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1 Introduction 

Python supports several programming paradigms – procedural, object oriented, and 

functional. Of these, functional programming is probably the least understood and the least 

used. But it can be a powerful tool, especially as it can be integrated seamlessly with procedural 

and OOP code. 

This book explains what functional programming is, how it is used, and the features of 

Python that support it. All features are illustrated with example code. 

No prior knowledge of functional programming is assumed, and you don’t need to be an 

advanced Python programmer to use this book. Any language features used are fully described. 

All that is required is a basic knowledge of Python. 

The examples are developed for Python 3.5 or higher, although most will work with earlier 

3.x versions too. 

1.1 Programming paradigms 

A programming paradigm is a general approach to developing software. There aren’t usually 

fixed rules about is or isn’t part of a particular paradigm, but rather there are certain patterns, 

characteristics and models that tend to be used. This is especially true of Python, since it 

supports several paradigms with no real dividing line between them. Here are the paradigms 

available in Python: 

Procedural programming is the most basic form of coding. Code is structured 

hierarchically into blocks (such as if statements, loops and functions). It is arguably the simplest 

form of coding. However, it can be difficult to write and maintain large and complex software 

due to  its lack of enforced structure. 

Object oriented programming (OOP) structures code into objects. An object typically 

represents a real item in the program, such as a file or a window on the screen, and it groups all 

the data and code associated with that item within a single software structure. Software is 

structured according to the relationships and interactions between different objects. Since 

objects are encapsulated, with well-defined behaviour, and capable of being tested 

independently, it is much easier to write complex systems using OOP. 

Functional programming (FP) uses functions as the main building blocks. Unlike 

procedural programming, the functional paradigm treats functions as objects that can be passed 

as parameters, allowing new functions to be built dynamically as the program executes. 

Functional programming tends to be more declarative rather than imperative – your code 

defines what you want to happen, rather than stating exactly how the code should do it. Some 

FP languages don’t even contain constructs such as loops or if statements. However, Python is 

more general purpose and allows you to mix programming styles very easily. 

1.2 What is functional programming? 

Since functional programming is a paradigm, there are no absolute rules about what it is or is 

not. If you had to summarise it in one sentence it might be that functional programming use 

functions as the fundamental building block for constructing software. 



You might also see it said that functional programming treats functions as first class objects. 

This means that functions are objects, just like lists or strings, that can be stored in variables, 

passed into other functions as parameters, returned from other functions as a result. This leads 

to the idea of higher order functions – that is, functions that operate on functions. Anything you 

can do with objects, you can do with functions. 

An important cornerstone of functional programming is the idea of pure functions – 

functions that simply calculate a result without any other side effects. 

1.3 Characteristics of functional programming 

Rather than trying to precisely define functional programming, it is more useful to look at 

some of its characteristics – the sort of techniques functional programmers typically use. 

FP prefers pure functions. A pure function is a function that calculates a result without any 

side effects, or any possibility of an unexpected result. For example, these are all pure functions: 

• Adding two values. 

• Calculating the square root of a number. 

• Finding the length of a string. 

• Returning a sorted copy of a list of items. 

Functions that either change or rely upon external state are not pure. For example, functions 

that do any of these things are not pure functions: 

• Sets a global variable 

• Writes to a file or database. 

• Modifies the value of a parameter that has been passed in. 

Pure functions are only allowed to return a value, they are not allowed to alter the state of 

the system on any other way. Clearly the actions above change the state of the system in various 

ways. 

In addition, a pure function must return a value that depends only on its input parameters. It 

must be totally repeatable, for given inputs it must always produce the same output. A function 

that reads from a global variable, file or database, or accepts user input, for example, is not 

repeatable and so not pure. 

FP avoids side effects. This is really an alternative version of the previous characteristic 

that you will often see stated. 

Functions are first class objects. As mentioned above, in FP a function is an object that can 

be stored in a variable, and passed as an argument to a function, or returned as the result of a 

function. 

FP prefers immutable objects. Immutable objects, such as strings and tuples in Python, are 

objects that cannot be modified after they have been created. Immutability helps to prevent side 

effects in functions. For example, if you pass a list into a function, it is possible for the function 

to alter it. If you pass a tuple into a function, that is impossible. 

FP prefers iterators over lists. An iterator is an object that provided access to a collection 

of data. An iterator can only read data one element at a time, it has no ability to change the data. 

This helps to prevent side effects and often avoids needing to store intermediate results at all 

via lazy evaluation. We often talk of the output of an iterator as being a stream of data. 



FP favours lazy evaluation. A traditional procedural function that processes a list of data 

will typically process the entire list in one call. An iterator will often choose to calculate new 

values only as they are needed – this is called lazy evaluation. It often reduces the amount of 

memory used and allows the program to start creating output with less initial delay. 

FP avoids loops and if statements. Rather than using a loop to process a list of data, FP 

tends to use higher order functions such as map that apply a function to an iterable data stream, 

converting it into a new data stream. Similarly, it uses functions  such as filter to 

conditionally remove items from a stream of data. 

FP often uses recursion to avoid loops. Recursion is a useful alternative to looping for 

certain algorithms. 

FP uses higher order functions to define new functions. Procedural programming often 

defines new functions that call other functions to perform a task. In functional programming we 

tend to use higher order functions that modify or combine existing functions to create new 

functions. 

1.4 Advantages of functional programming 

Here are the main advantages of functional programming: 

FP often creates less code. This is because it tends to work at a slightly higher level than the 

other paradigms, so achieves more with each line of code. 

Intent of the code is clearer. For example, if you use map to apply a function to a data 

stream, the meaning is clear and unambiguous. If you define a procedural function that loops 

over the data and applies the function, you need to read and understand the code to check 

exactly what it is doing. 

There are often fewer bugs. Using standard functions that are well tested, instead of ad hoc 

loops that might contain bugs is generally more reliable. 

Code is potentially mathematically provable. If you program consists entirely of 

predefined functions that are known to be correct, and you combine those functions using 

higher order functions that are also known to be correct, and if you have eliminated all side 

effects, then it is possible, at least in principle, to prove that your code will be correct in all 

cases. 

Multiprocessing can be applied easily. For example, if you are applying a pure function to 

a data stream, you can safely split that data stream into several blocks and process each block in 

a different thread, or even on a different computer, and in any order. The map-reduce pattern 

does this very effectively. If you have a procedural program that works on lists of data, 

multiprocessing can often be more difficult and error prone. 

1.5 Disadvantages of functional programming 

Functional programming has a few disadvantages, and situations where it cannot be used. 

Not all functions can be pure. Most programs need to read and write files, communicate 

over a network, interact with users and other such things. The functions that do those tasks are 

not pure functions with totally predictable results. 



A common way of handling this is to split the code into those parts than can be developed 

using a functional approach (commonly any complex algorithms or heavy data processing) and 

those parts that require a procedural approach. There should be a clear interface between the 

two. The non-pure parts of the system can be developed, for example, using an OOP paradigm. 

Pure functional languages, such as Haskell, use monads and similar constructs to deal with 

impure functions. This is less commonkly used in Python, but we will cover th in a later chapter. 

FP has a learning curve. It is probably true to say that there are far fewer programmers 

who are experienced in functional programming than some other paradigms. It is a conceptual 

leap to move from the idea of writing a function to do x to the idea of writing a function that 

creates a function to do x. FP has its own jargon, largely drawn from fairly obscure branches of 

mathematics, so you will need to learn terms such as lambda expression, closure, partial 

function, currying, comprehension, monad and functor. But none of it is as complicated as it 

sounds! 

FP can be inefficient. In particular, immutable objects and recursion are very useful 

concepts, and in many cases they can be used without problem, but they can be inefficient in 

extreme cases. As well as thinking about functional programming in abstract terms, it is 

necessary to keep in mind what you are asking the poor computer to actually do. It is worth 

doing a sanity check for very large problems. See the example later of the recursive 

implementation of Fibonacci series. 

1.5.1 About this book 

In the remainder of this book we will introduce the various aspects of Python that are either 

directly to indirectly relevant to functional programming, with examples of their application: 

• Objects, variables, and functions as objects. 

• Immutable objects. 

• Recursion. 

• Closures. 

• Iterators. 

• Transforming and reducing iterables. 

• Comprehensions. 

• Generators. 

• Partial application and currying. 

• Functors and monads. 

• itertools, functools and other useful libraries. 

  



2 Functions as objects 

As noted in the introduction, Python functions are first class objects. This means that 

functions are objects that can be stored in variables, referenced in lists or other data structures, 

and passed in and out of functions as parameters and return values. We will explore this in a bit 

more detail in this chapter. 

2.1 Objects and variables in Python 

Before we talk about function objects, it is worth quickly recapping how objects and 

variables work in Python in general. 

Consider the following simple line of Python: 

a = 'apple' 

b = 'pear' 

 

Now you might loosely say that the string 'apple' is stored in the variable a, and the 

string 'pear' is stored in the variable b. But that isn’t quite correct. In fact, the strings are both 

objects that Python stores in memory somewhere. The variables a and b simply hold references 

to those objects – they point to those objects in memory. This diagram illustrates this: 

 

This is quite important, because of what happens when we do this: 

a = b 

 

Now a and b both reference a string with the value 'pear', but the important this to realise 

is that a and b actually both reference the same object in memory: 

 

The previous 'apple' string is still in memory, but you can no longer access it in any way. 

Python will eventually free up the memory it occupies, so it can be used for something else. 

We will come back to this in a later chapter on immutable data types. 

        

      
 



2.2 Storing functions 

When you look at the way a variable is initialised and used in Python, and compare it to the 

way a function is declared and used, you might easily assume that variables and functions are 

completely different things: 

a = 10 

 

def square(x): 

    return x*x 

 

b = square(a) 

print(b)          # 100 

  

Looking at the code, variables a and b are initialised by assigning a value to them, and used 

by directly referencing them, as in print(b). Whereas the function square is created by the 

def keyword and invoked using round brackets(). 

In fact, a, b and square are all just variables. The def block is just special syntax for 

defining a function object and assigning it to a variable (square in this case). The round 

brackets are a syntax that can be used with any callable object (which includes functions) to call 

it with parameters. 

To further illustrate this, the following code treats square as an object and prints out its type, 

id and string representation, just like you can do with any other object:  

print(type(square)) 

print(id(square)) 

print(str(square)) 

 

You will see that the type of the object is <class 'function'>. The id is just some 

number that is unique to that object. And its str representation is <function square at 

XXX>, where XXX is its address in memory. In other words, square behaves much like any 

other object. 

2.3 Aliases 

Aliasing is when two different variables reference the same object in Python. For example, 

consider this code: 

t = (10, 20, 30, 40, 50) 

u = t 

print(t[2])   # 30 

print(u[2])   # 30 

 

We assign a tuple value to variable t. This means that t holds a reference to the tuple object. 

The tuple itself is stored in memory somewhere. 

When we set u = t, we are actually copying the reference into the variable u. We don’t 

create a copy of the actual tuple itself. There is only one tuple, but both t and u point to it, so we 

call then aliases – different names for the same data. When we then print t[2] and u[2], they 

both refer to element index 2 in the original tuple. 



In the earlier example, we saw that square is just a variable that holds a reference to a 

function object – a function that calculates the square of x. We can create an alias for that, too: 

def square(x): 

    return x*x 

 

sq = square 

 

a = 3 

print(sq(a))    # 9 

 

In this case, sq can be used in place of square, doing exactly the same thing, because they 

both point to the same underlying object – a function object. 

This also works with built in functions. For example, you could create an alias of print, like 

this: 

pr = print 

pr('This is an alias') 

 

Just because you can, doesn’t mean you should, of course! This might seem like a great way of 

shortening your code if you use a lot of print statements, but it is likely to be quite confusing to 

anyone reading it. 

In fact, you are quite unlikely to use aliases directly in your code. But you will use them 

indirectly quite often. In the previous example with square, we pass the variable a into 

square, but within the function it is aliased as x. In the next section we will look at passing 

functions into other functions as parameters, and they will be aliased in a similar way. This is the 

essential feature of Python that makes functional programming possible at all. 

2.3.1 Redefining a function 

Since functions are essentially variables that happen to hold function objects, you can 

reassign them at any time: 

def a(): 

    print(1) 

 

def a(): 

    print(2) 

 

  



Python has no problem with this. But it has consequences, and generally is best avoided. 

Here is a simple example of what can happen: 

def a(): 

    print(1) 

 

def b(): 

    a() 

 

b()    # 1 

 

def a(): 

    print(2) 

b()    # 2 

 

We have defined a function a that prints 1. We then define function b that calls function a 

that prints 1. When we call b for the first time, it prints 1 as expected. 

Next, we redefine a to print 2 instead. What happens when we call b again? 

Well, as far as function b is concerned, a is just a global variable. It looks up the value of a, 

which is a function object. In fact, of course, it is now the function that prints 2. b calls that 

function, and 2 is printed. 

The pitfall here is that you have changed the behaviour of function b without it being 

particularly obvious what has happened, which is a recipe for bugs. It is rarely a good thing to 

do. 

2.4 Functions as parameters 

Consider this function that converts inches to centimetres and prints the result. One inch is 

2.54 cm, so the conversion is a simple multiplication: 

def inch2cm(x): 

    return x*2.54 

 

def convert(x): 

    y = inch2cm(x) 

    print(x, '=>', y) 

 

convert(3)    # 3 => 7.62 

 

Suppose we wanted to generalise this function so that it could convert between different 

units. There are various ways to do this, but one way would be to remove the explicit call to 

inch2cm from the convert function. Instead, we could pass the function as a parameter, like this 

def convert(f, x): 

    y = f(x) 

    print(x, '=>', y) 

 

convert(inch2cm, 3)    # 3 => 7.62 



Notice that the function is passed in as a normal parameter, f. When we need to call f to do 

the conversion, we just use f(x) exactly like any other function. 

When we call convert, we need to pass inch2cm in as the first parameter. We use the 

syntax inch2cm to pass the function object, rather than inch2cm() which would try to call 

the function (which isn’t what we want at all). 

Now supposed we wanted to convert a temperature from Celsius to Fahrenheit. We can write 

a c2f function that does this: 

def c2f(x): 

    return x*1.8 + 32 

 

To use this conversion, we just need to pass c2f into the convert function: 

convert(c2f, 18)    # 18 => 64.4 

 

Just as a final illustration, we will add a conversion from integers to text – 1 becomes “one”, 2 

becomes “two” etc. Here is our i2text function, which for brevity only works for values up to 0 to 

3. It uses a list to convert integers to text: 

def i2text(x): 

    text = ['zero', 'one', 'two', 'three'] 

    return text[x] 

 

convert(i2text, 2)    # 2 => two 

 

The interesting thing here is that i2text doesn’t use the same types as the previous 

functions. It accepts and integer and returns a string, whereas the inch2cm and c2f accept and 

return numerical values. The convert function doesn’t mind this at all – it just passes the value 

to supplied function and returns whatever comes back. 

This was a very simple example, now we will look at a more realistic example. 

2.4.1 The sorted function 

You may be familiar with the Python built in sorted function. It can be used to return a 

sorted copy of a list, like this: 

p = [3, 7, 2, 6, 1] 

q = sorted(p) 

print(q)        # [1, 2, 3, 6, 7] 

 

The sorted function uses standard Python comparisons to order the list, so in this case it 

sorts the numbers in increasing order. If the list contains strings, they will be sorted in 

alphabetical order instead: 

p = ['red', 'green', 'blue', 'yellow', 'cyan'] 

q = sorted(p) 

print(q)     # ['blue', 'cyan', 'green', 'red', 'yellow'] 

 



What if we wanted to sort the strings in a different way – for example, if we wanted to sort 

the keys in ascending length? Fortunately, the sorted function takes an optional parameter 

key that allows for this. 

The key parameter accepts a function object as a value. The function is applied to each 

element is the list, and the list is sorted based on the return value. 

If we want to sort a list of string by increasing length, we need to use a function that accepts a 

string and return the length of the string. Fortunately, we already have such a function – the 

built in len function. Here is a new version of the code, where we pass in the len function as 

the value of the key parameter: 

p = ['red', 'green', 'blue', 'yellow', 'cyan'] 

q = sorted(p, key=len) 

print(q)    # ['red', 'blue', 'cyan', 'green', 'yellow'] 

 

This works exactly as we had hoped. ‘red’ is first in the list because its length is 3, ‘blue’ and 

‘cyan’ are next with length 4, ‘green’ with length 5 and finally ‘yellow’. 

Of course, we don’t always have a convenient built in function that does exactly what we 

need.  Sometimes we have to define our own. In the example below we have a list of rectangles, 

defined by a pair of values (width, height). For example (3, 2) defines a rectangle that is 3 

units wide by 2 units high. We wish to sort then by increasing area. To do this, we need a key 

function that multiplies the width by the height, such as the area function below: 

def area(x): 

    return x[0]*x[1] 

 

p = [(3, 3), (4, 2), (2, 2), (5, 2), (1, 7)] 

q = sorted(p, key=area) 

print(q)    # [(2, 2), (1, 7), (4, 2), (3, 3), (5, 2)] 

 

Each tuple will be passed into the area function. This function multiplies elements 0 and 1 

of the tuple (the width and height) to give the area. The area is then used as the sort criterion. 

As you can see from the result, this sorts the rectangles in order of area. 

We will cover sorted in more detail in the chapter Transforming iterables. 

2.5 Lambda functions 

Lambda functions sound like they are going to be something complicated, but in fact they 

really are very simple. 

In the example above, we needed to create a function called area. This is a very small 

function, that will probably only be used in one place. There has to be a better way, surely? 

Well there is. You can use lambda syntax to create a simple function in a Python expression. 

Here is how we could replace our area function: 

lambda x: x[0]*x[1] 

 

The lambda keyword identifies the lambda expression. x is the parameter (in this case there 

is only one parameter). The colon ends the parameter list and introduces the body of the 

function. 



To use this expression, simply place it wherever you might normally use a function object. 

For example: 

q = sorted(p, key=lambda x: x[0]*x[1]) 

 

This code creates a temporary, anonymous function object and passes it into the sorted 

function. The sorted function uses it to perform the sort. And then it’s gone, just like any other 

temporary object. 

The unnamed function you create with a lambda expression is exactly the same as a function 

created with def, it just doesn’t have a name. If you really wanted to you could assign it to a 

variable, like this: 

area = lambda x: x[0]*x[1] 

 

This creates a function called area. It is more or less the same as creating an area function 

with def. There isn’t really any point doing it this way, however, it will just confuse anyone 

reading it. 

A lambda expression can have any number of arguments (including none), for example: 

lambda: 1  # No arguments 

lambda x, y: x + y 

lambda a, b, c, d: a*b + c*d 

 

You will probably find yourself using lambda expressions quite often when using functional 

programming. Like many aspects of Python, they can be expressive and make code shorter and 

more readable – or they can make for impossibly cryptic code. It is all a matter of balance. Here 

are some guidelines: 

• Lambdas can only contain a single Python expression. If your function cannot be 

expressed in one line, you can’t use a lambda. 

• Generally, it is best to use them only for short and simple code, where the behaviour of 

the function is obvious by looking at it. If the behaviour is complicated, it is usually best 

to define a normal function so you can give it a meaningful name and add comments. 

• Since a lambda expression will usually be used as part of a longer line of code, make sure 

that overall the code is still readable. If a function call uses several lambda expressions, it 

might be difficult to see what is going on. 

