


Functional Programming in Python
by Martin McBride

Published by Axlesoft Ltd
info@axlesoft.com

Visit pythoninformer.com for more details
@pythoninformer

Copyright © Axlesoft Ltd, 2019



Contents

L0000 01 =] 0L 3 3
B 0 U 0T L1 Ut [ ) o LU0 PP 8
1.1  Programming PAradiINS ......ouereenecureensessessesssessessesssessssssessssssssssssssssessssssssssssessssssesassssssssessasans 8
1.2 Whatis functional programming?........ceneeemseenssssssssssessssssssssssssssssssssssssssssssssssssans 8
1.3 Characteristics of functional programming..........eeeeeeessssssssssessssssssens 9
1.4  Advantages of functional programming ... 10
1.5 Disadvantages of functional programming .......c.ceneeenseseensesssssssessssssssssesseenns 10
1.5.1  ADOUL thiS DOOK. .. ssees s sssess s ssssssssessesssse s sanas 11

FZ L300 0 Uot 0 1) o 3R T3 0] ] =T ot PP 12
2.1  Objects and variables in PYthON ... ssssssessesasesees 12
2.2 SEOTING fUNCHIOMNS. cottuieereeereeeeeesseesse st s sssess s ssssse s bbb s bbb bbb a b e 13
2.3 AlI@SES ieruireirssisis s R 13
2.3.1  Redefining @ fUNCHOMN ..o sssess s ssssssssssesssessssssssssssesssesssessssees 14

2.4 FUNCUiONS @S PATAIMETETS c..cuereeuereesrerseessssssessesssessessessssssesssesse s sessse s ssssssssssessssssssasessssssessesasesaees 15
2.4.1  The SOrted fUNCHON. .o eceeeereesees s sees s ssessse s ssees s s e s s sssesssensssees 16

PRSI U 1 01 o T T8 L o Uot (0 o PPN 17
2.6 Functions as return VAlUES ... ssssssssssssssssssssssssssnes 19
2.7 Function versions of standard OPerators ... ecneensessesssesssesesssesssssssssssssanes 19
2.8  Summary — sources of fUNCtiON ODJECLS ... sses s snses 20

R TN\ 101 =10 1) 1P 21
3.1 MUutability i PYthom ettt ss s ss s 21
3.2 Numbers are immutable....... e ————— 22
3.3 The problem with Mutable ODJECES ...t sseses 22
3.3.1  DefenSIVE COPYINE..cmirrrreerreereerssersessseesseessesssesssesssessssesssssssessssssssssssesssesssessssesssesssesssessssssssees 23

3.4  Immutability iS the QNSWET .. sess s 24
3.5 Changing immutable 0DJECS ... ——— 24
35,1 USINE SHICES cereereuieeeeeeeetseesse et eses et ss s es s b s bbb s s 25
3.5.2  Using list COMPIENENSIONS ......occuriereeeeereeecereessesseisessessses s ssss s sssssessss s ssssssssnns 25
3.5.3  USINE @ LO0P crrtieurieeiueeeeeseeseiseeseiees et ssss s ssss s ssse s ess s bbb s bbb 26
3.5.4  Converting the data to @ liSt ... 26

3.6  The problem with immutable 0DJECES......o e 26
3.7  Immutability 1S SNHAIIOW ...ttt ses s 26
2R Y0101 40 U= PP 27

N O C<Yod 0 ) 3 () o FO TR 28



2 0 TR - Vot o) o 1= | 3N 28

4.2 RECUTSION HIMIES ottt st s bbb s bbb bbb 29
4.3 Tl FECUISION cetetrrteteeeseeteetse st sse e sss s s bbb s bbb 30
4.4 Inefficient recursion — Fibonacci NUMDETS. ....ooueeecrneennieneiseesseessesseesseessesssssssssssesssssenees 30
4.5 MEIMOIZALION coeereereereeaseeseeseessesssess s seessss s s ss s b s s bbb R R bbb e 31
4,5.1 FRNaoaueYo) KN ot W r= Ul (<N 32
4.6 FlatteNiNg LISTS ciuriuseereeecureeneeueesetseesse et sse st ssse b ss bbb s s bbbt 32
4.6.1 A 1eSS reCUrSiVE SOIULION ..ucuceeesreeseet et ss et ssssss s s ss s sss s ssssesseeas 33
4.7 SUITIITIATY covrreureerressessesessessesessessssesssssssesssssssesssssssesssssssesssssssesssssssssssssssesssssssessssssssssssssssssssssssssssesssssssesssanes 34
ClOSUTES .eereeerereseenseesseesseesssesssessseessess s sss s s bR R RS R SRR 35
5.1  INNET fUNCHONS ooouieeeereesreeeeeeseessensseesssesssess s sesssssssesssess st sssesssesssessssssssesssess s sssesssasssesssssssesases 35
5.1.1  Returning an inNer fUNCHOMN s seeseesseesesssessssesssesssesssessseesssessesssesssesssessssees 35
5.1.2 A ClOSUL e ees s s seeess e s s s e s 36
5.1.3 A MOTE USEUI ClOSUTE ..ceureeceeereecteetse et sise s ss bbb sssasssesssees 36
5.2 WAt iS @ ClOSUIE?..... et ss s ssesss s s 37
5.3  Creating anonymous fUNCHONS ... sesssssss s ssssssssssssssssssssssssesanes 37
53.1 A simple introduction t0 MaP ...eeermeemeesseesseessessesssessssesssesssesssessesssessssssesssessssssssees 37
5.3.2  Incrementing the elements in a LISt ssesssessseessees 38
5.3.3  Using a closure instead of @ 1ambda.......c.coe e seesssessessessseesssesnees 38
5.3.4  Other alterNatiVeS ... oereereeeeeeereesessesseseesseessessesses s ssesse bbb ss s sssssaas 38
5.4 COMPOSING FUNCLIOMNS. ..ccoieureeniereeseetsseiseessesssesssssessesssess s ss s s bbb sssass s e 38
54.1 The advantages of cOmMpPOoSING fUNCLIONS ....veereeereerrerrereerreersreesees e seesssersesssessseessseseees 39
5.5  Using closures inStead Of CLASSES ......ouereeeeereesseessnessessseessesssessesssessseessessssssssssssessssssssesanes 40
5.6  Using classes inStead Of ClOSUTES .......coeereeeeeeseesseessnesssessseesseessesssesssesssesssesssssssssssessssssssesanes 41
5.7 ClOSUTE INSPECEION. cieucusreueereesrereesseeseessese st sesssessessses s sss s s bbb bbb 43
5.8 SUIMIIMATY ..euieeereeecereieeseesees et sssea s ss bbb s s s bR e 44
TEETALOTS -.cereeeeeeseeeesse s seses e s ee s R s EEER e E R Rt 45
TR0 N ) - L0 OO 45
6.2 TEEIADIES .ottt e e s 45
6.3 HOW fOI 10OPS WOTK oottt seces e sssss s sees s ss s ssssessssssss s sanes 46
6.4 Tterators AlSO SUPPOTT ILET ..ottt st eesse st s s s s bbb 46
6.5 TtErators VS ITEIADIES ...ttt sttt ss bbb s 47
6.6 Iterators USEe 1azZy eVAlUAtION ...ttt ssss e ss s 47
LT AN Y=o | U< Vol PPN 48
6.8 RealiSING AN ILEIALOT c.uieeceeeeeseeseerree et sees e sss e ss s s s p s e 49
6.8.1  USINg SEQUENCE CONSTIUCTOTS .ouveriererrerserssesessessessessessessessessessessssssssssssssssssssssssssssssssssssessessenes 49

6.8.2  Unpacking an iterable to a parameter LiSt........cncneenseenseseeseseseesesseeseseesseenne 50



6.8.3  Unpacking an iterable int0 @ SEQUENCE ........cccreereereereersemseinsesseesseeseessessesssesse s sssssseenns 51

6.8.4  EXtended UNPACKING ....c.couimirieneureeneiseisesetssesssesssssesssssssssssssssssssssssssssssssssssssssssssssasssssssesans 51
6.9  Creating yoUr OWIN ItEIatOr .. s ssens 51
6.9.1 AN alphabet ITEIatOT . s 52
(IR TR N 3 (010 ol L =) =Y o) N 53
6.10 BUIIE iN fUNCHONS ccoveeeceeeseemeesees s seessess s sssess s s ssssss s s ssssssseessssssss e sanes 54
6.10.1 Primitive fUNCHONS . ..coereeerecereeeseeseessees s sees s sessssesssess s sessssssssssesssesssessasees 54
6.10.2 Creation/conversion fUNCLIONS ... ssssssnns 54
6.10.3  Transforming fUNCHIONS ... sees s sssssssssssss s ssssssssssssssssssssees 55
6.10.4 RedUCING fUNCHIONS. ..cviuriereeereerreeeseeseesees st sssess et sessssssss s ss s ss s s b sssass s sssees 55
6.11 00 440 00 E2 PPN 55
Transforming ItErablEs ... s s seneas 56
% S ) 1100 41 o Lo PPN 56
2% 2 7 | o TSP PP 57
7.2.1  How zip transforms it€rables ... sssssssssssssssssssssssssssssssens 57
7.2.2  Stream with different IeNGthS ...t sess s 58
7.2.3  ZIP IS SEIf-T@VEISING .rverieereeerecereeereeseesseesseesssesssees s sssssse s s s ssssssesssesssesssssss e sssessssssssees 58
78 T § {1 -) TP 59
2 T 4o ¥ | o TP PPN 59
7.4.1  Map With ONE PATAMELET «...ceieceereererreesreeecs s ss s s s enne s 60
7.4.2  LaZy EVAlUATION ettt ses e s 60
7.4.3  map with more than 0Ne Parameter..... e eessessessessesssssseees 61
78S T (= 4=) 1o TP 62
7.5.1  REVEISING @ FANGE w.eeuerrermeerreerseersserssesssessseessesssesssesssessssssssssssessssssssssssesssesssessssssssesssesssassssssssees 62
ST = =) o] PPN 62
K ST 1) o o T PP 63
7.6.1  Example - complex sort by month then year........nennenecsenseseeseeseesseenne 63
7.6.2  Some Utility Key fUNCHIONS...cceeeeeeereeerser e seeseessessse et ssssssesssesssesssssssesssssssssssessees 64
7.6.3  Reversing the SOt OTAeT ... ss s ssssssess s sessssssesssesssssssessssees 66
T T Yo ) o OO 66
7.7 COMDINING fUNCHIONS w.ooreueerieereteeseeseeese ettt eesess s bbb s s e s 66
7.7.1  MAP AN FIIEET ottt ettt bbb 67
7.7.2  PIPEIINES oottt ss s s b bbb 67
A2 T 1 -\ 0 - 4 o /2§ o PPN 70
7.8 SUITIIMATY coeurevresreecssersesseessessessses s essses e es s s s s s es s s e 71
REAUCING ITETADIES ..ottt ettt bbb bbb 72

G 700 R 1<) o 72



S 7/ 1 ) s o W 72

8.3 MM ————————————————— 73
8.3.1  default arGUIMENT. ..ottt sees s sess bbb s bbb s 73
B.3.2 KOV QIZUIMIENT . ceeeeeceeeeeeeessectseeesseesss s st s s bbb s R bbb 74

Bid  IMAX i s 74

8.5 AINY ettt a R R AR R R AR AR 74

S 7T | | DTN 74

8.7  fUNCLOOIS TEAUCE. ...t bbb 74
8.7.1  INitial ValUe . s 75
8.7.2  SPECIAI CASES it R 75

LTRSS = Vo1 =T UL ToTc o = L= o OO PP 75
8.8.1  IZNOTING SNOIT WOTAS ..oeeeeeeceeeemeeseesseesseessseesseesseeseessesssessssss s ssesssesssesssessssesssssssesssesssessssees 77
8.8.2 A MOTE FP SOIULION ccouirieeeerececeemeeseesees e seesseesseesesssssssessssss s ssessssssseessessssssssssssesssesssesssees 77
8.8.3  Using enumerate and FEAUCE .....c.ouuurereereeereenresseesesseessesssesessessssssessssssessssssssesssssssssssssssnns 78

e TN D 1401 0= P 79

£0 B 000) 43 0 =] 4 13 03 101 U= 80

9.1  LiSt COMPIENENSIONS ...cuueererrreeseesseesseeesseesseeseesssessesssessseesseessssssssssssssessssssssesssasssesssessssssssesssesssessssees 80

9.2 USING CONAILIONS wevrrremrremseereerreesseesseesseeesseesseeseessessesssessseessessssssssssssesssessssssssesssesssesssessssssssesssesssessasees 81

9.3 Nested COMPIENENSIONS ..coivmeerecreeeeeeesrees e ssesssees s sesssessssssesssessssssssssssess s sssesssesssessssees 82
9.3.1  Creating @ 2D JiST .ttt esseeecs s ss s bbb e s bbb 82
9.3.2  Creating @ flat LSttt essess s bbb sseseas 83

E0 I TN U0 4 402 o PPN 83

O €53 4 ) =1 0 ) o3P 85

10.1 Example — alphabet iterator. ..o ereeeeeeeeesseessessees s seesssessssssseessssssssasesanes 85

10.2 HOW @ GENETALOT WOTKS .. ot sess s ses s ssssss et ssss s 85

10.3 Example — FIDONACCT ITEIATOT ...t ssesens s ssss s sssss s sasessees 87

10.4 ChaiNiNG TEEIATOTS coouceeeeeeeeeeees et este et es s s s s b s bbb 87

10.5 GeNnerator COMPIENENSIONS ... e reerseerseesserssess s sssess s seesse s ss s ssesssess s sanes 88
10.5.1  IMAP VATTANES coeueeeeceeeeseeseesseessessesssessseesseesssesssessssssssssssesssasssasssessssssssssssesssasssessssesssessssssssesasesanes 88
10.5.2  filter-Map VATTANTS .coueeeeeeeceeerseesseesseesseessesssessssssssesssesssesssesssessssssssssssesssssssssssssssssssssssssssasesanes 88

10.6 N 0000002y 89

11  Partial application and CUITYING .....ocreenreureenneeseeseessesseseessessessesssesssssssssssssssssssssssssssssssssssssssnns 90

11.1 00 10 1] 0 2P 90

11.2 Lo Un E= B Vo) o] 1 For= L o) o 0T 90
11.2.1 Functions with More Variables ... 91
11.2.2  functools.partial fUNCHION ...ttt s e ssnasee s 92

11.2.3 functools.partial with more variables ... 92



11.2.4 Applying KEYWOrd arGUIMENTES ....ccovereeeeureeeesreessessesesssesssessesssessesssssssesssssssssssssssessssssssssssans 93

11.2.5 Don’t overlook the sSimpler SOIULIONS ...t seesseenns 94
11.3 L0110 074 o7 94
11.3.1 Curried version of QUA ... ssssssens 94
11.3.2  WRHEN t0 USE CUITYING courreureerrerrerseesseesseessesssesssssssssssssssssssssssessssssssssssssssssssssssssssssssssssssssasssanes 95
11.4 L0003 00 010 1S) L 1 ) o P00 97
11.4.1 Creating @ COMPOSE fUNCHION ....cuururrereerrereereeereiseissei et seessesse s ss s ss s s sseasess 97
11.4.2 Existing libraries supporting ComMpPOSitioN.......coeeereeenmeeseesseesssesssessssesseesseessesssesanes 99
11.5 SUITIIMIATTY cvuvevuresressnesssssessssssessssssssssessssssessssssssssssssssssssssassssssssssssssssssssssssssssssssssssssssssssssssssssssssnssnsssesas 100
12 FUNCEOTS ANd MONAAS ..eeeeeeereeereeeseeeseessesssssssesssesssesssesssess s st s sssssssess s s sssasssesssnees 101
12.1 D0 (o1 o) PP 101
12.1.1  The JUSE fUNCEOT ettt isesssssse st s ssssss s s ssss s ssssss s sasessnes 102
12.1.2  The NOthing fUNCLOT .. ieeeeeereerreesees s secsseesesssesssees s sess s sesssesssssssssssssssesssesssssssseens 102
12.1.3  The LISt fUNCLOT ceveeeeeereeseessecsseetsseessesssecssessssssssessssssssss s sssass st sssssssassssssssssssssssnsens 103
12.2 FN'0) 0]V Cor=Xu Lo T8 40V o o o) 00PN 103
12.2.1 Functions with more than one arguMEeNt ... seesesseesesees 104
12.3 1Y o) 4 B Lo L3PPSO 105
12.4 00 440 00 F2 oy PP 105
13 USEUL LIDTATIES ottt ssse s ssss s e sss s s 107
131 1<) o010 3OO ST SPT PP RP 107
13,11 INfINITE TEETATOTS wueereereeeeeeeessectseetseessees s s b s ss bbb bbbt b s 107
13.1.2  OtRET TLEIALOTS ettt seesse bbb bbb 107
13.1.3  COMDINAtIONS. ..ttt s s 108
13.2 FUNICEOOLS coevtecttre ettt b s e 108
13.3 PYMONAQ.....ctieureieenieeee et eaeceseesses s ss e sse s s s b bbb 108

13.4 L0103 = 1 o U 109



1 Introduction

Python supports several programming paradigms - procedural, object oriented, and
functional. Of these, functional programming is probably the least understood and the least
used. But it can be a powerful tool, especially as it can be integrated seamlessly with procedural
and OOP code.

This book explains what functional programming is, how it is used, and the features of
Python that support it. All features are illustrated with example code.

No prior knowledge of functional programming is assumed, and you don’t need to be an
advanced Python programmer to use this book. Any language features used are fully described.
All that is required is a basic knowledge of Python.

The examples are developed for Python 3.5 or higher, although most will work with earlier
3.x versions too.

1.1 Programming paradigms

A programming paradigm is a general approach to developing software. There aren’t usually
fixed rules about is or isn’t part of a particular paradigm, but rather there are certain patterns,
characteristics and models that tend to be used. This is especially true of Python, since it
supports several paradigms with no real dividing line between them. Here are the paradigms
available in Python:

Procedural programming is the most basic form of coding. Code is structured
hierarchically into blocks (such as if statements, loops and functions). It is arguably the simplest
form of coding. However, it can be difficult to write and maintain large and complex software
due to its lack of enforced structure.

Object oriented programming (OOP) structures code into objects. An object typically
represents a real item in the program, such as a file or a window on the screen, and it groups all
the data and code associated with that item within a single software structure. Software is
structured according to the relationships and interactions between different objects. Since
objects are encapsulated, with well-defined behaviour, and capable of being tested
independently, it is much easier to write complex systems using OOP.

Functional programming (FP) uses functions as the main building blocks. Unlike
procedural programming, the functional paradigm treats functions as objects that can be passed
as parameters, allowing new functions to be built dynamically as the program executes.

Functional programming tends to be more declarative rather than imperative - your code
defines what you want to happen, rather than stating exactly how the code should do it. Some
FP languages don’t even contain constructs such as loops or if statements. However, Python is
more general purpose and allows you to mix programming styles very easily.

1.2 What is functional programming?

Since functional programming is a paradigm, there are no absolute rules about what it is or is
not. If you had to summarise it in one sentence it might be that functional programming use
functions as the fundamental building block for constructing software.



You might also see it said that functional programming treats functions as first class objects.
This means that functions are objects, just like lists or strings, that can be stored in variables,
passed into other functions as parameters, returned from other functions as a result. This leads
to the idea of higher order functions - that is, functions that operate on functions. Anything you
can do with objects, you can do with functions.

An important cornerstone of functional programming is the idea of pure functions -
functions that simply calculate a result without any other side effects.

1.3 Characteristics of functional programming

Rather than trying to precisely define functional programming, it is more useful to look at
some of its characteristics - the sort of techniques functional programmers typically use.

FP prefers pure functions. A pure function is a function that calculates a result without any
side effects, or any possibility of an unexpected result. For example, these are all pure functions:

e Adding two values.

o (alculating the square root of a number.
¢ Finding the length of a string.

e Returning a sorted copy of a list of items.

Functions that either change or rely upon external state are not pure. For example, functions
that do any of these things are not pure functions:

e Sets a global variable
e Writes to a file or database.
e Modifies the value of a parameter that has been passed in.

Pure functions are only allowed to return a value, they are not allowed to alter the state of
the system on any other way. Clearly the actions above change the state of the system in various
ways.

