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PREFACE

Financial markets are complex systems involving many participants, intercon-
nected entities, as well as models, methods and technologies. In recent years,
the financial sector has experienced an “explosion” due to the catastrophic
growth in information volumes. Classical methods of financial data analysis
need to gain competitive ground. Therefore, financial analysts increasingly
use IT technologies, particularly Python programming tools, for quick deci-
sion-making and profit generation.

Python, a high-level programming language, has become a staple in various
fields, including finance. Its straightforward syntax, vast user community, and
extensive range of libraries and tools make it a practical and powerful tool for
financial data analysis. This book utilizes key Python libraries such as Pandas,
NumPy, SciPy, Statsmodels, Matplotlib, Seaborn, Scikit-learn, Prophet, and
others, empowering you with the tools you need to excel in financial analysis.

This book introduces fundamental concepts for analyzing financial markets
and supporting investment decisions. These concepts, including time-series
analysis, graphical analysis, technical and fundamental analysis, asset pricing,
portfolio theory, investment and trading strategies, risk assessment, and the
basics of financial machine learning, are more than just theoretical. We bring
them to life with real-world examples of analyzing financial market dynam-
ics, forecasting future trends, optimizing investment portfolios, assessing
strategies, and managing financial risks, making the content engaging and
applicable to your work.

With this book, you will gain Python programming basics, its primary libraries
for data analysis, and their integration with the core financial concepts.
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Chapter 1: Getting Started with Python for Finance - explains foun-
dational knowledge of Python’s role in finance and its advantages over other
programming languages. The installation and configuration of Python on
local computers or using the Google Colab cloud platform are described.
This chapter provides an overview of the top libraries for solving financial
problems with Python. It also illustrates the fundamentals of the Python pro-
gramming language, including syntax, operators, and basic data structures,
including those related to financial data analysis.

Chapter 2: Python Tools for Data Analysis: Primer to Pandas and
NumPy - presents an overview of the essential Python control and data struc-
tures operations, built-in functions, and primary libraries for financial data
analysis (NumPy and Pandas). The chapter provides practical examples close
to actual financial data to explore foundational tools and operations crucial
for such manipulation. Learn to create and manage arrays with NumPy and
handle tabular data effortlessly with Pandas, gearing you to derive insightful
outcomes from the financial data analyses.

Chapter 3: Financial Data Manipulation with Python - covers the
foundational concepts of financial data, explores various open data sources,
and investigates their role in finance. The practical skills with Python will
be expanded while collecting real-world financial datasets by importing and
structuring information. In the chapter, explain how to use the benefits of
yfinance, pandas_datareader, quandl and other Python libraries, as well as
CSV and Excel data files, APIs, and web-scraping tools. The practical results
create datasets for analyzing financial data and making informed decisions
using Python.

Chapter 4: Exploratory Data Analysis for Finance - allows the reader
to learn essential exploratory data analysis skills for finance. The data-trans-
forming processes and patterns used to inspect and clean financial data and
related mathematical operations are described. The chapter provides hands-
on experience in data visualization using Matplotlib and Seaborn, as well as
understanding the descriptive statistics metrics and moving average data to
determine financial trends. Investment returns and risk statistics, as well as
explanatory, visual, and correlation analysis tools, are explored. This skill set
helps to make informed, data-driven investment decisions and prepares for

the typical analytical stages.

Chapter 5: Investment and Trading Strategies - gives special attention
to investment, analytical and trading strategies, with the ability to integrate
technical, fundamental, and graphical analysis into your trading strategy. The
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chapter delves into core investment principles and metrics, offering practical
insights and advanced candlestick chart techniques. Utilizing Python’s visu-
alization tools, financial market data is brought to life, highlighting significant
patterns and interpreting market indicators. Essential graphical and techni-
cal analysis tools are covered, enabling the generation and testing of trading
strategies. Real-world market data is used to solidify understanding, prepar-
ing readers to navigate the dynamic nature of trading with a thorough grasp
of risk and return dynamics and equipping them to make informed decisions
using sophisticated analytical tools.

Chapter 6: Asset Pricing and Portfolio Management - details Python
tools for estimating investment portfolio parameters and regression model
parameters. The basics of modern portfolio theory are covered to inform
long-term investment strategies. Foundational portfolio theories, such as
Markowitz’s model and the Sharpe Ratio criteria, are examined. Statistical
tools and regression models are used to quantify the risk-return ratio for mak-
ing investment decisions. The power of Python statistical libraries, such as
Statsmodels and SciPy, is highlighted for regression analysis and to find opti-
mum solutions mathematically.

Chapter 7: Time Series Analysis and Financial Data Forecasting -
applies traditional time series analysis in financial forecasting with Python,
pointing out the core limitations of these models. Various forecasting tech-
niques are explored, from exponential smoothing to advanced SARIMAX
models, revealing the challenges faced in volatile financial markets. The chap-
ter describes why the Mean Absolute Percentage Error (MAPE) metric can
sometimes yield better results with actual financial time series data variations.
This insight is pivotal for applying more robust and adaptive forecasting tech-
niques, including machine learning.

Chapter 8: Risk Assessment and Volatility Modelling — explains sophisti-
cated principles of probability theory with executable Python code, leading to
a deep understanding of financial risk and volatility principles. Proficiency is
gained in applying Python’s computational capabilities to financial risk assess-
ment and volatility modelling. Understanding how to use Python tools with
key probabilistic distributions is achieved through the computation of VaR
and aVaR. The power of Monte Carlo simulations is used by applying rand-
omizing or stochastic methods to real-world examples of option price predic-
tion and VaR estimation. By comprehensively exploring ARCH and GARCH
models, the ability to anticipate and model financial volatility is developed.
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Chapter 9: Machine Learning and Deep Learning in Finance — touches
the ML world as it applies to the financial sector. An understanding of funda-
mental theories, models, and steps for applying machine learning to analyze and
predict financial data is provided. The chapter focuses on the practical utility
of the scikit-learn library, demonstrating how to implement machine learning
models such as clustering and regression and employ feature engineering to
enhance model performance. Description of the scikit-learn, XGBoost, and
light GBM libraries and evaluation of the basic machine learning models using
appropriate tools for financial applications are covered. The chapter lays the
foundation for applying skills in using Python-based regression and clustering
techniques, understanding the importance of cross-validation, and perform-
ing hyperparameter tuning to improve model accuracy.

Chapter 10: Time Series Analysis and Forecasting with FB Prophet
Library — describes the FB Prophet library for advanced time series analysis
and forecasting in finance. This chapter provides a detailed understand-
ing of Prophet’s functionalities, from executing basic operations to exploit-
ing advanced features for more accurate forecasting. Techniques for applying
Prophet to various financial datasets are covered, enabling the forecasting of
market trends, evaluation of investment risks, and making well-informed finan-
cial decisions. The tools are provided to construct, assess, and refine complex
forecasting models, employ cross-validation techniques, tune hyperparameters,
and combine Prophet with machine learning methods for enhanced financial
decision-making.

Appendix A: Python Code Examples for Finance — includes the main
code examples from this book.

Appendix B: Glossary — outlines the meaning of keywords and definitions.

Appendix C: Valuable Resources — describes key resources for future
development of new Python programming and self-development

Companion Files Code samples and figures from the text are available for
downloading from the publisher by writing to info@merclearning.com.
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CHAPTER

GETTING STARTED WITH
PyTHON FOR FINANCE

INTRODUCTION

In the constantly evolving field of finance, professionals and enthusiasts must
stay up to date with the latest tools and methodologies. One such tool that has
gained substantial traction in finance is the Python programming language.
This chapter will introduce the dynamic world of Python and its potential in
finance and financial data analysis. Initially conceived in the late 1980s for stu-
dents’ software engineering skills training, Python has become an impressive
part of the world of finance and FinTech as one of the most popular analytical
tools. With its simplicity and expansive ecosystem of libraries, the tool has
become an indispensable asset for financial analysts, quantitative researchers,
and investment bankers. This might prompt the following questions:

=  What makes Python different from other programming languages for
finance and data analysis aims?

=  Why have major financial institutions and individual investors applied
Python tools at the core of their data analytics and financial modeling?

We will learn more about the Python programming language’s core princi-
ples for data analysis and finance sector decision-making to answer these
questions. We will also compare and show Python’s advantages as an analy-
sis tool with other major programming languages, such as Java, Julia, and R.
Furthermore, to ensure that we are well equipped to use Python, we will
explore the essentials of Python installation and the intricacies of setting up
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integrated development environments (IDEs) for Python coding. We will also
introduce the pivotal packages and libraries for finance and data analysis.
Python is well known for its friendly syntaxes. This chapter will describe the
essential principles of syntax, basic operations, control flow, and data types.

So, whether you are a seasoned finance professional looking to enhance your
analytical toolkit or a programming enthusiast keen on financial data analysis,
this chapter promises to be an enlightening starting point for your journey
into the world of Python for finance, a combination that has revolutionized
the financial world.

STRUCTURE

This chapter covers the following topics:

= Finance principles and contemporary trends in data analysis

= Comparison of analytical tools for various programming languages
= Installing Python and using IDEs for financial data analysis

= Overview of the main Python libraries for finance

= Python essentials: Syntax, basic operations, control flow, and data types

OBJECTIVES

By the end of this chapter, you will have a foundational knowledge of Python’s
role in finance and its advantages over other programming languages. You will
investigate installing and configuring Python on local computers or using the
Google Colab cloud platform. This chapter provides an overview of the top
libraries for solving financial problems with Python. It also illustrates the fun-
damentals of the Python programming language, including syntax, operators,
and basic data structures, including those related to financial data analysis.

FINANCE PRINCIPLES AND CONTEMPORARY TRENDS IN
DATA ANALYSIS

The emergence of the notion of finance is intertwined with the inception of
the earliest states and the nascent trading and market relations. The contem-
porary, practical meaning of finance, however, relates to managing financial
assets. Hence, the paramount objective of financial management is maximiz-
ing potential returns and profits from utilizing these assets.
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Therefore, the term finance often refers to operations in the financial
markets, particularly transactions involving the profitability bay or sale of
financial assets (stocks, bonds, derivatives, cryptocurrencies, etc.). This
book will explore the primary analytical algorithms that use the Python
programming language in this domain. Nonetheless, most of the analytical
or managerial tools discussed can be used for other financial tasks, such as
individual or corporate budget planning, risk assessment and forecasting,
and formulating analytical reports to make financial decisions. For those
unacquainted with the details of finance, this book will describe the essen-
tial principles of managerial decisions on financial markets and core terms
relating to financial assets. It delves into the world of financial information
and computation.

Inherently quantitative entities, finance invariably involves the numerical rep-
resentation of outcomes: stock price, profits, turnovers, or past losses. This
intrinsic quantitativeness positions finance near the modern world of infor-
mation technology (IT). In some respects, the valuation of financial assets
is dictated by informational factors. For instance, the global financial crisis
of 2008-2009 was instigated by discernible fundamental factors. This crisis’s
precursors, or the weak signals, manifested well before its peak, however.
Individual investors and financial institutions that astutely identified these
informational cues either minimized their losses or even capitalized on the
repercussions of the crisis. The cinematic depiction of this in The Big Short
(2015) is a recommended reference for an insightful exploration of this theme.
The film artistically demonstrates examples of the informational aspects of
finance and might even inspire risky financial instincts.

The simultaneous development of innovations in the field of finance and IT
technologies has led to a sharp increase in the volume of data, including finan-
cial data, which requires the adoption of advanced data processing method-
ologies. According to data from Statista.com, by 2025, the volume of data
created, captured, copied, and consumed globally is projected to double com-
pared to 2021, reaching 181 zettabytes (source: Statista, https://www.statista.
com/statistics/871513/worldwide-data-created/). Thus, a mere momentary
lapse in financial decision-making could translate to substantial losses or fore-
gone profits in this high-velocity digital age. Even a slight delay or a small
mistake when making financial decisions can lead to lost profits or signifi-
cant financial losses. Consequently, using tools offered by modern high-level
programming languages (R, Python, Java, etc.) has become indispensable for
finance, and even parts of most analytical software products.
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A conceptual view of gaining profit from investing in financial assets using
Python (the general logic of the topic of this book) is illustrated in Figure 1.1:

Financial Financial Market

L Financial Assets
Investor Institutions ! !

Risks and Profit or
Losses Losses
[ Financial Data Analysis - Python Data Analysis ]
. Decision
Data Data Data Modeling and Support or
Collection Processing Analysis Forecasting Decision-Making

FIGURE 1.1 Outcomes workflow for Python for finance

Figure 1.1 depicts both the participants in the financial markets and the tools
utilized for decision-making in the management of the portfolio of financial
assets. These will be discussed in more detail in the following subsections.

Financial Investor

This refers to a participant in financial relations with liquidity (financial assets
that can easily be exchanged for other assets or services, such as cash). Think
of Bob, a software developer who just received his year-end bonus. He is an
individual investor looking to grow that bonus by investing in the financial
market. An investor can be an individual or a financial institution making a
profit in financial markets. The distinguishing characteristic of an investor in
the turnover process of financial assets is that they are the owner of the ini-
tial capital for investment. Active investors might decide to conduct all finan-
cial calculations and forecasts to manage their financial investment portfolios
using all analytical tools, including financial data analysis tools from Python.
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Passive investors delegate some or all analytical and decision-making func-
tions to financial institutions. Both, however, use financial data analysis tools
to maximize profit and minimize losses.

Financial Market Institutions

This category comprises financial and service (consulting) institutions offering
diverse services to access financial market opportunities. These institutions
include financial asset traders, stock exchanges, consulting firms, analytical
bureaus, and rating agencies. Let us understand each, one by one:

m  Exchange institutions: All financial markets (stock market, bond market,
options, or cryptocurrency) need an institution that provides legal com-
pliance and a certain level of investor protection. For example, imagine a
busy market where buyers and sellers come to exchange goods. Without
the market administration, police, and even cleaners, this market could
not exist. Likewise, the exchange institution (usually an exchange) helps
financial investors buy, sell, or exchange financial assets. Modern financial
exchanges (stock, foreign exchange, cryptocurrency, etc.) have expanded
their role. They can also provide consulting and trading services. The pri-
mary function, however, of the financial exchange institution remains to
fulfill clients” orders and conduct settlement transactions.

= Financial market traders: These are individuals or entities who actively
trade in the financial markets, either for themselves or on clients’ (indi-
vidual and corporate investors) behalf. Imagine someone at multiple com-
puter screens, watching the numbers and graphs move, deciding when
to buy or sell—that is a trader in action. They bring liquidity (supply and
demand) to the markets, ensuring that securities can be bought or sold
anytime. Thanks to traders, we can be sure that the valuable assets that
we have in our possession can be sold to someone. Traders use various
investment strategies based on analytical calculations and the preferences
of their clients.

= Consulting institutes: These include rating and information agencies,
trust companies, and mutual funds, which are key players in the financial
sector. They offer various services, from one-time consultations for pur-
chase and sale decisions to comprehensive management of investment
portfolios. These institutes serve as financial guides, advising clients on
their financial tasks and problems. Rating agencies show the creditwor-
thiness of various organizations, from corporations to governments. News
agencies provide essential analytical data for informed trading. Trust
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companies and mutual funds are responsible for professionally financial-
assessing and managing investors’ resources. They devise and execute
priority investment strategies for maximum profit. In essence, these insti-
tutes combine consulting, trading, and exchange functions.

Intertwining the needs of financial institutions and investors ensures a
dynamic and fluid financial market. Therefore, analytical skills are critical for
all participants in financial relations.

Two Critical Finance Categories

For finance, as illustrated in Figure 1.1, two critical categories emerge: return
(profit, revenue) and risk (potential losses). Imagine setting out on a sea voy-
age. The returns are the treasures you hope to find, and the risks are the tur-
bulent waters and pirates you might encounter on the way. These twin pillars
are the basis of any financial analysis.

When an analyst forecasts high returns based on financial computations and
constructs a portfolio of financial assets without adequately accounting for
risk, potential losses may culminate in eventual deficits. Conversely, the net
investment profit will likely approximate zero if an investor’s strategy is sin-
gularly oriented toward risk minimization. Further, when inflation’s impact
is not considered, this may even result in a capital reduction. Hence, the
deployment of analytical tools, both within this book and in broader financial
practice, usually aims at gauging and prognosticating return metrics from the
utilization of financial assets and potential associated losses.

These categories, however, can be assessed using various metrics or indica-
tors. This significantly increases the volume of financial information and other
data used in making management decisions in finance. Going back to our sea
voyage example, imagine a dashboard full of dials, each representing indica-
tors such as speed, direction, and weather conditions. All the dashboard data
is essential to reaching your destination port successfully. Financial indicators
often include qualitative and quantitative measures—for example, knowledge
of past market sentiment, prices, and trading volumes. They can be compared
to a ship’s compass (quantitative) and a sailor’s intuition based on experience
(qualitative). Balancing risk and return is the cornerstone of sound financial
management. After all, the pursuit of profits can lead to bankruptcy. It is as
if we are going around the reefs, trying to reach our destination port with the
treasure faster than our competitors, but successfully.
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Financial Data Analysis

NOTE

NOTE

The last segment in Figure 1.1 pertains to financial data analysis. Consider
this analogous to a master chef preparing a gourmet meal. Every step is criti-
cal, from selecting the freshest ingredients to presenting the dish beautifully.
Contemporary data analysis is mainly grounded in five foundational processes,
though it is not confined to these alone:

= Data collection is a critical step that forms the basis for effective finan-
cial data analysis. It involves collecting relevant information from vari-
ous sources (stock exchanges, financial statements, economic indicators,
news, and many others). For example, an investor might regularly check
news sites to understand how geopolitical events may affect stock prices.
The speed, accuracy, and relevance of data collection are paramount to
actionable analysis.

= Data processing means that data must be cleaned, organized, and con-
verted into a format suitable for the further application of models and
analysis methods. For example, suppose an analyst discovers that a source’s
prices for a particular stock are erroneously recorded in cents rather than
dollars. In that case, this requires transformation and the application of
appropriate data processing algorithms. This step may include data nor-
malization, handling missing values, data type conversion, and other
extract, transform, and load (ETL) instruments. Advanced Python tools
primarily focus on making this process easier and automated.

ETL is a core part of the financial data analysis process, particularly in data
preparation. In fact, ETL can be viewed as a subset or specific implementa-
tion of the data collection and data processing stages described in the financial
data analysis workflow.

= Data analysis involves analyzing processed data to identify patterns, cor-
relations, or other information useful for decision-making. For exam-
ple, discovering a correlation between rising oil prices and falling airline
stocks can help guide future investments. It mainly includes exploratory
data analysis (EDA) techniques such as statistical, trend, and regression
analyses.

EDA is an important step in the data analysis process. EDA involves basic
data exploration to discover patterns, identify anomalies, and test hypotheses
and assumptions using statistical graphs and information tables. The purpose
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of EDA is to understand and structure data, obtain valuable information,
and prepare data for the subsequent application of modeling and forecasting
methods.

»  Modeling and forecasting is the application of existing financial or statisti-
cal models (which will be discussed in detail later in this book in Chapters
4 to 10) to study complex patterns in financial data and make informed
investment decisions. Imagine an algorithm predicting a boom in electric
vehicle stock prices due to breakthroughs in new battery technology, or a
crash in automaker stock prices due to the depletion of oil reserves. This
is mainly aimed at optimizing returns and losses. Classical and modern
implementations of statistical models typically provide templates for the
required estimates. This includes assessing the impact of dynamic factors,
predicting average returns, assessing the detrimental effects of risk, and
formulating machine learning and neural network models.

= Decision-making and support are perhaps the most important aspects of
any practice. Typically, an investor or financial institution manager uses
the full range of modeling, forecasting, and analytical results to decide to
buy, sell, or take other actions. Modern algorithmic trading tools, how-
ever, including those based on the Python programming language, can
autonomously determine the realization of profits/losses without human
intervention. This significantly increases the speed of decision-making,
but it can increase the likelihood of losses in complex scenarios. In gen-
eral, this stage is associated with implementing the chosen investment
strategy.

In essence, leveraging modern IT and programming language analytical tools
in finance is necessary to promptly respond to the rapidly shifting conditions
of the external environment. At the very least, financial investors or institu-
tions forego alternative benefits by not making use of these opportunities.

COMPARING ANALYTICAL TOOLS FOR VARIOUS
PROGRAMMING LANGUAGES

There are a lot of different programming languages in the sphere of analytical
tools for financial data analysis, each with pros and cons. Each language has
strengths, tailored libraries, and particular niches where it shines brightest.
Python has rapidly become prominent in financial research and data analysis.
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According to IEEE Spectrum’s 10th annual ranking of the top programming
languagesl, Python stands out as the top-ranked language based on a combined
grade. Java follows closely in the 2nd position. Notably, R and Julia, commonly
used for data analysis, occupy the 11th and 30th positions, respectively.

In DataCamp’s ranking of the Top Programming Languages for Data Scientists
in 2023, Python retains its dominant position. R, Java, and Julia, however,
have risen to the 2nd, 4th, and 5th positions, respectively. This suggests that
while Python remains a leader, other dominators exist in the market of analyti-
cal programming languages.

What distinguishes Python in the competitive landscape of financial data anal-
ysis? In the following table, we will look at a comparative analysis of the func-
tions and capabilities of various programming languages, including Python. To
discern the differences between Python, Java, Julia, and R, especially regard-
ing their applicability in financial data analysis and decision-making, refer to

Table 1.1:
TABLE 1.1 Critical differences between Python, Java, Swift, and R for finance
Language/ Python Java R Julia
Feature

Readability for | High Moderate Very high Moderate

data analysis Simplicity and clear | More verbose Designed for statistics | Although inspired by
syntax syntax and data analysis Python, it has its own

unique syntax

Performance Moderate High Moderate High
Can be integrated Compiled Optimized for statistics | Just-in-time compiled,
with Cython language known | but can sometimes be | making it particularly
for enhanced for its speed slower fast
performance

Learning curve | Easy Moderate to Easy Moderate
Beginner-friendly hard Especially for Has its learning

statisticians nuances, but
manageable

Community Vast Large Dedicated Growing

support Python has a Java has been R has a focused Julia is relatively new
broad and active around for along | community around but has an enthusiastic
community time with an statistics community

active community

'Source: https://spectrum.ieee.org/the-top-programming-languages-2023

(Continued)

*Source: hitps:/hwvww.datacamp.com/blogftop-programming-languages-for-data-scientists-in-2022
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Language/ Python Java R Julia
Feature

Integration Extensive Extensive Moderate Good
Can integrate with | Widely used Can integrate with C, | Can integrate with C,
various databases, in enterprise C++, and Fortran code | Fortran, and Python
tools, and platforms | solutions

Ecosystem for | Extensive Moderate Extensive Growing

data analysis A wide range Mainly oriented | A wide range of Several packages for
of packages for toward enterprise | packages for different | data manipulation and
different analytical applications analytical tasks statistics
tasks

Ecosystem for | Excellent Good Excellent Good

finance Alot of libraries, Libraries such as | quantmod, Growing ecosystem
such as pandas, JQuantLib PerformanceAnalytics, | with packages such as
NumPy, mplfinance, and other dedicated JuliaFin
and QuantLib packages

Library High Very high Moderate Moderate

stability Stable core libraries | Enterprise-grade | Stable core libraries, Growing ecosystem,
with frequent stability some decentralized some libraries still
updates, a lot of packages lack maturing
decentralized maintenance
solutions

Let us summarize the results of the comparative analysis (Table 1.1):

Java has made significant strides in data science, especially in enterprise-
grade financial applications. It leverages amazing performance, extensive
libraries, and robust integration capabilities to deliver scalable and effi-
cient solutions. Notable, however, is that major new methods and innova-
tive solutions in data analysis are supported by Java late and often require
rewriting the code. Therefore, this programming language is usually
unsuitable for junior data analytics or beginners in finance.

R is the top choice of many data scientists. It is specifically designed for
academic research and advanced statistical analysis. Most of the world’s
leading scientific publications are based on R. This programming language
quickly considers new data analysis and financial analysis developments.
Many libraries are, however, still in the development stage and aren’t
yet suited to working with big data. Also, R does not allow you to create
competitive end solutions (software applications, analytical modules, and
analytical trading tools). Therefore, this programming language, although
easy to learn and implement, is rarely used by practicing financiers.

Julia, propelled by its computational prowess, is rapidly establishing itself
in scientific computing and cutting-edge research projects. Its potential to
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become an effective solution for many data analysis and decision-making
areas is immense. The current low prevalence of this programming lan-
guage, however, might limit its widespread use, which could be a point of
consideration for potential users.

= Python currently holds the best advantages for data analysis and use in
various fields: a simple and intuitive interface, a huge ecosystem, and
computer support. It also quickly implements innovative methods and is
widely adopted. Thus, Python consistently stands out as the best choice
for both beginners and experts.

Python Programming Language Advantages

Let us detail the critical advantages of the Python programming language as
a tool for finance:

= Readability and easy syntax: Python’s design philosophy emphasizes code
readability. Its clean and expressive syntax makes writing, understanding,
and maintaining code easier. This readability facilitates a smoother transi-
tion into programming for finance professionals, many of whom may not
have a strict coding background.

m  Vast community: Python boasts one of the largest and most active pro-
gramming communities, especially for data analysts. This means many
resources, tutorials, and forums are available for troubleshooting and
learning. Additionally, whenever there is a new trend or technology in
finance, someone in the Python community will likely already be working
on it or have developed a library to handle it.

= Extensive libraries for finance: Python offers a large ecosystem of libraries
specifically designed for data analysis and financial tasks. Libraries such
as pandas for tabular data manipulation (DataFrames), NumPy for matrix
and array numerical calculations, and mplfinance for quantitative and
graphical analysis in finance make modeling easier and decision-making
more efficient.

m  Platform independence: Python is platform-independent, meaning it can
run on various operating systems without modification (macOS, Windows,
Linux, x86-compatible or ARM CPUs, etc.). This is crucial for finance, as it
may need to be deployed across different server architectures or platforms.

= Flexibility and integration: Python can integrate with other languages,
such as C or Java. This makes it versatile for creating competitive software
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solutions for complex financial problems, where Python can be used for
high-level logic and high-performance tasks can be translated into other
languages.

Cost-effective: Python and its basic libraries have open-source licenses
(mainly distributed under the Python Software Foundation, GNU General
Public Licenses, Berkeley Software Distribution, and other licenses), pro-
viding a cost-effective solution for financial analysis. Organizations can
invest less in permits to use and deploy Python-based applications.

Adaptability: Python tools” versatility means that they are not limited to
finance or data analysis; they are widely used in Web and desktop appli-
cation development, machine learning, artificial intelligence, and other
fields. This adaptability ensures that finance professionals using Python
have skills that can be applied in many fields.

Python for finance is a relatively simple, robust community with a broad arse-
nal of data analysis tools. The language’s adaptability and cost-effectiveness
further cement its place as a top contender in the financial world.

The Role of Python in Finance

Python has carved a niche in finance, and its utility is far-reaching. Let us look
at a brief overview of the roles it plays in finance:

Automation: Time is money, especially in finance. Automate mundane
tasks such as data collection with Python so that you can focus on more
critical tasks.

Quantitative analysis: Python libraries such as NumPy, SciPy, and pandas
can perform complex calculations quickly. Let us consider a real-life exam-
ple. Have you ever heard of the Black-Scholes model for option pricing?
Python can help you compute it in less than 10 lines of code!

Data analysis and visualization: These are crucial components of deci-
sion-making. The pandas library facilitates the efficient manipulation and
analysis of this vital resource. While the pandas tools help to refine this
raw data, Matplotlib, Seaborn, and mplfinance serve as your canvases for
crafting compelling data stories. Many professional financial institutions
and individual investors use Python to visualize trends and make valuable
decisions.
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= Portfolio management: If your goal is to manage a financial portfolio
someday, Python—in particular SciPy—can help you construct optimized
portfolios.

= Regression and forecasting: In finance, regression and ARIMA mod-
els are powerful tools for modeling financial processes and forecasting
time-series data, especially for predicting stock prices or other economic
indicators. Libraries such as statsmodels and sklearn are the basis for
assessing the relationship between financial indicators. Utilizing Python
libraries such as statsmodels, you can easily fit an ARIMA model to your
data. This is a crucial skill for making informed financial decisions.

= Risk management: Picture yourself as a bank loan officer evaluating a
startup’s creditworthiness. Python’s robust risk management financial
libraries include credit and market processes. With specialized models
such as GARCH (from the arch Python library), you can rigorously assess
market volatility, enhancing your risk evaluation toolkit. Basic Python
tools will also allow you to estimate the value at risk (VaR) and the prob-
ability of losses. Thus, Python is an indispensable resource for financial
institutions to make risk-adjusted decisions.

= Financial machine learning: Python is a critical player in financial machine
learning, thanks to libraries such as scikit-learn. If predicting stock prices
is on your agenda, take notice of the Prophet library. With Prophet, fore-
casting future stock prices can be done in just a few lines of code.

= Technical analysis: Python offers general-purpose statistical libraries and
specialized libraries for technical analysis, such as TA-Lib. These libraries
make it easy to identify statistical patterns, calculate moving averages, and
use other indicators to assess market trends and make informed invest-
ment choices.

= Derivatives pricing and options valuation: Python helps beginner finance
analysts who want to dive deeper to understand the principles of financial
derivatives pricing. Libraries such as QuantLib and yfinance can be best
for this.

= Integration: Python’s beauty is its versatility and integration. It interoper-
ates well with other systems and products, databases, and languages, mak-
ing it a valuable knowledge asset for any financial specialist and financial
IT environment.

Many other financial tasks can be solved using Python programming language
instruments.
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PYTHON INSTRUMENTS ARE READY FOR DATA ANALYSIS

After understanding the essence of finance and developing a keen interest in
profiting from the financial markets, it is only logical to lean into the advan-
tages of the Python programming language. Before you can begin, however,
you must first grasp how Python functions.

Working with Python is more complex than using traditional office software
with installation files or available via app stores. For instance, once you have
installed Microsoft Excel or OpenOffice Calc, you are instantly greeted with
a familiar spreadsheet interface. Most users are accustomed to the concept
of having a direct, user-friendly interface immediately after installation. With
Python, however, as Figure 1.2 shows, the situation is slightly complicated.
Fear not, though; persistence makes it manageable in no time.

As illustrated in Figure 1.2, working in Python entails three primary compo-
nents: the Python interpreter, an IDE, and various extension modules sourced
from diverse repositories. Let us break down each component:

= The Python interpreter essentially bridges human-readable Python code
and machine-executable commands. Given Python’s syntax, which resem-
bles plain English, it needs to be translated into machine-level instruc-
tions. This is the interpreter’s primary role. Many modern operating
systems come pre-equipped with a Python interpreter version, so there is
no pressing need for a fresh installation. Installing the latest interpreter is
advisable, however, to exert complete control over your analytical endeav-
ors and harness all modern functionalities. As Figure 1.2 indicates, there
are two primary sources for Python interpreter installation:

*  python.org: The official Web site for Python provides the core inter-
preter, suitable for general-purpose programming.

* anaconda.org: There are no fundamental differences between this
and the previous installation source. Targeted toward data analysts,
however, Anaconda offers a Python interpreter and incorporates sev-
eral other analytical tools and libraries. This makes it a convenient
solution for those who want to dive deeply into data analysis methods
without considering installing and configuring additional packages.
On the other hand, python.org provides a basic version of the Python
interpreter. This makes it suitable for those who want to learn Python
natively. The ability to install specific analytical libraries, however, is
similar to Anaconda. Please refer to the following figure:
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Python Tools for Financial Data Analysis: }
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FIGURE 1.2 Installing and configuring Python for finance

An IDE provides tools for writing, debugging, and running programs.
It often comes with features such as syntax highlighting, code and error
suggestions, integrated documentation, and interactive help. Visualize it
as your one-stop shop for coding, equipped with everything you might
need to craft your software masterpiece. After the interpreter’s installa-
tion, there would not be any apparent changes to your user interface.
The newly installed interpreter discreetly resides within your system files,
accessible via terminal or CMD windows. Several IDEs have been devel-
oped to enhance user engagement and efficiency. These IDEs offer a
platform where users can easily input commands or code.

Extension modules are indispensable if it is necessary to implement mod-
els and methods from specific areas of data analysis, e.g., finance, data
analysis, machine learning, etc. That functionality is not included in the
basic Python interpreter installation package. Imagine this: you're try-
ing to make a delicious sandwich, but instead of making every ingredient
from scratch, you use pre-made sauces and toppings. This is where exten-
sion modules (packages or libraries) come into play. Extension modules
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complement the basic functionality by adding new tools and features.
Instead of rewriting standard functions, these modules can tap into the
Python community’s or specific developers’ collective knowledge and lev-
erage their expertise.

Library repositories can be thought of as large libraries with shelves filled
with books on various topics. Now, replace these books with extension
modules or code libraries and we have a library repository. It is a central-
ized file server where developers share and distribute code libraries. In
Python, these repositories contain libraries for everything from data analy-
sis and visualization to machine learning and neural network models. PyPI
and conda are the two primary sources in this space. In fact, these are
servers with a vast archive of software solutions from the community and
individual professionals, where Python enthusiasts can save, publish, and
find a tool for almost any task. Let us also not forget about GitHub—it is
not just a repository but a vibrant community hub where developers col-
laborate, contribute, and develop open-source projects. GitHub is a risky
repository, however; anyone can change it, and it is not recommended for
new Python programmers.

Having understood this information, let us dive into the nuances of installing
Python interpreters, importing libraries, and running simple code.

INSTALLING PYTHON ON A LOCAL PC

As we discussed earlier, working with Python requires the installation of a
Python interpreter, an IDE, and essential libraries. Two primary ways to set
up Python are installing the necessary software locally and utilizing cloud-
based services.

Here, we will guide you through the steps for local installation using the
Anaconda distribution—a package tailored for data analysts that includes the
most necessary tools.

Installation Procedure

Install Python using the following steps:

1.

Navigate to Anaconda’s Web site: Go to the Anaconda distribution down-
load page in your Web browser.
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Select the distribution: You will be prompted to choose the distribution
that fits your operating system and version of Python 3. Then, click on the
Download button.

3. Execute the installer: Once the installer is downloaded, run it and follow

the on-screen instructions to set up Python 3.
We are ready to code!

Although Python 2 is still available for download, it is generally not recom-
mended. If you have never worked with Python 2, you will likely not need it.
Modern financial data analysis packages are adapted to Python 3.

Post-Installation Setup and Configuration

Upon completing the installation, your system will have the current version
of the Python interpreter and the default IDE and libraries for data analysis.
You will also have access to the Anaconda prompt terminal with a Start button
for Windows users. The central hub for managing your installed software is
Anaconda Navigator. Look for its green icon and launch it to access its fea-
tures (refer to Figure 1.3):
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FIGURE 1.3 Interface of Anaconda Navigator
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NOTE

The Anaconda Navigator interface may vary slightly depending on your
installed version. The core functionalities remain the same, however.

The Home tab, located on the left side of Anaconda Navigator, serves as the
primary window for initiating Python workflows. In this view, installed appli-
cations are marked with a blue Launch button at the bottom (e.g., Jupyter
Notebook). Conversely, applications available for installation are indicated by
a green Install button (e.g., RStudio).

The Environments tab, also on the left but typically inactive, provides an over-
view of all packages available within the Anaconda distribution. This panel
offers graphical control for adding, deleting, and updating packages (see
Figure 1.4). Furthermore, you can manage virtual environments, often abbre-
viated as venv. A base environment is named base(root) by default. Utilizing
the buttons at the bottom of the panel, you can create, clone, import, back up,
and remove virtual environments.

A virtual environment (venv) for Python programming tasks isolates the cur-
rent workspace, allowing it to manage dependencies specific to each project
without touching the Python general system dependencies and packages. This
helps to avoid further conflicts between individual projects.

{0 ANACONDA NAVIGATOR

Q) Al ~| | channels Update index... Tib

o Name v T Desuiption Version

or

Afull Python IDE directly
From the browser

FIGURE 1.4 Window view for environment management in Anaconda Navigator

You can manage the installed packages in each virtual environment—that is,
add, delete, or update them. For example, to install the TA-Lib package, type its
name in the Search Package field, select the package using the checkmark icon
(indicated by a downward green arrow), and then click the green Apply button.
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Managing Non-Standard Packages

Some packages are not included in the standard Anaconda repository (for exam-
ple, Prophet). To install these, you will need to connect to other channels. This
option is visible at the top of the screen in Figure 1.4. In the dialog box that
appears, click Add... and enter the name of the alternative channel, such as
conda-forge, followed by Update channels. After doing this, you can see the
packages you need when searching for them (such as fbprophet or Prophet).

Not all libraries, however, are available in the standard repositories. If you
need to install non-standard packages, refer to the installation instructions.

Anaconda Navigator is a graphical application and package management
interface for the Python Anaconda distribution. The command-line (termi-
nal) tools pip and conda can be used, however. For more details, see the
resources https://docs.conda.io and hitps://pypi.org.

Thus, we can use tools to graphically configure and manage package depend-
encies and specialized virtual environments for each project. Remember to
experiment with these tools, as visual tools may change over time. The princi-
ples remain the same, however.

PYTHON IDES

So, where exactly should you input commands or code in Python? To answer
this, you need to be familiar with IDEs. These should be well known to any
programmer. IDEs provide a graphical interface for executing programs.
Broadly speaking, Python IDEs can be categorized into two types. First, there
are script-based IDEs, such as Scientific Python Development Environment
(Spyder), Visual Studio Code, and PyCharm, among many others. Second,
interactive IDEs may operate in a request (command)-response (result)
manner within cells; Jupyter Notebook and its various adaptations are prime
examples of this category.

The choice of IDE ultimately remains a matter of user preference. Interactive
solutions allow you to get immediate results, quickly identify and fix errors,
execute code in parts, and debug code on the fly. Script-based (entirely code)
IDEs, however, are used to automate repetitive processes without constant
user intervention, such as creating an algorithmic trading robot, writing an
analytical product, or creating a monitoring module. Overall, both approaches
have similarities. They can control errors, monitor the execution process,
inspect variable values, and display results on the screen or export them to
other sources.
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Spyder

Spyder is an open-source IDE designed specifically for scientific comput-
ing and data analysis in Python. It offers a powerful editor with syntax high-
lighting, real-time code analysis, and advanced debugging features. One of
its standout features is the Variable Explorer, which allows you to inspect the
variables defined during a program’s execution.

Its interface features (refer to Figure 1.5) are as follows:

= A multi-tabbed editor with features such as code folding, automatic
indenting, and smart code completion

= An integrated Interactive Python (IPython) terminal for running and

debugging scripts

= A Variable Explorer panel for real-time variables, arrays, and DataFrame

inspection

= A dedicated Plots panel to view graphs and plots generated by your code

= A Help panel to access Python and library documentation
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FIGURE 1.5 Spyder working window view
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Jupyter Notebook and JupyterLab are other widely used open-source IDEs
that are popular among data scientists and researchers. Unlike Spyder, they
follow a Web-based interface that facilitates the creation of documents con-
taining live code, equations, visualizations, and explanatory text.

Their interface features (refer to Figure 1.6) are as follows:

[in]

Code and text are organized into cells, which can be run individually.

The Markdown language for advanced text formatting is supported. It
allows the inclusion of formatted text, HTML links, and LaTeX equations
for the resulting documentation, such as a final analytical report.

In-line plotting and visualization are displayed directly below the code
cells that produced them.

There is a debugging mode for real-time variables and DataFrame

inspection.

Interactive widgets support sliders, buttons, and other widgets to manipu-

late and visualize data dynamically.
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EASY START WITH PYTHON IN THE CLOUD

NOTE

If you do not want to install software on your computer but want to immedi-
ately start analyzing financial data, you can use ready-made cloud solutions.
Cloud-based Python environments such as Anaconda Cloud and Google
Colab offer various features that streamline the data science workflow, from
code development to data analysis and machine learning.

Anaconda Cloud (https://anaconda.cloud) distributes libraries, notebooks, and
environments for data scientists and analysts online. It also facilitates sharing
and collaboration among team members both free of charge and through paid
plans. Like other online platforms, Anaconda Cloud provides a user-friendly
interface for uploading, downloading, and managing all your Python resources
and serves as an integration with Anaconda Navigator, giving users a more
cohesive experience. In the initial stages of exploring Python’s capabilities,
however, Google’s solution is a more helpful and easy-to-start-with platform.

Google Colab, or just Colab (https://colab.research.google.com), is a free
cloud service based on Jupyter Notebook interface principles and is particu-
larly suitable for machine learning and data analysis. Google Colab provides
a platform for writing and executing Python code, with the added benefit of
free access to GPUs and TPUs for faster computation. It also offers real-time
collaboration and is integrated with other Google infrastructure, e.g., Google
Drive. The Colab IDE offers a range of Markdown hypertext-like coding,
Python code cells, and output display cells. Those features allow you to insert
form fields and make your notebooks interactive.

Choosing between Anaconda Cloud and Google Colab takes work. It may
hinge on specific project needs, the team’s collaboration, computational
resource requirements, developing and analytical costs, etc. Thus, it is desir-
able to have parallel versions of these IDEs to improve the efficiency of deci-
sion-making results in various conditions and tasks.

Utilizing these cloud-based resources provides an all-in-one solution that
includes a Python interpreter, an IDE, and access to additional libraries and
packages. The advantage of this approach is that you do not have to allocate
space on your local computer; all resources are hosted on remote servers.
While this service is often free for basic functionalities, some premium fea-
tures may require a subscription fee, especially for larger projects. Refer to
the pricing section of the respective service Web sites for more details.
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PYTHON LIBRARIES FOR FINANCE

The Python programming language offers an expansive ecosystem of librar-
ies specifically designed for various applications in finance. Python has many
libraries for finance data analysis, statistical modeling, machine learning, port-
folio management, and so on. The most significant Python libraries for finan-
cial tasks are listed in Table 1.2:

TABLE 1.2 Comparing Python libraries for finance

Package Primary purpose | Application to tasks in Additional notes
name finance
Data manipulation and transformation
Data Time-series analysis, Ideal for working with time-series
pandas . . . .
manipulation financial data aggregation | and tabular data
NumPy Numerlca'l Option pricing, risk Core hbrgry for numerical array
computations assessment computations
openpysl Excel file Financial reporting, Excel- | Enables advanced read/write
penp manipulation based financial models operations for Excel files (. x1sx)
Statistical analysis
. Scientific Statistical analysis, Integrates with NumPy; provides
SciPy . oL .
computing optimization models advanced math functions and tools
Econometric analvsis Uses for estimating and interpreting
statsmodels Statistical models ! . natysis. models for many types of statistical
hypothesis testing q
ata
. . o . Provides automatic parameter
pmdarima Time-serics .Pre.d icting future financial defining for SARIMAX prediction
forecasting indices
models
arch Econometric Volatility modeling, VaR Uses for econometric and statistical
analysis calculations evaluation of financial risks
Data visualizations
Matplotlib Data visualization Plottlr}g §t00.1< trends, I"rov1des a powerful plotting
financial indicators framework
f foli . . .
T Heatmaps of portfolio Integrates with Matplotlib; provides
Seaborn Data visualization | correlations, financial ) . ;
TR a high-level, easier-to-use interface
analytics visualization
Bokeh Interactive Real-time financial Allows for elegant and interactive
visualization dashboards Web-based data visualization
Interactive Interactive financial .Support.s awide range of.charts,
Plotly o interactive and high-quality
visualization reports, 3D plots R
visualizations

(Continued)
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Package Primary purpose | Application to tasks in Additional notes
name finance
Machine learning
Scikit-learn Machine learning Provides snnpl.e and efficient tools
for data analysis
Risk assessment, fr.aud Handle complex data, improve
. . detection, stock price
XGBoost Machine learning T L . model accuracy, and reduce
prediction, algorithmic .
. overfitting
trading, etc.
LightGBM Machine learning High sEeed, accuracy, and ability to
> handle imbalanced data
Forecasting and | Stock price prediction, Allows easy time-series forecasting
Prophet . . . . .
machine learning | demand forecasting tools in financial markets
Data acquisition
Accessing and Market and economic Universal and simplified data
pandas- fetching data . o . .
. research, various indices collection process for financial
datareader from various . .
analysis analysis
sources
Fetching Market ?es'ear.ch, Allows easy access to numerous free
Quandl . economic indicators . .
financial data . and premium financial datasets
analysis
E etching data Mar.ket Fesearch, analysis Easy to use with pandas to fetch
yfinance from Yahoo of historical and current .
. . data from Yahoo Finance
Finance financial data
Specific finance tasks
. . Advanced financial time- Generates high-quality candlestick
Financial data . .
mplfinance T series charts (technical and | charts, volume bars, and other
visualization . . ’ o
graphical analysis) financial data visualizations
. Quantitative Options pricing, risk Provides a wide range of tools for
QuantLib i o
nance management quantitative finance
) Technical Moving averages, Provides tools for the technical
TA-Lib . oscillators, trend .
analysis . . . analysis of the market
identification

Table 1.2 compares the most used Python libraries in finance, categorizing
them based on their primary purposes—data manipulation and transforma-
tion, statistical analysis, data visualization, machine learning, data acquisition,
and specific finance tasks. The table also shows how each library is commonly
deployed in finance-related tasks and offers additional notes for each library.
Let us describe the libraries:

= Data manipulation libraries: The pandas library is a basic and univer-
sal tool for aggregating financial data, analyzing and manipulating it, and
working with time series. An advantage of it is that it is good for work-
ing with two-dimensional tables. NumPy is another important library
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that offers many functions for numerical calculations, which are critical
in finance (option pricing, risk assessment, etc.). Excel-related libraries
such as openpyxl provide an advanced interface for managing Excel files,
which is important in finance and making informed decisions.

Statistical analysis libraries: There are many solutions available in Python
for statistical analysis purposes. statsmodels and SciPy, however, are often
the preferred libraries. statsmodels functions implement the classical sta-
tistical models necessary for econometric analysis and hypothesis testing
(descriptive statistics, regression analysis, ANOVA, etc.). It highlights
the tools for creating forecasting models for time-series data—ARIMA
and SARIMAX models. pmdarima is a library that extends the evalua-
tion capabilities of SARIMAX models. It allows us to automatically search
for optimal model parameters—an analog of cross-validation for machine
learning. SciPy offers various advanced mathematical and statistical func-
tions. It is beneficial for optimization modeling tasks. The arch library
specializes in econometric and statistical financial risk modeling, which is
ideal for volatility modeling, the GARCH model, and VaR analysis.

Data visualization libraries: Data visualization is central to decision-mak-
ing in finance. Matplotlib offers universal tools for plotting data with any
complexity. Although these graphs are universal by default, fine-tuning
the parameters allows you to build specific plots, e.g., candles and bars,
for price dynamic analysis. Seaborn extends Matplotlib’s capabilities by
providing an easy-to-use interface for building classic statistical visualiza-
tions but has less customization ability. Bokeh and Plotly are excellent
choices for more interactive and Web-based data visualizations. Both
offer interactive features and visualizations that assist in constantly moni-
toring information in financial markets.

Machine learning libraries: Machine learning and neural network mod-
els have been rapidly integrated into the financial sector. Libraries such as
scikit-learn, XGBoost, LightGBM, and Prophet are invaluable. Scikit-learn
offers general-purpose, end-to-end machine learning tools. The library
implements algorithms for classification, regression, clustering, and dimen-
sionality reduction, as well as utilities for sampling sets, evaluation, and data
pre-processing. A unified interface makes it easy to operate with various
models and algorithms. XGBoost and LightGBM are powerful machine
learning libraries similar in functionality and interface to scikit-learn. They
only implement gradient boosting algorithms, optimizing for speed and
performance. Prophet is a forecasting tool developed by Facebook. It is
specifically designed for time-series forecasting with elements of machine
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learning. Prophet’s functions are user-friendly and require minimal data
pre-processing. Its ability to account for seasonality, holidays, and changing
trends makes it especially valuable when working with financial data. All
these libraries provide a comprehensive set of tools for accomplishing virtu-
ally any financial task. Using machine learning methods, however, requires
more effort from the user than classical approaches.

= Data acquisition libraries: Pandas-datareader, Quandl, and yfinance are
the best and most useful libraries for data acquisition in finance. The
unified libraries pandas-datareader and Quandl allow the retrieval of
financial data directly into a pandas DataFrame. They support fetching
data from many sources, such as Yahoo Finance, Google Finance, and
Federal Reserve Economic Data (FRED). The specialized yfinance library
lets users get historical data from the Yahoo Finance server. It is widely
used to obtain option and stock pricing data, including prices, dividends,
and splits. These libraries are useful for providing time-series analysis and
forecasting, technical analysis, and portfolio management tasks.

= Libraries for specific finance tasks: The mplfinance, QuantLib, and
TA-Lib libraries are designed to solve specific financial problems. mplfi-
nance’s tools are used for the visualization and graphical analysis of finan-
cial data. mplfinance can be used to generate candlestick charts, volume
bars, and other financial data visualizations. TA-Lib specializes in techni-
cal analysis tasks. It offers many functions for calculating moving aver-
ages, oscillators, and trend identification indicators. Those libraries help
financial analysts and traders visualize and estimate market data and iden-
tify trends over time. QuantLib is a comprehensive library for quantitative
finance. It includes tools for options pricing, risk management, and other
quantitative financial tasks. Together, these and other financial libraries
provide the ability to solve specific financial problems. This simplifies
the processes of program analytics and the operational use of innovative
financial methods.

Installation of Essential Libraries for Data Manipulation and Data Analysis

Aswe have already said, the most significant distributions and Python IDEs for
data analysis are the Anaconda distribution (with Jupyter Notebook, Spyder,
and Visual Studio Code IDEs) and Google Colab. Many foundational libraries
required for data analysis are already pre-installed in those solutions. Some
specialized packages, however, necessitate additional installation steps. This
section will demonstrate how to set up a dedicated virtual environment—
PythonFinance—to address general financial tasks.
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Some extension packages may have conflicting dependencies or require non-
stable and third-party libraries. Therefore, it is recommended that you create
a virtual environment for each project when you start working with Python.
This isolation makes it easier to follow the examples and exercises in later
chapters without affecting the default Python settings.

Follow these detailed steps to establish a virtual environment on Unix-based
systems such as Linux, macOS, Microsoft Windows, and Google Colab cloud-
based systems:

1.

For an Anaconda Python distribution, execute the following command-
line script to install the necessary packages:

1. conda create --name PythonFinance
2. conda activate PythonFinance

3. conda install -c conda-forge -c defaults python=3.9
numpy pandas openpyxl matplotlib seaborn plotly
bokeh scipy statsmodels scikit-learn ta-1lib
mplfinance lightgbm xgboost pandas-datareader
quandl yfinance mplfinance arch-py prophet pmdarima

beautifulsoup4 requests

This script (for Bash, CMD, or other command-line interpreters) will cre-
ate a new conda environment named PythonFinance (line 1), activate
it (line 2), and then install the specified libraries using the conda-forge
and defaults channels (line 3). These libraries (described in Table 1.2)
include core, required packages for financial data analysis, visualization,
machine learning, and financial analysis. We are using two library sources
for Python conda libraries and installing Python version 3.9. You may,
however, use another, more up-to-date Python version or other sources
for the required libraries.

To easily install the prerequired Python finance packages (as men-
tioned earlier) for the Anaconda Python distribution, we can also use the
PythonFinanceConda. yml script file and then execute the conda one-
line script as follows:

1. conda env create -f [path to file]
PythonFinanceConda.yml

2. conda activate finance
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The ym1-£ile may have the following, or similar to the following, contents:
name: PythonFinance
channels:

- conda-forge

- defaults
dependencies:

- python=3.9

- numpy

- pandas

- openpyxl

- matplotlib

- seaborn

- plotly

- bokeh

- scipy

- statsmodels

- scikit-learn

- ta-1lib

- mplfinance

- lightgbm

- xgboost

- pandas-datareader

- gquandl

- yfinance

- mplfinance

- arch-py

- prophet

- pmdarima

- beautifulsoup4

- requests
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Installing and using essential Python finance libraries in Google Colab is rela-
tively straightforward:

a. First, a lot of the libraries mentioned previously (refer to Table 1.2) are
already available in the virtual environment of Google Colab, and you
simply need to import them as the following Python code:

1. # Import built-in libraries
2. import numpy as np
3. import pandas as pd

4. import openpyxl

5. import matplotlib.pyplot as plt
6. import seaborn as sns

7. import plotly.express as px

8. import bokeh

9. import scipy
10. import statsmodels.api as sm
11. import sklearn
12. import lightgbm as lgb
13. import xgboost as xgb
14. import pandas_datareader as pdr
15. import yfinance as yf
16. from prophet import Prophet

17. from bs4 import BeautifulSoup

18. import requests

b. Second, you can quickly run shell commands (in a virtual terminal) by
prefixing them with an exclamation mark, !, in a Colab notebook. The pip
install command installs a library from the standard PyPI repository
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NOTE

(https://pypi.org). For example, to install the particular libraries previ-
ously listed in Table 1.2, we may use the following Python code:

1. # Install and import non-standard for the Google
Colab libraries

2. 'pip install ta-lib-bin mplfinance quandl arch
pmdarima

3. import talib
4. import mplfinance as mpf
5. import quandl

6. import arch

7. import pmdarima as pm

Using Google Colab’s cloud-based solution is highly recommended for study-
ing the materials in this book. This avoids the need for complex local operating
system configurations. Once you have tested and found your preferred tools,
you can transition to automated processes using scripting and local IDEs
(Spyder, Visual Studio Code, etc.).

After installing the preceding libraries, you can run all the examples in this
book. The development of new packages and libraries is ongoing, however.
There is a large community and robust repositories where you can search for
the solutions you need. Note, however, that the principles of installing and
configuring new packages and libraries remain the same.

PYTHON ESSENTIALS

Renowned for its readability and ease of use, Python’s syntax allows develop-
ers to express concepts in fewer lines of code than C or Java. Before further
consideration of specialized tools, such as for data preparation and analysis,
modeling, forecasting, or machine learning, it is essential to have a strong
understanding of Python’s essential principles as well as its structure, syntax,
and operator features. We will provide a concise yet comprehensive overview
of these elements to give you a solid foundation for the short Python program-
ming examples that follow in this book. To improve your Python programming
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skills, practice more and look into other resources. Some are provided at the
end of the chapter.

Syntax Principles and Python Code Style

The main features of the language are as follows:

Whitespace and indentation: Unlike many programming languages that
rely on braces, {}, to define code blocks, Python uses whitespace and
indentation. The indentation level is crucial for determining the scope of
loops, functions, classes, and more. It makes the code easier to read and
enforces a consistent layout. An example is shown in the following code:

1. for i in range(5): # The colon signifies the start
of a block
2. print (i) # This line is indented, so it’s part

of the loop

Single-line comments: In Python, single-line comments are preceded by a
hash symbol (#). Anything that comes after the # on that line is considered
a comment and is ignored by Python’s interpreter. An example is shown
in the following code:

1. # This is a single-line comment

Multiple-line comments: For multiple-line comments, you can use triple
quotes, although this is typically reserved for docstrings in functions or
classes. An example is shown in the following code block:

1. Tra
2. This is a multi-line comment

3. or a docstring

4."'



32 ¢ FiNancIAL DATA ANALYSIS USING PYTHON

NOTE

Variables and naming conventions: Variables in Python are case-sensitive
and should be named in a way that conveys their purpose. The conven-
tion is to use lowercase for variables and to separate words with under-
scores (my variable). Constant variables are often defined in all caps
(MY_CONSTANT). An example is shown in the following code:

1. my variable = 10 # Integer

2. another variable = "Hello" # String

We can use understandable words for the variables or read PEP 8—the
style guide for the Python code standard (https://pepS.org)—carefully.

PEP 8 is the Python Enhancement Proposal that describes the style guide
for writing code in Python. It covers naming conventions, line length,
indentation, and other formatting aspects. Following PEP 8 guidelines is
highly recommended for maintaining readability and consistency across
your codebase.

Importing modules (libraries, packages): As we learned before, Python
has a rich library and functionality extensions, and you can import mod-
ules or packages to extend its functionality very simply if you know the
module name and/or function name. An example is shown in the follow-
ing code:

1. import math

2. from math import sqrt

3. import pandas as pd

4. import numpy as np

Basic Operators

The basic operators in Python facilitate mathematical and logical operations
with variables and values. Let us describe these operators available in the

Python language:
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= Arithmetic operators: Python includes standard arithmetic operators,
such as addition (+), subtraction (-), multiplication (*), division (/), and
modulus (%). An example is shown in the following code:

1. result = 10 + 20 # result is 30

= Comparison operators: These operators are used to compare two values.
These include equality (==), inequality (!=), greater than (>), less than
(<), greater than or equal to (>=), and less than or equal to (<=). An exam-
ple is shown in the following code:

1. is equal = (10 == 20) # Evaluates to False

= Logical operators: Python includes the logical operators and, or, and
not. An example is shown in the following code:

1. result = True and False # Evaluates to False

w  Assignment operators: Besides the primary assignment operator, =,
Python also includes compound assignment operators such as +=, -=
*=, and /=. An example is shown in the following code:

>

2. x += 20 # Equivalent to x = x + 20

Control Flow and Simple Output

Control flow refers to the order in which the analytical programming pro-
cesses” individual statements, instructions, or functions are executed or evalu-
ated. The main control flow Python tools are as follows:

= Pythonuses if, elif,and else forconditional statements. An example
is shown in the following code:
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1. x = int (input())

2. 1f x > 10:

3. print ("x is greater than 10")
4. elif x == 10:

5. print ("x is 10")

6. else:

7. print ("x is less than 10")

= Python includes for and while loops for iterative tasks. An example is

shown in the following code:

[y

for i in range(3):

print (i)

w N

4. for j in [1, 5, 7, 9]:

5. print (j)
6.
7. count = 0

8. while count < 3:

9. print (count)

10. count += 1

= The Python print () function simply outputs the results and debug

information. Here are some examples of using print ():

1. # Output the text or other variable:
2. variable = 42

3. print ("The value of the variable is:")
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print (variable)
# Output:
# The value of the variable is:

# 42

# Formatted String:

# allows for embedded Python expressions within a
string.

print (f"The value of the variable is:
{variable}")

# Output: The value of the variable is: 42

# New Line symbol:

# outputs a new line inside the text line.
print (f"\nText with variable is:\n{variable}")
# Output:

# Text with variable is:

# 42

These are just a few of the important principles of the Python workflow. To
work effectively with Python, it is crucial to deeply understand the syntax
requirements, operators, and how functions are applied. Writing clean code,
however, requires complex knowledge and practical skills, which can only be
achieved by solving specific problems.

Python Basic Data Structures

Understanding data structures and types is also crucial to effectively solving
data analysis problems in Python. Basic structures help store and manipulate
data efficiently and form the basis for using more complex structures (arrays
and tables). Let us briefly review Python’s basic structures and data types.
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The basic atomic data structures in Python language are as follows:

= Integers are whole numbers and can be positive or negative. An example
is shown in the following code:

1. my int = 10

m  Floating-point numbers are decimal numbers and can also be expressed
in scientific notation. An example is shown in the following code:

1. my float = 20.5

2. my sci float = 2.5e3 # Represents 2500.0

= Boolean values represent one of two states: true or false. An example is
shown in the following code:

1. is _true = True

2. 1s false = False

= Strings are sequences of Unicode characters and are enclosed in single or
double quotes. An example is shown in the following code:

1. my str = "Hello, World!"

2. my str = 'Hello, World!' # the same !!!

Types for Data Analysis

The essential data structures for data analysis, which may be applied to vector,
matrix, or table data in Python, are described as follows:

= List: This is a mutable, ordered data collection containing multiple data
types. An example is shown in the following code:

1. my list = [1, 2.5, "data", True]
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List operations mainly allow functionalities such as:

= Indexing and slicing: Retrieve elements by their index:

1. my list[1] # Output: 2.5

= Appending: Add elements using append ()

1. my list.append("new data")

2. # my list becomes [1, 2.5, "data", True, "new
data']

= Tuple: This is an immutable, ordered collection of multiple data type ele-
ments. An example is shown in the following code:

1. my tuple = (1, 2.5, "data", True)

Tuple operations primarily facilitate:

» Indexing and slicing: Similar to the list (see the previous set of bullet
points).

= Unpacking: Assign elements to variables:

1. a, b, ¢, d = my tuple

2. # a=1, b=2.5, c="data", d=True

= Dictionary: This is an unordered mutable collection of key-value pairs:

1. my dict = {'keyl': 'valuel', 'key2': 'value2'}
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Dictionary operations mainly focus on:

= Accessing: Retrieve a value by its key:

1. value = my dict['keyl'] # Output: 'valuel'

= Adding: Add new key-value pairs:

1. my dict['key3'] = 'value3'
2. # my dict becomes {'keyl': 'valuel', 'key2':
'valuel2',
'key3': 'value3'}

= Set: This is an unordered collection of unique elements, primarily used
for logical operations and collecting unique items. This data structure
is rarely used in finance. It can, however, be useful in certain scenarios,
which will be outlined in future chapters.

Understanding these basic data structures and types is the cornerstone for
data analysis in Python. These elements offer flexibility and functionality,
from basic mathematical calculations to storing complex data structures.

The following chapters will build on this foundation and expand Python’s
capabilities. Data structures for working with arrays and data tables will be
presented in Chapter 2, Python Tools for Data Analysis: Primer to Pandas and
NumPy; tools for working with the file system and open data in Chapter 3,
Financial Data Manipulation with Python; and graphical analysis capabilities
in Chapter 4, Exploratory Data Analysis for Finance.

CONCLUSION

The combination of finance and IT is a powerful force that has led to remark-
able results. Using modern information technologies in the big data world lets
you quickly assess current financial problems and evaluate solutions. There
are many consumers of management information, from individual investors
to large financial intermediaries. This is why learning analytical programming
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tools or automation methods for working with data provides a critical com-
petitive advantage.

Despite its minor speed disadvantages compared to other programming lan-
guages, Python is a leader in data analysis. Its wide distribution and huge
community offer many extension libraries tailored to various aspects of data
analysis and specific financial tasks. Today, knowledge of Python is not just a
hard skill; it is a tool that empowers modern financial specialists, giving them
a competitive edge in the industry.

Setting up Python, its IDE, and specialized libraries on your local computer
can be daunting, requiring time and local PC resources. Cloud-based solu-
tions such as Google Colab or Anaconda, however, can provide a smoother
learning experience and a faster onboarding process. These solutions take
the burden off your shoulders, allowing you to focus more on analytical tasks
rather than troubleshooting problems or conflicts between packages.

The basic principles and algorithms for working with Python are similar to
most other programming languages. Although the Python syntax, data struc-
tures, and control flows are relatively simple and universal, they have crucial
points that must be understood before getting started. For a more detailed
understanding of analytical code and searching for possible errors, however,
constant practice and study of special materials on Python programming are
required. To do this, each chapter of the book is accompanied by recom-
mended references and extensive examples.

QUESTIONS

1. What are the fundamental principles of finance that are important for
data analysis?

2. How do financial investors and market institutions use financial data anal-
ysis to get profit?

3. What are the two critical categories in finance for maximizing the
outcome?

4. Why is Python the preferred language for financial data analysis over
other programming languages?

5. What are the key advantages of using Python for financial tasks?
6. What are the steps involved in installing Python on a local PC?
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What does the virtual environment in Python programming do?

8. How do you manage non-standard packages in Python?
What is the significance of Spyder and Jupyter Notebook in Python
development?
10. How do you create and run a virtual environment for essential data analy-
sis with the Anaconda distribution?
11. How can you get started with Python in the cloud, and why might you
have to use it?
12. What Python libraries are essential for finance?
13. What Python essentials must one understand before diving into financial
analysis?
14. What is control flow, and why is it essential in Python for financial analysis?
15. What data structures in Python are particularly useful for data analysis in
finance?
KEY TERMS
= Financial assets are any resources that provide store value and produce

income (income potential) through interest, dividends, capital gains, or
other outcomes. These assets range from stocks and bonds to derivatives
and cryptocurrencies. Acquiring financial assets leads to preserving and
accumulating wealth over time.

Investment is using an asset’s potential to make a profit in the future.
Thus, investing aims to increase short-term or long-term wealth and
achieve other specific financial goals over time.

A financial investor is an individual or institution that invests primarily in
financial assets.

An investment portfolio (portfolio of financial assets, for financial inves-
tors) combines various assets the investor owns. It is usually designed to
balance returns and risk according to the investor’s financial goals.

Return, or outcome, refers to the profits or losses generated by an invest-
ment over a specified period, usually expressed as a percentage of the
asset’s original cost.
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= The percentage change (pct change) of income is a mathematical expres-
sion of the return indicator. It is calculated as the relative increase in
income or the dividing profit or loss by the value of the investment in the
previous or base (initial) period.

= Risk, in terms of investment risk, refers to the degree of uncertainty asso-
ciated with future losses from an investment or the possibility of suffering
losses greater than the predicted results. Financial losses are monetary
reductions that occur when an investment performs negatively. Risk goes
hand in hand with the possibility of loss, and understanding both is critical
to making informed financial decisions. Risk assessment usually involves
calculating the probability of losses exceeding a certain level.

= The extract, transform, and load (ETL) process involves collecting data
from various sources, converting it into a format suitable for further analy-
sis, and cleaning it. ETL processes are the first and most time-consum-
ing stage for preparing large datasets for analytical tasks in financial data
analysis.

» The exploratory data analysis (EDA) process is an approach in statistics
and machine learning that analytically and visually examines datasets to
understand their underlying characteristics, features, and other crucial
dependencies.
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CHAPTER

PyTHON TooLs FOR DATA ANALYSIS:
PriMER TO PANDAS AND NUMPY

INTRODUCTION

This chapter explores the core Python operations for working with data struc-
tures, highlighting its strengths in collection, tabular, and array-based analyses
and focusing on the tools within the NumPy and pandas libraries. We will delve
into Python’s basic structures for effective data management and processing.
The built-in Python functions and custom functions that enhance routine
tasks will be described. Exploring the capabilities of the NumPy library, we
will explain how it is designed to manage and manipulate large datasets. pan-
das’ prowess in handling, processing, and applying arithmetic operations and
transforming table-like structures makes it indispensable for anyone inter-
ested in extracting meaningful insights from structured data. We will uncover
the details of essential tools for sorting, filtering, and grouping table data with
pandas and lay the groundwork for the further analysis of financial markets.