• If the same function is used in several places, it is usually better to define a normal 

function, rather than repeating the lambda. 

Although these criteria might seem restrictive, you will find there are many situations where 

a lambda is the perfect fit for what you need to do. 

By the way, since a lambda is a function object, you can call it in-place like this: 

a = (lambda x: x + 1)(3) 

 

The lambda expression creates a function object that adds 1 to its argument. The (3) calls 

the function object with value 3, so a is set to 4. This isn’t a particularly useful feature, because 

you could just write: 

a = 3 + 1 

 



This does exactly the same thing, so it isn’t really of any practical use. But it illustrates that a 

lambda expression can replace a normal function is all situations. 

2.6 Functions as return values 

You can return a function as a value. Here is a simple example: 

def add1(): 

    return lambda x: x + 1 

 

f = add1() 

print(f(2)) 

 

Here, add1 returns a function that accepts a single argument and adds 1 to it. This isn’t 

particularly useful, of course, we could just use the lambda. Things get a lot more interesting in 

the chapter Closures. 

2.7 Function versions of standard operators 

The standard operator module contains a set of functions that are equivalent to Python 

operators. For example: 

x = operator.add(a, b)      # Equivalent to x = a + b 

x = operator.truediv(a, b)  # Equivalent to x = a / b 

x = operator.floordiv(a, b) # Equivalent to x = a // b 

 

These are very useful functions that can often be used to replace lambda expressions. For 

instance, the earlier example: 

lambda x, y: x + y 

 

Could simple be replaced with add – a function that takes two values and adds them together 

(exactly what the lambda in doing). Using a standard function is shorter and more declarative. 

You can also use partial application to create new functions based on existing operators. For 

example: 

from functools import partial 

f = partial(add, 3) 

x = f(4)                # Equivalent to x = 3 + 7 

 

In this case, partial creates an anonymous function that takes one variable. It behaves like 

add, but as if the first parameter had been pre-set to 3. In other words, it is equivalent to the 

following lambda: 

f = lambda x: 3 + x 

 

We will cover partial application in more detail in a later chapter. 

The operator module doesn’t just include arithmetic operators. Here are a few more 
examples but refer to the documentation on python.org for a full list. Essentially, for anything 

you can do with an operator there will be a function that does the same thing: 

operator.lt(a, b)          # a < b 



operator.eq(a, b)          # a == b 

operator.not(a)            # not a 

operator.neg(a, b)         # -a 

operator.getitem(s, i)     # s[i] 

operator.setitem(s, i, x)  # s[i] = x 

operator.delitem(s, i)     # del s[i] 

 

operator also defines a few useful functions that return functions. For example, 

itemgetter returns a function that works like this: 

k = [2, 4, 6, 8] 

f = operator.itemgetter(2) 

x = f(k)   # x = 6 

 

Here, itemgetter(2) returns a function that will get element number 2 from a list. When 

we apply this function to list k, it gets he second element, value 6. There are similar functions to 

get a named attribute (attrgetter) and call a named method (methodcaller). These are 

particularly useful for use as the key argument for the sorted function. They will be described 

in more detail in the chapter Transforming iterables. 

2.8 Summary – sources of function objects 

To summarise, here are the various ways you can obtain function objects to use in your code. 

Some of these we have just met: 

• Built in functions, such as len, min, abs etc. Remember that, for example, len(s) 

calls the len function to find the length of s, but len on its own gives the actual 

function object. 

• The operator module contains function versions of most Python operators, for 

example add is the function equivalent of +. 

• Lambda expressions can be used to create simple, unnamed functions. 

• We can, of course, create new functions the standard way, using def. 

Here are some more possibilities that we will explore in later chapters: 

• Composition can be used to create a new function by combining two or more existing 

functions that call each other, for example f(g(x)). 

• Partial application can be used to create a new function based on an existing function  

with some of its parameters already applied. 

• Currying is an alternative way to achieve similar results to partial application. 

• Closures can be used as general function factories if no other method provides quite 

what you need. 

• Objects that implement __call__ can be used as function objects. 

 

  



3 Mutability 

We say an object is mutable if its value can be changed after it has been created. An object is 

immutable if its value is fixed when it is created and can never be changed. Immutable values 

are, in effect, read-only values. In this chapter we will look mutability in Python, and the pros 

and cons of both types of objects. 

3.1 Mutability in Python 

In Python, it is usually an object’s type that tells you whether it is mutable or not. For 

example, lists are mutable. If you create a list, you can change it in various ways: 

k = [10, 20, 30] 

k[1] = 7         # k is now [10, 7, 30] 

k.append(5)      # k is now [10, 7, 30, 5] 

del k[2]         # k is now [10, 7, 5] 

 

There are many other ways to alter a list, we won’t go through them here, it is fairly standard 

Python. 

Tuples are similar to lists in almost every way, except that they are immutable. Once you 

have created a tuple, you cannot change it in any way – you can’t add or remove elements, and 

you can’t replace one of the elements with a different value. Here is what happens if you try the 

previous code with a tuple: 

t = (10, 20, 30) 

t[1] = 7       # TypeError tuple doesn’t support assignment 

t.append(5)    # AttributeError tuple has no append method  

del t[2]       # TypeError tuple doesn’t support deletion 

 

You simply can’t do those operations on a tuple. All of the operations you can use to modify a 

list simply don’t work in tuples, so it is impossible to ever change a tuple. 

One thing to remember, of course, is that the variable is not the object – variables only hold a 

reference to an object. So, it is perfectly ok to do something like this: 

t = (10, 20, 30) 

t = (3, 2, 1) 

 

After the first line, t holds a tuple (10, 20, 30). After the second line, t holds a tuple (3, 2, 1). 

 

But we haven’t changed the value of the tuple. We have created a brand-new tuple with a 

different value, and simply changed the variable to reference the new tuple. The original tuple is 



still there, unchanged, but since nothing is using it any more it will eventually be garbage 

collected.  

There are several other mutable data types, including dictionaries and sets. There are also 

several immutable data types including strings, frozensets (the immutable version of a set), and 

number types. 

Mutable data types Immutable data types 

list, set tuple, string, frozenset, int, 
float, complex 

 

3.2 Numbers are immutable 

As an aside, you might be initially surprised to see that numbers are immutable. That is 

because numbers are objects in Python, and if they were mutable some very strange things 

would happen. Imagine this code: 

a = 3 

b = a 

a = 4 

 

Here, the first line creates an int object, with value 3, and assigns it to variable a (variable a 

references the int object). The second line assigns a to b, so now variable b also references the 

same int object. 

Now what happens when we set a to 4 in the third line? If this operation changed the value of 

the int object, not only would a be equal to 4, b would be equal to 4 as well! That would be 

pretty disastrous. Fortunately, numbers are immutable, so what the third line actually does is 

create a new int object, with value 4, and assign it to a. Variable b still points to the original int 

object, which still has the value 3. 

3.3 The problem with mutable objects 

The basic problem with mutable objects is this: if you pass a mutable object into a function, 

you have no way of guaranteeing that the function won’t change the object. For example: 

def evil_func(x): 

    x[0] = 0 

 

k = [1, 2, 3] 

evil_func(k) 

print(k)     # [0, 2, 3] 

 

When you pass k into evil_func, the local variable x is given a reference to the same list 

that is stored in k. if the function does something to the list in x, it is actually doing it to the list 

in k. When you pass a list into evil_func, you have no control over what happens to that list. 

So, in the example above, even though you might think you are just passing k into the 

function, k actually gets changed by the call! 



Sometimes, of course, you might actually want a function to alter the list. You might pass the 

list into the function expecting it to do something useful to it, for example sorting it in place – 

though in fact by the end of this chapter you might prefer to design your function to return a 

sorted copy of the input data. 

But let’s assume that evil_func has no obvious reason to alter the list you pass it, so you 

are hoping it won’t change it. That is ok if the function is very simple, and part of the same 

module. At least, until you or someone else edits the function in the future and doesn’t realise 

that evil_func isn’t supposed to change x, or creates a bug that means x is changed 

accidentally. 

But what if evil_func is part of a third-party library, and you have no control of the source 

code. Then you are essentially trusting the developers of that library to not change x. Worse 

still, the developers of that library might pass your list into another function, evil_func2, in 

someone else’s library, that also isn’t supposed to change the list. So, you are not just trusting 

the developers of one library, you are also trusting everyone that they trust. 

3.3.1 Defensive copying 

One way around this is defensive copying. Rather than passing your list into a function, you 

pass a copy of your list into the function: 

def evil_func(x): 

    x[0] = 0 

 

k = [1, 2, 3] 

evil_func(list(k)) 

print(k)     # [1, 2, 3] 

 

The key change here is that the call to evil_func passes list(k). The list function 

creates a copy of the original list, so now x is a copy of k. So, no matter evil_func does to its 

list, nothing is going to happen to your list k. 

This solution isn’t completely terrible, but it has its downsides: 

• You have to remember to do it. 

• If the list is very big, you are creating an extra copy which may be a waste of time if the 

function is well written and doesn’t in fact corrupt the list. 

• It can get out of hand... 

On the last point, if function1 calls function2 calls function3, and each function makes a 

defensive copy, you can end up with the same data being copied many times. 

Worse still, some authors make a defensive copy of data passed into the function, so that if 

they accidentally alter the data, the caller is protected: 

def evil_func(x): 

    xcopy = list(x) 

    xcopy[0] = 0 

 

So now the data is copied twice every time a function is called! 



3.4 Immutability is the answer 

The basic solution to this problem is, wherever possible, to use immutable data objects. The 

first thing we need to do is change the definition of evil_func. We should specify that x is 

immutable (or more precisely, that x is allowed to be immutable). So, you are allowed to pass in 

a tuple instead of a list and the function should still work. 

Here is the new code, based on the assumption that x can be a tuple: 

def evil_func(x): 

    x[0] = 0 

 

t = (1, 2, 3) 

evil_func(t) 

print(t)     # (1, 2, 3) 

 

This time, rather than corrupting your tuple (which would be impossible anyway because 

tuples are immutable), evil_func will throw an exception. Exactly as it should because it is 

doing something illegal by trying to alter an object that is allowed to be immutable. 

3.5 Changing immutable objects 

We do sometimes need to “change” immutable objects. Of course, you can’t actually do that, 

but what you can do is create a copy of the original object, modified in some way. There are 

various ways of doing this, which we will explore here. 

Let’s start with a simple example. The tail function takes a list and returns a list that is 

identical except that the first term is removed. So [1, 2, 3] becomes [2, 3]. Here is how 

we might do this: 

def tail(x): 

    if x:          # If x is already empty do nothing 

        del x[0] 

 

k = [1, 2, 3] 

tail(k) 

print(k)     # [2, 3] 

 

This only works for lists. The list is passed into the function and modified in place. But for 

reasons we discussed previously, this will fail if we pass a tuple as the parameter. 

What if we wanted to make this function work with tuples as well as lists? In that case, we 

can’t modify the supplied argument, so instead we make our function return a modified tuple: 

def tail(x): 

    return x[1:] 

 

t = (1, 2, 3) 

t = tail(t) 

print(t)     # (2, 3) 

 



This does the same job as the list case above, but in a cleaner way. The way we call the 

function has changed, we now assign the return value back to t. 

Notice how the function now operates. It uses slice notation to create a new tuple, containing 

only the elements from 1 to the end of the original tuple. Slice notation is very neat, but don’t let 

it disguise the fact that we are creating a copy of the tuple. If the tuple is very long, and if we do 

this operation many times, there would be a performance hit both in terms of execution times 

and memory usage. But unless the tuple really is extremely large, that shouldn’t be anything to 

worry about. 

A bonus of this change is that the new function not only works with tuples and lists. it works 

with strings too! We use the term sequence to refer to lists, tuples, strings and similar data 

structures. 

There are several ways to process immutable data, which we will look at now. 

3.5.1 Using slices 

Slices provide a very versatile way to chop sequences up into parts. Those parts can then be 

reassembled using the + operator. Here are a couple of examples. To add an element 3 into the 

middle of a tuple at position n, you can do something like this: 

u = v[:n] + (3) + v[n:] 

 

Alternatively, to remove the element at position n from a tuple you can do this: 

u = v[:n] + v[n+1:] 

 

The only thing to bear in mind here is that you are creating several copies of the tuple. You 

will be creating a temporary copy of v[:n], a temporary copy of v[n+1:], and of course the 

final tuple u. This shouldn’t be an issue unless the tuples are very large. 

This technique will also work with string values. To add a letter ‘a’ into the middle of a string, 

you can do this: 

3.5.2 Using list comprehensions 

Sometimes you need to perform a simple operation on each element of a sequence. For 

example, suppose you want to add 1 to each element in a tuple. So (1, 5, 7) becomes (2, 

6, 8). A list comprehension is a great way to do this: 

u = [x + 1 for x in v] 

t = tuple(u) 

 

A list comprehension can take any type of sequence as input, but always creates a list. The 

example converts the list back into a tuple. 

  



3.5.3 Using a loop 

Suppose you wanted to duplicate all the zeros in a tuple, so (1, 0, 2, 0, 5) becomes 

(1, 0, 0, 2, 0, 0, 5). You can’t easily do that with a list comprehension, so a simple 

loop can be used instead: 

u = [] 

for x in v: 

    u.append(x) 

    if x == 0: 

        u.append(x) 

t = tuple(u) 

3.5.4 Converting the data to a list 

If you need to do some particularly complicated processing of a tuple, you can always convert 

it to a list, do what you need to do, then convert it back to a tuple. 

3.6 The problem with immutable objects 

So, although immutable objects solve a lot of problems with accidental modification of data 

as it is passed around in a program, that comes at a cost: 

• You may need to jump through a few hoops if you need to process the data. 

• You may end up making several copies of the data. 

In many cases it is worth using immutable data wherever possible for the sake of robustness. 

The main exception is if you are processing very large data structures. In that case, making a full 

copy of the data every time you make any change is just not practical, and you are better off 

using mutable data, and simply taking extra care about when and where it is modified. 

In the rest of this chapter, we will look at some other considerations surrounding immutable 

objects. 

3.7 Immutability is shallow 

If you are dealing with more complex data structures, it is important to understand exactly 

what we mean by immutability. 

Consider the case of a tuple that contains several lists: 

t = ([1, 2], [4, 6], [5, 9]) 

 

You can access this data in various ways: 

print(t[1])    # [4, 6] 

print(t[2][1]) # 9 

 

The first print statement access t[1], the second element of t, which is of course the list 

[4, 6]. The next print statement accesses t[2][1]. Of course, t[2] is the third element if t, 

the list [5, 9]. This means that t[2][1] is the second element if that array, which is 9. 

  



But what happens if we try to update these values: 

t[1] = 0      # Error 

t[2][1] = 0   # t becomes ([1, 2], [4, 6], [5, 0]) 

 

You can’t change t[1] because that would be altering the tuple. But you can change 

t[2][1] because that is just changing a list that happens to be inside a tuple. 

If you have not used tuples of arrays before, this might seem a little odd, because it seems 

like we are altering the tuple. But in fact, we are not really altering the tuple at all. Think of it 

like this: 

• Initially, our tuple contains 3 references, to 3 list objects. 

• We change the value of one elements of the list object. 

• The tuple still contains 3 references to the same 3 list objects. One of those lists now 

contains different values, but it is still the same list object. The tuple has not changed. 

The way it works is quite logical, it can just catch you out at first if you were thinking that 

placing a list inside a tuple protects the list from being changed – it doesn’t! 

3.8 Summary 

In this chapter we have covered the topic of mutability and looked at mutable and immutable 

objects in python. We have seen the potential problem with mutable objects being changed 

unexpectedly and the costs of defensive copying, and how immutable objects can help ensure 

that functions have no side effects. 

We have also looked at the limitations and performance costs of immutable objects.  

  



4 Recursion 

Recursion is a common technique that is often associated with functional programming. The 

basic idea is this – given a difficult problem, try to find procedure that turns the original 

problem into a simpler version of the same problem. Apply the same procedure repeatedly to 

make the problem simpler and simpler, until you have a problem that is so simple you can just 

solve it in one go. 

As a Python programmer you may well look at some examples of recursion and think that it 

would obviously be easier to write a loop instead. Some other languages don’t have loops, so 

you have to use recursion, but in those cases the interpreter often creates a loop behind the 

scenes. 

But there are plenty of problems that are inherently recursive in nature and would be very 

difficult to solve in any other way, so recursion is definitely something to have in your toolbox. 

4.1 Factorials 

This example is a slight cliché, but it is still a good illustration of both the beauty and pitfalls 

of recursion. 

The factorial of an integer n is the product of all the integers between 1 and n. For example, 6 

factorial (usually written 6!) is: 

6*5*4*3*2*1 = 720 

 

Now as we said in the introduction, the obvious way to do this is with a loop. But there is an 

alternative, “cleverer” way, using recursion. 

We can make the simple observation that 6! is actually 6*5!. And 5! is 5*4!, and so on. So, 

we could calculate n! without ever explicitly calculating a factorial at all. We just keep relying 

on smaller and smaller factorials, without ever calculating them. 

Of course, you must stop somewhere – we know that 1! is 1. 

Here is the Python code for calculating the factorial of n. Like we said, we just return n times 

the factorial of n – 1, unless n is 1 when we just return 1: 

def factorial(n): 

    if n>1: 

        x = n*factorial(n-1) 

    else: 

        x = 1 

    return x 

 

print(factorial(6)) 

 

  



Amazingly enough, this works. We can investigate this further by adding some debug print 

statements: 

def factorial(n): 

    print('Enter', n) 

    if n>1: 

        x = n*factorial(n-1) 

    else: 

        x = 1 

    print('Exit', n) 

    return x 

 

Here is what it prints 

Enter 6 

Enter 5 

Enter 4 

Enter 3 

Enter 2 

Enter 1 

Exit 1 

Exit 2 

Exit 3 

Exit 4 

Exit 5 

Exit 6 

 

As you can see, we have called a function within a function within a function ... that’s 

recursion, of course. 

4.2 Recursion limits 

Recursion is relatively inefficient compared to looping. This is because each step in  a 
recursion results in a function call, whereas each step in a loop merely requires a “jump” to a 

different place in the code. 

Calling a function involves considerably more work than a simple jump, and in any system it 

is going to take more time and use extra memory (memory is required to store the current state 

on the function – the values of its local variables – each time the function calls itself recursively). 

However, Python has a rather more immediate problem. Recursive calls are limited to a 

depth of 1000. The code above cannot be used to calculate the factorial of any number greater 

than 1000. 

This doesn’t mean that recursion isn’t a useful tool in Python. If you are processing a binary 

tree, for example, a depth of 1000 allows you to process a tree containing around 21000 

elements, which is a vast number. But if the problem can be solved with a simple loop, that is 

probably the best solution. 



4.3 Tail recursion 

The form of recursion exhibited by factorial is called tail recursion. Tail recursion is 

when the recursive call is right at the end of the function (usually with a condition beforehand 

to terminate the function before making the recursive call). 

When a function is tail recursive, you can generally replace the recursive call with a loop. In 

Python, you usually should do that! 

Some languages automatically spot tail recursion and replace it with a looping operation. 

This is often called TCO (Tail Call Optimisation). Python does not do this. It tends to happen in 

pure functional languages, where in some cases loops don’t even exist. Such languages are often 

far more declarative than Python, which makes it easier to detect tail recursion. 

There are some hacks that allow you to implement tail recursion in Python, but they are not 

covered here. 