In addition, a pure function must return a value that depends only on its input parameters. It
must be totally repeatable, for given inputs it must always produce the same output. A function
that reads from a global variable, file or database, or accepts user input, for example, is not
repeatable and so not pure.

FP avoids side effects. This is really an alternative version of the previous characteristic
that you will often see stated.

Functions are first class objects. As mentioned above, in FP a function is an object that can
be stored in a variable, and passed as an argument to a function, or returned as the result of a
function.

FP prefers immutable objects. Inmutable objects, such as strings and tuples in Python, are
objects that cannot be modified after they have been created. Immutability helps to prevent side
effects in functions. For example, if you pass a list into a function, it is possible for the function
to alter it. If you pass a tuple into a function, that is impossible.

FP prefers iterators over lists. An iterator is an object that provided access to a collection
of data. An iterator can only read data one element at a time, it has no ability to change the data.
This helps to prevent side effects and often avoids needing to store intermediate results at all
via lazy evaluation. We often talk of the output of an iterator as being a stream of data.



FP favours lazy evaluation. A traditional procedural function that processes a list of data
will typically process the entire list in one call. An iterator will often choose to calculate new
values only as they are needed - this is called lazy evaluation. It often reduces the amount of
memory used and allows the program to start creating output with less initial delay.

FP avoids loops and if statements. Rather than using a loop to process a list of data, FP
tends to use higher order functions such as map that apply a function to an iterable data stream,
converting it into a new data stream. Similarly, it uses functions such as filter to
conditionally remove items from a stream of data.

FP often uses recursion to avoid loops. Recursion is a useful alternative to looping for
certain algorithms.

FP uses higher order functions to define new functions. Procedural programming often
defines new functions that call other functions to perform a task. In functional programming we
tend to use higher order functions that modify or combine existing functions to create new
functions.

1.4 Advantages of functional programming
Here are the main advantages of functional programming:

FP often creates less code. This is because it tends to work at a slightly higher level than the
other paradigms, so achieves more with each line of code.

Intent of the code is clearer. For example, if you use map to apply a function to a data
stream, the meaning is clear and unambiguous. If you define a procedural function that loops
over the data and applies the function, you need to read and understand the code to check
exactly what it is doing.

There are often fewer bugs. Using standard functions that are well tested, instead of ad hoc
loops that might contain bugs is generally more reliable.

Code is potentially mathematically provable. If you program consists entirely of
predefined functions that are known to be correct, and you combine those functions using
higher order functions that are also known to be correct, and if you have eliminated all side
effects, then it is possible, at least in principle, to prove that your code will be correct in all
cases.

Multiprocessing can be applied easily. For example, if you are applying a pure function to
a data stream, you can safely split that data stream into several blocks and process each block in
a different thread, or even on a different computer, and in any order. The map-reduce pattern
does this very effectively. If you have a procedural program that works on lists of data,
multiprocessing can often be more difficult and error prone.

1.5 Disadvantages of functional programming

Functional programming has a few disadvantages, and situations where it cannot be used.

Not all functions can be pure. Most programs need to read and write files, communicate
over a network, interact with users and other such things. The functions that do those tasks are
not pure functions with totally predictable results.



A common way of handling this is to split the code into those parts than can be developed
using a functional approach (commonly any complex algorithms or heavy data processing) and
those parts that require a procedural approach. There should be a clear interface between the
two. The non-pure parts of the system can be developed, for example, using an OOP paradigm.

Pure functional languages, such as Haskell, use monads and similar constructs to deal with
impure functions. This is less commonkly used in Python, but we will cover th in a later chapter.

FP has a learning curve. It is probably true to say that there are far fewer programmers
who are experienced in functional programming than some other paradigms. It is a conceptual
leap to move from the idea of writing a function to do x to the idea of writing a function that
creates a function to do x. FP has its own jargon, largely drawn from fairly obscure branches of
mathematics, so you will need to learn terms such as lambda expression, closure, partial
function, currying, comprehension, monad and functor. But none of it is as complicated as it
sounds!

FP can be inefficient. In particular, immutable objects and recursion are very useful
concepts, and in many cases they can be used without problem, but they can be inefficient in
extreme cases. As well as thinking about functional programming in abstract termes, it is
necessary to keep in mind what you are asking the poor computer to actually do. It is worth
doing a sanity check for very large problems. See the example later of the recursive
implementation of Fibonacci series.

1.5.1 About this book

In the remainder of this book we will introduce the various aspects of Python that are either
directly to indirectly relevant to functional programming, with examples of their application:

e Obijects, variables, and functions as objects.
e Immutable objects.

e Recursion.

e C(losures.

e [terators.

e Transforming and reducing iterables.

e Comprehensions.

e (Generators.

e Partial application and currying.

e Functors and monads.

e itertools, functools and other useful libraries.



2 Functions as objects

As noted in the introduction, Python functions are first class objects. This means that
functions are objects that can be stored in variables, referenced in lists or other data structures,
and passed in and out of functions as parameters and return values. We will explore this in a bit
more detail in this chapter.

2.1 Objects and variables in Python

Before we talk about function objects, it is worth quickly recapping how objects and
variables work in Python in general.

Consider the following simple line of Python:
a = 'apple'
b = 'pear'

Now you might loosely say that the string 'apple’ is stored in the variable a, and the
string 'pear’' is stored in the variable b. But that isn’t quite correct. In fact, the strings are both
objects that Python stores in memory somewhere. The variables a and b simply hold references
to those objects - they point to those objects in memory. This diagram illustrates this:

b

This is quite important, because of what happens when we do this:

a=>b

Now a and b both reference a string with the value 'pear’', but the important this to realise
is that a and b actually both reference the same object in memory:

The previous 'apple' string is still in memory, but you can no longer access it in any way.
Python will eventually free up the memory it occupies, so it can be used for something else.

We will come back to this in a later chapter on immutable data types.



2.2 Storing functions

When you look at the way a variable is initialised and used in Python, and compare it to the
way a function is declared and used, you might easily assume that variables and functions are
completely different things:

a =10

def square(x):
return XxX*x

b = square(a)
print(b) # 100

Looking at the code, variables a and b are initialised by assigning a value to them, and used
by directly referencing them, as in print(b). Whereas the function square is created by the
def keyword and invoked using round brackets ().

In fact, @, b and square are all just variables. The def block is just special syntax for
defining a function object and assigning it to a variable (square in this case). The round
brackets are a syntax that can be used with any callable object (which includes functions) to call
it with parameters.

To further illustrate this, the following code treats square as an object and prints out its type,
id and string representation, just like you can do with any other object:

print(type(square))
print(id(square))
print(str(square))

You will see that the type of the objectis <class 'function'>.The idisjustsome
number that is unique to that object. And its str representation is <function square at
XXX>, where XXX is its address in memory. In other words, square behaves much like any
other object.

2.3 Aliases

Aliasing is when two different variables reference the same object in Python. For example,
consider this code:

t = (10, 20, 30, 40, 50)
u==t

print(t[2]) # 30
print(ul[2]) # 30

We assign a tuple value to variable t. This means that t holds a reference to the tuple object.
The tuple itself is stored in memory somewhere.

When we setu = t, we are actually copying the reference into the variable u. We don’t
create a copy of the actual tuple itself. There is only one tuple, but both t and u point to it, so we
call then aliases - different names for the same data. When we then print t[2] and u[2], they
both refer to element index 2 in the original tuple.



In the earlier example, we saw that square is just a variable that holds a reference to a
function object - a function that calculates the square of X. We can create an alias for that, too:

def square(x):
return Xx*x

sq = square

a=3
print(sq(a)) # 9

In this case, sq can be used in place of square, doing exactly the same thing, because they
both point to the same underlying object - a function object.

This also works with built in functions. For example, you could create an alias of print, like
this:

pr = print
pr('This 1is an alias"')

Just because you can, doesn’t mean you should, of course! This might seem like a great way of
shortening your code if you use a lot of print statements, but it is likely to be quite confusing to
anyone reading it.

In fact, you are quite unlikely to use aliases directly in your code. But you will use them
indirectly quite often. In the previous example with square, we pass the variable a into
square, but within the function it is aliased as X. In the next section we will look at passing
functions into other functions as parameters, and they will be aliased in a similar way. This is the
essential feature of Python that makes functional programming possible at all.

2.3.1 Redefining a function

Since functions are essentially variables that happen to hold function objects, you can
reassign them at any time:

def a():
print(1)

def a():
print(2)



Python has no problem with this. But it has consequences, and generally is best avoided.
Here is a simple example of what can happen:

def a():
print(1)

def b():
aQ)

bO # 1

def a(Q):
print(2)
bO # 2

We have defined a function a that prints 1. We then define function b that calls function a
that prints 1. When we call b for the first time, it prints 1 as expected.

Next, we redefine a to print 2 instead. What happens when we call b again?

Well, as far as function b is concerned, a is just a global variable. It looks up the value of a,
which is a function object. In fact, of course, it is now the function that prints 2. b calls that
function, and 2 is printed.

The pitfall here is that you have changed the behaviour of function b without it being
particularly obvious what has happened, which is a recipe for bugs. It is rarely a good thing to
do.

2.4 Functions as parameters

Consider this function that converts inches to centimetres and prints the result. One inch is
2.54 cm, so the conversion is a simple multiplication:

def inch2em(x):
return x*2.54

def convert(x):
y = inch2cm(x)

print(x, '=>', y)
convert(3) # 3 => 7.62

Suppose we wanted to generalise this function so that it could convert between different
units. There are various ways to do this, but one way would be to remove the explicit call to
inch2cm from the convert function. Instead, we could pass the function as a parameter, like this

def convert(f, x):
y = )

print(x, '="', y)

convert(inch2cm, 3) # 3 => 7.62



Notice that the function is passed in as a normal parameter, . When we need to call f to do
the conversion, we just use T (x) exactly like any other function.

When we call convert, we need to pass inch2cmin as the first parameter. We use the
syntax inch2cm to pass the function object, rather than inch2cm() which would try to call
the function (which isn’t what we want at all).

Now supposed we wanted to convert a temperature from Celsius to Fahrenheit. We can write
a c2f function that does this:

def c2f(x):
return x*1.8 + 32

To use this conversion, we just need to pass c2f into the convert function:

convert(c2f, 18) # 18 => 64.4

Just as a final illustration, we will add a conversion from integers to text — 1 becomes “one”, 2
becomes “two” etc. Here is our i2text function, which for brevity only works for values up to 0 to
3. It uses a list to convert integers to text:

def i2text(X):
text = ['zero', 'one', 'two', 'three']
return text[x]

convert(i2text, 2) # 2 => two

The interesting thing here is that 1 2text doesn’t use the same types as the previous
functions. It accepts and integer and returns a string, whereas the inch2cm and c2f accept and
return numerical values. The convert function doesn’t mind this at all - it just passes the value
to supplied function and returns whatever comes back.

This was a very simple example, now we will look at a more realistic example.

2.4.1 The sorted function

You may be familiar with the Python built in sorted function. It can be used to return a
sorted copy of a list, like this:

p=1[3,7,2,6,1]
g = sorted(p)
print(q) # [1, 2, 3, 6, 7]

The sorted function uses standard Python comparisons to order the list, so in this case it
sorts the numbers in increasing order. If the list contains strings, they will be sorted in
alphabetical order instead:

p=['red', 'green', 'blue', 'yellow', 'cyan']
q sorted(p)
print(q) # ['blue', 'cyan', 'green', 'red', 'yellow']



What if we wanted to sort the strings in a different way - for example, if we wanted to sort
the keys in ascending length? Fortunately, the sorted function takes an optional parameter
key that allows for this.

The key parameter accepts a function object as a value. The function is applied to each
element is the list, and the list is sorted based on the return value.

If we want to sort a list of string by increasing length, we need to use a function that accepts a
string and return the length of the string. Fortunately, we already have such a function - the
built in Ten function. Here is a new version of the code, where we pass in the 1en function as
the value of the key parameter:

p=1['red', 'green', 'blue', 'yellow', 'cyan']
g = sorted(p, key=len)
print(q) # ['red', 'blue', 'cyan', 'green', 'yellow']

This works exactly as we had hoped. ‘red’ is first in the list because its length is 3, ‘blue’ and
‘cyan’ are next with length 4, ‘green’ with length 5 and finally ‘yellow’.

Of course, we don’t always have a convenient built in function that does exactly what we
need. Sometimes we have to define our own. In the example below we have a list of rectangles,
defined by a pair of values (width, height).For example (3, 2) defines a rectangle that is 3
units wide by 2 units high. We wish to sort then by increasing area. To do this, we need a key
function that multiplies the width by the height, such as the area function below:

def area(x):
return x[0]*x[1]

p=1[@, 3, (4, 2), 2, 2), (5, 2), @1, 7)]
g = sorted(p, key=area)

print(aq) # [(2, 2, 4, 7O, (4, 2), 3, 3), (5, 2)]

Each tuple will be passed into the area function. This function multiplies elements 0 and 1
of the tuple (the width and height) to give the area. The area is then used as the sort criterion.
As you can see from the result, this sorts the rectangles in order of area.

We will cover sorted in more detail in the chapter Transforming iterables.

2.5 Lambda functions

Lambda functions sound like they are going to be something complicated, but in fact they
really are very simple.

In the example above, we needed to create a function called area. This is a very small
function, that will probably only be used in one place. There has to be a better way, surely?

Well there is. You can use lambda syntax to create a simple function in a Python expression.
Here is how we could replace our area function:

Tambda x: x[0]*x[1]

The Tambda keyword identifies the lambda expression. X is the parameter (in this case there
is only one parameter). The colon ends the parameter list and introduces the body of the
function.



To use this expression, simply place it wherever you might normally use a function object.
For example:

g = sorted(p, key=lambda x: x[0]*x[1])

This code creates a temporary, anonymous function object and passes it into the sorted
function. The sorted function uses it to perform the sort. And then it’s gone, just like any other
temporary object.

The unnamed function you create with a lambda expression is exactly the same as a function
created with def, it just doesn’t have a name. If you really wanted to you could assign it to a
variable, like this:

area = lambda x: x[0]*x[1]

This creates a function called area. It is more or less the same as creating an area function
with def. There isn’t really any point doing it this way, however, it will just confuse anyone
reading it.

A lambda expression can have any number of arguments (including none), for example:

Tambda: 1 # No arguments
Tambda x, y: x + vy
Tambda a, b, c, d: a*b + c*d

You will probably find yourself using lambda expressions quite often when using functional
programming. Like many aspects of Python, they can be expressive and make code shorter and
more readable - or they can make for impossibly cryptic code. It is all a matter of balance. Here
are some guidelines:

e Lambdas can only contain a single Python expression. If your function cannot be
expressed in one line, you can’t use a lambda.

e Generally, itis best to use them only for short and simple code, where the behaviour of
the function is obvious by looking at it. If the behaviour is complicated, it is usually best
to define a normal function so you can give it a meaningful name and add comments.

e Since alambda expression will usually be used as part of a longer line of code, make sure
that overall the code is still readable. If a function call uses several lambda expressions, it
might be difficult to see what is going on.

e [fthe same function is used in several places, it is usually better to define a normal
function, rather than repeating the lambda.

Although these criteria might seem restrictive, you will find there are many situations where
a lambda is the perfect fit for what you need to do.

By the way, since a lambda is a function object, you can call it in-place like this:

a = (lambda x: x + 1)(3)

The lambda expression creates a function object that adds 1 to its argument. The (3) calls
the function object with value 3, so a is set to 4. This isn’t a particularly useful feature, because
you could just write:

a=3+1



This does exactly the same thing, so it isn’t really of any practical use. But it illustrates that a
lambda expression can replace a normal function is all situations.

2.6 Functions as return values

You can return a function as a value. Here is a simple example:

def addl1():
return lambda x: x + 1

f = add1Q
print(f(2))

Here, add1 returns a function that accepts a single argument and adds 1 to it. This isn’t
particularly useful, of course, we could just use the lambda. Things get a lot more interesting in
the chapter Closures.

2.7 Function versions of standard operators

The standard operator module contains a set of functions that are equivalent to Python
operators. For example:

X = operator.add(a, b) # Equivalent to x = a + b
X = operator.truediv(a, b) # Equivalent tox =a /b
x = operator.floordiv(a, b) # Equivalent to x =a // b

These are very useful functions that can often be used to replace lambda expressions. For
instance, the earlier example:

Tambda x, y: x + vy

Could simple be replaced with add - a function that takes two values and adds them together
(exactly what the lambda in doing). Using a standard function is shorter and more declarative.

You can also use partial application to create new functions based on existing operators. For
example:

from functools import partial
f = partial(add, 3)
x = f(4) # Equivalent to x = 3 + 7

In this case, partial creates an anonymous function that takes one variable. It behaves like
add, but as if the first parameter had been pre-set to 3. In other words, it is equivalent to the
following lambda:

f = Tambda x: 3 + x

We will cover partial application in more detail in a later chapter.

The operator module doesn’t just include arithmetic operators. Here are a few more
examples but refer to the documentation on python.org for a full list. Essentially, for anything
you can do with an operator there will be a function that does the same thing:

operator.lt(a, b) #a<b



operator.eq(a, b) # a==>b
operator.not(a) # not a
operator.neg(a, b) # -a
operator.getitem(s, i) # s[i]
operator.setitem(s, i, x) # s[i] = x
operator.delitem(s, 1) # del s[i]

operator also defines a few useful functions that return functions. For example,
itemgetter returns a function that works like this:

k = [2, 4, 6, 8]
f operator.itemgetter(2)
X (k) # X =6

Here, itemgetter(2) returns a function that will get element number 2 from a list. When
we apply this function to list k, it gets he second element, value 6. There are similar functions to
get a named attribute (attrgetter) and call a named method (methodcaller). These are
particularly useful for use as the key argument for the sorted function. They will be described
in more detail in the chapter Transforming iterables.

2.8 Summary — sources of function objects

To summarise, here are the various ways you can obtain function objects to use in your code.
Some of these we have just met:

e Builtin functions, such as 1en, min, abs etc. Remember that, for example, Ten(s)
calls the 1en function to find the length of s, but 1en on its own gives the actual
function object.

e The operator module contains function versions of most Python operators, for
example add is the function equivalent of +.

e Lambda expressions can be used to create simple, unnamed functions.

e We can, of course, create new functions the standard way, using def.

Here are some more possibilities that we will explore in later chapters:

e Composition can be used to create a new function by combining two or more existing
functions that call each other, for example f(g(x)).

e Partial application can be used to create a new function based on an existing function
with some of its parameters already applied.

e Currying is an alternative way to achieve similar results to partial application.

e C(Closures can be used as general function factories if no other method provides quite
what you need.

e Objects thatimplement ___cal1__ can be used as function objects.



3 Mutability

We say an object is mutable if its value can be changed after it has been created. An object is
immutable if its value is fixed when it is created and can never be changed. Immutable values
are, in effect, read-only values. In this chapter we will look mutability in Python, and the pros
and cons of both types of objects.

3.1 Mutability in Python

In Python, it is usually an object’s type that tells you whether it is mutable or not. For
example, lists are mutable. If you create a list, you can change it in various ways:

k = [10, 20, 30]

k[1] = 7 # k is now [10, 7, 30]
k.append(5) # k is now [10, 7, 30, 5]
del k[2] # k is now [10, 7, 5]

There are many other ways to alter a list, we won’t go through them here, it is fairly standard
Python.

Tuples are similar to lists in almost every way, except that they are immutable. Once you
have created a tuple, you cannot change it in any way - you can’t add or remove elements, and
you can’t replace one of the elements with a different value. Here is what happens if you try the
previous code with a tuple:

t = (10, 20, 30)

t[1l] = 7 # TypeError tuple doesn’t support assignment
t.append(5) # AttributeError tuple has no append method
del t[2] # TypeError tuple doesn’t support deletion

You simply can’t do those operations on a tuple. All of the operations you can use to modify a
list simply don’t work in tuples, so it is impossible to ever change a tuple.

One thing to remember, of course, is that the variable is not the object — variables only hold a
reference to an object. So, it is perfectly ok to do something like this:

t = (10, 20, 30)
t=(@, 2, 1D
After the first line, t holds a tuple (10, 20, 30). After the second line, t holds a tuple (3, 2, 1).

[(}—>1(10, 20, 30)]

[(10, 20, 30)]

t
¢ (3,2,1)

But we haven’t changed the value of the tuple. We have created a brand-new tuple with a
different value, and simply changed the variable to reference the new tuple. The original tuple is



still there, unchanged, but since nothing is using it any more it will eventually be garbage
collected.

