) TheCt Company Lid
v Welcome v 3.4.2 (3.4.0) The Ct Company Ld
¥ « QrQuick v
v QmiDesigner v 3.4.2 (3.4.0) TheCt Company Lid
v CmlJSEditor v 3.4.2(3.4.0) TheGt Company Lid
v OmlJSTools v 3.4.2(3.4.0) TheCt Company Lid
v QmIProfiler v 3.4.2 (3.4.0) TheCt Company Lid
v
hd Utilities [7]
v CodePaster v 3.4.2 (3.4.0) The Ct Company Ld
EmacsKeys 3.4.2(3.4.0) nsf
v FakeVim v 3.4.2 (3.4.0) TheCt Company Lid
HellaWorld 3.4.2(3.4.0) TheGt Company Lid
v TaskList v 3.4.2(3.4.0) TheCt Company Lid =
Details Error Details Restan required Close
- -

[3241

Chapter 9

The first section contains a series of import statements that define the range of
components that can be used in a particular document. In its simplest form, each statement
consists of the import keyword followed by the module URI (name) and the module version
to import. The following statement imports the QtQuick module in version 2.1:

import QtQuick 2.1

The second section contains a definition of a hierarchy of objects. Each object declaration
consists of two parts. First, you have to specify the type of the object and then follow it with
the detailed definition enclosed in braces. Since the detailed definition can be empty, the
simplest object declaration is similar to the following:

Item { }

This declares an instance of the Item element, which is the most basic Qt Quick element and
represents an abstract item of the user interface without any visual appearance.

Element properties

Each element type in QML defines a number of properties. Values for these properties can
be set as part of the detailed definition of an object. The Item type brings a number of
properties for specifying the geometry of an item:

Item {
x: 10
y: 20

width: 400
height: 300

}

Itemis a very interesting and useful element, but since it is totally transparent, we will now
focus on its descendant type that draws a filled rectangle. This type is called Rectangle. It

has a number of additional properties, among them, the color property for specifying the

fill color of the rectangle. To define a red square, we could write the following code:

Rectangle
color: "red"
width: 400
height: 400

}

The problem with this code is that if we ever decide to change the size of the square, we will
have to update values for the two properties separately. However, we can use the power of the
declarative approach and specify one of the properties as a relation to the other properties:

Rectangle
color: "red"

[325]

Qt Quick Basics

width: 400
height: width

}

This is called property binding. It differs from a regular value assignment and binds the value
of height to the value of width. Whenever width changes, height will reflect that change in
its own value.

Note that the order of statements in the definition does not matter as you declare relations
between properties. The following declaration is semantically identical to the previous one:

Rectangle {
height: width
color: "red"
width: 400

}

You can bind a property not only to a value of another property, but also to any JavaScript
statement that returns a value. For example, we can declare rectangle color to be dependent
on the proportions between the width and the height of the element by using a ternary
conditional expression operator:

Rectangle {

width: 600
height: 400
color: width > height ? "red" : "blue"

}

Whenever width or height of the object changes, the statement bound to the color
property will be re-evaluated and if width of the rectangle is larger than its height, the
rectangle will become red; otherwise, it will be blue.

Property binding statements can also contain function calls. We can extend the color
declaration to use a different color if the rectangle is a square by using a custom function:

Rectangle
width: 600
height: 400
color: colorFromSize ()

function colorFromSize() {
if (width == height) return "green"
if (width > height) return "red"
return "blue"

[3261]

Chapter 9

QML does its best to determine when the function value may change, but it is not
omnipotent. For our last function, it can easily determine that the function result depends
on the values of the width and height properties, so it will re-evaluate the binding if either
of the two values change. However, in some cases, it can't know that a function might return
a different value next time it is called, and in such situations, the statement will not be re-
evaluated. Consider the following function:

function colorByTime ()
var d = new Date()
var minutes = d.getMinutes ()

if (minutes < 15) return "red"
if (minutes < 30) return "green"
if (minutes < 45) return "blue"
return "purple"

}

Binding the color property to the result of that function will not work properly. QML will
only call this function once when the object is initialized, and it will never call it again. This
is because it has no way of knowing that the value of this function depends on the current
time. Later, we will see how to overcome this with a bit of imperative code and a timer.

The Rectangle element allows us to define not only the fill color but also the outline size
and color. This is done by using the border.width and border.color properties. You
can see they have a common prefix followed by a dot. This means these properties are
subproperties of a property group border. There are two ways to bind values to these
properties. The first approach is to use the dot notation:

Rectangle
color: "red"
width: 400
height: 300
border.width: 4
border.color: "black"

}

An alternative approach, which is especially useful if you want to set a large number of
subproperties in a single group, is to use brackets to enclose definitions in a group:

Rectangle
color: "red"
width: 400
height: 300
border {

13211

Qt Quick Basics

width: 4
color: "black"

Ohject hierarchies

We said that QML is about defining object hierarchies. You do this in the simplest way

possible—by putting one object declaration into another object's declaration. To create
a button-like object containing a rounded frame with some text inside, we'll combine a
Rectangle item with a Text item:

Rectangle
border { width: 2; color: "black" }
radius: 5
color: "transparent"
width: 50; height: 30

Text {
text: "Button Text"

}
}

You can use a semicolon instead of newlines to separate statements

in QML in order to have a more compact object definition at the cost
A .
of decreased readability.

Running this code produces a result similar to the following diagram:

As we can see, it does not look good—the frame is not big enough to hold the text and so it
flows outside the frame. Moreover, the text is positioned incorrectly.

Unlike widgets where a child widget is clipped to its parent's geometry, Qt Quick items can
be positioned outside their parents.

Since we didn't specify the x and y coordinates of the text, they are set to their default value,
which is 0. As a result, the text is pinned to the top-left corner of the frame and flows outside
the right edge of the frame.

3281

Chapter 9

To correct this behavior, we can bind the width of the frame to the width of the text. To

do this in the property binding for the rectangle width, we have to specify that we want to
use the width of the text object. QML provides a pseudo-property called id to allow the
programmer to name objects. Let's provide an ID for the Text element and bind the width
of the outside object to the width of the text, and also do the same for the height. At the
same time, let's reposition the text a little to provide padding for the four pixels between the
frame and the text itself:

Rectangle
border { width: 2; color: "black" }
radius: 5
color: "transparent"
width: buttonText.width+8; height: buttonText.height+8

Text {
id: buttonText
text: "Button Text"
x:4; y: 4
}
}

As you can see in the following image, such code works, but it is still problematic:

If you set empty text to the internal element, the rectangle width and height will drop to 8,
which does not look good. It will also look bad if the text is very long:

[This text is 5o long that the button really doesn't look gnod]

Let's complicate matters even more and add an icon to the button by adding another child
element to the rectangle. Qt Quick provides an Image type to display images, so let's use it
to position our icon on the left side of the text:

Rectangle
id: button
border { width: 2; color: "black" }
radius: 5
color: "transparent"
width: 4 + buttonIcon.width + 4 + buttonText.width + 4
height: Math.max(buttonIcon.height, buttonText.height) + 8

[329]

Qt Quick Basics

Image {
id: buttonIcon
source: "edit-undo.png"
X: 4; y: button.height/2-height/2
}
Text {
id: buttonText
text: "Button Text"
x: 4+buttonIcon.width+4
y: button.height/2-height/2
}
}

In this code, we used the Math .max function available in JavaScript to calculate the height
of the button, and we modified definitions of the y properties of the internal objects to
center them vertically in the button. The source property of Image contains the URL of a file
containing the image to be shown in the item.

The URL can point not only to a local file, but also to a remote HTTP

resource. In such an event, if the remote machine is reachable, the
A . . .
file will be fetched from the remote server automatically.

The result of the code can be seen in the following image:

=3 Button Teaxt

Calculating the positions of each internal element as well as the size of the button frame is
becoming complicated. Fortunately, we don't have to do it since Qt Quick provides a much
better way of managing item geometry by attaching certain points of some objects to points
of another object. These points are called anchor lines. The following anchor lines are
available to each Qt Quick item:

@ o k=2 =5
o w
= o) S S
@ o
-2
top o
]
verticalCenter
] baseline
bottom

Chapter 9

You can establish bindings between anchor lines to manage relative positioning of items.
Each anchor line is represented by two properties—one that can be bound to something and
another to bind from. Anchors to bind to are regular properties of the object. They can serve
as binding arguments for properties defined in an anchors property group. Therefore, to bind
the "left" anchor of the current object to the "right" anchor of the object otherObject, one
would write:

anchors.left: otherObject.right

In addition to specifying an arbitrary number of anchor bindings, we can also set margins for
each of the anchors (or for all of them at once) to offset the two bound anchor lines. Using
anchors, we can simplify the previous button definition:

Rectangle
border { width: 2; color: "black" }
radius: 5
color: "transparent"
width: 4 + buttonIcon.width + 4 + buttonText.width + 4
height: Math.max (buttonIcon.height, buttonText.height) + 8

Image {
id: buttonIcon
source: "edit-undo.png"
anchors {
left: parent.left;
leftMargin: 4;
verticalCenter: parent.verticalCenter
}
}

Text {
id: butonText
text: "Button Text"
anchors {
left: buttonIcon.right;
leftMargin: 4;
verticalCenter: parent.verticalCenter

}
}

You can see the button ID is not used anymore. Instead, we use parent, which is a property
that always points to the item's parent.

[3311

Qt Quick Basics

Time for action - creating a button component

As an exercise, let's try to use what you've learned so far to create a more complete and
better working button component. The button is to have a rounded shape with a nice
background and should hold definable text and an icon. The button should look good for
different texts and icons.

Start by creating a new project in Qt Creator. Choose Qt Quick Ul as the project type. When
asked for the component set, choose the lowest available version of Qt Quick:

| (RS Mew QF Quick Ul Projeck & & &S

Select Qt Quick Component Set
Location

g7 Component Set Qt Quick component set: Ct Quick 2.1 -

Creates a Qt Quick 2 Ul project with a single QML file that
contains the main view. You can review Ct Quick 2 LI
projects inthe QML Scene and you need not build them. You
do not need to have the develop ment environment installed on
your comptiter 1o create and run this type of project. Requires
Qt 5.1 or newer.

< Back Mext = Cancel

At this point, you should end up with a project containing two files—one with a QML project
extension, which is your project management file, and the other with the QML extension,
which is your main user interface file. You can see that both files contain QML definitions.
That is because Qt Creator manages Qt Quick projects using QML itself (you'll notice it
imports the gml1Project module).

The QML document that was created for us contains a "Hello World" example code, which
we can use as a starting point in our Qt Quick experiments. If you go to the Projects pane
and look at the Run Configuration for the project, you will notice that it uses something
called QML Scene to run your project. This configuration invokes an external application
called gmlscene that is able to load and display an arbitrary QML document. If you run the
example code, you should see a white window with some text centered in it. If you click
anywhere in the window, the application will close.

13321

Chapter 9

Let's start by creating the button frame. Replace the Text item with a Rectangle item. You
can see that the text is centered in the window by using a centerIn anchor binding that we
didn't mention before. This is one of two special anchors that are provided for convenience
to avoid having to write too much code. Using centerIn is equivalent to setting both
horizontalCenter and verticalCenter. The other convenience binding is £111, which
makes one item occupy the whole area of another item (similar to setting the left, right, top,
and bottom anchors to their respective anchor lines in the destination item).

Let's give a basic look and feel to the button panel by setting some of its basic properties.
This time, instead of setting a solid color for the button, we will declare the background to be
a linear gradient. Replace the Text definition with the following code:

Rectangle

id: button

anchors.centerIn: parent

border { width: 1; color: "black" }

radius: 5

width: 100; height: 30

gradient: Gradient
GradientStop { position: 0; color: "#eeeeee" }
GradientStop { position: 1; color: "#777777" }

}
}

After running the project, you should see a result similar to the following image:

—

What just happened?

We bound a Gradient element to the gradient property and defined two GradientStop
elements as its children, where we specified two colors to blend between. Gradient does
not inherit from Item and thus is not a visual Qt Quick element. Instead, it is just an object
that serves as a data holder for the gradient definition.

The Itemtype has a property called children that contains a list of visual children
(Iteminstances) of an item and another property called resources, which contains

a list of non-visual objects (such as Gradient or GradientStop) for an item. Normally, you
don't need to use these properties when adding visual or non-visual objects to an item as
the item will automatically assign child objects to appropriate properties. Note that in our
code, the Gradient object is not a child object of the Rectangle; it is just assigned to its
gradient property.

Qt Quick Basics

Time for action - adding button content

The next step is to add text and an icon to the button. We will do this by using another item
type called Row, as shown:

Rectangle

id: button

/]

gradient: Gradient ({
GradientStop { position: 0; color: "#eeeeee" }
GradientStop { position: 1; color: "#777777" }

}

width: buttonContent.width+8

height: buttonContent.height+8

Row {
id: buttonContent
anchors.centerIn: parent
spacing: 4

Image {

id: buttonIcon

source: "edit-undo.png"
}
Text {

id: buttonText

text: "ButtonText"

}

You'll get the following output:

What just happened?

Row is one out of four positioner types (the others being Column, Grid, and Flow) that
spreads its children in a horizontal row. It makes it possible to position a series of items
without using anchors. Row has a spacing property that dictates how much space to leave
between items.

13341

Chapter 9

Time for action - sizing the hutton properly

Our current panel definition still doesn't behave well when it comes to sizing the button. If
the button content is very small (for example, the icon doesn't exist or the text is very short),
the button will not look good. Typically, push buttons enforce a minimum size—if the content
is smaller than a specified size, the button will be expanded to the minimum size allowed.
Another problem is that the user might want to override the width or height of the item.

In such cases, the content of the button should not overflow past the border of the button.
Let's fix these two issues by replacing the width and height property bindings with the
following code:

clip: true
implicitWidth: Math.max (buttonContent.implicitWidth+8, 80)
implicitHeight: buttonContent.implicitHeight+8

What just happened?

The implicitWidth and implicitHeight properties can contain the desired size the
item wants to have. It's a direct equivalent of sizeHint () from the widget world. By using
these two properties instead of width and height (which are bound to implicitwidth
and implicitHeight by default), we allow the user of our component to override those
implicit values. When this happens and the user does not set the width or height big
enough to contain the icon and text of the button, we prevent the content from crossing the
boundaries of the parent item by setting the c1ip property to true.

Time for action — making the button a reusable component

So far, we have been working on a single button. Adding another button by copying the code,
changing the identifiers of all components, and setting different bindings to properties are
very tedious tasks. Instead, we can make our button item a real component, that is, a new
QML type that can be instantiated on demand as many times as required.

Qt Quick Basics

First, position the text cursor right before the bracket opening of the definition of the
button and press Alt + Enter on the keyboard to open the refactoring menu, like in the
following screenshot:

1 import QtQuick 2.0

2

3 * Rectangle {

4 width: 360

= height: 380

[+

1 Rectangle «{

8 8L Move Component into Separate File

9 Wrap Component in Loader

10 signal clicked()

11

12 anchors.centerIn: parent

il border { width: 1; color: "black" }

14 radius: 5

15

16 - gradient: Gradient {

17 GradientStop { position: @; color: "#eeeeee" }
18 GradientStop { position: 1; color: "777777" }
19 I

From the menu, choose Move Component into Separate File. In the popup, type in a name for
the new type (for example, But ton) and accept the dialog by clicking on the OK button:

['F .. Move Component into Separate File (7)) L»)

.A.
S e

)

Component name: |Buttnn

Path: wlkfcode/ch?/Button Browse...

(]34 Cancel

Chapter 9

What just happened?

You can see that we have a new file called Button.gml in the project, which contains
everything the button item used to have. The main file was simplified to something similar the
following:

import QtQuick 2.0

Rectangle
width: 360
height: 360
Button {

id: button

}
}

Button has become a component—a definition of a new type of element that can be used
the same way as element types imported into QML. Remember that QML component names
as well as names of files representing them need to begin with a capital letter! If you name

a file "button.gml" instead of "Button.gml", then you will not be able to use "Button" as a
component name, and trying to use "button" instead will result in an error message. This
works both ways—every QML file starting with a capital letter can be treated as a component
definition. We will talk more about components later.

Qt Quick is meant to be used for creating user interfaces that are highly interactive. It offers
a number of elements for taking input events from the user.

The simplest of all of them is MouseArea. It defines a transparent rectangle that exposes

a number of properties and signals related to mouse input. Commonly used signals include
clicked, pressed, and released. Let's do a couple of exercises to see how the element can
be used.

Time for action — making the button clickable

Thus far, our component only looks like a button. The next task is to make it respond to
mouse input. As you may have guessed, this is done by using the MouseArea item.

Add a MouseArea child item to the button and use anchors to make it fill the whole area of the
button. Call the element but tonMouseArea. Put the following code in the body of the item:

Rectangle
id: button

[3311

Qt Quick Basics

// .
Row { ... }
MouseArea {

id: buttonMouseArea

anchors.fill:parent
onClicked: button.clicked()
}
}

In addition to this, set the following declaration in the button object just after its ID
is declared:

Rectangle
id: button

signal clicked()
//
}

To test the modification, add the following code at the end of the button object definition,
just before the closing bracket:

onClicked: console.log("Clicked!")

Then, run the program and click on the button. You'll see your message printed to the
Creator's console. Congratulations!

What just happened?

With a signal clicked () statement, we declared that the button object emits a signal

called clicked. With the MouseArea item, we defined a rectangular area (covering the whole
button) that reacts to mouse events. Then, we defined onC1licked, which is a signal handler.
For every signal an object has, a script can be bound to a handler named like the signal and
prefixed with "on"; hence, for the clicked signal, the handler is called onC1icked and for
valueChanged it is called onvalueChanged. In this particular case, we have two handlers
defined—one for the button where we write a simple statement to the console, and the other
for the MouseArea element where we call the button's signal function effectively emitting
that signal.

MouseArea has even more features, so now let's try putting them to the right use to make
our button more feature-rich.

Chapter 9

Time for action - visualizing button states

Currently, there is no visual reaction to clicking on the button. In the real world, the button
has some depth and when you push it and look at it from above, its contents seems to

shift a little toward the right and downward. Let's mimic this behavior by making use of the
pressed property MouseArea has, which denotes whether the mouse button is currently
being pressed (note that the pressed property is different from the pressed signal that was
mentioned earlier). The content of the button is represented by the Row element, so add the
following statements inside its definition:

Row {
id: buttonContent

/]
anchors.verticalCenterOffset: buttonMouseArea.pressed ? 1 : 0
anchors.horizontalCenterOffset: buttonMouseArea.pressed ? 1 : 0

/]
}

We can also make the text change color when the mouse cursor hovers over the button. For
this, we have to do two things. First, let's enable receiving hover events on the MouseArea
by settings its hoverEnabled property:

hoverEnabled: true

When this property is set, MouseArea will be setting its containsMouse property to
true whenever it detects the mouse cursor over its own area. We can use this value to set
the text color:

Text {
id: buttonText
text: "ButtonText"
color: buttonMouseArea.containsMouse ? "white" : "black"

}

What just happened?

In the last exercise, we learned to use some properties and signals from MouseArea to make
the button component more interactive. However, the element is much richer in features. In
particular, if hover events are enabled, you can get the current mouse position in the item's
local coordinate system through the mouseX and mouseY properties that return values. The
cursor position can also be reported by handling the positionChanged signal. Speaking

of signals, most MouseArea sighals carry a MouseEvent object as their argument. This
argument is called mouse and contains useful information about the current state of the
mouse, including its position and buttons currently pressed:

MouseArea {
anchors.fill: parent

Qt Quick Basics

hoverEnabled: true

onClicked: {
switch (mouse.button) ({

case Qt.LeftButton: console.log("Left button clicked") ;
break;

case Qt.MiddleButton: console.log("Middle button clicked") ;
break;

case Qt.RightButton: console.log("Right button clicked") ;
break;

}

onPositionChanged: {
console.log("Position: ["+mouse.x+"; "+mouse.y+"]")

Time for action - notifying the environment ahout button states

We have added some code to make the button look more natural by changing its visual
aspects. Now, let's extend the button programming interface so that developers can use
more features of the button.

The first thing we can do is make button colors definable by introducing some new
properties for the button. Let's put the highlighted code at the beginning of the button
component definition:

Rectangle
id: button
property color topColor: "j#eeeeee"
property color bottomColor: "#777777"
property color textColor: "black"
property color textPressedColor: "white"
signal clicked()

Then, we'll use the new definitions for the background gradient:

gradient: Gradient ({
GradientStop { position: 0; color: button.topColor }
GradientStop { position: 1; color: button.bottomColor }

}

Now for the text color:

Text {
id: buttonText

3401

Chapter 9

text: "ButtonText"
color: buttonMouseArea.containsMouse ?
button.textPressedColor : button.textColor

}

Also, please notice that we used the pressed property of MouseArea to detect whether
a mouse button is currently being pressed on the area. We can equip our button with a
similar property. Add the following code to the But ton component:

property alias pressed: buttonMouseArea.pressed

What just happened?

The first set of changes introduced four new properties defining four colors that we later
used in statements defining gradient and text colors for the button. In QML, you can define
new properties for objects with the property keyword. The keyword should be followed
by the property type and property name. QML understands many property types, the most
common being int, real, string, font, and color. Property definitions can contain an optional
default value for the property preceded with a colon. The situation is different with the
pressed property definition. You can see that for the property type, the definition contains
the word alias. It is not a property type, but rather an indicator that the property is really
an alias to another property—each time the pressed property of the button is accessed,

the value of the buttonMouseArea.pressed property is returned, and every time the
property is changed, it is the mouse area's property that really gets changed. With a regular
property declaration, you can provide any valid expression as the default value because

the expression is bound to the property. With a property alias, it is different—the value is
mandatory and has to be pointing to an existing property of the same or an other object. You
can treat property aliases in a similar way as references in C++.

Consider the following two definitions:

property int foo: someobject.prop
property alias bar: someobject.prop

At first glance, they are similar as they point to the same property and therefore, the values
returned for the properties are the same. However, the properties are really very different,
which becomes apparent if you try to modify their values:

foo = 7
bar = 7

The first property actually has an expression bound to it, so assigning 7 to foo simply
releases the binding and assigns the value 7 to the foo property, leaving someobject . prop
with its original value. The second statement, however, acts like a C++ reference; therefore,
assigning a new value applies the modification to the someobject.prop property the alias is
really pointing to.

[3m1

Qt Quick Basics

Speaking of properties, there is an easy way to react when a property value is modified. For
each existing property, there is a handler available that is executed whenever the property
value is modified. The handler name is on followed by the property name, then followed by the
word Changed, all in camel case—thus, for a foo property, it becomes onFooChanged and for
topColor, it becomes onTopColorChanged. To log the current press state of the button to
the console, all we need to do is implement the property change handler for this property:

Button {
/]

onPressedChanged:
console.log("The button is currently "
+(pressed ? "" : "not ")+"pressed")

Touch input

As mentioned earlier, MouseArea is the simplest of input event elements. Nowadays, more
and more devices have touch capabilities and Qt Quick can handle them, as well. Currently,
we have three ways of handling touch input.

First of all, we can keep using MouseArea as simple touch events are also reported as mouse
events; therefore, tapping and sliding a finger on the screen is supported out-of-the-box. The
following exercise works on touch-capable devices, as well, when using mouse as input.

Time for action - dragging an item around

Create a new Qt Quick UI project. Modify the default code by discarding the existing child
items and adding a circle instead:

Rectangle
id: circle
width: 60; height: width
radius: width/2
color: "red"

}
Next, use the drag property of MouseArea to enable moving the circle by touch (or mouse):

MouseArea {
anchors.fill: parent
drag.target: circle

}

Then, you can start the application and begin moving the circle around.

[3421

Chapter 9

What just happened?

A circle was created by defining a rectangle with its height equal to width, making it a

square and rounding the borders to half the side length. The drag property can be used to
tell MouseArea to manage a given item's position using input events flowing into the area
element. We denote the item to be dragged by using the target subproperty. You can use
other subproperties to control the axis the item is allowed to move along or constrain the
move to a given area. An important thing to remember is that the item being dragged cannot
be anchored for the axis on which the drag is requested; otherwise, the item will respect

the anchor and not the drag. We didn't anchor our circle item at all since we want it to be
draggable along both axes.

The second approach to handling touch input in Qt Quick applications is to use PinchArea,
which is an item similar to MouseArea, but rather than dragging an item around, it allows
you to rotate or scale it using two fingers (with a so called "pinch" gesture), as shown. Be
aware that pinchArea reacts only to touch input, so to test the example you will need a real
touch capable device.

Time for action - rotating and scaling a picture hy pinching

Start a new Qt Quick UI project. In the QML file, delete everything but the external item.
Then, add an image to the Ul and make it centered in its parent:

Image {
id: image
anchors.centerIn: parent

source: "wilanow.jpg"

[343]

Qt Quick Basics

Now, we will add a PinchArea element. This kind of item can be used in two ways—either
by manually implementing signal handlers onPinchStarted, onPinchUpdated, and
onPinchFinished to have total control over the functionality of the gesture or by using a
simplified interface similar to the drag property of MouseArea. Since the simplified interface
does exactly what we want, there is no need to handle pinch events manually. Let's add the
following declaration to the file:

PinchArea ({
anchors.fill: parent
pinch {
target: image
minimumScale: 0.2; maximumScale: 2.0
minimumRotation: -90; maximumRotation: 90
}
}

You'll get an output similar to the following screenshot:

x
O
x

g) R gqmlscene

What just happened?

Our simple application loads an image and centers it in the view. Then, there is a PinchArea
item filling the view area that is told to operate on the image object. We define the range of
the scaling and rotating of the item. The rest is left to the Pincharea item itself. If you start
interacting with the application, you will see the item rotate and scale. What really happens
behind the scenes is that PinchArea modifies the values of the two properties each Qt
Quick item has—rotation and scale

(3141

Chapter 9

i PinchArea can also control the dragging of the item with
% pinch.dragAxis, just like MouseArea does with drag,
A but for simplicity, we didn't use this part of the API. Feel free to
experiment with it in your own code.

Of course, you don't have to use PinchArea to rotate or scale an item. Properties controlling
those aspects are regular properties that you can read and write at any time. Try replacing
PinchArea with MouseArea to obtain a result similar to what we just did by modifying

the scale and rotation properties as a result of receiving mouse events—when the user drags

the mouse while pressing the left button, the image is scaled and when the user does the

same while pressing the right button, the image is rotated. You can control which buttons
trigger mouse events by manipulating the acceptedButtons property (setting it to

Qt .LeftButton|Qt.RightButton will cause both buttons to trigger events). The button that
triggers the event is reported in the event object (which is called mouse) through its button
property, and the list of all buttons currently pressed is available in the but ton property:

MouseArea {
acceptedButtons: Qt.LeftButton | Qt .RightButton
onPositionChanged: console.log(mouse.button)

}

If you manage to do the task, try replacing MouseArea with PinchArea again, but then
instead of using the pinch property, handle events manually to obtain the same effect (the
event object is called pinch and has a number of properties you can play with).

A third approach to handling touch input is by using the Mult iPointTouchArea item. It
provides a low-level interface to gestures by reporting each touch point separately. It can be
used to create custom high-level gesture handlers similar to PinchArea.

So far, we've been dealing with pointer input, but user input is not just that—we can also
handle keyboard input. This is quite simple and basically boils down to two easy steps.