4.4 Inefficient recursion – Fibonacci numbers. 

Here is another classic example of recursion – calculating the nth Fibonacci number. It turns 

out that this is hopelessly inefficient using pure recursion, but we will also look at a useful 

technique to alleviate the problem. 

If you are not familiar with the Fibonacci series, it is an infinite series of numbers defined as 

follows: 

F0 = 0 

F1 = 1 

F2 = F1 + F0 = 1 

F3 = F2 + F1 = 2 

... 

F(n) = F(n-1) + F(n-2) 

 

In other words, each element is the sum of the two previous elements. Here are the first few 

values of the series: 

0, 1, 1, 2, 3, 5, 8, 13, 21... 

 

This can obviously be calculated recursively, like this: 

def fibonacci(n): 

    if n==0: 

        x = 0 

    elif n==1: 

        x = 1 

    else: 

        x = fibonacci(n-1) + fibonacci(n-2) 

    return x 

 

print(fibonacci(8)) # 21 

 

Notice that we need to supply two initial cases. You can’t calculate F0 or F1, they are defined. 

The series is numbered from 0, so element 8 is 21. 



If we now look at how this function actually works, by analysing adding Enter and Exit 

print statements as before. It turns out to be a bit of a nightmare! 

Calculating F8 requires us to calculate F7 and F6. That is where the inefficiencies start, 

because of course calculating F7 also requires us to calculate F6. Since these calculations are 

done in separate branches of the recursion, F6 will be calculated twice. 

Calculating F6 twice then requires us to calculate F5 twice, but we also need to calculate it 

again as part of the F7 calculation, so we end up calculating F5 three times. 

Calculating F6 twice and F5 three times means we end up calculating F4 five times. You 

might be noticing a pattern here – the number of times we have to calculate each successively 

lower level of recursion increases according to the Fibonacci series! 

In short, this is a terribly inefficient method. 

4.5 Memoization 

The basic problem here is that we are calling fibonacci multiple times, with the same 

argument, but each time we are calculating the value all over again. 

Now we know that fibonacci is a pure function. It has no side effects, and every time you 

call it with a particular value, you will always get the same result. 

What we need is some way to remember all the times it has been called before, remember 

the result, and only calculate it if it is called with a value that has never been seen before. We 

can do this using a dictionary told all the previous calls. The dictionary key is the argument, the 

dictionary value is the result. Here is the code: 

cache = dict() 

 

def fibonacci(n): 

    if n in cache: 

        return cache[n] 

    if n==0: 

        x = 0 

    elif n==1: 

        x = 1 

    else: 

        x = fibonacci(n-1) + fibonacci(n-2) 

    cache[n] = x 

    return x 

 

print(fibonacci(8)) 

 

Here we define an empty dictionary called cache. Every time we enter the fibonacci 
function, we check if the value if n already exists in the dictionary. If it does, we simply return 

the previous stored value for the function result, which is found in cache[n]. 

If the value doesn’t already exist, we calculate it in the normal way. Then before fibonacci 

returns we store the result in cache, so we never have to calculate it again. 



4.5.1 functools lru_cache 

This is all very well, but it is adding extra code to the fibonacci function. Extra code which 

in fact, has little to do with what the function is really doing, it has more to do with an efficiency 

improvement that you might wish to use with other function, not just fibonacci. 

These so-called cross cutting concerns are exactly what decorators where invented for. 

In addition, our cache implementation is quite crude and simplistic. It relies on having a 

global variable, cache, kicking around in the file, and hoping that nobody else uses it. It only 

works for functions that take exactly one argument. It also allows the cache to grow to any size, 

when it might sometimes be more sensible to set a maximum size. 

Fortunately, there is an existing decorator, lru_cache, solves all those problems. It is in the 

functools module, and it only takes one line of code to set it up: 

from functools import lru_cache 

 

@lru_cache() 

def fibonacci(n): 

    print('Enter', n) 

    if n==0: 

        x = 0 

    elif n==1: 

        x = 1 

    else: 

        x = fibonacci(n-1) + fibonacci(n-2) 

    print('Exit', n) 

    return x 

 

print(fibonacci(8)) 

 

That is it. Just import the decorator and add @lru_cache before the function definition, and 

it will only ever call fibonacci once for every value of n. 

If you aren’t familiar with decorators, they are explained in a later chapter. 

4.6 Flattening lists 

Consider a list like this: 

[1, [2, 3], 4, [[5, 6], 7]] 

 

This list contains a mixture if integers and lists. Those lists can also contain a mixture of 

integers and lists, and in fact the whole thing can be nested to any depth. You want to flatten this 

into a single list containing all the integers in the order they occur in the original unflattened 

list: 

[1, 2, 3, 4, 5, 6, 7] 

 

This is quite interesting because it is hard to come up with a solution that doesn’t involve 

recursion. But there are different degrees to which you can use recursion. We will start with a 

fully recursive solution. 



A simple fully recursive solution works like this. We take the original list and divide it into 

two parts. The first element of the list, which we will call the head, and the rest of the list, which 

we will call the tail. 

The basic method is to flatten the head and flatten the tail, then join them together again. 

Since both parts of the list have been flattened, when we join them together we get a fully 

flattened list. Of course, we recursively call the flatten function to flatten the head and tail. 

Of course, we need ours stopping conditions. If we are asked to flatten something that isn’t a 

list (for example if it is an integer), we create a list from the value and return that. And if we are 

asked to flatten an empty list, we return an empty list. Here is the code: 

def flatten(x): 

    if not isinstance(x, list): 

        return [x] 

    if x == []: 

        return x 

    return flatten(x[0]) + flatten(x[1:]) 

 

Even without tracing through the code, it seems fairly plausible that this will work, for the 

following reasons: 

• If you correctly flatten the head and the tail, and concatenate them, you will get a 

flattened list. 

• Each iteration divides the list, so it will keep getting smaller. 

• Every path therefore eventually results in a value that is either not a list (an integer 

value) or is an empty list. These two cases are handled correctly by returning a list 

representation that will be added to another list to create a solution. 

Obviously, this falls well short of a mathematical proof of correctness, but it inspires 

confidence. 

4.6.1 A less recursive solution 

The solution above works. The main drawback is that it creates a least one level of recursion 

for every item in the list. That is because each level flattens the tail of the list and doesn’t stop 

until the tail is empty. If the list is 100 elements long the recursion will be at least 100 deep. If 

the list is greater than 1000 long, even if the list is already flat, it will fail due to the Python 

recursion limit. 

  



The basic problem is, in the quest for functional purity we have ended up with a solution that 

will break itself trying to flatten a list that is already flat. We can improve things be only 

flattening elements that are actually lists. Here is the solution: 

def flatten(x): 

    if not isinstance(x, list): 

        return [x] 

    if x == []: 

        return x 

    r = [] 

    for e in x: 

        if isinstance(e, list): 

            r += flatten(e) 

        else: 

            r.append(e) 

    return r 

 

This is still recursive, but it doesn’t automatically recurse into the head and tail each time. It 

loops through the elements in x, and only flattens any lists it finds. If lists are nested, it will still  

recurse into those lists to flatten them, but the depth of recursion is limited by the depth of 

nesting of the lists, not the total number of elements in the original list. If the original list is flat, 

the function will make no recursive calls at all. 

4.7 Summary 

In this chapter we have looked at recursion as a more functional alternative to looping for 

certain algorithms. We have also seen the limitations of recursion in Python, in terms of the 

recursion depth limit and the lack of Tail Call Optimisation, and seen how memoization can help 

alleviate that in certain situations. 

 

 



5 Closures 

In functional programming, we sometimes write functions that create other functions. A 

simple and elegant way to do this is to use a closure. Closures provide a way to create functions 

dynamically, a little like lambdas but far more powerful. 

5.1 Inner functions 

Let’s start by looking at inner functions. An inner function is a function that is defined inside 

another function. Like this: 

def print3(): 

 

    def print_hello(): 

        print('hello') 

 

    print_hello() 

    print_hello() 

    print_hello() 

 

# Main code 

print3() 

print_hello() 

 

print_hello is an inner function of print3. Specifically, print3 first defines 

print_hello, then calls it 3 times. 

The result when we run the main code is: 

• Calling print3 prints “hello” 3 times. 

• Calling print_hello gives an error because it is only visible from inside print3. 

5.1.1 Returning an inner function 

A function can return an inner function, like this: 

def make_print(): 

 

    def print_hello(): 

        print('hello') 

 

    return print_hello 

 

# Main code 

fn = make_print() 

fn() 

 

Here the make_print function defines an inner function print_hello. But it doesn’t call 

print_hello, it simply returns it as a function object. 



When we call make_print in the main code, we assign the function pointer to the variable 

fn. This means that fn is now effectively and alias of the inner function print_hello. So, 

when we execute fn, it does what you would expect – it prints “hello”. 

This may be interesting, but it isn’t particularly useful. We could, of course, have simply 

defined print_hello as a top-level function, and we wouldn’t have needed any of the rest of 

the code. 

5.1.2 A closure 

This next step is where the magic happens, and we actually create our first closure: 

def make_printx(x): 

 

    def printx(): 

        print(x) 

 

    return printx 

 

# Main code 

fn1 = make_printx(7) 

fn2 = make_printx(100) 

fn1() 

fn2() 

 

This time our outer function make_printx takes a parameter. And the inner function 

printx, uses that parameter. That is fine, of course, because an inner function can access the 

local variables and parameters of the enclosing function. 

Now we call make_printx passing in a value of 7. This creates a function object for the 

function printx, but here is the important part – that function object is associated with the 

value x = 7. The combination of the function object together with the value of x is called a 

closure. 

In the code above, fn1 is a closure of printx with the x value 7, and fn2 is a closure of 

printx with x value 100. Whenever we call fn1 it will print 7, and whenever we call fn2 it 

will print 100. 

5.1.3 A more useful closure 

Suppose we needed a function that prints a value, but automatically surrounds that value 

with brackets. We also want the ability to control what sort of brackets (such as [x] or {x} or 

<<x>>). 

  



Here is how we could do that as a closure: 

def make_printb(start, end): 

 

    def printb(s): 

        print(start + s + end) 

 

    return printb 

 

# Main code 

sq = make_printb('[', ']') 

dbl_ang = make_printb('<<', '>>') 

sq('hello') 

dbl_ang('world') 

 

Here, make_printb accepts parameters for the start and end brackets. But in this case, 

the inner function printb accepts a parameter that represents the actual string to be printed 

inside the brackets. This means that the type of brackets if fixed when you create the closure, 

but you can set the content when you actually call the closure function. 

So, when we create the closure sq, we set the brackets to be square brackets. Every time sq 

is called, it will use square brackets, but the content between the brackets can be whatever you 

like. Similarly, dbl_ang will always use double angle brackets. 

What we have created with quite a simple closure is a factory for creating a whole family of 

functions that print bracketed text using different bracket styles. 

5.2 What is a closure? 

So, what is a closure? A closure normally requires three things: 

• An outer function that contains an inner function. 

• The outer function has parameters and/or local variables. 

• The outer function returns the inner function as a function object. 

In fact, strictly speaking any function that returns an inner function is a closure, even if it 

doesn’t have any parameters.  For example, our make_print function near the start of the 

chapter – but with no way to vary the behaviour of the closure, it isn’t very useful. 

5.3 Creating anonymous functions 

In the next few sections we will look at various ways that closures can be used, starting with 

using closures to create anonymous functions. 

5.3.1 A simple introduction to map 

The map function is a Python built in function. In its simplest form it accepts a function object 

and a sequence (e.g. a  list). It applies the function to each element of the list. 

a = [2.2, 5.6, 1.9, 0.1] 

b = map(round, a) 

print(list(b))    # [2, 6, 2, 0] 

 



In this example we apply the round function to every element in a. The round function 

rounds a value to the nearest integer. This gives the result shown. (Note that map uses lazy 

iteration, so we will use the list function to turn the result into a list that we can print). 

5.3.2 Incrementing the elements in a list 

Suppose we now wanted to add 1 to each element in the list. We need a function that accepts 

a single argument and adds 1 to it. One way to do this would be to use a lambda: 

lambda x: x + 1 

 

This creates an anonymous function that does exactly what we want. Let’s try this with a 

map: 

a = [1, 3, 0, 6] 

b = map(lambda x: x + 1, a) 

print(list(b))    # [2, 4, 1, 7] 

 

5.3.3 Using a closure instead of a lambda 

We can use a closure to create an anonymous function, instead of a lambda, like this: 

def addn(n): 

    def add(x): 

        return x + n 

    return add 

 

a = [1, 3, 0, 6] 

b = map(addn(1), a) 

print(list(b))    # [2, 4, 1, 7] 

 

Here, addn(1) creates an anonymous function that adds 1 to its argument - exactly like the 

lambda function we defined before. This involves more code than just using a lambda, because 

the closure has to be defined, but it has several advantages: 

• If you need to use the function in more than one place, it might be better to define a 

closure. 

• The closure allows you to create a family if related anonymous functions, for example 

addn(2) creates a function that adds 2 to its arguments. 

• The function inside a closure can be as complex as you like, whereas a lambda is limited 

to a single expression. If you need a complex function, a closure is a good choice. 

5.3.4 Other alternatives 

There are other ways of creating anonymous functions like the ones here. You could use a 

callable object, as discussed earlier. Or you can use partial application, which is described in a 

later chapter. 

5.4 Composing functions 

Let’s suppose you needed a function that could convert any character, for example ‘a’ into a 

hex string representing its ASCII character code (which would be ‘0x61’). 



There are two Python functions you can use to do this. ord converts a character to an int 

value representing its ASCII code (or more generally its Unicode value). hex converts an int 

value into a hex string. Using these two functions, we can define a function that does the task for 

us: 

def codestr(c): 

    return(hex(ord(c))) 

 

h = codestr('a') 

print(h)         # '0x61' 

 

In this code we apply the ord function to the value c, and then apply the hex function to the 

result. Applying one function to the result of another is called composing the two functions. 

Defining a function is a procedural way of doing things. A more functional way would be to 

build a function to do the job for us. Like this: 

def compose(f, g): 

    def fn(x): 

        return f(g(x)) 

    return fn 

 

codestr = compose(hex, ord) 

 

h = codestr('a') 

print(h)         # '0x61' 

 

First, we define a compose function. compose accepts two functions, f and g. It returns a 

function that applies g to x and then applies f to the result. This is a completely generic that can 

used to compose any two functions you want. The only conditions are: 

• f and g must each accept one parameter. 

• The return value of g must be a valid input parameter for f. 

The next step is use compose to create a function that applies ord and then hex. We will 

store this function object in codestr, then we can call it with value ‘a’ to test that it works. 

5.4.1 The advantages of composing functions 

Looking at the code, you might be thinking that the first version is simpler than the 

functional version. But remember that compose is a generic function that we might use many 

times. So, the original code looks like this: 

def codestr(c): 

    return(hex(ord(c))) 

 

The equivalent functional code looks like this: 

codestr = compose(hex, ord) 

 

The code looks fairly similar, but the functional code demonstrates the intent much more 

clearly. The new function composes hex and ord, it says so right there! In the original code, 

that intent is expressed as a function that could be doing anything. You need to read the code to 



be sure. It might seem like a minor difference, but with more complex code the cognitive burden 

can add up. 

A related aspect is that, provided you trust compose, hex, and ord, then the functional 

solution has to work. How could it not, it is just three trusted functions doing what they do? 

With the original code, you have two trusted functions plus a brand-new function that, for all 

you know, could have a bug. Again, not very likely, but these things can add up in a more 

complex program. 

Another advantage is that we can use compose to create anonymous functions. For example, 

we can use map to apply our composed function to a string and produce a list of hex values. This 

saves us an ugly lambda expression. 

s = 'xyz' 

b = map(compose(hex, ord), s) 

print(list(b))         # ['0x78', '0x79', '0x7a'] 

 

If you are not too familiar with map, it will work with strings as well as arrays, applying the 

function to each character in the string and creating an iterator b that we then turn into a list. 

Finally, we can use our compose function to create other functions. Here is how we would 

create a function calculate the square of the sine of x: 

compose(lambda x: x*x, math.sin) 

5.5 Using closures instead of classes 

For the final example, we will look at a simple number formatter. We want a formatter that 

can convert a floating-point number to a string, with a fixed number of decimal places. 

We could do this with a simple class, like this: 

class Format(): 

 

    def __init__(self, precision): 

        self.p = precision 

 

    def format(self, x): 

        return '{:.{prec}f}'.format(x, prec=self.p) 

 

This class can be used to create a format object (as with the 3 digit case) or you can create 

and call the object in one statement (as with the 5 digit case): 

format3 = Format(3) 

print(format3.format(1.2345678)) 

 

print(Format(5).format(1.2345678)) 

 

  



Here is how you could use a closure as a factory to create format functions that do a similar 

job: 

def formatn(precision): 

 

    def format(x): 

        return '{:.{prec}f}'.format(x, prec=precision) 

     

    return format 

 

And here are the two ways to call it: 

format3 = formatn(3) 

print(format3(1.2345678)) 

 

print(formatn(5)(1.2345678)) 

 

Both are valid, and there is nothing wrong with using a class in this case, but a closure offers 

quite an elegant solution. Generally, you can use a closure instead of a class if: 

• The class would only have one method. 

• The parameters are set in the __init__ method and never changed. 

If these conditions are not met, you will often be better using a class. 

5.6 Using classes instead of closures 

While we are looking at classes, it is worth mentioning that you can create classes that can be 

“called” like functions. All we need to do is define a method __call__ in the class. This is 

useful to know, but probably not something you will use often. 

__call__ is one of the  special methods that Python provides to allow user defined objects 

to support Python operators. All the methods are two underscores before and after their names 

to distinguish them from normal methods. For that reason, they are sometimes called “dunder” 

methods (double underscore), or alternatively magic methods. The method __call__ 

supports function calling. 

Here is some example code. We modify the class called Format, to include a __call__ 

method instead of the previous format method. 

class Format(): 

 

    def __init__(self, precision): 

        self.p = precision 

 

    def __call__(self, x): 

        return '{:.{prec}f}'.format(x, prec=self.p) 

 

  



Now we create an object format3 as before. But this time, in order to invoke it we just need 

to use the same syntax as we would use to call a function: 

format3 = Format(3) 

print(format3(1.2345678)) 

 

print(Format(5)(1.2345678)) 

 

Notice that format3 is not a function object, it is a Format object. But because it supports 

__call__, we can use function notation to call it. And, of course, we can still create an object 

like Format(5) and call it directly. 

Well now our object can be used in a very similar way to the closure. Is it worth doing? Not 

usually, because defining a simple class is more hassle than defining a simple closure. 

One scenario where the class might be a better choice is if you have more complex 

initialisation requirements. For example, suppose we wanted to allow the format to specify the 

number of decimal places and the overall width of the string. And to allow for more features 

later, we use a fluent interface style. Here is our fluent formatter: 

class Format(): 

 

    def __init__(self): 

        self.p = 0 

        self.w = 0 

 

    def prec(self, n): 

        self.p = n 

        return self 

 

    def width(self, n): 

        self.w = n 

        return self 

 

    def __call__(self, x): 

        return '{:{width}.{prec}f}'.format(x, width=self.w, 

                                           prec=self.p) 

 

The fluent interface allows us to initialise our formatter like this: 

format3 = Format().width(10).prec(3) 

print(format3(1.2345678)) 

 

This type of interface can be very useful if the formatter has lots of options, with many of 

them optional. It can only really be done using a class. 