In this chapter, we not only explore Python tools and functions but also apply
the philosophy of software engineering to financial data analysis.

STRUCTURE

This chapter covers the following topics:

m The creation and manipulation of Python data structures
= Defining custom functions for data analysis

=  NumPy for data analysis

= Working with pandas for data analysis
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OBJECTIVES

By the end of this chapter, we will know how to use Python’s essential con-
trol and data structures, built-in functions, and primary libraries for financial
data analysis (NumPy and pandas). We will use examples that simulate actual
financial data to explore foundational tools and operations crucial for such
manipulation. You will learn how to create and manage arrays with NumPy
and handle tabular data effortlessly with pandas, gearing you to derive insight-
ful outcomes from financial data analyses.

THE CREATION AND MANIPULATION OF PYTHON DATA
STRUCTURES

Aswe know from Chapter 1, Getting Started with Python for Finance, Python’s
primary nonatomic data structures are lists, sets, and tuples, each offering a
unique set of functionalities and instruments for various aspects of data analy-
sis. All these types of variables have specific applications in data analysis tasks.
For instance, while lists and tuples are sequences of mutable and immutable
values, sets support some original mathematical operations, such as union and
intersection. Knowing when to use them can significantly optimize the data
analysis process, which is a precious skill in financial analytics. That is, having
an understanding of the crucial tasks for creating, manipulating, and analyz-
ing data using these structures to solve commonly used financial algorithms
is incredibly valuable. Whether for generating a new list with calculated data
derived from daily stock prices or employing dictionaries to represent single
tables effectively, this section will guide you through common tasks with illus-
trative examples rooted in real-world financial scenarios.

Basic Data Manipulations and Computations Within Python Built-In Data
Structures

With its built-in data structures, Python offers a robust framework for han-
dling complex tasks for finance data analysis. We will use the daily stock price
dynamics of a prominent company, such as Apple Inc., as a reference point.
Look at the following table:
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TABLE 2.1 Daily stock price data for Apple Inc. (August 2023)

Date Open High Low Close Volume
2023-08-01 196.2400 196.7300 195.2800 195.6100 35,175,100
2023-08-02 195.0400 195.1800 191.8500 192.5800 50,389,300
2023-08-03 191.5700 192.3700 190.6900 191.1700 61,235,200
2023-08-04 185.5200 187.3800 181.9200 181.9900 115,799,700
2023-08-07 182.1300 183.1300 177.3500 178.8500 97,576,100
2023-08-08 179.6900 180.2700 177.5800 179.8000 67,823,000
2023-08-09 180.8700 180.9300 177.0100 178.1900 60,378,500
2023-08-10 179.4800 180.7500 177.6000 177.9700 54,686,900

Let us delve into the fundamental data manipulation processes:

1. Finding tasks for data analysis involves locating specific items, values, or
patterns within the collection. For instance, we could find all days when
the price exceeded 180. Execute the following code:

1. dates = [

2. "2023-08-01", "2023-08-02", "2023-08-03",
"2023-08-04",

3. "2023-08-07", "2023-08-08", "2023-08-09",
"2023-08-10"

4. 1

5. closing prices = |

6. 195.6100, 192.5800, 191.1700, 181.9900,

7. 178.8500, 179.8000, 178.1900, 177.9700

8. 1

9. # Find all prices and dates in closing prices
which is greater than 180

10. for i in closing prices:
11. if 1 > 180:

12. print (f"The price was {i} on

{dates[closing prices.index (i)]}")

'Source: https://finance.yahoo.com/quote/AAPL/history Pperiod1=1659312000&period2=16953
40800&interval=1d&Afilter=historybfrequency=1d&includeAdjustedClose=true
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The results of the code are:

The price was 195.61 on 2023-08-01
The price was 192.58 on 2023-08-02
The price was 191.17 on 2023-08-03
The price was 181.99 on 2023-08-04
2. Filtering tasks for data analysis reduce the dataset to a subset that meets
specific criteria or creates collections within the dataset. For example, we

can create new closing prices uﬁng\mhkm ﬁonlclosing_prices
that are greater than 180. Execute the following code:

1. # Create a new list

2. new _closing prices = [i for 1 in closing prices
if 1 > 180]

3. print ("The list of values > 180:\n",
new_closing prices)

5. # Find the closing prices where they were either
greater than 190 or less than 180

6. selected closing prices = [1 for 1 in closing
prices if i > 190 or i < 180]

8. print ("The list of values > 190 or values
< 180:\n", selected closing prices)

The results of the code are:

The list of values > 180:
[195.61, 192.58, 191.17, 181.99]
The list of values > 190 or values < 180:
[195.61, 192.58, 191.17, 178.85, 179.8, 178.19,
177.97]
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Calculating Operations for Data Analysis and Rate of Returns

Calculating operations provides insights into the data, facilitates the extrac-
tion of meaningful patterns, and guides decision-making processes. The most
useful calculated metric for financial data analysis is the rate of returns (RoR).

The RoR is the growth rate of the daily (monthly, annually, etc.) price. This
value provides insights into the stock’s price momentum, revealing whether it
is on an upward trend, remains stable, or is declining.

The RoR, often referred to as the return, is a finance performance measure
used to evaluate the profit or loss made on an investment over some period.
The formula for the RoR is:

RoR = ((Current price — Previous price) / Previous price) x 100

We can use the list, tuple, and dictionary data structures to calculate Apple
Inc’s daily stock price returns using data from eight observations (refer to
Table 2.1).

The list-of-tuples structure provides pairs of dates and closing prices in one
construction. We can use this structure to analyze related data, in particular,
to sort by the first value of the tuple. The .sort () method arranges elements
in a list in a specific order, which is ascending by default.

Use the following code:

1. %$%time

2. data tuples = [

3o ("2023-08-08", 179.8000), ("2023-08-01",
195.6100),

4. ("2023-08-02", 192.5800), ("2023-08-03",
191.1700),

5o ("2023-08-04", 181.9900), ("2023-08-07",
178.8500),

6. ("2023-08-09", 178.1900), ("2023-08-10",
177.9700) 1

7. # Sort the data by date (by the first elements of
each tuple)
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NOTE

8. data tuples.sort()

9. # Calculate RoR with looping list creating syntax

10. returns_ tuples = [(data_ tuples[i][1] - data
tuples[i-1][1]) /

11. data tuples([i-1][1]

12. for i in range (1,

len(data tuples)) ]
13. # Show the RoR by the days
14. for i in range(len(returns_ tuples)):

15. print (f"Return on {data tuples[i+1][0]} is
{returns tuples[i]*100:.2f}%")

The results of the code are:

Return on 2023-08-02 is -1.55%

Return on 2023-08-03 is -0.73%

Return on 2023-08-04 is -4.80%

Return on 2023-08-07 is -1.73%

Return on 2023-08-08 is 0.53%

Return on 2023-08-09 is -0.90%

Return on 2023-08-10 is -0.12%

CPU times: user 975 ps, sys: 0 ns, total: 975 us
Wall time: 2.56 ms

When applied to a list of tuples such as data tuples.sort (), the method
will, by default, use the data from the first element of each tuple as the basis
for sorting. This is because tuples are ordered collections, and the .sort ()
method respects this order when rearranging them. A key=fuction argu-
ment, however, should be employed if dealing with more untypical data struc-
tures (as showcased in subsequent examples). This allows us to specify which
values from the collection should be considered for sorting, giving us greater
control over the process.

The range() and len() functions are frequently used in statements to determine
the number of loop iterations. When provided with arguments such as 1 and
10, the range() function creates a sequence of numbers starting from 1 up
to, but not including, 10. The len() function, on the other hand, returns the
number of items in a list or any other data collection.



An example of a list-of-dictionaries structure is as follows:

10.

11.
12.
13.
14.

15.
16.

17.
18.
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$stime
data dicts =

{"date":
"close":

{"date":
"close":

{"date":

"close": 191

{"date":
"close":

{"date":

"close": 178

{"date":
"close":

{"date":
"close":

{"date":

"close": 177

# Sort the data by date key

195,

192.

181.

179.

178.

[

"2023-08-01",
6100},

"2023-08-02",
58001},

"2023-08-03",

.1700},

"2023-08-04",
9900},

"2023-08-07",

.8500},

"2023-08-08",
8000},

"2023-08-09",
1900},

"2023-08-10",

L9700} ]

"open":

"open":

"open":

"open":

"open":

"Open"'

"open":

"open":

196

195.

191

185.

182.

179.

180.

179.

.2400,

0400,

.5700,

5200,

1300,

6900,

8700,

4800,

data dicts.sort (key=lambda x: x["date"])

# Calculate RoR for Close prices

returns_dicts

= [(data dicts[i] ["close"]

dicts[i-1]["close"]) /

- data_

data dicts[i-1](["close"]

for i in range (1,

len(data dicts))]

# Show the RoR by the days

for i in range(len(returns dicts)):
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NOTE

19, d = data dicts[i+1l]['date']
20. r = returns dicts[i]
21. print (f"Return on {d} for Close prices is

{r*100:.2£}%")

The results of the code are:

Return on 2023-08-02 for Close prices is -1.55%
Return on 2023-08-03 for Close prices is -0.73%
Return on 2023-08-04 for Close prices is -4.80%
Return on 2023-08-07 for Close prices is -1.73%
Return on 2023-08-08 for Close prices is 0.53%
Return on 2023-08-09 for Close prices is -0.90%
Return on 2023-08-10 for Close prices is -0.12%
CPU times: user 2.95 ms, sys: 0 ns, total: 2.95 ms

Wall time: 3.34 ms

Each dictionary represents a single day’s worth of stock data, containing the
date, open price, and close price.

The key argument of the .sort() method is set to a lambda function, which
takes each dictionary, x, as its input and returns the value of the date key. This
ensures that the list is sorted by date key from each dictionary from the list.

When executing the provided examples in Jupyter Notebook or Google Colab,
the magic commands %%time and %timeit are utilized. These commands
print the time in seconds (milliseconds or microseconds) to execute various
operations. It can be observed that all the presented collections take approxi-
mately the same time to perform calculations for small data sizes. Some advan-
tages can be noticed with the simpler data structures (tuple and list). These
performance differences become particularly noticeable with large datasets.
Therefore, specialized data structures for data analysis, such as NumPy arrays
and pandas DataFrames, have been developed.
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DEFINING CUSTOM FUNCTIONS FOR DATA ANALYSIS

Data analysis and decision-making processes often lead to situations that
require custom computation solutions or repetitive tasks. With Python, we
can define custom functions to address these needs and streamline analytical
code. The user-defined functions allow us to encapsulate a block of reusable
code that can be executed whenever required.

A custom function in Python is defined using the def keyword, followed by
the function name, a pair of parentheses that may house parameters, and a
colon.

Let us dive into some examples and describe the significance of custom
functions.

The syntax for a simple function is as follows:

1. def is positive(x):
2. return (x > 0)
3. print (is_positive(-1))

4. print (is_positive(0.1))

The results of the code are:
False

True

This function, named is positive(), takes a single argument, x, and
checks whether the given value is greater than 0. It returns True if the condi-
tion is satisfied and False otherwise. When executed, the function is called
twice with the values -1 and 0. 1, and the results are printed. The function is
a basic demonstration of conditional checks within a function.

Two essential statistical metrics for data analysis are the average and standard
deviation (mean deviation from the mean value). While many Python libraries
provide corresponding functions, we can create custom functions with spe-
cific features, such as trim max and min values.

The syntax for a function with multiple arguments and outputs is as follows:
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NOTE

1. def mean for list(data:list, rnd = 2, sd = False)

-> float:
2. mean value = sum(data)/len(data)
Jo if sd:
4. sd value = ( sum([(x - mean value)**2 for x

in datal) /

5. len(data) ) ** 0.5
6. return (round(mean value, rnd),
7. round (sd value, rnd) )

8. else:

9. return round(mean value, rnd)

10. print(mean for list(closing prices, rnd=l))
11. mean, sd = mean for list(closing prices, sd=True)

12. print(f"Mean: {mean:.2f}, Standart Deviation:
{sd:.2f}")

The results of the code are:
184.52

The function mean for 1list() calculates the average (mean) of a given
list of numbers with the default argument sd. It has three parameters: data,
which is a list of numbers; rnd=2, an integer that defaults to 2; and sd=False,
a Boolean indicator. This more structured approach allows for more explicit
expectations and better documentation.

The sum() function in Python calculates all the elements in the list data. The
round() function rounds off the resulting mean to n decimal places.

The mean for list() function with the argument sd=True returns two
vital statistics, the mean and standard deviation. It efficiently utilizes tuple
packing to encapsulate these metrics, and through tuple unpacking, users can
seamlessly extract individual values for further analysis.
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Lambda functions, a type of anonymous function, are small, single-use func-
tions in Python. Usually, this is a function without a name. They are often
used for short, repetitive tasks—for example, in this chapter, when sorting a
dictionary by the date key. The basic syntax of a lambda function is as follows:

| 1. lambda arguments: expression
Here, the arguments are the inputs to the function, and the expression is a
single output expression. Using the lambda function to determine the non-

negativity of a number as in previous examples would look as follows:

1. print ((lambda x: x > 0) (-1)) # Output: False

2. print((lambda x: x > 0) (0.1)) # Output: True

Lambda functions are limited to a single expression and are mainly used as a
utility tool, but they are very powerful.

NUMPY FOR DATA ANALYSIS

NumPy, short for Numerical Python, is one of Python’s most ubiquitous
numerical computation libraries. It supports large, multi-dimensional arrays,
matrices, and various functions to operate on these data structures efficiently.
NumPy arrays combine the advantages of the list and set data structures and
have tools for manipulating big datasets.

To use the NumPy library, we must first connect it to the current workflow.
This is usually done with the following command line: import numpy as
np. The numpy part here is the library’s name, and np is the pseudonym for
the quick function calls indicated.

Creating NumPy Arrays

At the heart of NumPy is an array object. Arrays are like lists in Python, but
every item in an array must be the same type, for example, a numeric type
such as float or int. Execute the following code to create and manipulate
NumPy arrays:

1. import numpy as np

2. # 1D NumPy array
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3. dates = np.array ([

4. "2023-08-01",

5. "2023-08-09", # This date is out of place by
date sorting

6. "2023-08-02", "2023-08-03", "2023-08-04",

7. "2023-08-07", "2023-08-08", "2023-08-10",

8. 1)

9. print("The NumPy array for observation dates \n",
dates)

10. # 2D NumPy array. Format: [Open, High, Low,
Close]

11. apple ohlc np.array ([

12. [196.24, 198.00, 195.00, 195.611, # 1st Aug
13. [180.87, 182.00, 178.50, 178.19], # 9th Aug !
14. [195.04, 197.50, 193.00, 192.58], # 2nd Aug
15. [191.57, 192.50, 190.00, 191.17], # 3rd Aug
16. [185.52, 188.00, 184.50, 181.99]1, # 4th Aug
17. [182.13, 183.40, 178.00, 178.85], # 7th Aug
18. [179.69, 181.50, 178.80, 179.80]1, # 8th Aug
19. [179.48, 181.00, 177.00, 177.97]1,1) # 10th
Aug

20. print("2D NumPy array for OHLC data \n",
apple ohlc)

21. # Fetching specific data points using direct
indexing

22. print(dates[1])
23. print(apple ohlc[l, 3])

24. # Accessing non-consecutive dates and their
entire OHLC data using list-based indexing
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25. print(dates[[0, 7, 311)
26. print(apple ohlc[[0, 7, 31,:1)

27. # Extracting specific high prices using a
combination of row and column indices

28. print(apple ohlc[[0, 7, 3],[11])

29. # Storing and utilizing indices through a 1list
for reusability and clarity

30. indices = [0, 3, 7]
31. print(dates[indices])
32. print(apple ohlc[indices])

33. print(apple ohlc[indices, 0])

34. print(apple ohlc[indices, 3])

The results of the code are:

2023-08-09
178.19
['2023-08-01" '2023-08-10"' '2023-08-03"]

[[196.24 198. 195. 195.61]
[179.48 181. 177. 177.97]
[191.57 192.5 190. 191.171]]

[198. 181. 192.5]
['2023-08-01" '2023-08-03"' '2023-08-10"]

[[196.24 198. 195. 195.61]
[191.57 192.5 190. 191.17]
[179.48 181. 177. 177.971]

[196.24 191.57 179.48]
[195.61 191.17 177.97]
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NOTE

We apply direct and list-based indexing to access specific or multiple ele-
ments in these examples. The concept is consistent with Python’s zero-based
indexing system. Be aware of when you need to extract individual data points
or slices; in NumPy (as in Python lists), the index starts from 0, ensuring a
systematic and predictable data access mechanism.

The OHLC acronym stands for open, high, low, and close, representing the
four key data points in a trading period for any assets’ prices (as shown in the
example).

Sorting and Sorting by Arguments

In data analysis, especially when working with time-series data, sorting data-
sets based on specific criteria is indispensable. Fortunately, NumPy provides
a range of utilities to facilitate sorting, making this task intuitive and efficient.
The methods np.sort () and np.argsort () stand out as the primary tools
for this purpose.

Let us explore sorting functionalities in depth using the following code:

1. sorted dates = np.sort (dates)

2. print ("Dates sorted in ascending order:\n",
sorted dates)

3. sorted date indices = np.argsort (dates)

4. print ("Indices that would sort 'dates':\n",
sorted date indices)

5. apple ohlc sorted by date =
apple ohlc[sorted date indices]

6. print ("OHLC data sorted by 'dates':\n",
apple ohlc sorted by date)

7. sorted close price indices = np.argsort (apple
ohlc[:, 31)

8. dates_sorted by close price =
dates[sorted close price indices]

9. print ("Dates sorted by Close prices:\n",
dates sorted by close price)
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The results are as follows:

Dates sorted in ascending order:

['2023-08-01" '2023-08-02"'" '2023-08-03" '2023-08-04"
'2023-08-07"

'2023-08-08" '2023-08-09' '2023-08-10"]
Indices that would sort 'dates':
[02 345061 7]

OHLC data sorted by 'dates':

[[196.24 1098. 195. 195.61]
[195.04 197.5 193. 192.58]
[191.57 192.5 190. 191.17]
[185.52 188. 184.5 181.99]
[182.13 183.4 178. 178.85]

[179.69 181.5 178.8 179.8 1]

[180.87 182. 178.5 178.19]

[179.48 181. 177. 177.9711
Dates sorted by Close prices:

['2023-08-10" '2023-08-09' '2023-08-07" '2023-08-08"
'2023-08-04"

'2023-08-03" '2023-08-02'" '2023-08-01"]

In the examples, the emphasis is on sorting and arranging datasets based
on another dataset. The np.argsort function gives us the indices that can
be used to reorder multiple arrays coherently. In the case of stock market
analysis, it is common to manage date and OHLC data separately, making
these techniques invaluable for maintaining consistency and coherence in the
datasets. The np.array data structure also has a built-in . sort method—
dates.sort (). The peculiarity of its application is that the data array itself is
sorted, and this method is more often applied to independent arrays.
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Adding and Removing Data

When analyzing and processing data, there might be situations where we need
to add new observations or remove existing ones. Despite being a fixed size by
default, NumPy arrays can be reshaped and modified using a set of functions.
Let us delve into methods for adding and removing data in NumPy arrays by
using the following code:

1. # Appending new data

2. new date = np.array(["2023-08-11"1)

3. new ohlc = np.array([[180.50, 183.00, 179.50,
182.4011)

4. sorted dates = np.append(sorted dates, new date)

5. apple ohlc sorted by date = np.append(apple ohlc
sorted by date, new ohlc, axis=0)

6. # Inserting data at the third position (Index 2)

7. insert date np.array (["2023-08-05"1)

8. insert ohlc = np.array([[184.20, 185.50, 182.90,
183.3011)

9. sorted dates = np.insert(sorted dates, 2,
insert date)

10. apple ohlc sorted by date = np.insert (apple ohlc
sorted by date, 2, insert ohlc, axis=0)

11. # Deleting data for the date "2023-08-04"
(which is now at Index 3 after insertion)

12. sorted dates = np.delete(sorted dates, 3)

13. apple ohlc sorted by date = np.delete(apple ohlc
sorted by date, 3, axis=0)

14. print("Modified Dates Array:\n'", sorted dates)

15. print("\nModified OHLC Data:\n", apple ohlc
sorted by date)




The results of the code are:

Modified Dates Array:
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['2023-08-01"

'2023-08-07"

'2023-08-08"

'2023-08-02"

'2023-08-09"

Modified OHLC Data:

[[196.24 198.

[195.04 197.
[184.
[185.
[182.
[179.
[180.
[179.
[180.

2

52
13
69
87
48
5

185.
188.
183.
181.
182.
181.
183.

5

5

195.
193.
182.
184.
178.
178.
178.
177.
179.

'2023-08-05" '2023-08-04"

'2023-08-10" '2023-08-11"]

195.61]

192

183.
181.
178.
179.
178.

177.

182

.58]

3]
99]
85]
8 ]
19]
97]

.41

As we can see, the key modifying operations are as follows:

= Appending allows us to add new data at the end of an array. The
np.append () function serves this purpose.

= Insertion lets us add data at a specific position. The np.insert () func-
tion can achieve this.

= To remove specific observations based on their indices, we can employ
the np.delete () function.

NOTE  The axis parameter is applied to the 2D array. To append or insert rows, use
axis=0; to append or insert columns, use axis=1.

Array Shape Manipulation

Manipulating the shape or structure of a NumPy array is often required dur-
ing data processing. Whether changing the dimensions, merging arrays, or
even dividing them, NumPy provides an arsenal of functions to efficiently
transform arrays without altering the underlying data.
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®m np.concatenate (): Join two or more arrays along an existing axis.
= np.split():Split an array into multiple subarrays.

® np.reshape (): Alter the dimensions of an array without changing its
data.

® np.transpose () or array.T: Reverse or permute the axes of an array.
= np.hstack(): Stack arrays in sequence horizontally (column-wise).

m np.vstack(): Stack arrays in sequence vertically (row-wise).
Let us demonstrate these operations using some N umPy arrays:

1. transposed ohlc = apple ohlc sorted by date.T
2. print("Transposed OHLC Data:\n", transposed ohlc)

3. split arrays = np.split(transposed ohlc, 4,
axis=0)

4. print("\nSplitted array is \n", split arrays)
5. for idx, arr in enumerate(split arrays):
6. print (f"\nSplit {idx + 1}:\n", arr)

7. concatenated data = np.concatenate(split arrays,
axis=1)

8. print ("\nConcatenated Data:\n", concatenated
data)

9. horizontal stack = np.hstack(split arrays[0])

10. print("\nHorizontally Stacked Open Price
Data:\n", horizontal stack)

11. vertical stack = np.vstack(split arrays)

12. print("\nVertically Stacked Data:\n",
vertical stack)

13. reshaped dates 3x3 = sorted dates.reshape (3, 3)

14. print ("\nReshaped Dates (3x3):\n", reshaped
dates 3x3)

15. reshaped dates col = sorted dates.reshape(9, 1)

16. print("\nReshaped Dates (9x1):\n", reshaped
dates_col)
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The results of the code are:
Transposed OHLC Data:

[[196.24 195.04 184.2 185.52 182.13 179.69 180.87 179.48
180.5 ]

[198. 197.5 185.5 188. 183.4 181.5 182. 181.
183. 1]
[195. 193. 182.9 184.5 178. 178.8 178.5 177.
179.5 1]

[195.61 192.58 183.3 181.99 178.85 179.8 178.19 177.97
182.4 1]

Splitted array is

[array ([[196.24, 195.04, 184.2 , 185.52, 182.13, 179.69,
180.87, 179.48, 180.5 11), array([[198. , 197.5, 185.5,
188. , 183.4, 181.5, 182. , 181. , 183. 11), array([[195.
, 193. , 182.9, 184.5, 178. , 178.8, 178.5, 177. ,
179.5]1), array([[195.61, 192.58, 183.3 , 181.99, 178.85,
179.8 , 178.19, 177.97, 182.4 ]1]1)]

Split 1:

[[196.24 195.04 184.2 185.52 182.13 179.69 180.87 179.48
180.5 11

Split 2:

[[198. 197.5 185.5 188. 183.4 181.5 182. 181. 183. 1]
Split 3:

[[195. 193. 182.9 184.5 178. 178.8 178.5 177. 179.51]
Split 4:

[[195.61 192.58 183.3 181.99 178.85 179.8 178.19 177.97
182.4 1]

Concatenated Data:

[[196.24 195.04 184.2 185.52 182.13 179.69 180.87 179.48
180.5 1%88. 197.5 185.5 188. 183.4 181.5 182.
181. 183. 195. 193. 182.9 184.5 178. 178.8
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178.5 177. 179.5 195.61 192.58 183.3 181.99 178.85
179.8 178.19 177.97 182.4 ]]

Horizontally Stacked Open Price Data:

[196.24 195.04 184.2 185.52 182.13 179.69 180.87 179.48
180.5 ]

Vertically Stacked Data:

[[196.24 195.04 184.2 185.52 182.13 179.69 180.87 179.48

180.5 ]
[198. 197.5 185.5 188. 183.4 181.5 182. 181.
183. 1]
[195. 193. 182.9 184.5 178. 178.8 178.5 177.
179.5 1]

[195.61 192.58 183.3 181.99 178.85 179.8 178.19 177.97
182.4 1]

Reshaped Dates (3x3):

[['2023-08-01" '2023-08-02"' '2023-08-05"]

['2023-08-04" '2023-08-07"' '2023-08-08"]

['2023-08-09" '2023-08-10" '2023-08-11"11
Reshaped Dates (9x1):

[['2023-08-01"]

['2023-08-02"]

['2023-08-05"]

['2023-08-04"]

['2023-08-07"]

['2023-08-08"]

['2023-08-09"]

['2023-08-10"]

['2023-08-11"1]]
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This code captures the essence of shape manipulations in NumPy; illustrating
the library’s versatility in restructuring data arrays. Whether the aim is to pivot
data’s orientation, segment it, or aggregate segments, these operations pro-
vide the tools to achieve those structural transformations efficiently. Please
investigate the results for further application.

Find Values and Filtering Operations

NumPy offers an extensive suite of tools to query and filter arrays. Here, we
will delve into the techniques for finding and filtering data using our reference
datasets: the sorted dates and OHLC price arrays. Execute the following code:

1. date index = np.where((sorted dates == "2023-08-04") |
2. (sorted dates == "2023-08-01")) [0]

3. print("\n Date index for 2023-08-04 or
2023-08-01:")

4. print(date index)

5. ohlc on specific date = apple ohlc sorted
by date[date index]

6. print("\n OHLC data for the specific date:")
7. print(ohlc _on specific_date)

8. highest close index = np.argmax(apple ohlc
sorted by datel:, 3])

9. date with highest close = sorted dates
[highest close index]

10. print("\n Date with the highest close price:")
11. print(date with highest close)

12. above threshold dates = sorted dates[apple ohlc
sorted by date[:, 3] > 190]

13. print("\n Dates with close prices above 190:")

14. print (above threshold dates)
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15. between threshold dates = sorted dates|[ (apple
ohlc sorted by date[:, 0] < 190) &

le. (apple
ohlc_sorted by date[:, 0] > 180)]

17. print("\n Dates with open prices between 180 and
190:")

18. print (between threshold dates)

The results of the code are:
Date index for 2023-08-04 or 2023-08-01:
[0 3]

OHLC data for the specific date:
[[196.24 198. 195. 195.61]

[185.52 188. 184.5 181.99]]

Date with the highest close price:
2023-08-01

Dates with close prices above 190:
['2023-08-01" '2023-08-02"]

Dates with open prices between 180 and 190:

['2023-08-05" '2023-08-04"' '2023-08-07" '2023-08-09'
'2023-08-11"]

The code searches for a specific trading date using NumPy's np . where func-
tion. This is often the first step in financial analysis, where an analyst wants
to extract price information for a particular date. The found index is then
used to retrieve the OHLC prices for that specific date. Moving forward, the
np.argmax functions help identify the trading day with the highest closing
price. Such information is crucial for traders and analysts to spot significant
peaks in a price series. Similarly, one could use np.argmin to spot the lowest
values. Lastly, the code demonstrates filtering techniques. Using conditional
statements (> and <, or others such as ==, >=, and <=), we can quickly
filter out trading dates based on specific price thresholds. This can be used to
search for bullish or bearish trading days based on the closing price.
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Therefore, with just a few lines, we can pinpoint specific trading days, remove
relevant price information, and filter out data based on price thresholds. This
suite of capabilities makes NumPy an indispensable tool for data analysis.

Arithmetical and Statistical Operations

Numerical computing is a foundational aspect of financial data and quanti-
tative analysis. NumPy libraries for mathematical operations in Python are
packed with functions that allow for complex numerical computations on
arrays and matrices. The given examples underscore the ease and efficiency
with which such calculations can be executed.

Use the following code:
1. # Combining results into a single array for
display

2. stats _array = np.array([

3. apple ohlc sorted by date.mean (axis=0),

4. np.median (apple ohlc sorted by date, axis=0),
5. np.var (apple ohlc sorted by date, axis=0),

6. np.std(apple ohlc_ sorted by date, axis=0)])

7. print ("Statistical measures for OHLC data:\n",
stats_array.T)

8. # Rate of Return calculation

9. ror ohlc = (apple ohlc sorted by date[l:]
- apple ohlc sorted by date[:-1]) /
apple ohlc sorted by date[:-1]

10. print("Rate of Return for each day:\n", ror ohlc)

11. # Logarithmic version of the Rate of Return
calculation

12. ror ohlc log = np.log(apple ohlc sorted by
date[l:] / apple ohlc sorted by date[:-1])

13. print("Logarithmic version of the Rate of Return
for each day:\n", ror ohlc log)
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The results of the code are:

Statistical measures for OHLC data:

[[184.85222222 182.13

[186.65555556 183.4

[183.02222222
[183.41
Rate of Return

[[-0.00611496

[-0.05557834 -0.

[ 0.00716612
[-0.01827296
[-0.01339702
[ 0.00656687
[-0.00768508
[ 0.00568308

179.5

181.99

for each day:

36.8959284

39.29358025

39.71061728

36.29391111

6.07420187]
6.26845916]
6.30163608]
6.02444281] ]

-0.00252525 -0.01025641 -0.01549001]

0.

0.

06075949 -0.
.01347709
.02446809 -0.
.01035987 0
.00275482 -0
.00549451 -0

01104972 O

05233161
00874795
03523035

.00449438
.00167785
.00840336
.01412429

-0.
-0.
-0.

04818777]
00714675]
0172537 ]

.00531171]
.00895439]
.00123464]
.02489184]]

Logarithmic version of the Rate of Return for each day:

[[-0.00613373 -0.00252845 -0.01030937 -0.01561123]

[-0.05718254 -0.

[ 0.00714057

[-0.01844198 -0.
[-0.01348757 -0.

[ 0.0065454

[-0.00771476 -0.

[ 0.005667

0.

0.

0.

0626837 -0.
01338708
0247724 -0.
01041391
00275103 -0.
00550966 -0.
01098912

0.

0.

0.

05375063
00870991
03586591
00448431
00167926
00843887
01402548

-0.
-0.

-0

0493875 ]
007172411

.01740427]
.00529766]
.00899473]
.0012354 ]
.024587081711]
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The first operation is directed toward understanding the central tendency
of stock market data by using core statistical metrics on the OHLC data for
Apple Inc.

The following are the statistical measures:

= np.mean (): This computes the average value of array elements along a
specified axis.

= np.median (): This finds the median or middle value of the sorted array
along the specified axis.

= np.var (): This calculates the variance of array elements, which is a
measure of the spread between numbers (individual values are squared to
remove the influence of the sign of the difference).

= np.std: This computes the standard deviation, indicating the amount of
variation or square root of variance.

The NumPy library has many more similar functions, as shown in the follow-

ing table:

TABLE 2.2 Main functions of the NumPy library for performing mathematical
and statistical operations on arrays

Function Description
Mathematical functions

np.sum(x) Sum of all elements in X
np.prod (x) Product of all elements in x
np.cumsum (x) Cumulative sum of each element along X
np.cumprod (x) Cumulative product of each element along x
np.sqrt (x) Square root of each element in X
np.power (x, n) Raise each element in X to the power n
np.exp (x) Exponential of each element in X
np.log(x) Natural logarithm of each element in X
np.logl0 (x) Base-10 logarithm of each element in x

Natural logarithm of 1 plus each element in X (applied for small
np.loglp (x) or zero growth)

Calculate exp(x) — 1 of each element in X (applied for small or
np.expml (x) zero growth)
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Statistical functions
np.mean (x) Compute the arithmetic mean of x
np.median (x) Compute the median of X
np.std(x) Compute the standard deviation of x
np.var (x) Compute the variance of x
np.min (x) Find the minimum value in X
np.max (x) Find the maximum value in X
np.percentile(x, p) | Compute the p-th percentile of x
np.quantile(x, Q) Compute the g-th quantile of x

With the argument axis=0, we perform the desired statistical measure for
each OHLC value of the apple ohlc_sorted by date array.

The second and third operations are used to calculate the RoR and logarith-
mic RoR.

The logarithmic RoR, or continuously compounded return, is often used
because of its properties that simplify time aggregation. The formula is as
follows:

LogReturns = LogRoR = In (Current price / Previous price)

The logarithmic RoR is approximately equal to the RoR. It is, however, con-
sidered a continuous estimate of price dynamics. Both versions of this metric
are applied in practical analysis.

In the context of the code:

m apple ohlc sorted by date[l:] selects all rows from the second
row to the OHLC data’s last row. This corresponds to the current price
subarray in our formula.

m apple ohlc sorted by date[:-1] selects all rows from the first row
up to (but not including) the last row of the OHLC data. This represents
the previous price subarray in our formula.

When using lists or dictionaries, we applied a relatively large amount of code
and additional loops to calculate the RoR. With the NumPy library, this cal-
culation was done in one line for all prices in the period. This is the magic
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of array-based operations. To better understand matrix operations, you can
experiment with individual parts of the code and the resulting structures.

A custom function can be converted into a NumPy vectorized form using
np.vectorize().

For example, let’s consider applying a custom function to the ror ohlc array,
using is positive (), which was defined earlier, as in the following code:
1. is positive v = np.vectorize(is positive)

2. print (is_positive v (ror ohlc))
The results of the code are:

[[False False False False]

[False False False False]

[ True True True False]

[False False False False]

[False False True True]

[ True True False False]

[False False False False]

[ True True True Truel]
Though NumPy is the go-to library for processing large data arrays, it has
some limitations; for instance, a NumPy array cannot use different data types

within structures and assign names to rows and columns. Therefore, the pow-
erful pandas library was developed to address these issues.

WORKING WITH PANDAS FOR DATA ANALYSIS

pandas is a powerful Python library tailored for data manipulation and anal-
ysis. At the heart of pandas are its two primary data structures: Series and
DataFrames. A Series is akin to a one-dimensional array that can hold any
data type with its name and specific indexes of the rows. A DataFrame is a



70 o FinaNcIAL DATA ANALYSIS USING PyTHON

two-dimensional and size-mutable tabular data structure with labeled axes
(rows and columns). Think of a DataFrame as an in-memory spreadsheet, like
Excel, where we can perform operations easily.

When working with pandas, using specific import aliases is a common con-
vention. As with NumPy, where the standard alias is np, pandas is typically
imported under the alias pd. Here is how you can do it:

1. import numpy as np

2. import pandas as pd

Creating a Series and DataFrame

A Series and DataFrame allow for flexible and efficient data manipulation.
Let us explore how to create and work with Series and DataFrame structures
using data from Table 2.1 (based on the NumPy arrays dates and apple
ohlc). Use the following code:

1. dates = np.array ([

2. "2023-08-01", "2023-08-09", "2023-08-02",
3o "2023-08-03", "2023-08-04", "2023-08-07",
4. "2023-08-08", "2023-08-10",

5. 1

6.

7. apple ohlc = np.array ([

8. [196.24, 198.00, 195.00, 195.61]1, # lst Aug

9c [180.87, 182.00, 178.50, 178.19], # 9th Aug !
10. [195.04, 197.50, 193.00, 192.58]1, # 2nd Aug
11. [191.57, 192.50, 190.00, 191.171, # 3rd Aug
12. [185.52, 188.00, 184.50, 181.991, # 4th Aug
13. [182.13, 183.40, 178.00, 178.85], # 7th Aug
14. [179.69, 181.50, 178.80, 179.80]1, # 8th Aug
15. [179.48, 181.00, 177.00, 177.97], # 10th Aug
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le. 1)
17.

name='Close Prices')
19. print("Series is \n", ds)

20.

22. columns=["Open",
"Close"])

23. print ("\nDataFrame is \n", df)

The results of the code are:

Series 1is

2023-08-01 195.61
2023-08-09 178.19
2023-08-02 192.58
2023-08-03 191.17
2023-08-04 181.99
2023-08-07 178.85
2023-08-08 179.80
2023-08-10 177.97

Name: Close Prices, dtype: float64

DataFrame is

Open High Low Close
2023-08-01 196.24 198.0 195.0 195.61
2023-08-09 180.87 182.0 178.5 178.19

18. ds = pd.Series(apple ohlc[:,3], index=dates,

21. df = pd.DataFrame (apple ohlc, index=dates,

"High", "LOW",
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2023-08-02 195.04 197.5 193.0 192.58

2023-08-03 191.57 192.5 190.0 191.17

2023-08-04 185.52 188.0 184.5 181.99

2023-08-07 182.13 183.4 178.0 178.85

2023-08-08 179.69 181.5 178.8 179.80

2023-08-10 179.48 181.0 177.0 177.97

As seen in the example, the structures of pandas resemble tables, complete

with headers and row labels.

Indexing, Finding, and Filtering Data

When working with pandas, one of the fundamental steps in data manipula-
tion is retrieving specific portions of the dataset, which includes indexing,
finding, and filtering the data effectively. pandas provides powerful and user-
friendly methods to perform these operations on Series and DataFrames,
allowing for precise data extraction and manipulation based on specific condi-

tions or criteria.

Selecting Values and Slicing Datasets

To get values in a Series and DataFrame by indexes, we can use the following

code:

1.

# Series Selection
print ("The first element in the Series is: ",
ds.iloc[0])

print ("\nThe elements from index 1 to 2 in the
Series are: \n",

ds[1l:31])

print ("\nThe element in the Series at index
'2023-08-02"' is: ",

ds["2023-08-02"1)

print ("\nThe elements in the Series from '2023-
08-09' to '2023-08-04"' are: \n",
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9. ds.loc["2023-08-09":"2023-08-04"])
10. # DataFrame Selection

11. print("The 'Open' column from the DataFrame is:

\n",
12. df ["Open"])

13. print("\nThe 'Open' and 'Close' columns from the
DataFrame are: \n",

14. df [ ["Open", "Close"]])

15. print("\nThe 'Close' column values between
indexes '2023-08-09' and '2023-08-04"' are: \n",

16. df.loc["2023-08-09":"2023-08-04", "Close"])

17. print("\nAll column values between '2023-08-09'
and '2023-08-04"' are: \n",

18. df.loc["2023-08-09":"2023-08-04", :1)

19. print ("\nThe value at the second row and the
third column is: ",

20. df.iloc[1l, 2])

21. print ("\nThe values from the second and fourth
rows, excluding the last column, are: \n",

22. df.iloc([[1, 31, :-11)

The results of the code are:

The first element in the Series is: 195.61

The elements from index 1 to 2 in the Series are:
2023-08-09 178.19
2023-08-02 192.58

Name: Close Prices, dtype: float64
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The element in the Series at index '2023-08-02' is:
192.58

The elements in the Series from '2023-08-09' to
'2023-08-04" are:

2023-08-09 178.19
2023-08-02 192.58
2023-08-03 191.17
2023-08-04 181.99

Name: Close Prices, dtype: float64

The 'Open' column from the DataFrame is:

2023-08-01 196.24
2023-08-09 180.87
2023-08-02 195.04
2023-08-03 191.57
2023-08-04 185.52
2023-08-07 182.13
2023-08-08 179.69
2023-08-10 179.48

Name: Open, dtype: floaté64d

The 'Open' and 'Close' columns from the DataFrame are:
Open Close

2023-08-01 196.24 195.61

2023-08-09 180.87 178.19

2023-08-02 195.04 192.58

2023-08-03 191.57 191.17

2023-08-04 185.52 181.99
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2023-08-07 182.13 178.85
2023-08-08 179.69 179.80
2023-08-10 179.48 177.97

The 'Close' column values between indexes '2023-08-09' and
'2023-08-04" are:

2023-08-09 178.19
2023-08-02 192.58
2023-08-03 191.17
2023-08-04 181.99

Name: Close, dtype: float64

All column values between '2023-08-09' and '2023-08-04' are:
Open High Low Close

2023-08-09 180.87 182.0 178.5 178.19

2023-08-02 195.04 197.5 193.0 192.58

2023-08-03 191.57 192.5 190.0 191.17

2023-08-04 185.52 188.0 184.5 181.99

The value at the second row and the third column is:
178.5

The values from the second and fourth rows, excluding the
last column, are:

Open High Low
2023-08-09 180.87 182.0 178.5

2023-08-03 191.57 192.5 190.0
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This code example shows how to access and slice data within a pandas Series
(ds) and a DataFrame (d£) with the following statements:

= []: Directly accesses elements of a Series or selects columns from a
DataFrame (the functionality of treating keys as positions is deprecated).

= loc[]: Enables selection by index/label, which is useful for slicing a
DataFrame and Series with a clear focus on utilizing index labels.

= iloc[]: Employs integer-location-based indexing for selection by posi-
tion, allowing the slicing of a DataFrame and Series with positional inte-
ger indexes.

= :: Acts as a slicer to select a range of values in a Series or DataFrame
when used within 1oc[] or iloc[].

As we can observe, the syntax for the basic data types in pandas closely resem-
bles the classic spreadsheet navigation. This similarity is helpful to those
familiar with spreadsheet software, making the transition to pandas smooth
and intuitive.

Filtering Data

When working with datasets in pandas, we often used different mechanisms
and methods provided by pandas to filter out, extract, or isolate parts of the
data, ensuring focused and efficient analysis.

First, contemporary IDEs such as Jupyter Notebook and Google Colab
offer tools to interact with DataFrames, which are like Excel tables (refer to
Figure 2.1). If you run a cell with the df code, you will obtain a table as shown
on the top left (screen 1). If you press the Calculator button, the view will
change to what is shown on the top right (screen 2), allowing you to search
for values by index or table element and filter in a convenient dialog mode
(see screen 3 at the bottom):
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af df
open High Low Close [ 110 8 of 8 entries 0@
2023-08-01 196.24 198.0 1950 195.61 m index Open High Low Close
2023-08-09 180.87 1820 178.5 178.19 2023-08-01 196.24 198.0 195.0 195.61
2023-08-02 19504 197.5 1930 19258 2023-08-09 180.87 182.0 1785 178.19
2023-08-03 191.57 1925 190.0 191.17 2023-08-02 195.04 197.5 il 192.58
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Screen 1 Screen 2
1 to 8 of 8 entries (] 0
index: Open: X
\ | | Jto] \
High: Low:
\ to] | | Jto] \
Close:
\ to] |
Search by all fields:
index Open High Low Close
2023-08-01 196.24 198.0 195.0 195.61
2023-08-09 180.87 182.0 178.5 178.19
2023-08-02 195.04 197.5 193.0 192.58
2023-08-03 191.57 192.5 190.0 191.17
2023-08-04 185.52 188.0 184.5 181.99
2023-08-07 182.13 183.4 178.0 178.85
2023-08-08 179.69 181.5 178.8 179.8
2023-08-10 179.48 181.0 177.0 177.97
Screen 3

FIGURE 2.1 Visualization of a DataFrame as a table in Google Colab

pandas data structures also have powerful functions and methods for filtering
datasets based on the Boolean (logical) indexing principle. Execute the follow-
ing code to try it:

1. # Dataset Filtering

2. # Series

3. print("Elements in Series > 190: \n",

4. ds > 190)
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5. print ("\nSeries where elements > 190: \n",

6. ds[ds > 190])

7. print("\nSeries element at index '2023-08-03':
\n",

8. ds[ds.index == "2023-08-03"1])

9. # DataFrame

10. print("\nDataFrame where 'Open' > 190 and 'Close'
< 192: \n",

11. df[(df['Open'] > 190) & (df['Close'] <
192)1)

12. print("\nDataFrame where 'Open' is greater than
'Close': \n",

13. df [df['Open'] > df['Close']])

14. print("\nDataFrame where 'Close' is in [192.58,
178.19]: \n",

15. df [df['Close'] .isin([192.58, 178.19]1)1)
16. print("\nDataFrame at index '2023-08-03': \n",
17. df [df.index == "2023-08-03"])

18. print("\nDataFrame at indices ['2023-08-
03','2023-08-09']: \n",

19, df [df.index.isin(["2023-08-03",
"2023-08-09"1) 1)

20.
21. # Combining Conditions

22. print ("\nDataFrame where 'Open' > 180, 'Open' <

190, and 'Close' != 181.99: \n",
23. df [ (df['Open'] > 180) &
(df['Open'] < 190) &
(df['"Close'] !'= 181.99)1])

24.
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applying the condition

'Open' < 190, and 'Close' != 181.99: \n",

28. subset df[ (subset df['Open'] > 180)
(subset df['Open'] < 190) &

The results of the code are:

Elements in Series > 190:
2023-08-01 True
2023-08-09 False
2023-08-02 True
2023-08-03 True
2023-08-04 False
2023-08-07 False
2023-08-08 False
2023-08-10 False

Name: Close Prices, dtype: bool

Series where elements > 190:

2023-08-01 195.61
2023-08-02 192.58
2023-08-03 191.17

Name: Close Prices, dtype: float64

25. # Creating a sub-dataframe for the date range

26. subset df = df.loc["2023-08-01":"2023-08-08"]

27. print ("\nSubset DataFrame where 'Open' > 180,

(subset df['Close'] != 181.99)])
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Series element at index

2023-08-03

Name: Close Prices,

DataFrame where

2023-08-03

191.

DataFrame where

2023-08-01
2023-08-09
2023-08-02
2023-08-03
2023-08-04
2023-08-07
2023-08-10

196.
180.
195.
191.
185.
182.
179.

DataFrame where

2023-08-09
2023-08-02

DataFrame at index

2023-08-03

180.

195.

191.

191.17

'2023-08-03":

dtype:

float64

'Open'’'

Open High Low
57 192.5 190.0
'Open'’'

Open High Low
24 198.0 195.0
87 182.0 178.5
04 197.5 193.0
57 192.5 190.0
52 188.0 184.5
13 183.4 178.0
48 181.0 177.0
'Close' is in

Open High Low
87 182.0 178.5
04 197.5 193.0

'2023-08-03":

Open High Low

57 192.5 190.0

> 190 and 'Close' < 192:

Close

191.17

is greater than 'Close':

Close
195.61
178.19
192.58
191.17
181.99
178.85
177.97

[192.58, 178.19]:

Close
178.19
192.58

Close

191.17
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DataFrame at indices ['2023-08-03','2023-08-09']:

Open High Low Close
2023-08-09 180.87 182.0 178.5 178.19
2023-08-03 191.57 192.5 190.0 191.17

DataFrame where 'Open' > 180, 'Open' < 190,
181.99:

Open High Low Close
2023-08-09 180.87 182.0 178.5 178.19
2023-08-07 182.13 183.4 178.0 178.85

Subset DataFrame where 'Open' > 180, 'Open'
'Close' != 181.99:

Open High Low Close
2023-08-09 180.87 182.0 178.5 178.19
2023-08-07 182.13 183.4 178.0 178.85

and 'Close' !=

< 190, and

The preceding code example shows the use of essential data filtering tools, as

follows:

= Boolean indexing: By utilizing comparison operators such as > and <, this

tool filters rows of a DataFrame or Series, yielding rows where the condi-
tion is True. For example, ds > 190 extracts values in the Series greater
than 190.

Equality and inequality checks: Based on the Boolean indexing princi-
ple, operators such as == and ! = perform equality and inequality checks
within a DataFrame or Series, filtering rows where the conditions are
met. For example, df ['Close'] != 181.99 retains rows where the
Close value is not 181.99.

Combining conditions: The &« (AND) and | (OR) operators combine mul-
tiple conditions, facilitating intricate filtering based on several criteria.
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When using &, every condition must be True, while for |, only one condi-
tion needs to be True for a row to be included.

Using the isin() method: The .isin([]) method is utilized for filter-
ing based on multiple potential values for a column. For example,
df['Close'].isin([192.58, 178.19]) filters rows where the
Close valueis either 192.58 or 178.19.

Index value filtering: Using the . index attribute coupled with methods
such as .isin([]) or comparison operations allows filtering data based
on the values of the index. For instance, df [df.index.isin (["2023-
08-03", "2023-08-09"])] returns rows where the index is either
"2023-08-03"or "2023-08-09".

This set of tools allows for the meticulous exploration and analysis of data in
pandas, enabling the precise and flexible extraction of specific insights from

the dataset.

Data Manipulation

Data manipulation with pandas includes changing values, reshaping datasets,
sorting data in specific orders, and creating new features through calcula-
tions, each providing diverse ways to interact with and understand the dataset

effectively.

Insertion and Deletion of Data

Let us execute some examples. Inserting new data, modifying existing data,
and deleting specific entries or labels can be done in pandas as follows:

1. # For Series

2. ds new = pd.Series(data=[177.79,

3. index=["2023-08-11",
"2023-08-14"1,

4. name=ds.name)

5. ds = pd.concat([ds, ds _new]) # method 1is
deprecated

entries) :\n", ds.tail(3))

6. print("Modified Series (showing last 3



10.
11.

12.
13.
14.

15.

16.

17.

18.

19.

"2023-08-14"1,

20.
21.

22.

23.
24.
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ds["2023-08-11"] = 177.32

print ("Series after value change (showing last 3
entries) :\n",
ds.tail(3))

ds = ds.drop(labels=["2023-08-11", "2023-08-14"1)

print ("\nSeries after Deletion (showing last 3
entries) :\n",
ds.tail(3))

# For DataFrame

df.loc["2023-08-11"] = [177.32, 178.62, 176.55,
177.79]

print ("\nModified DataFrame (showing last 3
entries) :\n",
df.tail(3))

new df = pd.DataFrame(data=[[177.32, 178.62,
176.55, 177.791,

(177,97, 179,69,
177.31, 179.46]],

index=["2023-08-11",

columns=df.columns)

df = pd.concat([df, new df]) # method is
deprecated

print ("\nModified DataFrame (showing last 5
entries) :\n", df.tail())

df = df.drop(labels=["2023-08-11"]1, axis=0)
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NOTE

25. print ("\nDataFrame after Deletion (showing last 3
entries) :\n",
df.tail (3))

26.

27. df.drop(labels=["2023-08-14"], axis=0,
inplace=True)

28. print ("\nDataFrame after Deletion (showing last 3
entries) :\n",

df.tail(3))
29.
30. print ("DataFrame after Deletion two Columns (the
first 3 entries):",
31. df .drop (labels=["High", "Low"], axis=1).
head (3))

The examples given are based on the use of basic methods and functions,
namely:

The .concat () and .append () methods combine two or more pandas
collections along a particular axis (axis=0 by rows (as default) or axis=1
by columns), efficiently enabling the extension of datasets.

.loc[] adds a new row if the row index name does not exist.

It is crucial to note that indexes in pandas can be non-unique, meaning that
care must be taken when manipulating data to avoid unintended consequences
due to multiple rows sharing the same index label.

.drop () is a tool for removing specified labels from the rows or col-
umns of a DataFrame or Series. It deletes all occurrences of the specified
labels, providing a convenient way to cleanse the datasets; for example,
ds.drop (labels=["2023-08-11", "2023-08-14"]) removes all
occurrences of the specified row labels in the ds Series.

Methods such as . drop () with the inplace=True parameter and direct
value assignment allow for modifying the object directly without need-
ing to create a new variable for storage, optimizing memory usage. By
default (when inplace=False), the original DataFrame is usually left
unchanged.
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m The .name attribute for Series and the .columns attribute for
DataFrames are fundamental for preserving the identity of objects. For
example, when creating new objects, name=ds . name and columns=df.
columns ensure the inheritance of names and column labels from exist-
ing objects, fostering consistent identification and structural coherence in
the datasets.

m The .head () and .tail () methods provide a quick glimpse of the data-
set. The .head (n) method displays the first n rows, and the .tail (n)
method displays the last n rows of the DataFrame or Series, which is
extremely useful for preliminary data examination and verification of
manipulations. The default is n=5.

These tools allow you to manipulate the values of individual records. To
change the order and structure of a DataFrame, however, NumPy statements
are used, as follows:

1. # Resetting and setting the index

2. df reset = df.reset index()

3. print ("\nDataFrame after resetting the index:\n",
4. df reset.head(3))

5. # Renaming the 'index' column to 'Date'

6. df reset = df reset.rename (columns={'index':
'Date'})

7. print ("\nDataFrame after renaming the 'index'
column to 'Date':\n",

8. df reset.head(3))
9. # Setting 'Date' as the index of the DataFrame
10. df reset = df reset.set index('Date')

11. print("\nDataFrame after Reindexing with
'Date’':\n",

12. df reset.head(3))

13. # Preparing DataFrames for Join operation
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14.

15.

16.
17
18.

19,

20.

21.
22.

23.

24.
25.

26.

27.

28.

29

30.

# Dropping rows with index '2023-08-10' and
'2023-08-01"

df reset.drop(labels=["2023-08-10", "2023-08-01"],
axis=0, inplace=True)

# Dropping 'Open', 'High', 'Low' columns

df reset.drop(labels=["Open", "High", "Low"],
axis=1, inplace=True)

# Performing Join operations

# Right join keeps every row from the right
DataFrame, and drops the unmatched rows from the
left DataFrame.

print ("\nDataFrame after Right Join:\n",

df reset.join(df, how="right",
lsuffix="' left',
rsuffix="' right'"))

# Left join keeps every row from the left
DataFrame, and drops the unmatched rows from the
right DataFrame.

print ("\nDataFrame after Left Join:\n",

df reset.join(df, how="left",
lsuffix="' left’,
rsuffix=' right'))

# Sort Operations

# Sorting DataFrame by 'Open' column values 1in
descending order

df sorted = df.sort values (by='Open',
ascending=False)

print ("\nDataFrame sorted by 'Open' values in
descending order:\n",

df sorted.head(3))
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31. # Sorting DataFrame by Index in ascending order
(default)

32. df sorted = df.sort index()

33. print("\nDataFrame sorted by Index in ascending
order:\n",

34. df sorted.head(3))

The results of the code are:

DataFrame after resetting the index:

index Open High Low Close
0 2023-08-01 196.24 198.0 195.0 195.61
1 2023-08-09 180.87 182.0 178.5 178.19

2 2023-08-02 195.04 197.5 193.0 192.58

DataFrame after renaming the 'index' column to 'Date':
Date Open High Low Close

0 2023-08-01 196.24 198.0 195.0 195.61

1 2023-08-09 180.87 182.0 178.5 178.19

2 2023-08-02 195.04 197.5 193.0 192.58

DataFrame after Reindexing with 'Date':
Open High Low Close

Date

2023-08-01 196.24 198.0 195.0 195.61

2023-08-09 180.87 182.0 178.5 178.19

2023-08-02 195.04 197.5 193.0 192.58
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DataFrame after Right Join:

Close left Open High Low Close right
2023-08-01 NaN 196.24 198.0 195.0 195.61
2023-08-09 178.19 180.87 182.0 178.5 178.19
2023-08-02 192.58 195.04 197.5 193.0 192.58
2023-08-03 191.17 191.57 192.5 190.0 191.17
2023-08-04 181.99 185.52 188.0 184.5 181.99
2023-08-07 178.85 182.13 183.4 178.0 178.85
2023-08-08 179.80 179.69 181.5 178.8 179.80
2023-08-10 NaN 179.48 181.0 177.0 177.97

DataFrame after Left Join:

Close left Open High Low Close right

Date

2023-08-09 178.19 180.87 182.0 178.5 178.19
2023-08-02 192.58 195.04 197.5 193.0 192.58
2023-08-03 191.17 191.57 192.5 190.0 191.17
2023-08-04 181.99 185.52 188.0 184.5 181.99
2023-08-07 178.85 182.13 183.4 178.0 178.85
2023-08-08 179.80 179.69 181.5 178.8 179.80

DataFrame sorted by 'Open' values in descending order:
Open High Low Close

2023-08-01 196.24 198.0 195.0 195.61

2023-08-02 195.04 197.5 193.0 192.58

2023-08-03 191.57 192.5 190.0 191.17
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DataFrame sorted by Index in ascending order:

Open High Low Close

2023-08-01 196.24 198.0 195.0 195.61

2023-08-02 195.04 197.5 193.0 192.58

2023-08-03 191.57 192.5 190.0 191.17

These code examples show basic techniques for manipulating various pandas
objects and changing table structures, namely:

.reset index () resets the index of a DataFrame, providing an incre-
mental default integer index. The previous index becomes a new column,
offering a new structured sequence.

.set_index () allows users to designate a column as the index, enhanc-
ing data accessibility and visibility.

.rename () employs dictionary mapping to rename columns effectively,
maintaining data consistency and clarifying data semantics.

join () merges DataFrames horizontally, using the index. The choice of
left or right join affects which DataFrame’s rows are retained. Suffixes dis-
tinguish between identically named columns in the joined DataFrames.

The join() method in pandas facilitates merging DataFrames based on their
argument conditions.

how="eft’: Keeps all rows from the left frame, adding matched ones from
the right

how="right’: Retains all rows from the right frame, adding matched ones

from the left
how="inner’: Includes only rows with matching indexes in both frames

how="outer’: Combines all rows from both, filling missing matches with
NaN.

New column names get suffixes, which are defined by the lsuffix and rsuffix
arguments.

The .sort_values() and .sort_index () methods arrange the data based
on either the values of a specific column or the index, allowing for expedited
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data retrieval and enhanced data comprehension. They offer flexibility with
the ascending parameter to determine the sort order.

We have now reviewed the basic operations for creating and manipulating
table data. Let us move on to a review of the most straightforward calculations.

Calculated Values and Creating New Features

In the previous examples, we employed the RoR and the logarithmic RoR to
demonstrate essential calculation ability in Python. pandas offers similar, yet
more streamlined, calculation tools akin to what can be accomplished in Excel
and other spreadsheet software. In the subsequent examples, we will utilize
the previously sorted dataset—the df sorted DataFrame. Execute the fol-
lowing code:

1. df sorted['Price Diff'] = df sorted['High']
- df sorted['Low']

2. df sorted['Log Close'] =
np.log(df sorted['Close'])

3. df sorted['RoR'] = df sorted['Close'].pct
change () * 100

4. df sorted['Log RoR'] = np.log(df sorted['Close'] /
df sorted['Close'].
shift (1))
5. df sorted['RoR Status'] = df sorted['RoR'].

apply (is_positive)

6. df sorted['Cum Prod RoR'] = ((1 + df
sorted['RoR"] / 100) .cumprod() - 1)*100

7. df sorted['Cum Prod Log RoR'] = (1 + df_
sorted['Log RoR']) .cumprod() - 1

8. print("\nDataFrame after calculating the
Cumulative Product for RoR and Log RoR:\n",

9. df sorted)
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The results of the code are:

DataFrame after calculating the Cumulative Product for RoR
and Log RoR:

Open High Low Close Price Diff
Log Close RoR \
2023-08-01 196.24 198.0 195.0 195.61 3.0
5.276123 NaN
2023-08-02 195.04 197.5 193.0 192.58 4.5

5.260512 -1.549001

2023-08-03 191.57 192.5 190.0 191.17 2.5
5.253163 -0.732163

2023-08-04 185.52 188.0 184.5 181.99 3.5
5.203952 -4.802009

2023-08-07 182.13 183.4 178.0 178.85 5.4
5.186547 -1.725370

2023-08-08 179.69 181.5 178.8 179.80 2.7
5.191845 0.531171

2023-08-09 180.87 182.0 178.5 178.19 3.5
5.182850 -0.895439

2023-08-10 179.48 181.0 177.0 177.97 4.0
5.181615 -0.123464

Log RoR RoR Status Cum Prod RoR Cum Prod Log RoR

2023-08-01 NaN False NaN NaN
2023-08-02 -0.015611 False -1.549001 -0.015611
2023-08-03 -0.007349 False -2.269823 -0.022845
2023-08-04 -0.049211 False -6.962834 -0.070932
2023-08-07 -0.017404 False -8.568069 -0.087102
2023-08-08 0.005298 True -8.082409 -0.082266

2023-08-09 -0.008995 False -8.905475 -0.090520

2023-08-10 -0.001235 False -9.017944 -0.091644
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By executing several lines of code (seven lines, to be precise), pandas ena-
bled the calculation of numerous metrics that are vital for analyzing the price
dynamics of Apple shares. These metrics include the market’s maximum price
fluctuations, the closing price logarithm, the RoR and its logarithmic form, a
flag indicating positive RoR, and the accumulated RoR over the entire obser-
vation period. Let us detail these methods and calculations:

Calculation of new value (feature): The difference between high and low
prices is Price Diff. It is computed for each row and stored in a new
column, called Price Diff. This helps in analyzing the price volatility
on a given day.

Array-based function application: The natural logarithm of close prices is
calculated and stored in the Log_Close column. This transformation can
often help in normalizing the data distribution.

Application of a custom function: The is positive () function catego-
rizes RoR values, and the categorized values are stored in a new column,
called RoR_status. It provides a quick overview of positive or negative
returns.

RoR calculation: The RoR column represents the daily RoR, calculated
as the percentage change in close prices. It is essential for assessing the
investment’s profitability.

Logarithmic RoR calculation: Using the . shift () method, the Log RoR
column is computed as the natural logarithm of the ratio of consecutive
close prices, providing an alternative perspective on returns.

Cumulative values calculation: The cumulative product . cumprod () and
cumulative sum . cumsum () functions are the essential pandas methods
for computing the ongoing product and sum of a sequence of numbers,
respectively. It may help to understand the compounded or aggregated
effects of the price or asset value changes over time. It is crucial in
domains such as finance to evaluate accumulated profits, losses, or other
measurable quantities.

We have explored examples of executing basic operations with pandas data
structures. As we progress through this book, we will delve deeper into the
details of using each tool. To fully understand the extensive functionality of pan-
das, however, continual practice and tackling non-standard problems are crucial.
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CONCLUSION

Utilizing Python’s built-in data structures, such as list, tuple, set, and dictionary,
empowers users to undertake various simple analytical tasks. Combinations of
these structures are used for storing parameters for other data structures and
offering a complex understanding of Python’s syntaxis principles and analyti-
cal functionality. Furthermore, custom Python functions are usually created
to apply specific financial and statistical metrics and indicators that are not
standard but are crucial for analyzing specific financial market instruments.
These fundamental concepts of the Python language are vital to understand
for the application of further data analysis tools.

The NumPy library was introduced, and you saw how it goes beyond mere
analysis and touches on vectorized mathematical operations and manipula-
tions, which are pivotal for handling matrices and multi-dimensional arrays.
Such capabilities facilitate fast and comprehensive financial data analysis,
allowing the application of computation operations on data arrays with just
one statement. The array manipulations, efficient sorting algorithms, and
other functionalities within NumPy are often applied in financial analytics.

pandas is a core package for managing and optimizing structured data analy-
sis, analogous to spreadsheet software such as Excel. This library is indispen-
sable for handling structured data efficiently through Series and DataFrames,
allowing users to operate on tabular data easily and with various functional-
ity. pandas tools serve numerous advanced manipulations, from nuanced data
insertion and deletion to intricate calculations of new values and features,
creating vast opportunities in the financial data analysis realm.

This chapter took us on a journey that included exploring theoretical concepts
and running through a practical demonstration of the implementation and
utility of Python data structures, NumPy, and pandas tools in the financial
context. For a deeper study of manipulation and computation tools, however,
it is necessary to refer to additional examples, many of which will be discussed
in subsequent chapters.
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QUESTIONS

1.

How can Python’s built-in structures facilitate fundamental financial
calculations?

2. How can creating custom functions simplify user-specific financial
analyses?

3. Why is NumPy crucial for performing numerical and statistical tasks in
financial analysis?

4. How does NumPy manage multi-dimensional arrays for comprehensive
financial analysis?

5. What are pandas’ functionalities for managing and optimizing structured
data analytics?

6. How does pandas compare to Excel in structured data analysis?

7. How are Python’s data structures and libraries applied to explore various
financial indices?

8. How can Python data structures be used to sort parameters and perform
basic computations in finance?

9. How does integrating Python data structures, NumPy, and pandas apply
theoretical financial knowledge to practical solutions?

KEY TERMS

Rate of return (RoR) is a financial metric measuring the investment’s
returns (profits and losses) or performance changes over a certain period.
It is calculated by subtracting the asset’s previous price from its current
price, then dividing the result by the previous price and multiplying this
by 100. The result, usually expressed as a percentage, illustrates the over-
all gain or loss experienced by the investor. Mathematically, these are the
percentage changes in the price of an asset.

Logarithmic rate of return (logarithmic RoR) is a method to assess invest-
ment performance, emphasizing the continuous effect. It is derived by
finding the natural logarithm of the price growth rate—divisions of the
asset’s current price by its previous price. The logarithmic RoR is approxi-
mately equal to the RoR and is used alongside the RoR calculation.
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= NumPy is a Python library for numerical computations and advanced
mathematical operations. It allows the operation of large, multi-dimen-
sional arrays and matrices and a collection of mathematical functions.

= Pandas is a Python library for data manipulation and analysis. It offers
data structures such as DataFrames and Series for tabular data (as in
Excel data sheets), time-series analysis functions, and other tools for data
manipulation, such as merging, reshaping, sorting, filtering, selecting, and
data cleaning.

= Series are one-dimensional arrays with flexible indices in the pandas pack-
age (a Python library). They represent a single column of tabular data in
a DataFrame.