First, you have to enable receiving keyboard events by stating that a particular item has
keyboard focus:

focus: true

[3451]

Qt Quick Basics

Then, you can start handling events by writing handlers in a similar fashion as for mouse
events. However, Item doesn't provide its own handler for manipulating keys that is a
counterpart for keyPressEvent and keyReleaseEvent of QWidget. Instead, adequate
handlers are provided by the Keys attached property.

Attached properties are provided by elements that are not used as stand-alone elements
but instead provide properties to other objects by getting attached to them. This is a way
of adding support for new properties without modifying the API of the original element

(it doesn't add new properties through an is-a relation, but rather through a has-a one).
Each object that references an attached property gets its own copy of the attaching object
that then handles the extra properties. We will come back to attached properties later in
this chapter. For now, you just need to remember that in certain situations, an element can
obtain additional properties that are not part of its API.

Let's go back to implementing event handlers for keyboard input. As we said earlier, each
Iltem has a Keys attached property that allows us to install our own keyboard handlers. The
basic two signals Keys adds to Item are pressed and released; therefore, we can implement
the onPressed and onReleased handlers that have a KeyEvent argument providing
similar information as QKeyEvent in the widget world. As an example, we can see an item
that detects when a spacebar was pressed:

Rectangle
focus: true
Keys.onPressed: { if(event.key == Qt.Key Space) color = "red" |}
Keys.onReleased: { if (event.key == Qt.Key Space) color = "blue" }

}

It might become problematic if you want to handle many different keys in the same item as the
onPressed handler would likely contain a giant switch section with branches for every possible
key. Fortunately, Keys offers more properties. Most of the commonly used keys (but not letters)
have their own handlers that are called when the particular key is pressed. Thus, we can easily
implement an item that takes a different color depending on which key was pressed last:

Rectangle
focus: true

Keys.onSpacePressed: color = "purple"
Keys.onReturnPressed: color = "navy"
Keys.onVolumeUpPressed: color = "blue"
Keys.onRightPressed: color = "green"
Keys.onEscapePressed: color = "yellow"
Keys.onTabPressed: color = "orange"
Keys.onDigitOPressed: color = "red"

}

Please note that there is still a single released signal even if a key has its own pressed signal.

[346]

Chapter 9

Now, consider another example:

import QtQuick 2.1

Item {
property int number: 0
width: 200; height: width
focus: true
Keys.onSpacePressed: number++

Text { text: number; anchors.centerIn: parent }

}

We would expect that when we press and hold the spacebar, we will see the text change
from 0 to 1 and stay on that value until we release the key. If you run the example, you will
see that instead, the number keeps incrementing as long as you hold down the key. This is
because by default, the keys auto-repeat—when you hold the key, the operating system keeps
sending a sequence of press-release events for the key (you can verify that by adding the
console.log () statements to the Keys.onPressed and Keys .onReleased handlers).
To counter this effect, you can either disable key repeats in your system (which will, of
course, not work if someone installs your program on his or her own computer) or you can
differentiate between auto-repeat and regular events. In Qt Quick, you can do this easily as
each key event carries the appropriate information. Simply replace the handler from the last
example with the following one:

Keys.onSpacePressed: if (!event.isAutoRepeat) number++

The event variable we use here is the name of the parameter of the spacePressed signal.
As we cannot declare our own names for the parameters like we can do in C++, for each signal
handler you will have to look up the name of the argument in the documentation, as shown:

= spacePressed(KeyEvent event)

In standard C++ applications, we usually use the Tab key to navigate through focusable items.
With games (and fluid user interfaces in general), it is more common to use arrow keys for
item navigation. Of course, we can handle this situation by using the Keys attached property
and adding Keys.onRightPressed, Keys .onTabPressed, and other signal handlers

to each of our items where we want to modify the focus property of the desired item, but

it would quickly clutter our code. Qt Quick comes to our help once again by providing a
KeyNavigation attached property, which is meant to handle this specific situation and
allows us to greatly simplify the needed code. Now, we can just specify which item should
get into focus when a specific key is triggered:

Row {
spacing: 5

3411

Qt Quick Basics

Rectangle

id: first
width: 50; height: width
color: focus ? "blue" : "lightgray"

focus: true

KeyNavigation.right: second
}
Rectangle
id: second
width: 50; height: width
color: focus ? "blue" : "lightgray"

KeyNavigation.right: third
KeyNavigation.left: first

}

Rectangle

id: third
width: 50; height: width
color: focus ? "blue" : "lightgray"

KeyNavigation.left: second

}
}

Notice that we made the first item get into focus in the beginning by explicitly setting the
focus property.

Both the Keys and KeyNavigation attached properties have a way to define the order in
which each of the mechanisms receive the events. This is handled by the priority property,
which can be set to either BeforeItem or AfterItem. By default, Keys will get the

event first (BeforeItem), then the internal event handling can take place and finally,
KeyNavigation will have a chance of handling the event (AfterItem). Note that if the key
is handled by one of the mechanisms, the event is accepted and the remaining mechanisms
will not be able to handle that event.

Have a go hero - practicing key-event propagation

As an exercise, you can expand our last example by building a larger array of items (you can
use the Grid element to position them) and defining a navigation system that makes use of
the KeyNavigation attached property. Have some of the items handle events themselves
using the Keys attached property. See what happens when the same key is handled by both
mechanisms. Try influencing the behavior using the priority property.

3481

Chapter 9

Apart from the attached properties we described, Qt Quick provides built-in elements for
handling keyboard input. The two most basic types are Text Input and TextEdit, which
are QML equivalents of QLineEdit and QTextEdit. The former are used for single-line text
input, while the latter serve as its multi-line counterpart. They both offer cursor handling,
undo-redo functionality, and text selections. You can validate text typed into Text Input by
assigning a validator to the validator property. For example, to obtain an item where the
user can input a dot-separated IP address, we could use the following declaration:

TextInput {
id: ipAddress
width: 100
validator: RegExpValidator {
regExp: /\d+\.\d+\.\d+\.\d+/
/* four numbers separated by dots*/

}

focus: true

}

The regular expression only verifies the format of the address. The user can still insert bogus
numbers. You should either do a proper check before using the address or provide a more
complex regular expression that will constrain the range of numbers the user can enter.

One thing to remember is that neither Text Input nor TextEdit has any visual appearance
(apart from the text and cursor they contain), so if you want to give the user some visual hint
as to where the item is positioned, the easiest solution is to wrap it in a styled rectangle:

Rectangle
id: textInputFrame
width: 200
height: 40
border { color: "black"; width: 2 }
radius: 10
antialiasing: true
color: "darkGray"

}

TextInput {
id: textInput
anchors.fill: textInputFrame
anchors.margins: 5
font.pixelSize: height-2
verticalAlignment: TextInput.AlignVCenter
clip: true

Qt Quick Basics

Notice the highlighted code—the c1ip property of text Input—is enabled such that by
default, if the text entered in the box doesn't fit in the item, it will overflow it and remain
visible outside the actual item. By enabling clipping, we explicitly say that anything that
doesn't fit the item should not be drawn.

A quick brown f|

By now, you should be familiar with the very basics of QML and Qt Quick. Now, we can start
combining what you know and fill the gaps with more information to build a functional Qt
Quick application. Our target is going to be to display an analog clock.

Time for action - a simple analog clock application

Create a new Qt Quick UI project. To create a clock, we will implement a component
representing the clock needle and we will use instances of that component in the actual
clock element. In addition to this, we will make the clock a reusable component; therefore,
we will create it in a separate file and instantiate it from within main.qml:

import QtQuick 2.0

Clock {
id: clock
width: 400
height: 400

}

Then, add the new QML file to the project and call it C1lock.gml. Let's start by declaring a
circular clock plate:

import QtQuick 2.0

Item {
id: clock

property color color: "lightgray"

Rectangle
id: plate

Chapter 9

anchors.centerIn: parent

width: Math.min(clock.width, clock.height)
height: width

radius: width/2

color: clock.color

border.color: Qt.darker (color)
border.width: 2

}

If you run the program now, you'll see a plain gray circle hardly resembling a clock plate:

The next step is to add marks dividing the plate into 12 sections. We can do this by putting
the following declaration inside the plate object:

Repeater {
model: 12

Item {
id: hourContainer

property int hour: index
height: plate.height/2
transformOrigin: Item.Bottom
rotation: index * 30

x: plate.width/2

y: 0

Rectangle
width: 2

3511

Qt Quick Basics

height: (hour % 3 == 0) ? plate.height*0.1

: plate.height*0.05
color: plate.border.color
antialiasing: true
anchors.horizontalCenter: parent.horizontalCenter
anchors.top: parent.top
anchors.topMargin: 4

}
}
}

Running the program should now give the following result, looking much more like
a clock plate:

What just happened?

The code we just created introduces a couple of new features. Let's go through them one
by one.

First of all, we used a new element called Repeater. It does exactly what its name says—it
repeats items declared within it using a given model. For each entry in the model, it creates an
instance of a component assigned to a property called delegate (the property name means
that it contains an entity to which the caller delegates some responsibility, such as describing
a component to be used as a stencil by the caller). Item declared in Repeater describes

the delegate even though we cannot see it explicitly assigned to a property. This is because
delegate is a default property of the Repeater type, which means anything unassigned to
any property explicitly gets implicitly assigned to the default property of the type.

13521

Chapter 9

The Item type also has a default property called data. It holds a list of elements that gets
automatically split into two "sublists"—the list of the item's children (which creates the
hierarchy of Item instances in Qt Quick) and another list called resources, which contains all
"child" elements that do not inherit from Item. You have direct access to all three lists which
means calling children [2] will return the third Item element declared in the item, and
data [5] will return the sixth element declared in the Ttem regardless of whether the given
element is a visual item (that inherits Item) or not.

The model can be a number of things but in our case, it is simply a number denoting

how many times the delegate should be repeated. The component to be repeated is a
transparent item containing a rectangle. The item has a property declared called hour that
has something called index bound to it. The latter is a property assigned by Repeater to
each instance of the delegate component. The value it contains is the index of the instance
in the Repeater object—since we have a model containing twelve elements, index will hold
values within a range of 0 to 11. The item can make use of the index property to customize
instances created by Repeater. In this particular case, we use index to provide values for a
rotation property and by multiplying the index by 30, we get values starting from 0 for the
first instance and ending at 330 for the last one.

The rotation property brings us to the second most important subject—item
transformations. Each item can be transformed in a number of ways, including rotating

the item and scaling it in two-dimensional space as we already mentioned earlier. Another
property called transformOrigin denotes the origin point around which scale and
rotation are applied. By default, it points to Item. Center, which makes the item scale and
rotate around its center, but we can change it to eight other values such as Item. TopLeft
for the top-left corner or Item.Right for the middle of the right edge of the item. In

the code we crafted, we rotate each item clockwise around its bottom edge. Each item is
positioned horizontally in the middle of the plate using the plate.width/2 expression and
vertically at the top of the plate with the default width of 0 and the height of half the plate's
height; thus, each item is a thin vertical line spanning from within the top to the center of
the plate. Then, each item is rotated around the center of the plate (each item's bottom
edge) by 30 degrees more than a previous item effectively laying items evenly on the plate.

Finally, each item has a gray Rectangle attached to the top edge (offset by 4) and horizontally
centered in the transparent parent. Transformations applied to an item influence the item's
children similarly to what we have seen in Graphics View; thus, the effective rotation of the
rectangle follows that of its parent. The height of the rectangle depends on the value of hour,
which maps to the index of the item in Repeater. Here, you cannot use index directly as it

is only visible within the top-most item of the delegate. That's why we create a real property
called hour that can be referenced from within the whole delegate item hierarchy.

Qt Quick Basics

If you want more control over item transformations, then we are happy
to inform you that apart from rotation and scale properties, each item
can be assigned an array of elements such as Rotation, Scale,
and Translate to a property called transform, which are applied
%%‘ in order, one at a time. These types have properties for fine-grained
control over the transformation. For instance, using Rotation you
can implement rotation over any of the three axes and around a custom
origin point (instead of being limited to nine predefined origin points as
when using the rotation property of Item).

Time for action - adding needies to the clock

The next step is to add the hour, minute, and second needles to the clock. Let's start by
creating a new component called Needle in a file called Needle.gml (remember that
component names and files representing them need to start with a capital letter):

import QtQuick 2.0

Rectangle {
id: root

property int value: 0

property int granularity: 60

property alias length: root.height

width: 2

height: parent.height/2

radius: width/2

antialiasing: true

anchors.bottom: parent.verticalCenter
anchors.horizontalCenter: parent.horizontalCenter
transformOrigin: Item.Bottom

rotation: 360/granularity * (value % granularity)

}

Needle is basically a rectangle anchored to the center of its parent by its bottom edge,
which is also the item's pivot. It also has value and granularity properties driving the
rotation of the item, where value is the current value the needle shows and granularity
is the number of different values it can display. Also, anti-aliasing for the needle is enabled
as we want the tip of the needle nicely rounded. Having such a definition, we can use the
component to declare the three needles inside the clock plate object:

Needle ({
length: plate.height*0.3
color: "blue"

3541

Chapter 9

value:

Needle ({
length:
color:
value:

Needle ({
width:
length:
color:
value:

}

clock.hours; granularity: 12

plate.height*0.4
"darkgreen"
clock.minutes; granularity: 60

1
plate.height*0.45
n redll
clock.seconds; granularity: 60

The three needles make use the of hours, minutes, and seconds properties of clock, so
these need to be declared, as well:

property
property
property

int hours: 0
int minutes: 0
int seconds: 0

By assigning different values to the properties of Clock in main.qgml, you can make the
clock show a different time:

import QtQuick 2.0

Clock {
id: clock
width: 400
hours: 7
minutes: 42
seconds: 17

}

You'll get an output as shown:

Qt Quick Basics

What just happened?

Most Needle functionality is declared in the component itself, including geometry and
transformations. Then, whenever we want to use the component, we declare an instance of
Needle and optionally customize the 1ength and color properties, as well as set its value
and granularity to obtain the exact functionality we need.

Time for action — making the clock functional

The final step in creating a clock is to make it actually show the current time. In JavaScript,
we can query the current time using the Date object:

var currentDate = new Date ()

var hours = currentDate.getHours ()
var minutes = currentDate.getMinutes ()
var seconds = currentDate.getSeconds ()

Therefore, the first thing that comes to mind is to use the preceding code to show the
current time on the clock:

Item {
id: clock
property int hours: currentDate.getHours ()
property int minutes: currentDate.getMinutes ()
property int seconds: currentDate.getSeconds ()
property var currentDate: new Date ()
//

}

This will indeed show the current time once you start the application, but the clock will

not be updating itself as the time passes. This is because new Date () returns an object
representing one particular moment in time (the date and time at the moment when the
object was instantiated). What we need instead is to have the currentDate property
updated with a new object created as the current time changes. To obtain this effect, we can
use a Timer element that is an equivalent of QTimer in C++ and lets us periodically execute
some code. Let's modify the code to use a timer:

Item {
id: clock
property int hours: currentDate.getHours ()
property int minutes: currentDate.getMinutes ()
property int seconds: currentDate.getSeconds ()
readonly property var currentDate: new Date ()

Chapter 9

property alias running: timer.running
Timer
id: timer
repeat: true
interval: 500
running: true
onTriggered: clock.currentDate = new Date()

What just happened?

Based on the interval property, we can determine that the timer emits a triggered signal
every 500 ms, causing currentDate to be updated with a new Date object representing
the current time. The clock is also given a running property (pointing to its equivalent in
the timer) that can control whether updates should be enabled. The timer is set to repeat;
otherwise, it would trigger just once.

Dynamic objects

To briefly sum up what you have learned so far, we can say that you know how to create
hierarchies of objects by declaring their instances and you also know how to program new
types in separate files, making definitions available as components to be instantiated in
other QML files. You can even use the Repeater element to declare a series of objects
based on a common stencil.

We promised to give you more information about components and now is the time to do so.
You already know the basics of creating components in separate files. Every QML file beginning
with a capital letter is treated as a component definition. This definition can be used directly
by other QML files residing in the same directory as the component definition. If you need

to access a component definition from a file residing elsewhere, you will have to first import
the module containing the component in the file where you want to use it. The definition of a
modaule is very simple—it is just a relative path to the directory containing QML files. The path

is constructed using dots as the separator. This means that if you have a file named Baz . gqml
in a directory called Base/Foo/Bar and you want to use the Baz component from within the
Base/Foo/Ham.qml file, you will have to put the following import statement in Ham. gm1:

import "Bar"

3571

Qt Quick Basics

If you want to use the same component from within the Base/Spam.gml file, you will have
to replace the import statement with:

import "Foo.Bar"

Importing a module makes all its components available for use. You can then declare objects
of types imported from a certain module.

The problem with pre-declaring objects directly in a QML file is that you need to know

up front how many objects you are going to need. More often than not, you will want to
dynamically add and remove objects to your scene, for example, in an alien invasion game
where as the player progresses, new alien saucers will be entering the game screen and other
saucers will be getting shot down and destroyed. Also, the player's ship will be "producing"
new bullets streaking in front of the ship, eventually running out of fuel or otherwise
disappearing from the game scene. By putting a good amount of effort into the problem, you
would be able to use Repeater to obtain this effect, but there is a better tool at hand.

QML offers us another element type called Component, which is another way to teach the
engine about a new element type by declaring its contents in QML. There are basically two
approaches to doing this.

The first approach is to declare a Component element instance in the QML file and inline the
definition of the new type directly inside the element:

Component {
id: circleComponent
Item {
property int diameter: 20
property alias color: rect.color
property alias border: rect.border

implicitWidth: diameter
implicitHeight: diameter

Rectangle
id: rect
width: radius; height: radius; radius: diameter/2
anchors.centerIn: parent

Chapter 9

Such code declares a component called circleComponent that defines a circle and exposes
its diameter, color, and border properties

The other approach is to load the component definition from an existing QML file. QML
exposes a special global object called ot, which provides a set of interesting methods.
One of the methods allows the caller to create a component passing the URL of an existing
QML document:

var circleComponent = Qt.createComponent ("circle.gml")

An interesting note is that createComponent can not only accept a local file path but also a
remote URL, and if it understands the network scheme (for example, http), it will download
the document automatically. In this case, you have to remember that it takes time to do
that, so the component may not be ready immediately after calling createComponent.
Since the current loading status is kept in the status property, you can connect to the
statusChanged signal to be notified when this happens. A typical code path looks similar
to the following:

var circleComponent = Qt.createComponent
("http://example.com/circle.qml")

if (circleComponent.status === Component.Ready) {
// use the component
} else {
circleComponent . statusChanged.connect (function () {
if (circleComponent.status === Component.Ready) {
// use the component

}
|3)
}

If the component definition is incorrect or the document cannot be retrieved, the status of
the object will change to Error. In that case, you can make use of the errorString()
method to see what the actual problem is:

if (circleComponent.status === Component.Error) {
console.warn (circleComponent.errorString())

}

Once you are sure the component is ready, you can finally start creating objects from it.

For this, the component exposes a method called createObject. In its simplest form, it
accepts an object that is to become the parent of the newly born instance (similar to widget
constructors accepting a pointer to a parent widget) and returns the new object itself so that
you can assign it to some variable:

var circle = circleComponent.createObject (someltem)

Qt Quick Basics

Then, you can start setting the object's properties:

circle.diameter = 20
circle.color = 'red'

A more complex invocation lets us do both these operations (create the object and set its
properties) in a single call by passing a second parameter to createObject:

var circle = circleComponent.createObject (someltem,
{diameter: 20, color: 'red'})

The second parameter is an object (created here using JSON syntax) whose properties are to
be applied to the object being created. The advantage of the latter syntax is that all property
values are applied to the object as one atomic operation (just like usual when the item is
declared in a QML document) instead of a series of separate operations, each of which sets
the value for a single property, possibly causing an avalanche of change handler invocations
in the object.

After creation, the object becomes a first-class citizen of the scene, acting in the same way as
items declared directly in the QML document. The only difference is that a dynamically created
object can also be dynamically destructed by calling its destroy () method, which is an
equivalent of calling delete on C++ objects. When speaking of destroying dynamic items, we
have to point out that when you assign a result of createObject to a variable (like circle,
in our example) and that variable goes out of scope, the item will not be released and garbage
collected as its parent still holds a reference to it, preventing it from being recycled.

We didn't mention this explicitly before, but we have already used inline component
definitions earlier in this chapter when we introduced the Repeater element. The repeated
item defined within the repeater is in fact not a real item, but a component definition that is
instantiated as many times as needed by the repeater.

Another recurring scenario is that you do know how many elements you are going to need,
but the problem is that you cannot determine up front what type of elements they are going
to be. At some point during the lifetime of your application, you will learn that information
and will be able to instantiate an object. Until you gain the knowledge about the given
component, you will need some kind of item placeholder where you will later put the real
item. You can, of course, write some code to use the createObject () functionality of
the component, but this is cumbersome. Fortunately, Qt Quick offers a nicer solution in the
form of a Loader item. This item type is exactly what we described it to be—a temporary
placeholder for a real item that will be loaded on demand from an existing component. You
can put Loader in place of another item and when you need to create this item, one way is
to set the URL of a component to the source property:

Chapter 9

Loader {
id: 1ldr

}

ldr.source = "MightySword.gml"You could also directly attach
a real component to sourceComponent of a Loader:

Component
id: swordComponent

//

}

Loader {
id: 1ldr

sourceComponent : shouldBeLoaded ? swordComponent : undefined

}

Immediately afterwards, the magic begins and an instance of the component appears in the
loader. If the Loader object has its size set explicitly (for example, by anchoring or setting
the width and height), then the item will be resized to the size of the loader. If an explicit size
is not set, then Loader will instead be resized to the size of the loaded element once the
component is instantiated:

Loader {
anchors {
left: parent.left; leftMargin: 0.2*parent.width
right: parent.right;
verticalCenter: parent.verticalCenter

}

height: 250

source: "Armor.gml"

}

In the preceding situation, the loader has its size set explicitly so when its item is created, it
will respect the anchors and sizes declared here.

Accessing your item's component functionality

Each item in Qt Quick is an instantiation of some kind of component. Each object has a
Component attached property that offers two signals informing about important moments
of the object's life cycle. The first sighal-completed () —is triggered after the object

has been instantiated. If you provide a handler for the signal, you can perform some late
initialization of the object after it has been fully instantiated. There are many use cases for
this signal, starting with logging a message to the console:

Rectangle {
Component .onCompleted: console.log("Rectangle created")

}

[3611

Qt Quick Basics

A more advanced use of this signal is to optimize performance by delaying expensive
operations until the component is fully constructed:

Item {
id: root

QtObject {
id: priv

property bool complete: false

function layoutItems () ({
if (!complete) return
//
}
}
onChildrenChanged: priv.layoutItems ()
Component .onCompleted: { priv.complete = true;
priv.layoutItems(); }

}

When items are created, they are added to their parent's children property. Thus, as

items get created and destroyed, the value of that property is modified, triggering the
childrenChanged signal. As this happens, we would like to reposition the item's children
according to some algorithm. For that, we have an internal QtObject instance (representing
a QObject) called priv where we can declare functions and properties that will not be
visible outside the component definition. In there, we have a 1ayoutItems () function that
is called whenever the list of children is updated. This is fine if items are created or destroyed
dynamically (for example, using the Component . createObject () function). However, as
the root object is being constructed, it may have a number of child items declared directly in
the document. There is no point in repositioning them over and over again as declarations
are instantiated. Only when the list of objects is complete does it make sense to position

the items. Therefore, we declare a Boolean property in the private object denoting whether
the root item is fully constructed. Until it is, every time layoutItems () is called, it will exit
immediately without doing any computations. When Component .onCompleted is called,
we raise the flag and call 1layoutItems (), which computes the geometry of all child items
declared statically in the document.

The other signal in the attached Component property is destruction. It is triggered

right after the destruction process for the object starts when the component is still fully
constructed. By handling that signal, you can perform actions such as saving the state of the
object in persistent storage or otherwise cleaning the object up.

13621

Chapter 9

Declaring graphical items is nice and easy but as programmers, we're more used to writing
imperative code, and some things are easier expressed as an algorithm rather than as a
description of the final result to be achieved. It is easy to use QML to encode a definition

of a primitive shape such as a rectangle in a compact way-all we need is to mark the origin
point of the rectangle, its width, height, and optionally, a color. Writing down a declarative
definition of a complex shape consisting of many control points positioned in given absolute
coordinates, possibly with an outline in some parts of it, maybe accompanied by an image

or two, is still possible in language such as QML; however, this will result in a much more
verbose and much less readable definition. This is a case where using an imperative approach
might prove more effective. HTML (being a declarative language) already exposes a proven
imperative interface for drawing different primitives called a Canvas that has been used in
numerous Web applications. Fortunately, Qt Quick provides us with its own implementation
of a Canvas interface similar to the one from the Web by letting us instantiate Canvas items.
Such items can be used to draw straight and curved lines, simple and complex shapes, and
graphs and graphic images. It can also add text, colors, shadows, gradients, and patterns. It
can even perform low-level pixel operations. Finally, the output may be saved as an image
file or serialized to a URL usable as source for an Image item. There are many tutorials and
papers available out there on using an HTML canvas and they can usually be easily applied to
a Qt Quick canvas, as well (the reference manual even includes a list of aspects you need to
pay attention to when porting HTML canvas applications to a Qt Quick canvas), so here we will
just give you the very basics of imperative drawing in Qt Quick.

Consider a game where the player's health is measured by the condition of his heart—-the
slower the beat, the more healthy the player is. We will use this kind of visualization as our
exercise in practicing painting using the Canvas element.

Time for action — preparing Ganvas for heartheat visualization

Let's start with simple things by creating a Quick Ul project based on the latest version of Qt
Quick. Rename the QML file Creator made for us to HeartBeat .gml. Open the gmlproject
file that was created with the project and change the mainFile property of the Project
object to HeartBeat .qml. Then, you can close the gqmlproject document and return to
HeartBeat .qgml. There, you can replace the original content with the following:

import QtQuick 2.2

Canvas {
id: canvas

implicitWidth: 600
implicitHeight: 300

Qt Quick Basics

onPaint: {
var ctx = canvas.getContext ("2d")
ctx.clearRect (0, 0, canvas.width, canvas.height)

}
}

When you run the project, you will see... a blank window.

What just happened?

In the preceding code, we created a basic boilerplate code for using a canvas. First, we
renamed the existing file to what we want our component to be called, and then we
informed Creator that this document is to be executed when we run the project using
gmlscene.

Then, we created a Canvas instance with an implicit width and height set. There, we created
a handler for the paint signal that is emitted whenever the canvas needs to be redrawn.
The code placed there retrieves a context for the canvas, which can be thought of as an
equivalent to the QPainter instance we used when drawing on Qt widgets. We inform the
canvas that we want its 2D context, which gives us a way to draw in two dimensions. A 2D
context is the only context currently present for the Canvas element, but you still have to
identify it explicitly—similar to in HTML. Having the context ready, we tell it to clear the whole
area of the canvas. This is different to the widget world in which when the paintEvent
handler was called, the widget was already cleared for us and everything had to be

redrawn from scratch. With Canvas, it is different; the previous content is kept by default

so that you can draw over it if you want. Since we want to start with a clean sheet, we call
clearRect () on the context.

Time for action - drawing a heartheat

We will extend our component now and implement its main functionality—drawing a
heartbeat-like diagram.