There are several other mutable data types, including dictionaries and sets. There are also
several immutable data types including strings, frozensets (the immutable version of a set), and
number types.

Mutable data types Immutable data types

list, set tuple, string, frozenset, int,
float, complex

3.2 Numbers are immutable

As an aside, you might be initially surprised to see that numbers are immutable. That is
because numbers are objects in Python, and if they were mutable some very strange things
would happen. Imagine this code:

a=3
b =a
a=4

Here, the first line creates an int object, with value 3, and assigns it to variable a (variable a
references the int object). The second line assigns a to b, so now variable b also references the
same int object.

Now what happens when we set a to 4 in the third line? If this operation changed the value of
the int object, not only would a be equal to 4, b would be equal to 4 as well! That would be
pretty disastrous. Fortunately, numbers are immutable, so what the third line actually does is
create a new int object, with value 4, and assign it to a. Variable b still points to the original int
object, which still has the value 3.

3.3 The problem with mutable objects

The basic problem with mutable objects is this: if you pass a mutable object into a function,
you have no way of guaranteeing that the function won’t change the object. For example:

def evil_func(x):

x[0] =0
k = [1, 2, 3]
evil_func(k)
print(k) # [0, 2, 3]

When you pass k into evil_func, the local variable x is given a reference to the same list
that is stored in k. if the function does something to the list in X, it is actually doing it to the list
in k. When you pass a list into evi1_func, you have no control over what happens to that list.

So, in the example above, even though you might think you are just passing k into the
function, k actually gets changed by the call!



Sometimes, of course, you might actually want a function to alter the list. You might pass the
list into the function expecting it to do something useful to it, for example sorting it in place -
though in fact by the end of this chapter you might prefer to design your function to return a
sorted copy of the input data.

But let’s assume that evi 1_func has no obvious reason to alter the list you pass it, so you
are hoping it won’t change it. That is ok if the function is very simple, and part of the same
module. At least, until you or someone else edits the function in the future and doesn’t realise
that evil_funcisn’t supposed to change X, or creates a bug that means X is changed
accidentally.

But what if evi1_func is part of a third-party library, and you have no control of the source
code. Then you are essentially trusting the developers of that library to not change X. Worse
still, the developers of that library might pass your list into another function, evil_func2, in
someone else’s library, that also isn’t supposed to change the list. So, you are not just trusting
the developers of one library, you are also trusting everyone that they trust.

3.3.1 Defensive copying

One way around this is defensive copying. Rather than passing your list into a function, you
pass a copy of your list into the function:

def evil_func(x):

x[0] =0
k = [1, 2, 3]
evil_func(list(k))
print(k) # [1, 2, 3]

The key change here is that the call to evi1_func passes 1ist (k). The 11 st function
creates a copy of the original list, so now X is a copy of k. So, no matter evil_func does to its
list, nothing is going to happen to your list k.

This solution isn’t completely terrible, but it has its downsides:

e You have to remember to do it.

o [fthelistis very big, you are creating an extra copy which may be a waste of time if the
function is well written and doesn’t in fact corrupt the list.

e [t can get out of hand...

On the last point, if function1 calls function2 calls function3, and each function makes a
defensive copy, you can end up with the same data being copied many times.

Worse still, some authors make a defensive copy of data passed into the function, so that if
they accidentally alter the data, the caller is protected:

def evil_func(x):
xcopy = list(x)
xcopy[0] = O

So now the data is copied twice every time a function is called!



3.4 Immutability is the answer

The basic solution to this problem is, wherever possible, to use immutable data objects. The
first thing we need to do is change the definition of evi1_func. We should specify that X is
immutable (or more precisely, that X is allowed to be immutable). So, you are allowed to pass in
a tuple instead of a list and the function should still work.

Here is the new code, based on the assumption that x can be a tuple:

def evil_func(x):

x[0] =0
t=(1, 2, 3)
evil_func(t)
print(t) # (1, 2, 3

This time, rather than corrupting your tuple (which would be impossible anyway because
tuples are immutable), evi1_func will throw an exception. Exactly as it should because it is
doing something illegal by trying to alter an object that is allowed to be immutable.

3.5 Changing immutable objects

We do sometimes need to “change” immutable objects. Of course, you can’t actually do that,
but what you can do is create a copy of the original object, modified in some way. There are
various ways of doing this, which we will explore here.

Let’s start with a simple example. The tail function takes a list and returns a list that is
identical except that the first term is removed.So [1, 2, 3] becomes [2, 3].Here is how
we might do this:

def tail(X):

if x: # 1f x is already empty do nothing
del x[0]
k = [1, 2, 3]
tail(k)
print (k) # [2, 3]

This only works for lists. The list is passed into the function and modified in place. But for
reasons we discussed previously, this will fail if we pass a tuple as the parameter.

What if we wanted to make this function work with tuples as well as lists? In that case, we
can’t modify the supplied argument, so instead we make our function return a modified tuple:

def tail(x):
return x[1:]

t=(1, 2, 3)
t = tail(t)
print(t) # (2, 3)



This does the same job as the list case above, but in a cleaner way. The way we call the
function has changed, we now assign the return value back to t.

Notice how the function now operates. It uses slice notation to create a new tuple, containing
only the elements from 1 to the end of the original tuple. Slice notation is very neat, but don’t let
it disguise the fact that we are creating a copy of the tuple. If the tuple is very long, and if we do
this operation many times, there would be a performance hit both in terms of execution times
and memory usage. But unless the tuple really is extremely large, that shouldn’t be anything to
worry about.

A bonus of this change is that the new function not only works with tuples and lists. it works
with strings too! We use the term sequence to refer to lists, tuples, strings and similar data
structures.

There are several ways to process immutable data, which we will look at now.

3.5.1 Using slices

Slices provide a very versatile way to chop sequences up into parts. Those parts can then be
reassembled using the + operator. Here are a couple of examples. To add an element 3 into the
middle of a tuple at position n, you can do something like this:

u=vl:n] + (3) + v[n:]

Alternatively, to remove the element at position n from a tuple you can do this:

u=vli:n] + vin+l:]

The only thing to bear in mind here is that you are creating several copies of the tuple. You
will be creating a temporary copy of v[ :n], a temporary copy of v[n+1:], and of course the
final tuple u. This shouldn’t be an issue unless the tuples are very large.

This technique will also work with string values. To add a letter ‘a’ into the middle of a string,
you can do this:

3.5.2 Using list comprehensions

Sometimes you need to perform a simple operation on each element of a sequence. For
example, suppose you want to add 1 to each elementin a tuple. So (1, 5, 7) becomes (2,
6, 8).Alistcomprehension is a great way to do this:

u
t

[x + 1 for x in v]
tuple(u)

A list comprehension can take any type of sequence as input, but always creates a list. The
example converts the list back into a tuple.



3.5.3 Using a loop

Suppose you wanted to duplicate all the zeros in a tuple, so (1, 0, 2, 0, 5) becomes
(1, 0, 0, 2, 0, 0, 5).Youcan'teasily do that with a list comprehension, so a simple
loop can be used instead:

u =[]
for x in v:
u.append(x)
if x == 0:
u.append(x)
t = tuple(u)

3.5.4 Converting the data to a list

If you need to do some particularly complicated processing of a tuple, you can always convert
it to a list, do what you need to do, then convert it back to a tuple.
3.6 The problem with immutable objects

So, although immutable objects solve a lot of problems with accidental modification of data
as itis passed around in a program, that comes at a cost:

e You may need to jump through a few hoops if you need to process the data.
e You may end up making several copies of the data.

In many cases it is worth using immutable data wherever possible for the sake of robustness.
The main exception is if you are processing very large data structures. In that case, making a full
copy of the data every time you make any change is just not practical, and you are better off
using mutable data, and simply taking extra care about when and where it is modified.

In the rest of this chapter, we will look at some other considerations surrounding immutable

objects.

3.7 Immutability is shallow

If you are dealing with more complex data structures, it is important to understand exactly
what we mean by immutability.

Consider the case of a tuple that contains several lists:

t = ([1; 2]; [41 6]! [51 9])

You can access this data in various ways:

print(t[1]) # [4, 6]
print(t[2][1]) # 9

The first print statement access t [1], the second element of t, which is of course the list
[4, 6].The next print statement accesses t[2] [1]. Of course, t [2] is the third element if t,
thelist [5, 9].This means that t[2] [1] is the second element if that array, which is 9.



But what happens if we try to update these values:

t[1l] =0 # Error
t[2][1] = O # t becomes ([1, 2], [4, 6], [5, 0D)

You can’t change t[1] because that would be altering the tuple. But you can change
t[2] [1] because that is just changing a list that happens to be inside a tuple.

If you have not used tuples of arrays before, this might seem a little odd, because it seems
like we are altering the tuple. But in fact, we are not really altering the tuple at all. Think of it
like this:

o Initially, our tuple contains 3 references, to 3 list objects.

o We change the value of one elements of the list object.

e The tuple still contains 3 references to the same 3 list objects. One of those lists now
contains different values, but it is still the same list object. The tuple has not changed.

The way it works is quite logical, it can just catch you out at first if you were thinking that
placing a list inside a tuple protects the list from being changed - it doesn’t!
3.8 Summary

In this chapter we have covered the topic of mutability and looked at mutable and immutable
objects in python. We have seen the potential problem with mutable objects being changed
unexpectedly and the costs of defensive copying, and how immutable objects can help ensure
that functions have no side effects.

We have also looked at the limitations and performance costs of immutable objects.



4 Recursion

Recursion is a common technique that is often associated with functional programming. The
basic idea is this - given a difficult problem, try to find procedure that turns the original
problem into a simpler version of the same problem. Apply the same procedure repeatedly to
make the problem simpler and simpler, until you have a problem that is so simple you can just
solve it in one go.

As a Python programmer you may well look at some examples of recursion and think that it
would obviously be easier to write a loop instead. Some other languages don’t have loops, so
you have to use recursion, but in those cases the interpreter often creates a loop behind the
scenes.

But there are plenty of problems that are inherently recursive in nature and would be very
difficult to solve in any other way, so recursion is definitely something to have in your toolbox.

4.1 Factorials

This example is a slight cliché, but it is still a good illustration of both the beauty and pitfalls
of recursion.

The factorial of an integer n is the product of all the integers between 1 and n. For example, 6
factorial (usually written 6!) is:

6%5%4%3%2*]1 = 720
Now as we said in the introduction, the obvious way to do this is with a loop. But there is an
alternative, “cleverer” way, using recursion.

We can make the simple observation that 6! is actually 6*5!.And 5! is 5*4!, and so on. So,
we could calculate n! without ever explicitly calculating a factorial at all. We just keep relying
on smaller and smaller factorials, without ever calculating them.

Of course, you must stop somewhere - we know that 1! is 1.

Here is the Python code for calculating the factorial of n. Like we said, we just return n times
the factorial of n - 1, unless n is 1 when we just return 1:

def factorial(n):

if n>1:

X = n*factorial(n-1)
else:

x =1
return X

print(factorial(6))



Amazingly enough, this works. We can investigate this further by adding some debug print
statements:

def factorial(n):
print('Enter', n)

if n>1:
x = n*factorial(n-1)
else:
x =1
print('Exit', n)
return X

Here is what it prints

Enter
Enter
Enter
Enter
Enter
Enter
Exit
Exit
Exit
Exit
Exit
Exit

R NWwW,A OO

AV h WN R

As you can see, we have called a function within a function within a function ... that's
recursion, of course.

4.2 Recursion limits

Recursion is relatively inefficient compared to looping. This is because each step in a
recursion results in a function call, whereas each step in a loop merely requires a “jump” to a
different place in the code.

Calling a function involves considerably more work than a simple jump, and in any system it
is going to take more time and use extra memory (memory is required to store the current state
on the function - the values of its local variables - each time the function calls itself recursively).

However, Python has a rather more immediate problem. Recursive calls are limited to a
depth of 1000. The code above cannot be used to calculate the factorial of any number greater
than 1000.

This doesn’t mean that recursion isn’t a useful tool in Python. If you are processing a binary
tree, for example, a depth of 1000 allows you to process a tree containing around 21900
elements, which is a vast number. But if the problem can be solved with a simple loop, that is
probably the best solution.



4.3 Tail recursion

The form of recursion exhibited by factorial is called tail recursion. Tail recursion is
when the recursive call is right at the end of the function (usually with a condition beforehand
to terminate the function before making the recursive call).

When a function is tail recursive, you can generally replace the recursive call with a loop. In
Python, you usually should do that!

Some languages automatically spot tail recursion and replace it with a looping operation.
This is often called TCO (Tail Call Optimisation). Python does not do this. It tends to happen in
pure functional languages, where in some cases loops don’t even exist. Such languages are often
far more declarative than Python, which makes it easier to detect tail recursion.

There are some hacks that allow you to implement tail recursion in Python, but they are not
covered here.

4.4 |nefficient recursion — Fibonacci numbers.

Here is another classic example of recursion - calculating the nth Fibonacci number. It turns
out that this is hopelessly inefficient using pure recursion, but we will also look at a useful
technique to alleviate the problem.

If you are not familiar with the Fibonacci series, it is an infinite series of numbers defined as
follows:

FO = 0
F1 =1
F2 = F1 + FO
F3 = F2 + F1 = 2

I
=

%&H) = F(n-1) + F(n-2)

In other words, each element is the sum of the two previous elements. Here are the first few
values of the series:

o, 1, 1, 2, 3, 5, 8, 13, 21...

This can obviously be calculated recursively, like this:

def fibonacci(n):

if n==0:
x =0
elif n==1:
x =1
else:
X = fibonacci(n-1) + fibonacci(n-2)
return X

print(fibonacci(8)) # 21

Notice that we need to supply two initial cases. You can’t calculate FO or F1, they are defined.
The series is numbered from 0, so element 8 is 21.



If we now look at how this function actually works, by analysing adding Enter and Exit
print statements as before. It turns out to be a bit of a nightmare!

Calculating F8 requires us to calculate F7 and F6. That is where the inefficiencies start,
because of course calculating F7 also requires us to calculate F6. Since these calculations are
done in separate branches of the recursion, F6 will be calculated twice.

Calculating F6 twice then requires us to calculate F5 twice, but we also need to calculate it
again as part of the F7 calculation, so we end up calculating F5 three times.

Calculating F6 twice and F5 three times means we end up calculating F4 five times. You
might be noticing a pattern here - the number of times we have to calculate each successively
lower level of recursion increases according to the Fibonacci series!

In short, this is a terribly inefficient method.

4.5 Memoization

The basic problem here is that we are calling fibonacci multiple times, with the same
argument, but each time we are calculating the value all over again.

Now we know that fibonacci is a pure function. It has no side effects, and every time you
call it with a particular value, you will always get the same result.

What we need is some way to remember all the times it has been called before, remember
the result, and only calculate it if it is called with a value that has never been seen before. We
can do this using a dictionary told all the previous calls. The dictionary key is the argument, the
dictionary value is the result. Here is the code:

cache = dict(Q)
def fibonacci(n):

if n in cache:
return cachel[n]

if n==0:
x =0
elif n==1:
x =1
else:
x = fibonacci(n-1) + fibonacci(n-2)

cache[n] = x
return x

print(fibonacci(8))

Here we define an empty dictionary called cache. Every time we enter the fibonacci
function, we check if the value if n already exists in the dictionary. If it does, we simply return
the previous stored value for the function result, which is found in cache[n].

If the value doesn’t already exist, we calculate it in the normal way. Then before fibonaccii
returns we store the result in cache, so we never have to calculate it again.



4.5.1 functools Iru_cache

This is all very well, but it is adding extra code to the fibonacci function. Extra code which
in fact, has little to do with what the function is really doing, it has more to do with an efficiency
improvement that you might wish to use with other function, not just fibonacci.

These so-called cross cutting concerns are exactly what decorators where invented for.

In addition, our cache implementation is quite crude and simplistic. It relies on having a
global variable, cache, kicking around in the file, and hoping that nobody else uses it. It only
works for functions that take exactly one argument. It also allows the cache to grow to any size,
when it might sometimes be more sensible to set a maximum size.

Fortunately, there is an existing decorator, 1ru_cache, solves all those problems. It is in the
functools module, and it only takes one line of code to set it up:

from functools import lru_cache

@lru_cache()
def fibonacci(n):
print('Enter', n)
if n==0:
X =
elif n==
X =
else:
x = fibonacci(n-1) + fibonacci(n-2)
print('Exit', n)
return X

)

print(fibonacci(8))
That is it. Just import the decorator and add @1 ru_cache before the function definition, and
it will only ever call fibonacci once for every value of n.

If you aren’t familiar with decorators, they are explained in a later chapter.

4.6 Flattening lists
Consider a list like this:

(1, (2, 31, 4, [[5, 6], 7]]

This list contains a mixture if integers and lists. Those lists can also contain a mixture of
integers and lists, and in fact the whole thing can be nested to any depth. You want to flatten this
into a single list containing all the integers in the order they occur in the original unflattened
list:

(1, 2, 3, 4, 5, 6, 7]
This is quite interesting because it is hard to come up with a solution that doesn’t involve

recursion. But there are different degrees to which you can use recursion. We will start with a
fully recursive solution.



A simple fully recursive solution works like this. We take the original list and divide it into
two parts. The first element of the list, which we will call the head, and the rest of the list, which
we will call the tail.

The basic method is to flatten the head and flatten the tail, then join them together again.
Since both parts of the list have been flattened, when we join them together we get a fully
flattened list. Of course, we recursively call the flatten function to flatten the head and tail.

Of course, we need ours stopping conditions. If we are asked to flatten something that isn’t a
list (for example if it is an integer), we create a list from the value and return that. And if we are
asked to flatten an empty list, we return an empty list. Here is the code:

def flatten(x):
if not isinstance(x, Tlist):
return [x]
if x == []:
return x
return flatten(x[0]) + flatten(x[1l:])

Even without tracing through the code, it seems fairly plausible that this will work, for the
following reasons:

e Ifyou correctly flatten the head and the tail, and concatenate them, you will get a
flattened list.

e Each iteration divides the list, so it will keep getting smaller.

e Every path therefore eventually results in a value that is either not a list (an integer
value) or is an empty list. These two cases are handled correctly by returning a list
representation that will be added to another list to create a solution.

Obviously, this falls well short of a mathematical proof of correctness, but it inspires
confidence.

4.6.1 A less recursive solution

The solution above works. The main drawback is that it creates a least one level of recursion
for every item in the list. That is because each level flattens the tail of the list and doesn’t stop
until the tail is empty. If the list is 100 elements long the recursion will be at least 100 deep. If
the list is greater than 1000 long, even if the list is already flat, it will fail due to the Python
recursion limit.



The basic problem is, in the quest for functional purity we have ended up with a solution that
will break itself trying to flatten a list that is already flat. We can improve things be only
flattening elements that are actually lists. Here is the solution:

def flatten(x):
if not isinstance(x, Tist):
return [x]
if x == []:
return x
r =[]
for e in x:
if isinstance(e, list):
r += flatten(e)
else:
r.append(e)
return r

This is still recursive, but it doesn’t automatically recurse into the head and tail each time. It
loops through the elements in x, and only flattens any lists it finds. If lists are nested, it will still
recurse into those lists to flatten them, but the depth of recursion is limited by the depth of
nesting of the lists, not the total number of elements in the original list. If the original list is flat,
the function will make no recursive calls at all.

4.7 Summary

In this chapter we have looked at recursion as a more functional alternative to looping for
certain algorithms. We have also seen the limitations of recursion in Python, in terms of the
recursion depth limit and the lack of Tail Call Optimisation, and seen how memoization can help
alleviate that in certain situations.



5 Closures

In functional programming, we sometimes write functions that create other functions. A
simple and elegant way to do this is to use a closure. Closures provide a way to create functions
dynamically, a little like lambdas but far more powerful.

5.1 Inner functions

Let’s start by looking at inner functions. An inner function is a function that is defined inside
another function. Like this:

def print3(Q:

def print_hello():
print('hello')

print_hello()
print_hello()
print_hello()

# Main code
print3(Q)
print_hello()

print_hellois aninner function of print3. Specifically, print3 first defines
print_hello, then calls it 3 times.