  



5.7 Closure inspection 

You can look inside a closure to find the values of its variables. Here is an example closure: 

def f(x, a, v): 

    def g(e): 

        print(x, a, v, e) 

    return g 

 

c = f(5, 6, 7) 

 

Python provides methods to inspect an object more deeply. In the code above, the function f 

returns the function object g, which is assigned to variable c. Since the object returned is a 

closure, it also contains information about the variables x, a, v and their values. 

These variables are called free variables – the variables that are passed into f. In other 

words, variables that are used by f but not defined within f. 

Every object in Python has “hidden” attributes that store information about its internals. For 

closures the important attributes are __code__ and __closure__. These attributes aren’t 

really hidden, of course, you can get a list of all them all using: 

dir(c) 

 

which gives you a dictionary of the names of the items: 

['__annotations__', '__call__', '__class__', '__closure__', 
'__code__', '__defaults__', '__delattr__', '__dict__', 
'__dir__', '__doc__', '__eq__', '__format__', '__ge__', 
'__get__', '__getattribute__', '__globals__', '__gt__', 
'__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__', 
'__module__', '__name__', '__ne__', '__new__', '__qualname__', 
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', 
'__sizeof__', '__str__', '__subclasshook__'] 

 

 We can list the free variables of f like this: 

print(c.__code__.co_freevars) 

 

The result is a  tuple off values ('a', 'v', 'x') which include all of the free variables. 

The variables are ordered by hash values, so it is safest to treat the order as being essentially 

random. 

You can get the variable values from the __closure__ attribute. This contains a tuple of cells, 

where each cell contains the value of one of the variables. They can be accessed like this: 

print(c.__closure__[0].cell_contents) 

print(c.__closure__[1].cell_contents) 

print(c.__closure__[2].cell_contents) 

 

This returns 6, 7, 5, the values of a, v and x. The values are stored in the same order as the 

variable names in the freevars tuple. Here is how to list the names and values together: 

for i, name in enumerate(c.__code__.co_freevars): 

    print(name, c.__closure__[i].cell_contents) 



 

This can be useful in some circumstances to find out the details of a closure in your code. The 

values are read only – you can’t modify the value of a, for example. 

5.8 Summary 

In this chapter we have learned about closures – inner functions returned by an enclosing 

function, that still retain access to variables within the scope of the enclosing function. 

We have seen how closures can be used as function factories, providing a simple and elegant 

way to implement composition and partial functions. 

We have also seen haw they can used as a more declarative alternative to lambda 

expressions, and a clean alternative to declaring a class in certain cases. 

 

  



6 Iterators 

You will be familiar with Python sequences. A sequence is an ordered collection if items, the 

most common ones being lists, strings and tuples. But sequences rely on a couple lower level 

types that are important in functional programming: iterators and iterables. 

6.1 Iterators 

In Python, an iterator is an object that can be used to iterate over a series of values, one after 

the other. Specifically, an iterator can be passed into the built-in function next to get the next 

value in the series. 

In the earlier chapter on closures, we used map to apply the round function to all the 

elements in a list: 

a = [2.2, 5.6, 1.9, 0.1] 

b = map(round, a) 

 

If we were to print the value of b, we would find that it isn’t a list of values, but instead it is a 

map object: 

<map object at 0x000002581A529860> 

 

A map object can act as an iterable (that is, it can be passed to the next function), so we can 

do this to print out its values: 

print(next(b))  # 2 

print(next(b))  # 6 

print(next(b))  # 2 

print(next(b))  # 0 

print(next(b))  # throws StopIteration 

 

The first four calls will print the consecutive rounded values of a. When we make the fifth 

call to next(b), the iterator has run out of values, so it will throw a StopIteration exception. 

This isn’t an error it is a standard way for an iterator to indicate that is has no more values left. 

This illustrates an important feature of iterators – you only get one go. Each time you call 

next you get the next value, but you can’t go back to the beginning, it is a one-shot deal. 

6.2 Iterables 

An iterable is something that you can iterate over. For example, lists are iterables (so are 

strings and tuples). 

  



An iterable can be passed to the built in iter function. This function returns an iterator that 

you can use to do the actual iterating. Here is an example: 

a = [1, 3, 7] 

 

b = iter(a) 

print(a) 

print(b) 

 

Here we have created a list, a, and obtained its iterator, b. Here is what we get when we print 

them: 

[1, 3, 7] 

<list_iterator object at 0x000001A279DC5A90> 

 

a is a list object, and b is a list_iterator, a type of iterator that is configured to iterate 

over the values in b. Here is what happens if we call next(b) several times: 

print(next(b))  # 1 

print(next(b))  # 3 

print(next(b))  # 7 

 

This is quite similar to the map example, but because a list is an iterable rather than an 

iterator, we needed to take the extra step of calling iter to get the iterator. 

6.3 How for loops work 

Now we can take a quick look at how a for loop works. Consider this: 

a = [1, 3, 7] 

for x in a: 

    print(x) 

 

The for loop requires a variable (x in this case), and something to loop over (a in this case). 

The for loop operates as follows: 

• It obtains an iterator from the iterable a using the iter function. 

• It fetches values from the iterator, one by one. For each value, it assigns the value to x 

and executes the body of the loop. 

• When the iterable throws StopIteration, the loop terminates. 

6.4 Iterators also support iter 

The previous description of for loops leaves us with a potential problem. The map function 

returns and iterator, but we need an iterable to use for loop. So how can we loop over a map, 

like this: 

a = [1, 3, 7] 

for x in map(lambda x: x*x, a): 

    print(x) 

 



The answer is that all iterators also support the iter function – but in the case of an 

iterator, calling iter returns the object itself. So: 

• If you try to loop over an iterable, Python will use the iter function to get its iterator. 

• If you try to loop over an iterator, Python will again call the iter function, but it will 

return the iterator itself. 

Either way, the loop will obtain an iterator to work with. 

6.5 Iterators vs iterables 

To summarise: 

• An iterator is an object that can iterate through a sequence of values, by repeatedly 

passing it to the next function. 

• An iterable is an object that can be iterated over. If you pass an iterable to the iter 

function, it will return an iterator that you can use to iterate over it. 

[[Iterables can create a new iterator so you can loop over a list multiple times, but and iterator 

can only be used once]] 

6.6 Iterators use lazy evaluation 

The only way to get values from an iterator is to request the next item. This means that if you 

want to get the 100th element, you will have to keep asking for the next item, 100 times! There is 

no other option. 

This means that an iterator doesn’t have to create all its values in one go. In fact, many 

iterators calculate their values one at a time, as they are needed. Each time you request the next 

item, the iterator will calculate it there and then. This is called lazy evaluation – the iterator 

doesn’t do any work until it absolutely has to. There are several advantages to this: 

• When you request the first value, the iterator can return it straight away. Without 

lazy evaluation, the iterator would need to calculate all its values before it could even 

return the first value. This can make your program more responsive if the series is 

very long. 

• You do not need to store the calculated values. A long series might use a lot of 

memory if you needed to store it. 

• You don’t waste time calculating values that you might not use. 

To give an example, suppose you had an iterator, myiter, that created 1000 values and you 

wanted to find the first zero value. You could do it like this: 

for x in myiter: 

    if x==0: 

        break 

 

Without lazy evaluation, myiter would calculate all 1000 values before the loop even 

started. If it then turned out that the second value was a zero, then you would have calculated 

the remaining 998 values for nothing! With lazy evaluation, myiter would calculate the first 

value just before the first pass through the loop, then the second value just before the second 

pass through the loop ... and then the loop would end, so  the remaining 998 values would never 

be calculated. 



 In some cases, an iterator might be potentially infinite. For example, if you created an 

iterator to generate the series of prime numbers, it has no end. You would have to set some 

arbitrary limit for the longest prime number you can handle, and then you would have to wait 

for a long time until all those numbers were generated. 

With lazy evaluation, you can just create prime numbers, one by one, as they are needed, and 

carry on going more or less forever. 

There are some cases where lazy generation is not the best approach. One example would be 

an iterator that reads bytes from a file. It is generally going to be quite inefficient to access one 

byte at a time, so the iterator might decide to read a largish block of data in one go. 

6.7 Sequences 

A sequence is an ordered collection of items that allows random access. Examples of 

sequences include list, strings and tuples. You should already be familiar with these, but here is 

how they relate to iterators 

Ordered means that each item in the sequence has an index, starting at 0. 

Random access means we can directly access item index i in the sequence using square 

bracket notation: 

n = a[i] 

a[i] = 3 

del a[i] 

 

Immutable sequences such as tuples and strings only allow items to be read, not modified or 

deleted. 

All sequences are iterable – that is, they support the iter function to obtain an iterator. This 

also means that they will work with for loops, of course. 

In addition, sequences generally have a specific number of items, and you can use the len 

function to find out how many items there are in a sequence. 

It is interesting to note that range creates an immutable sequence. You can do this: 

r = range(2, 8) 

print(len(r))  # 6 

print(r[3])    # 5 

 

In this example, r is a range object. It is an iterable, of course, but it also supports the 

use len and random reading of elements. But don’t make the mistake of thinking that a range 

actually stores a list of value, like a list. It creates the values lazily. The values for len(r) and 

r[3] are calculated from the range parameters. 

  



6.8 Realising an iterator 

It is sometimes useful to convert an iterator into a concrete sequence such as a list. This is 

sometimes called “realising” the iterator. There are several reasons you might want to realise an 

iterator: 

• To find its length. 

• To access the elements more than once (an iterator can only be read from once, then it is 

spent). 

• To access the elements in a different order. 

• To print it. 

The process on realising an iterator involves evaluating every term in the iterator and 

making those terms available as a sequence. There are two main ways to do this – using a 

sequence constructor such as list or using the * operator. 

6.8.1 Using sequence constructors 

Here is a simple example where we have created an iterator with the map function, and we 

want to print the result: 

a = [2.2, 5.6, 1.9, 0.1] 

b = map(round, a) 

print(b)         # <map object at 0x000002470E579828> 

 

The problem here is that b is an iterator, so when you print it you will just see the details of 

the iterator object, not the values it contains.  

A simple way to do this is to use the  list function. This will convert almost anything into a 

list. When you do this: 

print(list(b))  # [2, 6, 2, 0] 

 

The list function will loop through the iterator, evaluating each item, and create a list from 

all the items. 

The tuple function will do a similar job, creating a tuple instead of  a list: 

print(tuple(b))  # (2, 6, 2, 0) 

 

The set function will create a set instead of  a list. Remember that a set only allows one 

instance of each value, so the number 2 will only occur once. Also, sets have no natural order so 

you shouldn’t really rely on items being listed in any specific order: 

print(set(b))  # {0, 2, 6} 

 

Strings are slightly different. This example uses map and the chr function to convert a list of 

numbers into characters based on their ASCII values: 

a = [72, 101, 108, 108, 111] 

b = map(chr, a) 

print(str(b))    # <map object at 0x000001D23F1E9828> 

 



Unfortunately, one of the quirks of Python us that str works rather differently to list. 

While list will take an object and attempt to get all its elements and create a list, str works 

on a different level. It attempts to find a string representation of the object itself. 

If we pass an iterator to list, it will realise the iterator and form a list from its elements. 

But if we pass an iterator to str, it will simply describe the iterator itself – in this case it is a 

map object. It won’t evaluate the iterator. 

The solution is to use the string join function. This takes an iterable of string values and 

joins them: 

print(''.join(b)) 

 

If you are not familiar with join, it is a method of the string type. It joins all the elements of b 

to create a single string. The '' is a literal empty string that causes join to join the strings with 

no extra characters between them. 

6.8.2 Unpacking an iterable to a parameter list 

Here is a simple function that multiplies three numbers: 

def mult3(a, b, c): 

    return a*b*c 

 

x = mult3(2, 3, 5)  # 30 

 

Suppose the arguments you needed were already in in a list? You can use  the unpacking 

operator, *, to “unpack” the values: 

p = [2, 3, 5] 

x = mult3(*p)   # equivalent to mult3(2, 3, 5) 

 

In this case, *p is equivalent to taking the elements in p and passing them in as three 

separate arguments. 

This doesn’t just work with sequences like lists and tuples. It will work with any iterable. 

Python will realise the iterable and pass the resulting elements into the function as separate 

arguments. To use our rounding example again: 

a = [2.2, 5.6, 1.9] 

b = map(round, a) 

x = mult3(*b)    # equivalent to mult3(2, 6, 2) 

 

In fact, map returns an iterator, not an iterable, but as we saw previously an iterator serves 

as its own iterable. 

This technique is useful in a number of situations, as we will see later. Wherever you have a 

set of values in an iterable that you want to pass into a function, you can use * to unpack it. 

However, the number of elements in the iterable must match the number of arguments needed 

by the function. 



6.8.3 Unpacking an iterable into a sequence 

You can use exactly the same unpacking notation to create a list, by enclosing the unpacked 

variable inside square brackets: 

a = [2.2, 5.6, 1.9] 

b = map(round, a) 

k = [*b]      # k is [2, 6, 2] 

 

This is an alternative to using the list function described above. You can use the same 

technique to create a tuple, but you need the trailing comma just as you would to create a tuple 

with one normal element: 

t = (*b,)    # t is (2, 6, 2) 

 

And, of course, you can create a set in a similar way: 

s = {*b}    # s is {2, 6} 

6.8.4 Extended unpacking 

You can unpack more than one iterable, and you can even interleave other values with 

unpacked values, for example: 

a = range(3) 

b = range(4, 7) 

k = [*a, 10, *b]  # [0, 1, 2, 10, 4, 5, 6] 

 

Here we use two range iterables, one with values 0, 1, 2 and the other with values 4, 5, 6. We 

unpack these both into a list, with an extra element 10 between them. 

This technique also works with unpacking into argument lists, as we did above. It also works 

with tuples and sets. 

6.9 Creating your own iterator 

Just out of interest, we will create a couple of iterators of our own. In fact, you will probably 

never need to do this as it is almost always better to use generators instead, so the rest of the 

chapter if pretty much optional, for background information only. This section assumes you 

know the basics of creating Python classes. 

An iterator is just a class that implements a __next__ method and an __iter__ method. 

Notice that these functions have double underscores before and after their names, which 

indicates they are special class methods defined by Python. The built-in next function calls the 

object’s __next__ method (similar for iter). 

As we noted earlier, the __iter__ method just needs to return the iterator itself (it allows 
the iterator to act as an iterable if needed). So, we will mainly concentrate on the __next__ 

method. 



6.9.1 An alphabet iterator 

We will start with an iterator that returns the first 5 characters of the alphabet. It could 

easily be extended to return all 26 characters but keeping to 5 makes the examples a little 

shorter. Here is our skeleton class: 

class Alphabet(): 

 

    def __init__(self): 

        # Number of characters read 

        self.pos = 0 

 

    def __iter__(self): 

        return self 

 

    def __next__(self): 

        # Add code to return the next value 

 

To implement our next method, we will use a string to define the characters in the alphabet: 

chars = 'abcde' 

 

This string will be defined within the class, as a static variable. We can then define our 

__next__ method.  

    def __next__(self): 

        if self.pos < len(self.chars): 

            c = self.chars[self.pos] 

            self.pos += 1 

            return c 

        else: 

            raise StopIteration 

 

This function is fairly simple. For the first 5 characters, we simply return the correct 

character from the string. We use self.pos as the index. Once all the characters are used up, 

we raise a StopIteration exception to show that the iterator is finished. 

  



Here is the complete code, including a test. We can use Alphabet in a for loop, it will loop 5 

times, printing 'a' to 'e'. 

class Alphabet(): 

 

    chars = 'abcde' 

 

    def __init__(self): 

        self.pos = 0 

 

    def __iter__(self): 

        return self 

 

    def __next__(self): 

        if self.pos < len(self.chars): 

            c = self.chars[self.pos] 

            self.pos += 1 

            return c 

        else: 

            raise StopIteration 

 

for c in Alphabet(): 

    print(c) 

 

6.9.2 A Fibonacci iterator 

As a second example, we will make an iterator that returns values from the Fibonacci series. 

If you are not familiar with this, the series starts with 0, then 1. Each subsequent value is the 

series is formed by adding the two previous values, like this: 

0, 1, 1, 2, 3, 5, 8, 13, 21... 

 

  



The interesting thing about this series is that it is infinite. Our iterator will keep on creating 

values forever. Here is the code: 

class Fibonacci(): 

 

    def __init__(self): 

        self.c = 0 

        self.n = 1 

 

    def __iter__(self): 

        return self 

 

    def __next__(self): 

        ret = self.c 

        self.c, self.n = self.n, self.c + self.n 

        return ret 

 

for i in Fibonacci(): 

    print(i) 

    if i > 100: 

        break 

 

Notice that, since our series is infinitely long, we use a break in the for loop otherwise it 

would go on forever. 

6.10 Built in functions 

Python includes a number of functional that operate on iterables. We can split these into four 

groups. 

6.10.1 Primitive functions 

 The functions iter and next perform primitive operations on iterables/iterators. We 

covered these earlier in this chapter. 

6.10.2 Creation/conversion functions 

We have seen earlier that the list and tuple functions can be used to realise a lazy 

iterable into a concrete sequence. These functions along with str, are also used to create and 

convert other items. 

The list function can be used to create a list from various values: 

list()           # Creates an empty list 

list(1, 2, 3)    # Creates a list [1, 2, 3] 

list(alist)      # Creates a shallow copy of alist 

list(atuple)     # Creates a shallow copy of a tuple 

list(‘abc’)      # Creates a list [‘a’, ‘b’, ‘c’] 

 

The tuple function works in the same way as the list function but creates a tuple rather 

than a list. 



As noted earlier, str doesn’t work in the same way as list and tuple. If you pass an 

object into str, it will create a string description of the object, rather than attempting to 

convert the object’s data into a string of characters. 

As an aside, the following code will create a shallow copy of any sequence and also maintain 

its type: 

a = b[:] 

 

This takes a full slice of the object, whatever it might be, creating a copy. If a is a list, b will be 

a list. If a is a tuple, b will be a tuple. If a is a string, b will be a string. 

6.10.3 Transforming functions 

Transforming functions include map (that applies a function to an iterable to create a new 

series), filter (that removes items from a series based on a filter function). These are covered 

in the chapter Transforming iterables. 

6.10.4 Reducing functions 

Reducing functions reduce all the values in an iterable to single derived value . Examples 

include sum (that adds all the elements to create a total) and min (that finds the smallest 

element). These are covered in the chapter Reducing iterables. 

6.11 Summary 

In this chapter we have learned about: 

• Iterators, iterables and how they interact. 

• How for loops work. 

• Lazy iteration and its advantages. 

• Sequences as random access iterables. 

• Converting lazy iterators to sequences. 

• Creating your own iterators. 

• Built-in functions on iterables. 

  



7 Transforming iterables 

Functional programming prefers iterables over lists, because there is less risk of side effects. 

We often need to transform an iterable stream in some way, and Python provides a number of 

standard functions to do that. 

7.1 enumerate 

You may have seen the enumerate function used in a for loop like this: 

a = ('red', 'green', 'blue') 

for i, s in enumerate(a): 

    print(i, s) 

 

This is a common idiom that is used if you ever need to access the loop counter within the 

loop. In this case, the loop operates 3 times, with i set to 0, then 1, then 2. The code prints 3 

lines: 

0 red 

1 green 

2 blue 

 

You might have used this without ever thinking about what is going on behind the scenes. If 

so, it is quite useful to unpick it a bit. We can use enumerate in a more conventional loop with 

just one loop variable: 

a = ('red', 'green', 'blue') 

for t in enumerate(a): 

    print(t) 

 

This time the output looks like this: 

(0, 'red') 

(1, 'green') 

(2, 'blue') 

 

What enumerate is actually doing is returning a series of tuples. In the original version of 

the loop, we are simply unpacking this tuple into i, s so that i takes the values 0, 1, 2 and s 

takes the string values red, green and blue. 