Add the following property declarations to canvas:

property int lineWidth: 2
property var points: []
property real arg: -Math.PI

[364]

Chapter 9

Below, add a declaration for a timer that will drive the whole component:

Timer
interval: 10
repeat: true
running: true
onTriggered: {
arg += Math.PI/180
while (arg >= Math.PI) arg -= 2*Math.PI

}
Then, define the handler for when the value of arg is modified:

onArgChanged: {
points.push (func (arg))
points = points.slice(-canvas.width)
canvas.requestPaint ()

}
Then, implement func:

function func (argument) {
var a=(2*Math.PI/10); var b=4*Math.PI/5
return Math.sin(20*argument) * (
Math.exp (-Math.pow (argument/a, 2)) +
Math.exp (-Math.pow ((argument-b) /a,2)) +
Math.exp (-Math.pow ((argument+b) /a,2))

}
Finally, modify onPaint:

onPaint: {

var ctx = canvas.getContext ("2d")

ctx.reset ()

ctx.clearRect (0, 0, canvas.width, canvas.height)

var pointsToDraw = points.slice(-canvas.width)

ctx.translate (0, canvas.height/2)

ctx.beginPath ()

ctx.moveTo (0, -pointsToDraw[0] *canvas.height/2)

for(var i=1; i<pointsToDraw.length; i++)
ctx.lineTo (i, -pointsToDraw[i]*canvas.height/2)

ctx.lineWidth = canvas.lineWidth

ctx.stroke ()

Qt Quick Basics

Then, you can run the code and see a heart beat-like diagram appear on the canvas:

What just happened?

We added two kinds of properties to the element. By introducing 1ineWidth, we can
manipulate the width of the line that visualizes the heartbeat. The points and arg
variables are two helper variables that store an array of points already calculated and the
function argument that was last evaluated. The function we are going to use is a periodic
function that extends from -1I to +1II; thus, we initialize arg to -Math.PI and we store an
empty array in points.

Then, we added a timer that ticks in regular intervals, incrementing arg by 1° until it reaches
+1I, in which case it is reset to the initial value.

Changes to arg are intercepted in the handler we implemented next. In there, we push a
new item to the array of points. The value is calculated by the function func, which is quite
complicated, but it is sufficient to say that it returns a value from within a range of -1 to
+1. The array of points is then compacted using Array.slice () so that at most, the last
canvas.width items remain in the array. This is so we can plot one point for each pixel of the
width of the canvas and we don't have to store any more data than required. At the end of
the function, we invoke requestPaint (), which is an equivalent of QWidget : :update ()
and schedules a call to paint.

Chapter 9

That, in turn, calls our onPaint. There, after retrieving the context, we reset the canvas

to its initial state and then calculate an array of points that is to be drawn again by using
slice (). Then, we prepare the canvas by translating and scaling it in the vertical axis so that
the origin is moved to half of the height of the canvas (that's the reason for calling reset ()
at the beginning of the procedure—to revert this transformation). After that, beginPath ()

is called to inform the context that we are starting to build a new path. Then, the path is built
segment by segment by appending lines. Each value is multiplied by canvas.height/2 so
that values from the point array are scaled to the size of the item. The value is negated as the
vertical axis of the canvas grows to the bottom and we want positive values to be above the
origin line. After that, we set the width of the pen and draw the path by calling stroke ().

Time for action - making the diagram more colorful

The diagram serves its purpose, but it looks a bit dull. Add some shine to it by defining three
new color properties in the canvas object—color, topColor, bottomColor—and setting
their default values to black, red, and blue, respectively.

Since points and arg should not really be public properties that anyone can change
behind our backs, we'll correct it now. Declare a child element of the canvas of QtObject
and set its ID to priv. Move declarations of points and arg inside that object. Move the
onArgChanged handler there, as well:

QtObject {
id: priv
property var points: []
property real arg: -Math.PI

onArgChanged: {
points.push (func (arg))
points = points.slice(-canvas.width)
canvas.requestPaint ()

}
}

Then, search through the whole code and prefix all occurrences of arg and points
outside the newly declared object with priv, so that each of their invocations lead
to the priv object.

Then, let's make use of the three colors we defined by extending onPaint:
onPaint: {
// £ill:

ctx.beginPath/()
ctx.moveTo (0, O0)

[3671

Qt Quick Basics

var i
for(i=0; i<pointsToDraw.length; i++)

ctx.lineTo(i, -pointsToDrawl[i] *canvas.height/2)
ctx.lineTo (i, 0)

var gradient = ctx.createlLinearGradient (0,
-canvas.height/2, 0, canvas.height/2)

gradient.addColorStop (0.1, canvas.topColor)
gradient.addColorStop (0.5, Qt.rgba(l, 1, 1, 0))
gradient.addColorStop (0.9, canvas.bottomColor)
ctx.fillStyle = gradient

ctx.f£i11()

// stroke:

ctx.beginPath ()

ctx.moveTo (0, -pointsToDraw[0] *canvas.height/2)

for(var i=1; i<pointsToDraw.length; i++)
ctx.lineTo (i, -pointsToDraw[i]*canvas.height/2)

ctx.lineWidth = canvas.lineWidth

ctx.strokeStyle = canvas.color

ctx.stroke ()

}

Upon running the preceding code snippet, you get the following output:

What just happened?

By moving the two properties inside the priv object, we have effectively hidden them from
the external world as child objects of an object (such as priv being a child of canvas) are
not accessible from outside the QML document that defines the object. This ensures that
neither points nor arg can be modified from outside the HeartBeat .qml document.

Chapter 9

The modifications to onPaint that we implemented are creating another path and using
that path to fill an area using a gradient. The path is very similar to the original one, but it
contains two additional points that are the first and last point drawn projected onto the
horizontal axis. This makes sure the gradient fills the area properly. Please note that the
canvas uses imperative code for drawing; therefore, the order of drawing the fill and the
stroke matters—the fill has to be drawn first so that it doesn't obscure the stroke.

0t Quick and C++

Thus far, we have been using standard Qt Quick items or creating new ones by compositing
existing element types in QML. But there is a lot more you can do if you interface QML and
C++ using the technologies Qt has to offer. Essentially, QML runtime does not differ much
in its design from Qt Script, which you read about in the previous chapter of this book. In
the following paragraphs, you will learn how to gain access to objects living in one of the
environments from within the other one, as well as how to extend QML with new modules
and elements.

Until now, all the example projects we did in this chapter were written with just QML and
because of that, the project type we were choosing was Qt Quick Ul, which let us quickly
see the Qt Quick scene we modeled by interpreting it with the gmlscene tool. Now, we will
want to add C++ to the equation and since C++ is a compiled language, we will need to do
some proper compilation to get things working. Therefore, we will be using the Qt Quick
Application template.

Creating QML ohjects from C++

When you start a new project of such a type in Qt Creator, after you answer the question
about the component set you would like to use (choose any of the Qt Quick 2.x options for
a regular Qt Quick application), you will receive some boilerplate code—a main. cpp file
containing the C++ part and main.qgml, which contains the scene definition. Let's have a
look at the latter first:

import QtQuick 2.3
import QtQuick.Window 2.2

Window {
visible: true
width: 360

height: 360

MouseArea {
anchors.fill: parent
onClicked: {

Qt.quit () ;

Qt Quick Basics

}
}

Text {
text: gsTr("Hello World")
anchors.centerIn: parent

}
}

The code is a little bit different than before; just look at the highlighted parts. Instead of
an Item root object, we now have a Window together with an import statement for a
QtQuick.Window module. To understand why this is the case, we will have to understand
the C++ code which invokes this QML document:

#include <QGuiApplications>
#include <QQmlApplicationEngines>

int main(int argc, char *argv([])

{

QGuiApplication app(argc, argv);

QOmlApplicationEngine engine;
engine.load (QUrl (QStringLiteral ("grc:/main.qml"))) ;

return app.exec() ;

}

The source code is pretty simple. First, we instantiate an application object, just like for
any other type of application. As we are not using Qt widgets, QGuiApplicationis
used instead of Qapplication. The last line of the main function is also obvious—the
application's event loop is started. Between those two lines, we can see an instance of
QOmlApplicationEngine being created and fed with the URL of our QML document.

QML is driven by an engine implemented in QQml1Engine that is somewhat similar to
QScriptEngine. QQmlApplicationEngine is a subclass of QQmlEngine, which provides
a simple way of loading an application from a single QML file. This class does not create

a root window to display our Qt Quick scene (QML applications don't have to necessarily

be Qt Quick applications; they don't have to deal with the user interface at all), so it is the
responsibility of the application to create a window if it wants to show a Qt Quick scene in it.

An alternative fit for loading Qt Quick-based user interfaces would be to use QQuickview
or its less convenient superclass—QQuickWindow, which inherit Qwindow and are able to
render Qt Quick scenes.

3101

Chapter 9

You could then replace the main. cpp contents with the following code:

#include <QGuiApplications>
#include <QQuickView>

int main(int argc, char *argv([])

{

QGuiApplication app(argc, argv) ;

QQuickView view;
view.setSource (QUrl: :fromLocalFile (QStringLiteral ("main.qgml"))) ;
view.show () ;

return app.exec() ;

}

Since QQuickView inherits QWindow, we can see that a window will be created to
encompass the Qt Quick scene defined in main.gml. In such an event, you could replace the
Window declaration with an Ttem similar to what we have seen in the earlier examples.

If you want to combine a Qt Quick scene with a Qt widgets-based
user interface, you can use QQuickWidget present in the
QtQuickWidgets module (add QT += quickwidgets

to the project file to activate the module), which is similar to
QQuickView and has a similar API, but instead of rendering the
scene to a separate window, it renders it to a widget you can then
put alongside other widgets.

Al

The last way of creating QML objects is to use QQm1lComponent. Contrary to the previous
approaches, which had a Qoml1Engine instance embedded in the object creating the QML
object, we have to use a separate engine with the component method.

QQmlComponent is a wrapper around a QML component definition similar to the
Component element on the QML side. It can create instances of that component with the
create () method using a given QQmlEngine instance:

QOmlEngine *engine = new QQmlEngine;
QOmlComponent component (engine,

QUrl: :fromLocalFile (QStringLiteral ("main.gml"))) ;
QObject *object = component.create() ;

[3nl

Qt Quick Basics

The object created is Q0bject, since that is the base class for all objects in QML. If the
object represents a Qt Quick user interface, you can cast it to QQuickItem and use its
methods to access Item's functionality:

QQuickItem *item = gobject cast<QQuickItem*s> (object) ;
Q CHECK PTR(item) ;

// assert to check if gobject cast returned a valid pointer
item->setOpacity (0.5) ;

QOmlComponent is the most "classic" way of instantiating QML objects. You can even use it
to create additional objects in existing views:

QQuickView *view;
/]

QQOmlComponent component (view->engine(),
QUrl: :fromLocalFile ("foobar.qml")) ;

component .create () ;

A variation on using QQml Component is to create an object in the QML engine
asynchronously using the QQml Incubator object. When creating complex objects, it takes
time for them to instantiate and at times, it is desired to not block the control flow for too
long by waiting for the operation to complete. In such cases, an incubator object can be used
to schedule instantiation and continue the flow of the program. We can query the state of
the incubator and when the object is constructed, we will be able to access it. The following
code demonstrates how to use the incubator to instantiate an object and process pending
events while waiting for the operation to complete:

QQOmlComponent component (engine,
QUrl: :fromLocalFile ("ComplexObject.qgml")) ;

QQmlIncubator incubator;

component .create (incubator) ;

while (!incubator.isError () && !incubator.isReady())
QCoreApplication: :processEvents () ;

QObject *object = incubator.isReady () ? incubator.object() : 0;

Pulling QML ohjects to C++

In our terminology, pulling QML objects to C++ means that by using C++ code, we would like
to gain access to objects living in the QML engine (for example, those declared in some QML
file). Before we do that, it is important that we stress that in general, it is bad practice to try

and pull objects from the QML engine. There are a few reasons for that, but we would like to
stress just two of them.

[3121

Chapter 9

First, if we assume the most common case, which is that the QML part of our application
deals with a user interface in Qt Quick for the logic written in C++, then accessing QtQuick
objects from C++ breaks the separation between logic and the presentation layer, which is
one of the major principles in GUI programming. The second reason is that QML documents
(and Qt Quick ones in particular) are often made by different people (designers) than those
who implement the application logic (programmers). The user interface is prone to dynamic
changes, relayouting up to a complete revamp. Heavy modifications of QML documents,
such as adding or removing items from the design, would then have to be followed by
adjusting the application logic to cope with those changes. This in turn needs recompilation
of the whole application, which is cumbersome. In addition, if we allow a single application
to have multiple user interfaces (skins), it might happen that because they are so different,
it is impossible to decide upon a single set of common entities with hardcoded names

that could be fetched from C++ and manipulated. Even if you managed to do that, such an
application could crash easily if the rules were not strictly followed by designers.

That said, we have to admit that there are cases when it does make sense to pull objects
from QML to C++, and that is why we decided to familiarize you with the way to do it. One of
the situations where such an approach is desired is when QML serves us as a way to quickly
define a hierarchy of objects with properties of different objects linked through more or less
complex expressions, allowing them to answer to changes taking place in the hierarchy.

For example, if you create a 9t Quick UI project, among the files generated, you will find a
amlproject file containing the project definition expressed in QML itself, such as this one:

import QmlProject 1.1

Project {
mainFile: "main.gml"

importPaths: ["plugins"]

QmlFiles {
files: ["Clock.gml", "Needle.gml"]
1
JavaScriptFiles {
directory: "."
!
ImageFiles ({
directory: "."

}

[3131

Qt Quick Basics

It contains project contents specified as a set of file selectors and additional properties such
as the main project file or a list of directories of where to look for QML modules. It is very
easy to specify such a project description in QML and after doing so and by getting a handle
on the Project instance from C++, one can read the required information directly from the
object and its properties as needed.

Project is considered a root object of this document. There are five ways to get access to a
root object, based on how the document was actually loaded into the engine:
QOmlApplicationEngine: :rootObjects () if using QQmlApplicationEngine
QQuickView: : rootObject () if using QQuickvView

QQuickWidget: : rootObject () if using QQuickWidget

QQmlComponent: : create () if using QQmlComponent

* 6 & o o

QOmlIncubator: :object () if using QOmlComponent with QQmlIncubator

As we noted earlier, after retrieving an object, you can downcast it to a proper type using
gobject cast. Alternatively, you can start using the object through the generic Q0bject
interface—accessing properties with property () and setProperty (), running functions
through QMetaObject: : invokeMethod (), and connecting to signals as usual.

The use case provided is a valid and fair situation when you want to pull a view root object or
a manually created object from the QML world into C++. Now, we are going to show you how
to do the same for an object from an arbitrary depth of the object tree.

QML documents define object trees. We can ask Qt to traverse a QObject tree and return
a single object or a list of objects in the tree matching specified criteria. The same approach
can be implemented for QML object trees. There are two criteria that can be used when
searching. First, we can search for objects inheriting from a given class. Then, we can search
for objects matching a given value of the objectName property defined in Q0bject. To
search the tree for objects, one uses a findChild template method.

Consider a Qt Quick document defining a number of items:

import QtQuick 2.0

Item {

width: 400; height: 400

Rectangle
id: rect
objectName: "redRectangle"
color: "red"
anchors.centerIn: parent
width: height; height: parent.height*2/3

[3m1

Chapter 9

Rectangle
id: circle
objectName: "blueCircle"
color: "blue"
anchors.centerIn: parent
radius: width/2; width: height; height: parent.height*1/3
}
}

After gaining access to the root object using one of the methods described earlier, we can
query the object tree for any of the colored shape items using the objectName values:

QO0bject *root = view->rootObject () ;
QO0bject *rect = root->findChild<QObject*> ("redRectangle") ;
QObject *circle = root->findChild<QObject*> ("blueCircle") ;
if (circle && rect)
circle->setProperty ("width", rect-sproperty ("width") .toInt()) ;

The £indChild () method requires us to pass a class pointer as the template argument.
Without knowing what class actually implements a given type, it is safest to simply pass
QObject* as, once again, we know all QML objects inherit this. It is more important what
gets passed as the function argument value—it is the name of the object we want returned.
Notice it is not 1d of the object, but the value of the objectName property. When the
results get assigned to the variables, we verify whether items have been successfully found
and if that is the case, the generic Q0bject APl is used to set the width of the circle to that
of the rectangle.

Let us stress this again: if you have to use this approach, limit it to the minimum. And always
verify whether the returned item exists (is a non-null pointer); the QML document might
change between subsequent compilations of the program, and items and their names
existing in one version of the document might cease to exist in the next version.

Pushing C++ ohjects to QML

A much better approach is to cross the boundary in the other direction—by exporting objects
from C++ to QML. This allows C++ developers to decide what API is available for the script.
The choice of which API to use is left to QML developers. Separation between the application
logic and the user interface is maintained.

In the previous chapter, you learned to use Qt Script. We told you how to expose existing
QObject instances to scripting through the use of the script engine's global object. We also
discussed execution contexts, which provide layers of object visibility while calling functions.
As already mentioned, QML has many similarities to that framework and in QML, a very
similar approach is used to expose objects to the engine.

[3151

Qt Quick Basics

QML engines also use contexts to provide data scopes for the language. You can set
properties on a context to make certain names resolve to given objects:

QOmlContext *context
QO0bject *object
context->setContextProperty("foo",

new QQmlContext (engine) ;

new MyObject(...);
object) ;

From this moment, object is visible within context under the name foo.

Contexts can form hierarchies. On the top of the hierarchy resides a root context of the engine.
Context properties are resolved from the bottom up, meaning that redefining a name in a child
context shadows the name defined in the parent context. Let's see an example:

QOmlContext *parentContext = new QQmlContext (engine) ;
Q0OmlContext *childContextl = new QQmlContext (parentContext) ;
Q0OmlContext *childContext2 = new QQmlContext (parentContext) ;
QOmlContext *childContext3 = new QQmlContext (parentContext) ;
QObject *objectA = new A, *objectB = new B, *object C = new C;
parentContext->setContextProperty ("foo", objectl);
childContextl->setContextProperty ("foo", objectB);
childContext2->setContextProperty ("foo", objectC);

We created instances of classes 2, B, and € and assigned them to a foo property of different
contexts forming a hierarchy of five contexts. Why five? When passing a Q0ml1Engine to

a constructor of QQmlContext, the context created becomes a child of the engine's root
context. Therefore, we have four contexts we created ourselves and an additional context
that always exists in the engine:

rootContext

A

parentContext
foo=A

childContext1
foo=B

childContext2
foo=C

childContext3

Now, if we call foo from within childContext1, we will access object B, and when we call
foo from childContext2, we will access C. If we call it from childContext3, then, since
foo is not defined there, the call will propagate to parentContext and hence A will be
accessed. In rootContext, the context foo will not be available at all.

[3161

Chapter 9

In most cases, we will not be creating contexts ourselves and thus, the most common
situation is when we will have control over just the root context since it always exists and is
easily accessible. Therefore, this context will usually be used to register C++ objects. As the
root engine context is an ancestor of all other contexts, an object registered there will be
visible from any QML document.

So what can we do with an exported object using QML? The object itself is accessible using
the identifier given to it with the setContextProperty (). The identifier can be treated
as the ID pseudo-property declared on objects in QML documents. Features that can be
accessed from QML depend on the kind of object exported.

You can export two kinds of object. First, you can export a Qvariant value that is then
converted to an equivalent QML entity. The following table lists the most commonly used
basic types:

Qt type QML basic type
bool bool
unsigned int, int int
double double
float, greal real
QString string
QUrl url
QColor color
QFont font
QDate date
QPoint, QPointF point
QSize, QSizeF size
QRect, QRectF rect

It allows us to export a wide range of objects:

int temperature = 17;
double humidity = 0.648;
QDate today = QDate::currentDate() ;

engine->rootContext () ->setContextProperty ("temperature",
temperature) ;

engine->rootContext () ->setContextProperty ("humidity", humidity) ;

engine->rootContext () ->setContextProperty ("today",

Qt.formatDate (today, ""));

[3ml

Qt Quick Basics

And use them easily in QtQuick:

import QtQuick 2.0

Rectangle

id: root

width: 400; height: width; radius: width/10
color: "navy"

border { width: 2; color: Qt.darker (root.color) }

}

Grid {

id: grid
anchors.centerIn: parent
columns: 2; spacing: 5

Text { color: "white"; font.pixelSize: 20; text: "Temperature:" }
Text { color: "white"; font.pixelSize: 20; text: temperature+"°C"}
Text { color: "white"; font.pixelSize: 20; text: "Humidity:" }
Text { color: "white"; font.pixelSize: 20; text: humidity*100+"%"}
}
Text {
anchors {
horizontalCenter: grid.horizontalCenter;
bottom: grid.top; bottomMargin: 5
}
font.pixelSize: 24; color: "white"
text: "Weather for "+Qt.formatDate (today)
}

This will give us the following output:

Weather for 10.01.2015
Temperature: 17°C

Humidity: 64.8%

[318]

Chapter 9

In addition to the basic types, the QML engine provides automatic type conversions between
special Qvariant cases and JavaScript types—QvariantList is converted to JavaScript
array and QvariantMap to a JavaScript object. This allows for an even more versatile
approach. We can group all the weather information within a single JavaScript object by
taking advantage of the QvariantMap conversion:

QVariantMap weather;

weather ["temperature"] = 17;

weather ["humidity"] = 0.648;

weather ["today"] = QDate::currentDate() ;
engine->rootContext () ->setContextProperty ("weather", weather);

As a result, we get better encapsulation on the QML side:

Grid {
//
Text { color: "white"; font.pixelSize: 20; text: "Temperature:" }
Text { color: "white"; font.pixelSize: 20; text:
weather.temperature+"°C" }
Text { color: "white"; font.pixelSize: 20; text: "Humidity:" }
Text { color: "white"; font.pixelSize: 20; text:
weather.humidity*100+"%"}
}
Text {
//

text: "Weather for "+Qt.formatDate (weather.today)

}

That's all fine and dandy in a world where weather conditions never change. In real life,
however, one needs a way to handle situations where the data changes. We could, of course,
re-export the map every time any of the values changed, but that would be very tedious.

Fortunately, the second kind of object that can be exported to QML comes to our rescue.
Apart from Qvariant, the engine can accept QObject instances as context property values.
When exporting such an instance to QML, all the object's properties are exposed and all its
slots become callable functions in the declarative environment. Handlers are made available
for all the object's signals.

[3191

Qt Quick Basics

Time for action - self-updating car dashhoard

In the next exercise, we will implement a car dashboard that can be used in a racing game
and will show a number of parameters such as current speed and motor revolutions per
minute. The final result will look similar to the following image:

15.01.2015

Tempe
Humidity:

10483 km

We will start with the C++ part. Set up a new Qt Quick Application. Choose the most recent
Qt Quick version for the Qt Quick component set. This will generate a main function for you
that instantiates QGuiApplication and QQmlApplicationEngine and sets them up to

load a QML document.

Use the File menu to create New file or Project and create a new C++ class. Call it CarInfo
and choose QWidget as its base class. Why not Q0bject, you may ask? This is because our
class will also be a widget, which will be used for modifying values of different parameters
so that we may observe how they influence what the Qt Quick scene displays. In the class
header, declare the following properties:

Q PROPERTY (int rpm READ rpm NOTIFY rpmChanged)

Q PROPERTY (int gear READ gear NOTIFY gearChanged)

Q PROPERTY (int speed READ speed NOTIFY speedChanged)

Q PROPERTY (QDate today READ today NOTIFY todayChanged)

Q PROPERTY (double distance READ distance NOTIFY distanceChanged)

Chapter 9

The properties are read-only and the NOTIFY clause defines signals emitted when respective
property values change. Go ahead and implement the appropriate functions for each
property. Apart from the getter, also implement a setter as a public slot. Here is an example
for a property controlling the speed of the car:

int CarInfo::speed() const { return m speed; }
void CarInfo::setSpeed(int newSpeed)

if (m_speed == newSpeed) return;

m_speed = newSpeed;

emit speedChanged(m_ speed) ;

}
You should be able to follow the example for the remaining properties on your own.

Since we want to use the widget to tweak property values, design the user interface for it
using a Qt Designer Form. It can something look like this:

RPM: = | 2700 |~ | Gear
Spesd;, = | 84 kph : W

IR
Distance === | 140517 .4 |+

Make appropriate signal-slot connections in the widget so that modifying any of the widgets
for a given parameter or using the setter slot directly updates all the widgets for that
parameter.

[381]

Qt Quick Basics

Instead of adding member variables to the CarInfo class for properties
such as speed, rpm, distance, or gear you can operate directly on
the widgets placed on the ui form so that, for example, a getter for the
distance property will look like:

greal CarInfo::distance() const
\l { return ui->distanceBox->value(); }
~ The setter would then be modified to:
void CarInfo::setDistance(greal newDistance)
{ ui->distanceBox->setValue (newDistance); }
You will then need to add connect () statements to the constructor to be
sure that signals are propagated from the ui form:

connect (ui->distanceBox,
SIGNAL (valueChanged (double)), this, SIGNAL (distanceC
hanged (double))) ;

Next, you can test your work by running the widget. To do this, you have to alter the main
function to look as follows:

int main(int argc, char **argv) {
QApplication app(argc, argv);
CarInfo cinfo;
cinfo.show() ;
return app.exec() ;

bi

Since we are using widgets, we have to replace QGuiApplication with QApplication
and enable the widgets module by placing QT += widgets in the project file (remember
to run gmake from the project's context menu afterwards). Make sure everything works as
expected (that is, that moving sliders and changing spinbox values reflect the changes to
widget properties) before moving on to the next step.

We are now going to add QtQuick to the equation, so let's start by updating our main
function to display our scene. Introduce the highlighted changes to the code:

int main(int argc, char **argv)
QApplication app(argc, argv);
CarInfo cinfo;
QQuickView view;
view.engine () ->rootContext () ->setContextProperty
("carData", &cinfo);
view.setSource("qgrc:/main.qgml") ;
view.show () ;
cinfo.show() ;
return app.exec() ;

13821

Chapter 9

The modifications create a view for our scene, export the CarInfo instance to the global
context of the QML engine, and load and display the scene from a file located in a resource.

It is important to first export all the objects and only then load the scene. This is because we
want all the names to be already resolvable when the scene is being initialized so that they
can be used right away. If we reversed the order of calls, we would get a number of warnings
on the console about the identities being undefined.

Finally, we can focus on the QML part. Look at the picture of the result we want to be shown
at the beginning of the exercise. For the black background, we used a bitmap image created
in a graphical editor (you can find the file in the materials for this book), but you can obtain
a similar effect by composing three black rounded rectangles directly in QtQuick—the two
outer parts are perfect circles and the inner module is a horizontally stretched ellipse.

If you decide to use our background file (or make your own prettier image), you can put the
following code into main.gml:

import QtQuick 2.3

Image {

source: "dashboard.png"

Item {
id: leftContainer
anchors.centerIn: parent
anchors.horizontalCenterOffset: -550
width: 400; height: width

}

Item {
id: middleContainer
anchors.centerIn: parent
width: 700; height: width

}

Item {
id: rightContainer
anchors.centerIn: parent
anchors.horizontalCenterOffset: 525
width: 400; height: width

Qt Quick Basics

What we do here is make the image our root item and create three items to serve as
containers for different elements of the dashboard. The containers are all centered in the
parent and we use a horizontalCenterOffset property to move the two outer items
sideways. The values of the offset, as well as the widths, are calculated by trial and error to
look good (note that all three containers are perfect squares). If instead of using our file, you
settle for creating the three parts yourself using Qt Quick items, the containers will simply be
anchored to the centers of the three black items.

The dials look complicated, but in reality, they are very easy to implement and you have
already learned everything you need to design them.