The result when we run the main code is:

e Calling print3 prints “hello” 3 times.

e Calling print_hello gives an error because it is only visible from inside print3.
5.1.1 Returning an inner function

A function can return an inner function, like this:

def make_print():

def print_hello(Q):
print('hello')

return print_hello
# Main code

fn = make_print()
fnO

Here the make_print function defines an inner function print_helTo. But it doesn’t call
print_hello, it simply returns it as a function object.



When we call make_print in the main code, we assign the function pointer to the variable
fn. This means that fn is now effectively and alias of the inner function print_hel1o. So,
when we execute n, it does what you would expect - it prints “hello”.

This may be interesting, but it isn’t particularly useful. We could, of course, have simply
defined print_hel1o as a top-level function, and we wouldn’t have needed any of the rest of
the code.

5.1.2 Aclosure

This next step is where the magic happens, and we actually create our first closure:

def make_printx(x):

def printx(:
print(x)

return printx

# Main code

fnl = make_printx(7)
fn2 = make_printx(100)
n1O

n20

This time our outer function make_printx takes a parameter. And the inner function
printx, uses that parameter. That is fine, of course, because an inner function can access the
local variables and parameters of the enclosing function.

Now we call make_printx passing in a value of 7. This creates a function object for the
function printx, but here is the important part - that function object is associated with the
value X = 7.The combination of the function object together with the value of X is called a
closure.

In the code above, fnlisa closure of printx with the X value 7, and fn2 is a closure of
printx with x value 100. Whenever we call fnl it will print 7, and whenever we call fn2 it
will print 100.

5.1.3 A more useful closure

Suppose we needed a function that prints a value, but automatically surrounds that value

with brackets. We also want the ability to control what sort of brackets (such as [x] or {x} or
<<x>>).



Here is how we could do that as a closure:

def make_printb(start, end):

def printb(s):
print(start + s + end)

return printb

# Main code

sq = make_printb('[', '"]1")
dbl_ang = make_printb('<<', "'>>")
sq('hello"')

db1_ang('world")

Here, make_printb accepts parameters for the start and end brackets. But in this case,
the inner function printb accepts a parameter that represents the actual string to be printed
inside the brackets. This means that the type of brackets if fixed when you create the closure,
but you can set the content when you actually call the closure function.

So, when we create the closure sq, we set the brackets to be square brackets. Every time sq
is called, it will use square brackets, but the content between the brackets can be whatever you
like. Similarly, db1_ang will always use double angle brackets.

What we have created with quite a simple closure is a factory for creating a whole family of
functions that print bracketed text using different bracket styles.

5.2 What s a closure?

So, what is a closure? A closure normally requires three things:

e An outer function that contains an inner function.
e The outer function has parameters and/or local variables.
e The outer function returns the inner function as a function object.

In fact, strictly speaking any function that returns an inner function is a closure, even if it
doesn’t have any parameters. For example, our make_print function near the start of the
chapter - but with no way to vary the behaviour of the closure, it isn’t very useful.

5.3 Creating anonymous functions

In the next few sections we will look at various ways that closures can be used, starting with
using closures to create anonymous functions.

5.3.1 Asimple introduction to map

The map function is a Python built in function. In its simplest form it accepts a function object
and a sequence (e.g. a list). It applies the function to each element of the list.

a=[2.2, 5.6, 1.9, 0.1]
b = map(round, a)
print(list(b)) # [2, 6, 2, 0]



In this example we apply the round function to every element in a. The round function
rounds a value to the nearest integer. This gives the result shown. (Note that map uses lazy
iteration, so we will use the 11 st function to turn the result into a list that we can print).

5.3.2 Incrementing the elements in a list

Suppose we now wanted to add 1 to each element in the list. We need a function that accepts
a single argument and adds 1 to it. One way to do this would be to use a lambda:

Tambda x: x + 1

This creates an anonymous function that does exactly what we want. Let’s try this with a
map:
a = [l y 3 ’ O ’ 6]
b = map(lambda x: x + 1, a)
print(list(b)) # [2, 4, 1, 7]

5.3.3 Using a closure instead of a lambda

We can use a closure to create an anonymous function, instead of a lambda, like this:

def addn(n):
def add(x):
return x + n
return add

a=1[1, 3, 0, 6]
b = map(addn(1), a)
print(list(b)) # [2, 4, 1, 7]

Here, addn (1) creates an anonymous function that adds 1 to its argument - exactly like the
lambda function we defined before. This involves more code than just using a lambda, because
the closure has to be defined, but it has several advantages:

e Ifyou need to use the function in more than one place, it might be better to define a
closure.

o The closure allows you to create a family if related anonymous functions, for example
addn(2) creates a function that adds 2 to its arguments.

e The function inside a closure can be as complex as you like, whereas a lambda is limited
to a single expression. If you need a complex function, a closure is a good choice.

5.3.4 Other alternatives

There are other ways of creating anonymous functions like the ones here. You could use a
callable object, as discussed earlier. Or you can use partial application, which is described in a
later chapter.

5.4 Composing functions

Let’s suppose you needed a function that could convert any character, for example ‘a’ into a
hex string representing its ASCII character code (which would be ‘0x61’).



There are two Python functions you can use to do this. ord converts a character to an int
value representing its ASCII code (or more generally its Unicode value). hex converts an int
value into a hex string. Using these two functions, we can define a function that does the task for
us:

def codestr(c):
returnChex(ord(c)))

h = codestr('a')
printCh) # 'Ox6l'

In this code we apply the ord function to the value ¢, and then apply the hex function to the
result. Applying one function to the result of another is called composing the two functions.

Defining a function is a procedural way of doing things. A more functional way would be to
build a function to do the job for us. Like this:

def compose(f, g):
def fn(x):
return f(g(x))
return fn

codestr = compose(hex, ord)

h = codestr('a')
print(h) # 'Ox61"

First, we define a compose function. compose accepts two functions, f and g. It returns a
function that applies g to X and then applies f to the result. This is a completely generic that can
used to compose any two functions you want. The only conditions are:

e fand g must each accept one parameter.
e The return value of g must be a valid input parameter for f.

The next step is use compose to create a function that applies ord and then hex. We will
store this function object in codestr, then we can call it with value ‘a’ to test that it works.

5.4.1 The advantages of composing functions

Looking at the code, you might be thinking that the first version is simpler than the
functional version. But remember that compose is a generic function that we might use many
times. So, the original code looks like this:

def codestr(c):
returnChex(ord(c)))

The equivalent functional code looks like this:

codestr = compose(hex, ord)

The code looks fairly similar, but the functional code demonstrates the intent much more
clearly. The new function composes hex and ord, it says so right there! In the original code,
that intent is expressed as a function that could be doing anything. You need to read the code to



be sure. It might seem like a minor difference, but with more complex code the cognitive burden
can add up.

A related aspect is that, provided you trust compose, hex, and ord, then the functional
solution has to work. How could it not, it is just three trusted functions doing what they do?
With the original code, you have two trusted functions plus a brand-new function that, for all
you know, could have a bug. Again, not very likely, but these things can add up in a more
complex program.

Another advantage is that we can use compose to create anonymous functions. For example,
we can use map to apply our composed function to a string and produce a list of hex values. This
saves us an ugly lambda expression.

s = 'xyz'
b = map(compose(hex, ord), s)
print(list(b)) # ['0x78', 'Ox79', 'Ox7a']

If you are not too familiar with map, it will work with strings as well as arrays, applying the
function to each character in the string and creating an iterator b that we then turn into a list.

Finally, we can use our compose function to create other functions. Here is how we would
create a function calculate the square of the sine of x:

compose(lambda x: x*x, math.sin)

5.5 Using closures instead of classes

For the final example, we will look at a simple number formatter. We want a formatter that
can convert a floating-point number to a string, with a fixed number of decimal places.

We could do this with a simple class, like this:
class Format():

def _init__(self, precision):
self.p = precision

def format(self, x):
return '{:.{prec}f}'.format(x, prec=self.p)

This class can be used to create a format object (as with the 3 digit case) or you can create
and call the object in one statement (as with the 5 digit case):

format3 = Format(3)
print(format3.format(1.2345678))

print(Format(5).format(1.2345678))



Here is how you could use a closure as a factory to create format functions that do a similar
job:

def formatn(precision):

def format(x):
return '{:.{prec}f}'.format(x, prec=precision)

return format

And here are the two ways to call it:

format3 = formatn(3)
print(format3(1.2345678))

print(formatn(5)(1.2345678))

Both are valid, and there is nothing wrong with using a class in this case, but a closure offers
quite an elegant solution. Generally, you can use a closure instead of a class if:

o The class would only have one method.
e The parameters are set in the __init__ method and never changed.

If these conditions are not met, you will often be better using a class.

5.6 Using classes instead of closures

While we are looking at classes, it is worth mentioning that you can create classes that can be
“called” like functions. All we need to do is define a method __cal1__in the class. This is
useful to know, but probably not something you will use often.

__call__is one of the special methods that Python provides to allow user defined objects
to support Python operators. All the methods are two underscores before and after their names
to distinguish them from normal methods. For that reason, they are sometimes called “dunder”
methods (double underscore), or alternatively magic methods. The method __call__
supports function calling.

Here is some example code. We modify the class called Format, to includea __call__
method instead of the previous format method.

class Format():

def _init__(self, precision):
self.p = precision

def __call__(self, x):
return '{:.{prec}f}'.format(x, prec=self.p)



Now we create an object format3 as before. But this time, in order to invoke it we just need
to use the same syntax as we would use to call a function:

format3 = Format(3)
print(format3(1.2345678))

print(Format(5) (1.2345678))

Notice that format3 is not a function object, it is a Format object. But because it supports
__call__, we can use function notation to call it. And, of course, we can still create an object
like Format (5) and call it directly.

Well now our object can be used in a very similar way to the closure. Is it worth doing? Not
usually, because defining a simple class is more hassle than defining a simple closure.

One scenario where the class might be a better choice is if you have more complex
initialisation requirements. For example, suppose we wanted to allow the format to specify the
number of decimal places and the overall width of the string. And to allow for more features
later, we use a fluent interface style. Here is our fluent formatter:

class Format():

def __init__(self):
self.p =0
self.w =0

def prec(self, n):
self.p = n
return self

def width(self, n):
self.w = n
return self

def __call__(self, x):
return '{:{width}.{prec}f}'.format(x, width=self.w,
prec=self.p)

The fluent interface allows us to initialise our formatter like this:

format3 = Format() .width(10).prec(3)
print(format3(1.2345678))

This type of interface can be very useful if the formatter has lots of options, with many of
them optional. It can only really be done using a class.



5.7 Closure inspection

You can look inside a closure to find the values of its variables. Here is an example closure:
def f(x, a, v):
def g(e):
print(x, a, v, e)
return g

c =f(, 6, 7)

Python provides methods to inspect an object more deeply. In the code above, the function
returns the function object g, which is assigned to variable C. Since the object returned is a
closure, it also contains information about the variables X, a, v and their values.

These variables are called free variables - the variables that are passed into f. In other
words, variables that are used by f but not defined within f.

Every object in Python has “hidden” attributes that store information about its internals. For
closures the important attributes are __code__and __closure__. These attributes aren’t
really hidden, of course, you can get a list of all them all using:

dir(c)

which gives you a dictionary of the names of the items:

['__annotations__', '__call__', '__class__"', '__closure__",
'_code__', '__defaults__', '_delattr__', '__dict__",
' dir__', '_doc__', '__eq__', '__format__', '_ge_ ',
'_get__', '__getattribute_', '__globals__"', '__gt__",
' _hash__"', '__init__', '_kwdefaults__', '__le__", '__Tt__",
'_module__', '_name__', '_ne__"', '_new__', '__qualname__"',
' _reduce__', '__reduce_ex__', '_repr__', '__setattr__',
'_sizeof__', '_str__"', '__subclasshook__"']

We can list the free variables of f like this:
print(c.__code__.co_freevars)

The resultis a tuple off values ('a', 'v', 'x') whichinclude all of the free variables.

The variables are ordered by hash values, so it is safest to treat the order as being essentially
random.

You can get the variable values from the __closure__attribute. This contains a tuple of cells,
where each cell contains the value of one of the variables. They can be accessed like this:

print(c.__closure__[0].cell_contents)
print(c.__closure__[1].cell_contents)
print(c.__closure__[2].cell_contents)

This returns 6, 7, 5, the values of a, v and X. The values are stored in the same order as the
variable names in the freevars tuple. Here is how to list the names and values together:

for i, name in enumerate(c.__code__.co_freevars):
print(name, c.__closure__[1i].cell_contents)



This can be useful in some circumstances to find out the details of a closure in your code. The
values are read only - you can’t modify the value of a, for example.

5.8 Summary

In this chapter we have learned about closures - inner functions returned by an enclosing
function, that still retain access to variables within the scope of the enclosing function.

We have seen how closures can be used as function factories, providing a simple and elegant
way to implement composition and partial functions.

We have also seen haw they can used as a more declarative alternative to lambda
expressions, and a clean alternative to declaring a class in certain cases.



6 Iterators

You will be familiar with Python sequences. A sequence is an ordered collection if items, the
most common ones being lists, strings and tuples. But sequences rely on a couple lower level
types that are important in functional programming: iterators and iterables.

6.1 Iterators

In Python, an iterator is an object that can be used to iterate over a series of values, one after
the other. Specifically, an iterator can be passed into the built-in function next to get the next
value in the series.

In the earlier chapter on closures, we used map to apply the round function to all the
elements in a list:

a=[2.2, 5.6, 1.9, 0.1]
b = map(round, a)

If we were to print the value of b, we would find that it isn’t a list of values, but instead it is a
map object:

<map object at 0x000002581A529860>

A map object can act as an iterable (that is, it can be passed to the next function), so we can
do this to print out its values:

print(next(b)) # 2
print(next(b)) # 6
print(next(b)) # 2
print(next(b)) # 0
print(next(b)) # throws StopIteration

The first four calls will print the consecutive rounded values of a. When we make the fifth
call to next (b), the iterator has run out of values, so it will throw a Stoplteration exception.
This isn’t an error it is a standard way for an iterator to indicate that is has no more values left.

This illustrates an important feature of iterators — you only get one go. Each time you call
next you get the next value, but you can’t go back to the beginning, it is a one-shot deal.

6.2 lIterables

An iterable is something that you can iterate over. For example, lists are iterables (so are
strings and tuples).



An iterable can be passed to the built in iter function. This function returns an iterator that
you can use to do the actual iterating. Here is an example:

a [1, 3, 71

b iter(a)
print(a)
print(b)

Here we have created a list, a, and obtained its iterator, b. Here is what we get when we print
them:

[1, 3, 7]
<list_iterator object at 0x000001A279DC5A90>

ais alist object,and bisa 1ist_iterator, atype of iterator that is configured to iterate
over the values in b. Here is what happens if we call next (b) several times:

print(next(b)) # 1
print(next(b)) # 3
print(next(b)) # 7

This is quite similar to the map example, but because a list is an iterable rather than an
iterator, we needed to take the extra step of calling iter to get the iterator.

6.3 How for loops work

Now we can take a quick look at how a for loop works. Consider this:

a=[1, 3, 7]
for x in a:
print(x)

The for loop requires a variable (X in this case), and something to loop over (a in this case).
The for loop operates as follows:

e Itobtains an iterator from the iterable a using the iter function.

o It fetches values from the iterator, one by one. For each value, it assigns the value to X
and executes the body of the loop.

e When the iterable throws StopIteration, the loop terminates.

6.4 Iterators also support iter

The previous description of for loops leaves us with a potential problem. The map function
returns and iterator, but we need an iterable to use for loop. So how can we loop over a map,
like this:

a=1[1, 3, 7]
for x in map(lambda x: x*x, a):
print(x)



The answer is that all iterators also support the iter function - but in the case of an
iterator, calling 1ter returns the object itself. So:

e Ifyoutry to loop over an iterable, Python will use the iter function to get its iterator.
e Ifyoutry to loop over an iterator, Python will again call the 1ter function, but it will
return the iterator itself.

Either way, the loop will obtain an iterator to work with.

6.5 Iterators vs iterables
To summarise:

e An iterator is an object that can iterate through a sequence of values, by repeatedly
passing it to the next function.

e An iterable is an object that can be iterated over. If you pass an iterable to the iter
function, it will return an iterator that you can use to iterate over it.

[[Iterables can create a new iterator so you can loop over a list multiple times, but and iterator
can only be used once]]

6.6 Iterators use lazy evaluation

The only way to get values from an iterator is to request the next item. This means that if you
want to get the 100t element, you will have to keep asking for the next item, 100 times! There is
no other option.

This means that an iterator doesn’t have to create all its values in one go. In fact, many
iterators calculate their values one at a time, as they are needed. Each time you request the next
item, the iterator will calculate it there and then. This is called lazy evaluation - the iterator
doesn’t do any work until it absolutely has to. There are several advantages to this:

e  When you request the first value, the iterator can return it straight away. Without
lazy evaluation, the iterator would need to calculate all its values before it could even
return the first value. This can make your program more responsive if the series is
very long.

e You do not need to store the calculated values. A long series might use a lot of
memory if you needed to store it.

e You don’t waste time calculating values that you might not use.

To give an example, suppose you had an iterator, myi ter, that created 1000 values and you
wanted to find the first zero value. You could do it like this:

for x in myiter:
if x==0:
break

Without lazy evaluation, myiter would calculate all 1000 values before the loop even
started. If it then turned out that the second value was a zero, then you would have calculated
the remaining 998 values for nothing! With lazy evaluation, myiter would calculate the first
value just before the first pass through the loop, then the second value just before the second
pass through the loop ... and then the loop would end, so the remaining 998 values would never
be calculated.



In some cases, an iterator might be potentially infinite. For example, if you created an
iterator to generate the series of prime numbers, it has no end. You would have to set some
arbitrary limit for the longest prime number you can handle, and then you would have to wait
for a long time until all those numbers were generated.

With lazy evaluation, you can just create prime numbers, one by one, as they are needed, and
carry on going more or less forever.

There are some cases where lazy generation is not the best approach. One example would be
an iterator that reads bytes from a file. It is generally going to be quite inefficient to access one
byte at a time, so the iterator might decide to read a largish block of data in one go.

6.7 Sequences

A sequence is an ordered collection of items that allows random access. Examples of
sequences include list, strings and tuples. You should already be familiar with these, but here is
how they relate to iterators

Ordered means that each item in the sequence has an index, starting at 0.

Random access means we can directly access item index 1 in the sequence using square
bracket notation:

n = ali]
al[i] = 3
del a[i]

Immutable sequences such as tuples and strings only allow items to be read, not modified or
deleted.

All sequences are iterable - that is, they support the iter function to obtain an iterator. This
also means that they will work with for loops, of course.

In addition, sequences generally have a specific number of items, and you can use the len
function to find out how many items there are in a sequence.

[t is interesting to note that range creates an immutable sequence. You can do this:

r = range(2, 8)
print(len(r)) # 6
print(r[3]) # 5

In this example, r is a range object. Itis an iterable, of course, but it also supports the
use 1en and random reading of elements. But don’t make the mistake of thinking that a range
actually stores a list of value, like a list. It creates the values lazily. The values for Ten(r) and
r[3] are calculated from the range parameters.



6.8 Realising an iterator

It is sometimes useful to convert an iterator into a concrete sequence such as a list. This is
sometimes called “realising” the iterator. There are several reasons you might want to realise an
iterator:

e To find its length.

e To access the elements more than once (an iterator can only be read from once, then it is
spent).

o To access the elements in a different order.

e To printit.

The process on realising an iterator involves evaluating every term in the iterator and
making those terms available as a sequence. There are two main ways to do this - using a
sequence constructor such as 11 st or using the * operator.

6.8.1 Using sequence constructors

Here is a simple example where we have created an iterator with the map function, and we
want to print the result:

a=1[2.2, 5.6, 1.9, 0.1]
b = map(round, a)
print(b) # <map object at 0x000002470E579828>

The problem here is that b is an iterator, so when you print it you will just see the details of
the iterator object, not the values it contains.

A simple way to do this is to use the 11 st function. This will convert almost anything into a
list. When you do this:

print(list(b)) # [2, 6, 2, O]

The 11 st function will loop through the iterator, evaluating each item, and create a list from
all the items.