= DataFrames are two-dimensional, size-mutable, potentially heteroge-
neous tabular data structures with labeled axes (rows and columns). In

Python, they are supported by the pandas library.
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= pandas data analysis library: https://pandas.pydata.org
= NumPy documentation: https://numpy.org/doc/stable/

= Dixit, R (2022). Data Analysis with Python. [Paperback]. BPB
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CHAPTER

FINANCIAL DATA MANIPULATION
WITH PYTHON

INTRODUCTION

This chapter highlights the principles of financial data, providing an overview
of the primary financial data sources and metrics, as well as the data structure,
in the global financial world. The chapter explores how information plays into
financial decision-making today. The process of automatically obtaining Yahoo
Finance open data using the yfinance library is detailed. Universal Python
tools for manipulating data files in traditional structured formats, such as
comma-separated values (CSV) and Excel, as well as application program-
ming interface (API) concepts, will also be described. We will explore the
most popular open data sources for financial analysis and describe the main
Python libraries that allow automatic data collection. Examples of applying
the tools from the Quandl and pandas_datareader libraries will be provided.
In addition, we will explore API sourcing and transforming financial data from
low-level APIs and Web-page-scraping Python tools. By the end of the chap-
ter, you will have created the initial datasets needed to complete the main
financial tasks and make an investment decision in this and future chapters.
You will also easily be able to apply basic and advanced Python tools to collect
data from various sources and transform it into valuable financial information.
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STRUCTURE

This chapter covers the following topics:

= Financial data world: Sources and valuation aspects

= Yahoo Finance to access financial market data

= Working with diverse files and formats in financial data analysis
= Open data sources and Python library for getting data

= Low-level APIs and Web scraping

OBJECTIVES

By the end of this chapter, you will have understood the foundational
concepts of financial data, as well as explored various open data sources
and investigated their role in finance. Your practical skills with Python will
be expanded through the use of real-world financial datasets to import and
structure information. You will have learned about the benefits of yfinance,
pandas_datareader, Quandl, and other Python libraries; CSV and Excel data
files; APIs; and Web-scraping tools. Therefore, you will be ready to analyze
financial data and make informed decisions using Python, setting a solid
foundation for later chapters.

FINANCIAL DATA WORLD: SOURCES AND
VALUATION ASPECTS

As we know from Chapter 1, Getting Started with Python for Finance, data
volumes continually increase alongside experience. Financial data, and sub-
sequently managerial information, is essential for the success of investment
operations. This is precisely why we will attempt to understand this issue
more. Refer to the diagram in Figure 3.1:
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FIGURE 3.1 The sources and types of financial data for supporting investment decisions

While many financial operations extend beyond financial markets, we will
focus primarily on the exchange markets. As depicted in Figure 3.1, the data
required for making investment decisions in the financial market can be cat-
egorized into quantitative information from financial institutions directly
related to trading outcomes; both quantitative and qualitative information
associated with financial markets; and fundamental financial indicators from
analytical results, news, etc.

From an institutional perspective, all sources of financial data are associ-
ated with the organizations that generate this data—exchanges, brokers, and
the like, as well as analytical aggregators and news providers such as Yahoo,
Google, BBC, and Federal Reserve Economic Data (FRED). Suppose our
investment operations are tied to activities on unique trading platforms or
broker services (such as the forex market or cryptocurrencies). In that case, it
is more appropriate to source data directly from the primary source. Financial
information from aggregator companies, however, also has its advantages: the
data is pre-processed, grouped, and statistically harmonized, and it allows
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for quick access through Python extension libraries. This aggregated data is,
however, less worthwhile for a short-term trading strategy (which will be dis-
cussed in Chapter 5, Investment and Trading Strategies).

Since most financial transactions occur in financial markets and related insti-
tutions, our primary focus will be this area. As illustrated in Figure 3.1, when
investing in well-known companies’ stocks (blue chips) listed on exchanges
such as the New York Stock Exchange and possibly other famous trading plat-
forms, we can confidently use data from aggregators such as Yahoo Finance.
For active trading on lesser-known or specialized exchanges, however, espe-
cially cryptocurrency exchanges or forex market brokers, it is essential to
monitor data directly from these institutions. Furthermore, for specific opera-
tions, such as arbitrage, it is crucial to continuously compare prices across
different exchanges simultaneously. Theoretically, there exists a single global
financial market (stock, currency, cryptocurrency, etc.), but an individual
investor interacts with a specific broker or trading platform (paying bills, plac-
ing orders, etc.). Therefore, a comprehensive raw dataset is required to form
a complete picture for investment decisions.

YAHOO FINANCE TO ACCESS FINANCIAL MARKET DATA

Yahoo Finance, a comprehensive financial news and data platform, has long
been a trusted source for investors, analysts, and researchers seeking market
insights, real-time stock quotes, and historical data for middle- and long-term
trading strategies. Yahoo Finance is a media property with a vast financial
data repository spanning various asset classes, including stocks, bonds, com-
modities, currencies, and cryptocurrencies. Go to the Yahoo Finance Web
site, https://finance.yahoo.com, and search for a stock ticker. A stock exchange
ticker is a short abbreviation that connects specific securities on a particu-
lar market. For example, the ticker TSLA is used for the stock of Tesla on
the New York Stock Exchange (well-known securities have the same tick-
ers on different exchange platforms). The result of the TSLA ticker search
is presented in Figure 3.2. This figure depicts the following groups of data:
summary information (the active view in Figure 3.2), chart, conversations, sta-
tistics, historical data (prices and volumes of security market), profile, finan-
cials, analysis, options, holders, and sustainability. Scrolling through the data
on the Web page will show information regarding the TSLA security. Let us
look at the data in the following figure more closely:
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FIGURE 3.2 Common search results for a security with the ticker TSLA on Yahoo Finance

Yahoo Finance offers APIs and allows users to fetch financial data. An API
is a set of rules and protocols that allows different software applications to
communicate with each other. In Yahoo Finance, the API provides a gateway
for users to retrieve financial data directly into their applications, scripts, or
analytical tools without manual data entry, a copy-paste operation, or Web
scraping. The Python library yfinance has been developed, which is based on
Yahoo Finance.

Let us explore how to retrieve stock data for Tesla, Inc. (TSLA) using the yfi-
nance library in Python and investigate its basic functionality.

1. import yfinance as yf
2. # Download TSLA stock data from Yahoo Finance

3. # for the specified date range and include
corporate actions

4, df = yf.download('TSLA",
5. start='2022-08-22",
6. end='2023-09-01",

7. actions=True)
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8. # Display the info and 5 top rows of the
DataFrame

9. print(df.info(),'\n")
10. print(df.head(),'\n")
11. # Display the 'Close' column of the DataFrame
12. print(df['Close'], '\n")

13. # Display the 'Open' and 'Close' columns for the
specified date range

14. print(df.loc['2023-08-25":'2023-09-05"', ['Open',
'Close']],"\n")

15. # Display rows where the 'Stock Splits' is
carried out

16. print(df[(df['Stock Splits'] > 0)1,"'\n")

The results of the code are:
[*********************loo%%**********************] 1 Of 1
completed

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 259 entries, 2022-08-22 to 2023-08-31

Data columns (total 8 columns) :

# Column Non-Null Count Dtype

0 Open 259 non-null floatoc4
1 High 259 non-null float64
2 Low 259 non-null float64
3 Close 259 non-null float64
4 Adj Close 259 non-null floato4
5 Volume 259 non-null int64

6 Dividends 259 non-null float6c4

7 Stock Splits 259 non-null floatoc4
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dtypes: float64(7), int64 (1)
memory usage: 18.2 KB
None
Open High Low Close Adj Close \
Date
2022-08-22 291.913330 292.399994 286.296661 289.913330 289.913330
2022-08-23 291.453339 298.826660 287.923340 296.453339 296.453339
2022-08-24 297.563324 303.646667 296.500000 297.096680 297.096680
2022-08-25 302.359985 302.959991 291.600006 296.070007 296.070007
2022-08-26 297.429993 302.000000 287.470001 288.089996 288.089996
Volume Dividends Stock Splits
Date
2022-08-22 55843200 0.0 0.0
2022-08-23 63984900 0.0 0.0
2022-08-24 57259800 0.0 0.0
2022-08-25 53230000 0.0 3.0
2022-08-26 57163900 0.0 0.0
Date
2022-08-22 289.913330
2022-08-23 296.453339
2022-08-24 297.096680
2022-08-25 296.070007
2022-08-26 288.089996
Name: Close, dtype: floaté64
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Open Close

Date

2023-08-25 231.309998 238.589996

2023-08-28 242.580002 238.820007

2023-08-29 238.580002 257.179993

2023-08-30 254.199997 256.899994

2023-08-31 255.979996 258.079987

Open High Low Close Adj Close \

Date

2022-08-25 302.359985 302.959991 291.600006 296.070007 296.070007

Volume Dividends Stock Splits

Date

2022-08-25 53230000 0.0 3.0

Aswe can see from the results of running the analytical code, the d £ DataFrame
has been generated with Tesla stock market data. The basic operations can be
described as follows:

The yf.download () function is used to get the stock data from Yahoo
Finance. We specify the date range using the start and end parameters.
The actions=True argument ensures that corporate actions such as div-
idends and stock splits are included in the data.

df.info () and df .head () are data-inspecting and overview functions.
They are applied to check the structure of the DataFrame and that the
data was imported correctly. For example, all data is imported in numeric
format, there is no missing data, and the table header has a one-line struc-
ture and an index column named Date.

As was shown in Chapter 2, Python Tools for Data Analysis: Primer to
pandas and NumPy, the .loc[] and .iloc[] methods and syntaxis
structures for slicing operations with pandas by column name and data
index value or range can be used.
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Dividends are payments a corporation makes to its shareholders, usually in
cash or additional shares. The Yahoo Finance data shows dividends in the
Dividends column. Stock splits are adjustments to the total number of availa-
ble shares of a publicly traded company. Stock splits are captured in the Stock
Splits column in the data. For example, in a 3-for-1 stock split (for TSLA on
Aug 25, 2022), 2 additional shares are granted for each share held by a share-
holder. Therefore, TSLA’s close price should be 891.29004 (297.096680%3),
but Yahoo's service adjusts all previous prices before being split to scale the
dataset.

Therefore, using the yfinance library function, investors and analysts can eas-
ily access and analyze financial data for middle- and long-term strategies.
Furthermore, the New York Stock Exchange data and other Exchange plat-
forms are updated almost on time.

The following analytical code works with financial data for three securities:
Apple (AAPL), Microsoft (MSFT), and Tesla (TSLA). Please run it and inves-
tigate the results:

1. # Download stock data for AAPL, MSFT, and TSLA
2. # for the past 2 years with a monthly interval

3. df = yf.download(tickers=['AAPL', 'MSFT',
"TSIA'],

4. period='2y', interval='lmo',

5o actions=False)

6. # Calculate and display the percentage change for
7. # the stock data and display the first 5 rows

8. print(df.sort index () .pct change () .head())

9. # Display the 'Close' and 'Open' columns for the
year 2022 for all securities

10. print(df.loc['2022', ['Close', 'Open']])

11. # Extract and display data specific to TSLA only
across all columns
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12. print(df.xs(key='TSLA', axis=1l, level=1l))

13. # Plot the percentage change of the 'Adj Close'
column for all stocks

14. df['Adj Close'].pct change() .plot(figsize=(10,5))

The results (truncated) of the code are:

[*********************100%%**********************] 3 Of 3 Completed
Adj Close Close
\
AAPL MSFT TSLA AAPL MSFT TSLA
Date
2021-11-01 NaN NaN NaN NaN NaN NaN

2021-12-01 0.075796 0.019194 -0.076855 0.074229 0.017333 -0.076855
2022-01-01 -0.015712 -0.075345 -0.113609 -0.015712 -0.075345 -0.113609
2022-02-01 -0.055269 -0.039199 -0.070768 -0.055270 -0.039199 -0.070768

2022-03-01 0.058821 0.033995 0.238009 0.057473 0.031862 0.238009

High Low \
AAPL MSFET TSLA AAPL MSFET TSLA
Date
2021-11-01 NaN NaN NaN NaN NaN NaN

2021-12-01 0.099155 -0.015357 -0.056816 0.069976 —-0.027944 —0.094502
2022-01-01 0.004447 -0.018298 0.029979 —-0.019645 -0.129866 -0.106205
2022-02-01 -0.034383 -0.067692 -0.215422 -0.017453 -0.016410 -0.116173
2022-03-01 0.016756 0.002634 0.176203 —-0.012500 -0.005598 0.080057
(co)

There are some things to note about the last code. As we can see, the

DataFrame has a two-line header structure for three securities. Therefore,
we use the .xs () method to extract data specific to TSLA. The key="TSLA"
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argument specifies the value for axis=1 (applied to the header; if axis=0,
to the row index) and 1evel=1 (apply the key argument value for the second
row of the header), which contains the stock tickers. The results of the AdS
Close column pct change (), visualized by the .plot () method with the
size adjusted with the figsize=(10,5) argument (more options for data
visualization will be presented in Chapter 4, Exploratory Data Analysis for
Finance), are shown in Figure 3.3:

0.4 4 Ticker
— AAPL
0.3 MSFT

— TSLA

0.2 1

0.1 1

0.0

—0.14

—-0.2

—0.3 1

—0.4 1 T T
Jul Oct Jan Apr Jul Oct Jan Apr
2023 2024
Date

FIGURE 3.3 Percentage change in monthly Adj Close prices for three securities

Figure 3.3 depicts a line chart showing each security’s price percentage change
over time. Therefore, applying the benefits of the yfinance and pandas librar-
ies can help with effortlessly analyzing and visualizing critical financial metrics
with just a few lines of code.

When analyzing securities, looking beyond the historical price data is often
beneficial. There are a lot of fundamental factors that contribute to under-
standing market trends. Yahoo Finance provides other historical data about
a company. This includes general legislative information, news articles, and
financial statements (see the tabs in Figure 3.2). Using the yfinance library in
Python, we can easily access and analyze this data as follows:
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1. # Initialize the Ticker object for TSLA
2. df tsla = yf.Ticker ("TSLA")

3. # Print general information about TSLA
4. print (df tsla.info)

5. # Retrieve and display recent news articles related
to TSLA

6. print (pd.DataFrame (df tsla.news))

7. # Fetch and display the balance sheet of TSLA

8. print (pd.DataFrame (df tsla.balance sheet))

The results (truncated) of the code are:

{'addressl': 'l Tesla Road', 'city': 'Austin', 'state':
'"TX', 'zip': '78725', 'country': 'United States',
'phone': '512 516 8177', 'website': 'https://www.
tesla.com', 'industry': 'Auto Manufacturers', 'indus-
tryKey': 'auto-manufacturers', 'industryDisp': 'Auto
Manufacturers', 'sector': 'Consumer Cyclical', 'sec-
torKey': 'consumer-cyclical', 'sectorDisp': 'Consumer
Cyclical',

(...)

title \

0 Elon Musk Wasn't A Superstar Genius Student As...
1 May Mobility is trying to solve self-driving —...
2 Tesla signs lease to open vast sales and servi...
3 Tesla Vs. BYD 2023: Tesla Rallies Despite Bad
(v.0)

2022-12-31 \
Ordinary Shares Number 3164000000.0
Share Issued 3164000000.0
(P
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Other Short Term Investments 5932000000.0

Cash And Cash Equivalents 22185000000.0

2021-12-31 \

Ordinary Shares Number 3099000000.0
Share Issued 3099000000.0
(oo0)

Other Short Term Investments 131000000.0
Cash And Cash Equivalents 17576000000.0

(..

.)

[78 rows x 4 columns]

In the preceding code, we initialize a Ticker object for Tesla (TSLA) using
yf.Ticker (). Then, we get information with the following attributes:

The .info attribute provides a dictionary of various details about the
company, such as its market cap, volume, and 52-week high/low.

The .news attribute fetches recent news articles related to TSLA, which
can be crucial for fundamental analysis.

The .balance sheet attribute gives us the company's balance sheet,
offering insights into its financial health by showing assets, liabilities, and
shareholder equity.

In addition to the indicators and variables in the example, the yf.Ticker ()
object allows us to obtain data on the following main attributes (the avail-
ability of these attributes must be checked individually since they may not be
available for certain types of assets):

financials: Provides an overview of the company's financial statements
sustainability: Provides sustainability values
options: Retrieves option expiry dates

The option chain () method: Provides option chain data for the speci-
fied expiry date
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m cashflow: Provides the cash flow statement

m earnings: Retrieves earnings data

= quarterly balance sheet: Fetches the quarterly balance sheet
= quarterly cashflow: Provides the quarterly cash flow statement
m quarterly earnings: Retrieves quarterly earnings data

= major holders: Gives information about major stakeholders

® institutional holders: Provides details about institutional holders

» mutualfund holders: Retrieves mutual fund holders' data

This is not a complete list of attributes and methods. Some of these attributes
may have already been changed or updated in the development process of the
yfinance module. The actual attributes can be found with the Python function
help (df _tsla). Using these attributes, however, investors can understand a

company comprehensively, aiding in more informed decision-making.

WORKING WITH DIVERSE FILE FORMATS

Individual investors and other professionals frequently use plenty of data files
in diverse formats. These files come from various sources. The pandas library
provides functions tailored for working with different file formats commonly
used in data analysis. Some of these functions for reading datasets include':

= Microsoft Excel files (. x1sx or .x1s): pd.read excel ()

m CSVfiles (.csv): pd.read csv ()

= JavaScript Object Notation (JSON) files (.json): pd.read json()
m Tables from HTML files (.html1): pd.read html ()

= Data from SQL databases: pd. read sql ()

m Statafiles (.dta): pd.read stata()

m  SAS files: pd.read sas ()

= Data from the clipboard, which is useful for quickly importing tables from

Web pages: pd.read_clipboard()

With these essential pandas functions, gathering and analyzing financial data
becomes a relatively easy process, as previously. We will go deeper with some

examples, focusing on the Microsoft Excel and CSV formats.

'For more information, see the official documentation: 10 tools (text, CSV, HDF5, ...): https://

pandas.pydata.org/docs/user_guide/io.html
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Excel Data File Format with pandas

Microsoft Excel is one of the most widely used tools in the financial world,
offering many instruments for analyzing and visualizing data. Its native file
formats, .x1s and .x1sx, are widely used for investment decisions and data
management. The pandas library provides a seamless way to interact with
Excel files, making integrating and collecting Excel data into more advanced
analytical workflows easier.

Let us explore how to read and write Excel files using Python:

10.
11,
12.
13.

14.
15.
16.

# Download stock data

df = yf.download(tickers=["'AAPL', 'msft',
"TSIA'],

period = '2y', interval = 'lmo')
# Save to Excel
df.to excel ('stocks.xlsx',
sheet name = 'StocksZylmo')

# Read from Excel with 'Date' as index and skip
the 3th row

df xlsx = pd.read excel('stocks.xlsx',

index col=0, header=[0,
1], skiprows=[2])

# Rename the index column to 'Date'
df xlsx.index.name = 'Date'
# Convert the 'Close' column to float32 data type

df TSLA xlsx['Close'] = df TSLA xlsx['Close'].
astype ('float32")

# Display info and table head
print (df xlsx.info())

print (df xlsx.head())
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The results (truncated) of the code are:

[*********************100%%**********************] 3 Of 3 completed
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 24 entries, 2021-11-01 to 2023-10-01

Data columns (total 18 columns) :

# Column Non-Null Count Dtype

0 (Adj Close, AAPL) 24 non-null floato64
1 (Adj Close, MSFT) 24 non-null float64
(...)

16 (Volume, MSFT) 24 non-null inte64
17 (Volume, TSLA) 24 non-null int64

dtypes: float64(15), int64(3)

memory usage: 3.6 KB

None
Adj Close Close
\
AAPL MSFET TSLA AAPL MSFEFT
Date

2021-11-01 163.409485 324.707336 381.586670 165.300003 330.589996
2021-12-01 175.795364 330.939758 352.260010 177.570007 336.320007
2022-01-01 173.033218 306.005127 312.239990 174.779999 310.980011
2022-02-01 163.469772 294.010162 290.143341 165.119995 298.790009
2022-03-01 173.085175 304.005157 359.200012 174.610001 308.309998

(...)

Please review this code and the resulting files carefully. Note that the column
data has mostly been imported from Excel correctly. There may, however, be
some missing data (this problem will be discussed in Chapter 4, Exploratory
Data Analysis for Finance). Problems may also arise with data with a header
extending beyond a one-line cell or merged cells. Also, for this example, the
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names of row indexes (date) are not restored correctly by default. Let us look
at the code in more detail:

= Saving data to Excel: Once the data is fetched, it can be saved to an Excel
file using the to excel () method of the DataFrame. The sheet name
parameter allows us to specify the sheet’s name where the data will be
stored. In our case, the data is saved to the sheet named ‘Stocks2y1mo’.

» Reading data from Excel: To read the data back into Python, we use
pd.read excel (). The index col parameter is set to 0, indicating
that the first column in the Excel file should be treated as the index of
the DataFrame. The header parameter is set to [0, 1], meaning the
first two Excel file rows are treated as multi-level column headers. The
skiprows parameter is also set to [2] to skip the third row when reading
the data.

= Renaming the index column: For clarity and ease of reference, the index
column is renamed to Date using the index.name attribute.

= Data type conversion: Although the results are good, we are converting
certain columns into a different data type to optimize memory usage.
This is usually important to ensure the precision of the financial data. The
Close column for TSLA is converted into the float32 data type using
the astype () method in the code (there is no need for this operation,
but has been done to show this functionality).

Python can easily save data from a DataFrame to an Excel file type. The
reverse process requires attention, especially with a complicated (multi-
level) DataFrame header. While Python provides efficient data in Excel for-
mat, remember to inspect data after each reading operation by applying the
.info () and .head () methods, at a minimum.

CSV Data File Format with pandas

The CSV format is one of the most common and versatile data storage for-
mats. It is a simple text file. Each row is one observation, and data for the col-
umns is often separated by dots (. ). This format is widely used for transferring
large amounts of structured data and is supported across leading platforms
and programming languages. In the financial world, CSV files are often used
to store and share large datasets, such as stock prices and trading volumes.

Let us describe how we can work with CSV files using pandas with the follow-
ing examples:
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10.
11.
12.
13.
14.

15,

le6.
17.
18.
19.

20.
21.

# Download stock data

df = yf.download(tickers=['AAPL', 'MSFT', 'TSLA'],
period = '2y', interval = '"lmo')

# Create l-row header

# Join the multi-level columns and rename the
columns

df.columns = [' '.join(col).strip() for col in
df.columns.values]

print (df.head())
# Save the data to a CSV file
df.to csv(path or buf = 'stocks.csv',

decimal = '.', sep=',', header=True)
# Save the data to a TSV file
df.to_csv(path or buf = 'stocks.tsv',

decimal = '.', sep='\t', header=True)

# Read stock data from a CSV file with specified
parameters

df csv = pd.read csv(filepath or buffer =
'stocks.csv',

index col = ['Date'],
parse_dates = True,
decimal = '.', sep = '," )

# Display the info and first 5 rows of the
dataframe

print (df csv.info())

print (df csv.head())
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The results (truncated) of the code are:

[*********************100%%**********************] 3 Of 3 completed

Adj Close AAPL Adj Close MSFT Adj Close TSLA Close AAPL \

Date

2021-11-01 163.409500 324.707336 381.586670 165.300003
2021-12-01 175.795364 330.939758 352.260010 177.570007
2022-01-01 173.033234 306.005157 312.239990 174.779999
2022-02-01 163.469772 294.010162 290.143341 165.119995
2022-03-01 173.085159 304.005157 359.200012 174.610001

(...)

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 24 entries, 2021-11-01 to 2023-10-01

Data columns (total 18 columns) :

# Column Non-Null Count Dtype

0 Adj Close AAPL 24 non-null float64
1 Adj Close MSFT 24 non-null float64
(..2)

16 Volume MSFT 24 non-null int64
17 Volume TSLA 24 non-null int64

dtypes: float64(15), int64(3)

memory usage: 3.6 KB

None

Adj Close AAPL Adj Close MSFT Adj Close TSLA Close AAPL \
Date
2021-11-01 163.409500 324.707336 381.586670 165.300003

2021-12-01 175.795364 330.939758 352.260010 177.570007
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NOTE

2022-01-01 173.033234 306.005157 312.239990 174.779999
2022-02-01 163.469772 294.010162 290.143341 165.119995
2022-03-01 173.085159 304.005157 359.200012 174.610001

(...)

Usually, importing data from the CSV format is relatively easy. The main
requirement of this format is that the table header should be represented by
one row of data. As our last example shows, however, complex headings and
indexes are common in financial data contexts.

Let us look at some basic notes on using the CSV format with pandas:

= Reorganizing columns before exporting to CSV: Multi-level columns
should be joined and renamed to make the column names compatible
with the CSV format. This step ensures the data has a single-level header,
but some data manipulation must be applied (see Chapter 2, Python Tools
for Data Analysis: Primer to Pandas and NumPy).

If we want to leave the original two-row header; we can utilize the header=[]
parameter with the pd.read_csv() and df.to_csv() functions. For instance,
pd.read_csv('stocks.csv', index_col=0, parse_dates=[0], header=[0, 1]) reads
the stocks.csv file, where the first column is designated as the index column
for row data with dates formatted accordingly. Additionally, the table header
comprises two rows: the first row for asset names and the second row for open,
high, low, close, and volume data.

= Saving data with the pd.to_csv() function: The DataFrame may be saved
as different variants of the CSV format depending on the decimal and
sep parameters defined. For TSV format, the separator is the tab symbol.
For CSV2 format, the separator is ; and the decimal part is separated by, .
In the example, two different files are generated: a CSV file (stocks.csv)
and a tab-separated values (TSV) file (stocks. tsv).

= Reading data from CSV to a DataFrame: The data is read into a
DataFrame using pd. read csv (). The index col parameter specifies
that the Date column should be treated as the index. The parse dates
parameter ensures that the Date column is parsed as a date. As men-
tioned earlier, the decimal and sep parameters define the decimal point
and separator, respectively, used in the various types of CSV files.
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Remember that all DataFrame methods for saving the data (such as df.to_
excel() and dfto_csv()) replace all existing files in the same location without
additional confirmation. If we execute code with an export-to-file DataFrame
method, the old version of the file with the same name is lost forever.

The CSV format is limited in its requirements, which makes it more interop-
erable than, for example, the ever-changing and powerful Excel file data for-
mat. Therefore, many open data resources offer it for information exchange.
If you have a choice of which format to store your row data for analysis, you
should choose CSV.

In addition to obtaining data from a disk (local file system), pandas functions
will allow you to fetch data within the framework of standard network pro-
tocols. We can specify the full path to the file name in the usual pd.read
csv () function, and it will be possible to access network resources. Let us
look at an example:

1. # Read TSLA stock data from Yahoo Finance URL
into a DataFrame

2. # The latest URL can be found on ynance.yahoo.com
site (Historical data View)

3. url = 'https://queryl.finance.yahoo.com/v7/
finance/download/TSLA?periodl=1609459200&period2=
1917216000&interval=1d&events=historyé&
includeAdjustedClose=true'

4. df url = pd.read csv(url, parse dates = True,
index col=['Date'])

6. # Display the info of the DataFrame

7. print(df url.info())

9. # Display the first 5 rows of the DataFrame
10. print(df url.head())
11.

12. # Save the DataFrame to a CSV file

13. df url.to csv('TSLA.csv')
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NOTE

The results (truncated) of the code are:

<class 'pandas.core.frame.DataFrame'>

DatetimeInde
Data columns

# Column

0 Open

Date

2021-01-04
2021-01-05
2021-01-06
2021-01-07
2021-01-08

(...)

X:

695 entries,

2021-01-04 to 2023-10-06

(total 6 columns) :

239.

241

252.

259

285

695 non-null

Open

820007

.220001

830002

.209991

.333344

Non-Null Count

248.

246.

258.

272.

Dtype
float64
High

163330 239.
946671 239
000000 249.
329987 258.
.829987 279.

Low

063339

.733337

699997

399994

463318

243

245.

251.

272.

293

Close

.256668

036667

993332

013336

.339996

Adj Close

243

245.

251.

272.

293

.256668

036667

993332

013336

.339996

\

Fetching data from the Internet can be done with pd. read csv () by defin-

ing a URL as a file name parameter. The URL to the historical data of TSLA

on Yahoo Finance can be found on the official Web site (refer to Figure 3.2).

Right-click with the mouse on the Download button on the Historical Data
tab and select the copy link. Other arguments have the same meanings as for

local files.

There are often Input/Output (I/O) errors when carrying out file operations.
These errors can be attributed to invalid file paths or URLSs, no permissions to

read a file, network connectivity issues, file format discrepancies, corrupted

files, etc. Handling these errors gracefully ensures smooth data processing,
typically using try-except blocks.
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OPEN DATA SOURCES AND PYTHON LIBRARY FOR
GETTING DATA

There are a lot of institutions and data resources (see Figure 3.1) for generat-
ing and delivering data to individual investors and financial professionals. As
we noted earlier, an API is a set of protocols and tools that allows different
software applications to communicate with each other. The best example of
using the benefits of an AP and Python is Yahoo Finance, but it is not the only
one. A comparison of popular open-source libraries and APIs for finance data
analysis is presented in Table 3.1:

TABLE 3.1 Top open-source APls and Python libraries for fetching financial data

Name/site

Python library

Data types

Paid content

Yahoo Finance

finance.yahoo.com

ylinance

Provides financial
market data

Yes, for premium
features

Quandl

data.nasdag.com

quandl, pandas_
datareader

A platform for
financial, economic,
and alternative data

Yes, for premium
datasets

FRED
fred.stlouisfed.org

pandas_datareader

Federal Reserve
Economic Data

No

Alpha Vantage

www.alphavantage.co

alpha_vantage, pandas_
datareader

Provides stocks, forex,
and cryptocurrency
data

Yes, for premium
access

www.tiingo.com

datareader

data, news, and analysis

Fama/French famafrench, pandas_ Data library maintained | No
https://bit.ly/46xBts0 datareader by Professors Fama and

; French
Tiingo tiingo, pandas_ Provides stock market | Yes, for premium

access

1EX Cloud

www.iexcloud.io

iexfinance, pandas_
datareader

Provides real-time
historical stock and
market data

Yes, for premium
access

Table 3.1 provides an overview of some data resources, but there are alot more.
As we can see, Yahoo Finance and Quandl are comprehensive platforms offer-
ing a wide range of financial market data. FRED and Fama/French are fully
free resources. FRED focuses on official economic data, mainly for the USA
but also globally. Fama/French, maintained by Professors Fama and French,
provides academic-oriented financial data. Alpha Vantage, Tiingo, and IEX
Cloud are versatile platforms offering various types of financial data, includ-
ing stocks, forex, and cryptocurrency in the case of Alpha Vantage. These
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platforms require an API ID for access and offer premium features for a fee
(the API ID can usually be obtained after registering on the platform).

The Python community and the developers have created a lot of libraries for
easy data access. Quandl, like Yahoo Finance, also uses its library for Python
but can be used by the universal pandas_datareader. This universal module
provides an interface for data access for various financial data resources (see
Table 3.1). pandas_datareader is, however, a dynamic project and constantly
changes. Thus, some functions may become deprecated or unsupported
over time. Always check that your code is compatible with the latest ver-
sion on the official site (https://pandas-datareader.readthedocs.io/en/latest/).
Furthermore, the APIs update their endpoints or require specific authentica-
tion methods. Therefore, using the native library for each resource is often
recommended for more stable and feature-rich data retrieval.

After installing all the required packages (see Chapter 1, Getting Started with
Python for Finance), you can import them into your Python script or notebook
and start fetching financial data.

1. # Importing libraries

2. import gquandl

3. import pandas_ datareader as pdr

4. # Set API Key

5. quandl.ApiConfig.api key = 'Your API key'

This code example imports two Python libraries, Quandl and pandas_datar-
eader, and defines an API key for further requests using quandl.ApiConfig.
api key. An API key is a unique identifier to authenticate a user, application,
or service requesting an API. It is mainly used for paid content. Be careful, as
the API key gives access to important resources on your profile and even the
wallet. Take care of it as you would your credit card details. For the Quandl
API, we can obtain the private key by registering on the Web site. Once you
have the key, replace Your API key in the code with the key to authenticate
the requests.

Let us look at a few examples:

NOTE It is better to use the official site on the Internet to obtain the feature or dataset
names for the resources considered. For example, the Quandl official search
site is https://data.nasdaq.com/search. Here, you can select the required data
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source. After selecting a dataset (feature, ticker, etc.), a hint is usually pro-
vided on how to use native libraries for data fetching with Python

(https://data.nasdaq.com/data/HKEX-hong-kong  exchange/usage/quickstart/
python).

= Apply Quandl library functions to fetch data from the Hong Kong Stock
Exchange:

1. # Get Data from the Hong Kong Exchange
2. # Lenovo Group (Ticker 00992)

3. # Stock Prices for Lenovo Group from the Hong
Kong Stock Exchange. Currency: HKD

4. # https://data.nasdaq.com/data/
HRKEX/00992-1enovo-group-00992

5. data = quandl.get ('HKEX/00992"',
start date='2022-08-01",

6. end date='2023-10-10")

8. # Inspect and display Data

9. print(data.info())

10. print(data.head())

The results (truncated) of the code are:

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 292 entries, 2022-08-01 to 2023-10-06
Data columns (total 12 columns):

# Column Non-Null Count Dtype

0 Nominal Price 292 non-null float64

1 Net Change 0 non-null object
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2 Change (%) 0 non-null object
3 Bid 292 non-null float64
4 Ask 292 non-null float64
5 P/E (x) 0 non-null object
6 High 292 non-null float64
7 Low 292 non-null float64
8 Previous Close 292 non-null floatoc4
9 Share Volume (000) 292 non-null floato4d
10 Turnover (000) 292 non-null float64d
11 Lot Size 0 non-null object
dtypes: float64(8), object (4)
memory usage: 29.7+ KB
None
Nominal Price Net Change Change (%) Bid
Date
2022-08-01 7.15 None None 7.14
2022-08-02 7.03 None None 7.03
2022-08-03 6.90 None None 6.89
2022-08-04 6.97 None None 6.97
2022-08-05 7.15 None None 7.15
Low Previous Close Share Volume (000)
Size
Date
2022-08-01 7.14 7.29 41330.0
None
2022-08-02 7.00 7.15 31005.0
None
2022-08-03 6.86 7.03 36637.0
None
2022-08-04 6.91 6.90 29833.0
None
2022-08-05 7.00 6.97 22385.0

None

Ask P/E(x)

6.90

Turnover

None

None

None

None

None

297007.

218483.

255281.

207655.

159985.

(000)

High \

.39

.21

.14

.05

.19

Lot
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= Apply Quandl library functions to fetch data from the Bombay Stock

Exchange:
1. # Get Data from the Bombay Stock Exchange
2. # INFOSYS LTD. EOD Prices (Ticker BOM500209)
3. # End of Day (EOD) prices and additional trading
information for INFOSYS LTD.
4. # https://data.nasdaq.com/data/BSE/BOM500209-
infosys-1ltd-eod-prices
5. data = quandl.get ('BSE/BOM500209',
start date='2022-08-01",
6. end date='2023-10-10")
7.
8. # Inspect and display Data
9. print(data.info())
10. print(data.head())

The results (truncated) of the code are:

<class

'pandas.core.frame.DataFrame'>

DatetimeIndex: 270 entries, 2022-08-01 to 2023-09-01

Data columns (total 12 columns) :

# Column Non-Null Count Dtype

0 Open 270 non-null float64
1 High 270 non-null float64d
2 Low 270 non-null float64
3 Close 270 non-null float64d
4 WAP 270 non-null float64
5 No. of Shares 270 non-null floatoc4
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6 No. of

7 Total Turnover

Trades

8 Deliverable Quantity

9 % Deli.
10 Spread

11 Spread

Qty to Traded Qty

H-L

Cc-0

dtypes: float64(12)

memory usage: 27.4

None

Date

2022-08-01

2022-08-02

2022-08-03

2022-08-04

2022-08-05

Date

2022-08-01

2022-08-02

2022-08-03

2022-08-04

2022-08-05

Date

2022-08-01

2022-08-02

2022-08-03

2022-08-04

2022-08-05

Open

1570.0
1549.0
1544.0
1583.0

1610.0

KB

Hi

1570.

1549.

1570.

1603

1625.

Trade

5411.

5527.

7416.

10165.

% Deli.

7627.

oty

gh

0 1537

0 1540

.7 1574.

s Total

0 1528.

6 1603.

270

270

269

269

270

270

Low

.70

65

.30

90

65

non-null

non-null

non-null

non-null

non-null

non-null

Close

1550.

1542.

1565.

1599.

1616

Turnover

0 7.166106e+09

0 1.183617e+08

0 2.212807e+08

0 3.674447e+08

0 1.767698e+08

to Traded Qty

99.

41

49

31.

47

11

.29

.31

91

.25

60

90

15

65

.55

fl

fl

fl

fl

fl

fl

1549

1536

1558

1592.

1616.

oat64

oat64

oat64

oat64

oat64

oat64

WAP No.

.71

.35

.72

16

06

of Shares

4624163.0

77041.0

141963.0

230784.0

109383.0

Deliverable Quantity \

Spread H-L

32

20

29

28.

21.

.30

.35

.70

80

95

4583058.0

31812.0

69999.0

73643.0

51686.0

Spread C-0O

-19

21.

16.

.40

.10

15

65

.55
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= Apply the pandas_datareader library functions for different sources:

10.
11.
12.
13.

14.

15.
le6.
17.
18.
19,

20.
21.

import pandas_ datareader as pdr

# Fetching data from FRED (Federal Reserve
Economic Data)

# 10-Year Treasury Constant Maturity Minus 2-Year
Treasury Constant Maturity

# More details: https://fred.stlouisfed.org/tags/
series

data tlO0y2y = pdr.get data fred('T10Y2Y')

print ("10-Year Treasury Constant Maturity Minus
2-Year Treasury Constant Maturity:\n",

data t1l0y2y.head(), "\n")
# Federal Funds Effective Rate

# More details: https://fred.stlouisfed.org/
series/FEDFUNDS

data fedfunds = pdr.get data fred('FEDFUNDS'")
print ("Federal Funds Effective Rate:\n",

data_ fedfunds.head(), "\n")
# Fetching data using Alpha Vantage API source

# More details: https://www.alphavantage.co/
documentation/

start date = '2022-08-22"
data _av_tsla = pdr.get data alphavantage ("TSLA",
api_key='YourAPIl',
start=start date)

print (f"TSLA data from Alpha Vantage starting
from: \n",

data av_tsla.head(), "\n")

# Using pandas datareader.data to fetch data
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22.
23.
24.

25.
26.
27.

28.
29

30.

31.

32.
33.

34.
35,

import pandas_datareader.data as web

# Fetching daily data for TSLA from Alpha Vantage

data web av_tsla web.DataReader ("TSLA",

"av-daily",
api_key='ABC1l23',
start=start date)

print (f"Daily data for TSLA from Alpha Vantage
starting from:\n",

data web av_tsla[0:5], "\n")

# Fetching 5 Industry Portfolios data from Ken
French's Data Library

# More details: https://mba.tuck.dartmouth.edu/
pages/faculty/ken. french/data library.html

data industry = web.
DataReader ('S5 Industry Portfolios',

'famafrench')

print ("5 Industry Portfolios data from Ken
French's Data Library")

for k in data industry.keys():

print (data industry([k][0:5])

The results (truncated) of the code are:

10-Year Treasury Constant Maturity Minus 2-Year Treasury
Constant Maturity:

DATE

T10Y2Y

2018-10-09 0.33

2018-10-10 0.34

2018-10-11 0.29



FINANCIAL DATA MANIPULATION WITH PyTHON © 127

2018-10-12 0.30

2018-10-15 0.31

Federal Funds Effective Rate:

FEDFUNDS
DATE
2018-11-01 2.20
2018-12-01 2.27
2019-01-01 2.40
2019-02-01 2.40
2019-03-01 2.41

TSLA data from Alpha Vantage starting from:

open high low close volume
2022-08-22 875.74 877.2000 858.89 869.74 18614449
2022-08-23 874.36 896.4799 863.77 889.36 21328348
2022-08-24 892.69 910.9400 889.50 891.29 19086572
2022-08-25 302.36 302.9600 291.60 296.07 52827378

2022-08-26 297.43 302.0000 287.47 288.09 57163947

Daily data for TSLA from Alpha Vantage starting from:
open high low close volume
2022-08-22 875.74 877.2000 858.89 869.74 18614449
2022-08-23 874.36 896.4799 863.77 889.36 21328348
2022-08-24 892.69 910.9400 889.50 891.29 19086572
2022-08-25 302.36 302.9600 291.60 296.07 52827378
2022-08-26 297.43 302.0000 287.47 288.09 57163947
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5 Industry Portfolios data from Ken French's Data Library:
Cnsmr Manuf HiTec Hlth Other
Date
2018-10 -6.01 -8.65 -7.62 -8.79 -6.74
2018-11 2.08 2.47 -0.93 6.42 2.81
2018-12 -9.88 -9.06 -8.23 -8.25 -10.94
2019-01 8.10 8.96 8.70 5.32 9.80
2019-02 1.09 4.16 5.39 3.30 2.96
Cnsmr Manuf HiTec Hlth Other
Date
2018-10 -8.36 -11.62 -10.16 -14.50 -8.26
2018-11 -1.25 -1.91 0.59 -0.45 0.70
2018-12 -12.94 -14.08 -10.11 -18.41 -11.25
2019-01 12.25 14.16 15.41 18.35 11.05
2019-02 4.24 4.21 6.44 6.55 4.85
Cnsmr Manuf HiTec Hlth Other
Date
2018 -3.55 -11.27 -0.50 4.69 -10.12
2019 25.88 21.03 42.10 20.28 30.65
2020 37.95 -0.07 41.80 18.71 7.20
2021 20.64 27.35 26.68 13.72 27.45
2022 -25.12 5.40 -31.89 -5.68 -12.77
Cnsmr Manuf HiTec Hlth Other
Date
2018 -14.25 -22.04 -6.61 -22.48 -13.64
2019 17.47 12.04 27.65 25.96 26.37
2020 42.78 18.60 66.13 63.63 12.54
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2021 36.13 42.26 17.92 -10.98 32.33
2022 -29.23 -3.68 -38.34 -42.11 -18.58

Cnsmr Manuf HiTec Hlth Other

Date

2018-10 499 599 658 635 1036
2018-11 496 593 655 631 1030
2018-12 493 591 647 628 1026
2019-01 491 589 642 626 1019
2019-02 491 585 634 624 1016

Cnsmr Manuf HiTec Hlth Other

Date

2018-10 9687.81 8603.35 13837.58 4814.64 7131.81
2018-11 9153.51 7871.26 12796.78 4407.25 6612.71
2018-12 9271.66 8059.38 12778.06 4699.31 6804.94
2019-01 8366.99 7330.71 11795.42 4314.54 6087.78
2019-02 9038.11 8013.78 12948.30 4535.67 6689.74
Cnsmr Manuf HiTec Hlth Other
Date
2018 0.22 0.39 0.22 0.19 0.49
2019 0.22 0.41 0.21 0.19 0.50
2020 0.22 0.48 0.19 0.18 0.61
2021 0.16 0.32 0.14 0.16 0.42
2022 0.21 0.36 0.20 0.22 0.53
Cnsmr Manuf HiTec Hlth Other
Date
2018 0.22 0.39 0.23 0.20 0.47
2019 0.24 0.45 0.26 0.21 0.56
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2020 0.20 0.36 0.19 0.19 0.45
2021 0.19 0.41 0.16 0.17 0.52
2022 0.17 0.37 0.15 0.19 0.43

5 Ind

The code samples demonstrate fetching financial data using different librar-
ies and sources. The first and second examples use Quandl to fetch stock
data from the Hong Kong and Bombay Stock Exchanges. The data structures
returned reflect the unique financial metrics provided by each exchange. In
order to interpret the output, you need to read up on these metrics on the
respective resource Web sites.

The third example uses pandas_datareader (pdr) to fetch data from multiple
sources, such as FRED, Alpha Vantage, and Ken French’s data source. We
can use the pandas_datareader and pandas_datareader.data variants
to fetch data for compatibility with previous code and receive different data
types. The pandas_datareader tools return data in the DataFrame structure,
which is more useful for further research. The library is a universal tool but
may offer specialized features and options different from those of a dedicated
library such as Quandl. The data fetched using pdr also highly varies in struc-
ture, depending on the source.

LOW-LEVEL APIS AND WEB SCRAPING

Low-level APIs are ones that provide the most detailed level of functional-
ity. They are closer to the system hardware, allowing for detailed customiza-
tion and control, but often require more code and a deeper understanding of
the system to use effectively. Not all financial institutions, however, have an
interface through pandas_datareader or native Python modules. Therefore,
we must understand how to operate with low-level APIs and use common-use
Python libraries, such as request, Beautiful Soup, and pandas (read json or
read_html).

Binance Cryptocurrency Exchange Example

Binance is one of the world’s leading cryptocurrency exchanges, and it offers
a low-level API for users who want to have granular control over their trading
strategies and data analysis. To interact with Binance’s low-level API, we can
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use a programming-specialized Python library such as python-binance. This
library does, however, have some errors and does not fully support some ver-
sions of Anaconda. The Binance API allows you to access real-time open and
private market data, make trade operations, and manage your account.

Be careful with the Binance API key and ID. They are tools to open your
account in Binance and give access to your money.

The Binance API is a good example of a low-level API because it provides
detailed trading and data retrieval functions with detailed API documenta-
tion. To get started, familiarize yourself with the official Binance API docu-
mentation, which you can access at https://www.binance.com/en/binance-api.
For the following examples, we will focus on the spot market, as detailed in
the spot market API change log: https://binance-docs.github.iolapidocs/spot/
en/#tchange-log.

The core steps of using low-level APIs with Binance are:

1. Get API endpoints: Binance offers five URLs to access the API. The pri-
mary one is https://api.binance.com.

2. Investigate API commands: The API documentation provides essential
commands (requests) to retrieve data with specific options. In our exam-
ple, we will use the klines request to obtain price and trading volume
data for the ETHBTC currency pair.

3. Generate a request string: The request string is formed by combining the
server address and the parameters of a specific request.

4. Execute the request: The request is then executed using basic pandas
tools.

5. Manipulate the request results data: The received result is usually in the
JSON data format. Analyzing the results and transforming the data into a
more convenient DataFrame format is crucial.

It is important to note that working with low-level APIs can often lead to
various types of errors. This can happen because there might be no network
connection, the server may not resp(md, etc. For instance, Binance API
requests are not executed by Google Colab virtual machines. So, the example
provided here should be run from a local machine, and you must be vigilant
for potential errors.
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Here is a simple example:

1. # https://binance-docs.github.io/apidocs/spot/
en/#kline-candlestick-data

2. # Kline/candlestick bars for a symbol.

3. # Klines are uniquely identified by their open
time.

Parameters:
Name Type Mandatory Description

symbol STRING YES

startTime LONG NO
endTime LONG NO

10.

#
#
#
7. # interval ENUM YES
#
#
# limit INT NO Default 500; max 1000.
#

11. Request: https://api.binance.com/api/v3/

klines?interval=1d&limit=1000&symbol=<TICKER>

12.

13. url = 'https://api.binance.com/api/vl/
klines?symbol=ETHBTC&interval=1d'

14. df = pd.read json(url)

15. # Response:

16. #/[

17. # [

18. # 1499040000000, // Kline open time
19. # "0.01634790", // Open price

20. # "0.80000000", // High price

21. # "0.01575800", // Low price

22. # "0.01577100", // Close price

23. # "148976.11427815", // Volume

24, # 1499644799999, // Kline Close time
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25. # "2434.19055334", // Quote asset volume

26. # 308, // Number of trades

27. # "1756.87402397", // Taker buy base asset
volume

28. # "28.46694368", // Taker buy quote asset
volume

29. # "o // Unused field, ignore.

30. # ]

31. #]

32.

33. df.columns = ['date', 'open', 'high','low', 'close',
'volume',

34. 'close time', 'quote asset volume',

35. 'number of trades', 'taker buy base
asset volume',

36. 'Taker buy quote asset
volume', "unused']

37. df['date'] = pd.to datetime(df['date'], unit =
lmSl)

38. df.set index('date',inplace=True)

39. print("Historical Candlestick Data (Last 5 Days):")

40. print (df.head())

The results (truncated) of the code are:

Historical Candlestick Data (Last 5 Days):

open high low close volume \
date
2022-05-27 0.061373 0.062325 0.059793 0.060334 246573.4627
2022-05-28 0.060334 0.062217 0.060159 0.061731 146078.3526

2022-05-29 0.061732 0.061962 0.061057 0.061541 90799.2918
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2022-05-30

2022-05-31

date

2022-05-27

2022-05-28

2022-05-29

2022-05-30

2022-05-31

0.061541 0.0

0.062991 0.0

close time

1653695999999

1653782399999

1653868799999

1653955199999

1654041599999

63098

63269

0.06

0.06

1441 0.062991 149815.4541

0960 0.061062 157633.8933

quote asset volume

150

89

55

93

97

taker buy base asset volume

date

2022-05-27

2022-05-28

2022-05-29

2022-05-30

2022-05-31

123540.

75939.

44098.

76939.

78826.

9160

0545

4113

3055

1248

24.382970

53.503337

89.875179

29.637854

62.035058

Taker buy quote asset volume

number of trades

298316

139847

96868

178438

215453

7529.397715

4654.556964

2715.291780

4791.201970

4880.643684

unused

The code uses Python’s pandas library to read JSON data with a generated
request URL string. The URL contains query parameters such as symbol
and interval to specify the trading pair and time frame. The fetched data
includes the main fields for the OHLC data model. These fields are then
renamed with names from the API documentation, and the date is converted
into a readable format. Finally, the data is set to be indexed by the date.

The program code accompanying this book contains another example of this
request based on the request library. This is a universal library for all GET
requests in Python and can be used with various API options.

Web Scraping and the Beautiful Soup Python Library

While APIs are a clean and efficient way to retrieve data, not all Web sites or
platforms offer an API. In such cases, data or Web scraping becomes a viable
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option. Beautiful Soup is a Python library that uses a relatively easy way of
Web scraping to pull the data out of HTML and XML files. It creates a parse
tree from page source code that can extract data in a hierarchical and more
readable manner. Let us look at an example:

1. import requests
2. from bs4 import BeautifulSoup

3. url = "https://finance.yahoo.com/quote/TSLA/
history?p=TSLA"

4. headers = {"User-Agent": "Mozilla/5.0"}
5. response = requests.get(url, headers=headers)

6. soup = BeautifulSoup (response.content, 'html.
parser')

7. # Find the historical data table

8. table = soup.find('table')

9. rows table.find all('tr'")

10. data = 1list()

11. for row in rows[l:]: # Skip the header row

12. columns = row.find all('td")

13. if len(columns) == 7: # Skip divedents and
splits

14. row data = {'Date': columns[0].text,

15. '"Open':columns([1l].text,

l6. 'Close':columns[4].text,

17. 'Volumes': columns[6].text}

18. data.append (row_data)

19. print (pd.DataFrame (data))
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NOTE

The results (truncated) of the code are:

Date Open Close Volumes
0 Oct 06, 2023 253.98 260.53 117,947,000
1 Oct 05, 2023 260.00 260.05 119,159,200
2 Oct 04, 2023 248.14 261.16 129,721,600
3 Oct 03, 2023 248.61 246.53 101,985,300
4 Oct 02, 2023 244.81 251.60 123,810,400

This code opens the Yahoo Finance Web page on the Historical Data tab (see
Figure 3.2) and finds the table with TSLA security data. The results will be
the same as if we used yf.download ().

Unfortunately, Web scraping is a volatile method. Success can depend on
many factors, from the selected request headers parameter to changing the site
structure. Therefore, if you cannot execute this example successfully, some-
thing has changed since this book was written on the official Yahoo Finance

page.
Thus, although low-level APIs and Web scraping are challenging program-

ming procedures, they are better than copy-paste in complex data analysis
situations.

CONCLUSION

This chapter has explored the fundamental principles underlying the global
world of financial data. We began by outlining the various sources and types
of financial data crucial for making informed investment decisions. Then, we
emphasized that data sources and their value are contingent upon the strategy
chosen for their utilization. For long-term conservative strategies, publicly
available data with short time frames may suffice. If you trade within a single
day or even an hour, however, access to data from specific trading platforms
becomes indispensable. It is also important to remember that financial mar-
kets incorporate various information. Therefore, news can also be considered
a source of financial data for making investment decisions.
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Yahoo Finance is one of the most prominent, but not the only, financial data
providers. The advantages of using this service are manifold. Not only does
it offer trading performance metrics, but it also provides fundamental indica-
tors that are crucial for comprehensive financial analysis. The highly func-
tional Python library yfinance facilitates quick and relatively straightforward
access to vast global financial market data. By leveraging the capabilities of
this library, users can efficiently gather the information they need for a wide
range of investment strategies and financial research.

The financial sector is undergoing rapid development, leading to an increase
in various providers and suppliers of financial data and managerial infor-
mation. We have explored the top primary open-source links and APIs for
financial data analysis. The list of institutions that generate and collect data,
however, is continually growing, and existing ones are expanding their func-
tionalities through new data and services. The Python tools and libraries
described can, however, reduce routine tasks, allowing investors to focus on
generating profits.

The last section of this chapter presented critical examples for downloading
real-world financial data and basic operations for manipulating it. Specifically,
we discussed working with file formats such as CSV and XLS, interfacing
with online resources via APIs and HTML, and Web scraping fundamentals.
Having mastered these methods, investors and analysts can create a custom
solution for data collection tasks of any complexity.

QUESTIONS

1. What are the primary sources of financial data?

g

How does the valuation aspect of financial data vary depending on the
investment strategy?

What data inspection functions in pandas do you know?
What are the advantages of Yahoo Finance as a financial data provider?

What is the purpose of the Python library yfinance?

o 0 W

What file formats are commonly used for storing financial data, and how
can they be manipulated using pandas?

7. What is a low-level API, and what problems could we have with it when
importing data?
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8. What is Web scraping, and how is the Beautiful Soup Python library used?
9. What are the critical parameters for fetching k1ine/candlestick data from
Binance?
10. What are some open-source links and APIs for financial data analysis?
11. How can financial market news be considered a source of financial data
for investment decisions?
12. What are the fundamental operations for manipulating real-world finan-
cial data?
KEY TERMS

Data is usually understood as raw, unorganized facts and figures collected
from various sources for analysis, computation, interpretation, or other
purposes. Data may seem random and meaningless in its raw form, but
once processed and interpreted, it gains context and becomes useful
information.

Financial information often refers to processed data used to make
informed decisions—investments, for example. The information is usu-
ally derived from raw financial data, such as stock prices, market volumes,
returns and rate of returns, risk estimation, and other financial metrics.

Financial instruments are assets that can be traded or used for invest-
ment purposes. They represent a legal agreement that may hold mon-
etary value, including the potential for price fluctuations, and can carry
out other financial benefits.

Stocks, also known as shares or equities, are financial instruments that
confirm the right to a part (share) of a company’s property, including the
potential to receive profits in the form of dividends or equity growth.
Securities are financial instruments in the broader sense that encompass
arange of tradable assets, including stocks, bonds, and derivatives, as well
as many others. Securities can produce income through interests, divi-
dends, capital gains, and so on.

Open data sources are publicly available datasets that anyone can freely
use, modify, and share. This source offers not only free access but also
easy access to well-structured data.
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= An API is a set of rules and protocols that enable different applications to
communicate using the same language. In the finance industry, APIs are
used to retrieve data, access real-time information, and even automate
trading processes.
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CHAPTER

ExPLORATORY DATA ANALYSIS
FOR FINANCE

INTRODUCTION

This chapter describes the tools and patterns of exploratory data analysis
(EDA) for the financial sector. We start by discussing extract, transform,
and load (ETL) data processes, focusing on inspecting and clearing datasets,
transforming formats, etc. Here, we will detail mathematical and other trans-
formations, such as the rate of return (RoR), that are essential for financial
data preparation. After that, we will learn how to handle missing data, dupli-
cates, and errors. Then, we will move on to the basics of EDA, where we
will get hands-on experience with data visualization. We will introduce you to
basic descriptive statistics metrics and three fundamental statistical graphics
using the Matplotlib and Seaborn libraries. Data windows and moving aver-
ages (MAs) will be described. They offer a crucial understanding of financial
data trends. We will also delve into investment risk statistics with descriptive
and correlation analytical tools. This gives us the ability to prepare and make
informed investment decisions.

After finishing this chapter, you will have a robust understanding of EDA in
finance and be well equipped with Python’s financial data manipulation and
analysis capabilities.
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STRUCTURE

This chapter covers the following topics:

= Basic patterns in ETL financial data processes

= Exploring the basics of EDA for financial analysis

= Data visualization with the Matplotlib and Seaborn libraries
s Data windows and MA estimations

= Essentials of statistics and correlation analysis

OBJECTIVES

By the end of this chapter, you will have the essential skills to perform EDA
for finance. You will have mastered data transforming processes and learned
patterns to inspect and clean financial data, including related mathematical
operations. Your toolkit will have expanded to include Python functions for
handling missing data and data errors. You will have gained hands-on experi-
ence in data visualization using Matplotlib and Seaborn, as well as understood
the descriptive statistics metrics and MA data to determine financial trends.
Additionally, you will have explored investment risk statistics, applying the
tools for descriptive, visual, and correlation analysis. This skill set will enable
you to make informed, data-driven investment decisions and prepare you for
the typical analytical stages.

BASIC PATTERNS FOR PROCESSING RAW FINANCIAL DATA

A practical financial data analysis should be based on clear and accurate infor-
mation. For example, shares of different companies or various investment
assets can differ widely, be evaluated in other currencies, etc. The information
becomes distorted if equivalent statistical methods are applied to such data.
As described in the previous chapters, Python has many tools for getting, col-
lecting, and transforming data.

A crucial aspect of preparing data for analysis or converting it into managerial
information is using ETL tools, which we discussed in the first three chap-
ters. The good news is that most of the steps involved in preparing raw data
for further analysis can be standardized. Well-defined operations and data
processing patterns exist based on the ETL and EDA methodologies. For
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data obtained from stock or similar financial exchanges, the data processing
patterns are as follows:

= Import files: Read all flat files from a folder or Web-based data into sepa-
rate DataFrames, which takes care of I/O errors and so on.

»  Create, merge, or join DataFrames: Organize the dataset structure, merge
and combine table actions, and process OHLC data for each ticker.

m  Sort time-series data: Ensure the DateTime index is sorted for all
DataFrames.

= Inspect dataset: Perform initial data inspection for structure and quality.

= Handle NaNs and duplicates and find errors: Drop duplicate rows and
fill in missing values. For example, if stock market data for Sundays and
Mondays is unavailable, we can use the value from the preceding Friday.

m  Processing data validations: Adjust historical data based on stock split
events or other operations.

= Calculate new features: Use pct _change () to calculate daily percentage
changes (RoR), calculate weight values, etc.

= Grouping and data aggregation: Group daily data by month, quarter, or
year and calculate the mean and count.

m  Data backup: Save the cleaned and transformed data to new files or a
database.

Additional ETL procedures that may be combined with EDA techniques are:

= Outlier detection: Identify and handle outliers that could skew your
analysis.

= Data validation: Ensure that each column’s data types are appropriate for
analysis.

= Scaling and normalizing: Scale numerical features into a comparative
range.

= Exploratory feature engineering: Create new features (variables) that
might be useful for analysis, such as MA or volatility measures.

= Data annotation: Add labels or flags to the data, such as marking signifi-
cant financial events.

= Time zone adjustment: If the data comes from markets in different time
zones, consider aligning them.
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= Data partitioning (splitting): If we use machine learning models, we can
split the data into training, validation, and test sets.

m  Audit trail: Note and comment on all the transformations when trans-
forming datasets.

Using examples, let us look at the main patterns of processing raw financial
data.

Importing Data and Structuring DataFrames

In Chapter 3, Financial Data Manipulation with Python, we discussed the
various sources of financial information and the Python tools available for
accessing them. While there are numerous options, gathering and updating
data typically involves a set of standard functions. Let us consider an example
that deals with processing files stored locally, specifically CSV files, which are
provided in the appendix of this book. Moreover, in the code appendix for this
chapter, you can find and execute code for importing and creating these CSV
files from open resources.

Execute the following code and analyze its results:

1. import os
2. # Directory where your CSV files are stored

3. # data dir = "./data folder" # for Unix-based
operation systems

4. # data dir = r"C:\path\to\your\data folder" # for
Windows

5. # data dir = ".\\" # Current folder for Windows-
based operating systems

6. data dir = "." # Current for Unix-based
operation systems

7. # Get the list of all files in the directory
8. # all files = os.listdir(data dir)
9. all files = os.listdir() # from current location

10. # Filter out the action and OHLC files
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action files = [f for f in all files if '
actions.csv' in f]

ohlc files = [f for f in all files if ' ohlc.csv'
in f]

# Extract tickers from file names

tickers from actions files = set (f.split(' ') [0]
for £ in action files)

tickers from ohlc files = set(f.split(' ") [0] for
f in ohlc files)

# Find tickers that are in both sets
(intersection)

common_tickers = tickers from actions files &
tickers from ohlc files

# Find tickers that are only in the second set
(difference)

tickers only in ohlc = tickers from ohlc files -
tickers from actions files

# Find tickers that are 1in either set (union)

all tickers = tickers from actions files |
tickers from ohlc files

# Initialize final DataFrame
final df = pd.DataFrame ()

# Loop through tickers common to both action and
ohlc files

for ticker in common tickers:
# Load and filter action data

action df = pd.read csv(f"{data dir}/
{ticker} actions.csv", parse dates=['Date'],
index col='"'Date')
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29. action df = action df[['Dividends’', 'Stock
Splits']]
30. action df.rename (columns={'Dividends':

f"{ticker} div",

'Stock Splits':
f"{ticker} split"},

inplace=True)

31. # Load and filter OHLC data

32. ohlc df = pd.read csv(f"{data dir}/{ticker}
ohlc.csv",

parse dates=['Date'],

index col='"'Date')

33. ohlc df = ohlc df[['close','volume']]

34. ohlc df.rename (columns={'close': f"{ticker}
close",

'volume': f"{ticker}

volume"},
inplace=True)

35. # Merge action and OHLC data

36. merged df = action df.join(ohlc df,
how='"outer")

37. # Update final DataFrame

38. final df = merged df if final df.empty

else final df.join
(merged df,how='outer')

39.
40. # Loop through tickers only in OHLC files

41. for ticker in tickers only in ohlc:

42. # Load and filter ohlc data
43. ohlc df = pd.read csv(f"{data dir}/
{ticker} ohlc.csv", parse dates=['Date'],

index col='Date')

44. ohlc df = ohlc df[['Close', 'Volume']]
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ohlc df.rename (columns={'Close': f"{ticker}
close™, 'Volume': f"{ticker} volume"},
inplace=True)

# Update final DataFrame

final df = ohlc df if final df.empty else
final df.join(ohlc_df, how='outer')

# Display the first 5 rows of the final DataFrame
to get an overview of the data

print (final df.head())

# Display the first 5 rows of columns containing
'close' in their names (e.g., stock closing
prices)

print (final df.filter(like='close'") .head())

# Display the first 5 rows of columns containing
'volume' in their names (e.g., stock trading
volumes)

print (final df.filter (like="volume') .head())

# Display the first 5 rows of columns related to
TSLA

print (final df.filter (like="TSLA') .head())

The results (truncated) of the code are:

Date

2022-01-01

2022-01-02

2022-01-03

2022-01-04

2022-01-05

JNJ div JNJ split JNJ close JNJ volume AMZN div AMZN split \

NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN
0.0 0.0 171.54 6012777.0 0.0 0.0
0.0 0.0 171.08 6748363.0 0.0 0.0
0.0 0.0 172.22 7016099.0 0.0 0.0
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(...)
2022-01-05 94537602.0 36851084859

TSLA div TSLA split TSLA close TSLA volume

Date

2022-01-01 NaN NaN NaN NaN
2022-01-02 NaN NaN NaN NaN
2022-01-03 0.0 0.0 1199.78 34895349.0
2022-01-04 0.0 0.0 1149.59 33416086.0
2022-01-05 0.0 0.0 1088.12 26706599.0

This Python code example performs data manipulation tasks to create a
DataFrame (final df) containing exchange market information. It starts by
setting the directory (data_dir) where the CSV files are stored. It then lists
all files in the directory and filters them to get action and OHLC files. The
tickers are extracted from these file names, and sets are created to identify
tickers that are only found in OHLC files and ones that are found across all
assets (JNJ, AMZN, ... TSLA). Two main loops populate £inal df. The first
loop (lines 26-38) iterates through tickers common to action and OHLC files.
It reads and filters the data, renames columns, and merges the DataFrames.
The second loop (lines 41-48) similarly processes tickers that are only present
in OHLC files. Finally, the code prints the first five rows of final df and
subsets related to 'close', 'volume"', and 'TSLA' to provide an overview.

Elementary Data Clearing Patterns

The best way to understand essential data clearing patterns is through practi-
cal Python code examples. Execute the following code and take a look at the
results:

1. # ETL Pattern: Inspect the Data Frame

2. # Display the data types and non-null counts for
each column

3. print("Initial DataFrame Info:")

4. print(final df.info())



10.
11.
12.
13.
14.
15,

le6.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.

ExPLORATORY DATA ANALYSIS FOR FINANCE © 149

# Display the number of rows and columns in the
DataFrame

print ("Initial DataFrame Shape (Rows, Columns):",
final df.shape)

# Display the first 5 rows of the DataFrame
print ("First 5 Rows of Initial DataFrame:")
print (final df.head())

# Display the last 5 rows of the DataFrame

print ("Last 5 Rows of Initial DataFrame:")

print (final df.tail())

# ETL Pattern: Data Sorting

# Sort the DataFrame by index (Date) in ascending
order

final df.sort index(inplace=True)

# ETL Pattern: Data Cleaning

# Check for NaN values in each column and display
the sum

print ("\nNumber of NaN Values in Each Column:")
print (final df.isna () .sum())

# Check for duplicate rows and display them
print ("Duplicate Rows in DataFrame:")

print (final df[final df.duplicated()])

# Drop all duplicate rows from the DataFrame
final df.drop duplicates (inplace=True)

# For Sunday and Monday (non-business days), use
Friday's data
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# Forward-fill missing values for every day by
the last valid observation

final df = final df.£f£fill()

# Drop remaining NaN values from the DataFrame
final df.dropna(inplace=True)

# Confirm that there are no more NaN values
print ("Number of NaN Values After Cleaning:")
print (final df.isna() .sum())

# Identify columns to change data types

volume cols = [col for col in final df.columns if

' volume' in col]

close cols = [col for col in final df.columns if

_close' in col]

split cols = [col for col in final df.columns if
' split' in col]
# Change data types for volume columns to inté64

and close columns to floaté4

final df[volume cols] = final df[volume cols].
astype ('int64")

final df([close cols] = final df[close cols].
astype ('float6d")

final df[split cols]
astype ('int32")

final df[split cols].