Let's start with the needle. Create a new QML document and call it Needle.gml. Open the
file and place the following content:

import QtQuick 2.0

Item {
id: root
property int length: parent.width*0.4
property color color: "white"
property color middleColor: "red"
property int size: 2

Rectangle // needle
width: root.size
height: length+20
color: root.color
anchors.horizontalCenter: parent.horizontalCenter
anchors.bottom: parent.bottom
anchors.bottomMargin: -20
antialiasing: true
}
Rectangle // fixing
anchors.centerIn: parent
width: 8+root.size; height: width; radius: width/2
color: root.color
Rectangle { // middle dot
anchors { fill: parent; margins: parent.width*0.25 }
color: root.middleColor

3841

Chapter 9

The document defines an item with four attributes—the length of the needle (defaults to
80% of the dial's radius), the color of the needle, middleColor, which stands for the color
of the needle's fixing, and the size, which defines how wide the needle is. The code is self-
explanatory. The item itself does not have any dimensions and onlys acts as an anchor for
visual elements—the needle itself is a thin rectangle oriented vertically with a fixing 20 units
from the end. The fixing is a circle of the same color as the needle with a smaller circle in
the middle that uses a different fill color. The smaller radius of the inner circle is obtained by
filling the outer circle with a 25% margin from each side.

As for the dials, we will put their code inline in the main file since we just have two of them
and they differ a bit, so the overhead of creating a separate component with a well-designed
set of properties would outweigh the benefits of having nicely encapsulated objects.

If you think about what needs to be done to have the dial displayed and working, it seems
the hardest thing is to layout the numbers nicely on the circle, so let's start with that. Here
is an implementation of a function for calculating the position along a circle circumference,
based on the radius of the circle and angle (in degrees) where an item should be positioned:

function calculatePosition(angle, radius) {
if (radius === undefined) radius = width/2*0.8
var a = angle * Math.PI/180 // convert degrees to radians
var px = width/2 + radius * Math.cos(a)
var py = width/2 + radius * Math.sin(a)
return Qt.point (px, py)

}

The function converts degrees to radians and returns the desired point. The function expects
a width property to be available that helps to calculate the center of the circle and in case a
radius was not given, serves as a means to calculate a feasible value for it.

With such a function available, we can use the already familiar Repeater element to
position items where we want them. Let's put the function in middleContainer and
declare the dial for car speed:

Item {
id: middleContainer
//
function calculatePosition(angle, radius) { /* ... */ }
Repeater {
model: 24/2
Item {
property point pt:
middleContainer.calculatePosition (120+index*12%*2)

Qt Quick Basics

X: pt.x; y: pt.y
Label {
anchors.centerIn: parent
text: index*20
}
}
}

Needle ({
anchors.centerIn: parent
length: parent.width#*0.35
size: 4
rotation: 210+ (carData.speed*12/10)
color: "yellow"

}

}

You might have noticed we used an element called Label. We created it to avoid having to
set the same property values for all the texts we use in the user interface:

import QtQuick 2.0

Text {
color: "white"
font.pixelSize: 24

}

The dial consists of a repeater that will create 12 elements. Each element is an item
positioned using the earlier described function. The item has a label anchored to it that
displays the given speed. We use 120+index*12+*2 as the angle expression as we want "0"
to be positioned at 120 degrees and each following item positioned 24 degrees further.

The needle is given rotation based on the value read from the carData object. Since the
angular distance between consecutive 20 kph labels is 24 degrees, the distance for one kph
is 1.2 and thus we multiply carData . speed by that factor. Item rotation is calculated with
0 degrees "pointing right"; therefore, we add 90 to the initial 120 degree offset of the first
label to obtain starting coordinates matching those of the label system.

As you can see in the image, the speed dial contains small lines every 2 kph, with those
divisible by 10 kph longer than others. We can use another Repeater to declare such ticks:

Repeater {
model: 120-4

Chapter 9

Item {
property point pt: middleContainer.calculatePosition (
120+index*1.2*2, middleContainer.width*0.35
)
X: pt.x; y: pt.y
Rectangle
width: 2
height: index % 5 2 5 : 10
color: "white"
rotation: 210+index*1.2%*2
anchors.centerIn: parent
antialiasing: true

}
Finally, we can put a label for the dial:

Text {
anchors.centerIn: parent
anchors.verticalCenterOffset: 40
text: "SPEED\n [kph]"
horizontalAlignment: Text.AlignHCenter
color: "#aaa"
font.pixelSize: 16

}

Make sure the label is declared before the dial needle, or give the needle a higher z value so
that the label doesn't overpaint the needle.

Next, repeat the process on your own for the left container by creating an RPM dial reading
values from carData.rpm. The dial also displays the current gear of the car's engine. Place
the following code inside the 1eftContainer object definition:

Item {
id: gearContainer
anchors.centerIn: parent
anchors.horizontalCenterOffset: 10
anchors.verticalCenterOffset: -10

Text {
id: gear
property int value: carData.gear
property var gears: [
"R", "N",

[3871

Qt Quick Basics

"lst", "2nd", "3rd",
"4<gsup>th</sup>", "S5th"

1

text: gears([value+1]

anchors.left: parent.left

anchors.bottom: parent.bottom

color: "yellow"

font.pixelSize: 32

textFormat: Text.RichText

}
}

The only part needing explanation is highlighted. It defines an array of gear labels starting
with reverse, going through neutral, and then through five forward gears. The array is then
indexed with the current gear and the text for that value is applied to the label. Notice that
the value is incremented by 1, which means the Oth index of the array will be used when
carData.gearissetto 1.

We will not show how to implement the right container. You can do that easily yourself
now with the use of the Grid positioner to lay out the labels and their values. To display
the series of controls on the bottom of the right container (with texts ABS, ESP, BRK, and
CHECK), you can use Row of Label instances.

Now, start the program and begin moving the sliders on the widget. See how the Qt Quick
scene follows the changes.

What just happened?

We have created a very simple QObject instance and exposed it as our "data model" to
QML. The object has a number of properties that can receive different values. Changing a
value results in emitting a signal, which in turn notifies the QML engine and causes bindings
containing those properties to be reevaluated? As a result, our user interface gets updated.

The data interface between the QML and C++ worlds that we created is very simple and

has a small number of properties. But as the amount of data we want to expose grows, the
object can become cluttered. Of course, we can counter that effect by dividing it into multiple
smaller objects each having separate responsibilities and then exporting all those objects

to QML, but that is not always desirable. In our case, we can see that rpm and gear are
properties of the engine sub-system so we could move them to a separate object; however,
in reality, their values are tightly coupled with the speed of the car and to calculate the speed,
we will need to know the values of those two parameters. But the speed also depends on
other factors such as the slope of the road, so putting the speed into the engine sub-system
object just doesn't seem right. Fortunately, there is a nice solution for that problem.

Chapter 9

Time for action - grouping engine properties

QML has a concept called grouped properties. These are properties of an object that contain
a group of "sub-properties." You already know a number of them—the border property of the
Rectangle element or the anchors property of the Item element, for example. Let's see
how to define such properties for our exposed object.

Create a new QObject-derived class and call it CarInfoEngine. Move the property
definitions of rpm and gear to that new class.2dd the following property declaration to
CarInfo:

Q PROPERTY (Object* engine READ engine NOTIFY engineChanged)

Implement the getter and the private field:

QObject* engine() const { return m engine; }
private:
CarInfoEngine *m engine;

We are not going to use the signal right now; however, we had to declare it otherwise
QML would complain we were binding expressions that depend on properties that are
non-notifiable:

signals:
void engineChanged() ;

Initialize m_engine in the constructor of CarInfo:

m_engine = new CarInfoEngine(this);

Next, update the code of carInfo to modify properties of m_engine whenever respective
sliders on the widget are moved. Provide a link the other way, as well-if the property value is
changed, update the user interface accordingly.

Update the QML document and replace carData.gear with carData.engine.gear. Do
the same for carData.rpmand carData.engine. rpm. You should end up with something
along the lines of:

Item {
id: leftContainer

//

Item {
id: gearContainer
Text {
id: gear

Qt Quick Basics

property int value: carData.engine.gear
//
}
}

Needle ({
anchors.centerIn: parent
length: parent.width#*0.35
rotation: 210+ (carInfo.engine.rpm*35)

What just happened?

Essentially, what we did is expose a property in CarInfo that is itself an object that exposes
a set of properties. This object of the type CarInfoEngine is bound to the CarInfo
instance it refers to.

Thus far, what we did was exposing to QML single objects created and initialized in C++. But

we can do much more—the framework allows us to define new QML types. These can either

be generic Q0bject derived QML elements or items specialized for Qt Quick. In this section,
you will learn to do both.

Registering classes as QML elements

We will start with something simple—exposing the CarInfo type to QML so that instead of
instantiating it in C++ and then exposing it in QML, we can directly declare the element in
QML and still allow the changes made to the widget to be reflected in the scene.

To make a certain class (derived from QObject) instantiable in QML, all that is required is
to register that class with the declarative engine using the gmlRegisterType template
function. This function takes the class as its template parameter along a number of function
arguments: the module uri, the major and minor version numbers, and the name of the
QML type we are registering. The following call would register the class FooClass as the
QML type Foo, available after importing foo.bar.baz in Version 1.0:

gmlRegisterType<FooClass> ("foo.bar.baz", 1, 0, "Foo");

You can place this invocation anywhere in your C++ code; just make sure this is before you
try to load a QML document that might contain declarations of Foo objects. A typical place
to put the function call is in the program's main function:

Chapter 9

#include <QGuiApplications>
#include <QQuickViews>
#include <QtQml>

int main(int argc, char **argv)
QGuiApplication app(argc, argv);
QQuickView view;
gmlRegisterType<FooClass> ("foo.bar.baz", 1, 0, "Foo");
view.setSource (QUrl ("main.gml")) ;
view.show () ;
return app.exec() ;

}

Afterwards, you can start declaring objects of the type Foo in your documents. Just
remember you have to import the respective module first:

import QtQuick 2.0
import foo.bar.baz 1.0

Item {
Foo {
id: foo

Time for action — making Carinfo instantiable from QML

First, we will update the QML document to create an instance of CarInfo present in the
Carlinfo 1.0 module:

import QtQuick 2.0
import CarInfo 1.0

Image {
source: "dashboard.png"

CarInfo {
id: carData
visible: true // make the widget visible

}
//

[3911

Qt Quick Basics

As for registering CarInfo, it might be tempting to simply call gml1RegisterType on
CarInfo and congratulate ourselves for a job well done:

int main(int argc, char **argv)
QGuiApplication app(argc, argv) ;
QQuickView view;
gmlRegisterType<CarInfo> ("CarInfo", 1, 0, "CarInfo");
view.setSource (QUrl ("grc://main.gml")) ;
view.show () ;
return app.exec();

}

In general this would work (yes, it is as simple as that). However, at the time of writing,
trying to instantiate any widget in a QML document as the child of some QtQuick item will
lead to a crash (maybe at the time you are reading this text the issue will have already been
resolved). To avoid this, we need to make sure that what we instantiate is not a widget. For
that, we will use a proxy object that will forward our calls to the actual widget. Therefore,
create a new class called CarInfoProxy derived from QObject and make it have the same
properties as CarInfo, for example:

class CarInfoProxy : public QObject ({
Q OBJECT
Q PROPERTY (QObject *engine READ engine NOTIFY engineChanged)
Q PROPERTY (int speed READ speed WRITE setSpeed NOTIFY speedChanged)

//
Declare one more property that will let us show and hide the widget on demand:

Q_PROPERTY(bOOl visible READ visible WRITE
setVisible NOTIFY visibleChanged)

Then, we can place the widget as a member variable of the proxy so that it is created and
destroyed alongside its proxy:

private:
CarInfo m_car;

Next, implement the missing interface. For simplicity, we are showing you code for some of
the properties. The others are similar so you can fill in the gaps on your own:

public:
CarInfoProxy (QObject *parent = 0) : QObject (parent) {
connect (&m_car, SIGNAL(engineChanged()), this,
SIGNAL (engineChanged())) ;
connect (&m_car, SIGNAL (speedChanged(int)), this,
SIGNAL (speedChanged (int))) ;

[392]

Chapter 9

}

QObject *engine() const { return m_car.engine(); }
bool visible() const { return m car.isVisible(); }
void setVisible (bool v) {
if (v == visible()) return;
m_car.setVisible(v) ;
emit visibleChanged (v) ;
}
int speed() const { return m_car.speed(); }
void setSpeed(int v) { m_car.setSpeed(v); }
signals:
void engineChanged() ;
void visibleChanged (bool) ;
void speedChanged (int) ;

}i

You can see that we reuse the CarInfoEngine instance from the widget instead of
duplicating it in the proxy class. Finally, we can register CarInfoProxy as CarInfo:

gmlRegisterType<CarInfoProxys> ("CarInfo", 1, 0, "CarInfo");

If you run the code now, you will see it works—CarInfo has become a regular QML element.
Because of this, its properties can be set and modified directly in the document, right? If
you try setting the speed or the distance, it will work just fine. However, as soon as you

try setting any of the properties grouped in the engine property, QVIL runtime will start
complaining with a message similar to the following one:

Cannot assign to non-existent property "gear"

engine.gear: 3

A

This is because the runtime does not understand the engine property—we declared it as
QObject and yet we are using a property this class doesn't have. To avoid this issue, we have
to teach the runtime about CarInfoEngine.

First, let's update the property declaration macro to use CarInfoEngine instead
of QObject:

Q PROPERTY (CarInfoEngine* engine READ engine NOTIFY engineChanged)

And the getter function itself, as well:

CarInfoEngine* engine() const { return m engine; }

Qt Quick Basics

Then, we should teach the runtime about the type:

QString msg = QStringLiteral ("Objects of
type CarInfoEngine cannot be created") ;

gmlRegisterUncreatableType<CarInfoEngines>
("CarInfo", 1, 0, "CarInfoEngine", msg) ;

What just happened?

In this exercise, we let the QML runtime know about two new elements. One of them is
CarInfo, which is a proxy to our widget class. We told the engine this is a full-featured class
that is instantiable from QML. The other class, CarInfoEngine, also became known to
QML; however, the difference is that every attempt to declare an object of this type in QML
fails with a given warning message. There are other functions available for registering types
in QML but they are rarely used, so we will not be describing them here. If you are curious
about them, type in gmlRegister in the Index tab of Creator's Help pane.

Custom Ot Quick items

It is nice to be able to create new QML element types that can be used to provide dynamic
data engines or some other type of non-visual objects; however, this chapter is about Qt
Quick so it is time now to learn how to provide new types of items to Qt Quick.

The first question you should ask yourself is whether you really need a new type of item.
Maybe you can achieve the same goal with already existing elements? Very often you can
use vector or bitmap images to use custom shapes in your applications, or you can use
Canvas to quickly draw the graphics you need directly in QML.

If you decide that you do require custom items, you will be doing that by implementing
subclasses of QQuickItem, which is the base class for all items in Qt Quick. After creating
the new type, you will always have to register it with QML using gmlRegisterType.

OpenGL items

To provide very fast rendering of its scene, Qt Quick uses a mechanism called scene-graph.
The graph consists of a number of nodes of well-known types, each describing a primitive
shape to be drawn. The framework makes use of knowledge of each of the primitives
allowed and their parameters to find the most performance-wise optimal order in which
items can be rendered. Rendering itself is done using OpenGL, and all the shapes are defined
in terms of OpenGL calls.

[394]

Chapter 9

Providing new items for Qt Quick boils down to delivering a set of nodes that define the
shape using terminology the graph understands. This is done by subclassing QQuickItem
and implementing the pure virtual updatePaintNode () method, which is supposed to
return a node that will tell the scene-graph how to render the item. The node will most likely
be a describing a geometry (shape) with a material (color, texture) applied.

Time for action - creating a regular polygon item

Let's learn about the scene-graph by delivering an item class for rendering convex regular

polygons. We will draw the polygon using the OpenGL drawing mode called "triangle fan."
It draws a set of triangles that all have a common vertex. Subsequent triangles are defined
by the shared vertex, the vertex from the previous triangle, and the next vertex specified.

Have a look at the diagram to see how to draw a hexagon as a triangle fan using 8 vertices
as control points:

The same method applies for any regular polygon. The first vertex defined is always the

shared vertex occupying the center of the shape. The remaining points are positioned on the
circumference of a bounding circle of the shape at equal angular distances. The angle is easily
calculated by dividing the full angle by the number of sides. For a hexagon, this yields 60 degrees.

Let's get down to business and the subclass QQuickItem. We will give it a very
simple interface:

class RegularPolygon : public QQuickItem {
Q OBJECT
Q PROPERTY (int sides READ sides WRITE
setSides NOTIFY sidesChanged)
Q PROPERTY (QColor color READ color WRITE
setColor NOTIFY colorChanged)
public:

13951

Qt Quick Basics

RegularPolygon (QQuickItem *parent = 0);

int sides() const { return m_sideCount; }
void setSides (int s);

QColor color() const { return m color; }
void setColor (const QColor &c) ;

QSGNode *updatePaintNode (QSGNode *,
UpdatePaintNodeData *) ;

signals:
void sidesChanged(int) ;
void colorChanged (QColor) ;
private:
int m_sideCount;
QColor m_color;

}i

Our polygon is defined by the number of sides and fill color. We also get everything we
inherited from QQuickItem, including the width and height of the item. Besides the obvious
getters and setters for the properties, we define just one method—updatePaintNode (),
which is responsible for building the scene-graph.

Before we deal with updating graph nodes, let's deal with the easy parts first. Implement the
constructor as follows:

RegularPolygon: :RegularPolygon (QQuickItem *parent)
QQuickItem(parent) {

setFlag(ItemHasContents, true);
m_sideCount = 6;

}

We make our polygon a hexagon by default. We also set a flag, TtemHasContents, which tells
the scene-graph that the item is not fully transparent and should ask us how the item should
be painted by calling updatePaintNode (). This is an early optimization to avoid having to
prepare the whole infrastructure if the item would not be painting anything anyway.

The setters are also quite easy to grasp:

void RegularPolygon::setSides (int s)
s = gMax (3, s);
if (s == sides()) return;
m_sideCount = v;
emit sidesChanged(v) ;

Chapter 9

update () ;

}

void RegularPolygon::setColor (const QColor &c) {
if (color () == c) return;
m_color = c;
emit colorChanged(c) ;
update () ;

}

A polygon has to have at least three sides; thus, we enforce this as a minimum, sanitizing the
input value with gMax. After we change any of the properties that might influence the look
of the item, we call update () to let Qt Quick know that the item needs to be rerendered.
Let's tackle updatePaintNode () now. We'll disassemble it into smaller pieces so that it is
easier for you to understand how the function works:

QSGNode *RegularPolygon: :updatePaintNode (QSGNode *oldNode,
QQuickItem: :UpdatePaintNodeData *) {

When the function is called, it might receive a node it returned during a previous call. Be
aware the graph is free to delete all the nodes when it feels like it, so you should never rely
on the node being there even if you returned a valid node during the previous run of

the function:

QSGGeometryNode *node = 0;
QSGGeometry *geometry = 0;
QSGFlatColorMaterial *material = 0;

The node we are going to return is a geometry node that contains information about the
geometry and the material of the shape being drawn. We will be filling those variables as we
go through the method:

if (!oldNode) {
node = new QSGGeometryNode;

geometry = new QSGGeometry (QSGGeometry: :
defaultAttributes Point2D(), m_sideCount+2) ;

geometry->setDrawingMode (GL TRIANGLE FAN) ;
node->setGeometry (geometry) ;
node->setFlag (QSGNode: : OwnsGeometry) ;

As we already mentioned, the function is called with the previously returned node as the
argument but we should be prepared for the node not being there and we should create it.
Thus, if that is the case, we create a new QSGGeometryNode and a new QSGGeometry for
it. The geometry constructor takes a so-called attribute set as its parameter, which defines a
layout for data in the geometry. Most common layouts have been predefined:

13971

Qt Quick Basics

Attribute set Usage First attribute Second attribute
Point2D Solid colored shape float x, vy -
ColoredPoint2D Per-vertex color float x, vy uchar red,
green, blue,
alpha
TexturedPoint2D | Per-vertex texture float x, vy float tx, float
coordinate ty

We will be defining the geometry in terms of 2D points without any additional information
attached to each point; therefore, we pass QSGGeometry: :defaultAttributes
Point2D () to construct the layout we need. As you can see in the preceding table for that
layout, each attribute consists of two floating point values denoting the x and y coordinates
of a point.

The second argument of the QSGGeometry constructor informs us about the number of
vertices we will be using. The constructor will allocate as much memory as is needed to
store the required number of vertices using the given attribute layout. After the geometry
container is ready, we pass its ownership to the geometry node so that when the geometry
node is destroyed, the memory for the geometry is freed as well. At this moment, we also
mark that we are going to be rendering in the GL_ TRIANGLE FAN mode:

material = new QSGFlatColorMaterial;
material->setColor (m color) ;
node->setMaterial (material) ;
node->setFlag (QSGNode: :OwnsMaterial) ;

The process is repeated for the material. We use QSGFlatColorMaterial as the whole
shape is going to have one color that is set from m_color. Qt provides a number of
predefined material types. For example, if we wanted to give each vertex a separate color,
we would have used QSGVertexColorMaterial together with the ColoredPoint2D
attribute layout:

} else {
node = static cast<QSGGeometryNode *>(oldNode) ;
geometry = node->geometry () ;
geometry->allocate (m_sideCount+2) ;

This piece of code deals with a situation in which o1dNode did contain a valid pointer to a
node that was already initialized. In this case, we only need to make sure the geometry can
hold as many vertices as we need in case the number of sides changed since the last time
the function was executed:

material = static cast<QSGFlatColorMaterial*>(node->material()) ;
if (material->color() != m_color) {

Chapter 9

material->setColor (m color) ;
node-s>markDirty (QSGNode: :DirtyMaterial) ;

}
}

This is repeated for the material. If the color differs, we reset it and tell the geometry node
that the material needs to be updated by marking the DirtyMaterial flag:

QRectF bounds = boundingRect () ;
QSGGeometry: :Point2D *vertices = geometry->vertexDataAsPoint2D() ;

// first vertex is the shared one (middle)
QPointF center = bounds.center () ;

vertices[0] .set (center.x (), center.y());
// vertices are distributed along circumference of a circle

const greal angleStep = 360.0/m_sideCount;
const greal radius = gMin(width(), height())/2;

for (int i = 0; i < m_sideCount; ++1i) ({
greal rads = angleStep*i*M PI/180;
greal x = center.x()+radius*std::cos(rads) ;
greal y = center.y()+radius*std::sin(rads) ;
vertices[1+1] .set(x, Vy);

}

vertices[1l+m_sideCount] = vertices[1];

Finally, we can set vertex data. First, we ask the geometry object to prepare a mapping for
us from the allocated memory to a QSGGeometry: : Point2D structure, which can be used
to conveniently set data for each vertex. Then, actual calculations are performed using the
equation for calculating points on a circle. The radius of the circle is taken as the smaller part
of the width and height of the item so that the shape is centered in the item. As you can

see on the diagram at the beginning of the exercise, the last point in the array has the same
coordinates as the second point in the array to close the fan into a regular polygon:

node->markDirty (QSGNode: :DirtyGeometry) ;
return node;

}

At the very end, we mark the geometry as changed and return the node to the caller.

Qt Quick Basics

What just happened?

Rendering in Qt Quick can happen in a thread different than the main thread. By
implementing updatePaintNode (), we performed synchronization between the GUI
thread and the rendering thread. The function executing the main thread is blocked. Due to
this reason, it is crucial that it executes as quickly as possible and doesn't do any unnecessary
calculations as this directly influences performance. This is also the only place in your code
where you can safely call functions from your item (such as reading properties) as well as
interact with the scene-graph (creating and updating the nodes). Try not emitting any signals
nor creating any objects from within this method as they will have affinity to the rendering
thread rather than the GUI thread.

Having said that, you can now register your class with QML and test it with the following
QML document:

RegularPolygon {
id: poly
vertices: 5
color: "blue"

}

This should give you a nice blue pentagon. If the shape looks aliased, you can enforce anti-
aliasing on the window:

int main(int argc, char **argv)
QGuiApplication app(argc, argv);
QQuickView view;
QSurfaceFormat format = view.format () ;
format.setSamples(16); // enable multisampling
view.setFormat (format) ;
gmlRegisterType<RegularPolygons> ("RegularPolygon", 1, O,

"RegularPolygon") ;

view.setSource (QUrl ("grc://main.gqml")) ;
view.setResizeMode (QQuickView: : SizeRootObjectToView) ;
view.show () ;
return app.exec() ;

[400]

Chapter 9

Have a go hero - creating a supporting horder for RegularPolygon

What is returned by updatePaintNode () might not just be a single 0SGGeometryNode
but also a larger tree of QSGNode items. Each node can have any number of child nodes.
By returning a node that has two geometry nodes as children, you can draw two separate

shapes in the item:
QSGNode

QSGGeometryNode QSGGeometryNode

QSGGeometry QSGFlatColorMaterial QSGGeometry QSGFlatColorMaterial

As a challenge, extend RegularPolygon to draw not only the internal filled part of the polygon
but also an edge that can be of a different color. You can draw the edge using the GL._QUAD _
STRIP drawing mode. Coordinates of the points are easy to calculate—the points closer to the
middle of the shape are the same points that form the shape itself. The remaining points also

lie on a circumference of a circle that is slightly larger (by the width of the border). Therefore,
you can use the same equations to calculate them. The GL._QUAD STRIP mode renders
quadrilaterals with every two vertices specified after the first four, composing a connected
quadrilateral. The following diagram should give you a clear idea of what we are after:

9 12

10 11

4011

Qt Quick Basics

Implementing items in OpenGL is quite difficult—you need to come up with an algorithm of
using OpenGL primitives to draw the shape you want, and then you also need to be skilled
enough with OpenGL to build a proper scene graph node tree for your item. But there is
another way—you can create items by painting them with QPpainter. This comes at a cost of
performance as behind the scenes, the painter draws on an indirect surface (a frame buffer
object or an image) that is then converted to OpenGL texture and rendered on a quad by
the scene-graph. Even considering that performance hit, it is often much simpler to draw the
item using a rich and convenient drawing API than to spend hours doing the equivalent in
OpenGL or by using Canvas.

To use that approach, we will not be subclassing QQuickItem directly but rather
QQuickPaintedItem, which gives us the infrastructure needed to use the painter for
drawing items.

Basically, all we have to do, then, is implement the pure virtual paint () method that
renders the item using the received painter. Let's see this put into practice and combine it
with the skills we gained earlier.