The tupe function will do a similar job, creating a tuple instead of a list:

print(tuple(b)) # (2, 6, 2, 0)

The set function will create a set instead of a list. Remember that a set only allows one
instance of each value, so the number 2 will only occur once. Also, sets have no natural order so
you shouldn’t really rely on items being listed in any specific order:

print(set(b)) # {0, 2, 6}

Strings are slightly different. This example uses map and the chr function to convert a list of
numbers into characters based on their ASCII values:

a [72, 101, 108, 108, 111]
b = map(chr, a)
print(str(b)) # <map object at 0x000001D23F1E9828>



Unfortunately, one of the quirks of Python us that str works rather differently to 11 st.
While 11 st will take an object and attempt to get all its elements and create a list, str works
on a different level. It attempts to find a string representation of the object itself.

If we pass an iterator to 11 st, it will realise the iterator and form a list from its elements.
But if we pass an iterator to str, it will simply describe the iterator itself - in this case it is a
map object. It won’t evaluate the iterator.

The solution is to use the string jo1n function. This takes an iterable of string values and
joins them:

print(''.join(b))

If you are not familiar with join, it is a method of the string type. It joins all the elements of b
to create a single string. The ' ' is a literal empty string that causes join to join the strings with
no extra characters between them.

6.8.2 Unpacking an iterable to a parameter list

Here is a simple function that multiplies three numbers:
def mult3(a, b, c):
return a*b*c

x = mult3(2, 3, 5) # 30

Suppose the arguments you needed were already in in a list? You can use the unpacking
operator, ¥, to “unpack” the values:

p=[2, 3, 5]
X mult3(*p) # equivalent to mult3(2, 3, 5)

In this case, *p is equivalent to taking the elements in p and passing them in as three
separate arguments.

This doesn’t just work with sequences like lists and tuples. It will work with any iterable.
Python will realise the iterable and pass the resulting elements into the function as separate
arguments. To use our rounding example again:

a=[2.2, 5.6, 1.9]
b = map(round, a)
x = mult3(*b) # equivalent to mult3(2, 6, 2)

In fact, map returns an iterator, not an iterable, but as we saw previously an iterator serves
as its own iterable.

This technique is useful in a number of situations, as we will see later. Wherever you have a
set of values in an iterable that you want to pass into a function, you can use * to unpack it.
However, the number of elements in the iterable must match the number of arguments needed
by the function.



6.8.3 Unpacking an iterable into a sequence

You can use exactly the same unpacking notation to create a list, by enclosing the unpacked
variable inside square brackets:

a=1[2.2, 5.6, 1.9]
b = map(round, a)
k = [*b] # k is [2, 6, 2]

This is an alternative to using the 11 st function described above. You can use the same
technique to create a tuple, but you need the trailing comma just as you would to create a tuple
with one normal element:

t = (*b,) # t is (2, 6, 2)
And, of course, you can create a set in a similar way:
s = {*b} # s is {2, 6}

6.8.4 Extended unpacking

You can unpack more than one iterable, and you can even interleave other values with
unpacked values, for example:

a = range(3)
b = range(4, 7)
k = [*a, 10, *b] # [0, 1, 2, 10, 4, 5, 6]

Here we use two range iterables, one with values 0, 1, 2 and the other with values 4, 5, 6. We
unpack these both into a list, with an extra element 10 between them.

This technique also works with unpacking into argument lists, as we did above. It also works
with tuples and sets.

6.9 Creating your own iterator

Just out of interest, we will create a couple of iterators of our own. In fact, you will probably
never need to do this as it is almost always better to use generators instead, so the rest of the
chapter if pretty much optional, for background information only. This section assumes you
know the basics of creating Python classes.

An iterator is just a class that implements a __next__ method and an __iter__ method.
Notice that these functions have double underscores before and after their names, which
indicates they are special class methods defined by Python. The built-in hext function calls the
object’'s __next__ method (similar for iter).

As we noted earlier, the __iter__ method just needs to return the iterator itself (it allows
the iterator to act as an iterable if needed). So, we will mainly concentrate on the __next__
method.



6.9.1 An alphabet iterator

We will start with an iterator that returns the first 5 characters of the alphabet. It could
easily be extended to return all 26 characters but keeping to 5 makes the examples a little
shorter. Here is our skeleton class:

class Alphabet():

def __init__(self):
# Number of characters read
self.pos = 0

def __iter__(self):
return self

def __next_ _(self):
# Add code to return the next value

To implement our next method, we will use a string to define the characters in the alphabet:

chars = 'abcde'

This string will be defined within the class, as a static variable. We can then define our
next__ method.

def __next__(self):
if self.pos < len(self.chars):
c = self.chars[self.pos]
self.pos += 1
return c
else:
raise StopIteration

This function is fairly simple. For the first 5 characters, we simply return the correct
character from the string. We use self. pos as the index. Once all the characters are used up,
we raise a StopIteration exception to show that the iterator is finished.



Here is the complete code, including a test. We can use Alphabet in a for loop, it will loop 5
times, printing 'a' to 'e".

class Alphabet():
chars = 'abcde'

def __init__(self):
self.pos = 0

def __iter__(self):
return self

def __next__(self):
if self.pos < len(self.chars):
c = self.chars[self.pos]
self.pos += 1
return c
else:
raise StopIteration

for c in Alphabet():
print(c)

6.9.2 A Fibonacci iterator

As a second example, we will make an iterator that returns values from the Fibonacci series.
If you are not familiar with this, the series starts with 0, then 1. Each subsequent value is the
series is formed by adding the two previous values, like this:

o, 1, 1, 2, 3, 5, 8, 13, 21...



The interesting thing about this series is that it is infinite. Our iterator will keep on creating
values forever. Here is the code:

class Fibonacci():

def __init__(self):
self.c = 0
self.n =1

def __iter__(self):
return self

def __next__(self):
ret = self.c
self.c, self.n = self.n, self.c + self.n
return ret

for i in Fibonacci():
print(i)
if i > 100:
break

Notice that, since our series is infinitely long, we use a break in the for loop otherwise it
would go on forever.

6.10Built in functions

Python includes a number of functional that operate on iterables. We can split these into four
groups.
6.10.1Primitive functions

The functions iter and next perform primitive operations on iterables/iterators. We
covered these earlier in this chapter.
6.10.2Creation/conversion functions

We have seen earlier that the 11 st and tuple functions can be used to realise a lazy
iterable into a concrete sequence. These functions along with str, are also used to create and
convert other items.

The 11 st function can be used to create a list from various values:

TistQ # Creates an empty Tlist

Tist(1, 2, 3) # Creates a list [1, 2, 3]
Tist(alist) # Creates a shallow copy of alist
Tist(atuple) # Creates a shallow copy of a tuple
Tist(‘abc’) # Creates a list [‘a’, ‘b’, ‘c’]

The tuple function works in the same way as the 11 st function but creates a tuple rather
than a list.



As noted earlier, str doesn’t work in the same way as 11st and tuple. If you pass an
object into str, it will create a string description of the object, rather than attempting to
convert the object’s data into a string of characters.

As an aside, the following code will create a shallow copy of any sequence and also maintain
its type:
a = b[:]

This takes a full slice of the object, whatever it might be, creating a copy. If a is a list, b will be
a list. If a is a tuple, b will be a tuple. If a is a string, b will be a string.

6.10.3Transforming functions

Transforming functions include map (that applies a function to an iterable to create a new
series), ¥i1ter (that removes items from a series based on a filter function). These are covered
in the chapter Transforming iterables.

6.10.4Reducing functions

Reducing functions reduce all the values in an iterable to single derived value . Examples
include sum (that adds all the elements to create a total) and m1in (that finds the smallest
element). These are covered in the chapter Reducing iterables.

6.11Summary
In this chapter we have learned about:

e [terators, iterables and how they interact.
e How for loops work.

e Lazy iteration and its advantages.

e Sequences as random access iterables.

e Converting lazy iterators to sequences.

e (Creating your own iterators.

e Built-in functions on iterables.



7 Transforming iterables

Functional programming prefers iterables over lists, because there is less risk of side effects.
We often need to transform an iterable stream in some way, and Python provides a number of
standard functions to do that.

7.1 enumerate

You may have seen the enumerate function used in a for loop like this:
a= ("red', 'green', 'blue')
for i, s in enumerate(a):
print(i, s)

This is a common idiom that is used if you ever need to access the loop counter within the
loop. In this case, the loop operates 3 times, with 1 set to 0, then 1, then 2. The code prints 3
lines:

0 red
1 green
2 blue

You might have used this without ever thinking about what is going on behind the scenes. If
so, it is quite useful to unpick it a bit. We can use enumerate in a more conventional loop with
just one loop variable:

a= (C'red', 'green', 'blue')
for t in enumerate(a):
print(t)

This time the output looks like this:

(0, 'red")
(1, 'green')
(2, '"blue")

What enumerate is actually doing is returning a series of tuples. In the original version of
the loop, we are simply unpacking this tuple into i, s so that i takes the values 0,1, 2 and s
takes the string values red, green and blue.

In the context of functional programming, where we try to avoid loops, enumerate
transforms a data stream. For example, the stream of 3 values:

'red', 'green', 'blue'

gets transformed into a stream of tuples:

0, 'red'), (1, 'green'), (2, 'blue')



This can often be quite a useful transform. And while we are talking about enumerate, don’t
forget that it can also take an optional start value, if you don’t want to start from 0:

a= ('red', 'green', 'blue')
for i, s in enumerate(a, 15):
print(i, s)

This creates the following output:

15 red
16 green
17 blue

7.2 zip

Another function you may have seen used in a for loop is z1p. It provides a way to loop over
more than one sequence in the same loop:
first = ('John', 'Anne', 'Mary', 'Peter')
Tast = ('Brown', 'smith', 'Jones', 'Cooper')
age = (25, 33, 41, 28)
for f, 1, a in zip(first, last, age):
print(f, 1, a)

This prints the following:

John Brown 25
Anne Smith 33
Mary Jones 41
Peter Cooper 28

On the first pass through the loop, f, 1 and a are set to the first element of first, Tast and
age respectively. On the second pass, f, 1 and a are set to the second element of first, Tast
and age, and so on. As you might have guessed, z1p is producing tuples that are getting
unpacked into f, 1 and a.

7.2.1 How zip transforms iterables

zip accepts a set of iterables, and transforms them into an iterator of tuples, like this:

a = (10, 11, 12, 13)
b = (20, 21, 22, 23)
C (30, 31, 32, 33)

z = zip(Ca, b, ©
print(list(z))

We have converted the iterator z into a list, which looks like this:

[(10, 20, 30), (11, 21, 31), (12, 22, 32), (13, 23, 33)]

This is reorganised so that each output tuple contains the nth element from each input
iterable. Exactly as we saw in the names example above.



What happens when we loop over this zipped stream? For example:

for t in zip(a, b, ©):
print(t)

We would print each tuple in turn:

(10, 20, 30)
(11, 21, 31)
(12, 22, 32)
(13, 23, 33)

And, of course, if we unpack the tuple in the loop:
for x, y, x in zip(a, b, c):
print(x, y, z)

We would effectively be processing the three original lists, a, b and ¢, at the same time. Just
like the name example above.

7.2.2 Stream with different lengths

Incidentally, if the original streams have different lengths, zip will terminate when the
shortest stream is exhausted:

a = (10, 11, 12)

b = (20, 21)

c = (30, 31, 32, 33)
z = zip(a, b, ©
print(list(z))

This prints the following (because the b list only has 2 elements):

((10, 20, 30), (11, 21, 31)]

7.2.3 zip is self-reversing

A common question people ask when they first meet zip is, how do I do the opposite? How
do I unzip some data? It might not be immediately obvious, but the z1i p function is self-
reversing - well almost. Looking at the output from the previous example:

[(10, 20, 30), (11, 21, 31), (12, 22, 32), (13, 23, 33)]

As you can see, taking the first element of each tuple gives (10, 11, 12, 13) -whichis
exactly the same as we started with. zipping some previously zipped data restores it to its
previous state.

Or does it? There is a minor problem here in that the output of the z1 p function, called z in
the example, is an iterator that provides a set of tuples. But we can’t just pass that iterator back
into z1p again. zi p expects each of the tuples to be passed in as a separate argument.



Fortunately, in the chapter on iterators, we met the * operator that converts an iterator to a
list of arguments. *z is roughly equivalent to converting z to list and then passing in z[0],

z[1],z[2],z[3]:

a = (10, 11, 12, 13)
b = (20, 21, 22, 23)
C (30, 31, 32, 33)

z zip(a, b, ©)

restored = zip(*z)
print(list(restored))

This gives us back our original data:

(1o, 11, 12, 13), (20, 21, 22, 23), (30, 31, 32, 33)]

7.3 filter

The f1iTter function can be used to remove items from an iterable based on a testing
function. It returns an iterator to access the result. Here is an example:

a=1[3,2,1,6, 7, 0]
f = filter(Tambda x: x > 2, a)

This code takes uses a lambda expression as the testing function. In this case, the function
returns true if the value of X is greater than 2. This test is applied to each element in the iterable
a. Only those elements that pass the test are included in the output iterable. If we print
Tist(f) we get only the elements that are > 2:

[3, 6, 7]

We can use fiTlter in afor loop, as you would expect. This loop uses filter to only print the
non-empty strings:

strings = ('red', '', 'green', '', 'blue')
for s in filter(len, strings):
print(s)

The strings list contains both empty and non-empty strings. we use filter to apply the built in
Ten function. For those strings that are empty, 1en will return 0. Python treats 0 as False, so
those strings will be filtered out. Here is the what the program prints:

red
green
bTue

7.4 map

The map function applies a supplied function to a set of arguments. It returns an iterator to
access the results.



7.4.1 map with one parameter

In this example, we will use map with a user defined function that takes one parameter. We
will use the square function from previous examples:

def square(x):
return XxX*x

a=1[2,5, 6]
m = map(square, a)

The map function applies square to each value element in a, returning the squared values
via an iterator. If we convert m to a list and print it, we get:

(4, 25, 36]

7.4.2 Lazy evaluation

This is perhaps a good time to revisit the idea of lazy evaluation. All the functions described
so far use lazy evaluation. We will illustrate this by adding some extra print statements to our
example above.

def square(x):
print('Evaluating square', x)
return Xx*Xx

a=1[2,5, 6]
print('calling map')
m = map(square, a)
print('called map')

print('Entering loop')

for x in m:
print('start of loop body')
print(x)

Here is what this code prints out:

calling map

Called map

Entering Toop
Evaluating square 2
Start of loop body
4

Evaluating square 5
Start of loop body
26

Evaluating square 6
Start of loop body
36



We have placed print statements before and after the call to the map function (Calling map
and Called map). Notice that the square function doesn’t get called at all when we call map - if
it did, we would see Evaluating square messages. All map does is to return an iterator, m, that
will perform the calculations when we ask for each value.

We then start the loop (Start of loop body message). Within the for loop, we ask m for the
next value. At this point, the iterator calls square once only. square is called with a parameter
equal to the first value in the input list a. That value is 2, so square prints the Evaluating
square 2 message. The loop then prints the result of 2 squared, 4.

We loop round again, and again we ask m for the next value. The iterator calls square once
more. square is called with a parameter equal to the next value in the input list a. That value is
5, so square prints the Evaluating square 5 message. The loop then prints the result of 2
squared, 4.

We then execute the third and final iteration o the for loop, with an input value of 6, printing
the Evaluating square 6 message and the result, 36.

7.4.3 map with more than one parameter

We can use map with functions that take more than one parameter. We must supply map
with extra iterable parameters, one for each argument that the applied function takes.

For example, in the previous code, square takes one argument, so map requires two
arguments (the function, and an iterable supplying a series of values for the function argument).

In the next example, add takes two argument, so map requires three arguments (the
function, and two iterables supplying a series of values for the first and second arguments).
Here is the sample code:

import operator

a = [20, 30, 40]
b = range(3)
m = map(operator.sub, a, b)

This time we will use the operator. sub function. This is just a function version of the -
operator, it takes two arguments X, y and returns X-y. We need to import the operator
module to use sub.

We need two iterables because operator. sub takes two arguments. a is alist, b is
range (3), which of course provides a sequence 0, 1, 2. So map will calculate:

sub(20, 0)
sub(30, 1)
sub(40, 2)

The result, if we print 11 st (m) is, as expected:
[20, 29, 38]



7.5 reversed

reversed is a useful function that returns an iterator that reverses the order of the
elements in the original sequence. For example:

a=1[2, 4, 6, 8]
r reversed(a)
print(list(r))

Here r is an iterator that accesses the elements of a in reverse order. When we create a list
from r, it contains:

(8, 6, 4, 2]

Note that reversed doesn’t work with all types of iterable. It only works on sequences (lists,
tuples, strings etc). You can’t do this:

a = [21 5’ 6]
m = map(square, a)
r = reversed(m)

This is because m is not a sequence. You can fix this by converting m to a list or tuple before
passing it to reversed:

a=1[2,5, 6]
m = map(square, a)
r reversed(list(m))

For more details on the sort of objects that support reversed, and how to make your own
reversible objects, refer to the later chapter on functional programming with classes.

7.5.1 Reversing a range

You can use reversed with range it is quite useful for counting backwards. For example,
to count down from 9 to 0 you would need to do this using just range:

for i in range(9, -1, -1):
print(i)

This is a little bit non-intuitive. Alternatively. you can just reverse a range that counts from
0 to 9. The result is much clearer:

for i in reversed(range(10)):
print(i)

7.5.2 reverse

Lists have a method reverse that does the same thing as reversed, but it operates in place
on the list:

k =[1, 3, 7]

k.reverse()
print(k) # [7, 3, 1]



This method doesn’t return anything, it just reverses the list itself. Don’t get reversed and
reverse confused.

7.6 sorted

We met the sorted function briefly in the functions as objects chapter. Here it is again in a
bit more detail.

sorted isn’t quite like the other transforming functions. It will work on any iterable, but it
doesn’t produce an iterator as output, instead it always creates a list. This doesn’t usually cause
any problems, but it is worth knowing.

It is interesting to compare sorted and reversed. They are both restricted, but in
different ways:

e reversed requires a sequence as input but creates a lazy iterator as output. This is
because the first thing you need to output when you reverse a series is the last element.
You can’t reverse a series unless you have random access to its elements, so a sequence is
required as input.

e sorted can accept a lazy iterator as input but creates a list as output. Python uses a
sorting algorithm called Timsort, that is derived from a hybrid of merge sort and
insertion sort. The algorithm can accept data element by element but requires random
access to the output list to place element in the correct final position.

7.6.1 Example — complex sort by month then year

We covered the basic operation of sorted in an earlier chapter. We will give another, slightly
more advanced, example here, a complex sort on dates. We want the dates to be sorted by
month, but within each month group to be sorted by year. Here are our dates:

dates = ['2019/04/06"',
'2017/04/15"',
'2019/03/21"',
'2018/04/10",
'2019/04/08",
'2017/03/20",
'2018/06/30",
'2019/09/30",
'2018/04/11",
'2017/03/14"']

If we simply sort this list, we will get the dates in ascending order (that is because we are
using a year/month/day format):

sorted_dates = sorted(dates)



Giving:

2017/03/14
2017/03/20
2017/04/15
2018/04/10
2018/04/11
2018/06/30
2019/03/21
2019/04/06
2019/04/08
2019/09/30

Now what if we wanted to sort this sorted list again, but just using the month field? You may
recall that sorted accepts a key parameter that is a function. The function converts an item
value (a date in this case) to a key that can be used to sort the list. We want to sort by month, so
we need to convert a date value '2019/04 /06" into a month value '04"'. This can be done
using a slice. Here is the sorted call with its key function (we have used a lambda):

sorted_by_month = sorted(sorted_dates, key=lambda x: x[5:7])

Giving:

2017/03/20
2017/03/14
2019/03/21
2017/04/15
2018/04/10
2018/04/11
2019/04/06
2019/04/08
2018/06/30
2019/09/30

The important thing here is that sorted is stable. This means that when we sort by month,
all the entries that have the same month retain their original order relative to each other. So,
you will see that the dates are primarily grouped by month, but within each group of same
month items they are sorted by year.

To produce a list that is primarily grouped by month, and then sorted by date within each
group, we must sort first by date and them by month.

7.6.2 Some utility key functions
Suppose we have the following list of people’s details, stored as a list of tuples:
people = [('John', 'Brown', 25),
('Anne', 'smith', 33),
('mary', 'Jones', 41),
('Peter', 'Cooper', 28)]



We would like to sort them by their second names. That isn’t difficult, we can just use a
lambda function at the key, to extract the second element, like this:

sorted_by_surname = sorted(people, key=lambda x: x[1])

There is nothing wrong with this, but if you read the code you need to take a look at the
lambda function to understand it. A lambda could be doing anything, but in this case all it is
doing is getting the second item from a tuple.