# Inspect the DataFrame after all transformations
print ("\nFinal DataFrame Info:")

print (final df.info())

# Display the first 5 rows of the final DataFrame
print ("\nFirst 5 Rows of Final DataFrame:")

print (final df.head())
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The results (truncated) of the code are:

Initial DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 660 entries, 2022-01-01 to 2023-10-22

Data columns (total 26 columns) :

# Column Non-Null Count Dtype

0 JINJ div 453 non-null float64

1 JNJ_split 453 non-null float64

2 JNJ close 453 non-null float64

3 JNJ_volume 453 non-null floatod (..)

(...)

Final DataFrame Info:

<cla's 'pandas.core.frame.DataFr'me'>

DatetimeIndex: 658 entries, 2022-01-03 to 2023-10-22

Data columns (total 26 columns) :

# Column Non-Null Count Dtype
0 JINJ div 658 non-null float64
1 JNJ_split 658 non-null int32
2 JNJ_close 658 non-null float64
3 JNJ_volume 658 non-null into64

First 5 Rows of Final DataFrame:

JNJ div JNJ split JNJ close JNJ volume AMZN div AMZN split \

Date
2022-01-03 0.0 0 171.54 6012777
2022-01-04 0.0 0 171.08 6748363

2022-01-05 0.0 0 172.22 7016099
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2022-01-06 0.0 0 171.63 7301633 0.0 0
2022-01-07 0.0 0 173.95 6986006 0.0 0

(...)

AAPL close AAPL volume BTC-USD close BTC-USD_volume

Date

2022-01-03 182.01 104701220 46458.117188 33071628362
2022-01-04 179.70 99310438 45897.574219 42494677905
2022-01-05 174.92 94537602 43569.003906 36851084859
2022-01-06 172.00 96903955 43160.929688 30208048289
2022-01-07 172.17 86709147 41557.902344 84196607520

This Python code follows an ETL pattern to clean and transform a DataFrame
(final df)containing stock data. It starts by inspecting the initial DataFrame,
displaying its data types, shape, and first and last five rows. It then sorts the
DataFrame by date and checks for NaN values and duplicates, which it
removes. The code also forward-fills missing values and changes data types for
specific columns. Finally, this Python code inspects the cleaned DataFrame,
confirming that there are no NaN values and displaying its updated data types
and first five rows. The initial DataFrame had 660 entries with some NaN val-
ues, while the final DataFrame has 658 entries with no NaN values, indicating
successful data cleaning.

Data Transformation and the Creation of New Features

Let us describe some Python code examples of data transformation and the
creation of new feature techniques. For example, data transforming code may
aggregate the RoR from daily to monthly averages. Execute the following
code and analyze the results:

1. # ETL Pattern: Data Transformation

2. # Loop through each ticker to correct share price
and volume for stock splits

3. for ticker in common tickers:
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# Create a new column to hold non-zero split
values, replacing zeros with ones

final d"[f"{ticker} spl"tl"] =
final d"[f"{ticker} sp"it"]
final d"[f"{ticker} spl"tl"].replace(0, 1,

inplace=True)

# Calculate the cumulative product of the split
factor

final d"[f"{ticker} spl"tl"] =
final d"[f"{ticker} spl"tl"].cumprod/()

# Normalize the split factor

final d"[f"{ticker} spl"tl"] = final 4"
[£"{ticker} spl"tl"].max() / final 4"
[f"{ticker} spl"tl"]

# Correct the close price by dividing it by the
normalized split factor

final d"[f"{ticker} cl"se"] = final d"
[f"{ticker} cl"se"] / final d"[f"{ticker}
Spl"tl"]

# Correct the volume by multiplying it by the

normalized split factor

final d"[f"{ticker} vol"me"] = final 4"
[f"{ticker} vol"me"] * final d"[f"{ticker}
Spl"tl"]

# Drop the temporary column used for split
normalization

final df.dro" (f"{ticker} spl"tl", axis=1,
inplace=True)

# Display the head and tail of the DataFrame
filtered f'r 'A'ZN' as an example

print (final df.filter(li'e="A'ZN'") .head())

print (final df.filter(li'e="A'ZN'").tail())
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20.

21. # Calculate the Rate of Return (RoR) for all
tickers

22. for ticker in all tickers:

23. final d"[f"{ticker} r"te"] =
final d"[f"{ticker} cl"se"].pct change ()

24. # Drop any rows with NaN values
25. final df.dropna(inplace=True)

26. # Display the head of the DataFrame to inspect
the first few rows

27. print(final df.head())

28.

29. # ETL Pattern: Data Aggregation
30. # Group by month

31. df pct monthly = final df.filter(li'e="'r'te').
resamp'e''M'") .apply(lambda x: x.mean () *
x.count ())

32. # Assuming final df has a DateTime index

33. df pct monthly.index = df pct monthly.index.
strfti'e('3Y'sm'")

34. print(df pct monthly.head())

The results (truncated) of the code are:

AMZN_div AMZN_split AMZN_close AMZN_volume

Date
2022-01-03 0.0 0 170.4045 63869140.0
2022-01-04 0.0 0 167.5220 70725160.0

2022-01-05 0.0 0 164.3570 64302720.0
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2022-01-06 0.0 0 163.2540 51957780.0
2022-01-07 0.0 0 162.5540 46605900.0

AMZN div AMZN split AMZN close AMZN volume

Date

2023-10-18 0.0 0 128.13 42699479.0
2023-10-19 0.0 0 128.40 60961355.0
2023-10-20 0.0 0 125.17 56406410.0
2023-10-21 0.0 0 125.17 56406410.0
2023-10-22 0.0 0 125.17 56406410.0

Data with RoR values
(...)

BTC-USD close BTC-USD volume BTC-USD rate JNJ rate AMZN rate \
Date
2022-01-04 45897.574219 42494677905 -0.012066 -0.002682 -0.016916
2022-01-05 43569.003906 36851084859 -0.050734 0.006664 -0.018893
2022-01-06 43160.929688 30208048289 -0.009366 -0.003426 -0.006711
2022-01-07 41557.902344 84196607520 -0.037141 0.013517 -0.004288

2022-01-08 41733.941406 28066355845 0.004236 0.000000 0.000000

TSLA rate GS_rate XOM rate AAPL rate
Date
2022-01-04 -0.041833 0.030734 0.037614 -0.012692
2022-01-05 -0.053471 -0.021719 0.012437 -0.026600
2022-01-06 -0.021523 -0.004265 0.023521 -0.016693
2022-01-07 -0.035447 0.001461 0.008197 0.000988

2022-01-08 0.000000 0.000000 0.000000 0.000000
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NOTE

Group by month data

BTC-USD rate JNJ rate AMZN rate TSLA rate GS rate XOM rate \

Date
2022-01 -0.176673 0.005265 -0.124930 -0.225129 -0.103653 0.181564
2022-02 0.142166 -0.043784 0.041404 -0.059767 -0.035976 0.035855
2022-03 0.068900 0.075528 0.067145 0.229130 -0.029531 0.060255
2022-04 -0.178505 0.019761 -0.253446 -0.196009 -0.073664 0.035199
2022-05 -0.144366 -0.004094 -0.019532 -0.106458 0.071233 0.125199
AAPL rate
Date

2022-01 -0.036327
2022-02 -0.054720
2022-03 0.060313
2022-04 -0.097564

2022-05 -0.047672

Those ETL patterns focus on data transformation and aggregation. The ETL
process starts by correcting share prices and volumes for stock splits for each
ticker in common_tickers. Then, the example calculates the RoR for all tick-
ers and removes any rows with NaN values. Finally, the code aggregates the
data by month, calculating each ticker’s mean RoR. The code displays the
head and tail of the DataFrame filtered for AMZN as an example and the first
few rows of the DataFrame after RoR calculation. The results show that the
DataFrame has been successfully transformed and aggregated and is ready
for further analysis.

Usually, the return on financial assets is represented by the daily increase
in value. To make further comparisons, it may be necessary to recalculate
the data for monthly or annual returns. Usually, 30 for a month and 360 (or
365) for a year are used as the multipliers for this recalculation. For financial
exchanges that do not operate on weekends, however, the annual multiplier
may be set at 250, the average number of working days per year.
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EDA ESSENTIALS FOR FINANCIAL ANALYSIS

After the preliminary data preparation in the ETL stage and before diving
into modeling, forecasting, and investment decision-making, conducting addi-
tional substantive data analysis is crucial. This is done through EDA. Although
we discuss EDA and ETL separately, they are closely integrated. For instance,
handling missing data can involve simple imputation, transformation meth-
ods, and statistical measures such as median and mean. Moreover, we may
need to revisit ETL tools for feature engineering and other adjustments after
conducting EDA.

EDA for financial data involves common and specific financial patterns.
These include descriptive statistics and statistical graphics such as boxplots,
histograms, scatter plots, time-series data windows, and MA. These elements
give a comprehensive view of analytical patterns and metrics in the financial
datasets, revealing trends, volatilities, and potential investment opportunities.
So, let us continue this analytical journey into the stock exchange data. The
basic EDA data processing patterns can be described as follows:

= Descriptive statistics metrics give an overview of the financial dataset’s
central tendency, variation or volatility, and normality test.

= Data visualization techniques employ basic statistical graphics, for exam-
ple, linear plots by time, boxplots, histograms, and scatter plots, to inspect
data visually.

m  MA and data windows are the fundamental financial time-series data met-
rics and can be utilized to understand trends and seasonality in financial
and stock markets.

= Correlation analysis is assessing how different financial variables interact
with each other.

= Candlestick charts, trend-following indicators, value-at-risk, regressions,
and so on represent other EDA financial metrics and methods.

Now, let us dive deeper into each of these basic analytical patterns.

Descriptive Statistics

Descriptive statistics help for any data analysis, including financial data. They
summarize the data’s main aspects, offering a snapshot of its distribution, cen-
tral tendency, and deviations. Now, we will discuss using descriptive statistics
metrics for financial asset prices and the RoR as a profitability indicator:
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NOTE

= Central tendency is estimated by the mean, median, and mode metrics.
The mean and median can be applied to quantitative data. The mode is
useful for categorical data (such as the type of assets or trading region).

The mean price (Mean,,,,) provides the average price (Price,) of the stock
(other assets over a specific period):

Mean,,,., = X(Price,) / n

Here, n is the number of observation units (days of market trades for these
assets).

The Mean,,,, is the so-called simple average. The weighted average, however,
is also used in financial calculations, in which the weighting indicator is con-
sidered separately. For the financial market, the weighting indicator is often
the trading volume (Volume,) of a given asset, namely:

Mean,,,., = X(Price,- Volume,) / Z(Volume,)

Mean,,,,, and MeanW,,  are the leading metrics of market trend detection.
The same principle estimates the average level of financial asset outcomes by

applying those central metrics to the RoR or logarithmic RoR.

rice

The median is the second most important indicator for assessing the central
values for stock prices and returns. The median value is often close to or the
same as the mean. The median, however, is considered a stable estimate of
the mean compared to the mean itself. The median price (Median,,,,) is cal-
culated as follows.

For an odd number of sorted observations:

Median,,

rice

= Pmce(n+1)/2
For an even number of sorted observations:
Mediany,,,, = (Price,, + Price,,),,)/ 2

As we see, the median is the center of the sorted observations array. The
median is often used to fill in missing data or outliers in statistical data series
(this will be covered later in this chapter).

The quartile is another type of central metric, but it does not significantly dif-
fer from the median. In fact, each quartile divides the sorted data array into
half. The median is quartile 2 (Q2). Suppose we divide the observed dataset
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into two by the median and calculate the values of the middle (median-based
method) of the series for the subset below and above the median. In that case,
we will get quartile 1 (Q1) and quartile 3 (Q3).

= Deviation or volatility is crucial for risk assessment and investment deci-
sion-making. The volatility is often estimated by the variation, standard
deviation (SD), and coefficient of variation (CV) metrics. These metrics
show the average distance between the central metric and other observa-
tion data.

The variance of price (Var,,,,) is expressed in terms of the square of the price
deviation from Mean,,,.,. The squaring serves a specific purpose: it eliminates
the sign, ensuring that all deviations from the mean are treated as positive
values. This is crucial because when calculating variance, we are interested in
the magnitude of the deviation from the mean, not its direction (whether it is
above or below the mean):

Var, )V /n

rice

= X(Price, — Mean,,

rice:

By squaring the deviations, we give more weight to extreme values, mak-
ing variance sensitive to outliers. This is often desirable in financial analysis,
where outliers represent risks or opportunities.

The SD is another measure of the stock’s volatility and investment metric,
which is the square root of the variance. The standard deviation of price
(§D,,,..) is estimated as follows:

n P . ) _M v 2
SD,..= m _ \/z( rice, ecmpm)

i=1 n

SD is a crucial metric in financial analysis. A higher SD indicates greater vola-
tility, which may imply higher investment risk but often potential for higher
returns. Conversely, a lower SD suggests less volatility and, typically, a less
risky investment.

Both variance and SD are tied to units of measurement, price scales, curren-
cies, and the like. The CV indicator does not have this limitation. CV is cor-
rected on the Mean value and shows the scaled level of the deviation.

The CV for price (CV,,,) is estimated as follows:
CVpieo= (SDy,.. / Mean,,,.,) - 100

Price Price
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As we can see, the CV standardizes the risk per average unit of the share price,
allowing for a comparison between different stocks.

We have discussed how the basic descriptive statistics metrics can be applied
to financial asset prices. Still, it is important to note that similar metrics can
be employed to evaluate investment efficiency, such as the RoR. Central ten-
dency metrics (mean and median) of the RoR can provide insights into the
typical return an investor might expect over a given period. Deviation met-
rics, such as the SD and CV, for the RoR offer a glimpse into the investment’s
volatility and risk. In summary, central tendency metrics for the RoR give us
an idea of expected returns, while deviation metrics help us understand the
risks involved. Both of these metrics offer a comprehensive view of the invest-
ment’s performance, enabling financial investors to make informed decisions.

Consider an example of assessing descriptive statistics indicators for a data
array prepared earlier in the ETL stages. Execute the following code and
investigate the results:

1. def generate descriptive stats(stat data,
w_data=None) :
2. # Initialize an empty DataFrame to store the
results
3o result df = pd.DataFrame ()
4. # Calculate and store each statistic
5. result df['Mean'] = stat data.mean|()
6. result df['Median'] = stat data.median()
7. result df['SD'] = stat data.std()
8. result df['Var'] = stat data.var()
9. result df['CV'] = (stat data.std() / stat
data.mean()) * 100
10. # Calculate the weighted means for all
columns
11. if w_data is not None:
12. w_means = []
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13. for col in stat data.columns:

14. w _col = w _data.columns[stat data.
columns.get loc(col)]

15. w_mean = (stat data[col] *

16. w_datal[w_col]).sum() / w_
data[w_col].sum()

17. w_means.append (w_mean)
18. result df['Weighted Mean'] = w _means
19. return result df

20. # Filter data for 'close' and 'volume'
21. stat data close = final df.filter(like='close')
22. w_data = final df.filter (like='volume')

23. # Generate descriptive statistics for asset
prices

24. result close = generate descriptive stats(stat
data close, w_data)

25. # Display the results

26. print("Descriptive Statistics for close
prices:\n", result close)

27. # Generate descriptive statistics for RoR
28. print("\nDescriptive Statistics for 'RoR':\n",

29. generate descriptive stats(final
df.filter (like="rate')))

The results of the code are:

Descriptive Statistics for close prices:
Mean Median SD Var \

JNJ_close 167.962374 167.710000 8.046566 6.474723e+01
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AMZN close 121.359139 122.280000 21.400457 4.579796e+02
TSLA close 239.846969 244.666667 57.278358 3.280810e+03
GS_close 334.381324 331.480000 23.985858 5.753214e+02
XOM close 99.923546 104.160000 12.837336 1.647972e+02
AAPL close 161.037139 162.410000 16.637431 2.768041e+02

BTC-USD close 27336.538212 26664.550781 7829.313869 6.129816e+07

CV Weighted Mean

JNJ_close 4.790696 168.123664
AMZN close 17.633989 120.340881
TSLA close 23.881210 226.746149
GS_close 7.173205 334.538805
XOM close 12.847158 96.799949
AAPL close 10.331425 159.019770

BTC-USD close 28.640473 27129.027823

Descriptive Statistics for 'RoR':
Mean Median SD Var Ccv

BTC-USD_rate -0.000246 -0.000981 0.029051 0.000844 -11795.273031

JNJ_rate -0.000134 0.000000 0.008967 0.000080 -6688.529736
AMZN_rate -0.000209 0.000000 0.022842 0.000522 -10930.926477
TSLA rate -0.000441 0.000000 0.032298 0.001043 -7317.282534
GS rate -0.000320 0.000000 0.014115 0.000199 -4411.154162
XOM rate 0.000986 0.000000 0.016464 0.000271 1669.679498
AAPL rate 0.000045 0.000000 0.015738 0.000248 34896.523221

The code defines a function, generate descriptive stats(), that
takes in a DataFrame, stat data, and an optional DataFrame, w_data, for
weighted calculations. The function calculates various descriptive statistics.
The code example is applied to the filtered data (close prices and RoR) and
prints the results.
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The statistics results offer a lot of information. The SD for TSLA is 57.28,
which is relatively high compared to other assets, such as [NJ (SD=8.04) and
AAPL (SD=16.63). This indicates that TSLA's stock price has been more vola-
tile, experiencing more significant fluctuations over the time analyzed. The
coefficients of variation for the RoRs are incredibly high, even negative for
some assets. This could be due to the mean RoR being very close to 0. The CV
tends to inflate when the mean is near 0 because we divide by a small number,
and the SD level is too high for daily values. Therefore, descriptive statistics is
a universal, but not the only, method for analyzing investment risks.

Basic Statistical Data Visualization

Visualizing data is essential for exploratory data and investment analysis. It not
only aids in understanding complex structures but also helps draw preliminary
or even final decisions from the visualized information. Using plots and charts
can reveal trends, patterns, and outliers that are not apparent through numer-
ical summaries or descriptive statistics metrics. In financial data, particularly
stock prices and RoR, only a few statistical and professional visualizations are
commonly used. Let us describe three standard types of graphs:

= A plot (line or box) is commonly used for the first overview or inspection
of time-series data. A plot demonstrates any obvious tendencies of data
dynamics. It is crucial for the data in the observation dataset to have the
same time details (same time of storage, no gaps, and so on). Based on
these plots, we can evaluate the trend, outliers, and viable problems in
the data and determine which data analysis methods can be used in the
future.

= A histogram (frequency distribution plot, density plot) is a graphical rep-
resentation of the distribution of a dataset. It shows the frequency of spe-
cific price or RoR values (or a range of values) in the observed dataset. By
plotting the frequency of different return ranges, the histogram can reveal
the data’s central tendency and scale of variations. This is particularly use-
ful for risk assessment, as a skewed histogram could indicate a higher
probability of extreme values, either gains or losses. More details about
risk estimations and probability distribution will be discussed in Chapter
8, Risk Assessment and Volatility Modeling.

= A boxplot, also known as a box and whisker plot, is a standardized way
of displaying the dataset based on the following statistical metrics: the
minimum, first quartile (Q1), median (Q2), third quartile (Q3), and
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maximum'. In financial analysis, a boxplot is a powerful tool for under-
standing the spread and skewness of data such as stock prices or RoR,
detecting outliers, comparing RoRs, etc. The box in boxplot represents
the interquartile range (IQR), which gives us an idea of how spread out
the middle 50% of values are. Usually, the whiskers extend to 1.5 times the
IQR, providing a sense of the data’s range. Data points outside the whisk-
ers are generally outliers and could indicate volatility or anomalies in the
asset’s performance.

Execute the following code and try to interpret the resulting financial data
visualization:

1. import pandas as pd
2. 1mport matplotlib.pyplot as plt

3. import seaborn as sns

5. # Filter data for 'close' and 'RoR' (Rate of
Return)

6. close data = final df.filter(like='close').
drop (columns=['BTC-USD close']) # Excluding
BTC-USD

7. ror data = final df.filter(like='rate')
# Assuming 'rate' is the RoR

8. # Using Matplotlib plt

9. # Line Plot for 'close'
10. plt.figure(figsize=(10, 6))
11. plt.plot(close data)

12. plt.title('Line Plot for Close Prices
(Matplotlib) ")

13. plt.ylabel('Close Price')

'A good description of constructing and interpreting a boxplot can be found through open
Internet resources such as Wikipedia: https:/len.wikipedia.org/wiki/Box_plot
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plt.xlabel ('Date')

plt.legend(close data.columns, loc='upper right')
plt.show ()

# Using Seaborn sns

# Boxplot for 'close'

plt.figure (figsize=(12, 8))

sns.boxplot (data=close data)

plt.title ('Boxplot for Close Prices (Seaborn)')
plt.ylabel ('Close Price')

plt.show ()

# Using Pandas .hist()

# Histogram for comparison with the boxplot
results

close data.hist (bins=50, figsize=(12, 8),
alpha=0.5)

plt.suptitle('Histogram for Close Prices')
plt.show ()
# Histogram for 'RoR'

ror data.hist (bins=50, figsize=(12, 8),
alpha=0.5)

plt.suptitle('Histogram for Rate of Return
(Pandas) ")

plt.show ()

# Performing outlier detection for BTC-USD using
the boxplot

# Create a boxplot

btc close = final df.filter (like="'BTC-USD'")
['BTC-USD close']

plt.figure (figsize=(10, 6))

plt.title ('Boxplot for Close Prices of BTC-USD')
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38.
39,
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.

51.

plt.boxplot (btc _close)

plt.xlabel ('BTC-USD'")

plt.ylabel ('Close Price')

plt.show ()

# Get the outliers

boxplot = plt.boxplot (btc close)

outliers = boxplot['fliers'][0].get data() [1]
print ("\nOutliers from boxplot:", outliers)

# Identify outliers for BTC-USD close manually

Q1 = btc _close.quantile(0.25)

03 btc _close.quantile (0.75)
IOR = Q3 - 01

outliers manual = btc close[ (btc _close < (Q1 -
1.5 * IQR)) | (btc _close > (Q3 + 1.5 * IQR))]

print ("\nOutliers for BTC-USD close (Manual):",
outliers manual)

The results (truncated) of the code are:

Outliers from boxplot: [45897.57421875 44118.4453125
44338.796875 44575.203125

44354,
46820.

47128.
45538.

46281.
46622.

45555.

63671875 44348.73046875 44500.828125
4921875

00390625 47465.73046875 47062.6640625
67578125

64453125 45868.94921875 46453.56640625
67578125

9921875 ]

Outliers for BTC-USD close (Manual): Date

2022-01-04 45897.574219

2022-02-08 44118.445312
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(..)
2022-04-04 46622.675781
2022-04-05 45555.992188

Name: BTC-USD close, dtype: float64

The results of the visualization code are presented in Figures 4.1, 4.2, and 4.3:

= Line Plot for Close Prices (Matplotlib)—see Figure 4.1—provides insight
into the price trends over time for the securities in the dataset. The lines
show the closing price movement, allowing you to identify periods of
growth, decline, or stability visually:

Line Plot for Close Prices (Matplotlib)

400 - — JNJ_close
—— AMZN_close
—— TSLA_close

350 4 —— GS_close
—— XOM_close
| —— AAPL_close
Y
300 A i 1

250 1

200 4 |. l |
150 1 m M :'\ WA\
100 {\% h

50

Close Price

2022-01 2022-04 2022-07 2022-10 2023-01 2023-04 2023-07 2023-10
Date

FIGURE 4.1 Line plots for close prices using the Matplotlib library tool

= Boxplots for Close Prices (Seaborn)—see Figure 4.2—summarizes the
distribution of closing prices for each security. It highlights the median,
the range (via the IQR), and any outliers that fall beyond the whiskers.
These can be useful for comparing volatility and the spread of prices
across different securities and can help with outlier detection. Also, in
finance, boxplots are used to compare standardized values, such as various
securities” RoRs:
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Boxplot for Close Prices (Seaborn)

400

300 A

250 1

150 4 é

Close Price

INJ_close AMZN_close TSLA_close GS_close XOM_close AAPL_close

FIGURE 4.2 Boxplots for close prices using the Seaborn library tool

= Histogram for Close Prices (see Figure 4.3), generated in pandas, reveals
the frequency of the closing price distribution. This helps to understand
the expected price spread around the average value and assess whether
stock prices are skewed toward higher or lower values.

Histogram for Close Prices

JNJ_close AMZN_close
] L ! w I
20 By

10

150 155 160 165 170 175 180 185 120 140
TSLA _close GS_close

200 250 300 300 320 340 360 380 400
XOM _close AAPL close

20

20 A

10

10 1

130 140 150 160 170 180 190 200

FIGURE 4.3 Histogram for closing prices using the built-in pandas method
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The example Python code visualizes and analyzes financial data using the
pandas, Matplotlib, and Seaborn libraries as replacement tools. The line plot
for close prices was plotted using Matplotlib. The line plot was generated to
visualize the trend of close prices over time for multiple assets. The boxplot
for close prices was built with Seaborn library functions. It was employed to
create a boxplot that summarizes the distribution of the close price values,
including outliers. The histograms for close prices and RoR were based on
the .hist () method. For outlier detection for BTC-USD (a figure with this
plot was not provided, just the analytical results), a boxplot variable (object
variable) for BTC-USD close prices was created using Matplotlib. The outli-
ers were then identified using the boxplot['fliers'][0].get data()
[1] method, and manually calculated using the IQR method. The boxplot
and histogram results are closely aligned, showing the same results but in dif-
ferent ways. We can get a high-level view (with a boxplot) and a low-level view
(with a histogram) of the dataset, which adds new layers of understanding to
analytical results.

Moving Averages in Financial Analysis

As we have already seen, timeline-based calculations are an essential part of
financial analysis. After all, investment decisions are based precisely on fore-
casts of the futures of market states. Data windows become important struc-
tures for analysis and modeling. For example, we might look at stock prices
for a particular company over a 30-day window. This window can slide over
the time-series data to provide a rolling view of the behavior of the studied
variable. Time-series windows are crucial for identifying seasonal patterns,
trends, and anomalies in financial data. They also serve as the basis for vari-
ous time-based calculations and transformations, such as MA and exponential
smoothing.

MA is widely used in time-series analysis, particularly in financial markets,
especially for stock price investigation, trend identification, smoothing out
price action, and even prediction. It is calculated by taking the average of a set
number of periods within a sliding window over the time-series data. There
are various types of MA:

m  The simple moving average (SMA), similar to the simple mean for calcu-
lating the average price, is estimated with k previous data window points.
There are n-k+1 number of SMAs available, as follows:
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SMA, = (Price, + Price, + Price, +... + Price,) / k

SMA, = (Price, + Price, + Price, + ... + Price, ;) / k

SMA, ,,, = (Price,,,, + Price,,,,., + Price, ., + ... + Price,) / k

The cumulative moving average (CMA), unlike the SMA and many other
MAs, considers all the data points when calculating the average as a camu-
lative value. The CMA is calculated as follows:

CMA, = Price,
CMA, = (Price, + Price,)/ 2

CMA, = (Price, + Price, + Price; + ...+ Price,)/n

The weighted moving average (WMA) is a type of MA that gives different
weights to different data points, unlike the SMA, where each data point
has an equal weight. This makes it more responsive to a predefined range
of price changes and a valuable tool for traders and analysts who want to
understand unusual price movements. The standard formula for calculat-
ing the WMA for the stock prices dataset is:

WMA = 2(w, - Price, )/ Zw, Vi € [1, n]

The exponential moving average (EMA) gives more weight to the recent
prices and is calculated to react more quickly to price changes. The EMA
benefits traders and financial analysts who want to capture the nuances of
short-term price volatility. It is often used in conjunction with other types
of MA to generate trading signals and identify trends in financial markets.
The EMA is also commonly used in technical indicators such as the moving
average convergence divergence (MACD). More details about applying the
WMA and EMA will be described in Chapter 5, Investment and Trading
Strategies. The standard calculation rule for the EMA is as follows:

EMA, = (I -0) - EMA,, + o Price,
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Where:

= o is the smoothing factor determining the weight given to the most recent
price (the value of a lies between 0 and 1, but & = 2/(k+1) is commonly
used).

=  EMA, = SMA,, which is used to initialize the EMA calculation.

It is easier to understand MA in visualized form. It can be stated that the
higher the value of k (bigger data window size), the smoother the time fluc-
tuations in an MA graph. Usually, in financial analysis, we use data windows
of 7 (week), 30 (month), 10 (decade), and so on. Execute the following code,
and you will understand MA by viewing the resulting charts:

1. # Select data for TSLA

2. tsla close = final df['TSLA close']
3. # Window sizes
4. windows = [30, 90]

5. # Initialize an empty DataFrame to store the
results

6. tsla ma = pd.DataFrame ()
7. tsla ma['Actual Prices'] = tsla close

8. # Calculate and store SMA and CMA for each window
size

9. for window in windows:

10. tsla ma[f'SMA {window}'] = tsla close.
rolling (window=window) .mean ()

11. tsla ma[f'CMA {window}'] = tsla close.
expanding (min periods=window) .mean ()

12. # Display the DataFrame

13. tsla ma.plot(figsize=(12, 8))
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The result of executing this code is shown in Figure 4.4:

—— Actual Prices
—— SMA_30
—— CMA_30
—— SMA_90
—— CMA_90

100

Apr Jul Oct Jan Apr Jul Oct
2023
Date

FIGURE 4.4 MA (SMA and CMA) with different TSLA closing price data levels

This Python code demonstrates MA analysis of Tesla’s stock close prices
using the SMA and CMA. It applies pandas tools for data manipulation and
Matplotlib tools for visualization. Two window sizes, 30 and 90, are defined.
The SMA and CMA are calculated and stored in the DataFrame for each win-
dow size. The SMA provides a simple average over a specific window, while
the CMA gives the average from the start to each point in time. As shown in
Figure 4.4, the larger the window size, the smoother the curve, reducing fluc-
tuations and revealing long-term trends. For instance, sSMA 90 and CMA 90
will be smoother than sMA 30 and cMA 30, making identifying general stock
price movement trends easier. Thus, the MA tool provides powerful tools for
making investment decisions and assessing market trends.

BASICS OF CORRELATION ANALYSIS

Although correlation analysis can be considered part of EDA, it receives much
attention in subsequent financial analysis and modeling. We will look at cor-
relation in detail in Chapter 6, Asset Pricing and Portfolio Management. Here,
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however, we will touch on the basics. All tools and indicators presented earlier
in this chapter were applied to one variable (price, RoR, etc.). Correlation
analysis and visualization tools such as scatter plots are used to study the
mutual relationship of two variables.

A positive correlation indicates that the two variables move in the same direc-
tion, while a negative correlation means that they move in opposite direc-
tions. A correlation close to 0 suggests no linear relationship. The formula for
calculating the Pearson correlation coefficient between two variables, Pricel
and Price2, is:

B 2” (Pricel, —Mean,, ., )- 2” (Price2, —~Mean,, ., )

i=1 i=1

12 =
SDPri(:el ’ SDPn'ceQ

The correlation coefficient values range from —1 to 1. Close to 1 and -1 indi-
cates a perfect positive and negative correlation, but 0 shows no correlation.

A visual representation of the relationship between two variables and the
significance of the correlation can be obtained using scatter plot diagrams.
The visual representation of the correlation coefficient is shown in Figure 4.5.
Execute the following code to estimate the correlation matrix of Pearson coef-
ficients for the close price and RoR and plot the basic scatter plots:

1. # Correlation matrix for rates

2. # This will print the correlation matrix for all
columns that contain 'rate' in their names.

3. print("Correlation Matrix for Rates:")
4. print(final df.filter(like='rate').corr())
5. # Scatter plot for TSLA rate and AAPL rate

6. # This will create a scatter plot to visualize
the relationship between TSLA rate and AAPL rate.

7. final df.plot.scatter(x='TSLA rate',
y='AAPL rate',

8. figsize=(12, 8), alpha=0.5)

9. plt.title('Scatter Plot of TSLA rate vs
AAPL rate')
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10. plt.xlabel ('TSLA rate')
11. plt.ylabel ('AAPL rate')
12. plt.grid(True)

13. print("Displaying scatter plot for TSLA rate vs
AAPL rate.")

14. plt.show()
15. # Correlation matrix for close prices

16. # This will print the correlation matrix for all
columns that contain 'close' in their names.

17. print("Correlation Matrix for Close Prices:")
18. print(final df.filter (like="'close') .corr())
19. # Create the pairplot

20. # This will create a scatter plot matrix
(pairplot) for each pair of 'close' columns 1in
the DataFrame.

21. g = sns.pairplot(final df.filter(like="'close'))
22. g.figure.set size inches (12, 8)

23. plt.suptitle('Scatter Plot Matrix of Close
Prices')

24. print("Displaying scatter plot matrix for Close
Prices.")

25. plt.show()

The results (truncated) of the code are:

Correlation Matrix for Rates:

BTC-USD_rate JNJ_rate AMZN rate TSLA rate GS_rate \

BTC-USD_rate 1.000000 0.080492 0.398333 0.367552 0.264479
JNJ rate 0.080492 1.000000 0.161277 0.050447 0.258557
AMZN rate 0.398333 0.161277 1.000000 0.523021 0.492348

TSLA rate 0.367552 0.050447 0.523021 1.000000 0.349928



EXPLORATORY DATA ANALYSIS FOR FINANCE © 175

GS_rate 0.264479 0.258557 0.492348 0.349928 1.000000
XOM_rate 0.153500 0.095439 0.152478 0.087811 0.318666
AAPL_rate 0.379361 0.276900 0.623741 0.586555 0.508701

XOM_rate AAPL rate

BTC-USD rate 0.153500 0.379361

JNJ rate 0.095439 0.276900
AMZN_rate 0.152478 0.623741
TSLA rate 0.087811 0.586555
GS rate 0.318666 0.508701
XOM rate 1.000000 0.229913
AAPL rate 0.229913 1.000000

(...)

The scatter plot (refer to Figure 4.5) demonstrates the relationship between
Telsa Inc.'s RoR and Apple Inc.'s RoR on one chart in the form of intersection
points for each date.

Scatter Plot of TSLA rate vs AAPL rate
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AAPL_rate

0.00 1

—-0.02 4

—0.04 e

—0.06 -

-0.10 —-0.05 0.00 0.05 0.10
TSLA_rate

FIGURE 4.5 Scatterplot of TSLA_rate and AAPL_rate values
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Figure 4.6 combines the scatter plots for the RoRs for the seven market assets on
one canvas. This allows you to simultaneously see all paired dependencies and vis-
ualize the distribution histograms for each asset's RoR (along the main diagonal):
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FIGURE 4.6 Seaborn pairplot visualization of the pair relationships for closing price data

This correlation matrix reveals varying degrees of relationships between the
RoRs for different assets. Notably, TSLA and AAPL exhibit a strong positive
correlation of 0.587, suggesting that they often move in the same direction.
On the other hand, JNJ and TSLA have a very low correlation of 0.05, indicat-
ing that they are mainly independent regarding the RoR. As shown in Figure
4.5, a scatter plot can visualize linear correlations, outliers, and non-linear
relationships. We can draw a line through the points to better understand
these relationships. This line, in the future, can be used to analytically assess
the results of regression analysis, but it is through creating visual representa-
tions such as the ones we’ve seen here that we can enable this visualization.

The pairplot from the Seaborn library offers advanced visualization capabili-
ties for pairwise relationships. As seen in Figure 4.6, we can instantly assess
the histogram distribution for each variable and their pairwise scatter plots.
A pairplot helps identify significant relationships without using additional
statistical methods. For example, it helps to distinguish the need for data
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segmentation into groups (as with the pair TSLA and BTC), detect non-lin-
ear relationships (as with the pair AMZN and GS), or detect the complete
absence of a pairwise relationship (as with the pair AAPL and JNJ).

CONCLUSION

This chapter has highlighted the ETL patterns tailored explicitly for financial
data. We explored the primary stages of data importing, cleaning, and struc-
turing, which are crucial for setting the stage for any in-depth analysis. The
inspect, sort, and handle NaN and duplicates stages are essential. Additionally,
we discussed the importance of data transformation and the creation of new
features, which can offer fresh perspectives and insights into the financial
markets. These ETL processes are the start of any financial data analysis,
ensuring that the data is reliable and structured in a way that is conducive to
advanced analytical techniques.

EDA for financial data focuses on descriptive statistics and data visualization as
the first line of financial investigations. Descriptive statistics metrics provide a
snapshot of the data’s central tendency, variability, and distribution, offering a
quick yet insightful overview of what the data entails. We also delved into data
visualization, discussing the utility of plots such as histograms and boxplots.
These graphical representations are potent tools for visually inspecting data,
identifying trends, spotting outliers, and suggesting areas that may warrant
further investigation.

MA took center stage as we discussed its importance in trend analysis within
financial markets. We covered various types of MA, including the SMA, WMA,
and EMA. Each of these has its use cases, but they all serve the primary func-
tion of smoothing out price data to create a single flowing line, making it
easier to identify the direction of the trend. Understanding these different
types of MA and their applications can significantly enhance your toolkit for
financial analysis.

Finally, we touched upon the basics of correlation analysis, emphasizing its
role in understanding the relationships between different financial variables.
We introduced the concept of the scatter plot as a visualization tool that can
help identify the type and strength of the relationship between two variables.
Correlation analysis is critical in portfolio management, risk assessment, and
identifying investment opportunities by understanding how different assets
are interrelated.
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QUESTIONS

1.

LA

What are the differences between extract, transform, and load (ETL) and
exploratory data analysis (EDA)?

What is the primary objective of EDA in the context of financial data?
Describe basic ETL patterns for financial data processing.
What additional ETL procedures do you know?

What are the essential problems when importing and structuring a
DataFrame for financial analysis?

6. What are the key methods for creating new features in financial datasets?

7. What are descriptive statistics and why are they important in financial
analysis?

8. Name three key metrics used to measure central tendency in a dataset.
What are the deviation metrics, and how are they used in assessing finan-
cial data?

10. What is the boxplot chart, and what information does it provide?

11. Explain the significance of basic statistical data visualization in EDA for
finance.

12. What is a moving average and how is it used in financial analysis?

13. Describe the basics of correlation analysis.

14. How can scatter plots help with understanding the relationship between
two variables?

KEY TERMS

Descriptive statistics are summary statistics metrics that quantitatively
describe or summarize features of a dataset. They typically offer a simple
overview of the main quantitative aspects of the data, such as central ten-
dency, deviation, range, type of variables, etc.

Central tendency metrics describe the center position of a distribution for
a dataset. The key metrics include the mean, median, and mode.
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= Deviation metrics are measures that describe the spread or dispersion of
a dataset. Standard deviation (SD), variance (Var), and coefficient of vari-
ation (CV) are commonly used deviation metrics.

= Financial assets investment risk for exchange market data refers to the
potential for loss in the value of financial assets traded on stock exchanges.
It is typically measured based on the deviation metrics for stock prices
and indicates the potential volatility of the returns.

= A boxplot is a graphical representation of data that displays the distribu-
tion and spread of a dataset, as well as its quartiles and outliers.

m  Correlation is a statistical measure that describes the extent to which two
variables change together. A positive correlation indicates that as one vari-
able increases, the other also increases.

= A scatter plot is the graphical representation of values for two variables as
points on a two-dimensional plot. It is often used to determine a relation-
ship between the two variables.
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CHAPTER

INVESTMENT AND [ RADING
STRATEGIES

INTRODUCTION

This chapter offers a general overview of investment and trading strategies.
We will uncover some examples of technical, fundamental, and graphical
analysis and their application to trading strategies. Our discussions on fun-
damental financial analysis are based on real-world applications and show
insights mainly gained through practice. We will describe and dissect fun-
damental metrics such as return on equity (ROE), earnings per share (EPS),
and the price-to-earnings (P/E) ratio. We will go through examples devoted to
Python-powered visualization and unveil the techniques for bringing financial
data to life. This chapter will show how financial market data can be repre-
sented and interpreted. With a hands-on introduction to TA-Lib, this chap-
ter equips you with the theoretical knowledge and practical tools to test and
refine your strategies. The chapter is peppered with real-life data (based on
the tools presented in Chapter 4, Exploratory Data Analysis for Finance)
behind investment strategies. All the examples give real-world information
from stock and other financial markets, bridging the gap between theory and
practice and ensuring you are ready for the dynamic world of trading.

In this chapter, we apply previously reviewed Python statistical and visualiza-
tion tools to investigate investment asset prices and trends. You will learn how
to use analytical tools to support investment decisions.
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STRUCTURE

This chapter covers the following topics:

= Investment strategies in the financial assets markets
= Fundamental analysis
= Graphical analysis with Python

» Technical analysis metrics and tools

OBJECTIVES

By the end of this chapter, you will have learned a lot about investment and
analytical and trading strategies, with the ability to integrate technical, fun-
damental, and graphical analysis into your trading strategy. You will have
navigated the intricacies of core investment principles and metrics, receiv-
ing practical insights to improve your fundamental analysis skills. Armed with
Python’s visualization tools and advanced candlestick charts, you will be able
to bring financial market data to life, identifying significant patterns and inter-
preting market indicators. Engaging with essential technical analysis tools will
give you the practical experience to generate, test, and refine effective trad-
ing strategies. This chapter will use real-world market data to cement your
understanding, ensuring you are well prepared to face the dynamic nature of
trading, equipped with a thorough understanding of risk and return dynam-
ics, and ready to make informed decisions using sophisticated analytical tools.

INVESTMENT STRATEGIES IN THE FINANCIAL
ASSETS MARKETS

As we know from Chapter 1, Getting Started with Python for Finance, there
are a lot of different financial assets. Therefore, investment strategies of prof-
itability using these asset markets are both an art and a science, aiming to bal-
ance risk and reward. Every trader has their own collection of strategies and
tools to achieve this goal and get enough profit alongside the associated risks.
Each strategy involves a unique blend of financial instruments, allocation
techniques, and analysis methods. The strategies, however, have one thing
in common: processing a sufficiently large amount of information to justify
investment decisions is necessary. Python’s analytical tools can help investors
achieve their objectives.
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A generalized idea of the existing investment strategies for decision-making
by traders in the capital market is presented in Figure 5.1. We have not listed
every possible strategy; we have just shown many existing approaches classified
into three groups that determine the features of strategic decision-making.

Investment strategies encompass the diverse approaches and methods investors
employ to maximize the performance of their financial assets in the markets.

Investment strategies for financial
markets traders

Fundamental J< (Trend Following )‘
Graphical J‘ [ Mean Reversion )‘

[
(
[ Technical j‘ [ Momentum )‘
[ Strategies Based |« ( Quantitative ]4 ( Breakout )‘
M (
(

Time Horizon- N\
L Based Strategies )

Risk Appetite- |«
| Based Strategies )

on Asset Types —— ]4 [ Swing Trading )‘
Sentiment )‘ [ Arorage )4
( Scalping )‘

( Pairs Trading )‘

[ Market Condition- <
\Oriented Strategies)

Machine Learning

s _ . )
Passive vs Active |« and Neural
Management Networks

Investment decision-making

FIGURE 5.1 Classifications of the investment strategies for a financial market trader

As shown in Figure 5.1, investment strategies, chosen based on the personal
preferences of traders and other decision-makers, include:

= Time horizon-based strategies:
*  Short-term (intraday) trading: Positions open and close within min-
utes of a single trading day, aligning with rapid market movements.

*  Medium-term trading: Trades span several days to weeks, bridging
intraday’s immediacy and the long-term strategy’s patience.
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*  Long-term trading: Investments are nurtured over several months to
years, often focused on fundamental value.

= Risk appetite-based strategies:

*  Conservative: Preferring lower-risk investments for steadier returns

*  Balanced: Combining risk and safety, typically by integrating equities
and bonds

*  Aggressive: Pursuing higher-potential returns by accepting more sig-
nificant risks, commonly through volatile assets

= Strategies based on the type of assets:
*  Single asset class: Specializing in one asset type, such as equities,
bonds, or commodities
*  Multi-asset class: Diversifying across different asset classes to mitigate
risk

*  Currency pairs: Concentrating solely on the foreign exchange market
= Market condition-oriented strategies:

*  Bull market strategies: Devised to appreciate market conditions
*  Bear market strategies: Crafted for depreciating market conditions

*  Sideways market strategies: Ideal for markets lacking a clear trend
m  Passive vs active management:
°  Passive investing: Emulating market indices with minimal trading

* Active investing: Actively managing a portfolio through rigorous
research and strategy

Therefore, this behavioral investment strategy can be regarded as a multidi-
mensional framework reflecting the investor’s behavior, financial goals, risk
tolerance, time commitment, market perspective, and other subjective feel-
ings. These strategies provide a structured approach to navigating the com-
plexities of the financial markets. Whether an investor is swayed by short-term
market dynamics, aiming for medium-term growth, or settling in for the long
game with a long-term investment horizon, their strategy is tailored to their
investment profile.

The trading strategy is the second part of the investment strategy in the finan-
cial market. A trading strategy in the financial markets refers to a systematic
plan formulated by traders to buy and sell financial instruments to generate
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predetermined outcomes. These strategies are predicated on various market
analysis tools and investor behavioral preferences. Here is a brief overview of
each strategy mentioned:

»  Trend following involves identifying and riding the momentum of assets
moving in a significant and sustained direction, capitalizing on existing
trends.

= Mean reversion is a strategy based on the phenomenon that financial asset
prices tend to return to their average, or mean, level after a deviation

period.

= Momentum’s strategy seeks to capitalize on assets exhibiting strong move-
ment, entering trades toward momentum until they show reversal signals.

= Breakout refers to when the traders using this strategy enter the market
when the price breaks through a predefined resistance or support level,
often indicating a significant move away from the previous range.

= Swing trading involves attempting to capture gains by holding positions
for a period ranging from overnight to several weeks, taking advantage of
the swing in market prices.

= Arbitrage aims to profit from the price differences of the same financial
asset in different markets or in various forms.

= Scalping is a high-volume trading strategy that aims to make numerous
small profits on minor price changes. It typically involves holding for sec-
onds or minutes.

= The fundamental trading strategy is based on making trading decisions
around critical economic events and data releases and analyzing how they
will affect asset prices.

= Pairs trading involves simultaneously buying and selling two correlating
assets when their relationship deviates from the historical norm, expect-
ing it to revert to the mean, allowing for profit on the divergence.

Therefore, a trading strategy is a customized approach designed to assist an
investor in making decisions about buying and selling securities in the finan-
cial market. It combines various individual tactics to create a comprehensive
plan for achieving the investment objectives.

The third facet of a comprehensive investment strategy is using various ana-
lytical methodologies and tools. Analytical investment strategies typically
include:
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= Fundamental analysis: This involves assessing an asset’s intrinsic value
by examining financial statements, economic indicators, company health,
and other quantifiable factors.

m  Technical analysis: This predicts future price movements by analyzing
past market data, mainly price and volume.

= Quantitative analysis: This strategy employs complex mathematical mod-
els to detect trading opportunities, often utilizing statistical patterns.

= Portfolio analysis: This process aims to evaluate and adjust the compo-
sition and performance of an investment portfolio to maximize returns
relative to risk.

= Sentiment analysis: This method assesses the market’s mood by analyzing
market commentary, news, and other qualitative indicators to gauge the
trading behavior of market participants.

= Machine learning (ML) and neural networks (NNs): These are cutting-
edge computational methods used to discern intricate patterns and predict
market trends, which can be beyond the capacity of traditional analysis.

There are a lot of other analytical tools that are arising. This is not an exhaus-
tive list.

So, the analytical investment strategy is a systematic approach to making
investment decisions using different analysis methods. These methods are the
main tools for an investor. It is important to understand that various analyti-
cal investment strategies can be combined to fit an investor’s goals, risk pro-
file, and trading approach. These strategies work together to provide a strong
framework for investors to navigate the complex and unpredictable financial
markets.

The critical thread of rigorous analysis connects the complex strategies used
in the financial market. This necessitates a robust foundation in managerial
decision-making processes. Python emerges as a powerful ally to facilitate this,
offering a spectrum of basic and advanced tools ranging from mathematical
and statistical functions to graphical and specialized libraries. The subsequent
chapters will interweave a comprehensive exploration of the analytical instru-
ments outlined in Figure 5.1, enhancing your understanding and application of
these tools. Specifically, Chapter 6, Asset Pricing and Portfolio Management,
will be dedicated to the nuances of portfolio analysis, laying out strategies
for balancing and optimizing various investments. Chapter 7, Time-Series
Analysis and Financial Data Forecasting, and Chapter 8, Risk Assessment and
Volatility Modeling, will venture into the quantitative methods of forecasting
profitability and assessing risks, which are tools that are imperative for astute
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market engagement. Building on this foundation, Chapters 9 and 10 will pro-
pel us into the forefront of financial technology, harnessing ML to sharpen
profitability forecasting and risk estimations.

FUNDAMENTAL ANALYSIS

Fundamental analysis is a key tool in finance for making smart investment
choices. It goes beyond just looking at prices and helps you understand the
actual value of an asset. It is vital for long-term strategies and involves looking
at various financial indicators and metrics. In the stock market, fundamental
analysis often examines a company’s financial statements, management effec-
tiveness, industry health, and market conditions. Investors scrutinize earnings
reports, balance sheets, cash flow statements, and other economic indicators.
These metrics paint a detailed picture of the company’s performance, growth
potential, and stability.

When the fundamental analysis tools are applied to the forex market, it shifts
focus on economic indicators, interest rates, monetary policies, and geopoliti-
cal events for each country and the world economy. Currency traders analyze
economic data releases, central bank decisions, and political stability to fore-
cast currency strength or weakness. This type of analysis may include examin-
ing GDP growth rates, employment statistics, trade balances, and inflation
rates to determine the underlying value of a currency.

Fundamental analysis in the rapidly developing cryptocurrency world may
show the central concept for the Bitcoin market, technical blockchain events,
hackers’ activity, and other metrics, such as the financial statements for the
stock market. Analytical tools are manipulated with factors such as the coin’s
technology, the development team’s track record, network activity, new tech-
nological developments, and overall market adoption. The aim is to ascertain
a cryptocurrency’s long-term viability and potential market penetration.

Acknowledging that fundamental analysis has no one-size-fits-all technique
is crucial. Each market holds a unique set of variables and requires special-
ized methodologies. There are no specific Python tools for this, just the use
of standard analytical tools such as pandas data manipulation, Seaborn visu-
alization, and statistical methods application. For instance, universal Python
tools and data libraries help to estimate essential metrics such as the P/E
ratio, ROE, debt-to-equity ratio, and free cash flow. These metrics offer valu-
able insights into a company’s profitability, debt levels, efficiency, and growth
potential. Execute the following code to analyze the financial data of Tesla
Inc. and Apple Inc.:
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10.
11,
12.
13.
14.

15.

le.
17.

18.

19.
20.
21.
22.
23.

# Fundamental Analysis Function by the ticker of
Yahoo Finance

# NOTE: yf.Ticker() stores data for the last 4
years only.

def calculate fundamentals (ticker symbol) :
# Fetching financials for the ticker
ticker = yf.Ticker (ticker symbol)
financials = ticker.financials

balance sheet = ticker.balance sheet

# Retrieving basic earnings per share (EPS)

eps = financials.loc['Basic EPS']

# Calculating the Return on Equity (ROE)
net income = financials.loc['Net Income']

stockholders equity = balance_ sheet.
loc['Stockholders Equity']

roe = ( net income / stockholders equity ).
dropna ()

# Fetching historical price data for the
ticker

start date = eps.index[-1].strftime

('$Y-%m-3%d")

o\

end date = eps.index[0].strftime('3Y-%m-%d")
history = ticker.history(start=start date,
end=end date,

interval='1d")
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# Removing time zone information for ease of
comparison

eps.index = eps.index.tz localize (None)
roe.index = roe.index.tz localize (None)

history.index = history.index.
tz localize (None)

# Creating a date range that includes
weekends

full date range = pd.date range(start=eps.
index.min (),

end=eps.index.max (),

freg='D")

# Reindexing the dataframe to include the
full date range with weekends

history full = history.reindex(full date
range,

method='£ffill")

# Fetching the closing prices from history
that match # the dates in eps

close prices = history full.loclhistory full.
index.isin (eps.index),

'Close']

# Calculating the Price to Earnings (P/E)
ratio

pe ratio = close prices / eps
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44 .

45, return {

46. 'ticker': ticker symbol,
47. 'eps': eps,

48. 'roe': roe,

49. 'pe ratio': pe ratio

50. }

S51. ###########HFHFHFHFRHAHFAHAFAHAAAHAHAES
52. # Apply the function for AAPL and TSLA

53. aapl financial ratios = calculate_
fundamentals ('AAPL")

54. tsla financial ratios
fundamentals ('TSLA")

calculate

55.
56. # Print the results for Apple

57. print(f"{aapl financial ratios['ticker']} Basic
EPS:")

58. print(aapl financial ratios['eps'])

59. print(f"\n{aapl financial ratios['ticker']}
Return on Equity (ROE):")

60. print(aapl financial ratios['roe'])

61. print(f"\n{aapl financial ratios['ticker']} P/E
Ratio on EPS Dates:")

62. print(aapl financial ratios['pe ratio'])
63.
64. # Print the results for Tesla

65. print(f"\n{tsla financial ratios['ticker']} Basic
EPS:")

66. print(tsla financial ratios['eps'])
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67. print(f"\n{tsla financial ratios['ticker']}
Return on Equity (ROE) :")

68. print(tsla financial ratios['roe'])

69. print (f"\n{tsla financial ratios['ticker']} P/E
Ratio on EPS Dates:")

70. print(tsla financial ratios['pe ratio'])

The results of the code are as follows:

AAPL Basic EPS:

2023-09-30
2022-09-30
2021-09-30
2020-09-30

6.
6.
5.
3.

Name: Basic EPS,

AAPL Return on Equity

2023-09-30
2022-09-30
2021-09-30
2020-09-30

dtype: object

1
1.
1.

0.

16
15
67
31

dtype:

.56076
969589
500713
878664

object

(ROE) :

AAPL P/E Ratio on EPS Dates:

2020-09-30
2021-09-30
2022-09-30
2023-09-30

Freg: A-SEP,

34
24
22
27

dtype:

.366723
.670486
.339021

. 793832

object
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TSLA Basic EPS:

2022-12-31 4.02
2021-12-31 1.866667
2020-12-31 0.246667
2019-12-31 -0.326667

Name: Basic EPS, dtype: object

TSLA Return on Equity (ROE) :

2022-12-31 0.281474
2021-12-31 0.182815
2020-12-31 0.031046
2019-12-31 -0.130251

dtype: object

TSLA P/E Ratio on EPS Dates:

2019-12-31 -85.373381
2020-12-31 953.606796
2021-12-31 188.710686
2022-12-31 30.641791

Freq: A-DEC, dtype: object

The financial fundamentals shown for Apple Inc. and Tesla Inc. present essen-
tial metrics used by investors to assess a company’s value and performance.

EPS directly measures a company’s profitability. It is calculated by dividing
the company’s net income by the outstanding shares. A higher EPS indicates
greater profitability. Looking at the AAPL data, the EPS has increased from
2020 to 2023, suggesting growth in profitability. For TSLA, there has been a
notable increase in EPS over the years, moving from a negative value in 2019
(indicating a loss) to a positive value by 2022, showing profitability.

ROE is a financial performance measure calculated by dividing net income by
shareholders” equity. It can be interpreted as the return a company generates
on the money shareholders have invested. High ROE values typically indicate
a company is efficient at generating profits from its equity. For AAPL, the
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ROE has consistently been above 1, showing a robust return per dollar of
equity. In contrast, TSLA’s ROE shows a significant improvement from nega-
tive to positive, highlighting a turnaround in profitability.

The P/E ratio compares a company’s share price to its EPS. It is a valuation
metric that shows how much investors are willing to pay per dollar of earn-
ings. A high P/E might suggest a company’s stock is overvalued, or investors
expect high future growth rates. AAPLs P/E ratios indicate that investors may
have high expectations for the company’s future growth, particularly when
you notice a rise in the ratio from 2022 to 2023. TSLA’s P/E ratio has experi-
enced significant fluctuations, with an exceptionally high value in 2020, pos-
sibly indicating investors expected extraordinary growth.

The code example attempts to reindex the history DataFrame using full_date_
range, a date range without time zone information. An error may occur because
the history still has time zone information attached to its index. Removing the
time zone information from the indices is necessary to avoid those errors.

These numbers show how the companies have been performing and how the
market values them. It is essential to understand these figures in the context
of the company’s overall strategy, the economic environment, and the sector
in which it operates. Remember, no single financial metric should be used to
evaluate a company’s financial health.

GRAPHICAL ANALYSIS WITH PYTHON

Graphical analysis of financial market data is the first step for any investor
looking to gain a nuanced understanding of price dynamics. These visual rep-
resentations are not just charts; they are the canvas where the market’s story is
told, capturing the sentiments, fluctuations, and trends that dictate the finan-
cial landscape. We already used universal statistical visualization tools for close
price data in Chapter 4, Exploratory Data Analysis for Finance, but now we
need to describe specific tools for stock and other exchange market datasets.

BASIC STOCK GRAPHICS TOOLS

Starting with the basics of stock graphics, we have two essential elements:
bar charts and candlestick charts. These components concisely offer a lot of
information. Bar charts are presented with simple vertical lines and horizontal
ticks, providing details about the open and close prices within a specified time
frame. On the other hand, candlestick charts add a visual dimension to this
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chart by vividly illustrating the interaction between buyers and sellers. The
thick bodies of the candlesticks characterize the difference between the open
and close prices (green, white, or empty if the market has risen; red or black
if the market has fallen), and the wicks (high and low prices) provide a clear
understanding of the emotional dynamics of the market, depicting the ongo-
ing struggle between various market forces.

The following custom ohlc plot candles () function can be used to show
candlestick charts by applying standard Matplotlib tools' (using assets,
which is a dataset with OHLC data for the AAPL, TSLA, AMZN, JNJ, GS,
and BTC-USD tickers. For details on the generation of this dataset, please
look at the Python code for this chapter in the appendix):

1. def ohlc plot candles(df, window,

2. figsize=(12, 6),

3. title='Candlestick Chart'):
4. sample = df.iloc[-window: ]

5. plt.figure(figsize=figsize)

6. plt.title(title)

7. for i in range (len(sample)) :

8. # Plotting the wicks

9. plt.vlines (x=1i,
10. ymin=sample.iloc[i] ['Low'],
11. ymax=sample.iloc[i] ['High'],
12. color="black', linewidth=1)
13.
14. # Plotting the candle's body (open to close)

"The algorithm for this code is taken from the book Sofien Kaabar (2023) Mastering Financial
Pattern Recognition: Finding and Back-Testing Candlestick Patterns with Python, Ist Edition.
O’Reilly Media.
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if sample.iloc[i]['Close'] > sample.
iloc[i] ['Open']:

# Market rise (bullish)

plt.vlines (x=1i, ymin=sample.iloc([i]

['Open'],
ymax=sample.iloc[i]
['Close'],
color="'green', linewidth=4)
elif sample.iloc[i]['Close'] < sample.
iloc[i]['Open']:
# Market fall (bearish)
plt.vlines (x=1i, ymin=sample.iloc[i]
['Close'],
ymax=sample.iloc[i] ['Open'],
color="red', linewidth=4)
else:
# No price movement (doji)
plt.vlines (x=1i, ymin=sample.iloc[i]
['Close'],

ymax=sample.iloc[i]
['Open'] + 0.00003,

color="'black',
linewidth=4)

plt.grid()

plt.show ()

FHAFHAFAFHAFHAHAFHAF A HAFHAFAFEAF A HAFHAHAA

ohlc plot candles(asset, 100, title='TSLA'")
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This code provides a practical introduction to a candlestick, or Japanese
candlestick, chart, with the outcome illustrated in Figure 5.2. The chart is
constructed to provide a visual representation of price movements within a
specific time frame. A candlestick in these charts is composed of a body and
wicks. The body’s length indicates the difference between the opening and
closing prices, while the wicks show the highs and lows. The color of the can-
dle body reflects market sentiment: green, white, or empty for bullish periods
and red or black for bearish periods. The wicks or shadows portray the price
extremes, with the top wick showing the highest and the bottom wick the low-
est traded prices within the time frame:
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FIGURE 5.2 Candlestick charts for Telsa Inc. stocks over 100 days

A bar chart implements similar principles to the candlestick chart. A bar chart
illustrates the price dynamics of assets using a series of vertical bars, each
representing price movement within a given time frame. The top of each bar
denotes the highest price on the timeline, while the bottom indicates the low-
est price. A small horizontal line (tick) on the left side of the bar shows the
opening price, and the tick on the right side shows the closing price. The func-
tion for creating bar charts (ohlc plot candles volumes ())is detailed in
the Python code for this chapter in the appendix. Since the construction logic
and the volume of information for candles and bars are identical, the choice
between these visual representations comes down to the investor’s prefer-
ence. Hereafter, the emphasis will be placed precisely on candlestick charts.
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An essential enhancement to the functions of candlestick price analysis of
financial instruments is the inclusion of trade volumes, which illustrate the
strengthening or weakening of trends. Execute the following code to con-
struct a candlestick chart with the indicated trading volumes:

1. def ohlc plot candles volumes (df, window,
2. figsize=(12, 6),

3. title='Candlestick
Chart with Volumes') :

4. sample = df.iloc[-window: ]

5. fig, axl = plt.subplots(figsize=figsize)

6. # Create a second y-axis to plot the volume
7. ax?2 = axl.twinx ()

8. # Define the maximum volume to scale the

y-axis of volume bars

9. max vol = sample['Volume'] .max ()

10. for i in range(len(sample)) :

11. # Plotting the Candlechart

12. axl.vlines (x=1i, ymin=sample.iloc[i]
['Low'],

13. ymax=sample.iloc[i] ['"High'],

14. color="black', linewidth=1)

15. if sample.iloc[i]['Close'] > sample.
iloc[i] ['Open']:

16. axl.vlines (x=1i, ymin=sample.iloc[i]
['Open'],

17. ymax=sample.iloc[i]
['Close'],

18. color="'green', linewidth=4)
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elif sample.iloc[i]['Close'] < sample.

iloc[i] ['Open']:

axl.vlines (x=1, ymin=sample.iloc[i]

['Close'],
ymax=sample.iloc[i]
['Open'],
color="'red', linewidth=4)
else:
axl.vlines (x=1, ymin=sample.iloc[i]
['Close'],

ymax=sample.iloc[i]

["Open'] + 0.00003,

color="'black',

linewidth=4)

# Plotting the Volume bars

color = ('green' if sample.iloc[i]

['Close'] >

sample.iloc[i] ['Open'] else

'red'")

fit

ax2.bar (i, sample.iloc[i]['Volume'],
color=color, alpha=0.3)

# Adjust the y limit of the second axis to
the volume bars

ax2.set ylim(0, max vol*5)
ax2.set ylabel ("Volume")

# Setting x-axis labels to the dates from
# the DataFrame's index

axl.set xticks(range (len (sample)))
axl.set xticklabels([date.strftime ('3Y-%m-%d")

for date in sample.

index],
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39. rotation=90, ha='right')
40. axl.grid()

41. axl.set title(title)

42. plt.show ()

43. #######AAA A A A A AR A A AAAAA A A FAAAAA A A A SRR A FAA

44. ohlc _plot candles volumes (asset, 50,
title=ticker)

The code result for the TSLA ticker is shown in Figure 5.3.

As observed from Figure 5.2, over the 100 days considered, the price fluctua-
tions of Tesla Inc. shares were distributed as follows: from period 0 to 50, a
clear upward trend was evident (most candles are green), indicating a bull-
ish trend. There were short-term reversals between periods 30 to 50; after
that, from day 50, an intermediate bearish trend was formed. From day 70
to 90, bullish tendencies predominated once again. Referring to Figure 5.3,
with detailed dates and volumes, we can also see that the trend of reversals
on August 18-21 and September 11 was accompanied by modest increases
in trading volumes. This typically signifies a strengthening of market trends.
Psychological factors often support this inference; when a certain psychologi-
cal threshold is crossed (such as a support or resistance level), more investors
engage in trading:
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FIGURE 5.3 Candlestick charts with volume data for Tesla Inc. stocks over 50 days
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Regrettably, the mentioned conclusions can only be drawn from past peri-
ods. A prolonged period of stock market research, however, has facilitated the
development of a comprehensive toolkit for forecasting trends, especially the
moment of reversal. This includes using support and resistance lines, addi-
tional moving averages (MAs), and other indicator lines on the chart; graphi-
cal analysis patterns; and so on.

Python’s commonly used and specialized libraries are potent tools for graphi-
cal analysts and market researchers. One such specialized library is mplfi-
nance, an extension of Matplotlib tailored specifically for financial data
visualization. For those who wish to engage in hands-on experience and gain
practical proficiency, a detailed exploration of mplfinance is highly recom-
mended. The official repository and documentation provide in-depth insights
and usage examples; they can be accessed from mplfinance’s GitHub page:
https://github.com/matplotlib/mplfinance. The installation process of this
library has been covered previously in Chapter 1, Getting Started with Python
for Finance. To illustrate the application of mplfinance and its capabilities,
consider the following example, which generates a complex price chart for
Tesla Inc. over 50 days:

1. import mplfinance as mpf
2. df = asset.iloc[-50:, 1:]

3. # Rolling high/low for potential resistance/
support

4. rolling max = df['High'].rolling(window=20,

5. min periods=1l).
max ()

6. rolling min = df['Low'].rolling(window=20,

7. min periods=1).
min ()

8. # Highest and lowest prices as resistance/support

9. potential resistance = np.max(rolling max)
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potential support = np.min(rolling min)

# Horizontal lines for resistance and support
levels

resistance line = [potential resistance] *
len (df. index)

support line = [potential support] * len (df.
index)

# Addplot for support and resistance lines

apdict = [mpf.make addplot (resistance line,
color='qg"',

linestyle='"'dashdot"',

width=2),
mpf.make addplot (support line,
color='"r'
linestyle='dashdot"',
width=2) ]

# Plot with Moving Averages, volume, support, and
resistance

mpf.plot(df, type='candle', mav=(7, 14, 30),
volume=True,

figsize=(12, 6), addplot=apdict,
title='Candlestick Chart - ' + ticker)
# Display the plot

plt.show ()
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The result of this code execution is shown in Figure 5.4
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280

270

260

250

Price

240
230

220

210

150
100

Volume 106

U s \& S P

&

c; R

3
$ & & o

S

FIGURE 5.4 Candlestick chart with additional analytical tools applied to Tesla Inc. stocks over 50 days

The support and resistance lines in Figure 5.4 clearly show additional con-
firmation of the trend reversal when they touch, which is a strong signal.
Support levels act as a price floor where buying interest exceeds selling pres-
sure. Resistance levels serve as a ceiling where selling pressure surpasses buy-
ing momentum. Identifying these levels is both an art and a science, offering
traders crucial entry and exit points. Various MAs can signal reversals, aiding
in executing specific trading strategies.