In the context of functional programming, where we try to avoid loops, enumerate 

transforms a data stream. For example, the stream of 3 values: 

'red', 'green', 'blue' 

 

gets transformed into a stream of tuples: 

(0, 'red'), (1, 'green'), (2, 'blue') 

 

  



This can often be quite a useful transform. And while we are talking about enumerate, don’t 

forget that it can also take an optional start value, if you don’t want to start from 0: 

a = ('red', 'green', 'blue') 

for i, s in enumerate(a, 15): 

    print(i, s) 

 

This creates the following output: 

15 red 

16 green 

17 blue 

7.2 zip 

Another function you may have seen used in a for loop is zip. It provides a way to loop over 

more than one sequence in the same loop: 

first = ('John', 'Anne', 'Mary', 'Peter') 

last = ('Brown', 'Smith', 'Jones', 'Cooper') 

age = (25, 33, 41, 28) 

for f, l, a in zip(first, last, age): 

    print(f, l, a) 

 

This prints the following: 

John Brown 25 

Anne Smith 33 

Mary Jones 41 

Peter Cooper 28 

 

On the first pass through the loop, f, l and a are set to the first element of first, last and 

age respectively. On the second pass, f, l and a are set to the second element of first, last 

and age, and so on. As you might have guessed, zip is producing tuples that are getting 

unpacked into f, l and a. 

7.2.1 How zip transforms iterables 

zip accepts a set of iterables, and transforms them into an iterator of tuples, like this: 

a = (10, 11, 12, 13) 

b = (20, 21, 22, 23) 

c = (30, 31, 32, 33) 

 

z = zip(a, b, c) 

print(list(z)) 

 

We have converted the iterator z into a list, which looks like this: 

[(10, 20, 30), (11, 21, 31), (12, 22, 32), (13, 23, 33)] 

 

This is reorganised so that each output tuple contains the nth element from each input 

iterable. Exactly as we saw in the names example above. 



What happens when we loop over this zipped stream? For example: 

for t in zip(a, b, c): 

    print(t) 

 

We would print each tuple in turn: 

(10, 20, 30) 

(11, 21, 31) 

(12, 22, 32) 

(13, 23, 33) 

 

And, of course, if we unpack the tuple in the loop: 

for x, y, x in zip(a, b, c): 

    print(x, y, z) 

 

We would effectively be processing the three original lists, a, b and c, at the same time. Just 

like the name example above. 

7.2.2 Stream with different lengths 

Incidentally, if the original streams have different lengths, zip will terminate when the 

shortest stream is exhausted: 

a = (10, 11, 12) 

b = (20, 21) 

c = (30, 31, 32, 33) 

 

z = zip(a, b, c) 

print(list(z)) 

 

This prints the following (because the b list only has 2 elements): 

[(10, 20, 30), (11, 21, 31)] 

7.2.3 zip is self-reversing 

A common question people ask when they first meet zip is, how do I do the opposite? How 

do I unzip some data? It might not be immediately obvious, but the zip function is self-

reversing - well almost. Looking at the output from the previous example: 

[(10, 20, 30), (11, 21, 31), (12, 22, 32), (13, 23, 33)] 

 

As you can see, taking the first element of each tuple gives (10, 11, 12, 13) – which is 

exactly the same as we started with. zipping some previously zipped data restores it to its 

previous state. 

Or does it? There is a minor problem here in that the output of the zip function, called z in 

the example, is an iterator that provides a set of tuples. But we can’t just pass that iterator back 

into zip again. zip expects each of the tuples to be passed in as a separate argument. 



Fortunately, in the chapter on iterators, we met the * operator that converts an iterator to a 

list of arguments. *z is roughly equivalent to converting z to list and then passing in z[0], 

z[1], z[2], z[3]: 

a = (10, 11, 12, 13) 

b = (20, 21, 22, 23) 

c = (30, 31, 32, 33) 

 

z = zip(a, b, c) 

 

restored = zip(*z) 

print(list(restored)) 

 

This gives us back our original data: 

[(10, 11, 12, 13), (20, 21, 22, 23), (30, 31, 32, 33)] 

7.3 filter 

The filter function can be used to remove items from an iterable based on a  testing 

function. It returns an iterator to access the result. Here is an example: 

a = [3, 2, 1, 6, 7, 0] 

f = filter(lambda x: x > 2, a) 

 

This code takes uses a lambda expression as the testing function. In this case, the function 

returns true if the value of x is greater than 2. This test is applied to each element in the iterable 

a. Only those elements that pass the test are included in the output iterable. If we print 

list(f) we get only the elements that are > 2: 

[3, 6, 7] 

 

We can use filter in a for loop, as you would expect. This loop uses filter to only print the 

non-empty strings: 

strings = ('red', '', 'green', '', 'blue') 

for s in filter(len, strings): 

    print(s) 

 

The strings list contains both empty and non-empty strings. we use filter to apply the built in 

len function. For those strings that are empty, len will return 0. Python treats 0 as False, so 

those strings will be filtered out. Here is the what the program prints: 

red 

green 

blue 

7.4 map 

The map function applies a supplied function to a set of arguments. It returns an iterator to 

access the results. 



7.4.1 map with one parameter 

In this example, we will use map with a user defined function that takes one parameter. We 

will use the square function from previous examples:  

def square(x): 

    return x*x 

 

a = [2, 5, 6] 

m = map(square, a) 

 

The map function applies square to each value element in a, returning the squared values 

via an iterator. If we convert m to a list and print it, we get: 

[4, 25, 36] 

7.4.2 Lazy evaluation 

This is perhaps a good time to revisit the idea of lazy evaluation. All the functions described 

so far use lazy evaluation. We will illustrate this by adding some extra print statements to our 

example above. 

def square(x): 

    print('Evaluating square', x) 

    return x*x 

 

a = [2, 5, 6] 

print('Calling map') 

m = map(square, a) 

print('Called map') 

 

print('Entering loop') 

for x in m: 

    print('Start of loop body') 

    print(x) 

 

Here is what this code prints out: 

Calling map 

Called map 

Entering loop 

Evaluating square 2 

Start of loop body 

4 

Evaluating square 5 

Start of loop body 

26 

Evaluating square 6 

Start of loop body 

36 

 



We have placed print statements before and after the call to the map function (Calling map 

and Called map). Notice that the square function doesn’t get called at all when we call map – if 

it did, we would see Evaluating square messages. All map does is to return an iterator, m, that 

will perform the calculations when we ask for each value. 

We then start the loop (Start of loop body message). Within the for loop, we ask m for the 

next value. At this point, the iterator calls square once only. square is called with a parameter 

equal to the first value in the input list a. That value is 2, so square prints the Evaluating 

square 2 message. The loop then prints the result of 2 squared, 4. 

We loop round again, and again we ask m for the next value. The iterator calls square once 

more. square is called with a parameter equal to the next value in the input list a. That value is 

5, so square prints the Evaluating square 5 message. The loop then prints the result of 2 

squared, 4. 

We then execute the third and final iteration o the for loop, with an input value of 6, printing 

the Evaluating square 6 message and the result, 36. 

7.4.3 map with more than one parameter 

We can use map with functions that take more than one parameter. We must supply map 

with extra iterable parameters, one for each argument that the applied function takes. 

For example, in the previous code, square takes one argument, so map requires two 

arguments (the function, and an iterable supplying a series of values for the function argument). 

In the next example,  add takes two argument, so map requires three arguments (the 

function, and two iterables supplying a series of values for the first and second arguments). 

Here is the sample code: 

import operator 

 

a = [20, 30, 40] 

b = range(3) 

m = map(operator.sub, a, b) 

 

This time we will use the operator.sub function. This is just a function version of the - 

operator, it takes two arguments x, y and returns x–y. We need to import the operator 

module to use sub. 

We need two iterables because operator.sub takes two arguments. a is a list, b is 

range(3), which of course provides a sequence 0, 1, 2. So map will calculate: 

sub(20, 0) 

sub(30, 1) 

sub(40, 2) 

 

The result, if we print list(m) is, as expected: 

[20, 29, 38] 



7.5 reversed 

reversed is a useful function that returns an iterator that reverses the order of the 

elements in the original sequence. For example: 

a = [2, 4, 6, 8] 

r = reversed(a) 

print(list(r)) 

 

Here r is an iterator that accesses the elements of a in reverse order. When we create a list 

from r, it contains: 

[8, 6, 4, 2] 

 

Note that reversed doesn’t work with all types of iterable. It only works on sequences (lists, 

tuples, strings etc). You can’t do this: 

a = [2, 5, 6] 

m = map(square, a) 

r = reversed(m) 

 

This is because m is not a sequence. You can fix this by converting m to a list or tuple before 

passing it to reversed: 

a = [2, 5, 6] 

m = map(square, a) 

r = reversed(list(m)) 

 

For more details on the sort of objects that support reversed, and how to make your own 

reversible objects, refer to the later chapter on functional programming with classes. 

7.5.1 Reversing a range 

You can use reversed with range it is quite useful for counting backwards. For example, 

to count down from 9 to 0 you would need to do this using just range: 

for i in range(9, -1, -1): 

    print(i) 

 

This is a little bit non-intuitive. Alternatively. you can just reverse a range that counts from 

0 to 9. The result is much clearer: 

for i in reversed(range(10)): 

    print(i) 

7.5.2 reverse 

Lists have a method reverse that does the same thing as reversed, but it operates in place 

on the list: 

k = [1, 3, 7] 

k.reverse() 

print(k)    # [7, 3, 1] 

 



This method doesn’t return anything, it just reverses the list itself. Don’t get reversed and 

reverse confused. 

7.6 sorted 

We met the sorted function briefly in the functions as objects chapter. Here it is again in a  

bit more detail. 

sorted isn’t quite like the other transforming functions. It will work on any iterable, but it 

doesn’t produce an iterator as output, instead it always creates a list. This doesn’t usually cause 

any problems, but it is worth knowing. 

It is interesting to compare sorted and reversed. They are both restricted, but in 

different ways: 

• reversed requires a sequence as input but creates a lazy iterator as output. This is 

because the first thing you need to output when you reverse a series is the last element. 

You can’t reverse a series unless you have random access to its elements, so a sequence is 

required as input. 

• sorted can accept a lazy iterator as input but creates a list as output. Python uses a 

sorting algorithm called Timsort, that is derived from a hybrid of merge sort and 

insertion sort. The algorithm can accept data element by element but requires random 

access to the output list to place element in the correct final position. 

7.6.1 Example – complex sort by month then year 

We covered the basic operation of sorted in an earlier chapter. We will give another, slightly 

more advanced, example here, a complex sort on dates. We want the dates to be sorted by 

month, but within each month group to be sorted by year. Here are our dates: 

dates = ['2019/04/06', 

         '2017/04/15', 

         '2019/03/21', 

         '2018/04/10', 

         '2019/04/08', 

         '2017/03/20', 

         '2018/06/30', 

         '2019/09/30', 

         '2018/04/11', 

         '2017/03/14'] 

 

If we simply sort this list, we will get the dates in ascending order (that is because we are 

using a year/month/day format): 

sorted_dates = sorted(dates) 

 

  



Giving: 

2017/03/14 

2017/03/20 

2017/04/15 

2018/04/10 

2018/04/11 

2018/06/30 

2019/03/21 

2019/04/06 

2019/04/08 

2019/09/30 

 

Now what if we wanted to sort this sorted list again, but just using the month field? You may 

recall that sorted accepts a key parameter that is a function. The function converts an item 

value (a date in this case) to a key that can be used to sort the list. We want to sort by month, so 

we need to convert a date value '2019/04/06' into a month value '04'. This can be done 

using a slice. Here is the sorted call with its key function (we have used a lambda): 

sorted_by_month = sorted(sorted_dates, key=lambda x: x[5:7]) 

 

Giving: 

2017/03/20 

2017/03/14 

2019/03/21 

2017/04/15 

2018/04/10 

2018/04/11 

2019/04/06 

2019/04/08 

2018/06/30 

2019/09/30 

 

The important thing here is that sorted is stable. This means that when we sort by month, 

all the entries that have the same month retain their original order relative to each other. So, 

you will see that the dates are primarily grouped by month, but within each group of same 

month items they are sorted by year. 

To produce a list that is primarily grouped by month, and then sorted by date within each 

group, we must sort first by date and them by month. 

7.6.2 Some utility key functions 

Suppose we have the following list of people’s details, stored as a list of tuples: 

people = [('John', 'Brown', 25), 

          ('Anne', 'Smith', 33), 

          ('Mary', 'Jones', 41), 

          ('Peter', 'Cooper', 28)] 

 



We would like to sort them by their second names. That isn’t difficult, we can just use a 

lambda function at the key, to extract the second element, like this: 

sorted_by_surname = sorted(people, key=lambda x: x[1]) 

 

There is nothing wrong with this, but if you read the code you need to take a look at the 

lambda function to understand it. A lambda could be doing anything, but in this case all it is 

doing is getting the second item from a tuple. 

As it happens, the operator module has a function, itemgetter, to help with this. We 

have met this module before it includes function equivalents for the standard operators. For 

example, the add function can be used in place of the + operator. The itemgetter function 

can be used in place of list indexing (the [] operator). 

It is used like this: 

from operator import itemgetter 

 

sorted_by_surname = sorted(people, key=itemgetter(1)) 

 

This is better than before because it is more declarative. Instead of defining a lambda 

function to get an item, you are using the standard itemgetter function to do it. 

It is worth noting that itemgetter isn’t quite as simple as it seems. The key parameter 

requires a function as its value. 

itemgetter(1) doesn’t get the second element from a sequence. It returns a function that 

gets the second element from any sequence you pass to it. It acts rather like a closure: 

f = itemgetter(1) 

t = ('Anne', 'Smith', 33) 

s = f(t)  # 'Smith' 

 

This is exactly what we need, of course, because sorted is going to apply this function 

multiple times to get the second element from every item in the list. 

For objects with named attributes, the attrgetter function does a similar job, except that 

it takes a string (the attribute name) rather than an integer. 

Another useful operator function is methodcaller. This returns a function that calls a 

particular method on any object you pass to it. Let’s see how this works. 

Here is an example of trying to sort some strings: 

fruits = ['Banana', 'apple', 'Apricot', 'Clementine', 

          'avocado'] 

sorted_names = sorted(fruits) 

 

This doesn’t do quite what you might want. The problem is, the default string sort is case 

sensitive. All uppercase Latin letters come before all lowercase ones. So, Banana would come 

before apple. 

  



To fix this we need to use a lowercase version of the string as the key. We need to call each 

string’s lower method to generate a sort key. We could do this with a lambda as before: 

sorted_names = sorted(fruits, key=lambda x: x.lower())) 

 

This fixes the problem, but a better method is this: 

from operator import methodcaller 

  

sorted_names = sorted(fruits, key=methodcaller('lower')) 

 

Again, methodcaller creates a function. This new function calls the lower method of any 

object you pass to it: 

f = methodcaller('lower') 

s = f('Banana')  # 'banana' equivalent to 'Banana'.lower() 

7.6.3 Reversing the sort order 

You can reverse the sort order using the optional reverse parameter, which should be set 

to True to reverse the sort. This is particularly useful is you are relying on the natural Python 

sorting order. For example, form our earlier date sorting example, we could sort the dates in 

descending order like this: 

sorted_dates = sorted(dates, reverse=True) 

 

This would sort the dates from the most recent to the oldest. 

7.6.4 sort 

Lists have a method sort that does the same thing as sorted, but it operates in place on 

the list: 

k = [1, 7, 2, 4, 1] 

k.sort() 

print(k)    # [1, 1, 2, 4, 7] 

 

This method doesn’t return anything, it just sorts the list itself. 

sort has the same optional parameters, key and reverse, that sorted has. They work in 

exactly the same way. 

7.7 Combining functions 

It is often useful to combine these functions, often in a single expression. Here are some 

examples. 

  



7.7.1 map and filter 

map and filter work well together. Here is an example where we are using map to take the 

square root of a series of numbers. Since the square root function doesn’t accept negative input, 

we use filter to remove any negative values first. Here is the code: 

import math 

 

k = [1, 4, -2, 16, -3, 36, -1] 

 

f = filter(lambda x: x>=0, k) 

m = map(math.sqrt, f) 

 

print(list(m)) #[1.0, 2.0, 4.0, 6.0] 

 

Of course, the output data has less elements than the input data because some negative 

values have been filtered out. We have shown the map and filter as two separate lines of code, 

but it would be quite normal to combine them like this: 

m = map(math.sqrt, filter(lambda x: x>=0, k)) 

7.7.2 Pipelines 

We looked at lazy evaluation earlier in this chapter. When we chain two or more functions 

that use lazy evaluation, we create a pipeline. In this section we will see how this works. 

We are going to use map and filter again, but this time using a couple of user defined 

functions whose main job is to print something out so we can tell when each function gets 

executed. Here is the same function: 

def same(s): 

    print('Same', s) 

    return s 

 

The same function just prints a message and returns the same value it received. And here is 

the not_empty function: 

def not_empty(s): 

    if s: 

        print('True', s) 

        return True 

    else: 

        print('False') 

        return False 

 

This function returns True if the string is not empty, False otherwise. It also prints what it 

has done. Now here is the main loop: 

k = ['a', '', 'b', ''] 

m = map(same, filter(not_empty, k)) 

print('Start') 

for s in m: 

    print('In loop', s) 



 

And here is what it prints: 

Start 

True a 

Same a 

In loop a 

False 

True b 

Same b 

In loop b 

False 

 

Let’s look at this step by step. We first create our map expression: 

m = map(same, filter(not_empty, k)) 

 

This line doesn’t print anything – we know this, because Start is the first thing printed. It 

doesn’t call not_empty or same. It just sets up a pipeline of iterators: 

 

The first iteration of the loop prints this: 

True a 

Same a 

In loop a 

 

Here is how it works. First a set of requests go down the pipeline: 

1. The loop requests a value from the map iterator. 

2. The map iterator requests a value from the filter iterator. 

3. The filter iterator requests a value from the list iterator. 

  



Here it is as a diagram: 

 

Next, the responses get sent back up the pipeline. This is when our functions actually get 

called: 

1. The list iterator passes the value 'a' back to the filter iterator. 

2. The filter iterator passes the value 'a' to the not_empty function, which prints 

'True a' because the string a is not empty. 

3. The filter iterator passes the value 'a' is passed back to the map iterator. 

4. The map iterator passes the value 'a' to the same function, which prints 'Same a'. 

5. The map iterator passes the value 'a' is passed back to the loop iterator. 

At this point, the loop prints 'In loop a'. Here is this as a diagram: 

 

The second iteration of the loop prints this: 

False 

True b 

Same b 

In loop b 

 

This is very similar to the first iteration, except that when the filter iterator requests a value 

from the list iterator, it gets an empty string (the second value in k). This means that the 

not_empty function prints 'False' and returns False. 

Now the whole point of the filter step is to filter out the cases when not_empty returns 

False. So, the filter doesn’t pass this value back to the map iterator, instead it throws it away. 