As it happens, the operator module has a function, 1temgetter, to help with this. We
have met this module before it includes function equivalents for the standard operators. For
example, the add function can be used in place of the + operator. The itemgetter function
can be used in place of list indexing (the [] operator).

It is used like this:

from operator import itemgetter
sorted_by_surname = sorted(people, key=itemgetter(l))
This is better than before because it is more declarative. Instead of defining a lambda

function to get an item, you are using the standard itemgetter function to do it.

It is worth noting that i temgetter isn’t quite as simple as it seems. The key parameter
requires a function as its value.

itemgetter (1) doesn’t get the second element from a sequence. It returns a function that
gets the second element from any sequence you pass to it. It acts rather like a closure:

f = itemgetter(l)
t = ("Anne', 'Smith', 33)
s = f(t) # 'smith'

This is exactly what we need, of course, because sorted is going to apply this function
multiple times to get the second element from every item in the list.

For objects with named attributes, the attrgetter function does a similar job, except that
it takes a string (the attribute name) rather than an integer.

Another useful operator function is methodcaller. This returns a function that calls a
particular method on any object you pass to it. Let’s see how this works.

Here is an example of trying to sort some strings:

fruits = ['Banana', 'apple', 'Apricot', 'Clementine',
"avocado']
sorted_names = sorted(fruits)

This doesn’t do quite what you might want. The problem is, the default string sort is case
sensitive. All uppercase Latin letters come before all lowercase ones. So, Banana would come
before apple.



To fix this we need to use a lowercase version of the string as the key. We need to call each
string’s Tower method to generate a sort key. We could do this with a lambda as before:

sorted_names = sorted(fruits, key=lambda x: x.lower()))

This fixes the problem, but a better method is this:

from operator import methodcaller

sorted_names = sorted(fruits, key=methodcaller('Tower'))

Again, methodcaller creates a function. This new function calls the lower method of any
object you pass to it:

f = methodcaller('lower"')
s f('Banana') # 'banana' equivalent to 'Banana'.lower()

7.6.3 Reversing the sort order

You can reverse the sort order using the optional reverse parameter, which should be set
to True to reverse the sort. This is particularly useful is you are relying on the natural Python
sorting order. For example, form our earlier date sorting example, we could sort the dates in
descending order like this:

sorted_dates = sorted(dates, reverse=True)

This would sort the dates from the most recent to the oldest.

7.6.4 sort

Lists have a method sort that does the same thing as sorted, but it operates in place on
the list:

k = [l’ 7! 2! 4! 1]
k.sort(Q)
print(k) # [1, 1, 2, 4, 7]
This method doesn’t return anything, it just sorts the list itself.

sort has the same optional parameters, key and reverse, that sorted has. They work in
exactly the same way.

7.7 Combining functions

It is often useful to combine these functions, often in a single expression. Here are some
examples.



7.7.1 map and filter

map and filter work well together. Here is an example where we are using map to take the
square root of a series of numbers. Since the square root function doesn’t accept negative input,
we use filter to remove any negative values first. Here is the code:

import math

k = [1, 4, -2, 16, -3, 36, -1]
f = filter(lambda x: x>=0, k)
m = map(math.sqrt, f)

print(list(m)) #[1.0, 2.0, 4.0, 6.0]

Of course, the output data has less elements than the input data because some negative
values have been filtered out. We have shown the map and filter as two separate lines of code,
but it would be quite normal to combine them like this:

m = map(math.sqrt, filter(lambda x: x>=0, k))

7.7.2 Pipelines

We looked at lazy evaluation earlier in this chapter. When we chain two or more functions
that use lazy evaluation, we create a pipeline. In this section we will see how this works.

We are going to use map and filter again, but this time using a couple of user defined
functions whose main job is to print something out so we can tell when each function gets
executed. Here is the same function:

def same(s):
print('same', s)
return s

The same function just prints a message and returns the same value it received. And here is
the not_empty function:

def not_empty(s):
if s:
print('True', s)
return True
else:
print('False')
return False

This function returns True if the string is not empty, Fa'l se otherwise. It also prints what it
has done. Now here is the main loop:
k=7['a'y, ', 'b", ""]
m = map(same, filter(not_empty, k))
print('start')
for s in m:
print('In loop', s)



And here is what it prints:

Start
True a
Same a

In loop a
False
True b
Same b

In loop b
False

Let’s look at this step by step. We first create our map expression:

m = map(same, filter(not_empty, k))

This line doesn’t print anything — we know this, because Start is the first thing printed. It
doesn’t call not_empty or same. It just sets up a pipeline of iterators:

|  forloop |
I

| map iterator |j—— same |
I

[ filter iterator p=——— not_empty |
|

| list iterator |

The first iteration of the loop prints this:

True a
Same a
In loop a

Here is how it works. First a set of requests go down the pipeline:

1. The loop requests a value from the map iterator.
2. The map iterator requests a value from the filter iterator.
3. The filter iterator requests a value from the list iterator.



Here it is as a diagram:

for loop |

1y

| map iterator |———y same |
2

[ filter iterator J——— not_empty |

3 ¥

[ list iterator |

Next, the responses get sent back up the pipeline. This is when our functions actually get
called:

1.
2.

-~ w

The list iterator passes the value 'a' back to the filter iterator.

The filter iterator passes the value 'a' to the not_empty function, which prints
'"True a' because the string a is not empty.

The filter iterator passes the value 'a' is passed back to the map iterator.

The map iterator passes the value 'a' to the same function, which prints 'Same a".
The map iterator passes the value 'a' is passed back to the loop iterator.

At this point, the loop prints 'In Toop a'.Here is this as a diagram:

for loop |

5
| map iterator |<L>| same |
3

2
[ filter iterator |«——> not_empty |

14

| list iterator |

The second iteration of the loop prints this:

False
True b
Same b

In Toop b

This is very similar to the first iteration, except that when the filter iterator requests a value
from the list iterator, it gets an empty string (the second value in k). This means that the
not_empty function prints ' False' and returns False.

Now the whole point of the filter step is to filter out the cases when not_empty returns
False. So, the filter doesn’t pass this value back to the map iterator, instead it throws it away.
Then it requests the next value from the list iterator, whichisa "b' this time, so it gets passed
back up the pipeline as before.

In the final attempt of the loop, filter gets the last item from the list iterator, which happens
to be another empty string. It discards this, the loop iterator throws a StopIteration
exception, and the for loop ends.



7.7.3 map and zip
Here is some code that uses map to format the names data from the previous zip example:

def format_person(first, last, age):
return '{}, {} - age {}'.format(last, first, age)

first = ('John', 'Anne', 'Mary', 'Peter')
last = ('Brown', 'smith', 'Jones', 'Cooper')
age = (25, 33, 41, 28)

m = map(format_person, first, last, age)
Tist(map(print, m)) # Prints the result

Here is the output you would get:

Brown, John - age 25
Smith, Anne - age 33
Jones, Mary - age 41
Cooper, Peter - age 28

Incidentally, we can use map to print the list, as shown in the example. It is neater than a loop
but note that you need realise the map output (for example by converting it to a list) otherwise
print will never get called.

But suppose the data wasn’t in quite the correct format. Suppose you had a list of person
records:

people = [('John', 'Brown', 25),
('Anne', 'smith', 33),
('mary', 'Jones', 41),
('Peter', 'Cooper', 28)]

In order to map these, we need to unzip them. As we saw, we can use zip to unzip data, it is
self-reversing. So, we just need to change our map call to this:

m = map(format_person, *zip(*people))

Why do we need *zip (*people)? Well firstly, peopTe is a list, but zip needs a set of
separate arguments, so we must unpack people so zip can use it. And secondly, z1ip returns
an iterator, but map needs a set of separate arguments, so we must unpack zip so map can use
it.

*zip(*people) zip(*people) *people people
('John', 'Anne', 'Mary', 'Peter') <zip object> ('John', 'Brown', 25) [('John', 'Brown’, 25),
('‘Brown’', 'Smith', 'Jones', 'Cooper’) ("Anne', 'Smith’', 33) ('Anne', 'Smith', 33),
(25, 33, 41, 28) ('Mary', 'Jones', 41) ('Mary', 'Jones', 41),

('Peter’, 'Cooper’, 28) (‘Peter’, 'Cooper', 28)]



7.8 Summary

In this chapter we have learned about the built-in functions that Python provides to
transform iterables.

We have seen how enumerate, zip, filter and map provide lazy evaluation.

We have also seen how to combine these functions in different ways, and how the resulting
lazy pipeline doesn’t access elements of the original iterable until they are needed.

There are some additional functions on iterables in the itertools library, discussed in the
chapter Useful libraries.



8 Reducing iterables

In the earlier chapter Iterators, we divided the built-in iterator functions into groups -
transforming, reducing, converting and primitives. In this chapter we will cover the reducing
functions.

A reducing function takes all the values from an iterable and reduces them to a single
representative value. For example, sum adds all the values in an iterable and returns the total
value.

8.1 len

Ten should be very familiar. It simply returns the length of the item - the number of
elements if it is a list or tuple, the number of characters if it is a string:

len([1, 2, 30]) # 3
Ten('uvwxyz') # 6

Ten doesn’t work with lazy iterables (such as the output of map or filter). You can
convert a lazy iterable to as list and apply 1en to the result. Alternatively, you can use one of the
methods described in the section on the map reduce pattern, later in this chapter.

8.2 sum

sum accepts an iterable and returns its sum - the result of combining all its elements using
the + operator. For example:

a=1[2,5,7, 1]
print(sum(a)) # 15

You can supply an optional start value to sum. It will just get added to the total:

a=1[2,5, 7, 1]
print(sum(a, -3)) # 12

sum will also work with sequences such as lists. However, the code below won’t quite work:

a=[[2, 4], [0, O], [5, 311
print(sum(a)) # ERROR

You will get a cryptic error message about unsupported operand types. The problem is that
sum has a default start value of 0, so the code above will effectively be trying to calculate:

0+ [2, 4] + [0, O] + [5, 3]

This is invalid because you can’t add a list and an integer. The solution is to add an empty list
as the start value, so sum calculates this instead:

[1 + [2, 4] + [0, O] + [5, 3]



This is now a valid calculation. Your code will look like this:

a = [[2! 4]! [0! O]! [5! 3]]
print(sum(a, []1)) # [2, 4, 0, 0, 5, 3]

An alternative way to join iterables is the 1tertools. chain, covered in the chapter on
itertools. Itis often more efficient.

Note thing to note is that sum does not work with strings. Python deliberately prevents this
because it is terribly inefficient to add a set of strings together using add. It is far better to use
jo1in to concatenate strings, like this:

a = ["abc', 'pgr', 'xyz'l]
s = '".join(a)

8.3 min

min accepts an iterable and returns the minimum value from the iterable. For example:

a=1[2,5, 7, 1]
print(min(a)) # 1

The iterable can contain items of any type, provided they can be compared with each other.
For example, it can contain strings, or lists, which will be compared in the standard way. Here is
an example with lists:

a = [[1! 2’ 3]1 [1! 11 5]’ [65 75 8]’ [11 1’ 5]]
print(min(a)) # [1, 1, 5]

Lists are compared element by element, so [1, 1, 5]islessthan [1, 2, 3].You might
also notice that there are two lists with the value [1, 1, 5].Thatis two different object that
happen to have the same value. min will always return the first object in that case.

8.3.1 default argument

If you call min on an empty iterable, you will get a ValueError exception. You can avoid
that using the default argument. This is a keyword only argument, that is used like this:

a = []
print(min(a, default=0)) # O

Since the list is empty, min returns the default value 0. This value is only used in the iterable
is empty, so for example:

a=1[2,5, 7, 1]
print(min(a, default=0)) # 1

Even though the default value is less than 1, min returns 1 as that is the smallest item in the
list.



8.3.2 key argument

min has an optional argument key that can be used to modify the comparison order. It is a
keyword only argument and works in the same way as the sorted function. Here is a simple
example using a lambda function that returns the third element of the item:

a =a = [[1’ 2! 3]! [1! 1! 5]! [6! 7! 8]! [1’ 1! 5]]
print(min(a, key=lambda x: x[2])) # [1, 2, 3]

Since we are now comparing the third element, x[2], the list [1, 2, 3] is the smallest.
See the description of sorted for more details.

8.4 max

max works in a very similar way to min, except that it returns the maximum value form an
iterable.

8.5 any

any accepts an iterable. It will return True if any of the elements have a true value. It will
return False if none of the elements have a true value, or if the iterable is empty:

print(any([1, 0, 2])) #1
print(any(['a', '', 'z'])) #2
printCany([0, '', False])) #3
print(any([]1)) #4

1. True because values 1 and 2 count as true

2. Truebecause 'a' and 'z' countas true

3. Falsebecause0, '' and False count as false
4. False because the iterable [] is empty

8.6 all

al1 accepts an iterable. It will return True if all of the elements have a true value. It will
return False if any of the elements have a false value. Unlike any, al1 will return True if the
iterable is empty:

print(all([1, 0, 21)) #1
print(all(['a"', '"', 'z'])) #2
printCall([1, 'a', Truel])) #3
print(al1([]1)) #4

5. False because value 0 counts as false

6. Falsebecause '' counts as false

7. Truebecause 1, 'a' and True count as true
8. True because the iterable [] is empty

8.7 functools reduce

If the reduce functions above don’t meet your needs, you can create your own using the
reduce function.



This function lets you define your own behaviour. For example, suppose we wanted to
reduce a list by multiplying the elements. We can do this:

import functools, operator

a=1[2, 3,5, 2]
print(functools.reduce(operator.mul, a)) # 60

Remember that operator.mul is a function equivalent of the multiply operator *. This
performs the equivalent of:

(((2 % 3) £ 5) £ 2)
reduce accepts a function and an iterable. The function you supply must take two
parameters. reduce works like this:

1. Getthe first and second values from the iterable and combine them using the function.
2. Get the next value from the iterable. Combine the previous result with the new value
using the function.
3. Repeat 2 for all items in the iterable.
8.7.1 Initial value

reduce accepts and optional third argument, initializer. This provides an initial value
when reduce first starts:

a = [21 3’ 5! 2]
print(functools.reduce(lambda x, y: x*y, a, 10)) # 600

In this case we have an initializer of 10, so the calculation is:

((((10 *2) * 3) * 5) * 2)

giving 600. Adding an initializer is similar to adding an extra value at the start of the
input iterator.
8.7.2 Special cases

With no initialiser:

e Ifthe iterable is empty, reduce will throw a TypeError.
e Ifthe iterable only has one element, reduce will return that element.

Withaninitialiser:

e Iftheiterable is empty, reduce will return the value of the initializer.
e Ifthe iterable only has one element, reduce will return the value of the initializer
combined with the element.

8.8 The map-reduce pattern

The map-reduce pattern is a way of processing large data sets in a way that can be
distributed amongst many computers.



The basic idea is to start by processing data elements individually, and finally combine them
to give the required result.

To give a simple example, suppose we wanted to calculate the average word length of the
words in a block of text:

The joy of coding Python should be in seeing short, concise, readable classes that express a lot of
action in a small amount of clear code -- not in reams of trivial code that bores the reader to death.

We can break this task down into two steps:

e Count the number of letters in each word.
e Sum the total number letters in all the words.

Dividing the sum by the number of words will give us our result, the average word length.
Here is a list of our words, with punctuation removed:

strings = ['the', 'joy', 'of', 'coding', 'Python', 'should',

'be', 'in', 'seeing', 'short', 'concise',
'readable', 'classes', 'that', 'express', 'a',
'"Tot', 'of', 'action', 'in', 'a', 'small', 'amount',
'of', 'clear', 'code', 'not', 'in', 'reams', 'of',
'trivial', 'code', 'that', 'bores', 'the', 'reader',

'to', 'death']
Counting the number of letters in each word is fairly easy - we just map the 1en function
onto the list of strings:
Tengths = map(len, strings)
Tengths is now an iterator that stream the lengths of the individual words. We could print
this using:

print(list(lengths))

Not forgetting to convert the iterator to a list so we can print its values. This will give us:
(3, 3, 2, 6, 6,6, 2,2,6,5,7,8,7,4,7,1, 3, 2,6, 2,1,
5, 6, 2,5, 4,3,2,5,2,7,4,4,5, 3,6, 2, 5]

Now we need to calculate the average length of each word - this is simply the sum of the

lengths of all the words, divided by the number of words:
average = sum(lengths)/Ten(strings)
So, we can calculate the average word length of a list of strings using two fairly simple and
obvious lines of code:

Tengths = map(len, strings)
average = sum(lengths)/Ten(strings)



If we really wanted, we could even get this down to one line. How readable it is depends on
how familiar you are with reading functional code, but the following probably isn’t excessively
complex:

average = sum(map(len, strings))/len(strings)

8.8.1 Ignoring short words

As a further example, let’s try the same thing, but we will take the average of all the words
excluding ‘a’ and ‘the’. We can do this by filtering strings like this:

filter(lambda x : x not in ('a', 'the'), strings)

This will return an iterable of all the strings in strings that are not ‘a’ or ‘the’. We can
calculate the average of the list in a similar way to before using the filtered list:

s = filter(lambda x : x not in ('a', 'the'), strings)
average = sum(map(len, s))/len(s) # ERROR

But there is a problem. We can’t find the 1en of s because s is an iterator. Iterators don't
support the 1en function. A quick fix, though not really part of the functional programming
paradigm, is to convert the filtered words to a list. Here is the complete, working code:

s = list(filter(lambda x : x not in ('a', 'the'), strings))
average = sum(map(len, s))/Ten(s)

8.8.2 A more FP solution

The solution above has a minor problem in that it is necessary to store the entire list of
values in memory before calculating the average. This is not usually a problem, in fact if we
weren’t concentrating of functional programming, we probably wouldn’t give it a second
thought.

But suppose we wanted to find the average word length of all the pages on Wikipedia? At the
time of writing, a typical PC would struggle to hold the full contents in memory at one time.

How could we modify our code to work with any number of words, with limited memory?

The obvious solution would be to count the number of words as we sum them. We could
create our own reducing function:

def sumcount(it):
sum = 0;
count = 0;
for x in it:
sum += X
count += 1
return sum, count



This function behaves a lot like the standard sum function, but it also counts the number of
elements as it goes. At the end it returns a tuple of the sum of all the elements and the number of
elements. We could use this to calculate the average like this:

s = filter(lambda x : x not in ('a', 'the'), strings)
total, count = sumcount(map(len, s))
average = total/count

This solution calculates the average without having to store a copy of all the words. If we
were really trying to process the whole of Wikipedia, of course, we would not use the strings
list to store all the words. We would create some kind of iterator that fetched the words from
the web, one at a time.

This is a reasonable solution, the main code is pure functional code. The sumcount function
uses a loop, which isn’t ideal, but it is quite hidden away.
8.8.3 Using enumerate and reduce

We could improve things further by getting rid of that pesky loop. What we need to do is sum
the values and count them at the same time. Maybe the enumerate function could help. We can
enumerate the output of map:

s = filter(lambda x : x not in ('a', 'the'), strings)
m = map(len, s)
e = enumerate(m, 1)

The second parameter in enumerate function is the start value. It will start counting from 1
rather than 0. The iterator e gives the following values:

a, 3, @, 2, 3, 6), (4, 6), (5, 6)...

The first element of each tuple is the word count so far. The second element is the length of
the current word. What we really need to do is reduce this sequence in such a way that the word
count is maintained (we just keep the most recent version) but the lengths are summed.

We can use functools. reduce to do this. Here is how we would use reduce to simulate
the sum function:

functools.reduce(operator.add, m) # same as sum(m)

But we are going to accumulate a series of tuples, so we need an alternative to the add
function. Here it is:

def opsumcount(a, b):
return(b[0], a[l] + b[1])



This function accepts two tuples, a and b. It returns a tuple. The first element of the return
tuple if the most recent word count b[0]. The second element is the accumulated sum of word
lengths a[1] + b[1]. Here is the complete solution, without a loop or stored list in sight:

import functools

def opsumcount(a, b):
return(b[0], a[l] + b[1])

S filter(Tlambda x : x not in ('a', 'the'), strings)

m = map(len, s)

Tength, total = functools.reduce(opsumcount, enumerate(m, 1))
average = total/length

print(average)

8.9 Summary

In this chapter we have looked at the various standard Python functions that reduce iterables
(converting and iterable to a single representative value).