This example underscores the available power of mplfinance. By following
these examples and experimenting with the library’s features, you can improve
your data visualization skills, paving the way for more advanced graphical
analysis and research in financial markets.

GRAPHICAL ANALYSIS PATTERNS

Patterns within graphical analysis (or candlestick chart patterns) are like a
visual dialect of market language. Classic patterns, such as head and shoul-
ders, triangles, and double tops and bottoms, are the core signals of potential
trend reversals or continuations. They are the lexicon through which seasoned
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traders anticipate and strategize. The following are some of the most well-
known patterns to support trading strategies (the pattern charts are presented
in the code appendix to this chapter):

The head and shoulders pattern shows as a baseline with three peaks. The
middle peak is the highest, and the two outside peaks are close in height.
In the pattern, the price seems to rise to a peak and then decline, followed
by a rise above the previous peak and then a decline again, and, finally, a
rise that does not surpass the height of the second peak before declining
again. This pattern is often interpreted as a reversal signal.

The inverse head and shoulders pattern is the opposite of the head and
shoulders pattern, typically signaling a downward trend reversal. It con-
sists of a trough (head), with a peak on either side (shoulders), where the
head is the lowest point. The pattern in the provided data shows a decline
to a low point, a slight rise, followed by a decline to a lower point, and a
rise again that goes higher than the first peak, suggesting a potential trend
reversal to the upside.

The double top and double bottom patterns are characterized by two con-
secutive peaks of approximately equal height with a moderate trough in
between, suggesting an impending reversal from a bullish to a bearish
market. On the other hand, the double bottom consists of two consecutive
troughs approximately equal in depth, with a peak in between, indicating
a potential reversal from a rising market to a falling market. This pattern
shows these two peaks and troughs, suggesting critical points where the
market sentiment could change.

Triangle patterns indicate a continuation or a reversal and come in three
forms. A horizontal top and an ascending lower line form the ascending
triangle pattern. This pattern in the data suggests higher lows, but the
highs remain consistent. It typically indicates accumulation and a poten-
tial bullish breakout. The descending triangle pattern has a horizontal
bottom and a descending top line. The highs are getting lower, but the
lows remain consistent. This may suggest selling pressure and a potential
bearish breakout. The symmetrical triangle pattern describes the highs,
and the lows converge to a point, creating a symmetrical triangle. It is a
period of consolidation before the price breaks out.

Flags and pennants patterns are short-term continuation patterns that
mark a slight consolidation before continuing the previous move. The flag
pattern resembles a rectangle sloped against the prevailing trend and is
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characterized by parallel trendlines that form a rectangular flag shape.
The given data indicates a brief consolidation period after a sharp price
movement. The pennant pattern is like the flag but has converging trend-
lines, forming a small symmetrical triangle resembling a pennant. In this
pattern, the price consolidates narrowly after a significant move, suggest-
ing continuation.

m  The cup and handle pattern resembles the shape of a teacup with a han-
dle on its right side. It signifies a period of consolidation followed by a
breakout. In this pattern, the price gradually declines to form the cup,
followed by a smaller bullish retracement, forming the handle, indicating
a bullish continuation trend may follow.

These patterns are a shorthand traders use to predict future market behavior
based on historical price movements. Visualizing them can provide valuable
insights into market psychology and potential price movements. The visual
details of these patterns are presented in the Python code for this chapter in

the appendix.

TECHNICAL ANALYSIS METRICS AND TOOLS

Technical analysis is an important tool for investment and trading strategy
support. It involves signal indicators and MA to predict future price move-
ments. Now, we will delve into critical technical analysis indicators with
Python. We will also cover visualization tools enabling traders to interpret
data through graphical representations, improving the investment decision-
making process.

There are many indicators that traders and analysts use to gain insights into
past price movements and predict future ones. By analyzing and visualizing
these indicators, you can more effectively recognize potential market trends
and signals. Let us observe some of them:

= MA is a smoothing mechanism for stock price data, giving traders a clearer
view of the trend’s direction over different time frames. The different ver-
sions, such as short-term and long-term MAs, can signal impending bull-
ish or bearish crossovers, often triggering strategic moves by traders (as
in Figure 5.4).

= Moving average convergence divergence (MACD) is calculated by reduc-
ing the 26-period EMA on the 12-period EMA.
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= Bollinger Bands consist of a middle band (an n-period SMA), an upper
band, and a lower band at k times an n-period standard deviation above

and below the middle band.

= Volume represents the number of financial asset units traded in the mar-
ket during the period (Figures 5.3 and 5.4). It is used in conjunction with
other indicators and analytical patterns.

= The relative strength index (RSI) is a momentum oscillator that shows
the speed and change of price movements. The RSI is calculated using
average price gains and losses over a specified period. The default time
frame for comparing these averages is typically 14, with periods defined
as anything from minutes to days, depending on the setup for the specific
market being analyzed. The RST oscillates between 0 and 100.

m The stochastic oscillator compares a particular closing price of the finan-
cial asset to a range of its prices over a certain period. The oscillator’s
sensitivity to market movements can be adjusted by changing the period
or taking an MA of the result.

m  Fibonacci retracement is derived from the mathematical Fibonacci
sequence; these horizontal lines indicate potential support and resistance
levels. They are created by drawing horizontal lines across a price chart at
crucial Fibonacci levels (usually 23.6%, 38.2%, 50%, 61.8%, and 100%).

= Ichimoku Cloud provides more data points, which give a fuller picture of
resistance, momentum, support, and trend direction. It uses five lines:
Tenkan-sen, Kijun-sen, Senkou Span A, Senkou Span B, and Chikou Span.

Remember, while these indicators provide insightful information about poten-
tial market movements, they should always be used with other tools and
knowledge for trading decisions.

MAs and their applications, such as Bollinger Bands, MACD, and RSI, are
powerful tools in technical analysis. Let us explore them individually, backed
by Python code examples using the NumPy, pandas, and mlpfinance libraries
for data handling and visualization.

1. # Bollinger Bands plotting function

2. def plot candlestick with bb(df, window=20,

3o no of std=2):
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4. # Calculate Bollinger Bands

5, rolling mean = df['Close'].
rolling (window=window) .mean ()

6. rolling std = df['Close'].
rolling (window=window) .std ()
7. upper band = rolling mean + (rolling std *
no of std)
8. lower band = rolling mean - (rolling std *
no of std)
9. # Add Bollinger Bands to the DataFrame
10. df ['Upper Band'] = upper band
11. df['Lower Band'] = lower band
12. df['Middle Band'] = rolling mean
13. # Plot configuration
14. apds = [mpf.make addplot (df['Upper Band'].
values,
15. color='green'),
16. mpf.make addplot (df['Middle Band'].
values,
17. color="blue'), #
MVA line
18. mpf.make addplot(df['Lower Band'].
values,
19. color="red') ]
20. mpf.plot (df, type='candle', addplot=apds,

volume=True,
21. figsize=(12, 6), style='starsandstripes')
22. # MACD plotting function

23. def plot candlestick with macd(df, spanl=12,
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24. span2=26,

25. signal span=9):
26. # Calculate MACD and Signal line

27. expl = df['Close'] .ewm(span=spanl,

28. adjust=False) .mean ()
29. exp2 = df['Close'] .ewm (span=span2,

30. adjust=False) .mean ()
31. macd line = expl - exp2

32. signal line = macd line.ewm(span=signal span,
33. adjust=False) .mean ()
34. # Plot configuration

35. apds = [mpf.make addplot (macd line.values,
36. panel=1, color='fuchsia',
37. ylabel="'MACD'"),

38. mpf.make addplot(signal line.values,
39. panel=1, color='b')]
40. # Plot

41. mpf.plot(df, type='candle', addplot=apds,

42. volume=False, style='starsandstripes',
43. panel ratios=(6,3), figsize=(12, 6))

44. # RSI plotting function

45. def plot candlestick with rsi(df, window=14):

46. # Calculate RST

47. delta = df['Close'].diff ()

48. up = delta.clip(lower=0)

49, down = -1 * delta.clip (upper=0)

50. # Calculate the EMA of the UPs and DWONs
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51. roll up = up.rolling(window=window) .mean ()

52. roll down = down.rolling(window=window) .
mean ()

53. # Calculate RS and RSI

54. RS = roll up / roll down

55. rsi line = 100 - (100 / (1 + RS))

56. # Create threshold lines

57. overbought line = [70] * len (df)

58. oversold line = [30] * len (df)

59. # Plot configuration

60. apds = [mpf.make addplot(rsi line.values,

61. panel=1,

62. color='"purple',

63. ylabel='RSI"),

64. mpf.make addplot (overbought line,

65. panel=1,

66. color='"red',

67. alpha=0.5,

68. linestyle='"'dashed'),

69. mpf.make addplot (oversold line,

70. panel=1,

71. color="green',

72. alpha=0.5,

73. linestyle="dashed") ]

74. # Ploting

75. mpf.plot(df, type='candle',

76. addplot=apds, volume=False,

77. panel ratios=(6,3),
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78. figsize=(12, o),

79. style='starsandstripes')
80. ##H###AFHAFHAFAFHAFHAHAFHAFHAHA

8l. df = asset.iloc[-100:, 1:]

82. plot candlestick with bb (df)

83. plot candlestick with macd(df)

84. plot candlestick with rsi (df)

The code results are presented in Figures 5.5, 5.6, and 5.7. Within these fig-
ures, the indicators reflect past price changes and can be utilized to refine
future price predictions. For instance, from the onset of the study period until
the end of June, there is a discernible bullish trend: closing prices graze and
marginally breach the upper Bollinger Band, the MACD signal line (darker
one) does not cross the MACD line, and the RST oscillator consistently stays
above 30 and even 70. A sell signal emerges at the end of June, marked by the
MACD lines crossing and the RSI surpassing the 70 thresholds. The Bollinger
Bands, however, do not indicate a shift to a bearish trend, which is only con-
firmed toward the end of July. An inverse pivot is noted between August 4 and
September 1, where all considered indicators concurrently buy signal (close
price lower than lower band, in Figure 5.5; MCAD lines intersect, in Figure
5.6; RST line has inspected the oversold (green) line, in Figure 5.7):
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FIGURE 5.5 Bollinger Bands indicator for Telsa Inc. stocks over a 100-day period
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In Figure 5.5, we see that Tesla Inc.’s stock prices have interacted with these
bands in a manner indicative of the stock’s volatility and the potential trading
strategy that could be deployed. When prices approach the upper band, it
often suggests that the stock is becoming overbought while approaching the
lower band may indicate it is being oversold.

Figure 5.6 shows the momentum oscillator, which clarifies the direction and
strength of the stock’s trend. The MACD line crossing above the signal line
can be considered bullish, while a cross below might suggest a bearish move.
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FIGURE 5.6 MCAD indicator for Telsa Inc. stocks over a 100-day period

Finally, in Figure 5.7, the RSI is analyzed over the same period. This momen-
tum indicator varies between 0 and 100 and is typically used to identify over-
bought or oversold conditions. An RST above 70 suggests that Tesla Inc. may be
overbought and potentially due for a pullback. At the same time, an RSI below
30 could indicate an oversold condition and a possible reversal to the upside:
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There are a lot of different Python libraries for technical analysis automation.
TA-Lib is one of them. It provides tools for computing technical indicators
and trading analytics. It encapsulates the complexity of financial technical
analysis calculations into straightforward function calls, enabling traders and
analysts to focus more on strategy development than mathematical intricacies.
You can find an example of TA-Lib on its official GitHub page, https://github.
com/minggnim/ta-lib, but some of them are presented in the appendix with
this chapter’s Python code.

Let us systemize the main approaches to interpreting Bollinger Bands charts:

= Bollinger Bands consist of three lines. The middle band is typically a
20-day SMA. The upper and lower bands are calculated based on the
standard deviation of price from the SMA. The standard setting is 2 stand-
ard deviations above and below the middle band.

= When the price is closer to the upper band, the market may be considered
overbought, and when it is near the lower band, it may be considered
oversold.

= The distance between the upper and lower bands can indicate market
volatility. Narrow bands indicate low volatility, while wide bands indicate
high volatility.

= A Bollinger Band squeeze, when bands come very close together, may sig-
nal a period of low volatility and is often considered a potential indicator
of future increased volatility and possible breakout.

= Prices breaking through the upper or lower band may signal a continua-
tion of the current trend. To avoid false signals, however, this should be
confirmed with other indicators.

m  Patterns within the bands can be indicative of market behavior. A W-bottom,
when the price makes a low, rises, and then falls back near the lower band,
can be a sign of a potential upward move if the price breaks above the mid-
dle band. Similarly, an M-top suggests a potential downward movement if
the price falls below the middle band after forming the pattern.

The main practical approaches for making investment decisions based on
MACD interpretation can be summarized as follows:

= The MACD line is mainly calculated by subtracting the 26-period EMA
from the 12-period EMA. When the MACD line crosses above the signal
line (the blue or darker one), it may be a sign to buy, and when it crosses
below, it may be a sign to sell.
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The 9-period EMA is typically used as the MACD signal line and helps to
identify potential buy or sell signals based on where it crosses the MACD
line.

The MACD’s crossing of the zero line can indicate a position’s overall
direction. If the MACD crosses above zero, it suggests upward momen-
tum (bullish); if it crosses below zero, it is downward momentum (bearish).

When the price of an asset is moving in the opposite direction of the
MACD, it is known as divergence and can indicate a potential reversal.
For example, if the price is making new highs but the MACD is not, it
could suggest the uptrend is losing momentum.

The RST analysis results can also be described as follows:

RSI values range from 0 to 100, and the indicator typically uses thresholds
of 70 and 30 to identify overbought or oversold conditions, respectively.

When the RSI exceeds 70, the asset may be overbought and primed for
a price pullback or trend reversal. Then, the RSI below 30 indicates an
oversold condition, suggesting a potential upward price reversal.

The RSI value 50 acts as a centerline between bullish and bearish trends.
If the RSI crosses above 50, it is considered bullish; if it falls below 50, it
is considered bearish.

If the RSI moves in the opposite direction of the price (the price moves
up while the RSI moves down, or vice versa), it is known as divergence
and may indicate a potential price reversal.

Swing rejections involve looking for situations where the RSI briefly
moves into overbought or oversold territory and then reverses and exits
these zones. This change can be a sign of a potential price reversal.

RSI can be used to confirm the strength of a trend. During an uptrend,
the RSI stays above 30 and frequently hits 70. During a downtrend, the
indicator usually stays below 70 and frequently touches 30.

Remember, Bollinger Bands, MACD, RSI, and any other technical indica-
tor should not be used in isolation. They are most effective only with other
technical indicators, graphical patterns, or fundamental analysis to confirm
trading signals.
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CONCLUSION

To conclude our exploration of investment strategies within financial markets,
we have encountered rich strategies, each with unique insights and outcomes.
Investment strategies can be broadly categorized into behavioral, analytical,
and trading strategies, each harnessing distinctive facets of market psychology,
quantitative analysis, and tactical trade execution. Behavioral strategies delve
into the general motivations of invertor and risk attitude, analytical strategies
employ rigorous analysis methods and tools, and trading strategies focus on
the timing and execution of trades to capitalize on market fluctuations.

When we pivot to the domain of fundamental analysis, we see its vital role in
discerning the value of financial assets. Python’s native tools do not directly
support this analysis. It is excellent as a data-handling language; however, col-
lecting financial data and calculating key investment metrics such as EPS,
ROE, and P/E ratios. Those metrics are additional evidence in evaluating
a company’s financial health and growth potential and supporting informed
investment decisions. They help with achieving support for an investment
strategy goal. We can also collect and analyze other fundamental indicators
for stock, currency, and cryptocurrency markets.

Graphical analysis enhances our visual interpretation of market data through
candlesticks, bar plots, and volume analysis, complemented by pattern recog-
nition. The Matplotlib and mplfinance Python libraries are powerful allies in
this context, offering advanced and combined graphical representations that
clarify market trends and patterns. These tools enable investors to decode the
narrative of market dynamics visually.

Technical analysis is our compass in the vast ocean of market data, guiding
us through various indicators and visualization techniques. Bollinger Bands,
MACD, and RSI stand out as beacons among these indicators, each provid-
ing unique insights into market momentum, trends, and potential reversals.
Integrating libraries such as TA-Lib and its variations facilitates the computa-
tion of these indicators, streamlining the analytical process for investors.

A synergistic approach combining fundamental, graphical, and technical

analysis with Python’s analytical power is key to creating and executing more
informed, robust, and efficient investment strategies.
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QUESTIONS

1. What different investment strategies do you know?

2. What are the critical differences between technical, fundamental, and
graphical analysis in the context of trading strategies?
How can fundamental analysis be applied to enhance investment strategy?

4. Describe how Python can be utilized for financial market data analysis
visualization techniques.

5. What are the advantages of using graphical analysis tools and patterns in
trading?

6. How do volume trading data, support, and resistance lines in graphics
inform trading decisions?

7. Discuss how technical analysis supports the development and refinement
of trading strategies.

8. How does applying moving averages in technical analysis assist in making
trading decisions?

9. In what manner do advanced candlestick charts aid in the interpretation
of market data?

10. Describe a situation where technical analysis indicators may conflict with
fundamental analysis findings.
KEY TERMS

= An investment strategy in the financial market is defined as a variety of
approaches and methods used by investors to maximize the efficiency of
realizing the potential of their financial assets.

= A behavioral investment strategy can be regarded as a multidimen-
sional framework reflecting the investor’s behaviors, financial goals, risk
tolerance, time commitment, market perspective, and other subjective
feelings.

= A trading strategy is a customized approach designed for investors to
decide when buying and selling securities in the financial market.

= An analytical investment strategy is a systematic approach to making

investment decisions based on various analysis methods.
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CHAPTER

ASSET PRICING AND PORTFOLIO
MANAGEMENT

INTRODUCTION

This chapter focuses on the crucial aspects of financial asset pricing and allo-
cation and portfolio management. It provides a detailed exploration of differ-
ent approaches to asset allocation, equipping readers with a broad perspective
on portfolio construction. The chapter begins by looking at the modern port-
folio theory (MPT) and models and presents a comprehensive framework
for optimizing portfolios (with the Markowitz and Sharpe ratio optimization
models). It dives into using simulations for portfolio strategy visualization and
math optimization methods for decision-making. We will discuss the basic
concepts, metrics of financial data statistics, and applications of regression
models. We will also describe the basics of the capital asset pricing model
(CAPM). CAPM is implemented in Python as a regression model between the
expected asset return rates and the market index growth rate.

By the end of this chapter, you will be able to apply Python tools to implement
portfolio theory methods, CAPM, and regression models.

STRUCTURE

This chapter covers the following topics:

s Allocation of financial assets
= Portfolio theory with Python (simulations and optimization)

= Regression model essentials with Python
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OBJECTIVES

By the end of this chapter, you will be familiar with Python tools for esti-
mating stock portfolio parameters and the parameters of regression models.
You will have mastered the basics of MPT to inform long-term investment
strategies. This chapter will examine foundational portfolio theories, such as
Markowitz’s model and the Sharpe ratio criteria. Using statistical tools and
regression models, you can quantify the risk-return ratio to make investment
decisions. You will also become familiar with the power of Python’s statistical
libraries, such as statsmodels and SciPy, for regression analysis and finding the
optimum solutions mathematically. These tools play an important role in ana-
lyzing complex relationships in financial datasets, providing accurate assess-
ments of the performance of different portfolio models.

ALLOCATION OF FINANCIAL ASSETS AND CORE METRICS
WITH PYTHON

As we know from Chapter 5, Investment and Trading Strategies, various
investment strategies are available in the financial market. Each strategy has
unique objectives, methods, and models designed to support informed invest-
ment decisions. Classical financial models are usually used for long-term capi-
tal investment strategies. They focus on owning or acquiring assets with the
goal of future growth in their value. These models primarily cover portfolio
theories, methods of optimal asset allocation, and regression relations. Such
models provide a fundamental, structured approach to efficiently allocating
investments across different assets. The goal of optimization is usually to bal-
ance risk and potential return growth, taking into account the current market

dynamics.

If we have a certain amount of investment, we can use it to purchase either
one type of financial asset or a group of assets in different proportions. In
this situation, we face the concept of asset allocation. Asset allocation plays
a pivotal role in stock market investment strategies. It involves distributing
investments across various assets to balance risk and return according to an
investor’s time frame, risk tolerance, and investment objectives. In the context
of the stock market, asset allocation is how an investor divides their invest-
ments into different categories, such as stocks, bonds, cryptocurrencies, and
cash. This diversification helps in mitigating the risks associated with market
volatility and sector-specific downturns.
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The Python programming language and its special libraries and tools, dis-
cussed in previous chapters, enable us to explore the risk and returns of allo-
cating different financial asset types. The approach of this chapter combines
various allocation options, such as computer simulation, with user-controlled
operations. We will begin by discussing the concept of a stock exchange index
and listed securities, which demonstrate the ideology and strategy behind
effective financial investments. We will conclude by going through the opti-
mal asset allocation structure for the investment portfolio.

A stock market index is a statistical measure that reflects the weighted value
of a selected group of securities. In fact, it is the weighted price of all related
assets. The NASDAQ composite is a market capitalization-weighted index,
meaning companies with larger market caps significantly impact the index’s
movement. The weights used in the index calculation are based on market
capitalization and are adjusted periodically along with the divisor. The divi-
sor is adjusted periodically to reflect changes such as stock splits, making it a
dynamic measure. Therefore, the stock index helps to understand the overall
trend and performance of a stock market. The crucial problem for the index
estimation, however, is listed securities (the assets are used for the calculated
index). NASDAQ is a notable example of a stock market index known primar-
ily for listing technology and biotech companies. It tracks the performance of
all stocks listed on the NASDAQ stock exchange'. This index is often used as a
barometer for the overall performance of the tech sector. It is watched closely
by investors for insights into the health of the technology and innovation-
driven sectors of the economy.

The data for stock indexes is listed and published on official Web sites.
For NASDAQ, the main components can be viewed on Yahoo Finance at
the Yahoo Finance NASDAQ components page (https://finance.yahoo.com/
quote/%5EIXIC/componentsPp=%5EIXIC). Use the following code to gener-
ate a nasdaqg_tickets list and DataFrames with assets price (df) and NDX
NASDAQ index (index data) dynamics (the top 30 components may differ
by the time you read this from those you see in the following code as the mar-
ket is changing dynamically):

'More details about NASDAQ methodology can be found on the official Web site: https://indexes.
nasdagomx.com/
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1. # Top assets of the NASDAQ Stock Exchange
2. nasdag tickers = |
3. 'MRNA', # Moderna, Inc.
4. 'DLTR', # Dollar Tree, Inc.
5. '7ZS"', # Zscaler, Inc.
6. 'MCHP', # Microchip Technology Incorporated
7. 'SBUX', # Starbucks Corporation
8. '"HON', # Honeywell International Inc.
9. 'JD', # JD.com, Inc.
10. 'DDOG', # Datadog, Inc.
11. 'AMAT', # Applied Materials, Inc.
12. 'AAPL', # Apple Inc.
13. 'AMGN', # Amgen Inc.
14. '"INTU', # Intuit Inc.
15. 'PCAR', # PACCAR Inc
16. 'MDLZ"', # Mondelez International, Inc.
17. 'CSGP', # CoStar Group, Inc.
18. 'FTNT', # Fortinet, Inc.
19. 'KDP', # Keurig Dr Pepper Inc.
20. 'META', # Meta Platforms, Inc.
21. 'VRSK', # Verisk Analytics, Inc.
22. 'MAR', # Marriott International, Inc.
23. 'MRVL', # Marvell Technology, Inc.
24, 'AZN', # AstraZeneca PLC
25. 'ILMN', # Illumina, Inc.
26. 'ENPH', # Enphase Energy, Inc.
27. 'SIRI', # Sirius XM Holdings Inc.
28. 'MELI', # MercadoLibre, Inc.



29,
30.
31.
32.
33.
34.
35.
36.
37.
38.
39
40.

41.
42.
43.

44,
45.

46.
47.
48.
49.
50.
51,
52.
53.
54.
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'ZMm!', # Zoom Video Communications, Inc.
'TSLA', # Tesla, Inc.
'BKR', # Baker Hughes Company
'URBN' # Urban Outfitters, Inc.
]
start="'2021-01-01"
end='2023-10-01"
# Download data from the Yahoo Finance
df = yf.download(tickers=nasdaq tickers,
start=start, end=end,
actions=False)

# Make a subset by the 'Adj Close' and 'Volume'
columns

df = df.loc[:, ['Adj Close', 'Volume']]
df = df.sort index()

# Creating a Multi-Level Column Structure for
"RoR'

pct = df['Adj Close'].pct change ()

pct.columns = pd.MultiIndex.from product
([['"RoR'],

pct.columns])

# Concatenating the new 'RoR' DataFrame with
# the original DataFrame

df = pd.concat ([df, pct], axis=1l)

df .dropna (inplace=True)

# Displaying the updated DataFrame

print (df.head())

# Save data into resulting files

df.to _excel ('nasdag assets.xlsx")
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55. df.to csv('nasdag assets.csv')
56. # Fetching data for NASDAQ-100 index
57. index ticker = '~NDX'

58. index df = yf.download(index ticker,

59. start=start,

60. end=end)

61. index df['RoR'] = index df['Adj Close'].
pct change ()

62. index df.dropna(inplace=True)
63. print(index df.head())

64. index df.to excel('nasdag index.xlsx')

65. index df.to csv('nasdag index.csv')

The DataFrames and files generated by executing the code will be utilized in
this and other chapters to apply various financial models, regression analysis,
forecasting, visualization techniques, portfolio allocation, etc. The metrics for
this chapter’s code examples (the rate of returns (RoR), logarithmic RoR, and
so on) are described in Chapter 2, Python Tools for Data Analysis: Primer
to pandas and NumPy, and Chapter 3, Financial Data Manipulation with
Python. They are frequently employed in graphical and technical analysis (see
the previous chapter). Cumulative return and cumulative RoR are other cru-
cial metrics for long-term strategies, particularly in portfolio management.

The cumulative return indicates the total amount of money gained or lost
by an investment from the initial investment period. It provides a straight-
forward way to understand the overall performance of an investment from
the start to the end of a specific period. This metric can be calculated in two
ways, depending on whether you want to express it as total growth (including
the original investment) or as net growth (only the gain or loss from the initial
investment).

The cumulative RoR represents the cumulative return in rate terms. As a
result, this is the same indicator as the cumulative return; the only differ-
ence is the calculation procedure. In this chapter, we will use these terms as

Synonyis.
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The cumulative return (total) is estimated as follows:

Cumulative return (Total) = (Current value / Initial value) x 100

The cumulative return (net) is estimated as follows:

Cumulative return (net) = ((Current value / Initial value) — 1) x 100

Let us execute the following code to understand the cumulative return (total)
for NASDAQ-listed securities:

1,

10.
11.
12.
13.
14.
15.
16.

# Calculate cumulative returns (total) for each
stock

cum_returns = (df['Adj Close'] /
df['"Adj Close'].iloc[0])

# Select the top and the bottom 5 performing
stocks

top = cum returns.iloc[-1].sort values (
ascending=False) [:5] .index

bottom = cum returns.iloc[-1].sort values(
ascending=False) [-5:].index

# Plot the cumulative returns of

# the top and bottom 5 stocks

cum_returns[top] .plot (figsize=(10, 5))

plt.legend (loc="upper left')

plt.show ()

cum_returns [bottom] .plot (figsize=(10, 5))

plt.legend(loc="upper left')

plt.show ()

This code example is intended to calculate and visualize the cumulative RoR
for NASDAQ-listed securities (stocks). Here are some notes on the code:
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= Suppose all our investment is allocated to one financial asset. Therefore,
each stock’s cumulative RoR is calculated by dividing its adjusted closing
price by its initial adjusted closing price.

m The tickers (as an index) are then ranked based on their final cumula-
tive returns, and the top five and bottom five final investment results are

defined.

Two plots are created (through the code execution) to visualize the cumulative
returns (or RoR) of the five top (see Figure 6.1) and five bottom (see Figure 6.2)
shares:
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FIGURE 6.1 Dynamics of cumulative returns of top five securities

Figure 6.1 shows the most significant increase in the adjusted closing price
relative to the initial price over the period is for the FTNT and BKR securi-
ties. The volatility of FTNT, however, is more significant than MELI. Suppose
we bought Fortinet, Inc. stocks in January 2022 or May 2023. As a result, we
would have seen losses in the investment value in September 2023.
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FIGURE 6.2 Dynamics of cumulative returns of bottom five securities
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Figure 6.2 shows the cumulative returns of the bottom five performing stocks
on NASDAQ. These stocks have shown the slightest increase, or potentially
even a decrease, in their adjusted closing price relative to their initial price. If
we had sold ENPH stocks in January 2023, however, we would have gained a
profit in the growth of investment value.

Both plots are essential for investors as they visually represent both high and
low performers in the market, which can inform decisions on asset allocation.
Thus, each security on the stock market has its specific characteristics, which,
within the framework of assets allocation principles, come down to risk assess-
ments and return on investment when using them.

The core financial metrics of profitability and risk assessment can be esti-
mated by executing the following code:

1. RoR = df['RoR"']

2. # Calculate the mean, std, and mean/std ratio
(yearly)

3. mean vals = RoR.mean () * 252
4. std vals = RoR.std() * np.sqrt(252)
5. ratio vals = mean vals / std vals

6. # Create a figure and a set of subplots (2 plots)

7. fig, (axl, ax2) = plt.subplots(2, 1, figsize=(10,
&) o

8. gridspec kw={'height
ratios':

9. (2, 11})

10. # Plotting mean values as a bar plot in the first
subplot

11. axl.set title('RoR and and Sharpe Ratio
(yearly) ")

12. axl.bar(mean vals.index, mean vals,
color='skyblue', label='RoR")
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13. # Plotting mean/std ratio as a line plot on the

same axes

14. axl.plot(ratio vals.index, ratio vals,
color="'green',

15. marker='o', linestyle='-"', label='Sharpe
Ratio')

16. # Rotate x-axis labels for the first subplot
17. axl.tick params (axis='x'"', rotation=90)
18. axl.legend()

19. # Plotting std values as a bar plot in the second
subplot

20. ax2.set _title('Volatility (yearly)")

21. ax2.bar(std vals.index, std vals,

22. color='orange', label='Volatility')
23. # Rotate x-axis labels for the second subplot
24. ax2.tick params(axis='x', rotation=90)

25. ax2.legend()

26. # Adjusting layout and showing the plot

27. plt.tight layout ()

28. plt.show()

The code calculates and visualizes key annual financial metrics for profitabil-
ity and risk. Here are some notes on the code and financial metrics:

= mean vals shows the annual average RoR for each security by multiply-
ing the daily mean RoR by 252, the typical number of trading (working)
days in a year.

m std vals characterizes the annual standard deviation, a measure of vola-
tility, by multiplying the daily standard deviation by the square root of
252. This transforms daily volatility into annual volatility.

= ratio vals represents the Sharpe ratio, which is the mean vals
divided by std vals. This ratio is used to understand the return on an
investment compared to its risk.

= Two subplots are created based on these metrics, depicted in Figure 6.3.
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Volatility is a statistical measure of the average gaps of returns for a given secu-
rity or market index. In finance, volatility is often measured as the standard
deviation of returns. Higher volatility indicates a higher risk of the investment.
Annual volatility may be calculated by scaling up the daily standard deviation:

Annual volatility = (Number of trading days in a year)o‘s x Daily volatility

The Sharpe ratio, developed by Nobel laureate William F. Sharpe, is a measure
used to evaluate the risk-adjusted return of an investment portfolio or a single
asset. It is defined as the investment’s excess return minus the risk-free rate per
unit of volatility or total risk. The Sharpe ratio is a way to quantify how much
return an investor is receiving for the risk taken. The higher the Sharpe ratio,
the better the risk-adjusted returns. When analyzing stocks, the Sharpe ratio
can be used to determine how well the return of the stock compensates the
investor for the risk taken. In this context, the Sharpe ratio of a stock is calcu-
lated using the stock’s average return over a specified period minus the risk-free
rate, all divided by the standard deviation of the stock’s returns over that period:

Sharpe ratio = (Average rate of return) / Volatility

The visualization examples of those metrics for 30 securities of the NASDAQ
stock market are represented in Figure 6.3:
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FIGURE 6.3 Annual RoR, volatility, and Sharpe rate for 30 securities of the NASDAQ stock market
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Here, the upper plot (Figure 6.3) demonstrates both the RoR and the Sharpe
ratio by showing blue bars for the RoR and a green line for the Sharpe ratio.
Using bars and a line allows investors to assess the securities” absolute and
risk-adjusted returns. The lower plot displays the volatility of each security
as orange bars. This representation highlights the risk associated with each
security based on the variability of their returns. For example, FTNT's stock
shows the greatest level of annual RoR. It also has the highest Sharpe rate
and volatility (see Figure 6.1 for a better understanding of FTNT’s cumula-
tive RoR dynamics). The lowest volatility is shown for MDLZ, but its RoR is
close to average. The Sharpe rate for Mondelez International, Inc. securities
is high, too, however, because it shows both less RoR and less volatility.

PORTFOLIO THEORY AND DIVERSIFICATION

Despite the possibility of evaluating numerous financial metrics for market
securities, putting all your eggs in one basket is not a good decision. In invest-
ment practice, financial asset allocation is diversified based on the value of
crucial metrics. Portfolio management involves selecting a mix of investment
assets to achieve financial goals. It aims to weigh risk and return through diver-
sification. By spreading investments across various assets, investors reduce
the impact of each poor-performance asset. This strategy enhances stability
and growth potential.

The effect of diversification can be demonstrated by executing the following
code:

1. # Example of Portfolio Structures
2. portfoliol tickers = ['MELI', 'DLTR'"]
3. portfolio2 tickers = ['TSLA', 'DDOG']

4. # Calculate the cumulative return for a portfolio
consisting

5. # of 'MELI' and 'DLTR' with a 50% allocation to
each

6. portfiloil cum = 0.5 * cum returns|[portfoliol
tickers[0]] + \
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0.5 * cum returns[portfoliol
tickers[1]]

# Plot the individual cumulative returns of
'"MELI' and 'DLTR'

cum_returns[portfoliol tickers].plot (figsize=(10, 5))

# Plot the cumulative return of the combined
portfolio # ('MELI' and 'DLTR')

portfiloil cum.plot ()

# Calculate the cumulative return for another
portfolio # consisting of 'TSLA' and 'DDOG'

# with a 70% allocation to 'TSLA' and 30% to
"DDOG'

portfolio2 cum = 0.7 * cum returns[portfolio2
tickers[0]] + \

0.3 * cum returns[portfolio2
tickers[1]]

# Plot the individual cumulative returns of
"TSLA' and 'DDOG'

cum_returns[portfolio2 tickers].plot (figsize=(10, 5))

# Plot the cumulative return of the combined
portfolio # ('TSLA' and 'DDOG')

portfolio2 cum.plot ()

This code demonstrates how to structure and analyze two investment portfo-
lios using cumulative returns for each stock. The resulting plot for a portfolio
of MELI and DLRT stocks is depicted in Figure 6.4. The second plot and its
Python code can be found in the appendix to this chapter:
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FIGURE 6.4 The cumulative return dynamic for two shares and its proportional
portfolio (the central line is the portfolio line)

As illustrated in Figure 6.4, the individual cumulative returns growth from
two stocks exhibits significant fluctuations, particularly in mid-2022. The vola-
tility significantly decreases, however, if we proportionally divide our invest-
ments (allocating 50% to each asset). Moreover, let us consider long-term
investments (without monthly buying and selling). The cumulative returns
remain roughly 50% (the central line in the last period is positioned midway
between the blue (upper) and orange (bottom) lines). Therefore, this alloca-
tion achieves asset diversification.

Therefore, financial asset diversification means allocating investments across
various assets to reduce the risk trends of any single asset. An important point
is the dissimilarity of assets in their behavior. Thus, diversification is the strat-
egy of spreading the investment across different assets to mitigate potential
losses, as the return and performance of the assets are not directly correlated.

Execute the following code to assess the core financial metrics related to the
diversification of different assets (in this example, the asset proportions are
determined based on random number generation). As we know from Chapter
5, Investment and Trading Strategies, there are many different investment
strategies.
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def calculate portfolio metrics(df, w):
# Calculate log returns

log RoR = (df / df.shift(1l)).apply(np.log).
dropna ()

# Calculate portfolio return
PROR = np.sum(log RoR.mean() * w) * 252
# Calculate standard deviation (two methods)

sdl = np.sqrt(np.dot(w.T, np.dot(log RoR.
cov () * 252, w)))

sd2 = (log RoR.mul (w).sum(axis=1).std() *
np.sqrt (252))

# Calculate Sharpe Ratio

s _rate = pRoR / sd2

return (pRoR, sdl, sd2, s rate)

VA
trtttatA

# Define the portfolio tickers

portfolio3 tickers = ['FINT', 'BKR', 'PCAR',
'KDP', 'MDLZ']

# Allocaton Assets
np.random.seed (100)
for p in [portfoliol tickers,
portfolio2 tickers,
portfolio3 tickers]:
w = np.random.random (len (p))
w /= np.sum(w)

pm = calculate portfolio metrics (df['Adj]
Close'] [p], w)

print (f"Portfolio Assets: {p}")
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NOTE

25. print (f"Portfolio weights: {w}")

26. print (f"Rate of Return: {pm[O0]}™)

27. print (f"Standard Deviation (Type 2):
{pm[2]}")

28. print (f"Sharpe Ratio: {pm[3]}")

The code’s result is as follows:

Portfolio Assets: ['MELI', 'DLTR']

Portfolio weights: [0.66125811 0.33874189]

Rate of Return: -0.06459390136996225

Standard Deviation (Type 2): 0.43648406233426223

Sharpe Ratio: -0.14798684979360333

Portfolio Assets: ['TSLA', 'DDOG']

Portfolio weights: [0.33445182 0.66554818]

Rate of Return: -0.0025730388206032765

Standard Deviation (Type 2): 0.5358543707894354

Sharpe Ratio: -0.004801750178528179

Portfolio Assets: ['FTNT', 'BKR', 'PCAR', 'KDP', 'MDLZ']

Portfolio weights: [0.00268178 0.06908921 0.38119485
0.46934215 0.07769201]

Rate of Return: 0.10088858260039776
Standard Deviation (Type 2): 0.1681572353606613

Sharpe Ratio: 0.5999657545749568

In the code, the np.random.random() function from NumPy is used. The func-
tion generates an array of random numbers from a uniform distribution over
the interval (0, 1). np.random.seed(100) sets the seed for NumPy's random
number generator. It means that Python can generate random values in the
same sequence of random numbers every time you run the code.
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The code results showcase the calculated financial metrics for three different
combinations of asset allocation. For the first portfolio, consisting of *MELI’
and ‘DLTR’, the RoR is negative, with substantial volatility, resulting in a
negative Sharpe ratio. The second portfolio, containing *TSLA’ and ‘DDOG’,
also shows a negative RoR, higher volatility, and a negative Sharpe ratio. The
third portfolio, with a diversified mix of ‘FTNT’, ‘BKR’, ‘PCAR’, ‘KDP’,
and ‘MDLz’, presents a positive RoR, lower volatility, and the most favorable
Sharpe ratio, indicating an efficient diversification.

Thus, to ensure the maximum effect of diversification, appropriate assets with
varying market behaviors must be selected. This selection should be based on
comprehensive analysis across the entire investment horizon, not solely on
individual metrics.

Markowitz’s Portfolio Theory and Its Modifications

Markowitz’s portfolio theory, also known as the modern portfolio theory, or
MPT, was introduced by Harry Markowitz in the 1950s. This groundbreaking
concept revolutionized how investors construct an image portfolio, empha-
sizing 9the importance of diversification and the trade-off between risk and
return”. According to MPT, more is needed beyond looking at the expected
risk and return of one security; instead, you must consider how each asset’s
price movements are correlated with every other asset in the portfolio. This
concept is essential for all investors, especially when implementing a long-
term investment strategy. Approaches to its implementation, however, are
constantly being improved.

Markowitz’s portfolio theory suggests that an investor can construct a frontier
of optimal portfolios offering the maximum expected return for a given level
of risk. These are efficient portfolios and lie on the efficient frontier. The key
is to find the balance where the portfolio’s overall risk is minimized for a given
level of expected return.

The classical Markowitz’s portfolio theory optimization model and its varia-
tions are as follows.

*Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. John Wiley
& Sons
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Model 6.1: Risk Minimization Strategy

The portfolio variance (Var,) as an optimality criterion is represented by the
sum of the product of welgﬁts and the covariance between the RoR of assets
i and j, for all pairs of assets in the portfolio. In addition, the expected RoR
for the portfolio (E(RoR))) should be greater than or equal to the minimum
acceptable RoR (RoR,,,,):

Var, = X % w,;x w; X Cov(RoR, R()Rj) -> min
E(RoR,) = 2 w,x E(RoR,) > RoR
2w;=Lw,20foralli

min

Where:

= w,is the weight of the asset i in the portfolio.
= E(RoR,)and E (RORP> are the expected RoR of the asset i and the portfolio.
= RoR,,, is the minimum expected RoR of the portfolio.

nun

= Var, is the variance of the portfolio’s return.

= Cou(RoR,, RoR, ) is the covariance between the returns of assets i and j.

The classical Model 6.1 operates under the premise that an investor minimizes
the portfolio’s risk by adjusting the asset weights (w,) structure. Here, various
indicators can measure risk, ranging from variance to standard deviation. In
all optimization tasks, it is assumed that the asset structure cannot have nega-
tive asset weights, and the sum of all weights (w,) always equals 1. Although
these constraints may be relaxed in more advanced scenarios, they align with
the asset allocation principles we will adhere to in our subsequent analysis.

In Model 6.1, it is possible to introduce an additional constraint on the port-
folio’s minimum expected RoR. This is because, in the pursuit of minimizing
risk, the portfolio might exclude assets that, while reducing risk, could also
significantly diminish the portfolio’s returns, potentially to 0.

Model 6.2: RoR Maximization Strategy

This strategy is tailored to maximize the portfolio’s expected return given a
specific level of risk tolerance. Therefore, the expected RoR for the portfo-
lio (E(RoR ) ) is maximized. On the other hand, the portfolio variance (Var ),
which represents the risk, is kept below a specified maximum variance (Var,

lllll\>
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E(RoR,) = X w,x E(RoR,) —> max
Var, < Var

max

2w,=1;w,20foral 1

Here, — Var,,,,
to the investor.

is the maximum variance of the portfolio’s return acceptable

Model 6.2 is the converse of Model 6.1, wherein the portfolio’s RoR is maxi-
mized. This model may include a constraint on the maximum acceptable
risk of the portfolio. Here, volatility constraints can be measured in terms of
standard deviation or its square, which must be considered when formulating
the optimization task.

Model 6.3: Sharpe Rate Maximization Strategy

The investment strategy is based on the Sharpe ratio of the portfolio
(SharpeRatio,), which is defined as the ratio of the expected return of the port-
folio (E(RoRp)) divided by the portfolio’s standard deviation (SDP = Varpo'b):

SharpeRatio, = E(RoR,) / Varpo"s —> max
2 w,=1;w,20 forall i,

A comprehensive solution is presented in Model 6.3, which aims to maximize
the Sharpe ratio. This model effectively combines the multiple constraints of
Models 6.1 and 6.2 and is most frequently employed in investment calcula-
tions. It strikes a balance between seeking returns and managing risk, thereby
aligning with the investment principle of not simply seeking the highest RoR
or the lowest volatility in isolation but rather the most expected return for a
given level of risk.

Modifications of the Original Markowitz’s Portfolio Theory

Since the inception of MPT, several modifications and extensions have been
proposed to address its limitations and apply it to a broader range of invest-
ment scenarios:

m  The post-modern portfolio theory (PMPT) considers that investors prefer
positive skewness and are more concerned about downside risk than vari-
ance (downside or upside). PMPT focuses on the probability of meeting
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or falling short of the desired return rather than on expected variance
(see details here: hitps://en.wikipedia.org/wiki/Post-modern_portfolio_
theory). The Sortino ratio is the typical metric within PMPT. It focuses
only on downside volatility, which better reflects the risk of not meeting
the investor’s target return.

» The Black-Litterman model incorporates expected returns as a direct
input, which allows the portfolio to include subjective views. It is a more
advanced implementation that seeks to overcome some of the perceived
limitations of MPT, particularly in asset allocation (see details here: https://
en.wikipedia.org/wiki/Black—Litterman_model).

= The behavioral portfolio theory recognizes that investors may only
sometimes act rationally; this model incorporates concepts from
behavioral economics. It considers the psychological factors that can
influence the investment decisions of individuals. These principles
are challenging to illuminate with formal statistical data (see here:
https://breakingdownfinance.com/finance-topics/behavioural-finance/
behavioral-portfolio-theory-bpt/).

»  The risk parity strategy modifies the traditional portfolio allocation to pri-
oritize risk rather than capital. Each asset in the portfolio proportionally
contributes to the overall risk, which can lead to a more stable perfor-
mance across different market conditions (see details here: https://www.
investopedia.com/articles/active-trading/091715/how-create-risk-parity-
portfolio.asp).

= The value at risk (VaR) portfolio optimization metric is recognized to
minimize the potential loss in value of a portfolio over a specified period
for a given confidence interval. It helps with understanding extreme
(not average) risks and sets risk limits. This method will be discussed in
Chapter 8, Risk Assessment and Volatility Modeling.

As we delve deeper into the nuances of portfolio construction, it becomes
clear that the process is both an art, in terms of understanding data, and a
fundamental science. New approaches and practical examples appear almost
every day. The following examples in this chapter will consider traditional
modifications of MPT. Thus, understanding the principles of portfolio theory
and their practical application, complemented by computational tools such
as Python, will allow you to feel the connection between data and long-term
investment strategy results.
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Simulation Method for Estimated Optimal Asset Allocation

Asset allocation and its optimization are at the heart of portfolio management.
The simulation method is an applied technique used to determine the opti-
mal asset allocation with Python and other programming language tools. This
approach allows us to estimate the potential returns and risks of different
asset combinations, giving us insight into which mix might select the best bal-
ance of risks and returns.

The following code represents a sequence of procedures for simulating a set
of estimates (2,000) for the distribution of assets in a portfolio for further
search for the optimal weights within the selected optimization strategy. This
method is commonly named Monte Carlo simulation (it will be discussed in
detail in Chapter 8, Risk Assessment and Volatility Modeling).

Let us run the code and analyze the results:

10.
11.
12.
13.
14.
15.

# Number of simulations to run

simulation numbers = 2000

# Define the tickers for the portfolio

portfolio tickers = portfolio3 tickers

# Generate random weights for all simulations

weights = np.

random.random( (simulation numbers,

len(portfolio tickers)))

weights /= weights.sum(axis=1) [:, np.newaxis]

# Initialize arrays to store the results of the

simulations

RoR arr = np.

sdl arr
sd2_arr = np

sharpe arr =

np.

zeros (simulation numbers)

zeros (simulation numbers)

.zeros (simulation numbers)

np.zeros (simulation numbers)

# Run simulations to calculate portfolio metrics

for i in range(simulation numbers) :
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16.
17.
18.

19.

20.

21.

22.
23.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35,
36.
37.

# Current set of weights
w = weights[i]

# Calculate portfolio metrics for the current
weights

portfolio assets = df['Adj Close']
[portfolio tickers]

m = calculate portfolio metrics (portfolio
assets, w)

RoR arr[i], sdl arr([i], sd2 arr[i], sharpe
arr[i] = \

# Create a DataFrame to store the simulation
results

portfolio results = pd.DataFrame ({
'Weights': list (weights),

'Rate of Return': RoR arr,

'Standard Deviation (Type 1)': sdl arr,
'Standard Deviation (Type 2)': sd2 arr,
'Sharpe Ratio': sharpe arr

})

# Scatter plot of the simulation results
plt.figure (figsize=(10, 5))

plt.scatter (portfolio results['Standard Deviation
(Type 2)'],

portfolio results['Rate of Return'],
c=portfolio results['Sharpe Ratio'],
cmap='viridis")

plt.colorbar (label="'Sharpe Ratio')
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plt.xlabel ('Standard Deviation (Type 2)")
plt.ylabel ('Rate of Return')
# Find the key points of the portfolios

# Index of the portfolio with the max Sharpe
Ratio

max_ sharpe idx = portfolio results['Sharpe
Ratio'].idxmax ()

# Index of the portfolio with the min Standard
Deviation

min std idx = portfolio results['Standard
Deviation (Type 2)'].idxmin ()

# Index of the portfolio with the max Rate of
Return

max ror idx = portfolio results['Rate of
Return'].idxmax ()

# Highlight key points in the scatter plot

plt.scatter (portfolio results.loc[max sharpe idx,
'Standard Deviation (Type 2)'1l,

portfolio results.loc[max sharpe idx,

'Rate of Return'],
color='red', marker='*', s=100,
label="Max Sharpe Ratio')

plt.scatter (portfolio results.loc[min std idx,

'Standard Deviation (Type 2)'l,

portfolio results.loc[min std idx,
'Rate of Return'],

color="black', marker='*"', s=100,
label="Min Standard Deviation')

plt.scatter (portfolio results.loc[max ror idx,
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59. 'Standard Deviation (Type 2)'l],
60. portfolio results.loc[max ror idx,
6l. 'Rate of Return'],
62. color="'blue', marker='*', s=100,

63. label="Max Rate of Return')

64. plt.legend()
65. plt.title('Portfolio Optimization')

66. plt.show()

The code uses the simulation approach to portfolio optimization. There are
the estimation steps taken in the code:

1.

Initialize variables and constants for simulation experiments: The con-
stant simulation numbers = 2000 defines how many random port-
folio compositions will be simulated. The variable portfolio tickers
holds the asset names included in the portfolios. An array of random
weights is created for each asset in every simulated portfolio, ensuring
that the sum of weights in each portfolio equals 1.

Calculate portfolio metrics (simulations): The predefined portfolio met-
rics are used to calculate key financial metrics for each portfolio—RoR,
two types of standard deviation, and the Sharpe ratio—using the calcu-
late portfolio metrics function.

Create a resulting DataFrame: The calculated metrics for each simulation
are compiled into a pandas DataFrame named portfolio results.
This structured data format is conducive to analysis and visualization.

Visualize the simulation results: A scatter plot is generated with the stand-
ard deviation on the x axis, RoR on the y axis, and point color represent-
ing the Sharpe ratio (Figure 6.5). Three key portfolios are identified and
highlighted: one with the maximum Sharpe ratio, one with the minimum
standard deviation, and one with the maximum RoR. These points are
visually distinguished by color and marker style, providing clear indicators
of optimal portfolio choices based on different investment objectives.
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The code uses NumPy for numerical calculations, Matplotlib for plotting, and
pandas for data manipulation (refer to Figure 6.5):

Portfolio Optimization
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FIGURE 6.5 Visual analysis of asset allocation for the portfolio3_tickers utilizing the simulation method

Figure 6.5 illustrates the relationship between the RoR and volatility for vari-
ous portfolio structures. The maximum points are marked with stars. This
approach shows Models 6.1 and 6.2 without secondary constraints, consid-
ering only the optimality criteria. The figure clearly shows, however, that
optimization through the Sharpe ratio yields a more balanced value than the
minimization of risk and the maximization of return without additional con-
straints. The output in Figure 6.5 serves as a decision-making tool, allowing
investors to visualize trade-offs between risk and return and to select portfo-
lios that align with their investment strategies.

The simulation method is convenient and does not require a complex prob-
lem solution. It allows for a visual assessment of portfolio parameters. It has
some drawbacks, however: it only sometimes leads to optimal values and it
can be time-consuming, depending on the number of experiments and the
complexity of the calculations (simulation numbers).
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Mathematical Optimization Method with Python

In addition to the well-understandable simulation method, optimization tasks
can be solved using mathematical methods such as linear programming, quad-
ratic programming, and non-linear optimization techniques. These methods
strive to find a definitive extreme if one exists—by systematically searching
through potential solutions. To avoid delving into the intricacies of mathemat-
ical optimization methods, we can turn to the SciPy library and its minimize
function, a versatile tool for optimization tasks. You can find detailed guidance
in the SciPy optimization manual here: https://docs.scipy.org/doc/scipy/tuto-
rial/optimize.html.

The SciPy minimize tool is powerful for finding a mathematical function’s
local minimum. It includes several algorithms for optimization, and you can
choose one based on the nature of your problem. Key components of SciPy
minlimlze are:

= The objective function minimizes the decision variables as input and out-
puts the value to be underestimated.

= Constraints are conditions that the solution must satisfy. They can be
equality constraints (e.g., the sum of weights equals 1 in portfolio opti-
mization) or inequality constraints (e.g., weights must be non-negative).

=  Bounds provide the lower and upper limits for the decision variables.
In portfolio optimization, they can limit the proportion invested in each
asset.

Execute the following code with SciPy minimization, then analyze and com-
pare the results:

1. from scipy.optimize import minimize

3. # Function to calculate portfolio return

4. def portfolio return(weights, log returns):

5. return np.sum(log returns.mean() * weights) * 252

7. # Function to calculate portfolio volatility
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def portfolio volatility(weights, log returns):
return np.sqgrt (np.dot (weights.T,

np.dot (log returns.
cov () * 252, weights)))

# Function to maximize RoOR (minimize negative
return)

def minimize negative return (weights,
log returns) :

return -portfolio return(weights,
log_returns)

# Function to minimize standard deviation
def minimize volatility(weights, log returns):

return portfolio volatility(weights,
log_returns)

# Function to maximize Sharpe Ratio (minimize
negative Sharpe)

def minimize negative sharpe (weights,
log returns) :

return - (portfolio return(weights, log
returns) /

portfolio volatility(weights,
log returns))

# General function to optimize the portfolio
def optimize portfolio(log returns,

objective function,

min ror=None, max vol=None) :
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29. # Number of assets in the portfolio

30. num assets = len(log returns.columns)

31. # Constraint: sum of weights equals 1

32. constraints = [{'type': 'eqg', 'fun': lambda
x: np.sum(x) - 1}]

33. # Add minimum RoR constraint if specified

34. if min ror is not None:

35. constraints.append ({'type': 'ineq',
'fun': lambda x:

36. portfolio return(x,
log returns) - min_ror})

37. # Add maximum volatility constraint if
specified

38. if max vol is not None:

39. constraints.append ({'type': 'ineq',
'fun': lambda x:

40. max _vol - portfolio

volatility(x, log returns)})

41. # Bounds for each asset's weight (0% to 100%)
42, bounds = tuple((0, 1) for in
range (num_assets))
43. # Initial guess for weights (even
distribution)
44. initial guess = num assets * [l. /

num_ assets, ]

45. # Minimize the objective function to find
optimal weights

46. opt results = minimize (objective function,
47, initial guess,
48. args=(log_returns,),

49, method="'SLSQP',
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bounds=bounds,

constraints=constraints)
# Print the optimal weights and metrics

formatted weights = [f"{weight:.2f}" for
weight in opt results.x]

print ("Optimal Weights: ", formatted weights)

print (f"RoR: {portfolio return (opt results.x,
log returns):.2f}")

print (f"Volatility: {portfolio
volatility (opt results.x, log returns):.2f}")

print ()
# Return the resulted object
return opt results

VA
g e s aadddaii

# Example usage

log returns = np.log(df['Adj Close'][portfolio
tickers] /

df['Adj Close'] [portfolio_
tickers].shift (1))

print (portfolio tickers)

print ("Mathematical Optimization Results")
print ("Optimize for maximum Sharpe Ratio:")

math sharpe = optimize portfolio(log returns,
minimize negative sharpe)

print ("Optimize for maximum RoR:")

math ror = optimize portfolio(log returns,
minimize negative return)

print ("Optimize for minimum Volatility:")
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72.

73.

74.

75

76.
77.
78.
79.
80.

81.

82.
83.
84.
S
86.
87.
88.

89.

90.

91,

92.

math vol = optimize portfolio(log returns,
minimize volatility)

print ("Optimize for max RoR with max Volatility
constraint of 0.4")

max vol constraint = 0.4 # Example maximum
volatility

optimal max ror = optimize portfolio(log returns,
minimize negative return,

max vol=max vol constraint)

print ("Optimize for min Volatility with min RoR
constraint of 0.1")

min ror constraint = 0.1 # Example minimum rate
of return

optimal min vol = optimize portfolio(log returns,
minimize volatility,

min ror=min ror constraint)

# Simulation results
print ("Simulation Optimal Results")

for w in [sim weights sharpe, sim weights ror,
sim weights vol]:

print ("Weights: ", [f"{weight:.2f}" for
weight in w])

print (f"RoR: {portfolio return(w,
log returns):.2f}")

print (f"Volatility: {portfolio volatility (w,
log returns):.2f}")

print ()
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The results of the code are:
["FTNT', 'BKR', 'PCAR', 'KDP', 'MDLZ']
Mathematical Optimization Results

Optimize for maximum Sharpe Ratio:

Optimal Weights: (['0.17', '0.19', '0.38', '0.00', '0.26"']

RoR: 0.18

Volatility: 0.20

Optimize for maximum RoOR:

Optimal Weights: ['1.00', '0.00', '0.00', '0.00', '0.00"]

RoR: 0.27

Volatility: 0.46

Optimize for minimum Volatility:

Optimal Weights: ('o.oo0', 'o.08', 'o.12', '0.36', '0.44"]

RoR: 0.09

Volatility: 0.15

Optimize for max RoR with max Volatility constraint of 0.4

Optimal Weights: ['0.83', '0.17', '0.00', '0.00', '0.00"']

RoR: 0.26

Volatility: 0.40

Optimize for min Volatility with min RoR constraint of 0.1

Optimal Weights: (‘o.o2', '0.09', 'o0.15"', '0.28', '0.45"]

RoR: 0.10

Volatility: 0.15
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Simulation Optimal Results

Weights: ['0.12', '0.18', '0.47', '0.01', '0.22"]

RoR: 0.17

Volatility: 0.20

Weights: ['0.54', '0.24', '0.13', '0.01', '0.08"]

RoR: 0.23

Volatility: 0.30

Weights: ['0.02', '0.09', '0.15', '0.37', '0.38"]

RoR: 0.09

Volatility: 0.15

This code is designed to implement MPT using the SciPy optimization library
in Python. Essential functions and arguments and their role are as follows:

portfolio return: Calculates the portfolio’s expected RoR based on
the mean daily log returns scaled to an annual figure (multiplying by 252
trading days).

portfolio volatility: Computes the portfolios volatility (standard
deviation of returns) using the annualized covariance matrix of the asset
returns.

minimize_negative_return:I)eﬁnesan(ﬂjecﬁvefhncﬁonfbrrnhﬂ—
mization that represents the negative of the portfolio’s RoR to facilitate
the maximization of returns in the minimize SciPy function.

minimize volatility: Sets up an objective function to minimize the
portfolio’s volatility.

minimize negative sharpe: Aims to maximize the Sharpelaﬁo by
minimizing its reversed negative value.

optimize portfolio: A wrapper function that consolidates the optimi-
zation process. It sets up constraints (such as the weights summing to 1),
bounds (limiting weights between 0 and 1, that is, no short selling), and
SO on.

minimize: The core function from SciPy that performs the optimization.
It takes the objective function, initial guesses for the weights, the bounds
for these weights, and the constraints as arguments:
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= Constraints are conditions placed on the solution. For this example, the
portfolio’s return must be above a minimum threshold, or the volatility
must not exceed a certain level (see Model 6.1 and Model 6.2).

= Bounds ensure each asset’s weight is between 0 and 100 percent, prevent-
ing short selling and leveraging.

= initial guess is the starting point for the optimization algorithm, for
this code, set as an even distribution across all assets.

= method (‘SLSQP’) refers to the sequential least squares programming
optimization algorithm, a common choice for constrained optimization.

By Caﬂing opt_results = minimize(...),the function finds the Optimal
set of weights that achieve the objective. The result of this optimization pro-
cess will provide asset allocation weights (opt results.x) that align with
the specified investment strategy according to Markowitz’s theory.

The code results demonstrate that the first three results are represented by
simplified Markowitz models: that is, those shown with Model 6.1, Model 6.2
(without constraints), and Model 6.3. Particularly, for the second model (maxi-
mizing RoR), we observe a degenerate portfolio structure, which we also see
in Figure 6.5. This means that the optimization algorithm suggests placing
all assets in the highest-yielding asset. Similar results can be seen for the risk
minimization model without constraints on the RoR. Optimizing tasks 4 and
5 from the code results includes constraints, and as we can see, the portfolio
structure is more dispersed, yet the RoR and volatility are constrained by the
limits set. These problems are partly solved in the model with the Sharpe
ratio optimality criterion, as evidenced in both Figure 6.5 and the results of
the code execution analysis. The code provides a comparison to compare the
effectiveness of mathematical optimization methods and simulation. As we
see, the values are nearly identical; however, the structure based on simula-
tion does not reduce the model to a definitive minimum or maximum.

REGRESSIONS AND CAPITAL ASSET PRICING MODEL
FUNDAMENTALS

Regression analysis is a statistical tool used to determine how the value of the
dependent variable relates to one or more of the independent variables. This
is not an entirely determined functional dependency but should be detected
as a probability issue. One of the best-known regression models in finance is
CAPM. This model describes the correlations between systematic risk and the
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expected RoR for assets. It serves as a method for assessing the risk and deriv-
ing the expected return on investment or RoR for financial assets.

The formula for the classical CAPM is:

E(RoR,) = R;+ B, (E(RoR,, - R)))
Or:

E(RoR.) - R, = B, (E(RoR,, - R)))
Where:

= E(RoR,) is the expected return on the capital asset (RoR for asset i).
= Ryis the risk-free rate.
= f3,is the security beta.

= RoR,, is the expected market return (mainly portfolio based on stock mar-
ket weights).

In essence, CAPM states that a security’s expected RoR is equal to the risk-
free profitability plus a risk premium based on the beta factor of the asset.
The risk-free rate is the theoretical return of an investment with zero risk of
financial loss. It is often represented by the yield on government bonds, such
as U.S. Treasury bills. They are considered low-risk due to the government’s
financial stability and sovereign backing. Therefore, the investment’s beta (/)
measures its volatility about the expected market return. If the beta value is:

= 1: Implies that the asset’s price will move with the market
m  Greater than 1: Shows that the asset is more volatile than the market
m  Less than 1: Means the asset is less volatile than the market

= Negative: Suggests that the asset moves opposite to the market
Beta is a crucial measure used to gauge the risk associated with security rela-
tive to the risk of the market as a whole.

When regression analysis is used to construct CAPM, the risk-free rate is typi-
cally omitted in a share-specific assessment equation. Therefore, the formula
of the isolated CAPM for regression analysis is:

E(RoR,) = B, - RoR,, + o

Here, o represents the stock’s excess return that cannot be explained by mar-
ket movements, essentially capturing the unique, non-systematic risk of the
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stock. f reflects the same, the volatility of assets i in relation to the mar-
ket (market-weighted portfolio). The equation focuses on the relationship
between the asset and the market returns. The risk-free rate is implicit when
analyzing the stock’s alpha and beta since these metrics are usually derived
from historical data where the risk-free rate effect is already included in the
stock’s return. The beta and alpha estimations in CAPM are based on regres-
sion methods, which measure the sensitivity of the security’s returns to market
movements.

Python Libraries for Regression Analysis

Regression analysis in Python is largely dominated by two powerful libraries:
statsmodels and scipy.stats. These libraries provide comprehensive tools for
statistical modeling and hypothesis testing. The statsmodels library, imported
as sm, is particularly suited for building and analyzing various statistical mod-
els. It offers extensive algorithms and statistical tests, making it invaluable
for econometrics, finance, and statistics (https://www.statsmodels.org/dev/
examples/notebooks/generated/ols.html). The scipy.stats module is utilized for
a broad spectrum of statistical functions, including probability distributions,
summary and frequency statistics, correlation functions, and tests of signifi-
cance, which you can read more about here: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.linregress.html.