Then it requests the next value from the list iterator, which is a 'b' this time, so it gets passed 

back up the pipeline as before. 

In the final attempt of the loop, filter gets the last item from the list iterator, which happens 

to be another empty string. It discards this, the loop iterator throws a StopIteration 

exception, and the for loop ends. 



7.7.3 map and zip 

Here is some code that uses map to format the names data from the previous zip example: 

def format_person(first, last, age): 

    return '{}, {} - age {}'.format(last, first, age) 

 

first = ('John', 'Anne', 'Mary', 'Peter') 

last = ('Brown', 'Smith', 'Jones', 'Cooper') 

age = (25, 33, 41, 28) 

 

m = map(format_person, first, last, age) 

 

list(map(print, m)) # Prints the result 

 

Here is the output you would get: 

Brown, John - age 25 

Smith, Anne - age 33 

Jones, Mary - age 41 

Cooper, Peter - age 28 

 

Incidentally, we can use map to print the list, as shown in the example. It is neater than a loop 

but note that you need realise the map output (for example by converting it to a list) otherwise 

print will never get called. 

But suppose the data wasn’t in quite the correct format. Suppose you had a list of person 

records: 

people = [('John', 'Brown', 25), 

          ('Anne', 'Smith', 33), 

          ('Mary', 'Jones', 41), 

          ('Peter', 'Cooper', 28)] 

 

In order to map these, we need to unzip them. As we saw, we can use zip to unzip data, it is 

self-reversing. So, we just need to change our map call to this: 

m = map(format_person, *zip(*people)) 

 

Why do we need *zip(*people)? Well firstly, people is a list, but zip needs a set of 

separate arguments, so we must unpack people so zip can use it. And secondly, zip returns 

an iterator, but map needs a set of separate arguments, so we must unpack zip so map can use 

it. 

 



7.8 Summary 

In this chapter we have learned about the built-in functions that Python provides to 

transform iterables. 

We have seen how enumerate, zip, filter and map provide lazy evaluation. 

We have also seen how to combine these functions in different ways, and how the resulting 

lazy pipeline doesn’t access elements of the original iterable until they are needed. 

There are some additional functions on iterables in the itertools library, discussed in the 

chapter Useful libraries. 

 

 

  



8 Reducing iterables 

In the earlier chapter Iterators, we divided the built-in iterator functions into groups – 

transforming, reducing, converting and primitives. In this chapter we will cover the reducing 

functions. 

A reducing function takes all the values from an iterable and reduces them to a single 

representative value. For example, sum adds all the values in an iterable and returns the total 

value. 

8.1 len 

len should be very familiar. It simply returns the length of the item – the number of 

elements if it is a list or tuple, the number of characters if it is a string: 

len([1, 2, 30])   # 3 

len('uvwxyz')     # 6 

 

len doesn’t work with lazy iterables (such as the output of map or filter). You can 

convert a lazy iterable to as list and apply len to the result. Alternatively, you can use one of the 

methods described in the section on the map reduce pattern, later in this chapter. 

8.2 sum 

sum accepts an iterable and returns its sum – the result of combining all its elements using 

the + operator. For example: 

a = [2, 5, 7, 1] 

print(sum(a))  # 15 

 

You can supply an optional start value to sum. It will just get added to the total: 

a = [2, 5, 7, 1] 

print(sum(a, -3))  # 12 

 

sum will also work with sequences such as lists. However, the code below won’t quite work: 

a = [[2, 4], [0, 0], [5, 3]] 

print(sum(a)) # ERROR 

 

You will get a cryptic error message about unsupported operand types. The problem is that 

sum has a default start value of 0, so the code above will effectively be trying to calculate: 

0 + [2, 4] + [0, 0] + [5, 3] 

 

This is invalid because you can’t add a list and an integer. The solution is to add an empty list 

as the start value, so sum calculates this instead: 

[] + [2, 4] + [0, 0] + [5, 3] 

 

  



This is now a valid calculation. Your code will look like this: 

a = [[2, 4], [0, 0], [5, 3]] 

print(sum(a, [])) # [2, 4, 0, 0, 5, 3] 

 

An alternative way to join iterables is the itertools.chain, covered in the chapter on 

itertools. It is often more efficient. 

Note thing to note is that sum does not work with strings. Python deliberately prevents this 

because it is terribly inefficient to add a set of strings together using add. It is far better to use 

join to concatenate strings, like this: 

a = ['abc', 'pqr', 'xyz'] 

s = ''.join(a) 

8.3 min 

min accepts an iterable and returns the minimum value from the iterable. For example: 

a = [2, 5, 7, 1] 

print(min(a))  # 1 

 

The iterable can contain items of any type, provided they can be compared with each other. 

For example, it can contain strings, or lists, which will be compared in the standard way. Here is 

an example with lists: 

a = [[1, 2, 3], [1, 1, 5], [6, 7, 8], [1, 1, 5]] 

print(min(a))  # [1, 1, 5] 

 

Lists are compared element by element, so [1, 1, 5] is less than [1, 2, 3]. You might 

also notice that there are two lists with the value [1, 1, 5]. That is two different object that 

happen to have the same value. min will always return the first object in that case. 

8.3.1 default argument 

If you call min on an empty iterable, you will get a ValueError exception. You can avoid 

that using the default argument. This is a keyword only argument, that is used like this: 

a = [] 

print(min(a, default=0))  # 0 

 

Since the list is empty, min returns the default value 0. This value is only used in the iterable 

is empty, so for example: 

a = [2, 5, 7, 1] 

print(min(a, default=0))  # 1 

 

Even though the default value is less than 1, min returns 1 as that is the smallest item in the 

list. 



8.3.2 key argument 

min has an optional argument key that can be used to modify the comparison order. It is a 

keyword only argument and works in the same way as the sorted function. Here is a simple 

example using a lambda function that returns the third element of the item: 

a = a = [[1, 2, 3], [1, 1, 5], [6, 7, 8], [1, 1, 5]] 

print(min(a, key=lambda x: x[2]))  # [1, 2, 3] 

 

Since we are now comparing the third element, x[2], the list [1, 2, 3] is the smallest. 

See the description of sorted for more details. 

8.4 max 

max works in a very similar way to min, except that it returns the maximum value form an 

iterable. 

8.5 any 

any accepts an iterable. It will return True if any of the elements have a true value. It will 

return False if none of the elements have a true value, or if the iterable is empty: 

print(any([1, 0, 2]))      #1 

print(any(['a', '', 'z'])) #2 

print(any([0, '', False])) #3 

print(any([]))             #4 

 

1. True because values 1 and 2 count as true 

2. True because 'a' and 'z' count as true 

3. False because 0, '' and False count as false 

4. False because the iterable [] is empty 

8.6 all 

all accepts an iterable. It will return True if all of the elements have a true value. It will 

return False if any of the elements have a false value. Unlike any, all will return True if the 

iterable is empty: 

print(all([1, 0, 2]))      #1 

print(all(['a', '', 'z'])) #2 

print(all([1, 'a', True])) #3 

print(all([]))             #4 

 

5. False because value 0 counts as false 

6. False because '' counts as false 

7. True because 1, 'a' and True count as true 

8. True because the iterable [] is empty 

8.7 functools reduce 

If the reduce functions above don’t meet your needs, you can create your own using the 

reduce function. 



This function lets you define your own behaviour. For example, suppose we wanted to 

reduce a list by multiplying the elements. We can do this: 

import functools, operator 

 

a = [2, 3, 5, 2] 

print(functools.reduce(operator.mul, a)) # 60 

 

Remember that operator.mul is a function equivalent of the multiply operator *. This 

performs the equivalent of: 

(((2 * 3) * 5) * 2) 

 

reduce accepts a function and an iterable. The function you supply must take two 

parameters. reduce works like this: 

1. Get the first and second values from the iterable and combine them using the function. 
2. Get the next value from the iterable. Combine the previous result with the new value 

using the function. 

3. Repeat 2 for all items in the iterable. 

8.7.1 Initial value 

reduce accepts and optional third argument, initializer. This provides an initial value 

when reduce first starts: 

a = [2, 3, 5, 2] 

print(functools.reduce(lambda x, y: x*y, a, 10)) # 600 

 

In this case we have an initializer of 10, so the calculation is: 

((((10 *2) * 3) * 5) * 2) 

 

giving 600. Adding an initializer is similar to adding an extra value at the start of the 

input iterator. 

8.7.2 Special cases 

With no initialiser: 

• If the iterable is empty, reduce will throw a TypeError. 

• If the iterable only has one element, reduce will return that element. 

With an initialiser: 

• If the iterable is empty, reduce will return the value of the initializer. 

• If the iterable only has one element, reduce will return the value of the initializer 

combined with the element. 

8.8 The map-reduce pattern 

The map-reduce pattern is a way of processing large data sets in a way that can be 

distributed amongst many computers. 



The basic idea is to start by processing data elements individually, and finally combine them 

to give the required result. 

To give a simple example, suppose we wanted to calculate the average word length of the 

words in a block of text: 

The joy of coding Python should be in seeing short, concise, readable classes that express a lot of 

action in a small amount of clear code -- not in reams of trivial code that bores the reader to death. 

We can break this task down into two steps: 

• Count the number of letters in each word. 

• Sum the total number letters in all the words. 

Dividing the sum by the number of words will give us our result, the average word length. 

Here is a list of our words, with punctuation removed: 

strings = ['the', 'joy', 'of', 'coding', 'Python', 'should', 

           'be', 'in', 'seeing', 'short', 'concise', 

           'readable', 'classes', 'that', 'express', 'a', 

           'lot', 'of', 'action', 'in', 'a', 'small', 'amount', 

           'of', 'clear', 'code', 'not', 'in', 'reams', 'of', 

           'trivial', 'code', 'that', 'bores', 'the', 'reader', 

           'to', 'death'] 

 

Counting the number of letters in each word is fairly easy – we just map the len function 

onto the list of strings: 

lengths = map(len, strings) 

 

lengths is now an iterator that stream the lengths of the individual words. We could print 

this using: 

print(list(lengths)) 

 

Not forgetting to convert the iterator to a list so we can print its values. This will give us: 

[3, 3, 2, 6, 6, 6, 2, 2, 6, 5, 7, 8, 7, 4, 7, 1, 3, 2, 6, 2, 1, 
5, 6, 2, 5, 4, 3, 2, 5, 2, 7, 4, 4, 5, 3, 6, 2, 5] 

 

Now we need to calculate the average length of each word – this is simply the sum of the 

lengths of all the words, divided by the number of words: 

average = sum(lengths)/len(strings) 

 

So, we can calculate the average word length of a list of strings using two fairly simple and 

obvious lines of code: 

lengths = map(len, strings) 

average = sum(lengths)/len(strings) 

 

  



If we really wanted, we could even get this down to one line. How readable it is depends on 

how familiar you are with reading functional code, but the following probably isn’t excessively 

complex: 

average = sum(map(len, strings))/len(strings) 

8.8.1 Ignoring short words 

As a further example, let’s try the same thing, but we will take the average of all the words 

excluding ‘a’ and ‘the’. We can do this by filtering strings like this: 

filter(lambda x : x not in ('a', 'the'), strings) 

 

This will return an iterable of all the strings in strings that are not ‘a’ or ‘the’. We can 

calculate the average of the list in a similar way to before using the filtered list: 

s = filter(lambda x : x not in ('a', 'the'), strings) 

average = sum(map(len, s))/len(s)   # ERROR 

 

But there is a problem. We can’t find the len of s because s is an iterator. Iterators don’t 

support the len function. A quick fix, though not really part of the functional programming 

paradigm, is to convert the filtered words to a list. Here is the complete, working code: 

s = list(filter(lambda x : x not in ('a', 'the'), strings)) 

average = sum(map(len, s))/len(s) 

8.8.2 A more FP solution 

The solution above has a minor problem in that it is necessary to store the entire list of 

values in memory before calculating the average. This is not usually a problem, in fact if we 

weren’t concentrating of functional programming, we probably wouldn’t give it a second 

thought. 

But suppose we wanted to find the average word length of all the pages on Wikipedia? At the 

time of writing, a typical PC would struggle to hold the full contents in memory at one time. 

How could we modify our code to work with any number of words, with limited memory? 

The obvious solution would be to count the number of words as we sum them. We could 

create our own reducing function: 

def sumcount(it): 

    sum = 0; 

    count = 0; 

    for x in it: 

        sum += x 

        count += 1 

    return sum, count 

 

  



This function behaves a lot like the standard sum function, but it also counts the number of 

elements as it goes. At the end it returns a tuple of the sum of all the elements and the number of 

elements. We could use this to calculate the average like this: 

s = filter(lambda x : x not in ('a', 'the'), strings) 

total, count = sumcount(map(len, s)) 

average = total/count 

 

This solution calculates the average without having to store a copy of all the words. If we 

were really trying to process the whole of Wikipedia, of course, we would not use the strings 

list to store all the words. We would create some kind of iterator that fetched the words from 

the web, one at a time. 

This is a reasonable solution, the main code is pure functional code. The sumcount function 

uses a loop, which isn’t ideal, but it is quite hidden away. 

8.8.3 Using enumerate and reduce 

We could improve things further by getting rid of that pesky loop. What we need to do is sum 

the values and count them at the same time. Maybe the enumerate function could help. We can 

enumerate the output of map: 

s = filter(lambda x : x not in ('a', 'the'), strings) 

m = map(len, s) 

e = enumerate(m, 1) 

 

The second parameter in enumerate function is the start value. It will start counting from 1 

rather than 0. The iterator e gives the following values: 

(1, 3), (2, 2), (3, 6), (4, 6), (5, 6)... 

 

The first element of each tuple is the word count so far. The second element is the length of 

the current word. What we really need to do is reduce this sequence in such a way that the word 

count is maintained (we just keep the most recent version) but the lengths are summed. 

We can use functools.reduce to do this. Here is how we would use reduce to simulate 

the sum function: 

functools.reduce(operator.add, m)   # same as sum(m) 

 

But we are going to accumulate a series of tuples, so we need an alternative to the add 

function. Here it is: 

def opsumcount(a, b): 

    return(b[0], a[1] + b[1]) 

 

  



This function accepts two tuples, a and b. It returns a tuple. The first element of the return 

tuple if the most recent word count b[0]. The second element is the accumulated sum of word 

lengths a[1] + b[1]. Here is the complete solution, without a loop or stored list in sight: 

import functools 

 

def opsumcount(a, b): 

    return(b[0], a[1] + b[1]) 

 

s = filter(lambda x : x not in ('a', 'the'), strings) 

m = map(len, s) 

length, total = functools.reduce(opsumcount, enumerate(m, 1)) 

average = total/length 

print(average) 

8.9 Summary 

In this chapter we have looked at the various standard Python functions that reduce iterables 

(converting and iterable to a single representative value). 

We also looked at the general purpose functools reduce function, that can be used to create 

our own specialised reducing functions. 

Finally, we looked at an example of using the map-reduce pattern to analyse text, using 

several functional programming techniques. 

 

  



9 Comprehensions 

It is often useful to create a list with particular content, perhaps based on another list or 

iterable. It is possible to do this using a loop, or perhaps a map function. 

List comprehensions provide an alternative that is more declarative than a loop and often 

clearer than using a map function. 

In addition to list comprehensions, there are similar techniques for generating lazy iterators 

(generator comprehensions), sets and dictionaries, which we will also cover in this chapter. 

9.1 List comprehensions 

To start with a simple example, suppose we wanted to create a list, length 100, filled with the 

strings ‘0’ to ‘99’. There are several ways to do this. We could use a loop: 

a = [] 

for i in range(100): 

    a.append(str(i)) 

 

We could use map: 

a = list(map(str, range(100))) 

 

Now here is the list comprehension version: 

a = [str(i) for i in range(100)] 

 

In every case we get the same result, a list of 100 strings: 

['0', '1', '2' ... '98', '99'] 

 

None of these solutions is terrible. The first solution is the most verbose and the least 

declarative. What do we mean by that? It is a loop that just happens to be building up a list 

according to a simple pattern. But since it is a loop, it could be doing anything. The code is in an 

imperative style, it doesn’t just tell Python what sort of list you need, it tells Python exactly how 

to create the list. 

Imperative code is more flexible, but that can be a disadvantage when you only need to do 

something simple and boring. You have to double check the code to make sure it isn’t doing 

something more complicated than you think. 

The map case is more declarative in style. It says that you want to map the str function onto 

the numbers 0 to 99, and make a list out of the result. These are all standard Python 

functions, applied in a standard way. In this particular case, there isn’t much to fault this 

solution. 

The final example uses a list comprehension. My personal opinion is that it is slightly 

preferable to the map example, but only slightly. List comprehensions exist for the specific 

purpose of creating a list from another iterable, so when you see that syntax you know exactly 

what the code is doing. 



The best way to understand a list comprehension is probably to read it as an English 

sentence: 

make a list of str(i) for all values of i in range(100) 

 

Here is a different example. We want to take a list of numbers and create a new list where the 

numbers have been rounded to the nearest 5. Here is how we could do this in a loop. Notice that 

to round to the nearest 5, we divide by 5, round to the nearest whole number, then multiply by 

5: 

k = [12, 33, 49, 57] 

a = [] 

for x in k: 

    a.append(round(x/5)*5) 

 

Using map, it is: 

k = [12, 33, 49, 57] 

a = list(map(lambda x: round(x/5)*5, k)) 

 

And as a list comprehension: 

k = [12, 33, 49, 57] 

a = [round(x/5)*5 for x in k] 

 

In this case, the list comprehension benefits from not having to use a lambda function, which 

makes it marginally less complex. 

9.2 Using conditions 

Now imagine you wanted to find the square root of every value in a list, but you wanted to 

ignore any negative values, so that they don’t even appear in the output list. Here is how you 

might do it with a loop: 

k = [-1, 16, 9, -4, 0, 25] 

a = [] 

for x in k: 

    if x>=0: 

        a.append(math.sqrt(x)) 

 

You will also need to import math at the start of all these examples, of course. The result will 

be: 

[4.0, 3.0, 0.0, 5.0] 

 

There are 6 values in the input list k, but only 4 in the output list a, as you would expect 

because the 2 negative values are excluded. 

Here is the equivalent functionality using map. We use filter to remove the negative 

values before we take the square root: 

a = list(map(math.sqrt, filter(lambda x: x>=0, k))) 

 



Finally, here is the list comprehension version: 

a = [math.sqrt(x) for x in k if x>=0] 

 

It is a matter of preference to some extent, but this solution seems more readable than the 

map example. If you are having difficulty reading this list comprehension, try this: 

make a list of sqrt(x) for all values of x in k, 

but only if x>=0 

9.3 Nested comprehensions 

You can create nested list comprehensions. In fact, there are a couple of ways to do it. 

9.3.1 Creating a 2D list 

Possibly the easiest example of a nested list comprehension is to nest one comprehension 

inside another. For example: 

[[x for x in range(3)] for y in range(4)] 

 

We know that: 

[x for x in range(3)] 

 

Gives [0, 1, 2]. So, we are really calculating: 

[[0, 1, 2] for y in range(4)] 

 

Which, of course, evaluates to: 

[[0, 1, 2], 

 [0, 1, 2], 

 [0, 1, 2], 

 [0, 1, 2]] 

 

We are simply creating an outer list of 4 elements where each of those elements is a list of 3 

elements. 