Time for action - creating an item for drawing outlined text

The goal of the current exercise is to be able to make the following QML code work:

import QtQuick 2.3
import OutlineTextItem 1.0

Rectangle
width: 800; height: 400
OutlineTextItem
anchors.centerIn: parent
text: "This is outlined text"
fontFamily: "Arial"
fontPixelSize: 64
color: "#33f£f0000"
antialiasing: true
border {
color: "blue"
width: 2
style: Qt.DotLine
}
}
}

14021

Chapter 9

And produce the following result:

3

-
H

H

fessmmmmnns

[IS——)

lssssanal

Start with an empty Qt project with the core, gui, and quick modules activated. Create a
new class and call it OutlineTextItemBorder. Delete the implementation file as we are
going to put all code into the header file. Place the following code into the class definition:

class OutlineTextItemBorder : public QObject ({
Q_OBJECT
Q PROPERTY (int width MEMBER m width NOTIFY widthChanged)
Q PROPERTY (QColor color MEMBER m_color NOTIFY colorChanged)
Q PROPERTY (int style MEMBER m_style NOTIFY styleChanged)
public:
OutlineTextItemBorder (QObject *parent) : QObject (parent),
m_width(0), m color (Qt::transparent),
m_style(Qt::SolidLine) {}

int width() const { return m width; }
QColor color() const { return m color; }
Qt::PenStyle style() const { return (Qt::PenStyle)m style; }
QPen pen() const {
QPen p;
p.setColor (m_color) ;
p.setWidth(m width) ;
p.setStyle((Qt::PenStyle)m style);
return p;
}
signals:
void widthChanged (int) ;
void colorChanged (QColor) ;
void styleChanged (int) ;
private:
int m_width;
QColor m color;
int m_style;

bi

[4031]

Qt Quick Basics

You can see that Q_ PROPERTY macros don't have the READ and WRITE keywords we've
been using thus far. This is because we are taking a shortcut right now and we let moc
produce code that will operate on the property by directly accessing the given class member.
Normally, we would recommend against such an approach as without getters, the only way
to access the properties is through the generic property () and setProperty () calls.
However, in this case, we are not going to be exposing this class to the public in C++ so we
won't need the setters, and we implement the getters ourselves, anyway. The nice thing
about the MEMBER keyword is that if we also provide the NOTIFY signal, the generated code
will emit that signal when the value of the property changes, which will make property
bindings in QML work as expected. The rest of the class is pretty simple—we are, in fact,
providing a class for defining a pen that is going to be used for stroking text, so implementing
a method that returns the actual pen seems like a good idea.

The class will provide a grouped property for our main item class. Create a class called
OutlineTextItem and derive it from QQuickPaintedItem, as follows:

class OutlineTextItem : public QQuickPaintedItem {
Q OBJECT
Q PROPERTY (OutlineTextItemBorder* border READ
" border NOTIFY borderChanged)
Q_PROPERTY(QString text MEMBER m_text NOTIFY textChanged)
Q PROPERTY (QColor color MEMBER m color NOTIFY colorChanged)
Q PROPERTY (QString fontFamily MEMBER m ffamily
NOTIFY fontFamilyChanged)
Q PROPERTY (int fontPixelSize MEMBER m fsize NOTIFY
_fontPixelSizeChanged) B
public:
OutlineTextItem(QQuickItem *parent = 0);
void paint (QPainter *painter);
OutlineTextItemBorder* border() const { return m border; }
QPainterPath shape (const QPainterPath &path) const;
private slots:
void updateItem() ;
signals:
void textChanged (QString) ;
void colorChanged (QColor) ;
void borderChanged() ;
void fontFamilyChanged (QString) ;
void fontPixelSizeChanged(int) ;
private:
OutlineTextItemBorder* m border;
QPainterPath m path;
QRectF m_br;
QString m_text;

(4041

Chapter 9

QColor m_color;
QString m ffamily;
int m fsize;

}i

The interface defines properties for the text to be drawn, in addition to its color, font,

and the grouped property for the outline data. Again, we use MEMBER to avoid having to
manually implement getters and setters. Unfortunately, this makes our constructor code
more complicated as we still need a way to run some code when any of the properties are
modified. Implement the constructor using the following code:

OutlineTextItem: :0utlineTextItem(QQuickItem *parent)
QQuickPaintedItem(parent) {

m_border = new OutlineTextItemBorder (this) ;

connect (this, SIGNAL (textChanged (QString)), SLOT (updateItem())) ;
connect (this, SIGNAL (colorChanged (QColor)), SLOT (updateItem())) ;
connect (this, SIGNAL (fontFamilyChanged (QString)), SLOT (updatelItem())) ;
connect (this, SIGNAL(fontPixelSizeChanged (int)), SLOT (updateItem())) ;
connect (m_border, SIGNAL(widthChanged(int)), SLOT (updateItem()));
connect (m_border, SIGNAL (colorChanged(QColor)), SLOT (updateItem()));
connect (m_border, SIGNAL (styleChanged(int)), SLOT (updateItem()));

updateItem() ;

}

We basically connect all the property change signals from both the object and its grouped
property object to the same slot that is going to update the data for the item if any of its
components are modified. We also call the same slot directly to prepare the initial state of
the item. The slot can be implemented like this:

void OutlineTextItem: :updateltem() {
QFont font (m ffamily, m fsize);
m_path = QPainterPath() ;
m path.addText (0, 0 , font, m text);
m_br = shape(m _path) .controlPointRect () ;
setImplicitWidth (m br.width()) ;
setImplicitHeight (m_br.height()) ;
update () ;

[4051]

Qt Quick Basics

At the beginning, the function resets a painter path object that serves as a backend for
drawing outlined text and initializes it with the text drawn using the font set. Then, the slot
calculates the bounding rect for the path using a function shape () that we will shortly see.
Finally, it sets the calculated size as the size hint for the item and asks the item to repaint
itself with the update () call:

QPainterPath OutlineTextItem: :shape (const QPainterPath &path) const

{

QPainterPathStroker ps;

if (m_border->width() > 0 && m border-sstyle() != Qt::NoPen) {
ps.setWidth (m border->width());
} else {

ps.setWidth(0.0000001); // workaround a bug in Qt
}
QPainterPath p = ps.createStroke (path) ;
p.addPath (path) ;
return p;

}

The shape () function returns a new painter path that includes both the original path and
its outline created with the QpainterPathStroker object. This is so that the width of
the stroke is correctly taken into account when calculating the bounding rectangle. We
use controlPointRect () to calculate the bounding rectangle as it is much faster than
boundingRect () and returns an area greater or equal to the one boundingRect ()
would, which is okay for us.

What remains is to implement the paint () routine itself:

void OutlineTextItem: :paint (QPainter *painter) {
if (m _text.isEmpty()) return;
painter->setPen(m_border->pen()) ;
painter->setBrush(m color) ;
painter->setRenderHint (QPainter::Antialiasing, true);
painter->translate(-m br.topLeft());
painter->drawPath (m_path) ;

}

The code is really simple—we bail out early if there is nothing to draw. Otherwise, we set up
the painter using the pen and color obtained from the item's properties. We enable anti-
aliasing and calibrate the painter coordinates with that of the bounding rectangle of the
item. Finally, we draw the path on the painter.

[406]

Chapter 9

What just happened?

During this exercise, we made use of the powerful API of Qt's graphical engine to
complement an existing set of Qt Quick items with a simple functionality. This is otherwise
very hard to achieve using predefined Qt Quick elements and even harder to implement
using OpenGL. We agreed to take a small performance hit in exchange for having to write
just about a hundred lines of code to have a fully working solution. Remember to register the
class with QML if you want to use it in your code:

gmlRegisterUncreatableType<OutlineTextItemBorders (
"OutlineTextItem", 1, 0, "OutlineTextItemBorder",
"Can't create items of OutlineTetItemBorder type"

)

gmlRegisterType<OutlineTextItem> (
"OutlineTextItem", 1, 0, "OutlineTextItem"

)

sSummary

In this chapter, you have been familiarized with a declarative language called QML. The
language is used to drive Qt Quick—a framework for highly dynamic and interactive

content. You learned the basics of Qt Quick—how to create documents with a number of
element types and how to create your own in QML or in C++. You also learned how to bind
expressions to properties to automatically re-evaluate them. But so far, despite us talking
about "fluid" and "dynamic" interfaces, you haven't seen much of that. Do not worry; in the
next chapter, we will focus on animations in Qt Quick, as well as fancy graphics and applying
what you learned in this chapter for creating nice looking and interesting games. So, read on!

4071

10

In the previous chapter, we introduced you to the basics of Qt Quick and QML.
By now, you should be fluent enough with the syntax and understand the basic
concepts of how Qt Quick works. In this chapter, we will show you how to
make your games stand out from the crowd by introducing different kinds of
animations that make your applications feel more like the real world. You will
also learn to treat Qt Quick objects as separate entities programmable using
state machines. A large section of this chapter is devoted to making your games
prettier by using OpenGL effects and particle systems. Another significant part
of this chapter will introduce how to implement a number of important gaming
concepts using Qt Quick. All this is going to be shown with the building of a
simple 2D action game using the presented concepts.

What we have described so far can be called anything but "fluid." Let's change that now
by learning how to add some dynamics into the user interfaces we create. Thus far, books
cannot contain moving pictures, so most things we describe here you will have to test
yourself by running the provided Qt Quick code.

[409]

Qt Quick

Qt Quick provides a very extensive framework for creating animations. By that, we don't
mean only moving items around. We define an animation as changing an arbitrary value
over time. So, what can we animate? Of course, we can animate item geometry. But we can
also animate rotation, scale, other numeric values, and even colors. But let's not stop here.
Qt Quick also lets you animate the parent-child hierarchy of items or anchor assignments.
Almost anything that can be represented by an item property can be animated.

Moreover, the changes are rarely linear—if you kick a ball in the air, it first gains height
quickly because its initial speed was large. However, the ball is a physical object being
pulled down by the Earth's gravity, which slows the climb down until the ball stops and then
starts falling down, accelerating until it hits the ground. Depending on the properties of
both the ground and ball, the object can bounce off the surface into the air again with less
momentum, repeating the spring-like motion until eventually it fades away, leaving the ball
on the ground. Qt Quick lets you model all that using easing curves that can be assigned to
animations.

Qt Quick provides a number of animation types derived from a generic Animation element
that you will never use directly. The type exists only to provide an APl common to different
animation types.

Let's take a closer look at the animation framework by looking at a family of animation types
derived from the most common animation type—PropertyAnimation. As the name
implies, they provide the means to animate values of object properties. Despite the fact that
you can use the PropertyAnimation element directly, it is usually more convenient to use
one of its subclasses that are specialized in dealing with peculiarities of different data types.

The most basic property animation type is NumberAnimation, which lets you animate all
kinds of numeric values of both integral and real numbers. The simplest way of using it is to
declare an animation, tell it to animate a specific property in a specific object, and then set
the length of the animation and the starting and ending value for the property:

import QtQuick 2.0

Item {
id: root
width: 600; height: width
Rectangle
id: rect
color: "red"; width: 50; height: width

[4101

Chapter 10

NumberAnimation {
target: rect
property: "x"
from: 0; to: 550
duration: 3000
running: true

Time for action - scene for an action game

Create a new Qt Quick Ul project. In the project directory, make a subdirectory called
images and from the game project that we have created using Graphics View copy grass.
png, sky.png, and trees.png. Then, put the following code into the QML document:

import QtQuick 2.1

Image {
id: root

property int dayLength: 60000 // 1 minute

source: "images/sky.png"

Item {

id: sun

x: 140

y: root.height-170

Rectangle {
id: sunvisual
width: 40
height: width
radius: width/2
color: "yellow"
anchors.centerIn: parent

}
Image {
source: "images/trees.png"
x: -200
anchors.bottom: parent.bottom
}
Image {
source: "images/grass.png"
anchors.bottom: parent.bottom

4111

Qt Quick

When you run the project now, you will see a screen similar to this one:

What just happened?

We set up a very simple scene consisting of three images stacked up to form a landscape.
Between the background layer (the sky) and the foreground (trees), we placed a yellow
circle representing the sun. Since we are going to be moving the sun around in a moment,
we anchored the center of the object to an empty item without physical dimensions so
that we can set the sun's position relative to its center. We also equipped the scene with

a dayLength property, which is going to hold information about the length of one day of
game time. By default, we set it to 60 seconds so that things happen really fast and we can
see the animation's progress without waiting. After all things are set correctly, the length of
the day can be balanced to fit our needs.

The graphical design lets us easily manipulate the sun while keeping it behind the tree
line. Notice how the stacking order is implicitly determined by the order of elements
in the document.

Time for action - animating the sun's horizontal movement

The everyday cruise of the sun in the sky starts in the east and continues west to hide
beneath the horizon in the evening. Let's try to replicate this horizontal movement by adding

animation to our sun object.

(4121

Chapter 10

Open the QML document of our last project. Inside the root item add the following
declaration:

NumberAnimation {
target: sun
property: "x"
from: 0
to: root.width
duration: dayLength
running: true

}

Running the program with such modifications will produce a run with a horizontal movement
of the sun. The following image is a composition of a number of frames of the run:

What just happened?

We introduced a NumberAnimation element that is set to animate the x property of

the sun object. The animation starts at 0 and lasts until x reaches the root item's width
(which is the right edge of the scene). The movement lasts for dayLength miliseconds. The
running property of the animation is set to t rue to enable the animation. Since we didn't
specify otherwise, the motion is linear.

You might be thinking that the animation runs in the wrong direction—"west" is on the left
and "east" is on the right, yes? That's true, however, only if the observer faces north. If that
were the case for our scene, we wouldn't be seeing the sun at all—at noon, it crosses the
south direction.

[4131

Qt Quick

Composing animations

The animation we made in the last section looks okay but is not very realistic. The sun
should rise in the morning, reach its peak sometime before noon, and then sometime
later start setting toward the evening, when it should cross the horizon and hide beneath
the landscape.

To achieve such an effect, we could add two more animations for the y property of the sun.
The first animation would start right at the beginning and decrease the vertical position of
the sun (remember that the vertical geometry axis points down, so decreasing the vertical
position means the object goes up). The animation would be complete at one third of

the day length. We would then need a way to wait for some time and then start a second
animation that would pull the object down toward the ground. Starting and stopping the
animation is easy—we can either call the start () and stop () functions on the animation
item or directly alter the value of the running property. Each Animation object emits
started () and stopped () signals. The delay can be implemented by using a timer. We
could provide a signal handler for the stopped signal of the first animation to trigger a timer
to start the other one like this:

NumberAnimation {

id: sunGoesUpAnim

/] .

onStopped: sunGoesDownAnimTimer.start ()
}
Timer

id: sunGoesDownAnimTimer

interval: dayLength/3

onTriggered: sunGoesDownAnim.start ()

}

Even ignoring any side problems this would bring (for example, how to stop the animation
without starting the second one), such an approach couldn't be called "declarative," could it?

Fortunately, similar to what we had in C++, Qt Quick lets us form animation groups that run
either parallel to each other or in sequence. There are the SequentialAnimation and
ParallelAnimation types where you can declare any number of child animation elements
forming the group. To run two animations in parallel, we could declare the following
hierarchy of elements:

ParallelAnimation {
id: parallelAnimationGroup

NumberAnimation {
target: objl; property: "propl"
from: 0; to: 100

[41a]

Chapter 10

duration: 1500
}
NumberAnimation {
target: obj2; property: "prop2"
from: 150; to: O
duration: 1500

}

running: true

}

The same technique can be used to synchronize a larger group of animations, even if each
component has a different duration:

SequentialAnimation {
id: sequentialAnimationGroup

ParallelAnimation {
id: parallelAnimationGroup

NumberAnimation {
id: Al
target: obj2; property: "prop2"
from: 150; to: O
duration: 1000
}
NumberAnimation {
id: A2
target: objl; property: "propl"
from: 0; to: 100
duration: 2000

}

PropertyAnimation {
id: A3
target: objl; property: "propl"
from: 100; to: 300
duration: 1500

}

running: true

[4151

Qt Quick

The group presented in the snippet consists of three animations. The first two animations
are executed together as they form a parallel subgroup. One member of the group runs
twice as long as the other. Only after the whole subgroup completes is the third animation
started. This can be visualized using a UML activity diagram where the size of each activity is
proportional to the duration of that activity:

Time for action — making the sun rise and set

Let's add vertical movement (animation of the y property) to our sun by adding a sequence
of animations to the QML document. As our new animations are going to be running in
parallel to the horizontal animation, we could enclose animations for both directions
within a single ParallelAnimation group. It would work, but in our opinion this would
unnecessarily clutter the document. Another way of specifying parallel animations is to
declare them as separate hierarchies of elements, making each animation independent of
the other, and that is what we are going to do here.

Open our document from the last exercise and right under the previous animation, place the
following code:

SequentialAnimation {
NumberAnimation {
target: sun
property: "y"
from: root.height+sunVisual.height
to: root.height-270
duration: dayLength/3
}
PauseAnimation { duration: dayLength/3 }
NumberAnimation {
target: sun
property: "y"
from: root.height-270
to: root.height+sunVisual.height
duration: dayLength/3

}

running: true

}

[4161

Chapter 10

Running the program will result in the light source rising in the morning and setting in the
evening. However, the trajectory of the move seems somewhat awkward.

What just happened?

We declared a sequential animation group consisting of three animations, each taking 1/3
of the day length. The first member of the group makes the sun go up. The second member,
which is an instance of a new element type—PauseAnimation—introduces a delay equal
to its duration. This in turn lets the third component start its work in the afternoon to pull
the sun down toward the horizon.

The problem with such a declaration is that the sun moves in a horribly angular way, as can
be seen in the image.

The reason for the described problem is that our animations are linear. As we noted in the
beginning of this chapter, linear animations rarely occur in nature, which usually makes their
use yield a very unrealistic result.

[a17]

Qt Quick

We also said earlier that Qt Quick allows us to use easing curves to perform animations
along non-linear paths. There are a large number of curves offered. Here is a diagram
listing available non-linear easing curves:

VAARVZRY N an e AN
L LA L L A
Ll
S T 17

You can use any of the curves on an element of the type PropertyAnimation or one
derived from it (for example, NumberAnimation). This is done by using the easing
property group, where you can set the type of the curve. Different curve types may further
be tweaked by setting a number of properties in the easing property group, such as
amplitude (for bounce and elastic curves), overshoot (for back curves), or period (for
elastic curves).

Declaring an animation along an InOutBounce path is very easy:

NumberAnimation {
target: obj; property: prop;
from: startValue; to: endValue;
easing.type: Easing.InOutBounce

}

Time for action - improving the path of the sun

The task at hand is going to be to improve the animation of the sun so that it behaves in a
more realistic way. We will do this by adjusting the animations so that the object moves over
a curved path.

In our QML document, replace the previous vertical animation with the following one:

SequentialAnimation {
NumberAnimation {

[m81

Chapter 10

target: sun
property: "y"
from: root.height+sunVisual.height
to: root.height-270
duration: dayLength/2
easing.type: Easing.OutCubic

}

NumberAnimation {
target: sun
property: "y"
to: root.height+sunVisual.height
duration: dayLength/2
easing.type: Easing.InCubic

running: true

(4191

Qt Quick

What just happened?

The sequence of three animations (two linear ones and a pause) was replaced by another
sequence of two animations that follow a path determined by a cubic function. This makes
our sun rise pretty fast and then slow down to an amount almost unnoticeable near the
moment when the sun approaches noon. When the first animation is finished, the second
one reverses the motion, making the sun descend very slowly and then increase its velocity
as dusk approaches. As a result, the further the sun is away from the ground, the slower it
seems to move. At the same time, the horizontal animation remains linear as the speed of
Earth in its motion around the Sun is practically constant. When we combine the horizontal
and vertical animations, we get a path that looks very similar to what we can observe in the
real world.

Property value sources

From a QML perspective, animation and element types derived from it are something called
property value source. This means they can be attached to a property and generate values
for it. What is important is that it allows us to use animations using a much simpler syntax.
Instead of explicitly declaring the target and property of an animation, one can attach the
animation to a named property of the parent object.

To do this, instead of specifying target and property for Animation, use the on keyword
followed by the name of a property name for which the animation is to be a value source.
For example, to animate the rotation property of an object with a NumberAnimation
object, the following code can be used:

NumberAnimation on rotation {
from: 0
to: 360
duration: 500

}

It is valid to specify more than one property value source for the same property of an object.

Time for action — adjusting the sun's color

If you look at the sun at dusk or dawn, you will see that it is not yellow, but rather becomes
red the closer it is to the horizon. Let's teach our object representing the sun to do the same
by providing a property value source for it.

Open the QML document, find the declaration for the sunvisual object, and extend it with
the highlighted part:

14201

Chapter 10

Rectangle
id: sunvisual
//
SequentialAnimation on color {
ColorAnimation {
from: "red"
to: "yellow"
duration: 0.2*dayLength/2
}
PauseAnimation { duration: 2%*0.8*dayLength/2 }
ColorAnimation {
to: "red"
duration: 0.2*dayLength/2

}

running: true

What just happened?

An animation was attached to the color property of our rectangle modeling the visual
aspects of the sun. The animation consists of three parts. First, we perform a transition from
red to yellow using the ColorAnimation object. This is an Animation subtype dedicated
to modifying colors. Since the rectangle color is not a number, using the NumberAnimation
object would not have worked as the type cannot interpolate color values. Therefore, we
either have to use the PropertyAnimation or ColorAnimation object. The duration for
the animation is set to 20 percent of half the day length so that the yellow color is obtained
very quickly. The second component is a PauseAnimation object to provide a delay before
the third component is executed, which gradually changes the color back to red. For the last
component, we do not provide a value for the £rom property. This causes the animation

to be initiated with the value of the property current to the time when the animation is
executed (in this case, the sun should be yellow).

Notice that we only had to specify the property name for the top-level animation. This
particular element is what serves as the property value source, and all descendant animation
objects "inherit" the target property from that property value source.

Time for action - furnishing sun animation

The animation of the sun looks almost perfect right now. We can still improve it, though. If
you look into the sky in the early morning and then again at noon, you will notice that the
sun appears much bigger during sunrise or sunset compared to its size in zenith. We can
simulate that effect by scaling the object.

[421]

Qt Quick

In our scene document, add another sequential animation that operates on the scale
property of the sun:

SequentialAnimation on scale {
NumberAnimation {
from: 1.6; to: 0.8
duration: dayLength/2
easing.type: Easing.OutCubic
}
NumberAnimation {
from: 0.8; to: 1.6
duration: dayLength/2
easing.type: Easing.InCubic

What just happened?

In this section, we just followed the path set for an earlier declaration—the vertical
movement of the stellar body influences its perceived size; therefore, it seems like a good
decision to bind the two animations together. Notice that instead of specifying a new
property value source for the scale, we might have modified the original animation and
made the scale animation parallel to that operate on the y property:

SequentialAnimation
ParallelAnimation {
NumberAnimation {
target: sun
property: "y"
from: root.height+sunVisual.height
to: root.height-270
duration: dayLength/2

Chapter 10

easing.type: Easing.OutCubic
}
NumberAnimation {
target: sun
property: "scale"
from: 1.6; to: 0.8
duration: dayLength/2
easing.type: Easing.OutCubic
}
/]

Have a go hero — animating the sun's rays

By now, you should be an animation expert. If you want to try your skills, here is a task for
you. The following code can be applied to the sun object and will display very simple red
rays emitted from the sun:

Item {
id: sunRays
property int count: 10
width: sunVisual.width
height: width
anchors.centerIn: parent
z: -1
Repeater {
model: sunRays.count
Rectangle {
color: "red"
rotation: index*360/sunRays.count
anchors.fill: parent

14231

Qt Quick

The goal is to animate the rays so that the overall effect looks good and fits the tune like
style of the scene. Try different animations—rotations, size changes, and colors. Apply them
to different elements—all rays at once (for example, using the sunRays identifier) or only
particular rectangles generated by the repeater.

In the previous chapter, we implemented a dashboard for a racing game where we had

a number of clocks with needles. We could set values for each clock (for example, car
speed) and a respective needle would immediately set itself to the given value. But such

an approach is unrealistic—in the real world, changes of a value happen over time. In our
example, the car accelerates from 10 mph to 50 mph by going through 11 mph, 12 mph
and so on, until after some time it reaches the desired value. We call this the behavior of

a value—it is essentially a model that tells how the parameter reaches its destined value.
Defining such models is a perfect use case for declarative programming. Fortunately, QML
exposes a Behavior element that lets us model behaviors of property changes in Qt Quick.

The Behavior elements let us associate an animation with a given property so that, every
time the property value is to be changed, it is done by running the given animation instead
of by making an immediate change to the property value:

import QtQuick 2.0

Item {
width: 600; height: width
Item {
id: empty

x: parent.width/2; y: parent.height/2
Rectangle
id: rect
width: 100; height: width; color: "red"
anchors.centerIn: parent
}
}

MouseArea {
anchors.fill: parent
onClicked: { empty.x = mouse.x; empty.y = mouse.y }
}
}

[424]

Chapter 10

The preceding code implements a simple scene with a red rectangle anchored to an empty
item. Whenever the user clicks somewhere within the scene, the empty item is moved there,
dragging along the rectangle. Let's see how to use the Behavior element to smoothly
change the position of the empty item. The Behavior element is a property value source
just like the Animation element itself; thus, it is easiest to use on the on-property syntax:

Item {
id: rect
Xx: parent.width/2; y: parent.height/2
Rectangle
width: 100; height: width; color: "red"
anchors.centerIn: parent

}

Behavior on x { NumberAnimation { } }
Behavior on y { NumberAnimation { } }

}

By adding the two marked declarations, we define behaviors for properties x and y that
follow animations defined by NumberAnimation. We do not include start or end values for
the animation as these will depend on the initial and final value for the property. We also
don't set the property name in the animation because by default, the property for which
the behavior is defined will be used. As a result, we get a linear animation of a numerical
property from the original value to the destined value over the default duration.

R Using linear animations for real world objects rarely looks good. Usually,
~ you will get much better results if you set an easing curve for the
animation so that it starts slowly and then gains speed and decelerates
just before it is finished.

Animations that you set on behaviors can be as complex as you want:

Behavior on x

SequentialAnimation {

PropertyAction {

target: rect; property: "color"; wvalue: "yellow"
}
ParallelAnimation {

NumberAnimation { easing.type: Easing.InOutQuad; duration: 1000
}

SequentialAnimation {
NumberAnimation {
target: rect; property: "scale"
from: 1.0; to: 1.5; duration: 500

14251

Qt Quick

NumberAnimation {
target: rect; property: "scale"
from: 1.5; to: 1.0; duration: 500
}
}
}
PropertyAction { target: rect; property: "color"; value: "red" }
}
}

The behavioral model declared in the last piece of code performs a sequential animation.

It first changes the color of the rectangle to yellow using the PropertyAction element,
which performs an immediate update of a property value (we will talk about this more a bit
later). The color will be set back to red after, as the last step of the model. In the meantime,
a parallel animation is performed. One of its components is a NumberAnimation class that
executes the actual animation of the x property of empty (since the target and property of
the animation are not explicitly set). The second component is a sequential animation of the
scale property of the rectangle, which first scales the item up by 50 percent during the first
half of the animation and then scales it back down in the second half of the animation.

Time for action - animating the car dashboard

Let's employ the knowledge we just learned to improve our car dashboard so that it shows
some realism in the way the clocks update their values.

Open the dashboard project and navigate to the dashboard.gml file. Find the declaration
of the Needle object, which is responsible for visualizing the speed of the vehicle. Add the
following declaration to the object:

Behavior on rotation {
SmoothedAnimation { velocity: 50 }

}

Repeat the process for the left clock. Set the velocity of the animation to 100. Build and
run the project. See how the needles behave when you modify the parameter values in
spinboxes. Adjust the velocity of each animation until you get a realistic result.

14261

Chapter 10

What just happened?

We have set the property value sources on needle rotations that are triggered whenever a
new value for the property is requested. Instead of immediately accepting the new value,

the Behavior element intercepts the request and starts the SmoothedAnimation class

to gradually reach the requested value. The Smoothedanimation class is an animation

type that animates numeric properties. The speed of the animation is not determined by its
duration, but instead a velocity property is set. This property dictates how fast a value is

to be changed. However, the animation is using a non-linear path—it first starts slowly, then
accelerates to the given velocity and near the end of the animation, decelerates in a smooth
fashion. This yields an animation that is attractive and realistic and at the same time, is of
shorter or longer duration, depending on the distance between the starting and ending values.

1
~ You can implement custom property value sources by subclassing
QQmlPropertyValueSource and registering the class in the QML engine.