Let us execute the following code as an example of regression analysis with

Python:

1. import statsmodels.api as sm
2. from scipy import stats

3. reg data = yf.download('TSLA', start=start,
end=end)

4. # Calculate the correlation matrix

5. corr matrix = reg data.corr()

6. print(corr matrix)

7. # Create a pair plot with regression lines

8. sns.pairplot(reg data[['Adj Close', 'Open',
'Volume']],
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9. kind='"reqg',
plot kws={'line kws':{'color':'black'}})

10. plt.show()

11. # Define the dependent variable (e.g., Adjusted
Close Price)

12. = reg data['Adj Close']

13. Prepare the independent variables

14. Combine them into a single DataFrame

16. Add a constant to the independent variables

17. = sm.add constant (X)

18. Create the OLS model

y
#
#
15. X = reg data[['Open', 'Volume']]
#
X
#
19. model = sm.OLS(y, X)
20. # Fit the model
21. results = model.fit()

22. # Print the summary of the regression

23. print(results.summary())

The results (truncated) of the code are:

Open High Low Close Adj Close Volume
Open 1.000000 0.996537 0.995061 0.989648 0.989648 -0.434236
High 0.996537 1.000000 0.995335 0.995291 0.995291 -0.412254
Low 0.995061 0.995335 1.000000 0.996040 0.996040 -0.456084
Close 0.989648 0.995291 0.996040 1.000000 1.000000 -0.430658
Adj Close 0.989648 0.995291 0.996040 1.000000 1.000000 -0.430658
Volume -0.434236 -0.412254 -0.456084 -0.430658 -0.430658 1.000000

OLS Regression Results

Dep. Variable: Adj Close R-squared: 0.979
Model: OLS Adj. R-squared: 0.979
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Method: Least Squares F-statistic: 1.633e+04
Date: Wed, 03 Apr 2024 Prob (F-statistic): 0.00
Time: 15:51:40 Log-Likelihood: -2437.8
No. Observations: 690 AIC: 4882.
Df Residuals: 687 BIC: 4895.
Df Model: 2
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
const 3.5983 2.020 1.781 0.075 -0.368 7.564
Open 0.9852 0.006 162.733 0.000 0.973 0.997
Volume -1.508e-09 8.11le-09 -0.186 0.853 ~-1.74e-08 1.44e-08
Omnibus: 61.759 Durbin-Watson: 2.185
Prob (Omnibus) : 0.000 Jarque-Bera (JB): 227.073
Skew: -0.338 Prob (JB) : 4.92e-50
Kurtosis: 5.728 Cond. No. 6.99e+08

The code example demonstrates how to employ statsmodels to perform regres-
sion analysis. It begins by downloading financial data for Tesla, computes the
correlation matrix, and visualizes relationships between different variables
with pairplots, including regression lines. Then, it defines an ordinary least
squares (OLS) regression model to explore the relationship between the
adjusted close price and other variables, such as Open and Volume, adding
a constant to the model for the intercept. Finally, it fits the model and prints
out a detailed summary of the regression results. This process is integral to
financial analysis, where understanding the determinants of asset prices can
inform investment strategies and risk management. The correlation matrix
indicates that the variables Open and Adj Close exhibit a strong positive
correlation (exceeding 0.98), while Volume has a negative correlation, albeit
less than 0.5 in magnitude. This finding is visually corroborated by Figure 6.6,
where the actual data points deviate significantly from the regression line in
the Adj Close scatter plot against Volume.

The OLS regression results analysis confirms the significant influence of Open
on Adj Close Price, with the model being:

Adj Close = 3.5983 + 0.9852 x Open — 1.508¢-09 x Volume
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NOTE

The model’s substantial efficacy is reinforced by detailed statsmodels outputs,
such as an R-squared value of 0.979, a Prob (F-statistic) close to 0.00, and
a p-value of 0.000 for the Open slope, affirming the model’s robustness. The
p-values for the Constant and Volume (0.075 and 0.853), however, indi-
cate statistical insignificance (refer to the following figure):

The p-value in statistical theory measures the probability that an observed dif-

ference could have occurred just by random chance. It is a universal statisti-
cal metric used to determine the significance of the model results. Typically, a
p-value less than 0.05 indicates that the result is statistically significant. We can
use p-values to determine the whole model’s reliability and some coefficients.
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FIGURE 6.6 Pairs scatter plots for Adj Close, Open, and Volume of Tesla Inc.’s share
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The scipy.stats module could be used for the same statistical tasks for one
dependent variable and one independent variable (like for the CAPM issue),
as we can see by executing the following code:

1. from scipy import stats

2. # Assuming 'reg data' is your DataFrame with the
necessary columns

3. # Define the dependent variable (e.g., Adjusted
Close Price)

4. y = reg data['Adj Close']

5. # Prepare the independent variable (e.g., 'Open')
6. X = reg data['Open']

7. # Perform linear regression using scipy

8. slope, intercept, r value, p_value, std err =
stats.linregress (X, V)

9. # Print the results
10. print(f"y = {intercept:.3f} + {slope:.3f} * X")
11. print("Slope:", slope)
12. print("Intercept:", intercept)
13. print("R-squared:", r value**2)

14. print("P-value:", p value)

15. print("Standard Error:", std err)

The results of the code are:

y = 3.326 + 0.986 * X

Slope: 0.9857115725185064
Intercept: 3.3255537096161447
R-squared: 0.9794025403403167
P-value: 0.0

Standard Error: 0.00544981617568275
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The results of executing the provided code confirm that the procedures for
estimating regression parameters are fully identical for the statsmodels and
scipy.stats libraries. The robustness and related measures for scipy.stats, how-
ever, are significantly less. When implementing classical regression methods,
we can use both libraries in the same way.

Python Tools for CAPM Assessment

In the context of what we have discussed in this chapter, we will introduce
an example of using Python to calculate and analyze the expected returns of
securities using an isolated CAPM formula. The analyze cAPM() function
within this section will demonstrate how to calculate percentage changes or
returns and how to apply CAPM to assess the risk and expected return of
individual stocks in relation to the market’s performance. This function will
incorporate beta and alpha values and plot the related scatter plot. Figure
6.7 shows the level of correlation between the marker’s RoR and the current
share RoR. Moreover, the beta level is visible from the slope of the regression
line (here, the asset is more volatile than the market).

Let us execute the code:

1. def analyze CAPM(stock data, market data,

2. prn = True, visualization = True):
3o # Calculate percentage changes (returns)

4. ShareRoR = stock data.pct change () .dropna ()
5o ShareRoR.name = 'Share RoOR'

6. MarketRoR = market data.pct change () .dropna ()
7o MarketRoR.name = 'Market RoR'

8. # Perform linear regression to calculate beta
9. beta, alpha, r value, p value, std err =

stats.linregress (x = MarketRoR,

10. y = ShareRoR)
11. if prn:
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12. # Print CAPM formula
13. print (f"CAPM model: RoRi = {beta:.5f} *
RoRm + {alpha:.5f} + errors")

14. print (f"Beta: {beta:.5f}")

15. print (f"Alpha: {alpha:.5f}")

16. print (f"P-value: {p value:.5f}")

17. print (f"Standard Error: {std err:.3f}")

18. print (f"R-square: {r value**2:.3f}")

19. if visualization:

20. # Scatter plot with regression line

21. plt.figure (figsize=(10,5))

22. sns.regplot (x=MarketRoR, y=ShareRoR,

23. line kws={"color": "black"})

24. return ({'Beta': beta, 'Alpha': alpha})

25. # Example usage of the function

26. result = analyze CAPM(df['Adj Close']['FTINT'],
index data['Adj Close'])

27. print(result)

The textual results of the code are:

CAPM model: RoRi = 1.18329 * RoRm + 0.00109 + errors

Beta: 1.18329

Alpha: 0.00109

P-value: 0.00000

Standard Error: 0.053

R-square: 0.422

{'Beta': 1.1832898081893108, 'Alpha': 0.00108984641400661}
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The graphical results in Figure 6.7 clearly show the regression model line and
the actual fluctuation of the stock’s RoR and portfolio’s RoR on real datasets.

The regression results indicate that the stock has a beta of 1.18329, sug-
gesting it is more volatile than the market and can generate higher average
returns. The alpha of 0.00109 implies a small positive performance over the
market that is not accounted for by the market movements. The p-value near 0
signifies the statistical significance of the regression results, and the R-square
value of 0.422 suggests that approximately 42.2% of the stock’s movement
can be explained by the market’s movement.
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FIGURE 6.7 Scatter plot for market and share RoR with regression line

The scatter plot and regression line visually prove these relationships. In the
evaluation, the error constant indicates the presence of noise and shows the
absence of the dependency’s complete determinacy. These noises are percep-
tible in Figure 6.7 (some blue points are far from the black regression line) and
confirmed by the determination coefficient (0.422). Overall, the graph and
evaluations provide a comprehensive assessment of this asset and can form the
basis for its inclusion in or exclusion from an individual investment portfolio.

CONCLUSION

We have discussed the essence of portfolio theory and the strategic allocation
of financial assets utilizing Python analytical tools. We examined stock indices
such as NASDAQ to understand market movements and explored cumulative
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return metrics to compare investment performanoe analysis over time. We
also translated daily returns to annual figures, emphasizing the importance of
asset allocation in shaping investment outcomes. We learned how to measure
risk-adjusted returns using the Sharpe ratio, combining market insights and
quantitative analysis.

The principles of MPT were also investigated. We dove into diversification’s
role in investment strategies, mainly through MPT. The chapter revealed
that by employing the simulation (Monte Carlo) method and mathemati-
cal optimization, such as the methods found in SciPy, we can fine-tune our
investment portfolios to achieve optimal goals. The real-world examples dem-
onstrated that the Sharpe ratio is one of the best criteria for balancing risk
against return, outperforming mere maximization of return or minimization
of volatility. This chapter also underscored the importance of selecting a vari-
ety of assets that reflect a comprehensive market analysis rather than relying
on individual metrics alone.

We discussed regression analysis and its application in finance, mainly through
CAPM. We showed the fundamentals of regression, learning how it is a statis-
tical cornerstone in predicting asset risk and performance. The chapter har-
nessed the analytical power of Python libraries, including statsmodels.api for
OLS regression and scipy.stats for statistical analysis, to assess financial assets
such as Tesla shares. Through the classical CAPM formula, we discovered the
role of alpha and beta coefficients in understanding a security’s market risk
and calculating specific asset risk and expected return.

QUESTIONS

What is the primary insight of the modern portfolio theory?

How can financial asset allocation impact long-term investment strategies?
What does the Sharpe ratio indicate in portfolio optimization?

How do simulations contribute to portfolio strategy optimization?

How does Markowitz’s portfolio theory weigh asset allocation?

In terms of asset allocation, what does diversification aim to achieve?

How do we apply the SciPy minimize function to portfolio optimization?

S A U o o

What do the alpha and beta in the CAPM formula mean?
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10.

11.
12.
13.

14.

How can the statsmodels.api and scipy.stats libraries be applied in regres-
sion analysis?

Why is it important to consider both return and volatility in portfolio
management?

How can the historical performance of assets be visualized using Python?
Why might an investor prefer a portfolio with a higher Sharpe ratio?

How is optimal asset allocation determined using mathematical
optimization?

Why is selecting a mix of assets crucial when constructing a portfolio?

KEY TERMS

The stock market index is a complex indicator that represents the perfor-
mance of a group of stocks, which gives a general idea of the behaviors of
the stock market or a specific segment of it. It is commonly related to the
stock exchange.

Capitalization is the total cost of securities or shares of stock. It is calcu-
lated by multiplying the security price by its total volume in the market
operations.

The cumulative rate of return (RoR) is the total amount of money an
investment has gained or lost over a certain period, expressed as a per-
centage of the initial investment period.

Asset allocation is an investment strategy of dividing assets across various
categories and their weights, such as stocks, bonds, and cash, to optimize
the balance between risk and return.

Financial asset diversification is allocating investments across various
assets to reduce the risk trends of any single asset.

A portfolio is a collection of diversified financial assets held by an investor.

The Sharpe ratio is a measure to evaluate the risk-adjusted return of an
investment portfolio and estimates by dividing the returns an investor
receives by the volatility metric.

The capital asset pricing model (CAPM) is a financial model that describes
the correlation between systematic risk and expected return for assets,
especially stocks.
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= Simulation is modeling a real phenomenon with a set of random (compu-
tational) experiments. It simulates the behavior of markets or individual
investors under various random scenarios.

= Mathematic optimization is a branch of applied mathematics that uses
mathematical processes to find a function’s maximum or minimum values,
often used in various disciplines for decision-making.

REFERENCES

m  Markowitz, H. M. (1991). Portfolio Selection: Efficient Diversification of
Investments. 2nd Edition. Wiley.

= Singh, H. (2021) Statistics For Machine Learning. [Paperback]. BPB
Publications.

»  Nunez-Iglesias, J., van der Walt, S., and Dashnow, H. (2017). Elegant
SciPy: The Art of Scientific Python. O’Reilly Media.






CHAPTER

TIME-SERIES ANALYSIS AND
FINANCIAL DATA FORECASTING

INTRODUCTION

This chapter explores the complicated world of time-series analysis (TSA), an
essential element in financial data forecasting. We will begin with explaining
the core concepts of time-series data analysis and tools for transforming time-
series data with Python, as well as understanding and manipulating financial
time series. Then, we will cover the moving average (MA) and Holt-Winters
(HW) models for financial forecasting tasks, explaining how these models cap-
ture trends and seasonality in financial time series. These models provide a
practical starting point for forecasting.

As we progress, the principles of autoregressive integrated moving average
(ARIMA) models are introduced. This allows the evaluation of a forecast
based on past time-series data and errors in financial series. The chapter also
delves into the decomposition of time series by breaking down a series into
its core components—trend, seasonality, and residuals. This requires address-
ing issues such as stationarity, using various transformations to stabilize the
data, and exploring the concepts of the autocorrelation function (ACF), par-
tial autocorrelation function (PACF), and cross-correlation. We describe the
power of the pandas, statsmodels, and pmdarima Python libraries. These
help to identify the relationships within and between time-series datasets and
guide the selection and calibration of forecasting models. The chapter will
conclude by looking at advanced traditional models such as seasonal ARIMA
(SARIMA) and seasonal ARIMA with exogenous variables (SARIMAX). These
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models extend basic ARIMA principles to account for seasonality and the
influence of external variables. Overall, the Python tools presented in this
chapter help address complex financial forecasting challenges using standard
statistical principles.

STRUCTURE

This chapter covers the following topics:

= TSA: Core principles and concepts

= Traditional forecasting methods and models

= Exponential smoothing and the HW model

= ARIMA approach: From MA to seasonality and external variables

OBJECTIVES

TSA:

By the end of this chapter, you will be able to easily apply traditional TSA in
financial forecasting and understand the core limitations of these models. As
you explore various forecasting techniques, from exponential smoothing to
advanced SARIMAX models, you will also discover the challenges these mod-
els face, particularly in volatile financial markets. Also, you will clearly under-
stand why the mean absolute percentage error (MAPE) metric can sometimes
show the best results with the actual variations in financial time-series data.
This insight will be pivotal for applying more robust and adaptive forecasting
techniques, such as machine learning.

CORE PRINCIPLES AND CONCEPTS

Aswe discovered in Chapter 5, Investment and Trading Strategies, time-series
data is the central domain for preparing, supporting, and realizing investment
strategies in the finance market. Chapter 4, Exploratory Data Analysis for
Finance, introduced elementary toolkits for time-series data analysis through
data visualization and MA. Forecasting financial indices is a more compli-
cated problem, however. Therefore, the basic terms and principles of finan-
cial time-series data analysis are trends, volatility, seasonality, autocorrelation
problems, and stationarity. Let us describe those essential concepts in detail.
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Time-series data forecasting begins with an understanding of trends. A trend
in a financial time series can indicate a persistent increase or decrease over
time, offering insights into long-term market movements. As we know from
Chapter 4, we can visualize the trend by using an MA plot (refer to Figure
4.4). Identifying and interpreting trends is only sometimes straightforward,
however, due to the inherent volatility in financial data, which is character-
ized by rapid and unpredictable changes in its value. Volatility, or variation (as
a statistical indicator), an intrinsic aspect of financial markets, presents both
risks and opportunities. It is essential to quantify and understand volatility
metrics and evaluate their impact on the forecasts” accuracy. In conjunction
with volatility, seasonality plays a critical role. A particular type of trend and
volatility combination is a seasonal pattern. Seasonal is a specific feature of
time-series data observed at regular intervals, such as monthly or quarterly
financial reports or annual shopping seasons that can significantly influence
market behavior. All these characteristics are significant for forming an accu-
rate forecast of the prices of financial assets, returns, etc.

Another core concept of time-series data is stationarity, a cornerstone appli-
cation for TSA statistical methods. A stationary time series has properties that
do not depend on the time the series is observed. The presence of a trend
and seasonality determines a non-stationary time data series. Stationarity is
usually associated with an RoR data series with 0 mean and constant time-
independent variation. Transforming time-series data to be stationary is often
a prerequisite for effective modeling, as most forecasting methods assume
this property.

For example, let us execute the following code to visualize core time-series
data concepts. First, we plot the lines of the 63-day and 252-day exponential
moving averages (EMAs) according to the dynamics of absolute values of the
NASDAQ index:

1. # Calculate the Exponential Moving Average for
different periods

2. nasdag_index ac df = pd.DataFrame ({
3o 'Index': nasdag index ac,

4. '"EMA 63': nasdaq index ac.ewm(span=63,

adjust=False) .mean (),
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5. 'EMA 252': nasdag_index ac.ewm(span=252,
adjust=False) .mean ()

6. 1)
7. # Plotting - NASDAQ Index with EMA trends
8. plt.figure(figsize=(10, 5))

9. plt.plot(nasdag index ac df['Index'],
label="NASDAQ Index', color='blue')

10. plt.plot(nasdag index ac df['EMA 63'], label='63-
day EMA', color='orange')

11. plt.plot(nasdag index ac df['EMA 252'],
label='"'252-day EMA', color='purple')

12. plt.xlabel('Date')
13. plt.ylabel ('Adjusted Close Value')

14. plt.legend()

15. plt.show ()

The results are depicted in Figure 7.1:
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FIGURE 7.1 EMAs for the NASDAQ index adjusted close values
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Figure 7.1 visualizes the NASDAQ index adjusted close values alongside two
EMASs: a 63-day EMA and a 252-day EMA. The 63-day EMA, shown by the
sensitive and smooth line, represents a medium-term trend, smoothing the
value fluctuations over roughly 2 months. The 252-day EMA (the flatter line)
represents a long-term trend. Given the number of trading days a year, it is
often considered an approximation of a yearly trend. The presence of these
EMASs helps to identify the underlying trend in the index by dampening the
daily volatility. The long-term EMA (252 days) is smoother and less reactive to
daily value changes, providing a clearer view of the market’s overall direction.
The shorter-term EMA (63 days) is more responsive, reflecting intermediate
trends and potential reversals. Therefore, it then shows the primary discretion
of time-series data changes.

Next, let us plot the NASDAQ index percentage change to illustrate stationar-
ity concepts in the time-series data by executing the following code:

1. # Plotting - The NASDAQ Index Percentage Change
(Stationarity illustration)

2. plt.figure(figsize=(10, 5))

3. plt.plot(nasdaqg_index pc, label='NASDAQ Index Daily
% Change', color='blue')

4. plt.xlabel ('Date')
5. plt.ylabel ('Percentage Change')

6. plt.legend()

7. plt.show()
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The results are depicted in Figure 7.2:
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FIGURE 7.2 The NASDAQ index daily percentage change (RoR)

Figure 7.2 shows the NASDAQ index daily percentage change, a common
way to illustrate stationarity in financial time-series data. By representing the
data as daily returns rather than absolute values or prices, we typically observe
a time series that fluctuates around a mean of 0 with an approximate constant
variance. This plot is crucial for stationarity because in a stationary series,
the mean and variance do not change over time, making it easier to model
and predict. The percentage changes of the time-series data usually do not
exhibit trends or seasonality, which are common causes of non-stationarity
in absolute quantitative data. Another example of stationarity is the growth
metrics, which are calculated as the difference between current and offset
values. Therefore, the stationary series is freed from trend assessments, and
the researcher can focus on predicting volatility indicators.

As we see in Figure 7.1 and Figure 7.2, the trend cannot be predicted with
absolute accuracy because it does not consider volatility. Thus, assessing vola-
tility becomes the analyst’s main problem.

Autocorrelation is the behavior of the time-series data when the observed
values of a time series at a given time are correlated with its values at previous
times. Autocorrelation poses unique challenges, particularly in distinguishing
between true signals (trends) and noises. Execute this code to understand
autocorrelation:
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1. # Autocorrelation matrix

2. nasdag index ac autocorr = pd.DataFrame ({

3o 'Shift 0': nasdag index ac,

4. 'Shift 1': nasdaq index ac.shift (1),

5. 'Shift 2': nasdaqg_index ac.shift(2),

6. 'Shift 3': nasdaqg_index ac.shift (3),

7o 'Shift 4': nasdag index ac.shift (4),

8. 'Shift 5': nasdag index ac.shift (5)

9. 1

10. print(nasdag_index ac_autocorr.head(), '\n'")
11. print(nasdaqg index ac_autocorr.dropna () .corr())

The code of the results is:

Date

2021-01-05

2021-01-06

2021-01-07

2021-01-08

2021-01-11

Date

2021-01-05

2021-01-06

2021-01-07

2021-01-08

2021-01-11

Shift 0
12802.379883
12623.349609
12939.570312
13105.200195
12902.490234
Shift 4

NaN
NaN
NaN
NaN

12802.379883

Shift 1

NaN
12802.379883
12623.349609
12939.570312

13105.200195

Shift 5

NaN
NaN
NaN
NaN

NaN

Shift 2

NaN
NaN
12802.379883
12623.349609

12939.570312

Shift 3

NaN
NaN
NaN
12802.379883

12623.349609

\
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Shift 0 Shift 1  Shift 2 Shift 3  Shift 4 Shift 5
Shift 0 1.000000 0.990797 0.982101 0.974073 0.966867 0.959630
Shift 1 0.990797 1.000000 0.990780 0.982100 0.974055 0.966854
shift 2 0.982101 0.990780 1.000000 0.990772 0.982031 0.974017
Shift 3 0.974073 0.982100 0.990772 1.000000 0.990741 0.982032
Shift 4 0.966867 0.974055 0.982031 0.990741 1.000000 0.990746

shift 5 0.959630 0.966854 0.974017 0.982032 0.990746 1.000000

The code provided calculates and displays the correlation matrix for the
NASDAQ index adjusted close values with time shifts. The first part of the
results shows the first five rows of the DataFrame, which contains the original
time series (Shift 0) and its lagged versions (Shift 1 to shift 5). Each
Shift n column represents the NASDAQ index values shifted by n periods.
The second part of the results is the correlation matrix derived from the auto-
correlation. This matrix shows the Pearson correlation coefficients between
the original and lagged series. As we see further from the diagonal (increasing
the lag), the correlation coefficients generally decrease, suggesting that the
relationship between current and past values diminishes over time. A high
correlation coefficient close to 1 for the first few lags (such as shift 1) indi-
cates a robust positive autocorrelation, meaning that the index value on one
day is highly predictive of its value on the following day. This is typical in
financial time series, where the value of an index tends to follow a smooth
trajectory over short intervals.

Therefore, autocorrelation indicates that past values contain information that
can be used to predict future values. Distinguishing between true signals and
noise can be challenging, however, especially with financial data that is often
noisy. High autocorrelation in financial time series also raises concerns about
the random walk hypothesis and market efficiency. High autocorrelation in
financial time series also raises concerns about the random walk hypothesis
and market efficiency. Thus, deeper analysis and modeling considerations are
required.

Almost all traditional statistical forecasting models are built considering these
fundamental concepts and metrics of time-series data, as shown later in this
chapter.
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Pandas Toolkits for Time-Series Data Analysis

Pandas provides extensive capabilities for handling and analyzing time-series
data, especially its powerful date and time manipulation functionalities. A
structured overview of the toolkit that pandas offers is provided in Table 7.1:

TABLE 7.1 The main functions of the pandas package for working with time-series data'

Task description

| Example usage (function/method/attribute)

pandas functions

Converts string formats to DateTime objects.

pd.to datetime (df['date column'])

Generates a range of DateTime indices with a
specified frequency.

pd.date_range(start='2023-01-01",
periods=10, freg='D")

Represents a time offset for arithmetic operations.

pd.DateOffset (days=1)

Represents a business day offset.

pd.tseries.offsets.BDay ()

Customizes business day frequency considering
holidays.

pd.offsets.CustomBusinessDay (holida
ys=['2023-01-01"', '2023-01-02"'])

Plots an autocorrection graphic for time-series data
from the selected column.

pandas.plotting.autocorrelation
plot(df['column')

pandas DataFrame methods

Changes the frequency of the time-series data and
calculates the average (.mean () ) for values inside
the range. DateTimeIndex is not changed.

df['column'].resample ('M') .mean ()

Converts a DateTimeIndex to a
PeriodIndex.

df['column']

.to _period('M

.resample ('M'") .mean ()

')

Provides rolling window calculations for the MVA
calculation.

df['column']
.mean ()

.rolling (window=5)

Provides expanding window calculations for the
CMA estimate.

df['column'].
.mean ()

expanding (min periods=1)

Uses the EMA calculation.

df['column']
mean ()

.ewm (span=63, adjust=False).

and its predecessor. . diff (2) is the difference
between the lagging of two periods.

Shifts the index by a specified number of periods. df['column'].shift (1)
.shift (1) means lagging by one period.
Calculates the difference between an element df['column'] .diff(2)

Calculates the percentage change from one
element to another. .pct _change (2) is the
calculation of percentage change between the

lagging of two periods.

df['column'] .pct change (2)

(Continued)

'For more details, see hitps://pandas.pydata.org/docs/user_guideltimeseries.html
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Task description Example usage (function/method/attribute)
Sets the DataFrame index using one or more df.set_index( pd.to_
columns. datetime (df['date']))

pandas DataFrame attributes

index.

Returns the day of the month from the DataFrame | df .index.day

Returns the day number of the week from the df.index.dayofweek
DataFrame index.

Returns the day number of the year from the df.index.dayofyear
DataFrame index.

Returns the month of the date from the df.index.month
DataFrame index.

index.

Returns the year of the date from the DataFrame df.index.year

Returns the month number from the DateTime- df ['date_column'].dt.month
like properties of the DataFrame column.

As we see in Table 7.1, data analysts can perform various time-series analyses
by using core pandas functionalities, from basic data manipulations to more
complex transformations and calculations tailored to the time-series data. The
appendix with the program code for this chapter provides some additional
examples of applying these functions.

TRADITIONAL FORECASTING METHODS AND MODELS

Traditional forecasting methods and models offer a blend of simplicity and
effectiveness. Based on statistical theory, these methods form the foundation
for understanding complex patterns in historical data, guiding predictions
about future trends. The MA method, mentioned in Chapter 4, Exploratory
Data Analysis for Finance, exponential smoothing, complex ARIMA mod-
els, and some others are used to capture subtler time-series aspects. Let us
observe some of the traditional models®.

Exponential smoothing is a time-series forecasting method that applies
decreasing weights to past observations, giving more importance to recent
data. Chapter 4, Exploratory Data Analysis for Finance, already covered a
similar approach for calculating the EMA. It is especially effective in data-
sets with unclear trends or seasonality. Simple exponential smoothing uses a

*For more details, see https://arxiv.org/pdf/2012.03854.pdf
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single smoothing factor (alpha) for weighting, which applies to data without
a clear defining trend or seasonality. Double exponential smoothing includes
a second smoothing factor to capture trends in the time series. Triple expo-
nential smoothing (the HW model) adds a third smoothing factor to handle
seasonality. The well-known HW model is a variation of the standard smooth-
ing approach.

The smoothing components of the HW model are:

= Level: The average value in the time series
= Trend: The increasing or decreasing pattern in the series (trend capturing)

= Seasonality: The repeating short-term cycle (mainly seasonality)

This approach is the best for time series with a clear trend and seasonal pat-
tern, which are commonly used in sales and stock market analysis.

ARIMA is a widely used forecasting model that combines autoregressive fea-
tures with MA, incorporating differencing to achieve stationarity. This model
uses an advanced regression method to estimate the dependence of the indi-
cator on its values and model errors in previous periods.

The components of the ARIMA model are:

= Autoregressive (AR): A part of the model based on the correlation between
the time-series data values and several lagged observations.

m Integrated (I): The differencing of the input data to make the time series
stationary. For example, one-step lagged data may be stationarity, in which
case [ = 1.

= Moving average (MA): A part of the model that uses the correlation
between the time-series data values and a residual error from an MA

model applied to lagged values.

These models are ideal for non-seasonal series with trends or cyclic patterns.

SARIMA extends the ARIMA method by adding seasonality components. It
uses the same principles as ARIMA, but SARIMA focuses on modeling time-
series data with seasonal fluctuations.

Essential components of the SARIMA model are:

= Autoregressive (AR), Integrated (I), and Moving Average (MA): These are
the same principles as the traditional ARIMA model.
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= Seasonal elements: Models are often denoted as SARIMA (p, d, q)(P,
D, Q)[S], where P, D, and Q are the seasonal orders for the AR, I, and
MA components, respectively, and [S] is the size of the seasonal cycle
component.

The SARIMA models use seasonal data, such as monthly or seasonal business
indices, e.g., financial seasonality.

SARIMAX builds upon SARIMA by incorporating exogenous variables (exter-
nal factors or regressors) into the model. This version of SARIMA is effective
when external factors influence the time series in addition to trends and sea-
sonality. This model is widely used in fields where external variables such as
economics and environmental studies significantly impact the forecast.

Each of these models has specific application areas and is selected based on
the characteristics of the data, such as seasonality, trends, external factors,
and the need for stationarity.

Exponential smoothing methods and ARIMA-based models for forecasting
time-series data have their scope and disadvantages. After careful parameter
tuning, however, they can effectively analyze financial market data. Thus,
understanding each model’s nuances and appropriate application is crucial for
effective forecasting in various domains.

The statsmodels Toolkits for TSA

The mathematical definitions of the HW, ARIMA, SARIMA, and SARIMAX
models and methods for searching their parameters are complex and time-
consuming. Still, the statsmodels Python library tools allow the implementa-
tion of traditional time-series forecasting models quickly and efficiently.

The statsmodels library’s TSA module is a powerful tool for the statistical anal-
ysis of time-series data. Here is an overview of how statsmodels TSA can be
applied to your tasks (refer to the following table):
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TABLE 7.2 The main functions of statsmodels.tsa for working with traditional time-series models’

Instrument description Function/ Example/
method name key function

Functions of statsmodels.tsa

Decomposes time series into trend, | seasonal_decompose from statsmodels.tsa.

seasonality, and residuals. seasonal import seasonal
decompose

Tests for stationarity in time-series | adfuller from statsmodels.tsa.

data. stattools import adfuller

Calculates autocorrelation and acf, pacf from statsmodels.tsa.

partial autocorrelation. stattools import acf, pacf

Visualizes time-series data and Plotting acf and pacf from statsmodels.graphics.

diagnostics autocorrelation and tsaplots import plot acf,

partial autocorrelation results. plot pacf

Measures the relationship between | Cross-correlations from statsmodels.tsa.

two time series. stattools import ccf

Exponential smoothing models for | Exponential smoothing from statsmodels.tsa.

data with trend and seasonality. and HW holtwinters import
ExponentialSmoothing

Model for forecasting non-seasonal | ARIMA from statsmodels.tsa.arima.

time-series data. model import ARIMA

ARIMA model with seasonal SARIMAX from statsmodels.tsa.

support and exogenous variables. statespace.sarimax import
SARIMAX

Initialize the model object

Exponential smoothing model =
Initializes the HW exponential and HW ExponentialSmoothing (data,
smoothing model. seasonal="add")
Initializes the ARIMA model for ARIMA model = ARIMA (data,
non-seasonal data. order=(p, d, q9))
Initializes the SARIMAX/ SARIMAX or SARIMA model = SARIMAX (data, exog
SARIMA model for seasonal data = X, order=(p, 4, 9),
or with/no exogenous variables. seasonal order=(P, D, Q, s))

Methods of the model results object

Fits (finds optimal parameters of it model . fit ()
the model) a time-series model
to the data and returns a results

object.
Provides a summary of the fitted .summary model . summary ()
model.
In-sample prediction and out-of- .predict model.predict ()

sample forecasting.

(Continued)

*For more details, see https:/www.statsmodels.org/stable/user-guide. html#time-series-analysis
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Instrument description Function/ Example/

method name key function
Forecasts future values. .forecast model.forecast (steps=5)
Predictions with confidence .get_prediction model.get prediction()
intervals.
Forecasts with confidence .get forecast model.get forecast (steps=5)
intervals.
Confidence intervals for forecasts. | .conf_int model.conf int()

In the Table 7.2 examples, data represents your time-series dataset, and p, d,
g, P, D, Q, and s are the model parameters for ARIMA and SARIMAX. Thus,
Table 7.2 provides a structured overview of the tools offered by the statsmod-
els.tsa module for TSA, as follows:

m seasonal decompose () is a function that breaks down time-series data
into trend, seasonal, and residual components, discovering its underlying
patterns.

= The adfuller () function, used for testing stationarity, is essential for
determining whether a time series is suitable for ARIMA-type modeling
without further differencing.

= The acf () and pacf () functions calculate the autocorrelation and par-
tial autocorrelation of the data, which are pivotal in identifying ARIMA
models’ AR and MA components.

= The plotting utilities plot acf () and plot pacf () visually present
autocorrelations and partial autocorrelations, aiding in model specification.

= Cross-correlations are measured using the ccf () function, which ana-
lyzes the relationship between two time series. This can inform about
potential causality or lead-lag impacts.

= The ExponentialSmoothing class represents the HW model for data
exhibiting trends and seasonality, providing mechanisms for forecasting in
such contexts.

= The ARIMA and SARIMAX classes are central to the model’s application.
ARIMA applies to non-seasonal forecasting, and SARIMAX expands this
to seasonal data and incorporates exogenous variables. For the SARIMA
model, the argument used is exog = None.

= The .fit () methodis used to estimate the model parameters from the data.

= Once fitted, the model object provides several methods, such as . sum-
mary (), .predict(), .forecast(), .get prediction(), and
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.get forecast (), for summarizing the model, making predictions, and
forecasting with confidence intervals.

m .conf int () calculates confidence intervals, which are critical for visual-
izing and understanding forecast uncertainty.

In this chapter, we will also consider the application of tool data using specific
data and models as an example.

Error Statistical Metrics: MAPE, MSE, and MAE

Each of the traditional statistical models has efficiency and robust indices.
Still, universal metrics to estimate the accuracy of the forecast results are
mean squared error (MSE), mean absolute error (MAE), MAPE, and others.
Unlike model-specific indices such as p-values, the Akaike information crite-
rion (AIC), and BIC, which provide information about the fit of a model to
the historical data, these metrics directly evaluate the predictive performance.
Explanations are as follows:

= The MSE quantifies the average squared discrepancy between the fore-
casted and actual values. It emphasizes more significant errors more than
smaller ones because they are squared before they are averaged, which
can be crucial when significant errors have more serious consequences:

MSE = X (ActualValue, + PredictedValue,’ /n, ¥ i € [1, n]

where n is the number of time-series data points and i is the current value
index.

m The MAE shows the average errors by taking the absolute value. This
metric can highlight whether the forecast consistently exceeds or under-
estimates the actual values:

MAE = (X |ActualValue, + PredictedValue,|) /n, ¥V i € [1, n]

= The MAPE measures the average of the errors in percentage terms, pro-
viding a straightforward interpretation of error size relative to the actual
values. It is beneficial when comparing the accuracy of different models
or when the scale of the data is essential:

MAPE = 100 - (2 |(ActualValue, + PredictedValue,) / ActualValue, |) /
n, Vielln]
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All of these metrics estimate the error of the predicted and actual values for
the time-series data. The MSE and MAE, in absolute terms, and the MAPE,
as a percentage, eliminate dimensionality’s influence. The principles of using
those metrics for the chosen model are:

m  Create subsets of time-series data of training and test samples. The time-
series data is typically split into two parts (for machine learning tasks,
into three parts). The training sample is used to fit the model, and the
test sample is applied to check predictive accuracy. These subsets help to
ensure that the model’s performance is assessed on unseen data, reflect-
ing its potential real-world effectiveness.

= Carry out model fitting by estimating the model parameters. This best
captures the patterns observed in the training time-series dataset.

= Generate forecasts for the period covered by the test sample. These are
the model’s predictions of the time-series values based on model-fitted
results.

= Statistical error metrics calculation is necessary to evaluate the accuracy
of the forecasts. They are assessed by calculating the MSE, MAE, MAPE,
etc. The metrics apply to the actual observed values from the test sample
and the forecasted values from the model.

Therefore, these error metrics are compared, often across multiple models or
different sets of parameters within the same model. The model with the low-
est error metrics is typically considered the best fit. By following these prin-
ciples, analysts can systematically gauge the performance of the time-series
models to deploy to forecast future values.

To estimate the MSE, MAE, and MAPE metrics, we can use user-defined
functions or scikit-learn library tools, as follows:

1. from sklearn.metrics import mean squared error
2. from sklearn.metrics import mean absolute error
3. from sklearn.metrics import mean absolute

percentage error

Let us run the following code to estimate the MAPE metric based on a com-
parison of the actual and exponentially smoothed data:
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# Load dataset from seaborn library
flights df = sns.load dataset('flights')

# Extracting the 'passengers' column from the
Flights dataset

df = flights df['passengers']
print ("MAPE for actual and 12-month EMA data")

# Calculate Mean Absolute Percentage Error (MAPE)
# between the actual data and its 12-month EWA

mape = mean absolute percentage error (df,
df.ewm (span=12) .mean () ) *100

print ("Mean Absolute Percentage Error (MAPE):",
mape)

# Calculate the metrics for the 3-month EMA
print ("\nMAPE for actual and 3-month EMA data")

mape = mean absolute percentage error (df,
df.ewm (span=3) .mean () ) *100

print ("Mean Absolute Percentage Error (MAPE):",
mape)

The results of the code are:

MAPE for actual and 12-month EMA data

Mean Absolute Percentage Error (MAPE): 9.725760321816695

MAPE for actual and 3-month EMA data

Mean Absolute Percentage Error (MAPE): 5.21703698803825

The code provided calculates the MAPE to evaluate the forecasting accuracy
of exponential smoothing on the flight passengers time series. Two different
exponential smoothing windows are used: a 12-month and a 3-month window.
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NOTE

The passengers dataset from the Seaborn library, commonly called the flights
dataset, encapsulates monthly totals of international airline passengers from
1949 to 1960". It is a classic dataset used frequently within the data science
community to illustrate TSA and forecasting techniques. Each entry repre-
sents the number of passengers traveling each month, providing a clear exam-
ple of seasonal patterns due to periodic peaks and troughs aligning with travel
seasons and an overall upward trend. This dataset is valuable for learning
time-series modeling tools and comparing the effectiveness of various methods.

The results of the code execution are as follows:

= Forthe 12-month trend of EMA, the MAPE is approximately 9.73%. This
indicates that, on average, the forecast is off by 9.73% from the actual
variance of passenger numbers.

= For the 3-month EMA, the MAPE is approximately 5.22%. This suggests
that using a shorter span for smoothing results in a more accurate forecast
of the trend and variance, with the forecasts being off by 5.22% from the
actual numbers on average.

EXPONENTIAL SMOOTHING AND THE HW MODEL

Exponential smoothing models and their application, the HW model, are
well-known traditional methods in time-series forecasting. They offer a flex-
ible framework to capture data trends and seasonality. The simplest model,
exponential smoothing, is based on smoothing out noise and highlighting
underlying patterns in a dataset. It applies to providing short-term forecasts.
The HW model, an extension of the exponential smoothing approach, also
handles datasets with both trends and seasonal variations. It refines predic-
tions by updating estimates through three main equations:

= The level equation fine-tunes the baseline value of the series, adapting to
changes in the mean level due to both trend and seasonality:

L'=aY,-S,)+(1-a)L ,+T,,)

* https://seaborn.pydata.org/tutorial/data_structure. html
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The trend equation captures the direction and rate of the series' trend,
adjusting over time as trends increase or decrease:

T|i = ﬁ(L't - L|z-1) + (1 - ﬁ) T't—l

The seasonal equation highlights the repeating seasonal fluctuations,
ensuring that the model accounts for regular patterns at fixed intervals:

S =y(Y,-L')+(1-y)S,,

The forecast equation combines these elements to predict future
observations:

Y'tﬂn = (L|t + mT‘f) + '

t-s+m

Where:

L' is the calculated level at time ¢.
T', is the calculated trend at time ¢.
S', is the calculated seasonal component at time ¢.
Yl

Y, is the actual value at time ¢.

.o 15 the forecast for m periods ahead.

S, is the seasonal component at time ¢ —s.

a, B, and y are the smoothing coefficients for level, trend, and seasonal-
ity, respectively.

m is the number of periods ahead for the forecast.

s is the size of the seasonal cycle.

Let us run the following code to illustrate the results of using the HW model
with Python:

1. # Load ExponentialSmoothing initial class

2. from statsmodels.tsa.holtwinters import
ExponentialSmoothing

3. # Load dataset from seaborn library

4. flights df = sns.load dataset('flights"')
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5. # Convert 'month' to its numeric representation

6. flights df['month'] = pd.to datetime(flights
df ['month'],
format='%b') .dt.month

7. # Create a combined 'year-month' column and
convert it to the datetime

8. flights df['date'] = pd.to datetime(flights
df ['year'].astype(str) + \
'-'" + flights df['month'].astype(str))

9. # Set 'date' as an index and convert it to
PeriodIndex

10. flights df.set index('date', inplace=True)

11. flights df.index = flights df.index.to period('M')
12. # Create training and test set

13. test period = 12

14. df = flights df['passengers']

15. train set = df.iloc[:-test period]

16. test set = df.iloc[-test period:]

17. # Forecasting model

18. model = ExponentialSmoothing(endog = train_ set,

19. trend = 'add', # 'mul' or 'add'
20. seasonal = 'add', # 'mul' or 'add'
21. seasonal periods = 12).fit()

22. # Predictions

23. predictions hw = model.forecast (steps = test
period) .rename ("Holt-Winters Forecast")

24. predictions hw.index = test set.index

25. predictions hw.head()

26. # Visualization
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df[-60:-1].plot (figsize = (10,5), legend = True)
predictions _hw.plot (legend = True)
# Displaying the MAPE value on the plot

m mape = mean absolute percentage error (test set,
predictions_hw) * 100

plt.text(0.45, 0.95, £'MAPE: {m mape:.2f}3%"',
transform=plt.gca () .transAxes, fontsize=10,
verticalalignment="top'")

The results are depicted in Figure 7.3:
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FIGURE 7.3 HW model forecasts of the flight passengers dataset

Based on the code provided, Figure 7.3 shows how well the HW model, with
its specified parameters, can capture the seasonal patterns and trends in the
historical flight passengers dataset. It shows the forecast of the passenger num-
bers for the next 12 months and the MAPE value of 2.8%, providing insight
into the percentage error of the model’s forecasts. The lower the MAPE, the
more accurate the model’s predictions are. When it comes to financial data,
however, the scenario often changes. Financial markets are characterized by
their volatility, and the patterns the HW model excels in capturing may be less
pronounced or even exist in a form that the model can utilize. Seasonality in
financial data is only sometimes clear and consistent due to the many factors
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influencing market prices, including economic indicators, investor sentiment,
geopolitical events, and market anomalies. Therefore, other specific tools are
needed to identify trends and seasonality.

Seasonality Decomposition in Python

Seasonality decomposition is a crucial technique in TSA, allowing us to dissect
complex data into fundamental components: trend, seasonality, and residual
error. The following code shows an example of the use of the seasonal
decompose () function:

1. # Use an additive model to decompose

2. # Yt = Tt (Trend) + St (Seasonal) + Et (Residual
(error))

3. decomp = seasonal decompose (flights['passengers'],
4. period = 12,
5o model = 'add'")

6. fig = plt.figure()

7. fig decomp.plot ()
8. fig.set size inches (10, 5)
9. # Use a multiplicative model to decompose

10. # Yt = Tt (Trend) x St (Seasonal) x Et (Residual
(error))

11. decomp = seasonal decompose (flights['passengers'],

12. period = 24,
13. model = 'mul')
14. fig = plt.figure()

15. fig = decomp.plot ()

l6. fig.set size inches (10, 5)
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The results for period = 12 and the model = 'add' model are depicted
in Figure 7.4.

The additive model is suitable for roughly constant seasonal variations
(Figure 7.4). The multiplicative model (the figure is shown in the appendix
with the program code) is used when seasonal variations change proportion-
ally with the trend. Analysis of the data in Figure 7.4 shows that the selected
additive seasonality of 12 months for the dataset does not consider all periods.
The figure shows residuals; fluctuations around 0 and dependence are vis-
ible. That is, additive seasonality is insufficient for the complete series data
forecasting. Thus, even though the additive model provided the MAPE at
the level of 2.20%, it is also necessary to consider the possibility of using the
multiplicative form:
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FIGURE 7.4 Seasonality decomposition of the flight passengers dataset (12 periods and additive model)

The HW Method: Multiplicative Trend and Seasonal Components

The HW method with multiplicative trend and seasonal components is a vari-
ation of the triple exponential smoothing technique, where both the trend and
seasonal components are multiplied rather than added. Here are the equations
for the HW method with a multiplicative trend and seasonal components:
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Level equation:

L't = (Yt/st-s) + (1 - a) (L'[-l x T|t—1)

= Trend equation:

T't = ﬂ (L‘t/L't—l) + (1 - ﬁ) T|t-1

Seasonal equation:

S't =7 (Yt/L|t) + (1 - 7/) St—s

Forecast equation:

Yl

t+m

= (L|t X (T'[)m) x S

t-s+m (mod s)

where mod(s) is applied to the index of the seasonal component; other vari-
ables have the same meaning as for the additive version.

In this model, the multiplicative approach is beneficial when the seasonal
variations change proportionally with the series level, and the trend evolves
multiplicatively. Let us execute the following code to demonstrate the multi-

plicative HW model results:

2. test period = 12

1. # Training and test set

3. df = flights df['passengers']
4. train set = df.iloc[:-test period]

5. test set = df.iloc[-test period:]

6. # Forecasting model

7. model = ExponentialSmoothing(endog = train_ set,
8. trend = 'mul', # 'mul' or 'add'
9. seasonal = 'mul', # 'mul' or 'add'
10. seasonal periods = 24).fit()
11. # Predictions
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12. predictions _hw = model.forecast (steps = test
period) .rename ("Holt-Winters Forecast")

13. predictions hw.index = test set.index

14. # Visualization

15. df[-60:-1].plot(figsize = (10,5), legend = True)
16. predictions_hw.plot (legend = True)

17. # Displaying the MAPE value on the plot

18. m mape = mean absolute percentage error (test set,
predictions _hw) * 100

19. plt.text(0.45, 0.95, £'MAPE: {m mape:.2f}%"',
transform=plt.gca() .transAxes,
fontsize=10, verticalalignment='top')

The results are depicted in Figure 7.5:
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FIGURE 7.5 HW model forecasts of the flight passengers dataset (multiplicative trend
and seasonal components)



288 ¢ FinancIAL DATA ANALYsIS USING PYTHON

As seen in Figure 7.5, the HW multiplicative model made it possible to
reduce the MAPE to 2.71%. Despite their seeming simplicity, however, the
HW models could be more applicable to the fundamental dynamics of the
financial market. The appendix with the program code presents examples for
the NASDAQ index, demonstrating this model’s limitations.

ARIMA APPROACH: FROM MA TO SEASONALITY AND
EXTERNAL VARIABLES

ARIMA time-series forecasting embodies the synthesis of autoregressive fea-
tures with MA, all while incorporating the critical concept of integration to
achieve stationarity. The following equations describe the ARIMA model:

= Autoregressive (AR) represents the correlation between an observation
and a certain number of lagged observations:

Y, =¢Y,  +¢,Y, ,+...+ ¢th—p +é,

= Integrated (I) represents the differencing of observations to make the
time series stationary:

Y =(1-B)Y,

= Moving average (MA) represents the correlation between an observation
and a certain number of lagged forecast errors:

Y, =0¢,_,+0.¢ ,+..+0¢_ +¢,

= Combining these, the ARIMA model can be written as:

Y =c+¢Y_  +..+9)Y,_ +0_ +..+0¢_ +¢

Where:

= Y, is the value of the series at time ¢.
= Y,'is the differenced series (if necessary).

= B is the backshift operator. It is used to shift the time-series data back by
one period.

= ¢,..¢,cisaconstant.
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= ¢,..¢,are the parameters for the autoregressive part.
= 0,..0, are the parameters for the MA part.

m ¢, refers to the white noise error terms at time ¢.

To define the parameters of the ARIMA model, three essential tools are used.
Stationarity tests are used to determine the level of differencing needed for
the model (the I component). The ACF for the stationary series (calculated
based on the differenced series with the order determined at the stationarity
level—the T component) is used to evaluate the level of the MA component.
The PACF is the basis for assessing the level of the AR component.

Stationarity Test

Transitioning to the main task of verifying stationarity, a prerequisite for the
productive application of the ARIMA model, we employ the augmented
Dickey-Fuller (ADF) test. This statistical test probes the time series for unit
roots (the specific math indicator). By examining the ADF test results, we get
conclusions about the temporal structure of the time series, ensuring that the
foundational assumptions of the ARIMA model are met before proceeding
with model estimation and forecasting. Execute the following code to provide
the stationarity test of the passenger dataset:

1. # Print the row results of the ADF test directly
2. print(adfuller (flights df['passengers']))

3. # Define a function to interpret the ADF test
results

4. def describe adfuller results(series):

5. # Perform ADF test
6. result = adfuller (series)
7. # Format the output
8. adf results = pd.Series(result[0:4], index=[
9. 'Test Statistic', 'p-value', '#Lags
Used',
10. '"Number of Observations Used'])

11. # Add critical values to the series
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12. for key, value in result[4].items():

13, adf results[f'Critical Value ({key})'] =
value

14. # Display the results

15. print ("\nResults of Dickey-Fuller Test:")

16. print (adf results)

17. # Conditional statement for interpretation

18. if adf results['p-value'] < 0.05:

19. print ("The time series is stationary as

the p-value is below 0.05.")
20. else:

21. print ("The time series is not stationary
as the p-value is above 0.05.")

22. # Example usage of the function
23. describe adfuller results(flights df['passengers'])

24. describe adfuller results(flights df['passengers'].
diff (1) .dropna())

25. describe adfuller results(flights df['passengers'].
diff (2) .dropna())

The results (truncated) of the code are:

(0.8153688792060498, 0.991880243437641, 13, 130, {
-3.4816817173418295, '5%': -2.8840418343195267, '1l0%
-2.578770059171598}, 996.692930839019)

Results of Dickey-Fuller Test:
Test Statistic 0.815369
p-value 0.991880

(...)

The time series is not stationary as the p-value is above
0.05.
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Results of Dickey-Fuller Test:

Test Statistic -2.829267
p-value 0.054213
#Lags Used 12.000000
Number of Observations Used 130.000000
Critical Value (1%) -3.481682
Critical Value (5%) -2.884042
Critical Value (10%) -2.578770

dtype: float64

The time series is not stationary as the p-value is above
0.05.

Results of Dickey-Fuller Test:

Test Statistic -2.961695
p-value 0.038630
(«..)

The time series is stationary as the p-value is below
0.05.

In TSA, the ADF test is used to check the stationarity of a dataset. A common
criterion for stationarity is a p-value less than 0.05, indicating that the series is
stationary. We get the p-value of 0.054213 for the first-differenced time series;
it is slightly above the typical threshold for statistical significance. It is close
to 0.05, however, which suggests that the series may be borderline stationary
or that there is some evidence against the presence of a unit root, albeit not
strong enough to meet the usual standard of statistical significance. Even if
the p-value is slightly above 0.05, if other diagnostics (such as the ACF and
PACF plots) indicate that the series does not exhibit significant autocorrela-
tions and the time plot of the differenced series appears to fluctuate around a
constant mean, it may still be reasonable to consider the series as sufficiently
stationary for modeling, especially if further differencing could lead to over-
differencing and introduce unnecessary complexity and variance. Therefore,
it may be sufficient to set I = I for the passenger dataset for future modeling
and forecasting.
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Autocorrelation and Partial Autocorrelation Functions

The ACF and PACF are pivotal tools that provide insights into the temporal
structure of the data. The ACF measures the correlation between observa-

tions in a time series separated by various lag lengths, which is instrumental in
identifying an ARIMA model’s MA component. The PACF offers a measure

of correlation between observations at varying lags while accounting for the

influence of shorter lags. This makes it particularly useful for identifying an
ARIMA model’s autoregressive component. It reveals the direct relationship

between an observation and its lagged version, independent of other lagged

observations.

The code provided illustrates how to generate plots for the ACF and PACF,
including applying the ACF to a first-differenced series:

10.

# Plotting Autocorrelation Function (ACF)

# ACF measures the correlation between time
series observations at different lags

# Useful for identifying the MA (Moving Average)
component in ARIMA modelling

fig first = plot acf(flights df['passengers'])

# Plotting Autocorrelation Function (ACF) for
First-Differenced Series

# This code subtracts each value in the
series from the value that precedes it (first
difference)

# Plotting the ACF of the first-differenced
series helps identify autocorrelation after
removing the trend

fig first shift = plot acf((flights_
df [ 'passengers'].diff (1)) .dropnal))

# Plotting Partial Autocorrelation Function
(PACF)

# PACF measures the partial correlation between
observations at different lags
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11. # Helps in identifying the AR (Autoregressive)
component for ARIMA modeling

12. fig seasonal = plot pacf (flights df['passengers'])

The results are depicted in Figure 7.6 and Figure 7.7:
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FIGURE 7.6 Autocorrelation function of the flight passengers dataset
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FIGURE 7.7 PACF of the flight passengers dataset



294 « FinaNCIAL DATA ANALYsIS USING PYTHON

According to Figures 7.6 and Figure 7.7, we can see two plots depicting the
ACF and PACF for the passengers dataset. A few spikes outside the confi-
dence interval (shaded area) suggest significant autocorrelation at those lags.
The ACF is significant in periods 0 and 1. The autocorrelations at lags beyond
the first few do not show a clear, systematic pattern of decay, which might have
been expected in a purely MA process. Therefore, we expected MA(1), but it
may be another. The PACF plot displays a significant positive spike at lag 1,
indicating a potential AR(1) component where the current value has a strong
linear relationship with its immediate previous value. In the second lag posi-
tion, however, the level of the PACF is a significant negative spike. The subse-
quent lags fall within the confidence interval, which suggests that they are not
significantly different from 0 when the direct effects of the intervening lags are
accounted for. This could imply that an AR(1) or AR(2) model might be suit-
able, as there are no other significant partial autocorrelations at higher lags.

Custom ARIMA Model Estimation

Based on Figure 7.6 and the ADF test alone, one might lean toward an ARIMA
model with the parameters p = 1, I = 1, and ¢ = I or 2. Yet, these plots and
tests are merely a starting point; rigorous iterative testing and validation of
the ARIMA model across different combinations of p and g values are crucial.
Model fit statistics, residual analysis, and the MAPE should be assessed to
confirm the model’s suitability. After conducting several trial runs, explicitly
evaluating the AIC and MAPE for the models ARIMA(1,1,1), ARIMA(1,2,1),
ARIMA(2,2,2), and ARIMA(2,1,2), it was found that ARIMA(2,1,2) offers the
lowest AIC and MAPE values. Let us present the corresponding code and
execute it:

1. from statsmodels.tsa.arima.model import ARIMA
2. # Settings

3. test periods = 12 # Assuming you want to
forecast the last 12 periods

4. df = flights df['passengers']

5. # Splitting the dataset into training and test
sets
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train set = df.iloc[:-test periods]
test set = df.iloc[-test periods:]
# Define the ARIMA model with seasonal order
model = ARIMA (train_set,
order=(2, 1, 2))
results = model.fit ()
print (results.summary())
# Forecast the next test periods
forecast = results.get forecast (steps=test periods)
predictions = pd.Series (forecast.predicted mean)
predictions.index = test set.index
# Visualization
df[-60:] .plot(figsize = (10,5), legend = True)
predictions.plot (legend = True)
# Displaying the MAPE value on the plot

m mape = mean absolute percentage error (test set,
predictions)

plt.text(0.45, 0.95, f£'MAPE: {m mape:.2f}3",
transform=plt.gca () .transAxes, fontsize=10,
verticalalignment="top')

The results of the code are:

SARIMAX Results

Dep. Variable: passengers No. Observations: 132
Model: ARIMA (2, 1, 2) Log Likelihood -607.782
Date: Sun, 17 Dec 2023 AIC 1225.563
Time: 21:33:50 BIC 1239.939
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Sample: 01-31-1949 HQIC 1231.405

- 12-31-1959

Covariance Type: opg
coef std err Z P>|z| [0.025 0.975]
ar.L1 1.6660 0.024 68.561 0.000 1.618 1.714
ar.L2 -0.9294 0.022 -41.536 0.000 -0.973 -0.886
ma.Ll -1.8324 0.032 -56.857 0.000 -1.896 -1.769
ma.L2 0.9581 0.032 29.998 0.000 0.895 1.021
sigmaz 605.1587 73.622 8.220 0.000 460.863 749.454
Ljung-Box (L1) (Q): 0.45 Jarque-Bera (JB): .78
Prob (Q) : 0.50 Prob (JB) : .68
Heteroskedasticity (H): 6.52 Skew: .19
Prob (H) (two-sided): 0.00 Kurtosis: .01

The results are depicted in the following figure:
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FIGURE 7.8 ARIMA(2, 1, 2) model forecasts of the flight passengers dataset
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After executing the code for the ARIMA(2,1,2) assessment on the passen-
gers dataset, we observe that all model coefficients are statistically significant
(p-value < 0.005); the forecast error percentage over 12 months stands at an
MAPE of 8.22%, and preliminary analysis based on the ADF test, ACF, and
PACF did not yield a definitive result.

Thus, while ARIMA models are powerful forecasting tools, they may only
sometimes be as accurate as simple exponential smoothing models. Another
distinctive feature of these models is the ambiguity in parameter selection,
necessitating the exploration of all possible ARIMA model variations and
comparative evaluation of their performance indicators.

SARIMA and SARIMAX Models

The ARIMA model, while robust, may falter in the face of seasonality or when
external variables play a significant role in the time-series dynamics. This is
where SARIMA and SARIMAX come into play. The mathematical formulation
of the SARIMA and SARIMAX models is quite complicated. You can view it
on various public resources, for example, https://www.statsmodels.org/stable/
examples/notebooks/generated/statespace_sarimax_stata.html. Therefore, we
present only the main differences between the traditional ARIMA approach:

= The non-seasonal ARIMA component captures the relationship between
a data point and its previous values, adjusting for trends and ensuring sta-
tionarity by differencing the data. This part does not consider any seasonal
effects.

» The seasonal component of the SARIMA model accounts for patterns
that repeat at regular intervals, such as monthly or quarterly cycles. It
includes seasonal autoregressive and MA elements and seasonal differ-
encing to model and remove seasonal effects, making the data stationary
within each season.

m  The SARIMAX model is an extension of SARIMA that introduces a new
element-exogenous variable or variables, like traditional regression. We
can potentially improve forecast accuracy by incorporating these varia-
bles into the model. It is important to note that those exogenous variables
must be known over the entire forecast horizon.

Thus, SARIMA, which integrates seasonality into the ARIMA framework,
allows for a more nuanced understanding and prediction of seasonal time-
series data. The SARIMAX model incorporates exogenous variables, offering
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a multifaceted approach that accounts for additional factors influencing the
series.

In the Python ecosystem, the pmdarima package provides the auto arima
function, a powerful tool that automates the process of ARIMA model selec-
tion. It intelligently iterates over various model parameters, including seasonal
components, to find the best-fitting model according to specified information
criteria. This function can streamline the typically laborious process of identi-
fying the optimal parameters for the SARIMA and SARIMAX models, mak-
ing it an invaluable asset for practitioners in TSA. With auto_arima, one can
harness the power of automation to traverse the model space efficiently and
uncover the most effective configuration for forecasting.

Let us explore how to estimate the parameters of SARIMAX models by using
the auto_arima function. The following results demonstrate how to estimate
the parameters of SARIMAX models for the AstraZeneca PLC stock price
in 2023. This process involves decomposing the seasonal components of the
data, generating date-related features, tuning the SARIMAX model, and pre-
dicting along with the confidence intervals. The results highlight the model’s
performance and accuracy, which are visually represented in Figure 7.9.

Execute the following code to explore the results:

1. from pmdarima import auto arima

2. # Seasonality decompose

3. data = nasdaq _assets _ac['AZN']['2023"']

4. decomp = seasonal decompose (data,

5. period = 5,

6. model = 'add')
7. fig = plt.figure()

8. fig = decomp.plot()
9. fig.set size inches (10, 5)
10. # SARIMAX model tuning

11. data = nasdag assets ac['AZN']['2023"']
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dataframe = pd.DataFrame ({

'y': data,

'day': data.index.day,

'month': data.index.month,

'day year': data.index.dayofyear})
dataframe.dropna (inplace=True)

# Split into train and test sets

test size = 5
train set = dataframe.iloc[:-test size]
test set = dataframe.iloc[-test size:]

#forecasting model

model = auto arima(y = train set['y'],
= train set[['month']],
d =1,
m = 10,
n_jobs = -1,
seasonal = True,
stepwise = False)

print (model.summary())
# Generate predictions and confidence intervals

forecast, conf int = model.predict
(n_periods=test size,

X=test set[['month']],
return conf int=True)

# Convert forecast and confidence intervals to
pandas Series for easier plotting

predictions = pd.Series (forecast).
rename ("SARIMAX")



300 ° FinancIAL DATA ANALYsIS USING PYTHON

37.
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49.
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51.

52.
53.
54.
55
56.
57.
58.
59,

predictions.index=test set.index

m mape = mean absolute percentage error (test
set['y'], predictions) * 100

lower conf = pd.Series(conf int[:, 0],

index=test set.index).
rename ("Lower CI'")

upper conf = pd.Series(conf int[:, 1],

index=test set.index).
rename ("Upper CIM)

# Plotting the observed data, forecast, and
confidence intervals

plt.figure (figsize=(15, 5))
dataframe[-30:]['y'] .plot (legend=True,

title='SARIMAX Forecast
with Confidence Intervals')

test set['y'].rename ('True y').plot (legend=True)
# Plotting the confidence intervals

predictions.plot (legend=True, color='red',
linestyle="—")

# Plotting the confidence intervals

plt.fill between (lower conf.index, lower conf,
upper conf, color='k', alpha=0.15)

# Displaying the MAPE value on the plot

plt.text(0.75, 0.95, f£'MAPE: {m mape:.2f}3%"',
transform=plt.gca() .transAxes,
fontsize=10, verticalalignment='top')

plt.xlabel ('Date')

plt.ylabel ('Price')

plt.legend(loc="upper left')

plt.show ()
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The results of the code are:

SARIMAX Results

Dep. Variable: \% No. Observations:
182
Model: SARIMAX (1, 1, 0)x(1, 0, 0, 10) Log Likelihood
-244.187
Date: Sun, 17 Dec 2023 AIC
498.374
Time: 22:02:57 BIC
514.366
Sample: 0 HQIC
504.857
- 182

Covariance Type: oprg

coef std err z P>|z| [0.025 0.975]
intercept 0.0571 0.082 0.699 0.484 -0.103 0.217
month -1.0084 0.245 -4.117 0.000 -1.488 -0.528
ar.Ll -0.1296 0.076 -1.699 0.089 -0.279 0.020
ar.S.L10 -0.1612 0.082 -1.955 0.051 -0.323 0.000
sigma2 0.8683 0.080 10.906 0.000 0.712 1.024
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 155.49
Prob (Q) : 0.91 Prob (JB) : 0.00
Heteroskedasticity (H): 1.68 Skew: -0.64
Prob (H) (two-sided): 0.05 Kurtosis: 7.36
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The results of the code are shown in the following figure:

SARIMAX Forecast with Confidence Intervals

—y MAPE: 0.65%
71{ — Tuey
—==- SARIMAX

69 \
68 PGS
67

66

Price

65 1

641

FIGURE 7.9 SARIMAX(0, 1, 3)x(0, 1, [], 12) model forecast of the AstraZeneca PLC stock price with
month number as the exogenous variable

Here is what each auto_arima () parameter signifies in the given code
snippet:

= y: The endogenous variable or the time series trying to model or predict.
In this case, it is train _set['y'], a column from a DataFrame named
train_ set.

= X: Exogenous variables are external factors or predictors that might affect
the endogenous variable. Here, train set[['month']] indicates that
the month may have some explanatory power over the target time series.

= d: The order of first differencing is needed to make the series stationary.
Setting d = 1 implies that the series should be differenced once.

= m: The seasonal period. This parameter is used to specify the number of
steps in a seasonal period. Here, m = 10 suggests 10 periods per season
in the data.

= n_jobs: The number of CPUs to use during the model fitting process. A
value of -1 means that all available CPUs will be used.

= seasonal: A Boolean flag (True or False) indicating whether to apply
the SARIMA model. Setting seasonal = True enables the function to
consider seasonal components during model fitting.

= stepwise: A Boolean flag (True or False) that indicates whether the
stepwise algorithm should be used to fit the model. Setting stepwise =
False means that the function will use a brute-force approach, checking
all possible model combinations, which can be more time-consuming but

thorough.
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The auto arima function will iteratively explore different combinations of
p, d, and g (for the non-seasonal part of the model) and P, D, Q, and s (for
the seasonal part of the model) to find the best model that minimizes a given
information criterion, typically the AIC.

The code also demonstrates how to split the dataset into training and test-
ing sets, fit the SARIMAX model, generate predictions along with their con-
fidence intervals, and visualize the results, including the MAPE metric, to
assess forecast accuracy.

The SARIMAX model fitting results show that the model selected is a
SARIMAX(1, 1, 0)x(1, 0, 0, 10). The reported MAPE of 0.68% indicates a
relatively low average percentage error in the forecasts, which is promising.
The p-values for the autoregressive terms at lag 1 and seasonal lags of 10 sug-
gest that while the model captures some of the dynamics in the series, not all
coefficients are statistically significant at conventional levels (p < 0.05). The
output also includes other diagnostic statistics that provide insight into the
model’s fit. The model fitting and its subsequent evaluation, as depicted in
Figure 7.9, underscore the utility of SARIMAX when accounting for both sea-
sonal patterns and the impact of exogenous variables. The model’s results are
not fully valuable, however, which requires additional preliminary research,
extensive data preparation, and high analytical proficiency. In addition, the
linear nature of SARIMAX class models does not always correspond to practi-
cal issues.

CONCLUSION

TSA is an essential aspect of financial data forecasting, offering insights into
trends, volatility, seasonality, and stationarity, which are critical for informed
decision-making in the finance market. Python and its pandas and statsmod-
els libraries provide rich toolkits for manipulating and analyzing time-series
data, enabling analysts to prepare, support, and realize investment strategies.
Whether visualizing trends with MA, understanding the implications of vola-
tility, dissecting seasonal patterns, or ensuring data stationarity for reliable
modeling, the capacity to transform, visualize, and model time-series data
using Python’s functions and methods is invaluable.