We could extend this by making the output element depend on x and y: 

[[x + 10*y for x in range(3)] for y in range(4)] 

 

In this case, the inner array is going to be different every time. It will be equal to: 

[10*y, 1+10*y, 2+10*y] 

 

Where y is the row number. This gives a final output of: 

[[0, 1, 2], 

 [10, 11, 12], 

 [20, 21, 22], 

 [30, 31, 32]] 

 

  



It is worth looking at how this might be implemented as a for loop: 

outer = [] 

for y in range(4): 

    inner = [] 

    for x in range(3): 

        inner.append(x+10*y) 

    outer.append(inner) 

 

The final result in this case is outer.  

Another thing that you can see from the expanded code is that the range of x can depend on 

y. For example, we could do: 

a =[[x + 10*y for x in range(y)] for y in range(4)] 

 

Which gives us: 

[[], 

 [10], 

 [20, 21], 

 [30, 31, 32]] 

9.3.2 Creating a  flat list 

This code does something different: 

[x + 10*y for x in range(3) for y in range(4)] 

 

Clearly, we are only creating one flat list here, rather than a list of lists (there is only one [] 

pair). But we are still looping over y from 0 to 3, and for each y we are looping over x from 0 to 

2. Here is what we get: 

[0, 10, 20, 30, 1, 11, 21, 31, 2, 12, 22, 32] 

 

It is the same numbers as before, but all in one list. For comparison, here is the equivalent for 

loop code: 

outer = [] 

for x in range(3): 

    for y in range(4): 

        outer.append(x+10*y) 

 

Notice that the leftmost loop in the comprehension corresponds to the outer loop in the for 

loop version. This might seem to contradict the previous example, but in that example we had 

two separate list comprehensions, one inside the other. 

9.4 Summary 

List comprehensions provide a simple, idiomatic way to create a list based on an existing 

iterable, such as a range, another list, or any other iterable. 

The list comprehension allows a conditional filter to be applied, then calculates an 

expression based on the original sequence. 



Although a list comprehension is procedural in style, it has limitations in the processing that 

can be applied, which make it far more declarative than an equivalent for loop. 

In a later chapter we will meet generator comprehensions, which are similar to list 

comprehensions, but create a lazy iterator rather than a list as output. 

  



10 Generators 

We saw in the chapter on iterators that it is possible to create your own iterator, by defining 

a class with a couple of specific methods. That method works fine, but it involves a fair bit of 

boilerplate code, and required the logic of the iterator to be written in an inside-out style. 

Generators provide a simple method of implementing many types of iterator, using a simple 

syntax and often a more intuitive software flow. 

10.1 Example – alphabet iterator 

In the iterators chapter we  developed an iterator that simply returns the letters of the 

alphabet, one by one, and then stopped. In fact, we only returned the letters a to e. Here is the 

equivalent as a generator: 

def alphabet(): 

    for c in 'abcde': 

        yield c 

 

for x in alphabet(): 

    print(x) 

 

alphabet looks like a normal function, but actually it is a generator. The way to tell is that it 

has a yield statement instead of a return statement. 

Within a for loop, alphabet is used in a similar way to range. If you used range(5) it 

would loop through the values 0 to 4. alphabet does something similar, but it loops through 

the characters a to e. 

This generator is only for illustration. The loop would work perfectly well if you just use the 

string 'abcde' in place of the alphabet call. 

10.2 How a generator works 

To understand how the generator works, we will open out the for loop like this: 

def alphabet(): 

    for c in 'abcde': 

        yield c 

 

g = alphabet() 

 

x = next(g) 

print(x) 

 

x = next(g) 

print(x) 

 

First, we call alphabet. Unlike a regular function, a generator returns a generator 

object that gets stored in g. The key thing here is that alphabet contains a yield statement 



rather than a return. That is the thing that differentiates it from a normal function. Python 

knows to create a generator instead, 

The generator object acts like an iterator. When we call next on it, it responds with the 

first value in the sequence, 'a'. If we call next again it responds with the next value, 'b'. And 

so on. 

What is actually happening here? The first thing to realise is that the code in the body of the 

generator is not executed when you call alphabet(). In true iterator style, a generator uses 

lazy evaluation. It does nothing until you actually request a value. 

The first time you call next, Python starts to execute the code in alphabet. It starts the for 

loop, entering the loop for the first time with the initial vale of c equal to 'a'. Then it 

encounters the yield statement. 

This causes Python to stop executing the alphabet code and return the value of c to the 

main calling code. But here is the critical thing – yield stores the exact state of the alphabet 

code before it exits. 

Now the main code runs print(x) to print the value 'a'. It then calls next again. But this 

time, instead of starting back at the beginning of the alphabet code, it jumps back into the 

code straight after the previous yield statement. The state is restored to the exact state it was 

when the yield statement executed. 

alphabet loops back round for the next iteration of the for loop. This time it picks up the 

second character from the string, a 'b' character. This get returned on the next yield. 

This continues each time the main loop calls next. Eventually, the loop in the alphabet 

code is exhausted. Instead of calling yield, the alphabet code reaches the end. The 

generator object will throw a StopIteration error at that point, to notify the calling code 

that the iteration is complete. 

As you can see, execution passes backwards and forwards between the calling code and the 

alphabet code. Generators are sometimes called co-routines for that reason. This contrasts 

with a normal function, which is sometimes called a subroutine. In a subroutine, the calling code 

passes entire control to the subroutine until it is finished. With a co-routine, control passes to 

and fro. 

Don’t get this confused with multithreading. In multithreading, two different sets of code can 

run at the same time (either on different cores or by time sharing one core). With co-routines 

there is only one thread of execution that just swaps between two different code paths in a 

totally predictable way. 

  



10.3 Example – Fibonacci iterator 

We also implemented a Fibonacci series iterator in the iterators chapter, so not of interest 

we will re-implement it here as a generator: 

def fibonacci(): 

    c = 0 

    n = 1 

    while True: 

        yield c 

        c, n = n, c + n 

 

for i in fibonacci(): 

    print(i) 

    if i > 100: 

        break 

 

Since this generator produces an infinite sequence, so the generator loop use a while True 

loop rather than a for loop. 

10.4 Chaining iterators 

Now we will do something more useful. We will chain two iterators together, so that you get 

a single iterator that returns al the values of one iterator followed by all the values another 

iterator. 

First, we will look at an identity generator. This provides a way to iterate over an existing 

iterator. Not very useful in itself (you could just iterate over the original iterator directly) but it 

is a step on the way. 

def identity(it): 

    for x in it: 

        yield x 

 

for i in identity(range(4)): 

    print(i) 

 

All identity does is iterate over it, yielding each value. Since range(4) creates the series 

0, 1, 2, 3, our identity generator creates exactly the same series. 

Chaining two iterators simply involves performing the identity operation on the first iterator, 

then doing the same this with the second iterator. This is quite easy in a generator: 

def chain2(it1, it2): 

    for x in it1: 

        yield x 

    for x in it2: 

        yield x 

 

for i in chain2(range(4), reversed(range(3))): 

    print(i) 

 



Here we are chaining range(4) – 0, 1, 2, 3 – and the reverse of range(3) – 2, 1, 0. This 

creates a single iterator that produces the series 0, 1, 2, 3, 2, 1, 0. 

This code would be quite a lot more complicated using an iterable object, but it is quite 

simple and obvious using generators. But also, be aware that there is an existing chain 

function in the itertools library, covered in a later chapter. 

10.5 Generator comprehensions 

A generator comprehension is similar to a list comprehension, which we met in an earlier 

chapter. The difference is that a generator comprehension uses lazy evaluation, which often 

uses less memory, and allows infinite iterators to be processed. 

Converting a list comprehension to a generator comprehension is a simple matter of 

replacing the surrounding square brackets with round brackets. For example (from the list 

comprehension chapter) this code creates a list of strings '0', '1', '2'etc: 

a = [str(i) for i in range(100)] 

 

If you only need an iterator, not an actual list, you can do this: 

g = (str(i) for i in range(100)) 

 

g is a generator object than delivers the series of values '0', '1', '2'etc. Unlike the list 

comprehension, these 100 values are not created in memory, which can be important if you are 

using much longer series. 

10.5.1 map variants 

An advantage of generator comprehensions is that they can directly replace standard 

functions like map, useful if you want a slight variant. Here is a comprehension equivalent of a 

simple one parameter map of function fn over iterable it: 

map(fn, it) 

(fn(x) for x in it) 

 

In this instance, map is probably the better option. But if you wanted to map fn(x)+1 it 

looks different: 

map(lambda x: fn(x)+1, it) 

(fn(x)+1 for x in it) 

 

It is often a matter of personal taste, and, whichever you choose it is usually better to use a 

consistent approach. 

10.5.2 filter-map variants 

In a similar way you can replace a filter, or filter-map combination, with a 

comprehension: 

map(fn filter(cmp, it)) 

(fn(x) for x in it if cmp(x)) 

 



Once again, if the function or comparison are slightly more complex, the comprehension has 

the advantage that you can just use normal expressions rather than using lambda functions. 

You can also sometimes do special filtering operations, for example, this filter selects every 

second element from the incoming iterator: 

(x for i, x in enumerate(it) if i%2==0) 

 

This uses enumerate to get a count, i, for each element and only returns elements where i 

is even (i modulo 2 is zero). 

To summarise, if you find yourself using a list comprehension but you don’t need an actual 

list, consider using a generator comprehension to save memory. But  if you can use standard 

functions like map or filter instead, that will usually be the better option. 

10.6 Summary 

Generators are essentially a simple and convenient way to create your own custom iterators. 

As such they share all the benefits of iterators – lazy evaluation, pipelined processing and 

avoiding excessive memory usage in many types of process. 

For simple iterators, generator comprehensions provide the benefits of iteration in the same 

one-line format as a list comprehension. Generator comprehensions should usually be preferred 

over list comprehensions in most cases, unless you specifically require a list as the end result. 

  



11 Partial application and currying 

This is the first of two chapters that will cover some additional techniques used in functional 

programming. 

In this chapter we will revisit closures and composition, and also look at partial application 

and currying. These are all ways to create a new function from an existing function. 

In the next chapter we will look at functors and monads. In addition, we will look at some 

functions offered by the PyMonad library that can do a lot if the work for you. 

11.1 Closures 

We have looked at closures quite extensively, with a whole chapter devoted to them, so all 

we will do here is a quick recap. 

A closure occurs when: 

• A function includes an inner function 

• The outer function returns the inner function 

• The inner function references some variables within the scope of the outer function. 

In the case the returned inner function is called a closure. It can still access the values defined 

within the scope of the outer function, even though the outer function itself is no longer active. 

11.2 Partial application 

Partial application is a way of creating a new function based on an existing function but with 

some of the parameters already filled in with a chosen value. 

For example, here is a closure based that creates partial applications of the standard function 

max: 

def maxn(n): 

    def f(x): 

        return max(n, x) 

    return f 

 

Now, for example, if we call maxn(0), it will return a closure of f(x) with the values of n 

fixed at 0. In other words, it will return a function that calculates max(0, x). Here it is in 

action: 

max0 = maxn(0) 

 

print(max0(3))  # Equivalent to max(0, 3) -> 3 

print(max0(-1)) # Equivalent to max(0, -1) -> 0 

 

We have created our new function max0 and a couple of test cases to prove that it does 

indeed calculate max(0, x). In effect it replaces any negative value with 0. 

  



Here is an example of using our partial application with map. In this case we are using maxn 

to create an anonymous function that gets used in the map call: 

m = map(maxn(3), [1, 2, 3, 4, 5]) 

print(list(m)) 

 

The result is [3, 3, 3, 4, 5] – all values less than 3 are clamped at 3. Having defined 

our maxn function, it can be used to provide partial applications of max in a compact and 

expressive way. 

11.2.1 Functions with more variables 

Now we will look at a function with more variables. We will use a function that calculates the 

value of a quadratic function: 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

For given values of a, b, c and x. Here is a function that does this calculation: 

def quad(a, b, c, x): 

    return a*x*x + b*x + c 

 

Now you will often be in a situation where a, b and c are fixed, and all we want to do is vary x. 

You can do this very easily with a closure: 

def quad_abc(a, b, c): 

    def f(x): 

        return quad(a, b, c, x) 

    return f 

 

This allows us to create a partial function to calculate, for example: 

𝑥2 − 3𝑥 + 2 

Here is the code to do create this specific quadratic as myquad, and check it calculates the 

correct values (we know the value should be 2 when x is 0, and it has roots when x is 1 or 2): 

myquad = quad_abc(1, -3, 2) 

 

print(myquad(0))  # 2 

print(myquad(1))  # 0 

print(myquad(2))  # 0 

 

  



We can also quite easily create a different partial application, for example suppose we 

wanted to apply values for a and c, but leave b and x as variables to be set later: 

def quad_ac(a, c): 

    def f(b, x): 

        return quad(a, b, c, x) 

    return f 

 

myquad = quad_ac(1, 2) 

 

print(myquad(0, 1)) 

print(myquad(1, 2)) 

print(myquad(2, -1)) 

 

So myquad is now a function that has a set to 1 and c set to 2. When we call myquad we pass 

in two arguments, containing values for b and x. 

Clearly, by creating different closures we can choose to set any combination of a, b, c and x 

that we want is the partial application and leave the rest to be set when we actually call the 

function. 

11.2.2 functools.partial function 

The functools module provides a function partial that can be used create a partial 

application of a function. Here is how you could use it to create a max0 function: 

from functools import partial 

 

max0 = partial(max, 0) 

 

print(max0(3))  # 3 

print(max0(-1)) # 0 

 

Here is how you could use it with map, similar to the previous example: 

m = map(partial(max, 3), [1, 2, 3, 4, 5]) 

print(list(m)) 

 

The advantage here is that you don’t have to define a separate closure maxn. The code is 

more declarative and relies only on standard library functions. 

The disadvantage is that the map call is slightly longer and more complex. 

11.2.3 functools.partial with more variables 

The functools.partial function can be used to create a partial function for functions 

with more than two variables, for example our previous quad function. Here is how we would 

create a partial quad function with a, b, c set to 1, -3, and 2: 

pquad3 = partial(quad, 1, -3, 2) # a, b, c = 1, -3, 2 

print(pquad3(0))                 # x = 0 

 



To be clear, quad takes 4 arguments. In the partial call, we have supplied the first 3 

arguments to create a partial function pquad3. When we call pquad3, we must supply the final 

argument, x. 

We can supply fewer arguments if we wish. In the case below, we just supply 2 argument to 

the partial call. This creates a partial function pquad2 where the first argument a has been 

set to 4, and b has been set to 1. The call to myquad1 must supply values for c and x. 

pquad2 = partial(quad, 4, 1) # a, b = 4, 1 

print(pquad2(3, 1))          # c, x = 3, 1 

 

In the final example below, we just supply 1 argument to the partial call. This creates a 

partial function myquad1 where the first argument a has been set to 4. The call to myquad1 

must supply values for b, c and x. 

pquad1 = partial(quad, 4)    # a = 4 

print(pquad1(1, 3, 1))       # b, c, x = 1, 3, 1 

 

There is one thing you can’t do with partials. You can’t do the equivalent of myquad_ac, 

where you fix the values of a and c in the partial function. The syntax of partial doesn’t allow 

you to pick and choose which arguments will have values applied. 

11.2.4 Applying keyword arguments 

A partial function can apply keyword arguments too. Here is a simple example: 

def make_print(sep): 

    def f(*args): 

        return print(*args, sep=sep) 

    return f 

 

print_csv = make_print(', ') 

print_colon = make_print(':') 

 

print_csv(1, 2, 3)         # 1, 2, 3 

print_colon(1, 2, 3)       # 1:2:3 

 

The make_print function returns a partial application of the standard print function, 

with the sep keyword argument set to the supplied value. sep is a string that gets inserted 

between the arguments (this is standard print functionality). 

Notice also that the inner function f in make_print accepts *args. This means that the 

partially applied print function will accept multiple arguments and print then all, separated by 

the sep string. 

We use make_print to create two new functions, print_csv prints values separated by 

commas, and print_csv prints values separated by colons. 

  



You can use keyword arguments with partial too. Here is an alternative way to create our 

two print functions: 

from functools import partial 

 

print_csv = partial(print, sep=', ') 

print_colon = partial(print, sep=':') 

11.2.5 Don’t overlook the simpler solutions 

Before you dive in with a partial application solution, always bear in mind that there may be 

alternatives. Let’s look at some of the possible alternatives for creating a max0 function – a 

functional of x that returns 0 or x, whichever is larger. 

Here is the original solution: 

def maxn(n): 

    def f(x): 

        return max(n, x) 

    return f 

 

max0 = maxn(0) 

 

If you only ever intend to use max0 (you will never need a maxn with a value of n other than 

zero), it would be possible to define max0 directly (no need to create a maxn closure): 

def max0(x): 

    return max(0, x) 

 

If you only need to use this function once, you can simply use a lambda: 

map(lambda x: max(0, x), [1, 2, 3, 4, 5]) 

 

This doesn’t mean you should never use a partial function is these situations, just that you 

should always be aware of the alternatives and choose whichever makes you code robust and 

readable. 

11.3 Currying 

Currying is similar to partial application but takes a slightly different approach. Before we 

start, it is probably worth noting that the term currying derives from the name of Haskell Curry, 

the mathematician who did a lot of work on the theory behind currying. The Haskell 

programming language is also named after him. 

Whereas the Python term pickling (serializing an object for later retrieval) is vaguely 

analogous to the culinary process it is named after, the term currying has nothing whatsoever to 

do with food. Searching for parallels there will only lead to confusion. 

11.3.1 Curried version of quad 

Currying isn’t part of standard Python, but there are several open source functional 

programming libraries around. We will use PyMonad, one of the better-known libraries. You 

will need to install it as described in the chapter Useful libraries. 



We curry a function by applying the @curry decorator to its declaration. Here is how we 

would curry our quad function (we will call it quadc to distinguish it, but that isn’t something 

you would normally need to do): 

from pymonad import curry 

 

@curry 

def quadc(a, b, c, x): 

    return a*x*x + b*x + c 

 

Now we can still use quadc is the same way as quad: 

y = quadc(1, -3, 2, 0) 

 

But we can also call quadc with just 3 arguments. In that case it will return a callable object 

(an object that can be used exactly like a function object). This callable object, f, can be called 

with a single argument to obtain the result, y: 

f = quadc(1, -3, 2)     

y = f(0) 

 

This is very similar to creating a partial function as we did with the original quad function: 

pquad3 = partial(quad, 1, -3, 2) 

y = pquad3(0) 

 

We can also call quadc with 2 arguments. It will return a callable that needs 2 extra 

arguments: 

f = quadc(1, -3)     

y = f(2, 0) 

 

Again, this is similar to creating a partial function with a and b set, and then passing c and x 

in later. And, of course, we can call the curried function with a single argument: 

f = quadc(1)     

y = f(-3, 2, 0) 

 

In fact, currying is even more flexible. You can split the function call more than once, for 

example: 

f = quadc(1) 

g = f(-3, 2) 

y = g(0) 

 

In this case, f is a callable object that wants 3 arguments. If we give it just two arguments, we 

get another callable object g that wants 1 argument. If we call g with one argument we get the 

actual result, y. 

11.3.2 When to use currying 

Currying and partial application both do similar jobs. We will use them both in an example 

using map. 



Here is the example using partial application (using the functools partial function): 

c = [1, 2, 3, 4, 5] 

x = [2, 4, 6, 8, 10] 

m = map(partial(quad, 1, 2), c, x) 

 

We have created a partial function of quad, setting a to 1 and b to 2. We then map this 

function onto two lists containing the c and x values. 