States and transitions

When you look at real world objects, it is often very easy to define their behavior by
extracting a number of states the object may take and describing each of the states
separately. A lamp can be turned either on or off. When it is "on" it is emitting light of a given
color, but it is not doing that when in the "off" state. Dynamics of the object can be defined
by describing what happens if the object leaves one of the states and enters another one.
Considering our lamp example, if you turn the lamp on, it doesn't momentarily start emitting
light with its full power, but rather the brightness of the light gradually increases to reach its
final power after a very short period.

Qt Quick supports state-driven development by letting us declare states and transitions
between them for items. The model fits the declarative nature of Qt Quick very well.

By default, each item has a single anonymous state and all properties you define take values
of the expressions you bind or assign to them imperatively based on different conditions.
Instead of this, a set of states can be defined for the object and for each of the state
properties of the object itself; in addition, the objects defined within it can be programmed
with different values or expressions. Our example lamp definition could be similar to:

Item {
id: lamp
property bool lampOn: false
Rectangle {
id: lightsource
anchors.fill: parent
color: transparent

}
}

[4211

Qt Quick

We could, of course, bind the color property of 1ightsource to lamp.lampOn ?
"yvellow" : "transparent", butinstead we can define an "on" state for the lamp and
use a PropertyChanges element to modify the rectangle color:

Item {
id: lamp
property bool lampOn: false
/] e
states: State {
name: "on"
PropertyChanges {
target: lightsource
color: "yellow"

}
}
}

Each item has a state property that you can read to get the current state, but you can also
write to it to trigger transition to a given state. By default, the state property is set to an
empty string that represents the anonymous state. Note that with the preceding definition,
the item has two states—the "on" state and the anonymous state (which in this case is used
when the lamp is off). Remember that state names have to be unique as the name parameter
is what identifies a state in Qt Quick.

To enter a state, we can, of course, use an event handler fired when the value of the 1ampOn
parameter is modified:

onLampOnChanged: state = lampOn ? "on" : ""

Such imperative code works, but it can be replaced with a declarative definition in the
state itself:

State {
name: "on"
when: lamp.lampOn
PropertyChanges {
target: lightsource
color: "yellow"
}
}

Whenever the expression bound to the when property evaluates to true, the state becomes
active. If the expression becomes false, the object will return to the default state or will
enter a state for which its own when property evaluates to true.

14281

Chapter 10

To define more than one custom state, it is enough to assign a list of state definitions to the
states property:

states: [
State {
name: "on"
when: lamp.lampOn
b
State {
name: "off"

when: !lamp.lampOn

]

The PropertyChanges element is the most often used change in a state definition, but it
is not the only one. In exactly the same way that the ParentChange element can assign a
different parent to an item and the AnchorChange element can update anchor definitions,
it is also possible to run a script when a state is entered using the StateChangeScript
element. All these element types are used by declaring their instances as children in a
State object.

The second part of the state machine framework is defining how an object transits from one
state to another. Similar to the states property, all items have a transitions property,
which takes a list of definitions represented by the Transition objects and provides
information about animations that should be played when a particular transition takes place.

A transition is identified by three attributes—the source state, the destination state, and

a set of animations. Both the source state name (set to the from property) and the target
state name (set to the to property) can be empty, in which case they should be interpreted
as "any". If a Transition exists that matches the current state change, its animations will
be executed. A more concrete transition definition (which is one where from and/or to are
explicitly set) has precedence over a more generic one.

Suppose that we want to animate the opacity of the lamp rectangle from 0 to 1 when the
lamp is switched on. We can do it as an alternative to manipulating the color. Let's update
the lamp definition:

Item {

id: lamp

property bool lampOn: false

Rectangle
id: lightsource
anchors.fill: parent
color: "yellow"
opacity: 0

14291

Qt Quick

}
states: State {
name: "on"
when: lamp.lampOn
PropertyChanges {
target: lightsource
opacity: 1

}

transitions: Transition {
NumberAnimation { duration: 100 }

}
}

The transition is triggered for any source and any target state—it will be active when the
lamp goes from the anonymous to the "on" state, as well as in the opposite direction. It
defines a single NumberAnimation element that lasts for 100 miliseconds. The animation
does not define the target object nor the property it works on; thus, it will be executed for
any property and any object that needs updating as part of the transition—in the case of the
lamp, it will only be the opacity property of the 1ightsource object.

If more than one animation is defined in a transition, all animations will run in parallel. If you
need a sequential animation, you need to explicitly use a SequentialAnimation element:

Transition {
SequentialAnimation {

NumberAnimation { target: lightsource; property: "opacity";
duration: 200 }

ScriptAction { script: console.log("Transition has ended") }

}

States are a feature of all Item types as well as its descendent types. It
M is, however, possible to use states with elements not derived from the
Q Item object by using a StateGroup element, which is a self-contained
functionality of states and transitions with exactly the same interface as
what is described here regarding Item objects.

The animation types we discussed earlier are used for modifying values of types that

can be described using physical metrics (position, sizes, colors, angles). But there are
more types available.

4301

Chapter 10

The first group of special animations consists of the AnchorAnimation and
ParentAnimation elements.

The AnchorAnimation element is useful if a state change should cause a change to defined
anchors for an item. Without it, the item would immediately snap into its place. By using the
AnchorAnimation element, we trigger all anchor changes to be gradually animated.

The ParentAnimation element, on the other hand, makes it possible to define animations
that should be present when an item receives a new parent. This usually causes an item to
be moved to a different position in the scene. By using the ParentAnimation elementin

a state transition, we can define how the item gets into its target position. The element can
contain any number of child animation elements that are going to be run in parallel during a
ParentChange element.

The second special group of animations is action animations—PropertyAction and
ScriptAction. These animation types are not stretched in time, but rather perform a given
one-time action.

The PropertyAction element is a special kind of animation that performs an immediate
update of a property to a given value. It is usually used as part of a more complex animation
to modify a property that is not animated. It makes sense to use it if a property needs to
have a certain value during an animation.

The ScriptAction is an element that allows the execution of an imperative piece of code
during an animation (usually at its beginning or end).

Here, we will go through the process of creating a platform game using Qt Quick. It will be

a game similar to Benjamin the Elephant from Chapter 6, Graphics View. The player will
control a character that will be walking through the landscape and collecting coins. The coins
will randomly be appearing in the world. The character can access highly placed coins by
jumping. The more the character jumps, the more tired he gets and the slower he begins

to move and has to rest to regain speed. To make the game more difficult, at times moving
obstacles will be generated. When the character bumps into any of them, he gets more and
more tired. When the fatigue exceeds a certain level, the character dies and the game ends.

Throughout this chapter as well as the previous one, we prepared a number of pieces we
will be reusing for this game. The layered scene that was arranged when you learned about
animations will serve as our game scene. The animated sun is going to represent the passing
of time. When the sun sets, the time runs out and the game ends. The heartbeat diagram
will be used to represent the character's level of fatigue—the more tired the character gets,
the faster his heart beats.

4311

Qt Quick

There are many ways this game can be implemented and we want to give you a level of
freedom, so this is not going to be a step-by-step guide on how to implement a complete
game. At some points, we will be telling you to employ some skills you have already learned
to perform some task without telling you how to do it. At others, we will provide broad
descriptions and complete solutions.

Most games revolve around some kind of game loop. It is usually some kind of function that
is repeatedly called at constant intervals and its task is to progress the game—process input
events, move objects around, calculate and execute actions, check win conditions, and so
on. Such an approach is very imperative and usually results in a very complex function that
needs to know everything about everybody (This kind of anti-pattern is sometimes called

a god object pattern). In QML (which powers the Qt Quick framework), we aim to separate
responsibilities and declare well-defined behaviors for particular objects. Therefore, although
it is possible to set up a timer which will periodically call a game loop function, this is not the
best possible approach in a declarative world.

Instead, we suggest using a natural time-flow mechanism already present in Qt Quick—one
that controls the consistency of animations. Remember how we defined the sun's travel
across the sky at the beginning of this chapter? Instead of setting up a timer and moving
the object by a calculated number of pixels, we created an animation, defined a total
running time for it, and let Qt take care of updating the object. This has the great benefit
of neglecting delays in function execution. If you used a timer and some external event
introduced a significant delay before the timeout function was run, the animation would
start lagging behind. When Qt Quick animations are used, the framework compensates for
such delays, skipping some of the frame updates to ensure that the requested animation
duration is respected. Thanks to that, you will not have to take care of it all by yourself.

To overcome the second difficult aspect of a game loop—the god anti-pattern—we suggest
encapsulating the logic of each item directly in the item itself the using states and transitions
framework we introduced earlier. If you define an object using a natural time flow describing
all states it can enter during its lifetime and actions causing transitions between states, you
will be able to just plop the object with its included behavior wherever it is needed and thus
easily reuse such definitions in different games, reducing the amount of work necessary to
make the object fit into the game.

As for input event processing, a usual approach in games is to read input events and call
functions responsible for actions associated with particular events:

void Scene: :keyEvent (QKeyEvent *ke) {

switch (ke->key ()) {
case Qt::Key Right: player->goRight (); break;
case Qt::Key Left: player->goLeft(); break;

14321

Chapter 10

case Qt::Key Space: player->jump() ; break;
//
}

}

This, however, has its drawbacks, one of which is the need to check events at even periods of
time. This might be hard and certainly is not a declarative approach.

We already know that Qt Quick handles keyboard input via the Keys attached property. It

is possible to craft QML code similar to the one just presented, but the problem with such
an approach is that the faster the player taps keys on the keyboard, the more frequently the
character will move, jump, or shoot. It isn't hard if it is done properly, though.

Time for action - character navigation

Create a new QML document and call it Player.gml. In the document, place the following
declarations:

Item {
id: player
y: parent.height
focus: true

Keys.onRightPressed: x = Math.min (x+20, parent.width)
Keys.onLeftPressed: x = Math.max (0, x-20)
Keys.onUpPressed: jump ()

function jump () { jumpAnim.start() }
Image {
source: "elephant.png"

anchors.bottom: parent.bottom
anchors.horizontalCenter: parent.horizontalCenter
}
Behavior on x { NumberAnimation { duration: 100 } }
SequentialAnimation on y {
id: jumpAnim
running: false
NumberAnimation { to: player.parent.height-50; easing.type:
Easing.OutQuad }
NumberAnimation { to: player.parent.height; easing.type:
Easing.InQuad }

[4331]

Qt Quick

Next, open the document containing the main scene definition and declare the player
character near the end of the document after all the background layers are declared:

Player ({
id: player
x:40

What just happened?

The player itself is an empty item with a keyboard focus that handles presses of the right,
left, and up arrow keys, causing them to manipulate the x and y coordinates of the player.
The x property has a Behavior element set so that the player moves smoothly within the
scene. Finally, anchored to the player item is the actual visualization of the player—our
elephant friend.

When the right or left arrow keys are pressed, a new position for the character will be
calculated and applied. Thanks to the Behavior element, the item will travel gradually
(during one second) to the new position. Keeping the key pressed will trigger auto-repeat
and the handler will be called again. In a similar fashion, when the spacebar is pressed, it will
activate a prepared sequential animation that will lift the character up by 50 pixels and then
move it down again to the initial position.

This approach works but we can do better. Let's try something different.

Time for action — another approach to character navigation

Replace the previous key handlers with the following code:

QtObject {
id: flags
readonly property int speed: 20
property int horizontal: 0
}
Keys.onRightPressed: { recalculateDurations(); flags.horizontal = 1 }
Keys.onLeftPressed:
if (flags.horizontal != 0) return
recalculateDurations ()
flags.horizontal = -1
}
Keys.onUpPressed: jump ()
Keys.onReleased: {
if (event.key == Qt.Key Right) flags.horizontal = 0

14341

Chapter 10

if (event.key == Qt.Key Left && flags.horizontal < 0)
flags.horizontal = 0

function recalculateDurations() {
xAnimRight.duration = (xAnimRight.to-x)*1000/flags.speed
xAnimLeft.duration = (x-xAnimLeft.to)*1000/flags.speed
}
NumberAnimation on x {
id: xAnimRight
running: flags.horizontal > 0
to: parent.width
}
NumberAnimation on x {
id: xAnimLeft
running: flags.horizontal < 0
to: 0

What just happened?

Instead of performing actions immediately, upon pressing a key, we are now setting flags
(in a private object) for which direction the character should be moving in. In our situation,
the right direction has priority over the left direction. Setting a flag triggers an animation
that tries to move the character toward an edge of the scene. Releasing the button will
clear the flag and stop the animation. Before the animation is started, we are calling the
recalculateDurations () function, which checks how long the animation should last
for the character to move at the desired speed.

If you want to replace keyboard-based input with something else, for
\ example, accelerometer or custom buttons, the same principle can be
~ applied. When using an accelerometer, you can even control the speed of
<::§ the player by measuring how much the device is tilted. You can addtionally
store the tilt in the f1ags.horizontal parameter and make use of that
variable in the recalculateDurations () function.

What we have done is sufficient for many applications. However, you can try controlling the
movement even more. As a challenge, try modifying the system in such a way that during a
jump, inertia keeps the current horizontal direction and speed of movement of the character
until the end of the jump. If the player releases the right or left keys during a jump, the
character will stop only after the jump is complete.

[4351]

Qt Quick

Despite trying to do everything in a declarative fashion, some actions will still require
imperative code. If some action is to be executed periodically, you can use the Timer
parameter to execute a function on demand. Let's go through the process of implementing
such patterns together.

Time for action - generating coins

The goal of the game we are trying to implement is to collect coins. We will spawn coins now
and then in random locations of the scene.

Create a new QML Document and call it Coin.gml. In the editor, enter the following code:

Item {
id: coin

Rectangle
id: coinVisual
color: "yellow"
border.color: Qt.darker (color)
border.width: 2
width: 30; height: width
radius: width/2
anchors.centerIn: parent

transform: Rotation {
axis.y: 1

NumberAnimation on angle {
from: 0; to: 360
loops: Animation.Infinite
running: true

}

Text {
color: coinVisual.border.color
anchors.centerIn: parent
text: "1"

[4361]

Chapter 10

Next, open the document where the scene is defined and enter the following code
somewhere in the scene definition:

Component {
id: coinGenerator
Coin {}

}

Timer {
id: coinTimer
interval: 1000
repeat: true

onTriggered: {
var cx = Math.floor (Math.random() * scene.width)
var cy = Math.floor (Math.random() * scene.height/3)
+ scene.height/2
coinGenerator.createObject (scene, { x: cx, y: cy});

}
}

What just happened?

First, we defined a new element type, Coin, consisting of a yellow circle with a number
centered over an empty item. The rectangle has an animation applied that rotates the item
around a vertical axis, resulting in a pseudo three-dimensional effect.

Next, a component able to create instances of a Coin element is placed in the scene. Then,
a Timer element is declared that fires every second and spawns a new coin at a random
location of the scene.

The player character, as well as any other component of the game, should be animated. If the
component is implemented using simple Qt Quick shapes, it is quite easy to do by changing
the item's properties fluently, by way of using property animations (like we did with the Coin
object). Things get more difficult if a component is complex enough that it is easier to draw it
in a graphics program and use an image in the game instead of trying to recreate the object
using Qt Quick items. Then, one needs a number of images—one for every frame of animation.
Images would have to keep replacing one another to make a convincing animation.

4311

Qt Quick

Time for action - implementing simple character animation

Let's try to make the player character animated in a simple way. In materials that come with
this book, you will find a number of images with different walking phases for Benjamin the
Elephant. You can use them or you can draw or download some other images to be used in
place of those provided by us.

Put all images in one directory (for example, images) and rename them so that they follow
a pattern that contains the base animation name followed by a frame number, for example,
walking 01, walking 02, walking 03, and soon.

Next, open the Player.gml document and replace the image element showing
"elephant .png" with the following code:

Image {
property int currentFrame: 1
property int frameCount: 10
source: "images/walking "+currentFrame+".png"
mirror: player.facingLeft

anchors.bottom: parent.bottom
anchors.horizontalCenter: parent.horizontalCenter
Animation on currentFrame {

from: 1

to: frameCount

loops: Animation.Infinite

duration: frameCount*40

running: player.walking

}
In the root element of Player.qgml, add the following properties:

property bool walking: flags.horizontal != 0
property bool facingLeft: flags.horizontal < 0

Start the program and use the arrow keys to see Benjamin move.

4381

Chapter 10

What just happened?

A number of images were prepared following a common naming pattern containing a
number. All the images have the same size. This allows us to replace one image with another
just by changing the value of the source property to point to a different image. To make

it easier, we introduced a property called the currentFrame element that contains the
index of the image to be displayed. We used the currentFrame element in a string forming
an expression bound to the source element of the image. To make substituting frames
easy, a NumberAnimation element was declared to modify values of the currentFrame
element in a loop from 1 to the number of animation frames available (represented by the
frameCount property), so that each frame is shown for 40 miliseconds. The animation

is playing if the walking property evaluates to true (based on the value of the flags.
horizontal element in the player object). Finally, we use the mirror property of the
Image parameter to flip the image if the character is walking left.

The preceding approach works, but is not perfect. The complexity of the declaration
following this pattern grows much faster than required when we want to make movement
animation more complex (for example, if we want to introduce jumping). This is not the only
problem, though. Loading images does not happen instantly. The first time a particular image
is to be used, the animation can stall for a moment while the graphics get loaded, which
might ruin the user experience. Lastly, it is simply messy to have a bunch of pictures here and
there for every image animation.

A solution to this is to use sprites—geometrical animated objects consisting of small images
combined into one larger image for better performance. Qt Quick supports sprites through
its sprite engine that handles loading sequences of images from a sprite field, animating
them and transitioning between different sprites.

[4391]

Qt Quick

In Qt Quick, a sprite is an image of any type supported by Qt that contains an image strip
with all frames of the animation. Subsequent frames should form a contiguous line flowing
from left to right and from top to bottom of the image. However, they do not have to start
in the top-left corner of the containing image, nor do they have to end in its bottom-right
corner—a single file can contain many sprites. A sprite is defined by providing the size of a
single frame in pixels and a frame count. Optionally, one can specify an offset from the top-
left corner where the first frame of the sprite is to be read from. The following diagram can
be helpful in visualizing the scheme:

frameWidth
__ | ___lramex : —
4 b » » 4 4 -') " IframeHeighl
1
0)
" ' R, . ©
2 3 4 5 6 7

QML offers a Sprite element type with a source property pointing to the URL of the
container image, a frameWidth and frameHeight element determining the size of each
frame, and a frameCount element defining the number of frames in the sprite. Offsetting
the image can be achieved by setting values of the frameX and frameY properties. In
addition to this, some additional properties are present; the most important three are
frameRate, frameDuration, and duration. All these serve to determine the pace of the
animation. If the frameRate element is defined, it is interpreted as a number of frames to
cycle through per second. If this property is not defined, then the frameDuration element
kicks in and is treated as a period of time in which to display a single frame (thus, it is directly
an inverse of the frameRate element). If this property is not defined, as well, the duration
element is used, which carries the duration of the whole animation. You can set any of the
three properties, and precedence rules (frameRate, frameDuration, duration) will
determine which of them are going to be applied.

(4101

Chapter 10

Time for action - animating characters using sprites

Let's wait no further. The task at hand is to replace the manual animation from the previous
exercise with a sprite-based animation.

Open the Player.gml document, remove the whole image element responsible for
displaying the player character:

AnimatedSprite {
id: sprite
source: "images/walking.png"
frameX: 560
frameY: O
framewidth: 80
frameHeight: 52
frameCount: 7
frameRate: 10
interpolate: true
width: frameWidth
height: frameHeight

running: player.walking
anchors.bottom: parent.bottom
anchors.horizontalCenter: parent.horizontalCenter

transform: Scale {
origin.x: sprite.width/2
xScale: player.facingLeft ? -1 : 1

[aml]

Qt Quick

What just happened?

We have replaced the previous static image with an ever-changing source with a different
item. As the Sprite parameter is not an Item element but rather a data definition

of a sprite, we cannot use it in place of the Image element. Instead, we will use the
AnimatedSprite element, which is an item that can display a single animated sprite
defined inline. It even has the same set of properties as the Sprite parameter. We defined
a sprite embedded in images/walking.png with a width of 80 and a height of 52 pixels.
The sprite consists of seven frames that should be displayed at a rate of 10 frames per
second. The running property is set up similar to the original Animation element. As the
AnimatedSprite element does not have a mirror property, we emulate it by applying a
scale transformation that flips the item horizontally if the player.facingLeft element
evaluates to true. Additionally, we set the interpolate property to true, which makes
the sprite engine calculate smoother transitions between frames.

The result we are left with is similar to an earlier attempt, so if these two are similar then
why bother using sprites? In many situations, you want more complex animation than just
a single frame sequence. What if we want to animate the way Benjamin jumps in addition
to him walking? Embedding more manual animations, although possible, would explode
the number of internal variables required to keep the state of the object. Fortunately,

the Qt Quick sprite engine can deal with that. The AnimatedSprite element we used
provides just a subset of features of the whole framework. By substituting the item with
the SpriteSequence element we gain access to the full power of sprites. In talking about
Sprite, we didn't tell you about one additional property of the object, a property called
to that contains a map of probabilities of transitioning from the current sprite to another
one. By stating which sprites the current one migrates to, we create a state machine with
weighted transitions to other sprites, as well as cycling back to the current state.

Transitioning to another sprite is triggered by setting the goalSprite property on the
SpriteSequence object. This will cause the sprite engine to traverse the graph until it
reaches the requested state. It is a great way to fluently switch from one animation to
another by going through a number of intermediate states.

Instead of asking the sprite machine to gracefully transit to a given state, one can ask it to
force an immediate change by calling the SpriteSequence class's jumpTo () method and
feeding it with the name of the sprite that should start playing.

The last thing that needs to be clarified is how to actually attach the sprite state machine to
the SpriteSequence class. It is very easy; just assign an array of the Sprite objects to the
sprites property.

[442]

Chapter 10

Time for action - adding jumping with sprite transitions

Let's replace the AnimatedSprite class with the SpriteSequence class in the Bejamin
the Elephant animation, adding a sprite to be played during the jumping phase.

Open the Player.qgml file and replace the AnimatedSprite object with the following code:

SpriteSequence {
id: sprite
width: 80
height: 52
anchors.bottom: parent.bottom
anchors.horizontalCenter: parent.horizontalCenter
currentSprite: "still"
running: true

Sprite {
name: "still™"
source: "images/walking.png"

frameCount: 1

framewidth: 80

frameHeight: 52

frameDuration: 100

to: {"still": 1, "walking": 0, "jumping": 0}
}
Sprite {

name: "walking"

source: "images/walking.png"

frameCount: 7

framewidth: 80

frameHeight: 52

frameRate: 10

to: {"walking": 1, "still": 0, "jumping": 0}

}
Sprite {
name: "jumping"
source: "images/jumping.png"

frameCount: 11
frameWidth: 80
frameHeight: 70
frameRate: 4

14431

Qt Quick

to: { "still" : 1 }

transform: Scale ({
origin.x: sprite.width/2
xScale: player.facingLeft ? -1 : 1
}
}

Next, extend the jumpAnim object by adding the highlighted changes:

SequentialAnimation {
id: jumpAnim
running: false
ScriptAction { script: sprite.goalSprite = "jumping" }
NumberAnimation {
target: player; property: "y"
to: player.parent.height-50; easing.type: Easing.OutQuad
}
NumberAnimation {
target: player; property: "y"
to: player.parent.height; easing.type: Easing.InQuad
}
ScriptAction {
script: { sprite.goalSprite = ""; sprite.jumpTo("still"); }
}
}

What just happened?

The SpriteSequence element we have introduced has its Ttem elements-related
properties set up in the same way as when the AnimatedSprite element was used. Apart
from that, a sprite called "still" was explicitly set as the current one. We defined a number of
Sprite objects as children of the SpriteSequence element. This is equivalent to assigning
those sprites to the sprites property of the object. The complete state machine that was
declared is presented in the following diagram:

[aaa]

Chapter 10

A sprite called "still" has just a single frame representing a situation when Benjamin doesn't
move. The sprite keeps spinning in the same state due to the weighted transition back to
the "still" state. The two remaining transitions from that state have their weights set to 0,
which means they will never trigger spontaneously, but they can be invoked by setting the
goalSprite property to a sprite that can be reached by activating one of those transitions.

The sequential animation was extended to trigger sprite changes when the elephant lifts into
the air.

To practice sprite transitions, your goal is to extend the state machine of Benjamin's
SpriteSequence element to make him wiggle his tail when the elephant is standing still.
You can find the appropriate sprite in the materials that come included with this book. The
sprite field is called wiggling.png. Implement the functionality by making it probable that
Benjamin spontaneously goes from the "still" state to "wiggling". Pay attention to ensure the
animal stops wiggling and starts walking the moment the player activates the right or left
arrow keys.

Parallax scrolling

We already discussed the useful technique of parallax scrolling in Chapter 6, Graphics View.
Just to recapitulate, it gives the impression of depth for 2D games by moving multiple layers
of background at a different speed depending on the assumed distance of the layer from the
viewer. We will now see how easy it is to apply the same technique in Qt Quick.

14451

Qt Quick

Time for action - revisiting parallax scrolling

We will implement parallax scrolling with a set of layers that move in the direction opposite
to the one the player is moving in. Therefore, we will need a definition of the scene and a
moving layer.

Create a new QML Document (Qt Quick 2). Call it ParallaxScene.qgml. The scene will
encompass the whole game "level" and will expose the position of the player to the moving
layers. Put the following code in the file:

import QtQuick 2.2

Item {
id: root
property int currentPos
X: -currentPos* (root.width-root.parent.width) /width

}

Then, create another QML Document (Qt Quick 2) and call it ParallaxLayer.gml. Make it
contain the following definition:

import QtQuick 2.2

Item {
property real factor: 0
x: factor > 0 ? -parent.currentPos/factor - parent.x : 0

}

Now, let's use the two new element types in the main QML document. We'll take elements
from the earlier scene definition and make them into different parallax layers—the sky, the
trees, and the grass:

Rectangle
id: view

width: 600
height: 380

ParallaxScene {
id: scene
width: 1500; height: 380
anchors.bottom: parent.bottom
currentPos: player.x

ParallaxLayer ({

14461

Chapter 10

factor: 7.5
width: sky.width; height: sky.height
anchors.bottom: parent.bottom
Image { id: sky; source: "sky.png" }
}
ParallaxLayer ({
factor: 2.5
width: trees.width; height: trees.height
anchors.bottom: parent.bottom
Image { id: trees; source: "trees.png" }
}
ParallaxLayer ({
factor: 0
width: grass.width; height: grass.height
anchors.bottom: parent.bottom
Image { id: grass; source: "grass.png" }

Item {
id: player
//

[447]

Qt Quick

What just happened?

The ParallaxScene element we implemented is a moving plane. Its horizontal offset
depends on the character's current position and the size of the view. The range of scroll of the
scene is determined by the difference between the scene size and the view size—it says how
much scrolling we have to do when the character moves from the left edge to the right edge of
the scene so that it is in view all the time. If we multiply that by the distance of the character
from the left edge of the scene expressed as a fraction of the scene width, we will get the
needed scene offset in the view (or otherwise speaking, a projection offset of the scene).