We have explored the traditional models of TSA, which serve as fundamental
tools in financial forecasting. These models, including exponential smooth-
ing and ARIMA approaches, form the basis for understanding historical data
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trends, seasonality, and external factors influencing market movements. For
example, the HW exponential smoothing method with multiplicative trends
and seasonal components was explored as a flexible forecasting tool that can
capture seasonal trends in time-series data. It is effective for short-term pre-
dictions, mainly when the data exhibits consistent seasonal patterns.

The ARIMA-based models are based on autoregressive and MA features.
They can be used to solve complex financial problems, especially in com-
bination with stationarity tests, autocorrelation, and PACF. The SARIMAX
model further enhances classical ARIMA by considering seasonal patterns
and the impact of external variables, making it suitable for complex scenarios
where such factors significantly influence the time series. With tools such as
the auto_arima function from the pmdarima package, parameter selection
is automated, simplifying the typically strenuous model identification process.
All of these time-series models are powerful yet require careful consideration
of their parameters to ensure accurate forecasting, especially in fields influ-
enced by seasonal and external factors.

All these standard time-series models are powerful, although they require
careful estimation of their parameters to ensure accurate forecasting. The
high complexity of financial time-series data, however, often does not allow
the traditional statistical models to produce results with sufficient accuracy.
Therefore, innovative tools, such as machine learning tools and neural net-
work models, are now actively used, which will be discussed in subsequent
chapters.

QUESTIONS

1. What are the main Python tools that can be used for time-series analysis
and financial data forecasting?

What are the exponential smoothing models?
What is the HW model?

What is the ARIMA model?

What is the decomposition of a time series?
What is the stationarity of a time series?

How can the ACF and the PACF be used to identify the order of the
ARIMA model?

N o kD
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How can the ARIMA model be used to forecast financial data?

What time-series data elements are considered by the SARIMA and
SARIMAX models?

What are some of the complex financial forecasting challenges that the
SARIMA and SARIMAX models can be used for?

What is the difference between the ARIMA and HW models?

What are some of the challenges of using the traditional time-series
models?

KEY TERMS

Trend refers to a time-series dataset’s long-term movement or direction.
It can be upward (increasing), downward (decreasing), or horizontal

(stable).

Seasonality describes the regular and predictable patterns or movements
that recur over specific periods, such as annual seasons, days, weeks,
months, and quarters. Factors such as the weather, holidays, or biological
cycles may influence seasonality.

Stationarity is the statistical properties that are constant over time.
Stationarity, for example, can be defined as a time series without a trend,
constant variance, stable autocorrelation, no periodic fluctuations, etc.
This property is crucial for building stable forecasting models of the
ARIMA types.
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CHAPTER

Risk ASSESSMENT AND
VoLATILITY MODELING

INTRODUCTION

This chapter explores the essentials of the financial risk assessment and vola-
tility modeling concepts. We will begin with an overview of the principles of
probability theory and its applications in volatility analysis, highlighting the
role of statistical distributions such as normal distribution. Then, we shift to
practically implementing these concepts, using Python to calculate and ana-
lyze value at risk (VaR) and average value at risk (aVaR). These metrics serve
as vital indicators of potential financial loss, providing a quantitative frame-
work for risk evaluation.

The chapter continues by laying out the theoretical framework for Monte Carlo
simulations, which leverages randomness and statistical inference to support
financial decisions. The application of this method is demonstrated through
Python-based real-world examples, which include the computation of option
prices and the estimation of VaR. In addition, you are introduced to practical
examples of using Python code to obtain and analyze option pricing data.

Lastly, the section on the ARCH and GARCH models introduces you to
advanced methods for predicting and understanding market volatility. The
chapter provides a detailed guide on using these models to support financial
decisions with practical Python applications.
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STRUCTURE

This chapter covers the following topics:

= Probability theory basics

= VaR metric for risk assessment in finance
s Monte Carlo method in finance

s ARCH and GARCH models

OBJECTIVES

This chapter aims to empower you to seamlessly translate sophisticated prin-
ciples of probability theory into executable Python code, culminating in a
deep understanding of the principles of financial risk and volatility. By the
end of this chapter, you will have acquired the proficiency to apply Python’s
computational capabilities to financial risk assessment and volatility modeling.
You will also understand how to use Python tools with key probabilistic distri-
butions through the computation of VaR and aVaR. Using the power of Monte
Carlo simulations, you will be able to apply randomizing or stochastic meth-
ods to forecast the price of financial securities. By comprehensively explor-
ing ARCH and GARCH models, you will be equipped with the foresight to
anticipate and model financial volatility.

PROBABILITY THEORY BASICS

Previous chapters show that forecasting financial indices is fraught with uncer-
tainty. Analysts and investors utilize various methodologies to predict market
movements, from statistical and regression analysis to technical and graphical
methods. Despite these efforts, we are perpetually confronted with the issue
of discrepancies between our forecasts and actual data, manifested as errors.
For instance, while we employed ARIMA models in Chapter 7, Time-Series
Analysis and Financial Data Forecasting, our forecasts’ mean absolute per-
centage error (MAPE) remained notably high. This persistent challenge is
attributable mainly to financial markets” inherent variability or volatility.

Volatility, the statistical metric of the fluctuation of the price or the rate of
return (RoR) for a given security or market index, is a multifaceted concept
that captures the intensity of price deviation. We estimate it with the standard
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deviation or variation statistical metric. It is a central financial concept, serv-
ing as a key indicator of risk and uncertainty. Therefore, understanding the
volatility is critical for optimizing financial investment portfolios, as discussed
in Chapter 6, Asset Pricing and Portfolio Management, and other essential
financial insights.

Risk and volatility are closely related concepts in the world of finance, but
they are not identical. Volatility refers to a random variable’s overall variability
or fluctuation, encompassing upward and downward movements. It is a statis-
tical measure that represents the degree to which the price of a security or a
market index fluctuates over time. On the other hand, risk is typically associ-
ated with the potential for negative outcomes. An investment’s actual return
may differ from the expectation level. Moreover, the returns may be less than
the amount invested. For instance, if an investment demonstrates high vola-
tility, there is potential for both gains and losses. When the high volatility of
an investment leads to greater-than-expected earnings, the positive outcome
means that the risk, in this scenario, was not realized.

To comprehend volatility and risk, we must explore the fundamentals of prob-
ability theory, particularly the study of distributions, such as normal and uni-
form. The normal distribution, also known as the Gaussian distribution, is
central to statistics and is often used in finance due to its natural occurrence
in various random processes. The uniform distribution, by contrast, assumes
equal probability for all values, providing a different perspective on random-
ness and its impact on financial instruments.

In financial practices, the concept of volatility is often encapsulated by the
standard deviation, which measures the average absolute difference of a finan-
cial indicator from its mean value. While those metrics provide an insightful
snapshot of past fluctuations, we cannot predict the exact deviation for a spe-
cific future observation. This uncertainty ushers in the concept of a random
variable.

A random variable is a quantitative variable whose possible values are numer-
ical results of a random phenomenon or process and often formalized by a
quantity, depending on random events. In finance, a random variable could
represent the future price of a stock, the RoR, or the change in an index value
over a certain period. It is a cornerstone concept because it allows us to deal
quantitatively with financial uncertainties.

When we refer to the behavior of a random variable, we discuss its tendency
to assume different values, a pattern encapsulated by the random variable
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distribution. The distribution of a random variable is a mathematical func-
tion that describes the probability of the random variable taking on each
possible value. It tells us how likely it is to observe each outcome associated
with the variable. A distribution function, or DF (as a mathematical equa-
tion), distribution table, or distribution plot can represent the random vari-
able distribution. For example, the normal distribution or the bell curve has
a complicated mathematical function, but the graphical form is well under-
stood. For more details and understanding of the features of random vari-
ables and the random variable distribution, you can refer to the specialized
literature that is given at the end of this chapter or public open sources, such
as the following: Massachusetts Institute of Technology courses (https://ocw.
mit.edu/courses/18-440-probability-and-random-variables-spring-2014/
pages/lecture-notes/) and Statistics LibreTexts (https://stats.libretexts.org/
Bookshelves).

In addition to understanding the fundamental assessments of risk and volatil-
ity, it is essential to grasp the implications of two critical categories: population
(or general population) and sample. A sample consists of datasets utilized to
analyze information drawn from various sources. While it may appear that
we have gathered all possible data about a market, stock, or price, invariably,
some data still need to be accounted for. This oversight introduces the con-
cept of a general population or statistical population, which, in this context,
encompasses all potential values of an indicator that we did not consider.

For instance, in assessing price dynamics, the sample might comprise daily
trading data (no gaps) from January 1, 2010, to January 1, 2024. Nevertheless,
this sample is extracted from a broader general population that includes all
price data across different periods or at varied time intervals and so on. These
concepts are pivotal in probability theory because we infer estimates reflec-
tive of that sample’s data when analyzing random variables based on a specific
sample. The results could vary considerably, however, if we select a different
sample from the general population for a distinct period.

This is where the concepts of confidence and prediction intervals come
into play, previously encountered in Chapter 6, Asset Pricing and Portfolio
Management, where we constructed forecast confidence intervals using
SARIMA models. These statistical tools allow us to quantify the uncertainty
of our predictions and provide a range within which we expect our estimates
to fall with a given level of confidence.

Let us look at the details with practical Python examples.
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Normal Distribution

Normal distribution' is a well-known distribution for random variables in
finance. It is symmetric around the mean, showing that data near the mean
is more frequent in occurrence than data farther from it. This distribution is
characterized by two parameters: the average value (mean), located at the
center of the distribution, and the standard deviation, which scales the spread
of the distribution. For instance, financial analysts can calculate the likelihood
that the RoR will exceed a certain threshold or determine the probability that
the price of a security will fall within a particular range.

Please go ahead and execute the following code and analyze the results of the
normal distribution principles:

1. # Import of specific functions for generating
indicators # of the Normal distribution

2. from scipy.stats import norm

4. # Generate and plot 100 random samples from
# a standard normal distribution

5. np.random.seed (150)

6. standard normal = np.random.standard normal (100)
7. # Categorize the standard normal data into 10 bins
8. categorized data = pd.cut(standard normal, 10)

9. # Create a frequency table
# (cross-tabulation) of the categorized data

10. frequency table = pd.value counts (categorized
data) .sort_index()

11. df frequency table = pd.DataFrame ({
12. 'Freq': frequency table,

13. 'Weight': frequency table / frequency table.
sum ()

! For more details, see https://en.wikipedia.orghwiki/Normal_distribution
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14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.
26.

27.

28.
29.

30.
31.

}) .reset index () .rename (columns={'index":
'Interval'}l)

# Calculate the PDF for the midpoint of each
interval

df frequency table['Midpoint'] = df frequency
table['Interval'].apply(lambda x: x.mid)

df frequency table['PDF'] = norm.
pdf (df frequency table['Midpoint'])

# Calculate the CDF for the upper bound of each
interval

df frequency table['CDF'] = norm.cdf (df
frequency table['Interval'].apply(lambda x:
x.right))

print ("Frequency Table of Standard Normal Data
Categorized into 10 Bins:")

print (df frequency table[['Interval', 'Freq',
'"Weight', 'PDF', 'CDF']])

# Mean and standard deviation for
# the Standard normal distribution

mean = 0
std = 1

# Generate a range of x values from
# the mean and standard deviation

x _values = np.linspace (mean - 4*std, mean +
4*std, 1000)

# Calculate the PDF values for the x values range

pdf values = norm.pdf (x values, loc=mean,
scale=std)

# Create a combined plot

plt.figure (figsize=(12, 6))
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32. # Histogram plot of the standard normal data with
10 bins

33. sns.histplot(standard normal, bins=10, kde=False,

34. stat="density', label='Sample
Histogram')

35. # Create a Kernel Density Estimate (KDE) plot
# for the standard normal data

36. sns.kdeplot (standard normal, label='KDE of The
Sample',

37. color="black', linestyle='--")
38. # Plot the theoretical PDF line
39. plt.plot(x values, pdf values, color='red',

40. label="'Theoretical PDF - Standard
Normal')

41. # Ploting

42, plt.title('Standard Normal Distribution with
Sample Histogram and Theoretical PDF')

43. plt.xlabel('Value')
44. plt.ylabel ('Density")
45. plt.legend()

46. plt.show()

Refer to the following text and Figure 8.1 for the code results.

The frequency table of standard normal distributed data is categorized into
10 bins:

Interval Freq Weight PDF CDF
0 (-2.68, -2.138] 3 0.03 0.021915 0.016258
1 (-2.138, -1.601] 7 0.07 0.069498 0.054688
2 (-1.601, -1.064] 9 0.09 0.164192 0.143664

3 (-1.064, -0.527] 16 0.16 0.290733 0.299097
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(-0.527, 0.00931] 28 0.28 0.385799 0.503714
(0.00931, 0.54¢6] 12 0.12 0.383857 0.707467
(0.546, 1.083] 11 0.11 0.286320 0.860596
(1.083, 1.619] 9 0.09 0.160167 0.947276
(1.619, 2.156] 4 0.04 0.067188 0.984458
(2.156, 2.693] 1 0.01 0.021109 0.996459

The following is an explanation of the code:

The norm function from the scipy.stats module represents the normal
(Gaussian) distribution, providing access to several important statistical
functions, including the ability to calculate probability density functions
(PDFs).

norm.pdf calculates the PDF for the theoretical normal distribution
of the general population. A PDF describes the likelihood of a random
variable in the given value. The PDF plots the curve of the ideal normal
distribution.

np.random. seed (150) sets the seed for NumPy’s random number gen-
erator, making the random numbers generated reproducible (will be the
same on different platforms; the number 150 is arbitrary). This is crucial
when you need to share reproducible results or debug code. In the real
world, however, it should be a random variable, too, such as the current
system time.

np.random.standard normal (100) generates 100 random samples
from a standard normal distribution (mean=0 and sd=1). In general, the
function np.random.normal (loc=0, scale=1, size=100) gener-
ates a normal distributed random variable, where n is the number of sam-
ples, 1oc is a mean (center) value, and scale is a standard deviation.

The resulting table is the most straightforward way to present the DF of a
random variable. For instance, we observe a 10% probability (0.07 + 0.03
from weight) that the historical values of the generated sample will be less
than -1.601. The theoretical probability value for the midpoint of the inter-
val (-2.68, -1.601] is 0,091413 (0.021915 + 0.069498 for the PDF column) or
0.054688 (for the cDF column). This discrepancy arises from the dispropor-
tionality between the sample ranges and the population (for the norm func-
tion results).
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A more visible result is shown in Figure 8.1, which depicts the histogram
of the generated sample, the KDE plot for the generated sample, and the
theoretical PDF value for the general population. The graphical represen-
tation of the standard normal distribution demonstrates that the generated
random variable differs from the standard distribution, even though the data
was taken from the corresponding general population. This confirms the dif-
ference between these indicators.

Standard Normal Distribution with Sample Histogram and Theoretical PDF

=== KDE of the Sample
0.59 — Theoretical PDF - Standard Normal
[ Sample Histogram

Density

Value

FIGURE 8.1 Histogram and KDE plots for the standard normal distributed random variable

The PDF and the DE, often called the cumulative DF, are two fundamental
concepts in statistics used to describe the distribution of a random variable.
For a continuous random variable, the PDF shows the likelihood of the vari-
able falling within a particular range of values (see Figure 8.1 and the PDF
column in the results table). The area under the PDF curve for a given interval
equals the probability that the variable falls within that interval. The CDF is
a function that maps a value to its percentile rank or the probability that a
random variable will take a value less than or equal to that value (see the CDF
column in the results table). The CDF is integral to the PDF and provides the
cumulative probability for the random variable from negative infinity up to a
specific point. Both functions are used to interpret random variable behaviors.

Next, we will consider an example related to the logRoR indicator value (see
Chapter 2, Python Tools for Data Analysis: Primer to Pandas and NumPy) for
the NASDAQ index’s adjusted close prices.
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Let us execute the following code:

10.
11.
12.

13.

14.
15.
16.
17.
18.

19,
20.

# Downloading historical data for the index

index data = yf.download(index ticker,
start=start, end=end)

index data['RoR'] = index data['Adj Close'].
pct change ()

index datal['logRoR'] = np.log(index datal['Adj
Close'] /

index datal'Adj
Close'].shift (1))

index data.dropna (inplace=True)
mean = nasdaq_index['logRoR'].mean ()
std = nasdaqg_index['logRoR'].std()

# Create a BINS plot for NASDAQ's
# Log Rate of Return (logRoR) density

plt.figure(figsize=(12, 6))
sns.histplot (nasdag_index['logRoR'], kde=False,

stat="density', bins=30, label='Log
Rate of Return')

# Create a simulated KDE plot based on NASDAQ
10ogRoOR statistics

simulated data = np.random.normal (mean,std, 10000)

sns.kdeplot (simulated data, color = 'black',
label = 'Simulated Normal KDE')

# Generate a range of x values for Theoretical PDF

x values = np.linspace (mean - 4*std, mean +
4*std, 1000)

# Calculate the PDF values for the x values range

pdf values = norm.pdf (x values, loc=mean,
scale=std)
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# Plot the theoretical PDF line

plt.plot (x values, pdf values, color = 'red',
linestyle = '--', label='Theoretical

PDE')

# Plotting

plt.title('Theoretical PDF and Actual Data
Distribution of NASDAQ logRoR')

plt.xlabel ('Log Rate of Return')
plt.ylabel ('Density'")

plt.legend()

# Create the Q-0 plot
from statsmodels.graphics.api import ggplot

ggplot fig = ggplot (nasdag_index['logRoR'],
line="qg', fit=True)

ggplot fig.set size inches (12, 6)

The code results are depicted in Figure 8.2:

Theoretical PDF and Actual Data Distribution of NASDAQ logRoR

351

— Simulated Normal KDE
=== Theoretical PDF
3 Log Rate of Return

0.00 0.02
Log Rate of Return

FIGURE 8.2 Histogram and KDE plots for NASDAQ logRoR and equivalent
normal distributed random variable
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As observed from Figure 8.2, the actual logRoR values (represented by the
histogram) significantly differ from the theoretical normal distribution with
similar mean and standard deviation values (dashed line). In the example
considered, however, the simulated normal KDE is represented by 10,000
random variables. In this case, the data from the general population is used
to create the simulated data. This effect is associated with the fact that as the
sample size increases, the statistical metrics of a random variable converge to
the parameters of the general population.

Another interesting graph, presented in Figure 8.3, is the Q-Q plot. It shows
the congruence between a random variable’s theoretical and actual PDF val-
ues. The more the blue points on the graph differ from the red line, the fur-
ther the given distribution is from the normal. A distribution such as the one
shown in Figure 8.3 corresponds to the case of heavy (fat) tails, meaning that
the random variable’s average values conform to the normal distribution, but
the deviations that are far from the average do not. Heavy tails significantly
increase the risk of losses from rare events, which is examined in more detail
in the work of Nassim Taleb (see the References section of this chapter).

Sample Quantiles

—4 4

T T T T T T
-3 =2 -1 1] 1 2 3
Theoretical Quantiles

FIGURE 8.3 Q-Q plot for NASDAQ logRoR

Thus, the variation in the yield of securities should inherently correspond to the
normal distribution; however, as the previous pre-action analysis showed, this is
not always the case. There are both deviations from the heart and fat tails.
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VaR METRIC FOR RISK ASSESSMENT IN FINANCE

As noted earlier in this chapter, the concept of risk in financial analysis embod-
ies the potential for adverse movements within the market that could culmi-
nate in financial losses. Several quantitative methods have been developed to
navigate this uncertainty. VaR is a preeminent metric that estimates the maxi-
mum potential loss over a specified time frame, given a certain confidence
level. It is based on probability theory concepts and uses normal distribution
features. The level of VaR is estimated as follows:

VaR=7Z,x o + U
Where:

= Z,isthe Z-score (quartile for the theoretical normal distribution) with the
level of confidence a.

m o is the standard deviation of the random variable.

= u is the mean of the random variable.

Therefore, this risk assessment tool considers the level of market volatility,
which reflects the amplitude of asset price movements in a negative way. By
focusing on the negative side of volatility, VaR emphasizes the potential for
decline rather than the opportunity for gain. The metric captures the likeli-
hood of a loss occurring within a predefined period and quantifies the poten-
tial losses that could exceed the VaR threshold.

Building on the VaR framework, which estimates maximum potential loss
within a given confidence interval, the concept of aVaR extends this risk met-
ric further. While VaR offers a threshold value, indicating that losses are not
expected to exceed this point within a certain confidence level, aVaR delves
deeper. It represents the expected loss, given that the VaR threshold has
already been breached. Thus, the integral averages the VaR over the tail of
the distribution beyond the confidence level o as follows:

aVaR =

1
a —la) '(/Z'VaR(u)du
As for discrete distributions:

aVaR = (ZLl )/N Vie [1’ cheed]

exceed > 2
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Where:

= o (alpha) is the confidence level (e.g., 0.95 for 95% confidence).
= VaR (u) is the value at risk at confidence level u.

® N, ..qis the number of losses that exceed the VaR.

(S

= L, is the individual losses that exceed the VaR.

The aVaR is particularly useful because it gives a more comprehensive picture
of the tail risk, which VaR alone might not fully capture. It is calculated as
the average loss in the worst-case scenarios beyond the VaR limit, effectively
quantifying the expected loss when the market movement is exceptionally
adverse.

In essence, while VaR can be seen as the line in the sand that losses are not
likely to cross on a given day, aVaR tells us about the expected severity of those
rare but extreme events that cross that line. It is a vital tool in risk manage-
ment because it accounts for the magnitude of extreme losses, thus helping
institutions prepare for and mitigate the impact of potentially catastrophic
financial events.

There are several methods to estimate VaR, including historical, variance-
covariance, and Monte Carlo simulation. Let us look at examples for each:

»  The historical method uses historical data to estimate the potential loss. It
assumes that historical patterns will continue.

For example, suppose you have an index portfolio and have calculated its daily
returns over the past year. To estimate the 5% VaR over one day:

m  Sort these returns from the worst to the best.
= Find the 5th percentile (the point below which 5% of the observations fall).
= The return at this percentile is your 5% one-day VaR.

Execute the following code as an example:

1. def calculating VaRs hist (data, confidence level
= 0.95,

2. out text = False, out viz = False):

3o # Sort the log returns
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data sorted = data.sort values()
# Calculate the VaR

historical var = data sorted.quantile(l -
confidence level)

# Calculate the aVaR

avar = data sorted[data sorted <= historical
var] .mean ()

# Print the Value at Risk (VaR) result
if out text:
print ('Historical Method.')

print (f'With 95% confidence, the values
will not exceed a loss of {-historical var *
100:.2f}1%.")

print (f'With 95% confidence, the values
will not exceed a loss of {-avar * 100:.2f}%."'")

if out viz:
# Plot the KDE of the log returns
plt.figure(figsize=(10, 5))
sns.kdeplot (data sorted, fill=True)

plt.axvline (historical var, color='r'
linestyle='--",
label=f'95% VaR level:
{-historical var * 100:.2f}%")

plt.axvline (avar, color='b', linestyle=':",
label=f'95% avaR level: {-avar
* 100:.2f}1%")

plt.title ('NASDAQ Log Return KDE with VaR')
plt.xlabel ('Log Rate of Return')

plt.ylabel ('Density')
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plt.legend()
plt.show ()

# Plot the histogram of the log returns
with 100 bins

plt.figure (figsize=(10, 5))

n, bins, patches = plt.hist(data_ sorted,
bins=100, alpha=0.7)

for patch, rightside, leftside in
zip (patches, bins[l:], bins[:-1]):

if rightside <= historical var:
patch.set facecolor('red")

if leftside < historical var <=
rightside:

fraction = ((historical var -
leftside) /
(rightside - leftside))

patch.set facecolor('red")
patch.set alpha(fraction)

plt.axvline (historical var, color='k',
linestyle='--",

label=£f'95% VaR level:
{-historical var * 100:.2f}%")

plt.axvline (avar, color='b', linestyle=':",

label=f'95% aVaR level: {-avar
* 100:.2f}1%")

plt.title('Histogram of Log Returns with
VaR')

plt.xlabel ('Log Rate of Return')
plt.ylabel ('Frequency')

plt.legend()
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plt.show ()

# Return VaR and aVaR

return ({historical var, avar})

# Input data: the nasdaqg index['logRoR'] Series 1is
# sorted by values from the worst to the best.

nasdaq_index logRoR = nasdaq index['logRoR'].
sort values ()

# Plot the KDE of the log returns
plt.figure (figsize=(10, 5))
sns.kdeplot (nasdag_index logRoR, fill=True)

# Calculate the VaR and aVaR as previously
described

confidence level = 0.95

historical var, avar =
calculating VaRs hist (nasdag_index logRoR,

confidence level =
confidence level,

out text = True,

out viz = True)
# Print the Value at Risk (VaR) result
print ('Historical Method.')

print (f'With 95% confidence, the daily logRoR
will not exceed a loss of {-historical var *
100:.2f}%.")

print (f'With 95% confidence, the average daily
logRoR will not exceed a loss of {-avar *
100:.2£}%.")
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The code results are as follows and depicted in Figure 8.4:

Historical Method.

With 95% confidence, the daily logRoR will not exceed a
loss of 2.66%.

With 95% confidence, the average daily logRoR will not
exceed a loss of 3.52%.

The results of the historical method and data in Figure 8.4 show that the VaR
for logRoR of the NASNAQ index does not exceed 2.66%, and the average
loss, if this excess occurred, is 3.52% with a 95% probability:

Histogram of Log Returns with VaR

=== 95% VaR level: 2.66%
------ 95% aVaR level: 3.52%

Frequency

1 [ TN . 'l
—0.06 —0.04 -0.02 0.00 0.02 0.04 0.06
Log Rate of Return

FIGURE 8.4 VaR(5%) for NASDAQ index logRoR visualization (historical method results)

»  The variance-covariance (parametric) method assumes data is normally
distributed (as in the general population) and uses the mean and standard
deviation with the previously defined equations.

Example: For an index portfolio with an average daily return (mean) of ¢ and
standard deviation o, the VaR at a confidence level (e.g., 95%) can be calcu-
lated using the Z-score corresponding to that confidence level:

= Calculate the Z-score for 95% confidence (which is approximately 1.65).

= VaRis then p-1.65x0. If i is close to 0, typically for daily logRoR, VaR
simplifies to 1.65x 0.
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The following code provides an example of calculation using this method:

10.
11.

12.
13.
14.

15.

16.

17.

18.

from scipy.stats import norm

# Input data: the nasdaq index['logRoR'] Series is
# sorted by values from the worst to the best.

nasdaq_index logRoR = nasdaqg index['logRoR'].
sort values ()

mean return = nasdaq_index logRoR.mean ()
std return = nasdag_index logRoR.std()

# Assuming normal distribution and 95% confidence

confidence level = 0.95

z score = stats.norm.ppf (confidence level)
variance covar var = mean return - (std return *
Z_score)

# Calculate the aVaR as previously described

avar = nasdaq index logRoR[nasdag index logRoR <=
historical var] .mean ()

# Print the Value at Risk (VaR) result
print ('Variance-Covariance Method.')

print (£f'With 95% confidence, the daily logRoR
will not exceed a loss of {-variance covar var *
100:.2f}%.")

print (f'With 95% confidence, the average daily
logRoR will not exceed a loss of {-avar *
100:.2f}%.")

# Generate a range of x values from the
# mean and standard deviation

x _values = np.linspace (mean return - 4*std
return, mean return + 4*std return, 1000)

# Calculate the PDF values for the x values range
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19. pdf values = norm.pdf (x values, loc=mean return,
scale=std return)

20. # Plot the normal distribution PDF
21. plt.figure(figsize=(10, 5))

22. plt.plot(x_values, pdf values, label="Normal
Distribution')

23. # Plot a vertical line for the VaR and aVaR on
the PDF plot

24. plt.axvline(variance covar var, color='r'
linestyle="'--", label=£f'95% VaR level:
{-variance covar var * 100:.2f}%")

25. plt.axvline(avar, color='b', linestyle=':",
label=f'95% avaR level: {-avar * 100:.2f}%"')

26. # Add labels and legend to the plot

27. plt.title('Normal Distribution of NASDAQ Log
Returns with VaR and aVaR')

28. plt.xlabel ('Log Rate of Return')
29. plt.ylabel ('Density')
30. plt.legend()

31. # Show the plot

32. plt.show()

The code results are as follows (refer to Figure 8.5):

Variance-Covariance Method.

With 95% confidence, the daily logRoR will not exceed a
loss of 2.54%.

With 95% confidence, the average daily logRoR will not
exceed a loss of 3.52%.
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The results of the variance-covariance method demonstrate VaR = 2.54% and
aVaR = 3.52 with a confidence level of 0.95. It has the same differences with
the results from the historical methods because the logRoR does not corre-
spond to the normal distribution, or the sample taken is too small.

Normal Distribution of NASDAQ Log Returns with VaR and aVaR

—— Normal Distribution
—=—- 95% VaR level: 2.54%
----- 95% aVvaR level: 3.52%

25 A

20 A

151

Density

10 1

T T T T T T T
—0.06 —0.04 —-0.02 0.00 0.02 0.04 0.06
Log Rate of Return

FIGURE 8.5 VaR(5%) for NASDAQ index logRoR visualization (variance-covariance method results)

= The Monte Carlo simulation uses simulated price paths based on statisti-
cal properties of asset returns to estimate the VaR. We will explain this
method further in this chapter.

In a comparative analysis of risk and logarithmic RoR, we can use the VaR
metrics to make decisions regarding investment in each type of asset. Table
8.1 is the result of the code presented in the appendix to this chapter. The fol-
lowing table’s data makes it possible to compare various assets by the metrics
VaR and aVaR:

TABLE 8.1 VaR and aVaR values for the tickers of the NASDAQ market

Ticker VaR aVaR Ticker VaR aVaR
MDLZ 1.75% 2.60% BKR 4.10% 5.25%
KDP 1.81% 2.68% MCHP 4.16% 5.38%
AMGN 1.97% 2.80% META 4.22% 6.98%
HON 2.11% 3.10% FTNT 4.31% 7.23%

(Continued)
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Ticker VaR aVaR Ticker VaR aVaR
VRSK 2.37% 3.56% AMAT 4.53% 6.06%
AZN 2.53% 3.56% URBN 4.79% 6.33%
PCAR 2.58% 3.24% MRVL 5.25% 7.04%
DLTR 2.76% 5.53% ZM 5.54% 7.96%
SBUX 2.80% 4.22% JD 5.88% 7.97%
CSGp 2.89% 4.91% MELI 6.37% 8.45%
AAPL 3.08% 4.01% TSLA 6.56% 8.59%
MAR 3.21% 4.48% DDOG | 6.65% 8.55%
SIRI 3.26% 5.46% ENPH 6.67% 9.57%
INTU 3.97% 5.40% MRNA 6.78% 9.56%
ILMN 4.03% 6.35% A 6.96% 9.00%

Table 8.1 provides a comparative risk landscape, as measured by the VaR and
aVaR across a selection of NASDAQ-listed stocks. The metrics presented show
a considerable range in the risk profiles of these assets. Lower VaR and aVaR
values, as seen with MDLZ and KDP, suggest a relatively lower risk of loss,
making them potentially more attractive to risk-averse investors. In contrast,
stocks such as TSLA and ZS exhibit higher VaR and aVaR values, indicating
a greater risk. This might appeal to risk-seeking investors looking for poten-
tially higher returns in exchange for accepting increased risk. The aVaR values,
being higher than the VaR for all listed assets, reflect the expected loss on
days when the VaR threshold is exceeded. It provides additional insights into
the risk of extreme losses. The differentiation in VaR and aVaR among these
stocks also underscores the importance of portfolio diversification. By combin-
ing assets with varying levels of risk, investors can mitigate unexpected losses.

MONTE CARLO METHOD IN FINANCE

The Monte Carlo method, named after Monaco’s famous Monte Carlo Casino,
is an ingenious numerical technique that finds its roots in probability theory
and sampling distributions. It was initially developed during the Manhattan
Project in the 1940s, where it played a pivotal role in solving complex prob-
lems related to atomic bomb developmentz. Since then, it has found applica-
tions in many fields, including finance.

2 https:/fen.wikipedia.orgiwiki/Monte_Carlo_method
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At its core, the Monte Carlo method is a simulation technique that harnesses
the power of randomness. It allows us to model and analyze financial scenar-
ios by generating random samples from various input distributions. We can
estimate the probability distribution of possible outcomes by running these
simulations repeatedly. This, in turn, empowers us to optimize strategies in an
uncertain financial landscape.

For example, Chapter 6, Asset Pricing and Portfolio Management, describes
portfolio optimization and visualization by using the random variable gen-
eration technique. In fact, this is the Monte Carlo method in action, and we
utilized it for portfolio optimization and result visualization. Now, we venture
further into financial analysis, employing this method to address an essential
aspect of finance, which is risk estimation.

The Monte Carlo method in finance is particularly valuable because of its
versatility. Key principles of the Monte Carlo method in financial analysis
include:

= Random sampling, which is the generation of many random variables
from specified probability distributions to simulate various scenarios.

»  The law of large numbers, which, as noted earlier in this chapter, is if the
number of simulations increases, the average of the results of the random
samples converges to the expected value, offering a robust estimate that
represents the true characteristics of the modeled financial system.

= Statistical inference to conclude future financial performance based on
simulated data. It provides an opportunity to calculate the confidence
intervals for forecasts, providing a probabilistic assessment of risks and
returns.

The main directions for applying the Monte Carlo method in finance include:

= Monte Carlo simulations are extensively used to estimate the risk of finan-
cial instruments, particularly the VaR assessments and the tail (fat tail)
risk associated with rare but consequential events.

= The method allows applying the pricing of complex derivative instru-
ments (options), including those without a closed-form analytical solution.

= Itis used for project valuation, capital budgeting, and understanding the
range of possible outcomes for investment decisions.

= The simulations help optimize portfolios by assessing the impact of dif-
ferent allocation strategies on the expected return and risk (as noted in
Chapter 6, Asset Pricing and Portfolio Management) and so on.
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Using practical examples, let us consider several main problems in the risk
management theory and valuation of financial securities based on the Monte
Carlo method.

Geometric Brownian Motion Method for Price Prediction

The geometric Brownian motion (GBM) method is the most popular Monte
Carlo realization tool in the mathematical modeling of financial markets,
particularly for price prediction. This stochastic process is widely utilized to
model the trajectory of stock prices, currencies, and other financial instru-
ments over time’.

For financial asset pricing, the GBM assumes the existence of constant vola-
tility rates, mirroring the natural lognormal distribution of asset prices over
time. This reflects the compounded effect of many small, random fluctuations
in the market. As a result, processes such as physical Brownian motion are
observed in the financial market.

The stochastic differential equation defines the model for financial market
data, as follows:

S:

S e(/l +0%2)-t+o-St-Wt
t 0°

Where:

= ex stands for the exponential function, which is the mathematical function ex.
= S, is the asset price at the time ¢.
= S, is the initial asset price at the last known time.

= is the expected mean logarithmic RoR of the asset price (may consider
dividend yield).

= o is the volatility (standard deviation) of the logarithmic RoR of the asset
price.

= W, is the Brownian motion or Wiener process.

In the sphere of finance, the GBM model is heralded for its simplicity and the

fact that it considers the randomness and unpredictability inherent to finan-

cial markets. It allows for the simulation of future price paths, providing a
distribution of possible outcomes rather than a single, deterministic forecast.

® https:/len.wikipedia.org/wiki/Geometric_Brownian_motion
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This enables analysts to assess the likelihood of various price levels being
reached and to evaluate the risk associated with an investment.

Let us look at a practical example of implementing the GDM model using the
following code:

1. # Getting input Data

log returns = nasdaqg_index['logRoR']

w N

data = nasdag index['Adj Close']

4. # Estimate parameters

5. mu = log returns.mean /()

6. sigma = log returns.std()

7. # Time horizon in days for prediction

8. T pred = 30

9. # Number of simulations

10. T sim = 50

11. # Number of historical days to display
12. T real = 30

13. # Number of intervals for simulation

14. N = T pred

15. # Starting stock price (last available real data)
16. SO = datal[-1]

17. # Array to store simulation results

18. simulation results = np.zeros((T sim, N))
19. np.random.seed(1l1l)
20. # Run multiple simulations
21. for i in range(T_sim):

22. random walk = np.random.standard normal (size=N)

23. # Assuming daily time steps
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24. brownian motion = np.cumsum(random walk) *
np.sqrt(l.)
25. simulation results[i, :] = SO * np.exp((mu -

0.5 * sigma**2) *

26. np.linspace (0, T_
pred, N) +

27. sigma *
brownian motion)

28. # Calculate the mean of simulations

29. mean simulation = simulation results.mean (axis=0)
30. # Historical dates and future dates

31. historical dates = data.index[-T real:]

32. future dates = pd.date range(start=data.
index([-1],

33. periods=N+1,
freg="'D") [1:]

34. # Combine historical and future data for plotting

35. combined dates = historical dates.
union (future dates)

36. combined prices = pd.concat ([data[-T real:],

37. pd.Series (mean_
simulation,

38.
index=future dates)])

39. # Plotting
40. plt.figure(figsize=(10, 6))
41. plt.plot(combined dates, combined prices,

42 label="Actual and Mean Simulated
Prices')

43. plt.plot(future dates, mean simulation,
color='"red',
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44, label='Simulated Mean Future Prices',
linestyle="'-")

45. # Plot each simulation

46. for sim in simulation results:

47 . plt.scatter (future dates, sim,
color="orange', alpha=0.2)

48. plt.title('Historical and Multiple Simulated
Stock Prices')

49. plt.xlabel('Time")

50. plt.ylabel('Stock Price')

51. plt.legend()

52. plt.show()

The code result is depicted in Figure 8.6:

Stock Price

Historical and Multiple Simulated Stock Prices

—— Actual and Mean Simulated Prices
— Simulated Mean Future Prices
18000 4
17000 1
16000
15000 4 //\/ﬁ/v\—‘\—’v—"—_’_/—.v\
14000 4
13000 1
12000 1
T T T T T T
2023-08-15 2023-09-01 2023-09-15 2023-10-01 2023-10-15 2023-11-01

Time

FIGURE 8.6 The results of the GBM simulated paths for the NASDAQ stock prices index



334 « FinanciAL DATA ANALYsIS USING PYTHON

The code outlines a procedure to implement the GBM model, a common
method for simulating the potential future for the NASDAQ stock prices
index paths. By running multiple simulations (T_sim = 50 in this case), the
code generates some of the possible future NASDAQ stock price index tra-
jectories based on its historical log returns and volatility. The mean of these
simulated paths (the red line) is calculated to provide a single representative
trajectory.

The result in Figure 8.6 shows that the mean trajectories of the possible
future of the NASDAQ stock prices index are close to the last price value:
S0. The cloud of dots, however, represents individual modeled trajectories of
potential future index values, namely possible trajectories of its change or the
confidence interval of the forecast. These simulations reflect the uncertainty
and volatility expected in the future performance of the index value, with a
wider spread of points indicating greater uncertainty. The dense cluster of
orange dots around the red line suggests that most models predict an index
value close to the simulation mean. The spread of dots from this mean, how-
ever, indicates that there is still considerable variability in the possible results.
As seen in Figure 8.6, moving away from the last actual observation increases
the confidence interval, meeting key statistical concepts. Since we move away
from the last known values, the level of uncertainty increases.

Overall, the visualization conveys the probabilistic nature of predicting the
value of specific asset prices, highlighting that while we can estimate an aver-
age future trajectory, the actual future price can be influenced by many fac-
tors, leading to different possible outcomes.

Based on the GBM model, we can also evaluate the indicators of VaR and
aVaR. Please execute the following code and analyze its results:

1. # Getting Input data

2. log returns = nasdaq_index['logRoR']
3. data = nasdaqg_index['Adj Close']

4. # Estimate parameters

5. mu = log returns.mean ()

6. sigma = log returns.std()

7. # Time horizon in days for prediction



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25 o

26.

27.

28.
29
30.

31.

Risk ASSESSMENT AND VOLATILITY MODELING © 335

T pred = 10000

# Number of intervals for simulation

N = T pred

# Starting stock price (last available real data)

SO0 = data[-1]

# Generate random Brownian Motion for prediction

np.random.seed (1)

random walk = np.random.standard normal (size=N)

brownian motion = np.cumsum(random walk) * np.sqrt(l.)

# Simulate future price path

future prices = S0 * np.exp((mu - 0.5 * sigma**2) *
np.linspace (0, T pred, N) +
sigma * brownian motion)

# Combine historical and future data

historical dates = data.index[-T real:]

future dates = pd.date range (start=data.index[-1],

periods=N+1,
freg="D") [1:]

# Estimation VaR and aVaR based on historical
method

# calculating VaRs hist () function is defined in
the code Appendix.

# The Function returns VaR and aVaR from
pd.DataFame of the asset prices

x = pd.Series (future prices)

logx = (np.log(x) - np.log(x).shift (1)) .dropna ()
var, avar = calculating VaRs hist (logx,
confidence level = 0.95,

out text = True, out

viz = True)
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The code results are given in the following text and Figure 8.7:

Historical Method.

With 95% confidence, the values will not exceed a loss of

100 4

2.51%.
With 95% confidence, the values will not exceed a loss of
3.17%.
Histogram of Log Returns with VaR
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FIGURE 8.7 VaR(5%) for NASDAQ index logRoR visualization (Monte Carlo method results)

Comparing the results presented in Figures 8.4, 8.5, and 8.7, it can be argued
that, in general, all three methods for calculating the VaR and aVaR give
approximately similar results, especially if the numbers of simulations are
enormous.

Option Pricing: The Black-Scholes Formula

Another widespread application of the Monte Carlo method is forecasting
option prices. Options are a type of financial derivative that derive their value
from underlying assets. The essence of an option is a contractual agreement
that provides the buyer the right, but not the obligation, to buy or sell the
underlying asset at a predetermined price within a specified time frame.
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There are two primary types of options—put options and call options:

= A put option gives the holder the right to sell the underlying asset at the
strike price before the option expires. Investors may buy put options as a
form of protection against a decrease in the asset’s price, effectively set-
ting a floor below which they choose not to bear losses.

= A call option gives the holder the right to buy the underlying asset at the
strike price before the option expires. Call options are often purchased by
investors who anticipate that the asset’s price will increase, allowing them
to secure a purchase price below the expected market value.

Options are used for various strategic purposes. They can be used as insur-
ance to protect investments. They can also be used for speculation, allowing
people to make money from predicting market movements without owning
the underlying asset.

The Black-Scholes formula is a model that provides the theoretical estimates
for the price of European-style options (they can be realized only on a pre-
defined day). It assumes some factors, including that the underlying asset’s
prices follow a lognormal distribution and that the option can only be exer-
cised at expiration. This formula has become a fundamental tool in the field
of financial economics, helping to set the standard for the pricing of options
in markets globally.

The following are the key elements of the Black-Scholes formula:
= The Black-Scholes formula for the call option price C(S, ¢) at time :

C(S,t) =S0-N(d1)— K- N(d2) - exp(-r - (T-t))

The component dI represents a measure of how many standard deviations
the current stock price is above the strike price, adjusted for the time value of
money and the expected volatility:

dl =(1/(o-sqrt(T-t))) - [In(SO/K) + (r + (c2/2)) - (T—t)]

The component d2 represents the same underlying factors as d1 but adjusted
downward by the amount of expected volatility:

d2=dl - o - sqrt(T-t)
=(1/(o -sqri(T-t)) - [In(SO/K) + (r—(02/2)) - (T-t)]
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Where:

= SO is the current underlying asset price.

= Kis the strike price of the option (fixed price at which an option can be
exercised).

= tis the current time when we estimate the option price.

= (T-t) is the expiration time.

= ris the risk-free interest rate, for example, the rate of the Treasury bill or
other state bonds.

= o is the volatility of the stock (standard deviation).
N(x) is the cumulative DF of the standard normal distribution at d.
= The Black-Scholes formula for the put option price P(S, t) at time ¢:

P(S;t) = K- N(-d2) - exp(-r - (T-t)) — SO - N(-d1)
The variables have the same meaning as the call option.

Thus, the models C(s, t) and P(S,t) provide closed-form solutions that esti-
mate the theoretical price of these options based on several key variables: the
current price of the underlying asset, the strike price, the risk-free interest
rate, the time to expiration, and the volatility of the underlying asset. These
models are relatively simple, but incorporating the critical market parameters
and assuming the lognormal distribution of asset prices shows a robust frame-
work for evaluating the fair value of the options.

Based on the theoretical equations, let us create a Python function, black
scholes (), to calculate the option’s forecast price.

To do this, execute the following code:

1. # Function to calculate Black-Scholes option
price

2. def black scholes(S, K, T, r, sigma,
option type='call'):

3. dl = ((np.log(S / K) + (r + 0.5 * sigma ** 2)

(sigma * np.sqrt(T)))
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11.
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14.
15.
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d2 = dl - sigma * np.sqrt(T)
if option type == 'call':

price = (S * norm.cdf(dl) -
K * np.exp(-r * T) * norm.cdf (d2))

elif option type == 'put':

price = (K * np.exp(-r * T) * norm.cdf(-d2) -
S * norm.cdf (-dl))

return price

# Sample inputs - you'll need to replace these
with real values

S

150 # Current stock price
K = 100 # Strike price

T =1 # Time to expiration in years or (T-t)
in the BS formula

r = 0.01 # Risk-free rate
sigma = 0.25 # Volatility
# Calculate and print option price

call price = black scholes(S, K, T, r, sigma,
'call')

put price = black scholes(S, K, T, r, sigma,
'put')

print (£"Call Option Price: {call price}")

print (f"Put Option Price: {put price}")

The results are as follows:

Call Option Price: 51.60253352585224

Put Option Price: 0.6075169007690242

The code provided is a Python implementation of the Black-Scholes model,
which is a practical template for further valuing European call and put options.
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The function is used with sample inputs, a current stock price of $150, a strike
price of $100, a time to expiration of 1 year, a risk-free rate of 1%, and a vola-
tility of 25%. The call option price is approximately $51.60, and the put option
price is approximately $0.61. These results suggest that the call option has a
significant value with the given inputs, reflecting the probability that the stock
price will exceed the strike price at expiration. Conversely, the put option has
relatively little value, which indicates that the market does not expect the
stock price to fall below the strike price by expiration.

Let us describe some real-world examples. As shown in Chapter 3, Financial
Data Manipulation with Python (refer to Figure 3.2), data on options associ-
ated with the underlying financial assets can be obtained from the official
page of https://finance.yahoo.com. Therefore, we can use the yfinance Python
library and Ticker ().

1. # Initialize a Ticker object
2. ticker = yf.Ticker ('AAPL")

3. # Print the available expiration dates for
options

4. print(ticker.options)

5. # Load current call options data

6. e date c = ticker.options[0]

7. calls = ticker.option chain(e date c).calls
8. calls.to csv(f'calls {e date c}.csv')

9. # Load current put options data
10. e date p = ticker.options[3]
11. puts = ticker.option chain(e date p) .puts
12. puts.to csv(f'puts {e date p}.csv')

13. # Print the expiration date and the
# first few rows of the call options data

14. print(f"Expiration date for calls: {e date c}")

15. print(calls.head())
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16. # Print the expiration date and the
# first few rows of the put options data

17. print (f"Expiration date for puts: {e date p}")

18. print(puts.head())

The results (truncated) are as follows:

('2024-01-12"', '2024-01-19', '2024-01-26', '2024-02-02',
'2024-02-09', '2024-02-16', '2024-03-15', '2024-04-19',
'2024-05-17", '2024-06-21', '2024-07-19', '2024-09-20',
'2024-12-20", '2025-01-17', '2025-06-20', '2025-09-19',
'2025-12-19', '2026-01-16")

Expiration date for calls: 2024-01-12

contractSymbol lastTradeDate strike lastPrice bid \

AAPL240112C00060000 2023-12-21 16:40:40+00:00 60.0 134.90 120.35

.2)

AAPL240112C00130000 2024-01-05 18:22:07+00:00 130.0 51.69 50.70

ask change percentChange volume openlInterest impliedVolatility \

122.10 0.000000 0.000000 NaN 2 2.953128

.2)

The code utilizes the yfinance Python library to interact with Yahoo Finance’s
API for fetching option chain data for Apple Inc. (AAPL) that is needed for
the Black-Scholes model, as follows:

The Ticker () object for the symbol AAPL serves as an interface to
fetch various market data related to Apple Inc.

ticker.options is a property of the Ticker object that returns a tuple
of strings, each representing an available expiration date for the options
of the specified ticker. This allows users to select an expiration date for
which they want to analyze the option chain data.

.calls retrieves all available call options for the specified expiration date.

.puts retrieves all available put options for the specified expiration date.
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The code is set up to fetch both call and put option data for specified expira-
tion dates. The results make available the following data for the Black-Scholes

model:

» The ‘impliedvolatility’ field in the data represents the market’s esti-

mate of the stock’s future volatility over the option’s life.

» The ‘strike’ field shows the strike price for the model, that is, the price
at which an option holder can buy (the call option) or sell (the put option)

the underlying asset or security upon exercising the option.

Based on the puts and calls DataFrames from the previous code and mar-
ket data on Apple Inc.’s (AAPL) stocks, we will evaluate real call options in the

following manner:

10.

11.
12.
13.

# Ticker symbol for asset
ticker = yf.Ticker ('AAPL")
# Get data for call options

expiration date = pd.to datetime (e date c,
utc=True)

now _day = expiration date - 5 * pd.tseries.
offsets.BDay ()

now_text = str(now day).split("' ") [0]
option = calls.iloc[10]
# Get the current price of the basic asset

current price = ticker.history() ['Close'].
loc[now_text]

# Download the risk-free rate from a relevant

U.S. Treasury yield
# "IRX is the 13-week Treasury Bill
treasury ticker = yf.Ticker (""IRX")

# Convert to a decimal



14.

15.
16.
17.
18.

19,

20.

21.
22.

23.

24.

25 o
26.

27.
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risk free rate = treasury ticker.history()
['Close'].loc[now text] / 100

# Get option contract data
strike price = option['strike']
# Convert to a decimal

implied volatility = option['impliedVolatility']
/ 100

# Calculate date for option expiration in years
scale

time to expiration = (expiration date - now_day)
.days / 365.0

# Calculate Black-Scholes price

bs price = black scholes(current price,
strike price,

time to expiration,
risk free rate,

implied volatility,
option type='call')

print (f'Option expiration date is {e date c}')

print (f"Black-Scholes Call Option Price on {now
text} is {bs price:.2f}")

print ('\n', option)

The results (truncated) are as follows:

Option expiration date is 2024-01-12

Black-Scholes Call Option Price on 2024-01-05 is 21.34

Unnamed: 0 10

contractSymbol AAPL240112C00160000
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lastTradeDate 2024-01-05 20:58:30+00:00
strike 160.0
lastPrice 21.36
bid 20.55
ask 22.15
(P

impliedVolatility 0.500005

(...)

The code outlines a process for calculating the Black-Scholes price for a spe-
cific call option on Apple Inc.'s stock. It operates with the calls DataFrame,
uses the risk-free rate from the 13-week U.S. Treasury bill (identified by the
ticker symbol “~IRX”), and converts it into a decimal form) and real AAPL
stock price with the yf.Ticker () object. The Black-Scholes price for the
call option is calculated using the predefined black scholes () function.

The code results indicate that the predicted Black-Scholes price for the call
option on January 5, 2024, is $21.34. This prediction is based on the provided
inputs and is close to the last traded price of $21.36, within the bid-ask spread
of $20.55 to $22.15. The closeness of the Black-Scholes price to the market
price and its position within the bid-ask spread suggests that the model rea-
sonably estimates the option’s value based on the inputs used. This conclusion
can be used to assess the option’s market price’s fairness or make informed
trading decisions.

The following code estimates the forecast price of a put option. Execute it and
analyze the results:

1. # Ticker symbol for asset
2. ticker = yf.Ticker ('AAPL")
3. # Get data for call options

4. expiration date = pd.to datetime (e date p,
utc=True)

5. now day = expiration date - 20 * pd.tseries.
offsets.BDay ()
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now_text = str(now day).split("' ") [0]
option = puts.iloc[-3]
# Get the current price of the basic asset

current price = ticker.history() ['Close']
.loc[now_text]

# Download the risk-free rate from a relevant
U.S. Treasury yield

# "IRX is the 13-week Treasury Bill
treasury ticker = yf.Ticker (""IRX")
# Convert to a decimal

risk free rate = treasury ticker.history()
['Close'].loc[now text] / 100

# Get option contract data
strike price = option['strike']
# Convert to a decimal
implied volatility = option['impliedvolatility'] / 100
# Calculate date for option expiration in years scale

time to expiration = (expiration date - now_day) .
days / 365.0

# Calculate Black-Scholes price

bs price = black scholes(current price,
strike price,

time to expiration,
risk free rate,

implied volatility,
option type='put')

print (f'Option expiration date is {e date p}')

print (f"Black-Scholes Put Option Price on {now_
text} is {bs price:.2f}")

print ('"\n', option)
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The results (truncated) are as follows:

Option expiration date is 2024-02-02

Black-Scholes Put Option Price on 2024-01-05 is 27.98

contractSymbol AAPL240202P00210000
lastTradeDate 2024-01-02 14:48:19+00:00
strike 210.0
lastPrice 23.4
bid 27.5
ask 30.3
(.o.0)

impliedVolatility 0.457037

(...)

The last code applies the Black-Scholes model to estimate the price of a put
option for Apple Inc. stock. It operates with the same principles that do this
for the call option: extracting necessary data from the puts DataFrame and
retrieving the current stock price and the risk-free rate from U.S. Treasury
bills from Yahoo Finance.

The results indicate that the predicted Black-Scholes price for the put option
with a strike price of $210, expiring on February 2, 2024, is $27.98 when eval-
uated on January 5, 2024. This price is derived using the implied volatility of
about 45.7%. This result is in the market bid-ask range from $27.50 to $30.30,
but higher than the last traded price of $23.40. The calculated Black-Scholes
price is slightly lower than the market ask price, suggesting that, according to
the model, the option may be overvalued somewhat in the market. It is within
the bid-ask spread, however, indicating that the model’s output is reasonably
aligned with market expectations given the inputs.

Therefore, these analyses can help traders and investors determine whether
the market price for the call or put option is fair and make decisions accord-
ingly. It demonstrates the usefulness of the Black-Scholes model as a tool for
evaluating the theoretical price of options based on volatility and other market
factors.
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ARCH AND GARCH MODELS

The next step in exploring risk analysis is the study of the Autoregressive
Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models. These statistical models
are used to forecast future volatility based on past data, considering the ten-
dency for volatility to cluster over time®.

In finance, the ARCH and GARCH models address an expected volatility
characteristic of asset returns (RoR or percentage change, logRoR, and the
same metrics): volatility clustering, where periods of high volatility are fol-
lowed by high volatility and periods of low volatility follow low volatility. This
is unlike traditional models, which often assume constant fluctuations.

ARCH models, introduced by Robert Engle in 1982, are used to model finan-
cial time series with time-varying volatility. The model allows for more accu-
rate predictions by capturing the volatility clustering effect often observed in
financial markets. An ARCH model expresses current volatility as a function
of the sizes of previous periods” errors or shocks.

An ARCH(q) model can be defined as follows:

& =0,"%
Of=0 + Q- & 7+ Oy &y + . + a,- e(t_qf

z,~N(0,1)

Where:

m ¢ is the error term (residual) at time ¢.

=, ., 0 are the coefficients of the lagged squared error terms.

= o, is the conditional variance (volatility) at time.

= >0and o;20 Vi=1,...,q are parameters to be estimated.

= z,is a white noise error term with a standard normal distribution.

GARCH models, an extension of ARCH introduced by Tim Bollerslev in
1986, add a moving average component to the model, accounting for both
short-term and long-term effects from past errors.

* https:/len.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity
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NOTE

A GARCH(p, q) model with an AR(k) mean for the logRoR metric can be
defined as follows:

=00+ 20, -1,,+¢&,Vie[l k]

g =0, 7t
of=0+2a; g, f+ 2P 0,2 Vlellql,,Vjell p]
2 ~N(0,1)

Where:

m 7S the asset return at time .
= @, is the intercept term of the AR model.
= ¢, are the coefficients of the AR(k) model for lags i = 1,.. k.

= BzVj=1...pare the GARCH parameters, respectively, to be estimated,
and other variables have the same meaning as for the ARCH model.

Inpractice, z,may have a different distribution, such as Student’s t-distribution,
to capture excess kurtosis (fat tails) observed in financial returns.

As can be seen from the formulas, the ARCH and GARCH models are regres-
sion analogs to ARIMA models, in which the dependent variable is volatility.
In other words, the modeling outcome assesses the value of volatility, disre-
garding the sign, as a measure of dispersion. The GARCH model is, however,
the most widely used volatility forecasting method because of its flexibility
and ability to model different financial time-series data types. GARCH mod-
els are beneficial for risk management, option pricing, and financial market
predictions, where understanding the variability of returns is crucial.

Financial modeling is complex and multifaceted, particularly when applying
the GARCH model to assess volatility. It includes several stages: from initial
data preparation to making informed forecasts and managerial decisions. Each
stage builds upon the previous, integrating sophisticated statistical techniques
to model and forecast financial market behaviors. The Python arch library is
required to apply the ARCH/GARCH models for analysis and prediction. Let
us move on, following this step-by-step algorithm:

1. Data preparation is crucial for any statistical modeling. For financial time-
series data, this mainly involves the following:

e Compute the RoR or the logarithmic RoR from the asset’s price
data. Log returns are typically used due to their desirable statistical
properties.
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* Perform the stationary check (e.g., the Dickey-Fuller test) to ensure
the time-series data is stationary. Non-stationary data can lead to
unreliable model estimations.

*  Conduct a normality test (e.g., Jarque-Bera) on the RoR data or resid-
uals of a fitted ARIMA model to assess the data distribution.

The following code demonstrates the crucial elements of Stage 1:

1. from scipy import stats

2. # Stage 1: Data Preparation

3. # Extract log returns and drop any missing values
4. data = nasdag index['logRoR']['2023'].dropna() .

rename ('"NASDAQ")

5. # Create a 0-0 (quantile-quantile) plot

6. # to check the normality of the distribution
7. qggplot fig = ggplot(data, line='qg', fit=True)
8. ggplot fig.set size inches (10, 5)

9. plt.title('0-Q Plot of NASDAQ Log Returns')
10. plt.show()

11. # Perform the Jarque-Bera test

12. # Null hypothesis (HO): The data is normally
distributed

13. # If the p-value is less than
14. # the significance level (e.g., 0.05), we reject HO

15. jb_test statistic, jb_p value = stats.
jarque_ bera (data)

16. print(f"Jarque-Bera test statistic:
{jb_test statistic}")

17. print(f"p-value: {Jjb p value}")

18. is normal = jb p value > 0.05
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19. print ("The series is",

20. f"{'normally distributed' if is normal else
'not normally distributed'}",

21. "according to the Jarque-Bera test.")

22. # Perform the Augmented Dickey-Fuller test to
check the stationarity of the data

23. adf result = adfuller (data)

24. print (f"ADF Statistic: {adf result[0]}")
25. print (f"p-value: {adf result[1]}")

26. 1s_stationary = adf result[l] < 0.05

27. print (f"The series is {'stationary' if is_

stationary else 'non-stationary'}.")

The code results (text only) are as follows:

Jarque-Bera test statistic: 1.536940091045956
p-value: 0.4637219994058751

The series is normally distributed according to the
Jarque-Bera test.

ADF Statistic: -10.59929372978349
p-value: 6.231097281690702e-19

The series is stationary.

NOTE  The Jarque-Bera statistical test checks the null hypothesis that the data is nor-
mally distributed. It verifies whether sample data has skewness and kurtosis
that match the normal distribution. Generally, if the p-value is less than the
chosen significance level (often 0.05), the null hypothesis is rejected, and the
data probably does not correspond to the normal distribution. Conversely, a
larger p-value suggests the data does not significantly deviate from the nor-
mality distribution.
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2. Model specification means defining the structure of the GARCH model,
which is essential for capturing the volatility clustering commonly
observed in financial markets:

Define a GARCH model object using the arch library. The typical
GARCH(1,1) model is a good starting point.
Configure the initial model parameters, including the order of the

ARCH and GARCH terms (p and ¢), and any other parameters such
as the mean model (constant, AR, etc.), distribution assumptions, etc.

Execute the following code to investigate the GARCH model parameters:

10.

11.
12.

13.

14.

15.
16.

# Stage 2: Model Specification
from arch import arch model

# Show the arch model () arguments:
# see details here:

# https://arch.readthedocs.io/en/latest/
univariate/introduction.html

help (arch model)

# Specify the GARCH model with an autoregressive
# mean structure including one lag

model = arch model (y=data,

# Specify the volatility model
to be GARCH

vol="'GARCH',

# Specify the mean model to be
autoregressive

mean="AR',

# Use one lag in the
autoregressive model

lags=1,

# ARCH component order
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17
18.
19,
20.

21.
22.

23.
24.
25.
26.
27.
28.
29
30.
31.
32.

p=1,
# GARCH component order
a=1,

# Do not automatically rescale
data

rescale=False,

# Assume a normal distribution
for the error term

dist="'normal')
# Set a date to split the data into the in-sample
# for fitting and out-of-sample for forecasting
split date = datetime (2023, 9, 1)
# Fit the model up to the split date
# Frequency of output during estimation
model fit = model.fit (update freqg=10,

last obs=split date)

# Print the model summary

model fit.summary ()

The code results (truncated) are as follows:

(...)

Parameters

ndarray, Series, None
The dependent variable

ndarray, DataFrame, optional
Exogenous regressors. Ignored if model does not
permit exogenous regressors.
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lags

vol

dist
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str, optional

Name of the mean model. Currently supported
options are: 'Constant',

'Zero', 'LS', 'AR', 'ARX', 'HAR' and 'HARX'
int or list[int], optional

Either a scalar integer value indicating lag
length or a list of

integers specifying lag locations.
str, optional

Name of the volatility model. Currently sup-
ported options are:

"GARCH' (default), 'ARCH', 'EGARCH', 'FIGARCH',
"APARCH' and 'HARCH'

int, optional

Lag order of the symmetric innovation

int, optional

Lag order of the asymmetric innovation

int, optional

Lag order of lagged volatility or equivalent
power : float, optional

Power to use with GARCH and related models
int, optional

Name of the error distribution. Currently
supported options are:

* Normal: 'normal', 'gaussian' (default)
* Students's t: 't', 'studentst'
* Skewed Student's t: 'skewstudent', 'skewt'

* Generalized Error Distribution: 'ged',
'generalized error"
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hold back

rescale

int

Number of observations at the start of the
sample to exclude when

estimating model parameters. (...)

bool

Flag indicating whether to automatically
rescale data if the scale

of the data is likely to produce
convergence issues when estimating

model parameters. (...)

Optimization terminated successfully (Exit mode 0)

Current function value: -499.5965059794387

Iterations: 8

Function evaluations: 50

Gradient evaluations: 4

AR - GARCH Model Results

Dep. Variable:
Mean Model:
Vol Model:
Distribution:

Method:

NASDAQ R-squared: 0.000
AR Adj. R-squared: -0.006
GARCH Log-Likelihood: 499.597

Normal AIC: -989.193

Maximum Likelihood BIC: -973.633

No. Observations: 166

Date: Sun, Jan 07 2024 Df Residuals: 164

Time: 11:15:26 Df Model: 2
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Mean Model

coef std err t P>|t]| 95.0% Conf. Int.

Const 2.0123e-03 1.878e-04 10.714 8.724e-27 [1.644e-03,2.380e-03]

NASDAQ[1] 0.01646.565e-02 0.250 0.803 [ -0.112, 0.145]

Volatility Model

coef std err t P>t 95.0% Conf. Int.

omega 2.9073e-06  3.432e-11 8.472e+04 0.000 [2.907e-06,2.907e-06]

alpha([l] 0.0100 2.303e-02 0.434 0.664 [-3.515e-02,5.515e-02]

betall] 0.9700 1.884e-02 51.4900.000 [ 0.933, 1.007]

The code results show the volatility model, which assumes a normal error
distribution and includes an autoregressive mean model (AR) and a GARCH
model for volatility. The following parameters can be analyzed:

The omega parameter (@), which represents the long-run average vari-
ance, has a small value of 2.9073x10-6. P-value = 0.000, however, and its
significance is high.

The alpha parameter (a[1]), which measures the impact of the previous
period’s squared error on the current variance, has a coefficient of 0.0100.
This is not statistically significant, as indicated by p-value ~ 0.664.

The beta parameter (f#/1]), indicating the persistence of volatility shocks,
has a high value of 0.9700 and is statistically significant with p-value =
0.000, suggesting a high level of volatility persistence in the time series.

The constant term in the mean model (const) has a value of 0.0020123
with a standard error of 0.0001878, which is statistically significant with a
p-value much less than 0.05.

The autoregressive term (NASDAQ[1] — ), which represents the lagged
value of the dependent variable, has a coefficient of 0.0164 with a stand-
ard error of 0.06565. This term, however, is not statistically significant,
indicated by a high p-value, p-value = 0.803.

These results provide insights into the dynamics of volatility in the NASDAQ
index. The significant and high value of the beta coefficient suggests that vola-
tility shocks are highly persistent. In contrast, the lack of significance in the
alpha coefficient suggests that new shocks have a limited impact on future
volatility. This could imply that the volatility tends to revert to its long-term
mean slower. The AR part’s lack of significance indicates that past returns do
not predict future returns in this model.
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Model Fitting and Diagnostic Checking
To carry out model fitting and diagnostic checking:

= Fit the GARCH model to the data and different model parameters.

= Examine the model summary for the significance of coefficients and the
overall model fit.

The output from this stage helps validate the model’s significance and the
robustness of the model and its parameters.