We also looked at the general purpose functools reduce function, that can be used to create
our own specialised reducing functions.

Finally, we looked at an example of using the map-reduce pattern to analyse text, using
several functional programming techniques.



9 Comprehensions

[t is often useful to create a list with particular content, perhaps based on another list or
iterable. It is possible to do this using a loop, or perhaps a map function.

List comprehensions provide an alternative that is more declarative than a loop and often
clearer than using a map function.

In addition to list comprehensions, there are similar techniques for generating lazy iterators
(generator comprehensions), sets and dictionaries, which we will also cover in this chapter.

9.1 List comprehensions

To start with a simple example, suppose we wanted to create a list, length 100, filled with the
strings ‘0’ to ‘99’. There are several ways to do this. We could use a loop:

a =[]
for i in range(100):
a.append(str(i))

We could use map:

a = list(map(str, range(100)))

Now here is the list comprehension version:

a = [str(i) for i in range(100)]

In every case we get the same result, a list of 100 strings:

[IOI’ lll’ l2| L. l98l, I99I:]

None of these solutions is terrible. The first solution is the most verbose and the least
declarative. What do we mean by that? It is a loop that just happens to be building up a list
according to a simple pattern. But since it is a loop, it could be doing anything. The code is in an
imperative style, it doesn’t just tell Python what sort of list you need, it tells Python exactly how
to create the list.

Imperative code is more flexible, but that can be a disadvantage when you only need to do
something simple and boring. You have to double check the code to make sure it isn’t doing
something more complicated than you think.

The map case is more declarative in style. It says that you want to map the str function onto
the numbers 0 to 99, and make a 11 st out of the result. These are all standard Python
functions, applied in a standard way. In this particular case, there isn’t much to fault this
solution.

The final example uses a list comprehension. My personal opinion is that it is slightly
preferable to the map example, but only slightly. List comprehensions exist for the specific
purpose of creating a list from another iterable, so when you see that syntax you know exactly
what the code is doing.



The best way to understand a list comprehension is probably to read it as an English
sentence:

make a 1list of str(i) for all values of i in range(100)

Here is a different example. We want to take a list of numbers and create a new list where the
numbers have been rounded to the nearest 5. Here is how we could do this in a loop. Notice that
to round to the nearest 5, we divide by 5, round to the nearest whole number, then multiply by
5:

k [12, 33, 49, 57]

a =[]

for x in k:
a.append(round(x/5)*5)

Using map, itis:

k [12, 33, 49, 57]
a = list(map(lambda x: round(x/5)*5, k))

And as a list comprehension:

k = [12, 33, 49, 57]
a = [round(x/5)*5 for x in k]

In this case, the list comprehension benefits from not having to use a lambda function, which
makes it marginally less complex.

9.2 Using conditions

Now imagine you wanted to find the square root of every value in a list, but you wanted to
ignore any negative values, so that they don’t even appear in the output list. Here is how you
might do it with a loop:

k = [-1, 16, 9, -4, 0, 25]
a =[]
for x in k:

if x>=0:
a.append(math.sqrt(x))

You will also need to import math at the start of all these examples, of course. The result will
be:

(4.0, 3.0, 0.0, 5.0]

There are 6 values in the input list k, but only 4 in the output list a, as you would expect
because the 2 negative values are excluded.

Here is the equivalent functionality using map. We use i 1ter to remove the negative
values before we take the square root:

a = list(map(math.sqrt, filter(lambda x: x>=0, k)))



Finally, here is the list comprehension version:

a = [math.sqrt(x) for x in k if x>=0]

It is a matter of preference to some extent, but this solution seems more readable than the
map example. If you are having difficulty reading this list comprehension, try this:

make a T1ist of sqrt(x) for all values of x 1in k,
but only if x>=0

9.3 Nested comprehensions

You can create nested list comprehensions. In fact, there are a couple of ways to do it.

9.3.1 Creating a 2D list

Possibly the easiest example of a nested list comprehension is to nest one comprehension
inside another. For example:

[[x for x in range(3)] for y in range(4)]

We know that:

[x for x in range(3)]

Gives [0, 1, 2].So,we are really calculating:

[[0, 1, 2] for y in range(4)]

Which, of course, evaluates to:

(o, 1, 2],
[0, 1, 2],
[0, 1, 2],
[0, 1, 2]]

We are simply creating an outer list of 4 elements where each of those elements is a list of 3
elements.

We could extend this by making the output element depend on X and y:
[[x + 10*y for x in range(3)] for y in range(4)]

In this case, the inner array is going to be different every time. It will be equal to:

[10*y, 1+10*y, 2+10%*y]

Where y is the row number. This gives a final output of:

(o, 1, 21,
[10, 11, 12],
[20, 21, 221,

[30, 31, 32]1]



It is worth looking at how this might be implemented as a for loop:

outer = []
for y in range(4):
inner = []
for x in range(3):
inner.append(x+10*y)
outer.append(inner)

The final result in this case is outer.

Another thing that you can see from the expanded code is that the range of X can depend on
y. For example, we could do:

a =[[x + 10*y for x in range(y)] for y in range(4)]

Which gives us:

LL1,

[10],

[20, 21],
[30, 31, 32]1]

9.3.2 Creating a flat list
This code does something different:

[x + 10*y for x in range(3) for y in range(4)]

Clearly, we are only creating one flat list here, rather than a list of lists (there is only one []
pair). But we are still looping over y from 0 to 3, and for each y we are looping over X from 0 to
2. Here is what we get:

(o, 10, 20, 30, 1, 11, 21, 31, 2, 12, 22, 32]

It is the same numbers as before, but all in one list. For comparison, here is the equivalent for
loop code:

outer = []
for x in range(3):
for y in range(4):
outer.append(x+10%y)

Notice that the leftmost loop in the comprehension corresponds to the outer loop in the for
loop version. This might seem to contradict the previous example, but in that example we had
two separate list comprehensions, one inside the other.

9.4 Summary

List comprehensions provide a simple, idiomatic way to create a list based on an existing
iterable, such as a range, another list, or any other iterable.

The list comprehension allows a conditional filter to be applied, then calculates an
expression based on the original sequence.



Although a list comprehension is procedural in style, it has limitations in the processing that
can be applied, which make it far more declarative than an equivalent for loop.

In a later chapter we will meet generator comprehensions, which are similar to list
comprehensions, but create a lazy iterator rather than a list as output.



10 Generators

We saw in the chapter on iterators that it is possible to create your own iterator, by defining
a class with a couple of specific methods. That method works fine, but it involves a fair bit of
boilerplate code, and required the logic of the iterator to be written in an inside-out style.

Generators provide a simple method of implementing many types of iterator, using a simple
syntax and often a more intuitive software flow.

10.1Example — alphabet iterator

In the iterators chapter we developed an iterator that simply returns the letters of the
alphabet, one by one, and then stopped. In fact, we only returned the letters a to e. Here is the
equivalent as a generator:

def alphabet():
for c in 'abcde':
yield c

for x in alphabet():
print(x)

alphabet looks like a normal function, but actually it is a generator. The way to tell is that it
has a yield statement instead of a return statement.

Within a for loop, alphabet is used in a similar way to range. If you used range (5) it
would loop through the values 0 to 4. alphabet does something similar, but it loops through
the characters a to e.

This generator is only for illustration. The loop would work perfectly well if you just use the
string 'abcde" in place of the alphabet call.

10.2How a generator works

To understand how the generator works, we will open out the for loop like this:

def alphabet():
for c in 'abcde':
yield c

g = alphabet()

X = next(g)
print(x)

X = next(g)
print(x)

First, we call alphabet. Unlike a regular function, a generator returns a generator
object that gets stored in g. The key thing here is that alphabet contains a yield statement



rather than a return. That is the thing that differentiates it from a normal function. Python
knows to create a generator instead,

The generator object acts like an iterator. When we call next on it, it responds with the
first value in the sequence, 'a’. If we call next again it responds with the next value, 'b'. And
so on.

What is actually happening here? The first thing to realise is that the code in the body of the
generator is not executed when you call alphabet (). In true iterator style, a generator uses
lazy evaluation. It does nothing until you actually request a value.

The first time you call next, Python starts to execute the code in alphabet. It starts the for
loop, entering the loop for the first time with the initial vale of c equal to 'a'. Then it
encounters the yield statement.

This causes Python to stop executing the alphabet code and return the value of c to the
main calling code. But here is the critical thing - yield stores the exact state of the alphabet
code before it exits.

Now the main code runs print (x) to print the value 'a’. It then calls next again. But this
time, instead of starting back at the beginning of the alphabet code, it jumps back into the
code straight after the previous yield statement. The state is restored to the exact state it was
when the yield statement executed.

alphabet loops back round for the next iteration of the for loop. This time it picks up the
second character from the string,a 'b ' character. This get returned on the next yield.

This continues each time the main loop calls next. Eventually, the loop in the alphabet
code is exhausted. Instead of calling yield, the alphabet code reaches the end. The
generator object will throw a StopIteration error at that point, to notify the calling code
that the iteration is complete.

As you can see, execution passes backwards and forwards between the calling code and the
alphabet code. Generators are sometimes called co-routines for that reason. This contrasts
with a normal function, which is sometimes called a subroutine. In a subroutine, the calling code
passes entire control to the subroutine until it is finished. With a co-routine, control passes to
and fro.

Don’t get this confused with multithreading. In multithreading, two different sets of code can
run at the same time (either on different cores or by time sharing one core). With co-routines
there is only one thread of execution that just swaps between two different code paths in a
totally predictable way.



10.3Example — Fibonacci iterator

We also implemented a Fibonacci series iterator in the iterators chapter, so not of interest
we will re-implement it here as a generator:

def fibonacci():

c=20

n=1

while True:
yield c

cC,h=n, Cc+n

for i in fibonacci():
print(i)
if i > 100:
break

Since this generator produces an infinite sequence, so the generator loop use awhile True
loop rather than a for loop.

10.4Chaining iterators

Now we will do something more useful. We will chain two iterators together, so that you get
a single iterator that returns al the values of one iterator followed by all the values another
iterator.

First, we will look at an identity generator. This provides a way to iterate over an existing
iterator. Not very useful in itself (you could just iterate over the original iterator directly) but it
is a step on the way.

def identity(it):
for x in it:
yield x

for i in identity(range(4)):
print(i)

All identity does is iterate over it, yielding each value. Since range (4) creates the series
0,1, 2,3, our identity generator creates exactly the same series.

Chaining two iterators simply involves performing the identity operation on the first iterator,
then doing the same this with the second iterator. This is quite easy in a generator:

def chain2(itl, it2):
for x in itl:
yield x
for x in it2:
yield x

for i in chain2(range(4), reversed(range(3))):
print(i)



Here we are chaining range(4) -0, 1, 2, 3 - and the reverse of range(3) - 2, 1, 0. This
creates a single iterator that produces the series 0, 1, 2, 3, 2, 1, 0.

This code would be quite a lot more complicated using an iterable object, but it is quite
simple and obvious using generators. But also, be aware that there is an existing chain
function in the itertools library, covered in a later chapter.

10.5Generator comprehensions

A generator comprehension is similar to a list comprehension, which we met in an earlier
chapter. The difference is that a generator comprehension uses lazy evaluation, which often
uses less memory, and allows infinite iterators to be processed.

Converting a list comprehension to a generator comprehension is a simple matter of
replacing the surrounding square brackets with round brackets. For example (from the list
comprehension chapter) this code creates a list of strings '0", '1', '2'etc:

a = [str(i) for i in range(100)]

If you only need an iterator, not an actual list, you can do this:

g = (str(i) for i in range(100))

g is a generator object than delivers the series of values '0', "1', '2'etc. Unlike the list
comprehension, these 100 values are not created in memory, which can be important if you are
using much longer series.

10.5.1map variants

An advantage of generator comprehensions is that they can directly replace standard
functions like map, useful if you want a slight variant. Here is a comprehension equivalent of a
simple one parameter map of function fn over iterable 1 t:

map(fn, it)
(fn(x) for x in 1it)

In this instance, map is probably the better option. But if you wanted to map fn(x)+1 it
looks different:

map(lambda x: fn(x)+1, 1it)
(fn(x)+1 for x in it)

It is often a matter of personal taste, and, whichever you choose it is usually better to use a
consistent approach.

10.5.2filter-map variants

In a similar way you can replace a fi1ter, or fi1ter-map combination, with a
comprehension:

map(fn filter(cmp, it))
(fn(x) for x in it if cmp(x))



Once again, if the function or comparison are slightly more complex, the comprehension has
the advantage that you can just use normal expressions rather than using lambda functions.

You can also sometimes do special filtering operations, for example, this filter selects every
second element from the incoming iterator:

(x for i, x in enumerate(it) if 1%2==0)

This uses enumerate to get a count, 1, for each element and only returns elements where 1
is even (i modulo 2 is zero).

To summarise, if you find yourself using a list comprehension but you don’t need an actual
list, consider using a generator comprehension to save memory. But if you can use standard
functions like map or fi1ter instead, that will usually be the better option.

10.6Summary

Generators are essentially a simple and convenient way to create your own custom iterators.
As such they share all the benefits of iterators - lazy evaluation, pipelined processing and
avoiding excessive memory usage in many types of process.

For simple iterators, generator comprehensions provide the benefits of iteration in the same
one-line format as a list comprehension. Generator comprehensions should usually be preferred
over list comprehensions in most cases, unless you specifically require a list as the end result.



11 Partial application and currying

This is the first of two chapters that will cover some additional techniques used in functional
programming.

In this chapter we will revisit closures and composition, and also look at partial application
and currying. These are all ways to create a new function from an existing function.

In the next chapter we will look at functors and monads. In addition, we will look at some
functions offered by the PyMonad library that can do a lot if the work for you.

11.1Closures

We have looked at closures quite extensively, with a whole chapter devoted to them, so all
we will do here is a quick recap.

A closure occurs when:

e A function includes an inner function
e The outer function returns the inner function
o The inner function references some variables within the scope of the outer function.

In the case the returned inner function is called a closure. It can still access the values defined
within the scope of the outer function, even though the outer function itself is no longer active.

11.2Partial application

Partial application is a way of creating a new function based on an existing function but with
some of the parameters already filled in with a chosen value.

For example, here is a closure based that creates partial applications of the standard function
max:

def maxn(n):

def f(xX):
return max(n, x)

return f

Now, for example, if we call maxn (0), it will return a closure of ¥ (x) with the values of n
fixed at 0. In other words, it will return a function that calculates max (0, x).Hereitisin
action:

max0 = maxn(0)

print(max0(3)) # Equivalent to max(0, 3) -> 3
print(max0(-1)) # Equivalent to max(0, -1) -> 0

We have created our new function max0 and a couple of test cases to prove that it does
indeed calculate max (0, x).In effect it replaces any negative value with 0.



Here is an example of using our partial application with map. In this case we are using maxn
to create an anonymous function that gets used in the map call:

m = map(maxn(3), [1, 2, 3, 4, 5])
print(list(m))

Theresultis [3, 3, 3, 4, 5] -allvalues less than 3 are clamped at 3. Having defined
our maxn function, it can be used to provide partial applications of max in a compact and
expressive way.

11.2.1Functions with more variables

Now we will look at a function with more variables. We will use a function that calculates the
value of a quadratic function:

y=ax?+bx+c

For given values of a, b, c and x. Here is a function that does this calculation:

def quad(a, b, c, x):
return a*x*x + b*x + c

Now you will often be in a situation where a, b and c are fixed, and all we want to do is vary x.
You can do this very easily with a closure:

def quad_abc(a, b, c):
def f(x):
return quad(a, b, c, x)
return f

This allows us to create a partial function to calculate, for example:

x2—3x+2

Here is the code to do create this specific quadratic as myquad, and check it calculates the
correct values (we know the value should be 2 when x is 0, and it has roots when x is 1 or 2):

myquad = quad_abc(l, -3, 2)
print(myquad(0)) # 2

print(myquad(1)) # O
print(myquad(2)) # O



We can also quite easily create a different partial application, for example suppose we
wanted to apply values for a and ¢, but leave b and x as variables to be set later:

def quad_ac(a, c):
def f(b, x):
return quad(a, b, c, x)
return f

myquad = quad_ac(1l, 2)

print(myquad(0, 1))
print(myquad(l, 2))
print(myquad(2, -1))

So myquad is now a function that has a set to 1 and ¢ set to 2. When we call myquad we pass
in two arguments, containing values for b and x.

Clearly, by creating different closures we can choose to set any combination of a, b, c and x
that we want is the partial application and leave the rest to be set when we actually call the
function.

11.2.2functools.partial function

The functools module provides a function partial that can be used create a partial
application of a function. Here is how you could use it to create a max0 function:

from functools import partial
max0 = partial(max, 0)

print(max0(3)) # 3
print(max0(-1)) # 0

Here is how you could use it with map, similar to the previous example:

m = map(partial(max, 3), [1, 2, 3, 4, 5])
print(list(m))

The advantage here is that you don’t have to define a separate closure maxn. The code is
more declarative and relies only on standard library functions.

The disadvantage is that the map call is slightly longer and more complex.

11.2.3functools.partial with more variables

The functools.partial function can be used to create a partial function for functions
with more than two variables, for example our previous quad function. Here is how we would
create a partial quad function with a, b, c set to 1, -3, and 2:

pguad3 = partial(quad, 1, -3, 2) # a, b, c =1, -3, 2
print(pquad3(0)) #x =0



To be clear, quad takes 4 arguments. In the partial call, we have supplied the first 3
arguments to create a partial function pquad3. When we call pquad3, we must supply the final
argument, X.

We can supply fewer arguments if we wish. In the case below, we just supply 2 argument to
the partial call. This creates a partial function pquad2 where the first argument a has been
set to 4, and b has been set to 1. The call to myquadl must supply values for C and x.

pgquad2 = partial(quad, 4, 1) # a, b =4, 1
print(pquad2(3, 1)) #c, x=3,1

In the final example below, we just supply 1 argument to the partial call. This creates a
partial function myquadl where the first argument a has been set to 4. The call to myquadl
must supply values for b, c and x.

- 4

pquadl = partial(quad, 4) a
b, ¢, x=1, 3, 1

#
print(pquadl(l, 3, 1)) #
There is one thing you can’t do with partials. You can’t do the equivalent of myquad_ac,
where you fix the values of a and C in the partial function. The syntax of partial doesn’t allow
you to pick and choose which arguments will have values applied.

11.2.4Applying keyword arguments

A partial function can apply keyword arguments too. Here is a simple example:

def make_print(sep):
def f(*args):
return print(*args, sep=sep)
return f

print_csv = make_print(', ')
print_colon = make_print(':")

print_csv(l, 2, 3) # 1, 2, 3
print_colon(l, 2, 3) # 1:2:3

The make_print function returns a partial application of the standard print function,
with the sep keyword argument set to the supplied value. sep is a string that gets inserted
between the arguments (this is standard print functionality).

Notice also that the inner function f in make_print accepts *args. This means that the
partially applied print function will accept multiple arguments and print then all, separated by
the sep string.

We use make_print to create two new functions, print_csv prints values separated by
commas, and print_csv prints values separated by colons.



You can use keyword arguments with partial too. Here is an alternative way to create our
two print functions:

from functools import partial

print_csv = partial(print, sep=', ')
print_colon = partial(print, sep=':")

11.2.5Don’t overlook the simpler solutions

Before you dive in with a partial application solution, always bear in mind that there may be
alternatives. Let’s look at some of the possible alternatives for creating a max0 function - a
functional of X that returns 0 or X, whichever is larger.

Here is the original solution:

def maxn(n):

def f(xX):
return max(n, x)

return f

max0 = maxn(0)

If you only ever intend to use maxO0 (you will never need a maxn with a value of n other than
zero), it would be possible to define max0 directly (no need to create a maxn closure):

def max0(x):
return max(0, x)

If you only need to use this function once, you can simply use a lambda:

map(Tambda x: max(0, x), [1, 2, 3, 4, 5])

This doesn’t mean you should never use a partial function is these situations, just that you
should always be aware of the alternatives and choose whichever makes you code robust and
readable.