How would we do this with currying? We would use our curried version of quad, which we 

called quadc. After that, the code is fairly similar: 

c = [1, 2, 3, 4, 5] 

x = [2, 4, 6, 8, 10] 

m = map(quadc(1, 2), c, x) 

 

Notice that this only works because we are using the @curry decorator. This allows us to 

use quadc(1, 2) as a function that takes two arguments. 

Looking at these two implementations, you might think that the second one is clearly better 

because it doesn’t involve explicitly calling the partial function.  

There is are potential downsides, though. The @curry decorator does a lot of stuff behind 

the scenes. It creates a quadc function that can be called in many different ways, for example: 

quadc(1, 2, 3, 4) 

quadc(1,2)(3, 4) 

quadc(1, 2)(3)(4) 

quadc(1)(2, 3, 4) 

 

One point here is that calling a curried function is less efficient than a normal function call. 

This is not usually an important consideration, because if there are any parts of your program 

that require extreme efficiency you probably shouldn’t be writing them using FP, and maybe not 

even Python. But it is worth keeping in mind. 

The more important consideration is that currying creates functions that behave quite oddly. 

Of course, there is nothing magic going on here, the @curry decorator is using standard 

Python. quadc and its inner functions just handle different numbers of arguments. But if you 

are not familiar with the decorator, or maybe you don’t even know that quadc was created 

using the decorator, then the code above could be unexpected and confusing. 

Compare this with the partial function. When you use partial, it is quite explicit. You 

can see that something is being done, and you can look up partial if you are not familiar with 

it. 

As a rule of thumb, if you are writing a large amount of functional code, and using currying 

throughout, it is reasonable to expect anyone reading the code to be familiar with how it works. 

It is fine to use currying. 

But if you are working mainly with partials, or maybe working with code that isn’t 

predominantly functional, then throwing in the odd curried function here and there is probably 

going to cause more confusion than it is worth. 



11.4 Composition 

It is quite common in programming to have one function operate on the result of another 

function. For example, to calculate the square of the sine of x we use: 

square(math.sin(x)) 

 

To create an iterator that counts down from n-1 to 0 we use: 

reversed(range(n)) 

 

We refer to this as composing functions, or composition. 

It is generally simpler to stick to the cases where each function accepts a single argument. If 

that is not the case, we can often use partial application to solve this. For example, here is a 

composition to calculate 2 + 3*x: 

from operator import add, mul 

 

add(2, mul(3, x)) 

 

The example above composes 2 functions that each take two arguments, making it difficult to 

generalize. We can improve this using partial functions: 

from functools import partial 

 

f = partial(add, 2) 

g = partial(mul, 3) 

 

f(g(x)) 

 

Or, in one line (but a little difficult to read): 

partial(add, 2)(partial(mul, 3)(x)) 

11.4.1 Creating a compose function 

The examples above are quite procedural – we are composing function by writing code that 

calls one function then calls another function with the result. We are writing code that describes 

how to do the composition, rather than simply declaring that we want composition to happen. 

In the earlier chapter Closures, we created a simple compose function that accepted 2 functions 

and returned a function that composed them: 

def compose2(f, g): 

    def fn(x): 

        return f(g(x)) 

    return fn 

 

In this section we have renamed this function to compose2, for reasons that will become 

clear. compose2 is a function that composes exactly 2 functions. 

Instead of using reversed and range to directly create an iterator that counts down, we 

can compose those 2 functions to create a new function, countdown, that creates an iterator 

that counts down: 



countdown = compose2(reversed, range) 

countdown(n) 

 

This is even more useful when we start using partial functions. Instead of directly using the 

partials of add and mul as before, we can create a new function by composing them: 

addmul = compose2(partial(add, 2), partial(mul, 3)) 

addmul(x) 

 

It is much clearer in this case what is going on. 

There are several open source implementations around, but before we look at those, we will 

extend our compose2 function to accept more than 2 functions. 

Let’s say we want to compose functions p, q, r, s. We want to create a single function that 

does: 

p(q(r(s(x)))) 

 

We could create this by repeated use of our existing compose2 function, like this: 

f = compose2(p, q)    # f calculates p(q(x)) 

g = compose2(f, r)    # g calculates p(q(r(x))) 

h = compose2(g, s)    # h calculates p(q(r(s(x)))) 

 

To understand the next step, let’s imagine replacing the values with numbers a, b, c, d, and 

the compose2 function with add. The chain of operations looks like this: 

x = add(a, b) 

y = add(x, c) 

z = add(y, d) 

 

Or more succinctly: 

((a + b) + c) + d 

 

This is simply the sum of all the numbers. Or put another we, we have reduced the list of 

number using the add operation. See the section on functools.reduce in the chapter 

Reducing iterables. 

The same thing is also true for composition. To compose a list of functions, we simply reduce 

the list of functions using the compose2 operation: 

def compose(*f): 

    def compose2(f, g): 

        def fn(x): 

            return f(g(x)) 

        return fn 

    return functools.reduce(compose2, f) 

 

Here, we have included our original compose2 closure as an inner function of compose. 

This makes it a private – we don’t need compose2 to be accessible anymore, because compose 



can compose2 functions, or 3, or 4 etc. We only use compose2 internally to reduce the list of 

functions. 

The return value of compose is result of reducing the list of input functions, f, with the 

compose2 function, resulting in a single composite function. 

One final point, the reduce function will give an error if it is called with an empty list, unless 

we supply a third parameter as an initial value. If we want to avoid this, we need to supply a 

suitable value. But what should we use? 

The initial value should be the identity value for the operation we are using. If we were using 

the add operation, we would use 0, because x plus 0 is x. If we were using the mul operation it 

would be 1, because x times 1 is x. In the case of composition, we want a value that acts as an 

identity value when composed with any function. This value is the function f(x) that returns x. 

To avoid the error, change the last line of compose to: 

return functools.reduce(compose2, f, lambda x: x) 

11.4.2 Existing libraries supporting composition 

There are quite a few open source libraries that provide functional programming support, 

including a compose function. funcy and fn.py are two libraries that can be found on 

github.com or installed with pip. 

We will concentrate on PyMonad in this section. This provides composition of curried 

functions (see the PyMonad @curry decorator described earlier in this chapter). 

Rather than using a compose function, PyMonad uses a compose operator, *. Here is how it 

works. First, we need to create curried versions of the built-in reversed and range functions: 

from pymonad import curry 

 

@curry 

def reversedc(x): 

    return reversed(x) 

 

@curry 

def rangec(n): 

    return range(n) 

 

Once these functions are defined, composing them is quite neat: 

countdown = reversedc * rangec 

 

Since all the functions are curried, it makes it very easy to compose partial functions. Here 

are curried versions of add and mul: 

@curry 

def addc(a, b): 

    return a + b 

 

@curry 

def mulc(a, b): 

    return a * b 



 

And here is our addmul function from earlier: 

addmul = addc(2) * mulc(3) 

 

This is clearly a lot more readable than the previous version: 

addmul = compose2(partial(add, 2), partial(mul, 3)) 

11.5 Summary 

In this chapter we have looked at some of the basic ways of building new functions from 

existing ones. These are some of the basic building blocks of functional programming. 

• Closures – are function factories, capable of building new functions in many different 

ways. 

• Partial application creates new functions based on existing functions with some of their 

original arguments already assigned. 

• Currying declares functions in a way that makes partial application and composition 

much simpler. 

• Composition is a declarative way to create new functions from chained calling of 

existing functions. 

 

 

  



12 Functors and monads 

Functors and monads are two important types of object in functional programming. They 

have their roots in some fairly abstract maths, but here we will focus on their practical benefits. 

Essentially what they do is wrap a value. The wrapper then controls how functions are 

applied to the value. It allows us to extend the capabilities of ordinary functions, for example to 

make them work automatically with collections, or to allow them to cope with values that might 

not exist (called optionals in some languages). 

In fact, there are three related types: 

• Functors are the basic type. A functor has a map method that allows it to control how 

functions are applied. 

• Applicative functors (often just called applicatives) are a subset of functors. 

Applicative functors can do everything functors can do, but also have extra 
capabilities. All applicatives are functors, but not all functors are applicative functors. 

• Monads are a subset of applicable functors. They can do everything an applicative 

functor can do, end even more. 

These objects are not part of standard Python, but there are several libraries you can use. 

This chapter will be using oslash, a library that has quite a nice implementation of functors. 

See the chapter Useful libraries. 

Most of the general stuff here about functors applies to other libraries and even other 

languages. Most of the syntax is oslash specific, which is based largely on Haskell. 

You might find that you don’t uses functors and monad all that much. They are used in pure 

functional languages to handle situations that are difficult to handle without procedural code. In 

Python, you have procedural coding methods available, so you might often use those rather than 

monads. But it is useful to know that they exist. 

12.1 Functors 

We need to be a little careful as the term functor has different meanings in different branches 

of computing. For example, it is sometimes used simply to refer to a function object. That is not 

what we mean here 

This section describes how we use the term throughout this book. If you are familiar with the 

Haskell programming language, oslash functors are based closely on those. If you are not 

familiar with Haskell, don’t worry, this section will tell you all you need to know. 

A functor is an object that wraps a value and provides a map method that can be used to 

apply a function to that value. 

Most of the functors we discuss in this section are also monads, so they have all the 

functionality of functors, applicatives and monads. So, don’t be confused when the functor types 

we discuss here are also used as examples of applicatives or monads later on. 



12.1.1 The Just functor 

The Just functor is a simple wrapper around a value. We can create a Just functor like 

this: 

from oslash import Just 

 

a = Just(3) 

print(a) 

 

This code prints Just 3, to indicate that it is a Just wrapper around the value 3. Now if we 

try to apply the operator neg function to this object, we will get an error because neg 

doesn’t know how to deal with functors: 

from operator import neg 

 

neg(a)  # Error! 

 

What we must do instead is use map to apply the function. Just has a map function, because 

it is a functor. Here goes: 

b = a.map(neg) 

print(b) 

 

This prints Just -3. That is because Just.map knows how to apply a function to its 

wrapped value and return a wrapped result. 

You can also apply a function to a functor using the % operator. This is an infix operator that 

accepts the function first, followed by the functor it is being applied to. 

b = neg % a 

12.1.2 The Nothing functor 

The Nothing functor is very simple. It represents nothing, in a similar way to the None type 

in standard Python. Although we said earlier that a functor wraps a value, Nothing is the 

exception. It doesn’t wrap a value; it is just nothing. 

We can create Nothing like this: 

from oslash import Nothing 

 

a = Nothing() 

print(a) 

 

This prints Nothing, as you would expect. Here is what happens when we apply a function 

to a Nothing value: 

b = neg % a 

print(b) 

 

The result again is Nothing. In fact, the result of applying any function to Nothing is 

always Nothing. 



12.1.3 The List functor 

Our next functor is List. It wraps a list of values, like this: 

from oslash import List 

 

a = List([1, 2, 3]) 

print(a) 

print(type(a)) 

 

This prints: 

[1, 2, 3] 

<class 'oslash.list.List'> 

 

The list contents are printed in a similar way to a standard Python list, but the type shows 

that it is an oslash object. 

Now let’s try applying a function to this list. We will use neg from the operator module – this 

in the function equivalent of the negation operator -. Here is the code: 

from oslash import List 

from operator import neg 

 

a = List([1, 2, 3]) 

b = neg % a 

print(b) 

print(type(b)) 

 

This produces: 

[-1, -2, -3] 

<class 'oslash.list.List'> 

 

It has applied the neg function to every element in the list. That is what the List functor 

does, you can use any function and List.map (called by the % operator) will apply it to every 

element in the list. 

12.2 Applicative functors 

An applicative functor wraps a function. It can apply its function to another functor, for 

example: 

from oslash import Just 

from operator import neg 

 

a = Just(3) 

f = Just(neg) 

b = f.apply(a) 

print(b) 

 

The first thing to know is that this code only works because Just isn’t only a functor, it is 

also an applicative functor. An ordinary functor doesn’t have an apply method. So, having 



wrapped our neg function in the applicative functor f, we can apply it to a. The result is the 

same as before, a functor Just -3. 

You can use the * operator as an infix version of apply (just like % is an infix version of 

map), so we could write: 

b = f * a 

12.2.1 Functions with more than one argument 

Up until now we have only dealt with functions that take exactly one argument. What if we 

wanted to use a function like operator add? 

a = Just(3) 

b = add % a 

print(b) 

 

This prints: 

Just functools.partial(<built-in function add>, 3) 

 

This is very promising. A partial of add, with 3 applied, wrapped in a Just applicative! We 

know how to apply the second argument, using the * operator: 

c = b * Just(6) 

print(c) 

 

Which gives us Just 9. 

Let’s see how that works with a function of 4 arguments, such as the quad function from 

earlier chapters (don’t worry, it doesn’t really matter what the function actually does): 

a = quad % Just(1) * Just(3) * Just(2) * Just(0) 

 

You can think of the % as being like the opening bracket and the * being like a comma 

between arguments. There is no closing bracket, analogies aren’t always perfect. Or you could 

just wrap quad in a Just functor and use * all the way through: 

a = Just(quad) * Just(1) * Just(3) * Just(2) * Just(0) 

 

It is important to understand what is happening here. Let’s break it down into stages and 

show the value of a at each stage: 

a = Just(quad) # Just <function quad > 

a = a*Just(1) # Just functools.partial(<function quad, 1) 

a = a*Just(3) # Just functools.partial(<function quad, 1, 2) 

a = a*Just(2) # Just functools.partial(<function quad, 1, 2, 3) 

a = a*Just(0) # Just 2 

 

Each step creates a new partial function, wrapped in a Just functor, with the parameters 

supplied so far set in the partial function. This works a little like currying. 



12.3 Monads 

A monad wraps a value in a similar way to a functor. However, a monad has an additional 

function called bind that: 

• Accepts a single parameter. 

• Returns a value wrapped in a monad. 

Unlike a map, the bind function itself is responsible for wrapping the return value. This 

means the bind function can decide what sort of monad to wrap the result in. 

Here is an example, the function oneover returns 1/x, wrapped in a Just monad: 

from oslash import Just, Nothing 

 

def oneover(x): 

    ret = 1/x 

    return Just(ret) 

 

a = Just(2).bind(oneover) 

print(a) 

 

a = Just(0).bind(oneover) 

print(a) 

 

The first call, binding oneover to the value Just 2 correctly returns Just 0.5. The Just 

monad unwraps the value 2, and passes it to oneover, which returns Just 0.5. 

The second call, however, passes 0 to oneover, which results in a divide by zero exception – 

not exactly what you want from a pure function. 

There is a solution. oneover has the choice of what sort of monad it returns. So, we could 

catch the exception and return a Nothing monad: 

def oneover(x): 

    try: 

        ret = 1/x 

    except: 

        return Nothing() 

    return Just(ret) 

 

This works much more sensibly. The first call returns Just 0.5, the second returns 

Nothing. 

12.4 Summary 

Functors, applicable functors and monads are mainly used by pure functional programming 

languages to handle situation such as errors, exceptions or order dependent operations in a 

clean way. This is less of a problem for Python, since procedural code can be used for the same 

purpose.  



This chapter gave an overview of the use of these features with the oslash library. If you 

are interested in gaining a greater understanding of the context of these features, it would be a 

good idea to learn more about a pure functional language such as Haskell. 

  



13 Useful libraries 

We have mentioned several libraries in other sections of this book. This chapter tells you 

where to find them and lists further areas to explore. 

13.1 itertools 

itertools is a standard Python library – it is part of Python and doesn’t need any extra 

installation. 

It contains a number of useful extra functions for iteration. Here are some of the highlights, 

refer to the documentation on python.org for a full list. 

13.1.1 Infinite iterators 

These are iterators that go on forever. 

count(start, [step]) produces an infinite series of incrementing values, with an 

initial value start. For example: 

count(0)   # Creates 0, 1, 2 ... 

 

It behaves like range, but with the end value set to infinity. There is an optional step value: 

count(5, 2)   # Creates 5, 7, 9 ... 

 

repeat(x, [n]) produces and infinite series of the value x, repeated over and over. The 

optional value n will cause the sequence to stop after n iterations. 

cycle(it) creates an infinite series by repeating the values in it (an iterable) indefinitely. 

For example: 

cycle([1, 2, 3])    # Create 1, 2, 3, 1, 2, 3, 1, 2, 3... 

13.1.2 Other iterators 

itertools contains a set of other useful iterators. Some of these are useful variants on built-in 

functions. 

zip_longest(p, q ..., fillvalue=None) zips a set of iterables. it works in a very 

similar way to the normal zip function. The difference is that zip stops when the shortest 

iterable runs out of data, whereas zip_longest continue until the longest iterable runs out of 

data. Missing values are set to fillvalue, which defaults to None: 

a = [1, 2, 3] 

b = [10, 20] 

zip(a, b)         # Creates (1, 10), (2, 20) 

zip_longest(a, b) # Creates (1, 10), (2, 20), (3, None) 

 

starmap(fn, it) is very similar to map. The difference is, if fn takes more than one 

argument, map expects a set of iterables, one per argument. starmap expects a single iterable 



containing tuples of n values. This is useful is the data happens to already be in that format – 

rather than having to use zip to reformat the data, you can just use starmap directly. 

If your data is available as a set of iterables, use map: 

map(add, [1, 2, 3], [4, 5, 6]) 

 

If your data is available as a single iterable of tuples, use starmap: 

starmap(add, [(1, 4), (2, 5), (3, 6)]) 

 

filterfalse(fn, it) is exactly the same as filter, the sense of the test is reversed. 

filter keeps elements where fn is true, and discards elements where fn is false. 

filterfalse keeps elements where fn is false, and discards elements where fn is true. 

There are some additional functions that are worth a look too: 

• accumulate is similar to sum, but it keeps a running total of values. 

• chain joins two or more iterables into a single iterator. 

• tee splits one iterable into two or more separate iterators. 

• takewhile is similar to filter, it returns all the values from an iterable until its 

function evaluates to false. Unlike filter, takewhile stops completely after the 

first false value. 

• dropwhile is the opposite of takewhile. It ignores all values until the function 

evaluates to false, and then returns all values after that. 

13.1.3 Combinations 

itertools also provides several functions for creating all permutations and combinations 

of the elements of am iterable. 

13.2 functools 

functools is another standard Python library than requires no additional installation. We 

have used several functions from this library in earlier chapters: 

• lru_cache for memoization. 

• reduce for the map-reduce pattern. 

• partial for creating partial functions. 

13.3 PyMonad 

PyMonad is an open source library that supports functional programming techniques that 

are not supported by the standard Python libraries. 

We have used it to illustrate currying and composition. As its name suggest, it also provides 

functor and monad implementations, although in this book we have opted for the oslash 

library to illustrate those concepts. 

You can install PyMonad using: 

pip install pymonad 

 



Documentation can be found on the PyMonad pages on github.org and pypi.org. There are 

also various articles on PyMonad that can be found around the internet. 

13.4 oslash 

oslash is another open source library that supports functional programming. Again, it is 

not a standard library and will need to be installed separately. 

We have used it to illustrate functors and monad because it has quite a clean and simple 

implementation. 

You can install oslash using: 

pip install oslash 

 

Documentation can be found on the oslash pages on github.org and pypi.org. It is a slightly 

less well-known library, so there is less supporting material available from other sources, but it 

is reasonably well documented on its official pages. 

 