The second type—ParallaxLayer is also a moving plane. It defines a distance factor that
represents the relative distance (depth) of the layer behind the foreground, which influences
how fast the plane should be scrolled compared to the foreground (scene). The value of

0 means that the layer should be moving with exactly the same speed as the foreground
layer. The larger the value, the slower the layer moves compared to the character. The offset
value is calculated by dividing the character's position in the scene by the factor. Since the
foreground layer is also moving, we have to take it into consideration when calculating the
offset for each parallax layer. Thus, we subtract the horizontal position of the scene to get
the actual layer offset.

Having the layers logically defined, we can add them to the scene. Each layer has a physical
representation, in our case, static images containing textures of the sky, trees, and grass.
Each layer is defined separately and can live its own life, containing static and animated
elements that have no influence on remaining layers. If we wanted to render a sun moving
from east to west, we would put it on the sky layer and animate it from one edge of the layer
to the other with a long duration.

Have a go hero - vertical parallax sliding

As an additional exercise, you might want to implement vertical parallax sliding in addition to
a horizontal one. Just make your scene bigger and have it expose the vertical scroll position
in addition to the horizontal one reported by the currentPos element. Then, just repeat

all the calculations for the y property of each layer and you should be done in no time.
Remember that distance factors for x and y might be different.

There is no built-in support for collision detection in Qt Quick, but there are three ways of
providing such support. First, you can use a ready collision system available in a number of
2D physics engines such as Box2D. Secondly, you can implement a simple collision system
yourself in C++. Lastly, you can do collision checking directly in JavaScript by comparing
object coordinates and bounding boxes.

[4481]

Chapter 10

Our game is very simple; therefore, we will use the last approach. If we had a larger number
of moving objects involved in our game, then we would probably choose the second
approach. The first approach is best if you have an object of non-rectangular shapes that can
rotate and bounce off other objects. In this case, having a physics engine at hand becomes
really useful.

Time for action - collecting coins

From Qt Creator's menu, access File | New File or Project. From Qt Files And Classes,
choose the JS File template. Call the file "collisions.js". Put the following content into
the document:

pragma library

function boundingBox (objectl) {
var cR = objectl.childrenRect
var mapped = objectl.mapToltem(objectl.parent, cR.x, cR.y,
cR.width, cR.height)

return Qt.rect (mapped.x, mapped.y, mapped.width, mapped.height)

function intersect (objectl, object2) ({
var rl = boundingBox (objectl)
var r2 = boundingBox (object2)
return (rl.x <= r2.x+r2.width && // rl.left <= r2.right
r2.x <= rl.x+rl.width && // r2.left <= rl.right
rl.y <= r2.y+r2.height && // rl.top <= r2.bottom
r2.y <= rl.y+rl.height) // r2.top <= rl.bottom

}
Create another JS File and call it "coins . js". Enter the following:

import "collisions.js"
var coins = []

coins.collisionsWith = function(player) {
var collisions = []
for(var index = 0; index < length; ++index) {
var obj = this[index]
if (intersect (player, obj)) collisions.push (obj)

}

return collisions

14491

Qt Quick

coins.remove = function(obj) {
var arr = isArray(obj) ? obj : [obj 1
var L = arr.length
var idx, needle
while (L && this.length)
var needle = arr[--L]
idx = this.indexOf (needle)
if(idx != -1) { this.splice(idx, 1) }
}

return this

}

Finally, open the main document and add the following import statement:
import "coins.js"

In the player object, define the checkCollisions () function:

function checkCollisions()
var result = coins.collisionsWith(player)
if (result.length == 0) return
result.forEach (function(coin) { coin.hit () })
coins.remove (result) // prevent the coin from being hit again

}

Lastly, in the same player object, trigger collision detection by handling the position changes
of the player:

onXChanged: { checkCollisions() }
onYChanged: { checkCollisions() }

In the Coin.qgml file, define an animation and a hit () function:

SequentialAnimation {

id: hitAnim

running: false

NumberAnimation {
target: coin
property: "opacity"
from: 1; to: O
duration: 250

}

ScriptAction {

[450]

Chapter 10

script: coin.destroy ()

}
}

function hit () {
hitAnim.start ()

What just happened?

The file collisions. js contains functions used to do collision checking. The first line of
the file is a pragma statement noting that this document only contains functions and does
not contain any mutable object. This is so that we can add a .pragma library statement,
which marks the document as a library that can be shared between documents that import
it. This aids in reduced memory consumption and improved speed as the engine doesn't
have to reparse and execute the document each time it is imported.

The functions defined in the library are really simple. The first one returns a bounding
rectangle of an object based on its coordinates and the size of its children. It assumes

that the top-level item is empty and contains children that represent the visual aspect of
the object. Children coordinates are mapped using the mapToItem element so that the
rectangle returned is expressed in the parent item coordinates. The second function does a
trivial checking of intersection between two bounding rectangles and returns true if they
intersect and false otherwise.

The second document keeps a definition of an array of coins. It adds two methods to the
array object. The first one—collisionsWith—performs a collision check between any

of the items in the array and the given object using functions defined in collisions.js.
That's why we import the library at the start of the document. The method returns another
array that contains objects intersecting the player argument. The other method, called
remove, takes an object or an array of objects and removes them from coins.

The document is not a library; therefore, each document that imports coins.js would get
its own separate copy of the object. Thus, we need to ensure that coins.js is imported
only once in the game so that all references to the objects defined in that document relate to
the same instance of the object in our program memory.

[4511

Qt Quick

Our main document imports coins. js, which creates the array for storing coin objects and
makes its auxiliary functions available. This allows the defined checkCollisions () function
to retrieve the list of coins colliding with the player. For each coin that collides with the player,
we execute a hit () method; as a last step, all colliding coins are removed from the array. Since
coins are stationary, collision can only occur when the player character enters an area occupied
by a coin. Therefore, it is enough to trigger collision detection when the position of the player
character changes—we use the onXChanged and onYChanged handlers.

As hitting a coin results in removing it from the array, we lose a reference to the object.

The hit () method has to initiate removal of the object from the scene. A minimalistic
implementation of this function would be to just call the destroy () function on the object,
but we do more—the removal can be made smoother by running a fade-out animation on
the coin. As a last step, the animation can destroy the object.

The number of objects we track on the scene is really small, and we simplify the shape of
each object to a rectangle. This lets us get away with checking collisions in JavaScript. For a
larger amount of moving objects, custom shapes, and handling rotations, it is much better to
have a collision system based on C++. The level of complexity of such a system depends on
your needs.

A game should not just be based upon an interesting idea; it should not only work fluently
on a range of devices and give entertainment to those people playing it. It should also look
nice and behave nicely. Whether one is choosing from a number of similar implementations
of the same game or wants to spend money on another similarly priced and entertaining
game, there is a good chance the game she or he chooses will be the one that looks the
best—having a lot of animations, graphics, and flashy content. We already learned a number
of techniques to make a game more pleasing to the eye, such as using animations or GLSL
shaders. Here, we will show you a number of other techniques that can make your Qt Quick
applications more attractive.

[4521

Chapter 10

Auto-scaling user interfaces

The first extension you might implement is making your game auto-adjust to the device
resolution it is running on. There are basically two ways to accomplish this. The first is to
center the user interface in the window (or screen) and if it doesn't fit, enable scrolling.
The other approach is to scale the interface to always fit the window (or screen). Which to
choose depends on a number of factors, the most important of which is whether your Ul

is good enough when upscaled. If the interface consists of text and non-image primitives
(basically rectangles) or if it includes images but only vector ones or those with very high
resolution, then it is probably fine to try and scale the user interface. Otherwise, if you use
a lot of low resolution bitmap images, you will have to choose one particular size for the Ul
(optionally allowing it to downscale since the quality degradation should be less significant in
this direction if you enable anti-aliasing).

Whether you choose to scale or to center and scroll, the basic approach is the same—

you put your Ul item in another item so that you have fine control over the Ul geometry
regardless of what happens to the top-level window. Taking the centered approach is quite
easy—ijust anchor the Ul to the center of the parent. To enable scrolling, wrap the Ul in the
Flickable item and constrain its size if the size of the window is not big enough to fit the
whole user interface:

Item {

id: window

Flickable ({
id: uiFlickable
anchors.centerIn: parent
contentWidth: ui.width; contentHeight: ui.height

width: parent.width >= contentWidth ? contentWidth : parent.width
height: parent.height >= contentHeight ? contentHeight
parent.height

UI { id: ui }
}
}

You should probably decorate the top-level item with a nice background if the Ul item does
not occupy the full area of its parent.

[4531]

Qt Quick

Scaling seems more complicated, but with Qt Quick it is really easy. Again, you have two
choices—either stretch or scale. Stretching is as easy as executing the anchors.£fi11:
parent command, which effectively forces the Ul to recalculate the geometry of all its items
but possibly allows us to use the space more efficiently. It is, in general, very time-consuming
for the developer to provide expressions for calculating the geometry of each and every
element in the user interface as the size of the view changes. This is usually not worth the
effort. A simpler approach is to just scale the Ul item to fit the window, which will implicitly
scale the contained items. In such an event, their size can be calculated relative to the base
size of the main view of the user interface. For this to work, you need to calculate the scale
that is to be applied to the user interface to make it fill the whole space available. The item
has a scale of 1 when its effective width equals its implicit width and its effective height
equals its implicit height. If the window is larger, we want to scale the item up until it reaches
the size of the window. Therefore, the window's width divided by the item's implicit width
will be the item's scale in the horizontal direction. This is shown in the following diagram:

S, = and
¥ m’ur'
S =1 Sy=1 S <1
ul Ul ul
(WINDOW }_N'_I_NDOW WINDOW

The same can be applied to the vertical direction, but if the Ul has a different aspect ratio
than the window, its horizontal and vertical scale factors will be different. For the Ul to look
nice, we have to take the lower of the two values—to only scale up as much as the direction
with less space allows, leaving a gap in the other direction:

Item {
id: window

UI {
id: ui

anchors.centerIn: parent
scale: Math.min (parent.width/width, parent.height/height)

}
}

14541

Chapter 10

Again, it might be a good idea to put some background on the window item to fill in the gaps.

What if you want to save some margin between the user interface and the window? You
could, of course, take that into consideration when calculating the scale ((window.width-
2*margin) /width, and so on) but there is an easier way—simply put an additional item
inside the window, leaving an appropriate margin, and put the user interface item in that
additional item and scale it up to the additional item's size:

Item {
id: window
Item {
anchors { fill: parent; margins: 10 }
UI
id: ui

anchors.centerIn: parent
scale: Math.min(parent.width/width, parent.height/height)
}
}
}

When you scale elements a lot, you should consider enabling anti-aliasing for items that

can lose quality when rendered in a size different than their native size (for example,
images). This is done very easily in Qt Quick as each Iteminstance has a property called
antialiasing which, when enabled, will cause the rendering backend to try to reduce
distortions caused by the aliasing effect. Remember that this comes at the cost of increased
rendering complexity, so try to find a balance between quality and efficiency, especially on
low-end hardware. You might provide an option to the user to globally enable or disable anti-
aliasing for all game objects or to gradually adjust quality settings for different object types.

The basic two predefined items in Qt Quick are rectangle and image. One can use them in
a variety of creative ways and make them more pleasant-looking by applying GLSL shaders.
However, implementing a shader program from scratch is cumbersome and requires in-
depth knowledge of the shader language. Luckily, a number of common effects are already
implemented and ready to use in the form of the QtGraphicalEffects module.

[4551]

Qt Quick

To add a subtle black shadow to our canvas-based heartbeat element defined in the
HeartBeat .qml file, use a code similar to the following that makes use of the DropShadow
effect:

import QtQuick 2.0
import QtGraphicalEffects 1.0

Item {
width: 1000; height: 600
HeartBeat { id: hb; anchors.centerIn: parent; visible: false }
DropShadow {
source: hb
anchors.fill: hb
horizontalOffset: 3
verticalOffset: 3
radius: 8
samples: 16
color: "black"
}
}

To apply a shadow effect, you need an existing item as the source of the effect. In our case,
we are using an instance of the HeartBeat class centered in a top-level item. Then, the
shadow effect is defined and its geometry follows that of its source by using the anchors.
£111 element. Just as the DropShadow class renders the original item as well as the
shadow, the original item can be hidden by setting its visible property to false.

Most of the DropShadow class's properties are self-explanatory, but two
properties—radius and samples—require some additional explanation. The shadow
is drawn as a blurred monochromatic copy of the original item offset by a given position.
The two mentioned properties control the amount of blur and its quality—the more
samples used for blurring, the better the effect, but also the more demanding the
computation that needs to be performed.

[4561]

Chapter 10

Speaking of blur, the plain blurring effect is also available in the graphics effects module
through the GaussianBlur element type. To apply a blur instead of a shadow to the last
example, simply replace the occurrence of the bropShadow class with the following code:

GaussianBlur
source: hb
anchors.fill: hb
radius: 12
samples: 20
transparentBorder: true

Here, you can see two earlier mentioned properties as well as a vaguely named
transparentBorder one. Enabling this property fixes some artifacts on the edges of the
blur and in general, you'll want to keep it that way.

The blur property is a very nice effect that can be used in many situations. For example, you
could try to implement a feature within our elephant game whereby, when the user pauses
the game (for example, by pressing the P key on the keyboard), the view gets blurred. Make
the effect smooth by applying an animation to the effect's radius property.

Another interesting effect is Glow. It renders a colored and blurred copy of the source
element. An example use case for games is highlighting some parts of the user interface—
you can direct the user's attention to the element (for example, button or badge) by making
the element flash periodically:

Badge {
id: importantBadge

}

Glow {
source: importantBadge
anchors.fill: source
samples: 16

[4571

Qt Quick

color: "red"

SequentialAnimation on radius {
loops: Animation.Infinite
running: true

NumberAnimation { from: 0; to: 10; duration: 2000 }
PauseAnimation { duration: 1000 }
NumberAnimation { from: 10; to: 0; duration: 2000 }
PauseAnimation { duration: 1000 }

}

The complete module contains 20 different effects. We cannot describe each effect in detail
here. Nevertheless, you can learn about it yourself. If you clone the module's source git
repository (found under git://code.qt.io/qt/gtgraphicaleffects.git)inthe
tests/manual/testbed subdirectory of the cloned repository, you will find a nice application
for testing existing effects. To run the tool, open the testBed. gml file with gmlscene.

v, SRS gmlscens v x
Effects RadialBlur

Blend general
Blend

Distortion

advanced

Blur

Drop Shadow

descriptions by navigating to the GraphicalEffects help page

M You can also access a complete list of effects and their short
Q in the documentation.

[4581]

git://code.qt.io/qt/qtgraphicaleffects.git

Chapter 10

Particle systems

A commonly used visual effect in systems such as games is generating a large number of
small, usually short-lived, often fast-moving, fuzzy objects such as stars, sparks, fumes, dust,
snow, splinters, falling leaves, or the like. Placing these as regular items within a scene would
greatly degrade performance. Instead, a special engine is used which keeps a registry of
such objects and tracks (simulates) their logical attributes without having physical entities

in the scene. Such objects, called particles, are rendered upon request in the scene using
very efficient algorithms. This allows us to use a large number of particles without having a
negative impact on the rest of the scene.

Qt Quick provides a particle system in the QtQuick.Particles import. The
ParticleSystem element provides the core for the simulation, which uses the Emitter
elements to spawn particles. They are then rendered according to definitions in a
ParticlePainter element. Simulated entities can be manipulated using the Affector
objects, which can modify the trajectory or life span of particles.

Let's start with a simple example. The following code snippet declares the simplest possible
particle system:

import QtQuick 2.0
import QtQuick.Particles 2.0

ParticleSystem {
id: particleSystem
width: 360; height: 360

Emitter { anchors.fill: parent }
ImageParticle { source: "star.png" }

}

The result can be observed in the following image:

*

[4591]

Qt Quick

Let's analyze the code. After importing QtQuick.Particles 2.0,a ParticleSystem
item is instantiated that defines the domain of the particle system. We define two objects
within that system. The first object is the Emitter and defines an area where particles will
be spawned. The area is set to encompass the whole domain. The second object is an object
of the ImageParticle type, which is a ParticlePainter subclass. It determines that
particles should be rendered as instances of a given image. By default, the Emitter object
spawns 10 particles per second, each of which lives for one second and then dies and is
removed from the scene. In the code presented, the Emitter and ImageParticle objects
are direct children of the ParticleSystem class; however, this doesn't have to be the case.
The particle system can be explicitly specified by setting the system property.

Tuning the emitter

You can control the amount of particles being emitted by setting the emitRate property
of the emitter. Another property called the 1ifeSpan determines how many milliseconds
it takes before a particle dies. To introduce some random behavior, you can use the
lifeSpanvVariation property to set a maximum amount of time (in milliseconds) the life
span can be altered by the system (in both directions). Increasing the emission rate and life
span of particles can lead to a situation in which a very large number of particles have to be
managed (and possibly rendered). This can degrade performance; thus, an upper limit of
particles that can concurrently be alive can be set through the maximumEmitted property:

ParticleSystem {
id: particleSystem
width: 360; height: 360

Emitter {
anchors.fill: parent
emitRate: 350
lifeSpan: 1500
lifeSpanvVariation: 400 // effective: 1100-1900 ms

}

ImageParticle { source: "star.png" }

[460]

Chapter 10

Tweaking the life span of particles makes the system more diverse. To strengthen the effect,

you can also manipulate the size of each particle through the size and sizevariation
properties:

ParticleSystem {
id: particleSystem
width: 360; height: 360

Emitter
anchors.fill: parent
emitRate: 50
size: 12
sizeVariation: 6
endSize: 2

}

ImageParticle { source: "star.png" }
w
* . *
* * > * x
* * **
* *
* *
*
. : *
* * * * .
* *
*
N .
* -
*

4611

Qt Quick

The range of functionality presented thus far should be enough to create many nice-

looking and useful particle systems. The limitation so far has been that particles are

emitted from the whole area of the emitter, which is a regular QQuickItemand thus is
rectangular. This doesn't have to be the case, though. The Emitter element contains a
shape property, which is a way to declare the area that is to be giving birth to particles. The
QtQuick.Particles parameter defines three types of custom shape that can be used—
EllipseShape, LineShape, and MaskShape. The first two are very simple, defining either
an empty or filled ellipse inscribed in the item or a line crossing one of the two diagonals of
the item. The MaskShape element is more interesting as it makes it possible to use an image
as a shape for the Emitter element.

ParticleSystem {
id: particleSystem
width: 360; height: 360

Emitter {
anchors.fill: parent
emitRate: 1600
shape: MaskShape { source: "star.png" }

}

ImageParticle { source: "star.png" }

14621

Chapter 10

Thus far, we have used a bare ImageParticle element to render particles. It is only

one of three ParticlePainters available, with the others being TtemParticle and
CustomParticle. But before we move on to other renderers, let's focus on tweaking the
ImageParticle element to obtain some interesting effects.

The ImageParticle element renders each logical particle as an image. The image can be
manipulated separately for each particle by changing its color and rotation, deforming its
shape, or using it as a sprite animation.

To influence the color of particles, you can use any of the large number of dedicated
properties—alpha, color, alphaVariation, colorVariation, redvVariation,
greenVariation, and bluevVariation. The first two properties define the base value

for respective attributes and the remaining properties set the maximum deviation of a
respective parameter from the base value. In the case of opacity, there is only one type of
variation you can use but when defining the color, you can either set different values for each
of the red, green, and blue channels or you can use the global colorvariation property,
which is similar to setting the same value for all three channels. Allowed values are any
between the range of 0 (no deviation allowed) to 1.0 (100% in either direction).

[: * * 4
R Ty
L w -?: ’L* & ** **
A ** %
ko KOS R R ok wW N
- * # * . ¥
ﬁ*‘t,‘z* ** **“:**_*1
* ok *}*-‘** T
*‘w *** % # **
rt*'—* 3** *r w %
% . #
* * *
ke ek Bk
* *idkr Rk W -

[4631]

Qt Quick

The properties mentioned are stationary—the particle obeys the constant value during its
whole life. The ImageParticle element also exposes two properties, letting you control
the color of particles relative to their age. First of all, there is a property called entryEffect
that defines what happens with the particle at its birth and death. The default value is

Fade, which makes particles fade in from 0 opacity at the start of their life and fades them
back to 0 just before they die. You have already experienced this effect in all earlier particle
animations we demonstrated. Other values for the property are None and Scale. The first
one is obvious—there is no entry effect associated with particles. The second one scales
particles from 0 at their birth and scales them back to 0 at the end of their life.

The other time-related property is colorTable. You can feed it with a URL of an image to
be used as a one-dimensional texture determining the color of each particle over its life.
At the beginning, the particle gets color-defined by the left edge of the image and then
progresses right in a linear fashion. It is most common to set an image here containing a
color gradient to achieve smooth transitions between colors.

The second parameter that can be altered is the rotation of a particle. Here, we can

also either use properties that define constant values for rotation (rotation and
rotationVariation) specified in degrees or modify the rotation of particles in time with
rotationVelocity and rotationVelocityVariation. The velocity defines the pace or
rotation in degrees per second.

Particles can also be deformed. The properties xvVector and yVector allow binding
vectors, which define distortions in horizontal and vertical axes. We will describe how to
set the vectors in the next section. Last but not least, using the sprites property you can
define a list of sprites that will be used to render particles. This works in a similar fashion to
SpriteAnimation, described in an earlier section of this chapter.

Apart from fading and rotating, the particle systems we have seen so far were very static.
While this is useful for making star fields, it is not useful at all for explosions, sparks, or even
falling snow. This is because particles are mostly about movement. Here, we will show you
two aspects of making your particles fly.

The first aspect is modeling how the particles are born. By that, we mean the physical
conditions of the object creating the particles. During an explosion, matter is pushed away
from the epicenter with a very large force that causes air and small objects to rush outwards
at an extremely high speed. Fumes from a rocket engine are ejected with high velocities in
the direction opposite to that of the propelled craft. A moving comet draws along a braid of
dust and gases put into motion by the inertia.

14641

Chapter 10

All these conditions can be modeled by setting the velocity or acceleration of the particles.
These two metrics are described by vectors determining the direction and amount
(magnitude or length) of the given quantity. In Qt Quick, such vectors are represented by an
element type called StochasticDirection, where the tail of the vector is attached to the
object and the position of the head is calculated by the StochasticDirection instance.
Since we have no means of setting attributes on particles because we have no objects
representing them, those two attributes—velocity and acceleration—are applied to
emitters spawning the particles. Because you can have many emitters in a single particle
system, you can set different velocities and accelerations for particles of different origins.

There are four types of direction elements representing different sources of information
about the direction. First, there is CumulativeDirection, which acts as a container for
other direction types and works like a sum of directions contained within.

Then, there is PointDirection, where you can specify x and y coordinates of a point
where the head of the vector should be attached. To avoid the unrealistic effect of all
particles heading in the same direction, you can specify xVariation and yvariation to
introduce allowed deviation from a given point.

xVariation 1|

—

ponetepA

[4651]

Qt Quick

The third type is the most popular stochastic direction type—AngleDirection, which directly
specifies the angle (in degrees clockwise from straight right) and magnitude (in pixels per
second) of the vector. The angle can vary from the base by anglevariation and similarly,
magnitudeVariation can be used to introduce variation to the length of the vector:

-

angleVariation

The last type is similar to the previous one. The TargetDirection vector can be

used to point the vector toward the center of a given Qt Quick item (set with the
targetItem property). The length of the vector is calculated by giving the magnitude
and magnitudeVariation, and both can be interpreted as pixels per second or
multiples of distance between the source and target points (depending on the value of the
proportionalMagnitude property):

el targetitem

R\

[4661]

Chapter 10

Let's get back to setting particle velocity. We can use the AngleDirection vector to specify
that particles should be moving left, spreading at a maximum of 45 degrees:

Emitter {
anchors.centerIn: parent
width: 50; height: 50
emitRate: 50

velocity: AngleDirection ({
angleVariation: 45
angle: 180
magnitude: 200

}

*

* ok
R A T
o

ey

A

Setting acceleration works the same way. You can even set both the initial velocity and
the acceleration each particle should have. It is very easy to shoot the particles in the left
direction and start pulling them down:

Emitter
anchors.right: parent.right
anchors.verticalCenter: parent.verticalCenter
emitRate: 15
lifeSpan: 5000

velocity: AngleDirection ({
angle: 180
magnitude: 200

14671

Qt Quick

}

acceleration: AngleDirection {
angle: 90 // local left = global down
magnitude: 100

}

The Emitter element has one more nice property that is useful in the context of moving
particles. Setting the velocityFromMovement parameter to a value different than 0
makes any movement of the Emitter element apply to the velocity of the particles.

The direction of the additional vector matches the direction of the emitter's movement,

and the magnitude is set to the speed of the emitter multiplied by the value set to
velocityFromMovement. It is a great way to generate fumes ejected from a rocket engine:

Item {

Image {
id: image
source: "rocket.png"

}

Emitter
anchors.right: image.right
anchors.verticalCenter: image.verticalCenter
emitRate: 500
lifeSpan: 3000
lifeSpanVariation: 1000
velocityFromMovement: -20

velocity: AngleDirection ({

[468]

Chapter 10

magnitude: 100
angleVariation: 40

}
}

NumberAnimation on x {

The second way of addressing the behavior of particles is to influence their attributes after
they are born—in any particular moment of their life. This can be done using affectors.
These are items inheriting affector, which can modify some attributes of particles currently
traveling though the area of the affector. One of the simplest affectors is Age. It can advance

particles to a point in their lifetime where they only have 1ifeLeft milliseconds of their
life left.

Age {
once: true
lifeLeft: 500
shape: EllipseShape { fill: true }
anchors.fill: parent

}

Setting once to true makes each affector influence a given particle only once. Otherwise,
each particle can have its attributes modified many times.

[4691]

Qt Quick

Another affector type is Gravity, which can accelerate particles in a given angle. Friction can
slow particles down, and attractor will affect the particle's position, velocity, or acceleration
so that it starts traveling toward a given point. Wander is great for simulating snowflakes or
butterflies flying in pseudo-random directions.

There are also other affector types available, but we will not go into their details here.
We would like to warn you, however, against using affectors too often—they can severely
degrade performance.

Time for action - vanishing coins spawning particles

It is time now to practice our freshly acquired skills. The task is to add a particle effect to the
game when the player collects coins. The coin will explode into a sprinkle of colorful stars
when collected.

Start by declaring a particle system as filling the game scene, along with the particle
painter definition:

ParticleSystem {
id: coinParticles
anchors.fill: parent // scene is the parent

ImageParticle {
source: '"particle.png"
colorVariation: 1
rotationVariation: 180
rotationVelocityVariation: 10
}
}

Next, modify the definition of Coin to include an emitter:

Emitter
id: emitter
system: coinParticles
emitRate: 0
lifeSpan: 500
lifeSpanVariation: 100
velocity: AngleDirection { angleVariation: 180; magnitude: 10 }
acceleration: AngleDirection { angle: 270; magnitude: 2 }

}

Finally, the hit function has to be updated:

function hit () {
emitter.burst (50)
hitAnim.start ()

(4701

Chapter 10

What just happened?

In this exercise, we defined a simple particle system that fills the whole scene. We defined a
simple image painter for the particles where we allow particles to take on all the colors and
start in all possible rotations. We used a star pixmap as our particle template.

Then, an Emitter object is attached to every coin. Its emitRate is set to 0, which means it
does not emit any particles on its own. We set a varying life span on particles and let them
fly in all directions by setting their initial velocity with an angle variation of 180 degrees

in both directions (giving a total of 360 degrees). By setting an acceleration, we give the
particles a tendency to travel toward the bottom edge of the scene.