11.3Currying

Currying is similar to partial application but takes a slightly different approach. Before we
start, it is probably worth noting that the term currying derives from the name of Haskell Curry,
the mathematician who did a lot of work on the theory behind currying. The Haskell
programming language is also named after him.

Whereas the Python term pickling (serializing an object for later retrieval) is vaguely
analogous to the culinary process it is named after, the term currying has nothing whatsoever to
do with food. Searching for parallels there will only lead to confusion.

11.3.1Curried version of quad

Currying isn’t part of standard Python, but there are several open source functional
programming libraries around. We will use PyMonad, one of the better-known libraries. You
will need to install it as described in the chapter Useful libraries.



We curry a function by applying the @curry decorator to its declaration. Here is how we
would curry our quad function (we will call it quadc to distinguish it, but that isn’t something
you would normally need to do):

from pymonad import curry

@curry
def quadc(a, b, c, x):
return a*x*x + b*x + c

Now we can still use quadc is the same way as quad:

y = quadc(l, -3, 2, 0)

But we can also call quadc with just 3 arguments. In that case it will return a callable object
(an object that can be used exactly like a function object). This callable object, f, can be called
with a single argument to obtain the result, y:

f = quadc(1, -3, 2)
y = £(0)

This is very similar to creating a partial function as we did with the original quad function:

pquad3 = partial(quad, 1, -3, 2)
y = pquad3(0)

We can also call quadc with 2 arguments. It will return a callable that needs 2 extra
arguments:

f
y

quadc(1l, -3)
f(2, 0)

Again, this is similar to creating a partial function with a and b set, and then passing c and x
in later. And, of course, we can call the curried function with a single argument:

f = quadc(1)
Yy f(_3! 2! 0)

In fact, currying is even more flexible. You can split the function call more than once, for
example:

f = quadc(1)
g = f(_3! 2)
y = 9(0)

In this case, f is a callable object that wants 3 arguments. If we give it just two arguments, we
get another callable object g that wants 1 argument. If we call g with one argument we get the
actual result, y.

11.3.2When to use currying

Currying and partial application both do similar jobs. We will use them both in an example
using map.



Here is the example using partial application (using the functools partial function):

c =1[1, 2, 3, 4, 5]
x = [2, 4, 6, 8, 10]
m map(partial(quad, 1, 2), c, x)

We have created a partial function of quad, setting a to 1 and b to 2. We then map this
function onto two lists containing the C and X values.

How would we do this with currying? We would use our curried version of quad, which we
called quadc. After that, the code is fairly similar:

c =1[1, 2, 3, 4, 5]
x = [2, 4, 6, 8, 10]
m map(quadc(l, 2), c, x)

Notice that this only works because we are using the @curry decorator. This allows us to
use quadc (1, 2) asa function that takes two arguments.

Looking at these two implementations, you might think that the second one is clearly better
because it doesn’t involve explicitly calling the partial function.

There is are potential downsides, though. The @curry decorator does a lot of stuff behind
the scenes. It creates a quadc function that can be called in many different ways, for example:

quadc(1, 2, 3, 4)
quadc(1,2)(3, 4)
quadc(l, 2)(3) (4
quadc(1) (2, 3, 4)

One point here is that calling a curried function is less efficient than a normal function call.
This is not usually an important consideration, because if there are any parts of your program
that require extreme efficiency you probably shouldn’t be writing them using FP, and maybe not
even Python. But it is worth keeping in mind.

The more important consideration is that currying creates functions that behave quite oddly.
Of course, there is nothing magic going on here, the @curry decorator is using standard
Python. quadc and its inner functions just handle different numbers of arguments. But if you
are not familiar with the decorator, or maybe you don’t even know that quadc was created
using the decorator, then the code above could be unexpected and confusing.

Compare this with the partial function. When you use partial, it is quite explicit. You
can see that something is being done, and you can look up partial if you are not familiar with
it.

As arule of thumb, if you are writing a large amount of functional code, and using currying

throughout, it is reasonable to expect anyone reading the code to be familiar with how it works.
It is fine to use currying.

But if you are working mainly with partials, or maybe working with code that isn’t
predominantly functional, then throwing in the odd curried function here and there is probably
going to cause more confusion than it is worth.



11.4Composition

It is quite common in programming to have one function operate on the result of another
function. For example, to calculate the square of the sine of X we use:

square(math.sin(x))

To create an iterator that counts down from n-1 to 0 we use:

reversed(range(n))

We refer to this as composing functions, or composition.

It is generally simpler to stick to the cases where each function accepts a single argument. If
that is not the case, we can often use partial application to solve this. For example, here is a
composition to calculate 2 + 3*X:

from operator import add, mul
add(2, mul1(3, x))

The example above composes 2 functions that each take two arguments, making it difficult to
generalize. We can improve this using partial functions:

from functools import partial

f = partial(add, 2)
g = partial(mul, 3)
fg(x))

Or, in one line (but a little difficult to read):
partial(add, 2)(partial(mul, 3)(x))

11.4.1Creating a compose function

The examples above are quite procedural - we are composing function by writing code that
calls one function then calls another function with the result. We are writing code that describes
how to do the composition, rather than simply declaring that we want composition to happen.
In the earlier chapter Closures, we created a simple compose function that accepted 2 functions
and returned a function that composed them:

def compose2(f, g):
def fn(x):
return f(g(x))
return fn

In this section we have renamed this function to compose2, for reasons that will become
clear. compose? is a function that composes exactly 2 functions.

Instead of using reversed and range to directly create an iterator that counts down, we
can compose those 2 functions to create a new function, countdown, that creates an iterator
that counts down:



countdown = compose2(reversed, range)
countdown(n)

This is even more useful when we start using partial functions. Instead of directly using the
partials of add and muT as before, we can create a new function by composing them:
addmul = compose2(partial(add, 2), partial(mul, 3))
addmul (x)
It is much clearer in this case what is going on.

There are several open source implementations around, but before we look at those, we will
extend our compose?2 function to accept more than 2 functions.

Let’s say we want to compose functions p, g, , S. We want to create a single function that
does:

p(q(r(s(x))))

We could create this by repeated use of our existing compose?2 function, like this:

f = compose2(p, q) # f calculates p(q(x))
g = compose2(f, r) # g calculates p(q(r(x)))
h = compose2(g, s) # h calculates p(q(r(s(x))))

To understand the next step, let’s imagine replacing the values with numbers a, b, ¢, d, and
the compose?2 function with add. The chain of operations looks like this:

X = add(a, b)
y = add(x, ©)
z = add(y, d)

Or more succinctly:

((a+b) +c) +d

This is simply the sum of all the numbers. Or put another we, we have reduced the list of
number using the add operation. See the section on functools. reduce in the chapter
Reducing iterables.

The same thing is also true for composition. To compose a list of functions, we simply reduce
the list of functions using the compose2 operation:

def compose(*f):
def compose2(f, g):
def fn(x):
return f(g(x))
return fn
return functools.reduce(compose2, f)

Here, we have included our original composeZ2 closure as an inner function of compose.
This makes it a private - we don’t need compose2 to be accessible anymore, because compose



can compose?2 functions, or 3, or 4 etc. We only use compose?2 internally to reduce the list of
functions.

The return value of compose is result of reducing the list of input functions, f, with the
compose? function, resulting in a single composite function.

One final point, the reduce function will give an error if it is called with an empty list, unless
we supply a third parameter as an initial value. If we want to avoid this, we need to supply a
suitable value. But what should we use?

The initial value should be the identity value for the operation we are using. If we were using
the add operation, we would use 0, because X plus 0 is X. If we were using the mul operation it
would be 1, because X times 1 is X. In the case of composition, we want a value that acts as an
identity value when composed with any function. This value is the function f(x) that returns x.
To avoid the error, change the last line of compose to:

return functools.reduce(compose2, f, lambda x: x)

11.4.2Existing libraries supporting composition

There are quite a few open source libraries that provide functional programming support,
including a compose function. funcy and fn.py are two libraries that can be found on
github.com orinstalled with pip.

We will concentrate on PyMonad in this section. This provides composition of curried
functions (see the PyMonad @curry decorator described earlier in this chapter).

Rather than using a compose function, PyMonad uses a compose operator, *. Here is how it
works. First, we need to create curried versions of the built-in reversed and range functions:

from pymonad import curry

@curry
def reversedc(x):
return reversed(x)

Qcurry
def rangec(n):
return range(n)

Once these functions are defined, composing them is quite neat:

countdown = reversedc * rangec

Since all the functions are curried, it makes it very easy to compose partial functions. Here
are curried versions of add and mu1:

@curry
def addc(a, b):
return a + b

@curry
def mulc(a, b):
return a * b



And here is our addmu function from earlier:

addmul = addc(2) * mulc(3)

This is clearly a lot more readable than the previous version:

addmul = compose2(partial(add, 2), partial(mul, 3))

11.5Summary

In this chapter we have looked at some of the basic ways of building new functions from
existing ones. These are some of the basic building blocks of functional programming.

e C(Closures - are function factories, capable of building new functions in many different
ways.

o Partial application creates new functions based on existing functions with some of their
original arguments already assigned.

e Currying declares functions in a way that makes partial application and composition
much simpler.

o Composition is a declarative way to create new functions from chained calling of
existing functions.



12 Functors and monads

Functors and monads are two important types of object in functional programming. They
have their roots in some fairly abstract maths, but here we will focus on their practical benefits.

Essentially what they do is wrap a value. The wrapper then controls how functions are
applied to the value. It allows us to extend the capabilities of ordinary functions, for example to
make them work automatically with collections, or to allow them to cope with values that might
not exist (called optionals in some languages).

In fact, there are three related types:

e Functors are the basic type. A functor has a map method that allows it to control how
functions are applied.

e Applicative functors (often just called applicatives) are a subset of functors.
Applicative functors can do everything functors can do, but also have extra
capabilities. All applicatives are functors, but not all functors are applicative functors.

e Monads are a subset of applicable functors. They can do everything an applicative
functor can do, end even more.

These objects are not part of standard Python, but there are several libraries you can use.
This chapter will be using os1ash, a library that has quite a nice implementation of functors.
See the chapter Useful libraries.

Most of the general stuff here about functors applies to other libraries and even other
languages. Most of the syntax is 0s1ash specific, which is based largely on Haskell.

You might find that you don’t uses functors and monad all that much. They are used in pure
functional languages to handle situations that are difficult to handle without procedural code. In
Python, you have procedural coding methods available, so you might often use those rather than
monads. But it is useful to know that they exist.

12.1Functors

We need to be a little careful as the term functor has different meanings in different branches
of computing. For example, it is sometimes used simply to refer to a function object. That is not
what we mean here

This section describes how we use the term throughout this book. If you are familiar with the
Haskell programming language, 0s 1ash functors are based closely on those. If you are not
familiar with Haskell, don’t worry, this section will tell you all you need to know.

A functor is an object that wraps a value and provides a map method that can be used to
apply a function to that value.

Most of the functors we discuss in this section are also monads, so they have all the
functionality of functors, applicatives and monads. So, don’t be confused when the functor types
we discuss here are also used as examples of applicatives or monads later on.



12.1.1The Just functor

The Just functor is a simple wrapper around a value. We can create a Just functor like
this:

from oslash import Just

a = Just(3)
print(a)

This code prints Just 3, to indicate that it is a Just wrapper around the value 3. Now if we
try to apply the operator neg function to this object, we will get an error because neg
doesn’t know how to deal with functors:

from operator import neg
neg(a) # Error!

What we must do instead is use map to apply the function. Just has a map function, because
itis a functor. Here goes:

b = a.map(neg)
print(b)

This prints Just -3. Thatis because Just.map knows how to apply a function to its
wrapped value and return a wrapped result.

You can also apply a function to a functor using the % operator. This is an infix operator that
accepts the function first, followed by the functor it is being applied to.

b =neg % a

12.1.2The Nothing functor

The Noth1ing functor is very simple. It represents nothing, in a similar way to the None type
in standard Python. Although we said earlier that a functor wraps a value, Noth1ing is the
exception. It doesn’t wrap a value; it is just nothing.

We can create Noth1ing like this:
from oslash import Nothing

a = Nothing()
print(a)

This prints Noth1ing, as you would expect. Here is what happens when we apply a function
to aNoth1ing value:
b =neg % a
print(b)

The result again is Nothing. In fact, the result of applying any function to Nothing is
always Noth1ing.



12.1.3The List functor

Our next functor is L1 st. It wraps a list of values, like this:

from oslash import List

a = List([1, 2, 3])
print(a)
print(type(a))

This prints:

[1, 2, 3]
<class 'oslash.Tlist.List'>

The list contents are printed in a similar way to a standard Python list, but the type shows
that it is an osTash object.

Now let’s try applying a function to this list. We will use neg from the operator module - this
in the function equivalent of the negation operator -. Here is the code:

from oslash import List
from operator import neg

a = List([1, 2, 3])
b =neg % a
print(b)
print(type(b))

This produces:

[_1’ _2! _3]
<class 'oslash.list.List'>

It has applied the neg function to every element in the list. That is what the L1i st functor
does, you can use any function and L1ist.map (called by the % operator) will apply it to every
element in the list.

12.2 Applicative functors

An applicative functor wraps a function. It can apply its function to another functor, for
example:

from oslash import Just
from operator import neg

a = Just(3)

f = Just(neg)
b = f.apply(a)
print(b)

The first thing to know is that this code only works because Just isn’t only a functor, it is
also an applicative functor. An ordinary functor doesn’t have an app1y method. So, having



wrapped our neg function in the applicative functor f, we can apply it to a. The result is the
same as before, a functor Just -3.

You can use the * operator as an infix version of app1y (just like % is an infix version of
map), so we could write:

b=Ff%*a

12.2.1Functions with more than one argument

Up until now we have only dealt with functions that take exactly one argument. What if we
wanted to use a function like operator add?

a = Just(3)
b =add % a
print(b)

This prints:

Just functools.partial(<built-in function add>, 3)

This is very promising. A partial of add, with 3 applied, wrapped in a Just applicative! We
know how to apply the second argument, using the * operator:

c =b * Just(6)
print(c)

Which gives us Just 9.

Let’s see how that works with a function of 4 arguments, such as the quad function from
earlier chapters (don’t worry, it doesn’t really matter what the function actually does):

a = quad % Just(l) * Just(3) * Just(2) * Just(0)

You can think of the % as being like the opening bracket and the * being like a comma
between arguments. There is no closing bracket, analogies aren’t always perfect. Or you could
just wrap quad in a Just functor and use * all the way through:

a = Just(quad) * Just(l) * Just(3) * Just(2) * Just(0)

It is important to understand what is happening here. Let’s break it down into stages and
show the value of a at each stage:

a = Just(quad) # Just <function quad >

a = a*Just(l) # Just functools.partial(<function quad, 1)

a = a*Just(3) # Just functools.partial(<function quad, 1, 2)

a = a*Just(2) # Just functools.partial(<function quad, 1, 2, 3)
a = a*Just(0) # Just 2

Each step creates a new partial function, wrapped in a Just functor, with the parameters
supplied so far set in the partial function. This works a little like currying.



12.3Monads

A monad wraps a value in a similar way to a functor. However, a monad has an additional
function called b1ind that:

e Accepts a single parameter.
e Returns a value wrapped in a monad.

Unlike a map, the b1nd function itself is responsible for wrapping the return value. This
means the bind function can decide what sort of monad to wrap the result in.

Here is an example, the function oneover returns 1/X, wrapped in a Just monad:

from oslash import Just, Nothing

def oneover(x):
ret = 1/x
return Just(ret)

a = Just(2).bind(oneover)
print(a)

a = Just(0).bind(oneover)
print(a)

The first call, binding oneover to the value Just 2 correctly returns Just 0.5.The Just
monad unwraps the value 2, and passes it to oneover, which returns Just 0.5.

The second call, however, passes 0 to oneover, which results in a divide by zero exception -
not exactly what you want from a pure function.

There is a solution. oneover has the choice of what sort of monad it returns. So, we could
catch the exception and return a Nothing monad:

def oneover(x):
try:
ret = 1/x
except:
return Nothing()
return Just(ret)

This works much more sensibly. The first call returns Just 0.5, the second returns
Nothing.

12.4Summary

Functors, applicable functors and monads are mainly used by pure functional programming
languages to handle situation such as errors, exceptions or order dependent operations in a
clean way. This is less of a problem for Python, since procedural code can be used for the same
purpose.



This chapter gave an overview of the use of these features with the os1ash library. If you
are interested in gaining a greater understanding of the context of these features, it would be a
good idea to learn more about a pure functional language such as Haskell.



13 Useful libraries

We have mentioned several libraries in other sections of this book. This chapter tells you
where to find them and lists further areas to explore.

13.1itertools

itertools is a standard Python library - it is part of Python and doesn’t need any extra
installation.

[t contains a number of useful extra functions for iteration. Here are some of the highlights,
refer to the documentation on python.org for a full list.
13.1.1Infinite iterators

These are iterators that go on forever.

count(start, [step]) produces an infinite series of incrementing values, with an
initial value start. For example:

count(0) # Creates 0, 1, 2

It behaves like range, but with the end value set to infinity. There is an optional step value:

count(5, 2) # Creates 5, 7, 9

repeat(x, [n]) produces and infinite series of the value X, repeated over and over. The
optional value n will cause the sequence to stop after n iterations.

cycle(it) creates an infinite series by repeating the values in it (an iterable) indefinitely.
For example:

cycle([1, 2, 31) # Create 1, 2, 3, 1, 2, 3, 1, 2, 3...

13.1.20ther iterators

itertools contains a set of other useful iterators. Some of these are useful variants on built-in
functions.

zip_longest(p, q ..., fillvalue=None) zips a set of iterables. it works in a very
similar way to the normal z1i p function. The difference is that zip stops when the shortest
iterable runs out of data, whereas zip_1longest continue until the longest iterable runs out of
data. Missing values are set to fi11value, which defaults to None:

a=1[1, 2, 3]
b = [10, 20]
zip(a, b) # Creates (1, 10), (2, 20)

zip_longest(a, b) # Creates (1, 10), (2, 20), (3, None)

starmap(fn, it) isvery similar to map. The difference is, if fn takes more than one
argument, map expects a set of iterables, one per argument. starmap expects a single iterable



containing tuples of n values. This is useful is the data happens to already be in that format -
rather than having to use z1p to reformat the data, you can just use starmap directly.

If your data is available as a set of iterables, use map:

map(add, [1, 2, 3], [4, 5, 6])

If your data is available as a single iterable of tuples, use starmap:

starmap(add, [(1, 4), (2, 5), (3, 6)])

filterfalse(fn, 1it) isexactly the same as filter, the sense of the test is reversed.
f1i1ter keeps elements where fn is true, and discards elements where fn is false.
filterfalse keeps elements where fn is false, and discards elements where fn is true.

There are some additional functions that are worth a look too:

e accumulate is similar to sum, but it keeps a running total of values.

e chainjoins two or more iterables into a single iterator.

e tee splits one iterable into two or more separate iterators.

e takewhiTeissimilar to filter, it returns all the values from an iterable until its
function evaluates to false. Unlike filter, takewhile stops completely after the
first false value.

e dropwhile is the opposite of takewh1iTe. It ignores all values until the function
evaluates to false, and then returns all values after that.

13.1.3Combinations

itertools also provides several functions for creating all permutations and combinations
of the elements of am iterable.

13.2functools

functools is another standard Python library than requires no additional installation. We
have used several functions from this library in earlier chapters:

e Tru_cache for memoization.
¢ reduce for the map-reduce pattern.
e partial for creating partial functions.

13.3PyMonad

PyMonad is an open source library that supports functional programming techniques that
are not supported by the standard Python libraries.

We have used it to illustrate currying and composition. As its name suggest, it also provides
functor and monad implementations, although in this book we have opted for the osTash
library to illustrate those concepts.

You can install PyMonad using:

pip install pymonad



Documentation can be found on the PyMonad pages on github.org and pypi.org. There are
also various articles on PyMonad that can be found around the internet.

13.40slash

oslash is another open source library that supports functional programming. Again, it is
not a standard library and will need to be installed separately.

We have used it to illustrate functors and monad because it has quite a clean and simple
implementation.

You can install os1ash using:

pip install oslash

Documentation can be found on the os1ash pages on github.org and pypi.org. It is a slightly
less well-known library, so there is less supporting material available from other sources, but it
is reasonably well documented on its official pages.