In the hit function, we call a burst () function on the emitter, which makes it give instant
birth to a given number of particles.

sSummary

In this chapter, we have shown you how to extend your QML skills to make your applications
dynamic and attractive. We've gone through the process of recreating and improving a
game created earlier in C++ to familiarize you with such concepts as collision detection,
state-driven objects, and time-based game loops. We also presented you with a tool in the
form of shaderEffect, which can serve as a means to create stunning graphics without
compromising performance, and we taught you to use a particle system.

Of course, Qt Quick is much richer than all this, but we had to stop somewhere. The set

of skills we have hopefully passed on to you should be enough to develop many great
games. However, many of the elements have more properties than we have described here.
Whenever you want to extend your skills, you can check the reference manual to see if the
element type has more interesting attributes.

This concludes our book on game programming using Qt. We have taught you the general
basics of Qt, described its widget realm to you, and introduced you to the fascinating world
of Qt Quick. Widgets (including graphics view) and Qt Quick are the two paths you can take
when creating games using the Qt framework. We have also shown you ways of merging the
two approaches by making use of any OpenGL skills you might have, going beyond what Qt
already offers today. At this point, you should start playing around and experimenting, and
if at any point you feel lost or simply lack the information on how to do something, the very
helpful Qt reference manual should be the first resource you direct yourself to.

Good luck and have lots of fun!

[anl

Pon yuiz - making signal-siot connections

Ql

Aslot

Q2

connect (sender,

SIGNAL (toggled (bool)), receiver,
SLOT (clear())) ; and connect (sender,
&QPushButton: :clicked, receiver,
&QLineEdit: :clear) ;

Ql sizeHint

Q2 QVariant

Q3 It represents a functionality that a user can invoke
in the program.

14131

Pop Quiz Answers

Chapter 4, 0t Core Essentials

Pop quiz - Qt core essentials

Q1 QString

Q2 ((25[0-5]]2[0-4][0-9]][01]1?[0-9][0-9]?)
(\.]s$)) {4}

Q3 XML

Q1 You should know, for example, that there is a
QGraphicsSimpleTextItem that you can use

to draw a simple text and that you do not have to

deal with QPainter yourself in these situations.

You should further know that if you have a more
complex text containing bold characters you can use
QGraphicsTextItem, which is able of handling rich

text.

Q2 The correct answers these questions pertain to the
origin points of the different systems.

Q3 Be aware that QObject isn't restricted to the "world
of widgets". You can also use it with items.

Q4 The catchword for the correct answer is Parallax
Scrolling.

Q5 The correct answer will take into account how you

can control the cache and how to affect which parts
of the view are actually redrawn when an update is
requested.

[aml

Appendix

Chapter 7, Networking

Q1 QNetworkAccessManager, QNetworkRequest,
and QNetworkReply.
Q2 One has to use

QNetworkRequest : : setRawHeader () with the
appropriate HTTP header field "Range".

Q3 QUrlQuery
Q4 One hasto use deletelLater () not delete.
Q5 Both inherit QAbstractSocket which inherits

QIODevice. QIODevice isitself also the base class
of QFile. So the handling-files and sockets have
much in common. Thus one does not have to learn

a second (complex) APl only to communicate with
sockets.

Q6 QUdpSocket

Ql QScriptEngine: :evaluate ()

Q2 QScriptValue

Q3 PyValue

Q4 They contain all the variables defied within a function

invocation so that a set of variables visible from within
a script can be modified without affecting the global
environment (called sandboxing).

14151

Pop Quiz Answers

Chapter 11, Miscellaneous and Advanced Concepts

Ql The suffix is Reading, for example, QRotationReading.

Q2 The class named QSensorGestureRecognizer.

Q3 It's the Qt Positioning module and you activate it by adding
QT += positioning to the project fie.

Q4 One has to overload QDebugé& operator<< ()

Q5 It aborts the execution of the program if condition is

false only if the program was built in the debug mode.

14761

A

accelerators 48

Add-ons 7

Affine Transformations project
running 17-19

animations
action game, scene 411, 412
behaviors 424, 425
car dashboard, animating 426
composing 414-416
elements, animating 410
generic animations 410
non-linear animations 417
property value sources 420
sun animation, furnishing 421, 422
sun, making rise and set 416, 417
sun, path improving 418-420
sun rays, animating 423, 424
suns color, adjusting 420, 421
suns horizontal movement, animating 412, 413
types 430

application, main window
about 57-60
central widget, filling in 62-65
game, extending 66
pull-down menu, adding 61
Qt resource system 58
toolbar, creating 62

artificial intelligence (Al) 291

asynchronous approach 277

button component
creating 332,333

button content
adding 334

C

C++

and Python, data converting between 313-315

C++11 support 8

Canvas
preparing, for hearbeat visualization 363, 364
C++ functions
exposing, to scripts 297-300
script functions, exposing 300
script, storing 300-302
character
animating, sprites used 441, 442
chess game
making, interactive 148-155
ChessView class 139-144
child widgets
adding, to window 27
client
about 274
chat, extending with user list 276
setting up 274, 275
text messages, receiving 275, 276
text messages, sending 276

[477]

C++ objects
car dashboard, self-updating 380-388
engine properties, grouping 389
pushing, to QML 375-379
collision detection
about 448, 449
coins, collecting 449-452
notes 452
Comma-separated Values (CSV) format 73
commercial license
URL 9
components
about 357, 358
analog clock application 350-353
clock, making functional 356, 357
dynamic objects 357
imperative painting 363
item creation, delaying 360, 361
items component functionality,
accessing 361, 362
needles, adding to clock 354, 355
objects, creating on request 358-360
connectivity state
about 264
QNetworkConfiguration 266
QNetworkConfigurationManager 264, 265
QNetworkiInterface 268
QNetworkSession 266, 267
cube
animating 172, 173

D

data serialization
about 90
binary streams 91
JavaScript Object Notation (JSON) 99
JSON parser, implementing 102, 103
of custom structure 91, 92
player data JSON serializer 100, 101
QSettings 104, 105

XML parser, implementing for player data 93-98

XML serializer, for player data 99
XML streams 92, 93

data storage
about 81
data serialization 90
devices 81
files 81
text streams 88-90
declarative programming 324, 325
designer forms
dialog, logic 55, 56
direct approach 53, 54
multiple inheritance approach 54
single inheritance approach 54
using 53
devices
about 84
GUI, for Caesar cipher 88
implementing, to encrypt data 85-87
Docker
URL 244
Document Object Model (DOM) standard 92
double-buffered oscillogram
implementing 131
download progress
showing 254
drawing
optimizing 129
oscillogram drawing, optimizing 129, 130
drawing, optimizing
chess game, making interactive 148-155
ChessView class 139-144

double-buffered oscillogram, implementing 131

game algorithm, connecting 156-161

game architecture, developing 131-134
game board class, implementing 135-139
pieces, rendering 145-148

UCI-compliant chess engine, connecting 162
Ul, implementing around chess board 162

E

error handling

about 247

proper error message, displaying 248, 249
error recovery 307-309
error signal 253

[478]

Essentials 6,7
event handlers
about 337
keyboard input 345-348
mouse input 337
touch input 342
extensions 309

F

Facebook
connecting to 256
URL 256
files
basic file access, getting 83, 84
basic file downloader, extending 247
directories, traversing 81, 82
downloading 245-247
downloading, in parallel 250, 251
downloading, over FTP 250
downloading, over HTTP 244
Forsyth-Edwards Notation (FEN) 137
Framebuffer Objects (FBO) 183
functions
attacks, defending against 304
exposing 297
heartbeat event, implementing 303, 304
initialization function, providing 302

G

game
animation, polishing 435
character navigation 433,434
character navigation, approach 434, 435
coins, generating 436, 437
communicating between 268
loop 432
programming 431, 432
simple chat program, realizing 268
game board class
implementing 135-139
Git
URL 20
used, for setting up Qt sources 20
GL buffers 181, 182
god object pattern 432

Google

connecting to 256

Distance Matrix API, using 256, 257
query, constructing 257, 258
servers reply, parsing 259-263
XML, selecting as reply format 264

Graphics View architecture

about 185
items 187
scenes 198
view 208

GUIs

accelerators 48

designing 43-45

dialog, polishing 48

game configuration dialog, designing 46, 47
label buddies 48

tab order 49

images

loading 124
modifying 125, 126
painting 126
working with 123

imperative painting

Canvas, preparing for heartbeat
visualization 363, 364

diagram, making colorful 367, 368

heartbeat, drawing 364-366

initialization function

providing 302

items

about 185-187

adding, to scenes 198

appearance 189

black rectangular item, creating 189, 190
coordinate system 195

creating, with different origins 196
customizing 193

multiple transformations, applying 198
parent child relationship 187-189
rotating 197, 198

selection state, reacting to 191

size, making definable 192, 193
standard items 193, 194

[479]

J

JavaScript, alternatives
about 310
Python 310
JavaScript Object Notation (JSON)
about 99, 100
parser, implementing 102
jumping elephant example
about 218
animation 236
animation, using to smoothly
move items 230, 231
background, moving 228
Benjamin, moving 222-227
coins, exploding 233, 234
game, extending 235
game play 218
item collision detection 233
item, creating for Benjamin 219-221
items 229
new background layers, adding 229
parallax scrolling 227
player item 219
playing field 221
playing field, setting up 235
property animations 230
QObject 229, 230
scene 222
scene, handling Benjamins jump 232, 233

K

keyboard input
about 346-348
key-event propagation 348, 349

L

license
commercial license 9
open source license 8
selecting 8

M

MAMP
URL 244

meta-objects 8

mouse input
about 337
button, making clickable 337, 338
button state, visualizing 339
environment, notifying about button

state 340-342
mouse tracking 120

(o)

object hierarchies
about 328-331
button component, creating 332, 333
button content, adding 334

button, making reusable component 335-337

button, sizing 335
objects
creating, on requests 358-360
dynamic objects 357
online installer
used, for installing Qt 12-14
OpenGL
about 163
cube, animating 172, 173
GL buffers 181, 182
off-screen rendering 183
Off-screen rendering 183
Qt, used for drawing triangle 165-167
scene-based rendering 167, 168
shaded object 175-181
shaders 173, 174
textured cube, drawing 168-171
used, for drawing triangle 165-167
with Qt 164, 165, 173
open source license
about 8
URL 9
optimizations
about 238
binary space partition tree 238
items paint function, caching 239
view, optimizing 239, 240
oscillogram
drawing 118, 119
drawing, optimizing 129, 130
making, selectable 120, 121

[480]

P

parallax scrolling
about 227, 445
revisiting 446, 448
vertical parallax sliding 448
particles 459
pattern occurrences
finding 80
Perl script
URL 20
platforms 3
properties
about 41
adding, to board class 42, 43
declaring 41, 42
using 42
property binding 326
property value source 420
proxy
using 255
pull-down menu
adding 61
Python
about 310, 311
and C++, data converting between 313, 314
embedding, Qt wrapper writing 311, 312
functions, calling 317
Qt objects, wrapping into Python objects 319
remaining conversions, implementing 315, 316
URL 319
values, returning 317-319

Q

QML objects
creating, from C++ 369-371
pulling, to C++ 372-375
QML (Qt Modeling Language)
about 324, 325
element properties 325-327
group properties 327, 328
object hierarchies 328-331
QML (Qt Modeling Language), extending
about 390
CarInfo, making instantiable 391-393
classes, registering as QML elements 390

QNetworkAccessManager
about 243, 244
basic file downloader, extending 247
downloadProgress method 254, 255
error handling 247
error message, displaying 248, 249
error signal 253
file, downloading 245-247
files, downloading in parallel 250, 251
files, downloading over FTP 250
files, downloading over HTTP 244
finished signal 251, 252
OOP conform code writing, QSignalMapper
used 252, 253
proxy, using 255
readyRead signal 253, 254
QNetworkConfiguration 266
QNetworkConfigurationManager 265
QNetworkinterface 268
QNetworkSession 267
QSettings 104, 105
QSignalMapper
using 273
Qt
about 1
Add-ons 7
building 21
building, from sources 20
configuring 21
cross-platform programming 1, 2
Essentials 6
history 3,5
installing, online installer used 12-14
meta-objects 33
platforms 3
URL 12
Qts
features 5-8
QTcpServer
about 269
disconnect, detecting 273
new message, forwarding 271, 272
new pending connection, reacting on 270, 271
QSignalMapper, using 273
setting up 269, 270

[481]

Qt Creator

Affine Transformations project, running 17, 19

example project, loading 16, 17
setting up 15, 16
Qt Designer 43
Qt Desktop project
creating 24-26
Qt JavaScript environment 310
Qt Modeling Language (QML) 5
Qt objects
in scripts, creating 306, 307
Qt Platform Abstraction (QPA) 2
Qt project
creating 23
Qt Quick
and C++ 369
components, using 350
Qt Quick 2.0 7
Qt Quick application
about 452
blur parallax scrolled game view 457, 458

coins spawning particles, vanishing 470, 471

emitter, tuning 460-462
graphical effects 455-457
particles, moving 464-470
particles, rendering 463, 464
particle system 459
user interfaces, auto-scaling 453-455
Qt Quick items
about 394
border, supporting for RegularPolygon 401
creating, for drawing outlined text 402-406
OpenGL items 394
painted items 402
regular polygon item, creating 395-400
Qt Script
and Qt, integrating 290
basics 282
Dungeons & Dragons game, extending 296
editor, creating 284-288
JavaScript expressions, evaluating 282, 283
objects, exposing 290, 291
sandboxed script evaluation 289, 290
scripting, employing for npc Al 291-295
signals and slots, using 304, 305

Qt SDK
installing 11
Qt sources
setting up, Git used 20
Qt wrapper
writing, for embedding Python 311-313

R

raster painting
about 107, 108
painter, attributes 108-114
readyRead signal 253, 254
regular expressions (regex or regexp)
about 75
simple quiz game 76, 77

S

scenes
about 185, 198
child items, transforming 206, 207
content, rendering to image 203, 204
coordinate system 204-206
items, adding 198-200
items, iterating with 200, 202
parent items, transforming 206, 207
rendering 203
specific parts, rendering 204
z value, playing with 207
scene-based rendering 167-168
scripts
about 281, 282
C++ functions, exposing 297-300
exposing, to C++ 300
Qt objects, using 306, 307
shaders 173, 174
signal 34-52
signals and slots
used, for triggering defense 305
using, in scripts 304, 305
signal-slot connections
making 37
slot 34-52
sprite animation
about 437
character animation used 441, 442

[482]

jumping, adding with sprite transitions 443-445

simple character animation,
implementing 438-440

tail, wiggling 445

sprites 439

states 427-430

static user interfaces 409

strings
and numbers, conversions 74
arguments, using 75
dissecting 73
information, extracting 78, 79
manipulating 70
operations, basic 71, 72
search and lookup 72

T

tab order 49, 50
text
decoding 70
encoding 70
handling 69
painting 126
rich text 128, 129
static text 127
string operations, basic 71, 72
strings, manipulating 70
textured cube
drawing 168-172
tic-tac-toe game board
functionality 38-40
implementing 30-33
toolbar
creating 62
touch input
about 342
item, dragging 342
picture, rotating by pinching 343, 344
picture, scaling by pinching 343, 344
rotating, with mouse 345
scaling, with mouse 345
transitions 427-430
Transmission Control Protocol (TCP) 269
Twitter
connecting to 256

U

ubP
Benjamin game players, connecting 279
used, for sending text 278
using 278
Uniform Server
URL 244
User Interface Compiler (uic) 53
Universal Chess Interface (UCI) 162
user interfaces
fluid 323

Vv

view
about 185, 208
item, creation on transformation
visibility 213, 214
merging 209-211
scene, moving ability 215, 216
scene, scaling ability 214, 215
scene specific areas, showing 211, 212
scene, transforming 213
zoom level, taking into account 217
viewport
transforming 117, 118
VirtualBox
URL 244

w

widget
content, managing 28, 29
inside Graphics View 236, 237

tic-tac-toe game board, implementing 30-33

widget painting
about 114
custom-painted widgets 115, 116
input events 120
left mouse button, reacting to 122
oscillogram, drawing 118, 119
oscillograms, making selectable 120, 121
viewport, transforming 117, 118

[483]

X

XAMPP
URL 244
XML parser
implementing, for player data 93-98
XML serializer
for player data 99
XML streams 92

[484]

open source

community experience distilled

PUBLISHING

Thank you for buying
Game Programming using QT

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub. com.

Ahout Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authorepacktpub. com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, then please contact
us; one of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

open source

community experience distilled

PUBLISHING

0t 5 Blueprints
ISBN: 978-1-78439-461-5 Paperback: 272 pages

Design, build, and deploy cross-platform GUI projects
using the amazingly powerful Qt 5 framework

1. Develop native graphical applications that can run
anywhere with one of the world's best open-source
frameworks.

2. Learn all about signals, slots, models, and views to
design a robust structure for your application.

3. A comprehensive tutorial with step-by-step
instructions to help you extend your applications
across a wide domain.

Learning Unreal® Engine i0S Game Development
ISBN: 978-1-78439-771-5 Paperback: 212 pages

Create exciting iOS games with the power of the new
Unreal® Engine 4 subsystems

1. Learn each step in the iOS game development
process, from start to finish.

2. Develop exciting iOS games with the Unreal Engine
4.x toolset.

Learning Unreal® Engine
iOS Game Development

3. Step-by-step tutorials to build optimized iOS games.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Learning C++ by Creating Games
with UE4

Learning C++ hy Creating Games with UE4
ISBN: 978-1-78439-657-2 Paperback: 342 pages

Learn C++ programming with a fun, real-world
application that allows you to create your own
games!

1. Beatop programmer by being able to visualize
programming concepts; how data is saved in
computer memory, and how a program flows.

2. Keep track of player inventory, create monsters, and
keep those monsters at bay with basic spell casting
by using your C++ programming skills within Unreal
Engine 4.

3. Understand the C++ programming concepts to
create your own games.

Raspberry Pi Gaming

Second Edition

Raspberry Pi Gaming - Second Edition
ISBN: 978-1-78439-933-7 Paperback: 140 pages

Design, create, and play all kinds of video games on
your Raspberry Pi computer

1. Program your very own video game on the
Raspberry Pi using the Scratch programming
language.

2. Install and manage your Raspberry Pi.

3. Set up your Raspberry Pi to play hundreds of retro
and classic games.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Qt
	The cross-platform programming
	Qt Platform Abstraction
	Supported platforms

	A journey through time
	New in Qt 5
	Restructured codebase
	Qt Essentials
	Qt Add-ons

	Qt Quick 2.0
	Meta-objects
	C++11 support

	Choosing the right license
	An open source license
	A commercial license

	Summary

	Chapter 2: Installation
	Installing the Qt SDK
	Time for action – installing Qt using an online installer
	Setting up Qt Creator
	Time for action – loading an example project
	Time for action – running the Affine Transformations project
	Building Qt from sources
	Time for action – setting up Qt sources using Git
	Time for action – configuring and building Qt
	Summary

	Chapter 3: Qt GUI Programming
	Windows and dialogs
	Creating a Qt project

	Time for action – creating a Qt Desktop project
	Adding child widgets to a window
	Managing widget content

	Time for action – implementing a tic-tac-toe game board
	Qt meta-objects
	Signals and slots

	Time for action – functionality of a tic-tac-toe board
	Properties
	Declaring a property
	Using a property

	Time for action – adding properties to the board class
	Designing GUIs
	Time for action – designing the game configuration dialog
	Time for action – polishing the dialog
	Accelerators and label buddies
	The tab order
	Signals and slots
	Using designer forms
	Direct approach
	The multiple-inheritance approach
	The single inheritance approach

	Time for action – the logic of the dialog
	An application's main window
	The Qt resource system

	Time for action – the main window of the application
	Time for action – adding a pull-down menu
	Time for action – creating a toolbar
	Time for action – filling in the central widget
	Time for action – putting it all together
	Summary

	Chapter 4: Qt Core Essentials
	Text handling
	Manipulating strings
	Encoding and decoding text
	Basic string operations
	The string search and lookup
	Dissecting strings
	Converting between numbers and strings
	Using arguments in strings

	Regular expressions

	Time for action – a simple quiz game
	Extracting information out of a string
	Finding all pattern occurrences

	Data storage
	Files and devices
	Traversing directories
	Getting access to the basic file
	Devices

	Time for action – implementing a device to encrypt data
	Text streams
	Data serialization
	Binary streams

	Time for action – serialization of a custom structure
	XML streams

	Time for action – implementing an XML parser for player data
	JSON files

	Time for action – the player data JSON serializer
	Time for action – implementing a JSON parser
	QSettings

	Summary

	Chapter 5: Graphics with Qt
	Raster painting
	Painter attributes
	Widget painting

	Time for action – custom-painted widgets
	Time for action – transforming the viewport
	Time for action – drawing an oscillogram
	Input events

	Time for action – making oscillograms selectable
	Working with images
	Loading
	Modifying
	Painting

	Painting text
	Static text
	Rich text

	Optimized drawing

	Time for action – optimizing oscillogram drawing
	Time for action – developing the game architecture
	Time for action – implementing the game board class
	Time for action – understanding the ChessView class
	Time for action – rendering the pieces
	Time for action – making the chess game interactive
	Time for action – connecting the game algorithm
	OpenGL
	Introduction to OpenGL with Qt

	Time for action – drawing a triangle using Qt and OpenGL
	Time for action – scene-based rendering
	Time for action – drawing a textured cube
	Modern OpenGL with Qt
	Shaders

	Time for action – shaded objects
	GL buffers
	Off-screen rendering

	Summary

	Chapter 6: Graphics View
	Graphics View architecture
	Items
	Parent child relationship
	Appearance

	Time for action – creating a black, rectangular item
	Time for action – reacting to an item's selection state
	Time for action – making the item's size definable
	Standard items
	Coordinate system of the items

	Time for action – creating items with different origins
	Time for action – rotating an item
	Scenes
	Adding items to the scene

	Time for action – adding an item to a scene
	Interacting with items on the scene
	Rendering

	Time for action – rendering the scene's content to an image
	Coordinate system of the scene

	Time for action – transforming parent items and child items
	View

	Time for action – putting it all together!
	Showing specific areas of the scene
	Transforming the scene

	Time for action – creating an item where transformations can easily be seen
	Time for action – implementing the ability to scale the scene
	Time for action – implementing the ability to move the scene
	Time for action – taking the zoom level into account
	Questions you should keep in mind

	The jumping elephant or how to animate the scene
	The game play
	The player item

	Time for action – creating an item for Benjamin
	The playing field
	The scene

	Time for action – making Benjamin move
	Parallax scrolling

	Time for action – moving the background
	QObject and items

	Time for action – using properties, signals, and slots with items
	Property animations

	Time for action – using animations to move items smoothly
	Time for action – keeping multiple animations in sync
	Item collision detection

	Time for action – making the coins explode
	Setting up the playing field
	A third way of animation

	Widgets inside Graphics View
	Optimization
	A binary space partition tree
	Caching the item's paint function
	Optimizing the view

	Summary

	Chapter 7: Networking
	QNetworkAccessManager
	Downloading files over HTTP

	Time for action – downloading a file
	Error handling

	Time for action – displaying a proper error message
	Downloading files over FTP
	Downloading files in parallel
	The finished signal

	Time for action – writing the OOP conform code using QSignalMapper
	The error signal
	The readyRead signal
	The downloadProgress method

	Time for action – showing the download progress
	Using a proxy

	Connecting to Google, Facebook, Twitter, and co.
	Time for action – using Google's Distance Matrix API
	Time for action – constructing the query
	Time for action – parsing the server's reply
	Controlling the connectivity state
	QNetworkConfigurationManager
	QNetworkConfiguration
	QNetworkSession
	QNetworkInterface

	Communicating between games
	Time for action – realizing a simple chat program
	The server – QTcpServer
	Time for action – setting up the server
	Time for action – reacting on a new pending connection
	Time for action – forwarding a new message
	Time for action – detecting a disconnect
	The client
	Time for action – setting up the client
	Time for action – receiving text messages
	Time for action – sending text messages
	Improvements
	Using UDP
	Time for action – sending a text via UDP
	Summary

	Chapter 8: Scripting
	Why script?
	The basics of Qt Script
	Evaluating JavaScript expressions

	Time for action – creating a Qt Script editor
	Time for action – sandboxed script evaluation
	Integrating Qt and Qt Script
	Exposing objects

	Time for action – employing scripting for npc AI
	Exposing functions
	Exposing C++ functions to scripts
	Exposing script functions to C++

	Time for action – storing the script
	Time for action – providing an initialization function
	Time for action – implementing the heartbeat event
	Using signals and slots in scripts
	Creating Qt objects in scripts
	Error recovery and debugging
	Extensions
	The other Qt JavaScript environment

	Alternatives to JavaScript
	Python

	Time for action – writing a Qt wrapper for embedding Python
	Time for action – converting data between C++ and Python
	Time for action – calling functions and returning values
	Summary

	Chapter 9: Qt Quick Basics
	Fluid user interfaces
	Declarative UI programming
	Element properties
	Group properties
	Object hierarchies

	Time for action – creating a button component
	Time for action – adding button content
	Time for action – sizing the button properly
	Time for action – making the button a reusable component
	Event handlers
	Mouse input

	Time for action – making the button clickable
	Time for action – visualizing button states
	Time for action – notifying the environment about button states
	Touch input

	Time for action – dragging an item around
	Time for action – rotating and scaling a picture by pinching
	Keyboard input

	Using components in Qt Quick
	Time for action – a simple analog clock application
	Time for action – adding needles to the clock
	Time for action – making the clock functional
	Dynamic objects
	Using components in detail
	Creating objects on request
	Delaying item creation
	Accessing your item's component functionality
	Imperative painting

	Time for action – preparing Canvas for heartbeat visualization
	Time for action – drawing a heartbeat
	Time for action – making the diagram more colorful
	Qt Quick and C++
	Creating QML objects from C++
	Pulling QML objects to C++
	Pushing C++ objects to QML

	Time for action – self-updating car dashboard
	Time for action – grouping engine properties
	Extending QML
	Registering classes as QML elements

	Time for action – making CarInfo instantiable from QML
	Custom Qt Quick items
	OpenGL items

	Time for action – creating a regular polygon item
	Painted items

	Time for action – creating an item for drawing outlined text
	Summary

	Chapter 10: Qt Quick
	Bringing life into static user interfaces
	Animating elements
	Generic animations

	Time for action – scene for an action game
	Time for action – animating the sun's horizontal movement
	Composing animations

	Time for action – making the sun rise and set
	Non-linear animations

	Time for action – improving the path of the sun
	Property value sources

	Time for action – adjusting the sun's color
	Time for action – furnishing sun animation
	Behaviors

	Time for action – animating the car dashboard
	States and transitions
	More animation types

	Quick game programming
	Game loops

	Time for action – character navigation
	Time for action – another approach to character navigation
	Time for action – generating coins
	Sprite animation

	Time for action – implementing simple character animation
	Time for action – animating characters using sprites
	Time for action – adding jumping with sprite transitions
	Parallax scrolling

	Time for action – revisiting parallax scrolling
	Collision detection

	Time for action – collecting coins
	Notes on collision detection
	Eye candy
	Auto-scaling user interfaces
	Graphical effects
	Particle systems
	Tuning the emitter
	Rendering particles
	Making particles move

	Time for action – vanishing coins spawning particles
	Summary

	Appendix: Pop Quiz Answers
	Chapter 3, Qt GUI Programming
	Chapter 4, Qt Core Essentials
	Chapter 6, Graphics View
	Chapter 7, Networking
	Chapter 8, Scripting
	Chapter 11, Miscellaneous and Advanced Concepts

	Index