Stage 3 involves a sequential iteration over the model parameters to fit the
minimum values of the information criteria AIC and BIC and ensure that all
model coefficients are significant, with p-value < 0.05. As a result of these
iterative operations, the following parameters for the model from the previous
code have been optimized:

1. # Stage 3. Model Fitting and Diagnostic

2. model = arch model (data, vol='GARCH',

3. mean = 'Zero',
4. p =1
5. q=1,
6. rescale=False,
7. dist="normal')

8. split date = dt.datetime (2023,9,1)
9. model fit = model.fit (update freg=10,

10. last obs=split date)

11. model fit.summary ()
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The code output is depicted in Figure 8.8:

Optimization terminated successfully (Exit mode @)
Current function value: -580.2711007397694
Iterations: 5
Function evaluations: 4
Gradient evaluations: 1

Zero Mean - GARCH Model Results

Dep. Variable: NASDAQ R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.006
Vol Model: GARCH Log-Likelihood: 500.271
Distribution: MNormal AIC: -994.6542
Method: Maximum Likelihood BIC: -985.188
Ma. Observations: 167
Date: Mon, May 20 2024 Df Residuals: 167
Time: 10:16:37 Df Model: 1]
Volatility Model
coef std err t P=|t| 95.0% Conf. Int.
omega 2.9864e-06 1.378e-10 2.167e+04 0.000 [2.986e-06,2.987e-06]
alpha[1] 0.0100 1.685e-03 5.936 2.919e-09 [6.69Be-03,1.330e-02]
beta[1] 0.9700 4.008e-03 242.033 0.000 [ 0.962, 0.978]

FIGURE 8.8 The results of fitting the GARCH volatility model

Interpretation of the model results involves understanding the implications of
each parameter and the model’s overall fit:

= Interpret the alpha coefficient(s), which measures past shocks” impact on
current volatility.

= Interpret the beta coefficient(s), which measure the persistence of past
volatility.

= Get agraphical interpretation of the model results.

For example, a basic graphical analysis of the model can be represented as
follows (refer to the following figure as well):

1. # Stage 4: Interpretations

2. # Generate a hedgehog plot of the volatility
# forecast by the model
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3. model fit.hedgehog plot ()
4. plt.xticks(rotation=45)

5. plt.title('NASDAQ Volatility Forecast Hedgehog
Plot'")

6. plt.show()

7. # Plot the conditional volatility from the model
8. plt.figure(figsize=(10, 5))

9. model fit.conditional volatility.plot()

10. plt.title('Conditional Volatility from GARCH
Model")

11. plt.show()

12. # Plot the actual log returns alongside
# the exponentially weighted moving average
(EWMA)

13.
14. plt.figure(figsize=(10, 5))
15. data.plot(label='Log Returns')

16. data.ewm(span=60,
adjust=False) .mean () .plot (label="60-day
EWMA')

17. plt.title('Log Returns and EWMA Trend')

18. plt.legend()

19. plt.show ()

Figure 8.9 illustrates multiple potential paths for future volatility as forecasted
by the GARCH model. Each spike in the plot represents a different simula-
tion of future volatility. This type of visualization helps understand the range
of possible future volatility scenarios and the uncertainty inherent in the
model’s predictions:



Risk ASSESSMENT AND VOLATILITY MODELING © 359

NASDAQ Volatility Forecast Hedgehog Plot
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FIGURE 8.9 Hedgehog plot for NASDAQ index logo 2023 GARCH model results

In Figure 8.9, you can observe a downward trend, indicating that the fore-
casted future volatility of NASDAQ is expected to decrease over time. The
forecast, however, includes a range of outcomes, some higher and some lower
than the mean, highlighting the inherent uncertainty in predicting future
market conditions.

Predictions and Making Decisions
= Use the fitted GARCH model to forecast future volatility, calculate VaR
for risk management purposes, and so on.
= Incorporate the GARCH model insights into investment strategies, such

as option pricing, portfolio optimization, or hedging.

NOTE  The GARCH model results should be interpreted in the context of current mar-
ket conditions and economic indicators to improve decision-making results.
1. # Stage 5: Making Predictions

2. # Forecast the future volatility over a horizon
of 5 days,
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3. # starting from the split date

square root

volatility

variance.dropna () )
10. # Printing the predicted volatility

11. print ("Predicted Volatility:")

12. print(predicted volatility)

The code results (truncated) are:

Predicted Volatility:

h.1 h.2 h.3 h.4
Date
2023-09-01 0.011824 0.011832 0.011840 0.011848

(...)
2023-09-29 0.011632 0.011644 0.011656 0.011667

4. test forecast = model fit.forecast (horizon=5,
5. start=split date,
6. reindex=False)

7. # The forecast returns variance, so we take the

8. # to get the standard deviation, which represents

9. predicted volatility = np.sqrt(test forecast.

0.011855

0.011678

This code will provide the predicted volatility for a 5-day horizon after the
split date, which is the out-of-sample period not used during model fit-
ting. The predictions can be used for risk management, portfolio allocation,
VaR and aVaR, trading strategies, performance attribution, stress testing, etc.
Forecasts with the GARCH models provide valuable insights into future mar-
ket conditions. It is still important to remember that all models have limita-

tions, and forecasts are not guaranteed.
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CONCLUSION

Applying probability theory and studying distributions such as the normal dis-
tribution helps quantify uncertainty. The market data, however, often shows
fat tails, where extreme events are more common than predicted, requiring
cautious risk assessment. Python examples illustrate how real-world data can
diverge from theoretical models. The VaR and aVaR metrics are fundamen-
tal instruments of the tools for risk estimations. VaR shows the maximum
expected loss within a confidence interval. Meanwhile, aVaR goes beyond this
boundary, capturing the fat tails.

The Monte Carlo method and the GBM model are powerful tools in financial
scenarios and managerial decision-making. The Monte Carlo method uses
random samples to simulate various financial processes, providing each sam-
ple’s risk and return assessment. The GBM model, based on Monte Carlo
principles, simulates asset price trajectories, aiding in price and risk evalua-
tion. These tools are not limited to these simulations and can also help calcu-
late Black-Scholes prices for options, evaluations of VaR and AVaR metrics,
forecasting behaviors of the market agents, etc.

The ARCH/GARCH models help with risk management and forecasting.
The GARCH model captures errors of short-term and long-term effects.
Although the mathematical formulation of these models is quite complex,
analysts can use Python’s arch library to systematically analyze data and per-
form diagnostic checks, integrating robust statistical foundations into financial
decision-making.

In the next couple of chapters, you will explore machine learning techniques
and the Facebook Prophet library for time-series data analysis and prediction,
e.g., asset price prediction and risk assessment. They will cover preparing
time-series data for machine learning purposes, building forecasting models,
and interpreting results. As always, we will focus on practical applications and
advanced forecasting techniques.

QUESTIONS

1. What does VaR stand for in financial risk analysis?
2. How does the Monte Carlo method help in financial risk analysis?

3. Why do analysts prefer to use the logarithmic RoR instead of the RoR
when assessing risk?
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11.

12.

What statistical test can be used to check the normality of a distribution in
financial data?

What fundamental assumption about asset prices does the geometric
Brownian motion model make?

What is the purpose of using the Black-Scholes formula in finance?
How do the ARCH and GARCH models differ from the ARIMA models?

Can you explain the basic difference between the ARCH and GARCH
models?

In the context of GARCH models, what do the parameters mean?

What does the hedgehog plot represent in the context of GARCH model
results?

How can the predictions from GARCH models be utilized in financial
decision-making?

How do the concepts of VaR and aVaR relate to ARCH/GARCH models?

KEY TERMS

Volatility refers to the degree of variation of a trading price or rate of
return series over time as measured by the standard deviation.

Financial risk involves losing money on an investment or business, e.g.,

due to high volatility.

A random variable is a variable whose values depend on the outcomes of
a random phenomenon. In finance, it is often used to model the rate of
return, price changes, and other market variables.

A sample (statistical sample) is a subset of the general population that is
used to represent the entire group.

VaR is a statistical measure used to quantify the level of financial risk
of investment, portfolio, or position over a specific time frame. It repre-
sents the maximum expected loss with a given confidence level (e.g., 95%)
under normal market conditions.

An option (in the context of financial securities) is a contractual agree-
ment that provides the buyer the right, but not the obligation, to buy or
sell the underlying asset at a predetermined price within a specified time
frame.
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The probability density function (PDF) and the cumulative distribu-
tion function (CDF) are two fundamental concepts in statistics used to
describe the distribution of a random variable. The PDF shows the likeli-
hood of the variable falling within a particular range of values. The CDF
maps a value to its percentile rank or the probability that a random vari-
able will take a value less than or equal to that value.
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CHAPTER

MACHINE LEARNING AND DEEP
L EARNING IN FINANCE

INTRODUCTION

This chapter discusses machine learning (ML) by applying it to financial
data. With their ability to process massive amounts of market data, ML algo-
rithms become powerful tools for supporting decisions. We will delve into
the foundational theories and the basis of ML tools. The chapter will guide
us through the universal steps for creating ML models and allow us to har-
ness the potential of this technology. We will explore the functionalities of the
scikit-learn library, a powerful Python tool that leads the way in ML applica-
tions in finance. The library helps with practically understanding the theo-
retical underpinnings of ML tools and their application to financial analysis
problems, offering solutions with clustering and regression models. We will
also delve into using non-linear ML models with examples from the XGBoost
library. We will unravel the principles of artificial neural networks (ANNs)
and show examples of how they are adapted to financial datasets. A compari-
son of the results of the various ML models for predicting financial indicators
will also be given.

STRUCTURE

This chapter covers the following topics:

= ML concepts
= Python ML libraries and tools

® ML models for financial data
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OBJECTIVES

By the end of this chapter, you will have learned how to navigate the world of
ML as it applies to the financial sector. You will be equipped with an under-
standing of the fundamental theories, models, and steps for applying ML
and how they are applied to analyze and predict financial data. With a focus
on the practical utility of the scikit-learn library, you will understand how to
implement ML models such as clustering and regression and employ feature
engineering to enhance model performance. You will also be able to evaluate
ML models using appropriate metrics crucial for financial applications and
try out the essentials of non-linear ML models through hands-on examples
with XGBoost. Furthermore, you will have the skills to employ Python-based
regression and clustering techniques while understanding the importance
of cross-validation and executing hyperparameter tuning to improve model
accuracy.

ML CONCEPTS

In previous chapters, we examined classical models and methods that assist
financial investors and other market participants in making informed deci-
sions. The contemporary directions for analytical decision support are also
based on ML principles. On the one hand, ML is an extension of classical
statistical methods; on the other, it has the ability to handle large volumes
of data and the capabilities of modern computers. IT systems allow imple-
menting models, such as the Monte Carlo method, to simulate financial pro-
cesses and evaluate financial indices forecasts. This is a distinctive feature of
ML methods and models. They leverage computational power and advanced
algorithms to uncover patterns and insights that traditional methods may not
detect due to their limitations in scale and complexity.

Thus, ML consists of using algorithms to parse data, learn from that data, and
then decide or predict something relating to that data. Rather than follow-
ing static program instructions, ML systems build a model based on sample
data (training data subset) and validate the test and validation data results.
They make predictions or decisions based on the universal analytical code.
ML models are used in many training and validation processes on different
datasets before being applied to real-world scenarios. This includes a range of
models and techniques, from linear and logistic regressions to combinations
of neural network models. Each ML tool has its own strengths and ideal use
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cases. The power of ML lies in its ability to analyze vast amounts of data. It
can identify hidden structures in the data that might take time to be apparent
or require extensive manual effort to uncover.

ML is iterative by nature, meaning models can learn, tune, and improve over
time as new data becomes available. This aspect of continuous improvement
is crucial in financial applications where market conditions can change rapidly
and unpredictably. The interdisciplinary nature further enhances the adapt-
ability (customizations) of ML. ML tools combine the concepts from com-
puter science, statistics, mathematics, and specific knowledge, e.g., finance
patterns. This enables innovative solutions tailored to the nuances of finan-
cial data and decision-making processes. Unfortunately, despite the stunning
results compared to classical analysis methods, ML is not a magic wand that
provides answers to all questions. Errors, although small, can be significant,
and many learning problems fall on the researcher. This chapter will consider
only a few classic examples without going deep into the details of ML, which
would require a separate book and/or studying a series of books and practical
examples.

Earlier chapters noted some keystone features of ML model implementa-
tion techniques. This includes a thorough discussion on the extract, trans-
form, and load (ETL) process and exploratory data analysis (EDA), both of
which are instrumental in understanding and preparing our data (Chapter
4, Exploratory Data Analysis for Finance). We also touched on the impor-
tance of efficiency metrics, the role of test datasets and the parameter tunning
process (Chapter 7, Time-Series Analysis and Financial Data Forecasting),
the probability theory (Chapter 8, Risk Assessment and Volatility Modeling),
and the necessity of feature cleaning to ensure the integrity of the models.
Within the context of ML, however, integrated models and algorithms are not
standalone entities but a decision support system. These integrated processes
form a cohesive framework that supports the intricate workflow of ML, from
initial data handling to the final stages of prediction and interpretation.

ML Models

In finance, ML models have revolutionized how we analyze data, assess risks,
optimize portfolios, detect patterns, and so on. In addition, there are a lot of
different ML models and their implementations now. Typically, we can use
the following ML models and algorithms for various financial tasks':

! https:/fen.wikipedia.orghviki/Machine_learning
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m  Basic ML models:

Regression models are like classical regression, as described in
Chapters 6, Asset Pricing and Portfolio Management, and Chapter 7,
Time-Series Analysis and Financial Data Forecasting, but use another
method for parameter estimation based on more than just statistical
principles. Like the CAMP model, these models are widely used in
finance based on quantitative analysis. They are used to assess the
level of influence of external features on the dependent variable.
They can be used to predict continuous outcomes such as stock prices
and interest rates (Chapter 7, Time-Series Analysis and Financial
Data Forecasting). Simple linear regression can reveal trends. A com-
bination of simple regressions can help with understanding non-lin-
ear patterns. Varieties of ML regressions also include ridge and lasso
regression—each can consider different aspects of financial data,
such as multicollinearity or overfitting.

Classification models predict categorical outcomes and are used
extensively in credit scoring, market movement prediction, and
market signal detection (as described in Chapter 5, Investment and
Trading Strategies). They can classify companies into creditworthy
or high-risk categories based on financial indicators and predict cat-
egorical outcomes, such as whether financial assets will go up or down
or a credit card transaction is fraudulent. They are often realized by
logistic regression, which is widely used for simplification, but other
algorithms and techniques can be used, too.

Clustering models or unsupervised classification is applied when we
do not know how to make a classification; we have no “rules” for this.
Clustering algorithms, such as k-means and agglomerative clustering,
are pivotal in segmenting financial assets into homogeneous groups
without predefined labels, aiding portfolio diversification and cus-
tomer segmentation. These models identify structure in unlabeled
data, uncovering relations that are only apparent after some time.

= Basic ML algorithms and techniques:

Decision trees and random forest methods are used for classification
and regression tasks, such as predicting whether a stock or rates of
return will increase in value or determining the probable default rates
of loans or dividend payments. The essential advantage of those mod-
els is that they are interpretable, which is critical in financial applica-
tions where transparency in decision-making is crucial.
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*  The gradient boosting approach, which includes an ensemble of deci-
sion trees, is highly effective for classification and regression tasks.
These models work by sequentially building trees, each of which cor-
rects the errors of its predecessors. Therefore, the model’s accuracy is
continuously improving. In finance, gradient boosting models are used
to handle non-linear complex predictive tasks, such as forecasting secu-
rity prices, calculating rates of return, or determining risk levels.

*  Support vector machines (SVMs) are supervised learning methods
for detecting classification, regression, and outliers. They are mainly
known for their ability to handle high-dimensional data and their
effectiveness for tasks when the number of dimensions exceeds the
number of data samples. In finance, the SVM methods may predict
the direction of market movements or the security price. The ker-
nel trick allows SVMs to capture complex relationships in financial
data. SVMs can be part of models that assess the risk levels of specific
investments or loan applicants.

* ANN methods are at the forefront of predicting complex non-linear
patterns and are invaluable in algorithmic trading, market trend anal-
ysis, derivative pricing, and so on. They operate with vast amounts of
data, like the biological brain. In this way, neural networks can analyze
obvious and hidden relationships and structures that other models
cannot capture. ANNs can operate different financial market data,
both quantitative and categorical. They can assess and predict risks
and process complex market data, including technical indicators and
historical price patterns.

* Naive Bayes methods, k-nearest neighbors (KNN), Adaptive Boosting
(AdaBoost), and many other algorithms and techniques can be applied
to solve various decision-making problems. Every day, new solutions
to existing problems emerge, requiring analysts to move forward con-
tinuously. Innovative approaches quickly become standardized and
fail to provide significant added value.

As can be seen from the brief overview, ML methods and algorithms are uni-
versal and can be adapted for any financial task. Applying all these models,
however, is a programming and analytical challenge in finance. The accuracy
of financial predictions is often related to the quality of data, the correct selec-
tion of models, tuning hyperparameters, and the interpretation of the results.
Therefore, combining ML with financial expertise helps solve complex prob-
lems. Finally, this will allow us to obtain more reliable forecasts than classical
statistical methods can provide.
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The Universal Algorithm of ML

ML models’ training and application are characterized by a similar univer-
sal process (universal algorithm) comprised of a series of well-defined stages.
These stages guide users from the initial conceptualization of the problem to
the final evaluation of the model. Let us see each of these steps:

1.

The problem definition is the starting point of any ML (and not only ML)
project and is the precise definition of the problem. In finance, this could
mean deciding whether to focus on predicting asset prices or rates of
return, identifying volatility or risks, or solving other problems described
in previous chapters.

Data collection involves gathering the data essential for training the
model. This process, known as ETL, is followed by EDA, where the data
is examined for patterns, anomalies, or trends. EDA provides valuable
insights that form the basis for model design and feature selection (see
Chapter 4, Exploratory Data Analysis for Finance).

Feature engineering is crucial and especially affects the accuracy of ML
results. It involves creating new features from the existing data to improve
model performance. This may also include encoding categorical variables,
handling missing values, and more (as in the previous step). Data pre-
processing as a part of feature engineering includes cleaning the data and
transforming it into a format suitable for modeling, such as scaling or nor-
malization. This is highly necessary for some types of models, such as ANNs.

Models, algorithms, and Python tool selection are pivotal for effective
results. This decision is guided by the nature of the task, the nature of
the data, and the desired outcomes. Python offers many libraries, such as
scikit-learn, XGBoost, LightGBM, TensorFlow, and PyTorch, each with
weaknesses and strengths. The selection of tools also depends on the
model’s complexity and the computational resources available.

Model training and validation involve feeding the pre-processed data
into the learning model. The model trains and makes predictions or clas-
sifications based on the input data training subset. The input data is split
into train, test, and validation subsets. The test subset is used to check
the accuracy of the final model. The validation subset for cross-validation
tests the model’s performance on unseen data to ensure it generalizes well
beyond the training dataset.

Cross-validation and hyperparameter tuning enhance the model’s accu-
racy; cross-validation is used to test the model’s effectiveness on differ-
ent subsets (different splits) of the data. Most ML algorithms usually give
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different results both on the same and different datasets. In fact, cross-
validation averages the assessments of different results. Hyperparameter
tuning involves adjusting the model’s parameters to find the combination
that yields the best performance. A simplified example of hyperparameter
tuning was presented in Chapter 7, Time-Series Analysis and Financial
Data Forecasting, where we used the auto_arima () function. For ANN
models, the hyperparameters can be the number of layers of the neural
network, etc.

7. The final step is evaluating the models performance using appropriate
metrics. In classification problems, this may include accuracy, precision,
recall, and F1-score, whereas in regression, metrics such as mean squared
error (MSE) or mean absolute error (MAE) are used. This phase assesses
whether the model meets the initial objectives and how it might perform
in real-world scenarios.

This step-based approach in ML is the basic principle for solving diverse and
complex financial tasks. By adhering to these universal steps, we can apply
many ML models, from conceptualizing the problem to deploying robust,
effective, and valuable results.

PYTHON ML LIBRARIES AND TOOLS

While many ML libraries include classic models and algorithms and specific
approaches to their implementation, the classic and time-tested libraries are
scikit-learn, XGBoost, LightGBM, Keras, TensorFlow, and PyTorch. This
book will observe the first three: scikit-learn, XGBoost, and LightGBM. You
can, however, continually expand your horizons and skills based on the princi-
ples of working with these basic ML libraries.

Scikit-Learn Python Library

Scikit-learn is a widely known Python ML library. It is universal in application
and relatively easy to use. Scikit-learn’s tools were initially developed in 2007
as part of a Google Summer of Code project and later expanded with contribu-
tions from the analytical community. Scikit-learn is based on NumPy, SciPy,
and Matplotlib and is designed to help users apply different ML models, algo-
rithms, and techniques with one Python libraryz.

2 https://en.wikipedia.orgiwiki/Scikit-learn/
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At the time of writing this book, scikit-learn included the following main
modules, each offering specific functionalities within the ML domain (https.//
scikit-learn.org/stable/modules/classes.html).

Functional modules for data preparation and results interpretation:

.impute provides tools for handling missing data, including various
imputation strategies.

.feature extraction provides tools for extracting features from data,
which is particularly useful in processing text and images.

.feature selection offers methods for selecting the most informa-
tive features from the dataset to enhance model performance.

.preprocessing provides data pre-processing utilities such as scaling
and normalizing, which are critical for data preparation.

.metrics provides metrics for evaluating model performance, which is
essential for assessing ML models’ effectiveness (level of errors).

.model selection includes model selection and validation tools such
as train-test split and grid search.

.manifold contains algorithms for non-linear dimensionality reduction
and helps in uncovering underlying data structures.

.decomposition offers matrix decomposition methods such as PCA and
NMF for dimensionality reduction and feature extraction.

.utils provides a collection of utility functions and classes, including
methods for balancing datasets, creating synthetic samples, and other
auxiliary functions.

.datasets contains utilities for loading and generating datasets, which
are helpful for testing algorithms and educational purposes.

Models and ML algorithm-based modules:

.cluster offers clustering algorithms such as k-means and hierarchical
clustering, which are suitable for unsupervised learning tasks.

.linear model encompasses linear models for regression and classifi-
cation tasks, including logistic and linear regression.

.ensemble includes ensemble methods such as random forest, AdaBoost,
and gradient boosting for improved prediction accuracy.

.neural network offers models for multi-layer perceptron (neural net-
works) for complex, non-linear problems.
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m .gaussian process contains algorithms for regression and classifica-
tion using Gaussian processes.

= .neighbors contains the KNN algorithm for classification and regres-
sion based on data proximity.

= .semi supervised contains algorithms for semi-supervised learning
when dealing with primarily unlabeled data.

= .svm offers SVM algorithm applications, including classification, regres-
sion, and outlier detection.

= .tree offers decision tree algorithms, which are widely used for their
interpretability in classification and regression tasks.

= .naive bayes contains the Naive Bayes algorithms, which are ideal for
classification tasks, particularly in text analysis and situations where the
independence assumption holds.

Therefore, each module of the scikit-learn library is designed to realize spe-
cific ML needs, making the library a comprehensive toolkit for data analysis.
In Table 9.1, we systemize some of the crucial functions of scikit-learn for
further application in finance.

TABLE 9.1 Comparing Python libraries for finance

Function/feature Description ML steps

Data collection and pre-processing functions

impute.KNNImputer Imputation transformer for Step 2
impute.MissingIndicator completing missing values.

preprocessing.add_dummy_feature | Augment dataset with an additional | Step 2, Step 3
dummy feature.

preprocessing.StandardScaler Standardize features by removing Step 3, Step 4
the mean and scaling to the
variance.

preprocessing.MinMaxScaler Transforms features by scaling each | Step 3, Step 4

feature to a given range.

preprocessing.OneHotEncoder Encode categorical integer features | Step 3, Step 4
using a one-hot scheme.

Models and algorithm-based functions (regression, classification, and universal)

linear model.LinearRegression Linear model for regression. Step 4, Step 5

linear_model.LogisticRegression | Logistic model for binary Step 4, Step 5
classification.

linear model.SGDClassifier Linear classifiers (SVM, logistic Step 4, Step 5

regression, etc.) with SGD training,

(Continued)
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Function/feature

Description

ML steps

svm.SVR

Support vector regression.

Step 4, Step 5

ensemble.RandomForestClassifier

Random forest for classification
tasks.

Step 4, Step 5

neural network.MLPClassifier

Multi-layer perceptron classifier.

Step 4, Step 5

neural network.MLPRegressor

Multi-layer perceptron regressor.

Step 4, Step 5

ensemble.RandomForestRegressor

Random forest for regression tasks.

Step 4, Step 5

ensemble.GradientBoostingClassifier

Gradient boosting for classification.

Step 4, Step 5

ensemble.GradientBoostingRegressor

Gradient boosting for regression.

Step 4, Step 5

Models and algorithm-based functions with built-in cross-validation functions

linear model.RidgeCV

Ridge regression with built-in
cross-validation.

Step 5, Step 6

linear model.LassoCV

Lasso regression with built-in cross-
validation.

Step 5, Step 6

linear model.ElasticNetCV

Elastic net model with built-in
cross-validation.

Step 5, Step 6

Models clustering

cluster.KMeans

K-means clustering.

Step 5, Step 6

cluster.AgglomerativeClustering

Hierarchical clustering using a
bottom-up approach.

Step 5, Step 6

Model evaluation and hyperparameter tuning

model selection.train test split

Split arrays or matrices into random
train and test subsets.

Step 5, Step 6

model selection.TimeSeriesSplit | Split arrays or matrices into random | Step 6
train and test subsets for time-
series data cross-validation.
model_selection.GridSearchCV Exhaustive search over specified Step 6
parameter values for an estimator.
model_selection. Randomized search on Step 6
RandomizedSearchCVv hyperparameters.
metrics.accuracy_score Accuracy classification score. Step 7

metrics.mean_squared_error

MSE regression loss.

Step 4, Step 5,
Step 7

metrics.mean squared error

MSE regression errors.

Step 4, Step 5,
Step 7

metrics.mean_absolute_ Mean absolute percentage error Step 7
percentage error (MAPE) regression errors.
metrics.precision score, Precision, recall, and F1-score for Step 7

metrics.recall score, metrics.
fl score

classification tasks.
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XGBoost and LightGBM Libraries

The XGBoost and LightGBM libraries are highly regarded for their excep-
tional speed, superior performance, and ability to handle huge datasets, allow-
ing them to be used in financial modeling and analysis. XGBoost is known for
its robust and scalable gradient boosting implementation, making it one of
the best choices for predictive tasks such as financial indices and algorithmic
trading. A similar library, LightGBM, known for its lightning-fast processing
speeds and efficiency in large-scale data handling, stands out without sac-
rificing accuracy in scenarios demanding rapid model training. Therefore,
XGBoost and LightGBM represent cutting-edge ML techniques in finance,
offering universal techniques to predict market trends and support strategic
financial decisions. Let us briefly examine these libraries’ syntax, methods,
and main arguments.

As we have noted, XGBoost® is a powerful library optimized for boosting
trees, widely utilized in finance for predictive analytics. Its syntax revolves
around the XGBRegressor and XGBClassifier classes for regression and
classification tasks like the scikit-learn syntax style. The main objects include
the . fit () method to train the model, the .predict () method for making
predictions, and the . score () method for model evaluation. XGBoost tools
can handle various types of financial data, coupled with speed and applicable
accuracy. The main advantages of XGBoost models are that they consider the
dependence’s non—linearity and require precise parameter tuning.

Initializing the XGBoost regressor object with a set of typical hyperparam-
eters can be represented as in the following example:

1. xgb regressor = XGBRegressor (

2. # Set maximum depth of each tree

3o max depth=3,

4. # Set number of trees in the ensemble
5. n estimators=100,

6. # Set learning rate for convergence
7. learning rate=0.1,

® https://xgboost.readthedocs.iolen/stable/
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8. # Set subsampling rate of the training data
9. subsample=0.8,
10. # Set subsampling rate of features for each tree
11. colsample bytree=0.8,
12. # Set min loss reduction needed to make further
splits
13. gamma=0,
14. # Set L1 regularization term on weights
15. reg_alpha=0,
16. # Set L2 regularization term on weights
17. reg lambda=1
18. )

The primary hyperparameters for the XGBRegressor include:

max_depth, which controls the depth of the tree. Higher values allow the
model to capture more complex patterns but can lead to overfitting.

The n_estimators parameter, which determines the number of trees in
the ensemble. More trees can improve accuracy but may slow down the
computation.

learning rate, which affects the contribution of each tree to the
outcome. Lower values require more trees but can lead to better
generalization.

A subsample fraction of the training data sampled for building trees,
which can help prevent overfitting.

gamma, which specifies the minimum loss reduction required to make a
split.
The reg alpha and reg lambda parameters, which are the L1 and L2

regularization terms, respectively, on weights can help prevent overfitting
by penalizing complex models.

It is crucial to perform hyperparameter tuning, such as cross-validation with
GridSearchCV or RandomizedSearchcCV, to find the best combination of
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these parameters for your dataset and regression task. Those tools operate
with combinations to find the optimal settings for the specific dataset and
classification task. For more details, see the official help: https://scikit-learn.
org/stable/modules/grid_search.html.

Defining hyperparameters for the XGBoost classification model involves
arguments that control the model’s learning and complexity. Here is an exam-
ple of how to set hyperparameters for XGBClassifier:

1,

10.
11.
12.
13.
14.
15.
16.
17.
18.
19,
20.

xgb classifier = XGBClassifier(

# Set max depth for decision trees

max depth=3,

# Define number of trees to build
n_estimators=100,

# Specify the learning rate for training
learning rate=0.1,

# Set fraction of samples to train each tree
subsample=0.38,

# Set fraction of features for building trees
colsample bytree=0.8,

# Minimum loss reduction needed to further split
gamma=0,

# L1 reg on weights, enhancing sparsity

reg alpha=0,

# L2 reg on weights, reducing overfitting

reg lambda=1,

# Objective function for binary classification

objective='binary:logistic'
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Thus, key hyperparameters for the XGBClassifier include:

= max_depth, which determines how deep each tree can grow during any
boosting round.

= Then estimators argument, which sets the number of trees to build.

= learning rate, which shrinks the contribution of each tree to prevent
overfitting.

= subsample, which controls the fraction of the training data to be used
for each tree.

= colsample bytree, which sets the subsample ratio of features to be
used for each tree.

= gamma, which specifies the minimum loss reduction required to make a
further partition.

= reg alpha (LI regularization) and reg lambda (L2 regularization),
which apply regularization to reduce overfitting.

m objective, which defines the loss function to be minimized. It can
take the following values: ‘binary:logistic’ for binary classification,
‘multi:softmax’ for multiclass, and so on.

Hyperparameter tuning can also significantly affect and improve the per-
formance of the xGBClassifier models by using the GridSearchcv and
RandomizedSearchCV classes.

LightGBM4 is one of the fastest libraries within the ML domain, and it is
particularly favored for its performance in finance. This framework uses
tree-based learning algorithms and is designed for speed and efficiency.
LightGBM’s core advantage is operating large datasets without compro-
mising training speed or model accuracy. The main LightGBM classes are
LGBMRegressor () for regression and LGBMClassifier () for classification
tasks. These classes share a similar syntax, ensuring a smooth transition for
those familiar with scikit-learn or XGBoost. LightGBM tools are commonly
the same for financial modeling tasks as for XGBoost. This library, however,
usually applies when the training speed is crucial.

To apply a LightGBM model to specific financial forecasting tasks, we can
tune hyperparameters such as:

* https://lightgbm.readthedocs.iolen/stable/
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= num leaves, which refers to the number of leaves in one tree, corre-
sponding to the model’s complexity.

= max_depth, whichis the maximum depth of the tree to control overfitting.

= learning rate, which is the rate at which the model learns, affecting
how quickly it adapts to the data.

= n_estimators, which is the number of boosted trees.

= subsample, which is the fraction of samples used per tree; a lower ratio
prevents overfitting.

Hyperparameter tuning for LightGBM, as for other ML tools, is also crucial
to maximize the model’s predictive power.

ML MODELS FOR FINANCIAL DATA

ML methods can solve many different financial data analysis tasks. We dis-
cussed some of them in earlier chapters. Now, we will consider several typical
financial tasks and their implementation using the previously presented ML
libraries and algorithms.

Clustering Analysis of Financial Data

To generate an optimal portfolio in Chapter 6, Asset Pricing and Portfolio
Management, we used the optimization method (from the SciPy library). We
obtained the optimal structure of a portfolio from the top 30 financial assets
of the NASDAQ exchange. Based on these results, we will conduct a clus-
tering analysis of the same assets (see Chapter 6 or the appendix with the
corresponding software code for this chapter) based on the engineering of
statistical metrics for logRoR. The corresponding code is presented here:

1. (...full version Chapter 6...)

2. # Display the DataFrame

3. print ("Mathematical Optimization Results")
4. print("Optimize for maximum Sharpe Ratio:")

5. print(portfolio df.transpose())

6. (...)
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10.

11.
12.

13.
14.

15.
16.
17.
18.
19,
20.
21.
22.

23.

24.

25.

26.

27.
28.

# Features pre-processing for Clustering
from scipy.stats import skew, kurtosis
def sharpe ratio(return series):

return np.mean(return series) / np.std
(return_series)

def moving average (return series, window) :

return return series.rolling(window=window) .
mean ()

# Initialize a DataFrame to store features

features = pd.DataFrame (index=nasdaq_assets
['"logRoR'] .columns)

# Generate the features
for column in nasdag assets['logRoR'].columns:

returns = nasdaq_assets['logRoR'] [column]

features.loc[column, 'mean'] = returns.mean|()
features.loc[column, 'std'] = returns.std()
features.loc[column, 'skewness'] = skew(returns)
features.loc[column, 'kurtosis'] = kurtosis (returns)

features.loc[column, 'Autocorrelation'] =
returns.autocorr ()

features.loc[column, 'Sharpe Ratio'] = sharpe
ratio (returns)

features.loc[column, 'Return 5th Percentile'] =
np.percentile (returns, 5)

features.loc[column, 'Return 95th Percentile'] =
np.percentile (returns, 95)

features.loc[column, '30-day MA'] = moving
average (returns, 21).iloc[-1]

# Clustering



29,
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.

43.
44,
45.
46.
47.
48.

49.

50.
51.
52.
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from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

# Sciling Input Data

scaler = StandardScaler ()

scaled features = scaler.fit transform(features)
# Determine the optimal number of clusters

k optimal = 8

# Perform K-Means Clustering

kmeans = KMeans (n clusters=k optimal, random
state=42)

cluster labels = kmeans.fit predict(scaled features)
# Add the cluster labels to your original DataFrame
features['Cluster'] = cluster labels
# Merge with Sharpe Portfolio Wights

sharpe with clusters = pd.concat ([portfolio df,
features],

axis = 1)
print ("\nSharpe Portfolio with Clusters:")
print (sharpe with clusters.sort values (
['Cluster']) [['Cluster', 'Weight',
'Sharpe Ratio', 'mean', 'std']])

# Group by 'Cluster' and calculate the mean for
each cluster

cluster centroids = features.groupby ('Cluster').
mean ()

# Show the results
print ("Cluster Centroids:")

print (cluster centroids[['Sharpe Ratio', 'mean',
'std']])
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The results of the code are as follows:

Sharpe Portfolio with Clusters:

Cluster Weight

MRNA 0 0.00
TSLA 0 0.00
AS 0 0.00
MELTI 0 0.00
ENPH 0 0.00
DDOG 0 0.00
AZN 1 21.96
KDP 1 0.00
MDLZ 1 8.59
CSGP 1 0.00
DLTR 1 0.00
SBUX 1 0.00
HON 1 0.00
AAPL 1 0.00
URBN 2 0.00
INTU 2 0.00
AMAT 2 0.00
MCHP 2 0.00
MRVL 2 0.00
SIRI 3 0.00
AMGN 4 12.82
BKR 4 14.07
PCAR 4 28.65

VRSK 4 0.00

Sharpe Ratio

-0.

002633

.001085
.008811
.010074
.012462
.000057
.034604
.007999
.031310
.010167
.000288
.005537
.007017
.023847
.013892
.020531
.025408
.009883
.007047
.013065
.028793
.035628
.045369
.016299

mean

.000114
.000041
.000336
.000374
.000523
.000002
.000529
.000094
.000352
.000221
.000007
.000097
.000094
.000430
.000416
.000487
.000710
.000248
.000243
.000338
.000375
.000863
.000716
.000247

std

.043323
.037787
.038138
.037102
.041976
.039058
.015301
.011721
.011266
.021737
.023187
.017499
.013445
.018034
.029939
.023717
.027981
.025141
.034539
.025921
.013023
.024234
.015800
.015156
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MAR 4 1.09 0.033856 0.000680 0.020103
ZM 5 0.00 -0.070788 -0.002378 0.033617
ILMN 6 0.00 -0.049928 -0.001430 0.028666
JD 6 0.00 -0.041195 -0.001519 0.036899
META 7 0.00 0.005120 0.000160 0.031200
FTNT 7 12.81 0.035020 0.001017 0.029072

Cluster Centroids:

Sharpe Ratio mean std
Cluster
0 -0.005492 -39564
1 0.009344 0.000123 0.016524
2 0.015352 0.000421 0.028263
3 -0.013065 -0.000338 0.025921
4 0.031989 0.000576 0.017663
5 -0.070788 -0.002378 0.033617
6 -0.045561 -0.001475 0.032783
7 0.020070 0.000588 0.030136

The code calculates several statistical metrics and ratios that are commonly
used for feature engineering in financial analysis:

= Mean: Average return of the asset

= Standard deviation (std): Measures the variation or dispersion of returns
m  Skewness: Indicates the asymmetry of the return distribution

m  Kurtosis: Measures the “tails” of the return distribution

= Autocorrelation: Assesses the linear relationship between lagged values
of returns

m  Sharpe ratio: Represents the risk-adjusted return
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= Return percentiles (5th and 95th): Provide a sense of the possible distribu-
tion’s tails

= 30-day moving average (MA): Smoothes out short-term fluctuations and
defines longer-term return trends

In this example, the predefined optimal cluster equals 8. To define the opti-
mal number of clusters for any clustering task, however, we can use various
methods, such as:

= Plot the sum of squared distances from each point to its assigned center for
a range of cluster numbers. The elbow points, where the rate of decrease
sharply changes, can suggest the optimal number of clusters.

= Measure how similar an object is to its cluster compared to other clusters.
The group score ranges from -1 to 1. The highest value shows that the
object is well matched to this cluster and poorly matched to neighboring
clusters and objects.

= Compare the total within intra-cluster variation with different numbers
of clusters for the expected values under the null reference distribution
of the data.

Regarding the portfolio optimization and clustering results, while clusters 1,
4, and 7 are consistent, cluster 2, despite having a centroid Sharpe ratio of
0.015352, is not included in the portfolio. This suggests that the clustering
algorithm, which uses multiple features for clustering, offers a more sensitive
approach to diversification than the optimizing model based on the Sharpe
ratio alone. This can lead to more robust portfolios that provide better risk-
adjusted returns. We can also use clustering for other financial tasks for unsu-
pervised data classification.

Forecasting Stock Prices

In Chapter 7, Time-Series Analysis and Financial Data Forecasting, we applied
the SARIMAX tool to predict the AstraZeneca PLC stock price in 2023. As
you'll remember, the MAPE was 0.65% for the 5-day test data subset (see
Chapter 7 or the appendix with the corresponding software code for this chap-
ter). We will use the same dataset to apply some ML regression models here.

First, the ML time-series model must understand the core principles for
time-lagged feature generation. Look at Figure 9.1:
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Date y - actual t_target | N_lag_X=0 | N_lag_X=1 | N_lag_X=2 | N_lag_X=3 | N_lag_X=4
2023-12-14| NaN 125,55 Mah Mah e NaM Nah
2023-12-15| 129,55 198,06 129,55 MalN Mal MaN Mah
2023-12-18 | 198,06 200,17 | 198,06 129,55 Mal NaM e
2023-12-19 200.11 pp— j182.18 200,17 198,06 124,55 NaM NaN
2023-12-20| 182,1 B e et Ginite 134 Gp LanLL Fal
2023-12-21| 177,18 159,47 | 177,18 182,18 200,17 198,06 128,55
2023-12-22| 159,47, somarmp | 168,78 | 159,47 177,18 182,18 200,17 138,06
2023-12-27| 168,78 165,48 | 15478 159,47 177,18 182,18 208,17
2023-12-28 | 165,48 165,63 ) (165,48 )| (168,78 | (159,47 | (177,18 | (182,18 )
2023-1229 | 165,63 ;—I—’ Nal 165,63 165,48 159,47 177.18

A

| t_target = y_actual shift{-1) |

* 168,78

| X _lagged = y_actual.zhiftf0) ... v_actual shift(4)

FIGURE 9.1 Lagged features generation principles

Figure 9.1 illustrates the principle of generating lagged features for ML mod-
els that work with time-series data. The table describes how successful train-
ing of ML models requires creating a matrix of lagged dependent variables
(the penultimate row of the table in Figure 9.1). As discussed in Chapter 7,
Time-Series Analysis and Financial Data Forecasting, this is akin to the order
of an autoregressive (AR) model. Suppose the variable y actual represents
the input data column. In that case, one must apply .shift (-1) to the
dependent variable t target (forecasts) and .shift (0) to .shift (n-1)
for the lagged features x with a maximum delay of n periods. Execute the fol-
lowing code for the Python implementation of this principle:

1,

2.
3o

# Define the function of lagged feature creation

def create lagged features(df, max lag=5,

lagged df =

prediction window=1,

seasonal

= True) :

pd.DataFrame (index=df.index)

for col in df.columns:

# Create target column for prediction
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10.
11.

12.
13.
14.
15,
le6.
17.

18.
19.
20.
21.
22.

23.
24.

25.
26.
27.
28.
29,

30.

if prediction window > O:

lagged df[f'{col} target plus
{prediction window}d'] = \

df [col] .shift (-prediction_window)

# Create lagged features for each column
for 1 in range (0, max lag):

lagged df[f'{col} lag {1}'] = df[col].
shift (1)

# Adding datetime (seasonality) features

if seasonal:

lagged df['day'] = lagged df.index.day

lagged df['dayofweek'] = lagged df.index.
dayofweek

lagged df['month'] = lagged df.index.month

lagged df['dayofyear'] = lagged df.index.
dayofyear

return lagged df

# AstraZeneca PLC Stock Price dataset
data = nasdag_assets _ac['AZN"]['2023"]

# print the prepared data frame for AstraZeneca
PLC Stock Price

print (create lagged features(pd.DataFrame (data)))
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The results of the code are:

AZN target plus_1ld AZN lag 0 AZN lag 1 AZN lag 2 AZN lag 3 \

Date

2023-01-03 68.058800 67.892326 NaN NaN NaN

2023-01-04 68.362373 68.058800 67.892326 NaN NaN

2023-01-05 69.331841 68.362373 68.058800 67.892326 NaN

2023-01-06 69.429771 69.331841 68.362373 68.058800 67.892326

2023-01-09 70.115250 69.429771 69.331841 68.362373 68.058800

2023-09-25 68.220001 68.940002 67.830002 67.019997 67.959999

2023-09-26 67.940002 68.220001 68.940002 67.830002 67.019997

2023-09-27 67.419998 67.940002 68.220001 68.940002 67.830002

2023-09-28 67.720001 67.419998 67.940002 68.220001 68.940002

2023-09-29 NaN 67.720001 67.419998 67.940002 68.220001
AZN lag 4 day dayofweek month dayofyear

Date

2023-01-03 NaN 3 1 1 3

2023-01-04 NaN 4 2 1 4

2023-01-05 NaN 5 3 1 5

2023-01-06 NaN 6 4 1 6

2023-01-09 67.892326 9 0 1 9

2023-09-25 66.669998 25 0 9 268

2023-09-26 67.959999 26 1 9 269

2023-09-27 67.019997 27 2 9 270

2023-09-28 67.830002 28 3 9 271

2023-09-29 68.940002 29 4 9 272

[187 rows x 10 columns]
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In addition to generating the lagged features, the create lagged fea-
tures () function extracts features based on date data—such as the day of
the month, day of the week, and month. You are encouraged to experiment
with this function to attain the most advantageous results for subsequent fore-
casting endeavors.

Moving forward, we will implement a forecast like the one presented at the
end of Chapter 7, Time-Series Analysis and Financial Data Forecasting, for
the AstraZeneca PLC stock price in 2023. Execute the following code and
analyze the code results:

10.
11.

12.

13.
14.
15.
16.

17.

from sklearn.linear model import LinearRegression
from sklearn.svm import SVR

from sklearn.linear model import ElasticNetCV
from xgboost import XGBRegressor

from sklearn.metrics import mean absolute
percentage error

from sklearn.model selection import train test
split

def train and evaluate model (model,
X train, X test,
y train, y test):
model.fit (X train, y train)
predictions = model.predict (X test)

mape = mean_absolute percentage error(y test,
predictions) *100

return mape, predictions, model
def plot predictions(y train, y test, predictions,
mape=None, model name=None,
observe=30, figsize=(12, 5)):

plt.figure (figsize=figsize)



18.
19,
20.
21.
22.
23.
24.
25.
26.
27.

28.
29
30.
31.
32.
33.
34.
35,
36.

37.
38.
39
40.
41.

42.

plt

plt

plt
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.plot (y_train[-observe:].index,
y train[-observe:],
label="Training Data')

.plot (y_test.index, y test,
label="Test Data', alpha=0.7)

.plot (y_test.index, predictions,

label="Predictions', alpha=0.7)

title = 'Training Data and Test Predictions'

if model name:

title = f'Training Data and Test Predictions,

{model name}'

if mape is not None:

plt.
plt.
plt.

plt.

plt

title += f' (MAPE: {mape:.2f}%)"'

title(title)
xlabel ('Date')
ylabel ('Value')
legend ()
.show ()

# Prepare the data

lagged data = create lagged features(pd.DataFrame

(data))

.dropna ()

X = lagged data.iloc[:, 1:-1]

split

lagged data.iloc[:, O]

data to the train and the test subsets

y

#

# shuffle=False - for Time Series data
X_

train, X test, y train, y test = train test

split (X

r Yr

test size=0.05,
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43.
44 .
45.
46.

47.

48.
49.
50.

51.

52.
53
54.

55.
56.
57 o

58.

59,

60.

61.
62.

63.

shuffle=False)
# Models set
models = ({
'LinearRegression': LinearRegression(),

# xgb_regressor is the previously defined
object

'XGBoost': xgb regressor,
"SVR': SVR(),

'ElasticNET': ElasticNetCV(cv=5, random
state=False)}

# DataFrame to store evaluation metrics for each
ticker

evaluation metrics = pd.DataFrame ()
for model name, model in models.items () :

mape, pred, = train and evaluate model
(model,

X train, X test,
y_train, y test)

evaluation metrics.loc[model name, 'MAPE'] =
mape

evaluation metrics.loc[model name,
'Predictions'] = pred[-1]

evaluation metrics.loc[model name, 'Actual']
=y test[-1]

mape 5days = mean_ absolute percentage
error (pred[-5:1,

y test[-5:]) * 100

evaluation metrics.loc[model name, 'MAPE (5
days) ']=mape_ 5days

# Display the evaluation metrics DataFrame
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64. print(evaluation metrics)
65. # Find the best model based on MAPE

66. best model name = evaluation metrics['MAPE'].
idxmin ()

67. best model = models[best model name]

68. best mape, best predictions, =\
69. train and evaluate model (best model,
70. X train, X test, y train, y test)

71. # Plot the results
72. plot predictions(y train, y test, predictions,

73. best mape, best model name)

The results are given as follows (refer to Figure 9.2):

MAPE Predictions Actual MAPE (5 days)
LinearRegression 1.128706 66.240835 66.695198 0.885358
XGBoost 0.983265 66.909019 66.695198 0.579479
SVR 1.427638 67.676138 66.695198 1.173993
ElasticNET 1.067756 66.409969 66.695198 0.807304

Training Data and Test Predictions, XGBoost (MAPE: 0.98%)

— Training Data
Test Data
- Predictions
&9

68

G

2023-08-01 2023-08-08 2023-08-15  2023.08-22 2023-09.01 2023-09-08 2023-09-15 2023-09-22
Date

FIGURE 9.2 Forecasts of the AstraZeneca PLC stock price with the XGBoost model
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Regrettably, the forecast based on the three ML models examined displayed
an MAPE for the 5-day test data subset lower than it was for the SARIMAX
model. There are a couple of crucial points to consider, however.

Firstly, when comparing Figures 9.1 and 9.2, it is evident that ML models
may capture more non-linearity. This is precisely why some financial market
indicators are better predicted using classic models, while others benefit from
ML-based models.

Secondly, the complexity of financial indicators requires finer calibration of
the ML models. Therefore, cross-validation and hyperparameter tuning are
essential in effectively implementing ML models.

Cross-validation and hyperparameter tuning steps are also crucial for ANN
models. The appendix to this chapter presents several implementations of the
model MLPRegressor (max iter=500, random state=42). By tuning
the hyperparameters and optimizing the MAPE metric, we managed, for the
parameter hidden layer sizes = (100, 100), to reduce the forecast
MAPE for the same dataset to 0.51% for the 5-day test data subset period,
surpassing the results obtained with the SARIMAX model.

For a deeper understanding of the nuances of applying ML models, it is
instructive to delve into the code parameters presented in the programmatic
code for this chapter in the appendix. Specifically, you can use a large selec-
tion of models (refer to Table 9.1 and the official scikit-learn documentation),
modify and tune hyperparameters, adjust or engineer the features, and so
on. Engaging with these principles will help you understand ML model char-
acteristics comprehensively and unleash their potential in financial analysis
and forecasting. This hands-on experimentation is not just an exercise but a
pathway to practically mastering sophisticated analytical tools that can provide
significant insights and advantages in the dynamic realm of finance.

CONCLUSION

ML enables advanced financial analysis, allowing for the extraction of insights
from large datasets and improved decision-making. ML models require train-
ing on historical data to define model parameters and make future predictions,
with techniques ranging from simple regressions to complex neural network
models or their combinations. ML, however, also requires careful and profes-
sional model selection, feature preparation, cross-validation, hyperparameter
tuning, and professional interpretation of the results. This helps fit models
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effectively, enabling them to adapt to new data and provide reliable financial
insights.

The scikit-learn Python library is an essential tool within the ML community,
providing modules to carry out ML comprehensively and with ease. It is the
first choice for those applying financial models, providing various tools for
data pre-processing, model selection, and evaluation. The scikit-learn mod-
ules and algorithms form a robust framework that can be used for multiple
stages of ML, cross-validation, and hyperparameter tuning processes, which
are crucial for finance tasks. The XGBoost and LightGBM libraries expand
ML models’ fitting functionality, especially in tasks where performance and
speed are essential.

ML could enhance portfolio optimization and forecasting tasks, risk assump-
tion processes, pattern detection in finance, and so on. Models such as regres-
sion, classification, and clustering offer diverse approaches to analyzing
financial data. Decision trees provide interpretability for crucial decisions,
while ensemble methods such as gradient boosting deliver powerful predic-
tive capabilities. SVMs and neural networks (ANNs and others) realize com-
plex, non-linear patterns, especially for tasks such as algorithmic trading.

QUESTIONS

1. What are the foundational principles of ML tools?

2. How do ML algorithms apply to financial data analysis?

3. What is the role of scikit-learn in ML applications for finance?
4. How does XGBoost handle non-linear financial modeling?
S

In what ways are LightGBM libraries advantageous for financial data
processing?

6. Can you explain the concepts of training data, test data, and validation
datain ML?

7. How do ML models improve over time with new data?
8. Why is cross-validation important in ML model development?

9. How does one implement the primary regression model using scikit-learn?
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10. What is the significance of hyperparameter tuning in XGBoost and
LightGBM?
11. What are the typical steps involved in the ML universal algorithm?
12. How does feature engineering impact ML results?
13. Why is data pre-processing critical for ANN models?
14. What measures are used to assess ML regression model performance?
15. How do clustering algorithms such as k-means function in unsupervised
learning tasks?
16. What advantages do neural networks offer in algorithmic trading?
17. How can gradient boosting models be applied to forecast asset prices?
KEY TERMS
= Train, validation, and test subsets are core concepts of an efficient ML
process. The input datasets are divided into three subsets for model train-
ing: train, validation, and test. The training subset is used to evaluate the
ML model parameters for the known data. The validation subset is used
to fine-tune the model parameters and perform robust model selection
during training. The test subset is used to evaluate the final model’s per-
formance. The test subset is data that the model has never seen before
and simulates new data for model applications.
= A feature is a property, characteristic, or external variable of discovered
data. Tt is typically a column containing data that can help an ML model
fit and make predictions.
m  Cross-validation is a method used to estimate the robustness of ML mod-

els. Cross-validation divides the dataset into n subsets, and training the
models is repeated k times in the different combinations. In each training
loop, one of the n subsets is used as the test set (or the validation set),
and the other n-1 subsets are gathered to form a training set. The error
estimations are averaged over all n-loop results to get the total robustness
and effectiveness of the model’s learning algorithm. Cross-validation aims
to protect against overfitting in the ML model.
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Overfitting occurs in model training when the model learns the param-
eters too well, including noise, on the training subset. Poor results (error
metrics are significantly worse) on new data are due to poor generalization.

Hyperparameter tuning is the process of optimizing the parameters that
govern the training of an ML model. These parameters are not learned
from the data but significantly impact the models performance. Tuning
involves finding the combination of hyperparameters that yields the best
model performance.

Data scaling is a pre-processing step in which the range of variables in
a dataset is normalized or standardized. This process ensures that each
feature contributes proportionally to the final prediction and prevents
larger-scale features from dominating the models learning. It is crucial
for cluster analysis and applying ANN models.

Clustering is an ML technique that groups different objects so that the
objects in the same group (called a cluster) are more like each other than
those in other groups. The critical difference in cluster analysis is that
the grouping rule was unknown before clustering. Therefore, it is called
unsupervised learning.

An artificial neural network (ANN) is a computational model with a
structure that functions or processes information similarly to the neural
networks in a biological human brain. It comprises many interconnected
processing nodes (neurons) that work in unison to solve specific problems.
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CHAPTER

TIME-SERIES ANALYSIS AND
FORECASTING WiTH THE FB
PROPHET LIBRARY

INTRODUCTION

This chapter explores the domain of time-series analysis and forecasting
within Facebook’s (FB’s) Prophet library, a valuable and easy forecasting tool.
It begins by laying down foundational concepts of the Prophet library, tailored
specifically for time-series analysis. The chapter then introduces and thor-
oughly discusses FB Prophet’s simple and advanced functionalities, covering
its development, primary objectives, and practical applications. We will guide
you step by step through developing, evaluating, fine-tuning, cross-validating,
and hyperparameter tuning the forecasting models using Prophet. This chap-
ter is a crucial link, connecting earlier chapters’ theoretical concepts and prac-
tical tools to real-world applications with FB’s Prophet library tools.

By the end of this chapter, you will easily be able to apply FB’s Prophet library
to analyze and forecast time-series data, especially in a financial context.

STRUCTURE

This chapter covers the following topics:

= FB’s Prophet essentials
= Functionalities with Prophet
»  Additional resources

= Cross-validation and hyperparameter tuning



398 « FinancIAL DATA ANALYsIS USING PYTHON

OBJECTIVES

This chapter will provide you with the expertise to harness the FB Prophet
library for advanced time-series analysis and forecasting in finance. This
chapter aims to provide a detailed understanding of Prophet’s functionalities,
from executing basic operations to exploiting its advanced features for more
accurate forecasting. You will learn how to apply Prophet to various financial
datasets. You will easily be able to forecast market trends, evaluate investment
risks, and make well-informed financial decisions.

By the end of this chapter, you will have the tools to construct, assess, and
refine complex forecasting models; employ cross-validation techniques; tune
hyperparameters; and combine Prophet with ML methods to produce finan-
cial decisions.

PROPHET ESSENTIALS

Prophet from Meta (formerly Facebook) is a powerful, user-friendly analyzing
and forecasting tool for time-series data that combines classical SARIMAX
model principles and ML concepts. FB’s Core Data Science' team developed
it and it is widely adopted across various industries for forecasting. Prophet
can analyze the complexities of daily, weekly, and yearly seasonal patterns and
holiday effects, which are particularly common in business metrics. It is an
open-source project in Python, making it accessible and integrated with other
Python products and tools.

In previous chapters, we learned about traditional and advanced time-series
analysis techniques, such as SARIMAX, which stands for seasonal autoregres-
sive integrated moving averages with exogenous variables; GARCH for mod-
eling financial time series volatility; and various ML models tailored for the
prices of stock market forecasting. Each of these methodologies offers unique
advantages and is suited for specific data and forecasting needs. They often,
however, require a deep understanding of the statistical properties or careful
adjusting and tuning of model parameters.

FB’s Prophet simplifies forecasting by introducing an intuitive and power-
ful approach accessible to both novices and experts in data science, making
it a versatile tool for various forecasting tasks. FB’s Prophet was created to

! https://facebook.github.io/prophet/
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democratize forecasting by making it more accessible. It helps to automate
the model selection and evaluation process, allowing users to produce high-
quality forecasts with minimal time and effort. Here are some core concepts
that underpin FB’s Prophet:

m Ease of use and intuitive tools make sophisticated forecasting tasks
straightforward and accessible. With only a few lines of code, analysts can
fit and visualize complex time-series models that automatically handle
seasonality, trends, and holiday effects. This simplicity does not come at
the expense of power or flexibility, making Prophet an attractive option
for a broad spectrum of users, from data science beginners to seasoned
analysts.

= Prophet excels at automatically identifying and adjusting for seasonal pat-
terns in data, whether hourly, daily, weekly, or yearly (more advanced than
SAIMA models). This automatic detection simplifies the forecasting pro-
cess, especially for users unfamiliar with the nuances of seasonal adjust-
ments in traditional time-series analysis.

= Prophet allows the incorporation of additional regressors (such as the
SARIMAX model) into the forecasting model, enabling users to include
other factors that might influence the target variable. This feature is inval-
uable for capturing the impact of external variables on stock prices, such
as economic indicators or company—specific news.

= Another of the Prophet’s strengths is considering holidays or other special
events. It allows for explicitly modeling periods that can impact the fore-
casted indices, such as public holidays, promotional events, and custom
ones.

= Prophet is well adjusted at modeling data with changing trends, accom-
modating linear and non-linear growth patterns over time. Its decompos-
able model structure—trend, seasonality, special events, etc.—offers a
robust framework for capturing complex time-series dynamics.

= Detecting changepoints, the dots in the data where the underlying trend
changes, is crucial for accurate forecasting. For example, this is highly
helpful for practical technique analysis and stock price prediction. Prophet
automatically identifies these changepoints and adjusts the model results
accordingly, providing insights into when and how the trend in the data
shifts. This capability is handy in financial markets, where sudden changes
are expected.
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Prophet provides tools for hyperparameter tuning to optimize forecasting
performance, such as seasonality and special event and regressor effects.
Cross-validation techniques are integrated into Prophet’s workflow, ena-
bling model performance evaluation over different horizons and ensuring
that the forecasts are accurate and reliable. Those tools have the same
basis as ML models (as shown in the previous chapter).

The core forecasting model used by FB’s Prophet is based on a decompos-
able time-series model with three main components: trend, seasonality, and
special events, as follows:

y(t) = g(t) + s(t) + h(t) + rt) + €,

Where:

y(t) is the predicted value at the time ¢.

g(t) is the trend component, which models non-periodic changes in the
time-series value.

s(t) is the seasonality component, capturing periodic changes such as
daily, weekly, or yearly seasonality.

h(t) is the effect of holidays or special events that could impact the time
series.

r(t) is any additional regressors (as an optional feature).

g, is the error term representing any idiosyncratic changes not captured

by the model.

Each of these components can be explained as follows:

The trend component g(t) commonly offers two core options for modeling
the trend: a linear trend model for data with a linear growth pattern and a
logistic growth model for data with a saturating growth pattern, where the
growth rate decreases over time.

The seasonality component s(t) uses the Fourier series to fit flexible
seasonality patterns. Prophet automatically detects and includes yearly,
weekly, and daily seasonality based on the frequency and span of the data.

The holiday component h(t) includes indicators for specified holidays
and special events (such as dividends paid and stocks split) that could
affect the time series. Users can define custom lists of holidays and special
events, providing flexibility in capturing these effects.
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= Additional regressors, r(t), can be included in the model to consider other
factors that may influence the forecast. For instance, we could use techni-
cal analysis indicators, the price of other assets, economic indicators, or
other external variables as regressors in the model.

= Errors, g, represent random errors not captured by the model, assumed
to be normally distributed (as described in Chapter 7, Time-Series
Analysis and Financial Data Forecasting, and Chapter 8, Risk Assessment
and Volatility Modeling).

All additional libraries require prior installation (see Chapter 1, Getting
Started with Python for Finance). Software errors, bugs, and compatibility
problems sometimes, however, overshadow the benefits of an open-source
software product. Unfortunately, conflicts may occasionally arise with new
versions of core Python, NumPy, pandas, and other libraries. So, it is recom-
mended that separate virtual environments are created for each of the differ-
ent analytical tasks. For example, one called PythonFinance may be used
with standard libraries, ProphetFinance for Prophet tasks, and FinanceML
for ML tasks. This allows you to isolate the execution environments and avoids
compatibility errors for already written code.

As mentioned earlier, Prophet gives meaningful results by executing simple
code. Run the following example and examine its results:

1. # nasdaqg index has information about NASDAQ index
dynamics

2. # Creating a DataFrame

3. df = pd.DataFrame ({

4. 'ds': nasdaq index.index,
5. 'y': nasdag_index['Adj Close']
6. 1)

7. # Initialize the Prophet model
8. m = Prophet ()

9. # Fit the model

10. m.fit(df)
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NOTE

11. # Make predictions
12. forecast = m.predict(df[['ds"']])

13. # Plot the forecast using Plotly for an
interactive plot.# Figure 10.1

14. plot plotly(m, forecast)

The results are depicted in Figure 10.1.

As the code shows, the Prophet library requires the DataFrame to be in a
specific format, with the column containing the timestamps named ds and the
column containing the values you want to predict named y. This is to ensure
that the Prophet library understands your data’s structure when passed into
the model for fitting and making predictions.

iw 1im 6m 1y al

Jan 2022 Apr 2022 Jul 2022 Oct 2022 Jan 2023 Apr 2023 Jul 2023 Oct 2023

B

FIGURE 10.1 The results of the simple Prophet model for the NASDAQ index daily adjusted close

This short and simple code generates a well-fitted model for time-series data
analysis and prediction. Figure 10.1, created with Plotly, illustrates the fore-
casting results from the Prophet model applied to the NASDAQ index data.
The Plotly library (https://plotly.com/python/) facilitates interactive plotting
capabilities, which enhance the visualization of time-series forecasts. The
plots generated allow for dynamic and interactive exploration of the data.
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The main plot displays the historical data points as black dots and overlays
the predicted values with a blue line. The shaded area around the expected
line represents the confidence interval, visually indicating the model’s uncer-
tainty. We can move the cursor to a point or line and see actual or predicted
information and the date for the data point (as seen in the figure). The second
subplot—the interactive timeline feature—allows operating with a timeline by
zooming in and out of specific time ranges within the plot. For example, the
gray timeline area in the bottom diagram is not depicted in the first plot. The
interactive timeline is handy for examining the model’s performance across
different intervals and presenting a more detailed analysis of the forecast
results.

A seasonality analysis, however, may expand the model presented in Figure
10.1. By executing the m.plot components (forecast) Prophet object
method, we can analyze default seasonality components:

16000
15000
E 14000
13000
12000
2021-03 2021-07 2021-11 2022-03 2022-07 2022-11  2023-03 2023-07 2023-11
ds
100
0
=
g =100
—200
—300
—400
Sunday Monday Tuesday wednesday Thursday Friday Saturday
Day of week
1000
500
=
=
= o1
—500
T v v T
January 1 March 1 May 1 July 1 september 1 MNovember 1 January 1

Day of year

FIGURE 10.2 Seasonality components of Prophet’s simple model
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Figure 10.2 shows three components of visualizations (by default), as follows:

»  The trend component (the top subplot) represents the overall trend of the
time-series data over time. The x axis denotes time (ds), while the ¢ axis
represents the trend value. The plot shows fluctuations in the trend over
different periods, indicating changes in the forecasted index values that
are not attributed to seasonality or holidays. There is a noticeable trend
change around July 2022, where the value sharply declines and then rises
again, suggesting a significant event or shift in the underlying data.

= Weekly seasonality (the middle subplot) displays the weekly patterns or
seasonality, with the x axis showing the days of the week and the y axis
indicating the magnitude of each day’s effect on the predicted value.
The NASDAQ exchange operates only on weekdays, so it is logical for
the trend to drop on Saturday and Sunday. We can, however, see a slight
decline in the weekly activity on Tuesday.

m  Yearly seasonality (the bottom subplot) illustrates the yearly seasonality
(month by month), with the x axis representing the days, highlighting the
months, of the year, and the y axis showing the seasonal effect on the fore-
casted value. The plot indicates a cyclical pattern within a year, with peaks
and troughs corresponding to different times of the year. Peak annual
activity occurs between July and September. This reflects yearly patterns
in the data.

Thus, we can create a reasonably robust model for analyzing financial market
data (dynamics of indices, prices, return levels, and volatility) by writing only 10
lines of code. For example, the model (depicted in Figures 10.1 and 10.2) has
the MAPE metric of 2.09%. In Chapter 7, Time-Series Analysis and Financial
Data Forecasting, we carried out some complicated SARIMA model-fitted code
to produce the same results. The most significant advantage of the Prophet
library, however, is the large number of automatic and custom forecasting tools.

FORECASTING WITH PROPHET

Prophet’s ease of use is evident in its ability to produce highly accurate fore-
casts, as evidenced by the MAPE and other metrics. Prophet also benefits
from a comprehensive set of automated and customizable forecasting tools
that streamline the modeling process and extend it with various user-defined
parameters to accommodate a wide range of data models and analyst prefer-
ences. Seasonality and trend are the two most pivotal parameters of Prophet’s
models. Let us look at them in more detail.



TIME-SERIES ANALYSIS AND FORECASTING WITH THE FB PROPHET LiBRARY © 405

Seasonality Parameters of Prophet’s Models

Seasonality refers to periodic fluctuations in time-series data that recur regu-
larly due to human behavior, business cycles, or other features. Prophet mod-
els skillfully deal with seasonality through a set of parameters designed to
match and predict these regular patterns. Moreover, Prophet uses the Fourier
series to identify seasonal patterns by breaking down seasonal effects into
sine and cosine components. Thus, Prophet can accurately model seasonal
changes, accounting for both regular and irregular cycles. The main param-
eters of seasonality in Prophet’s models relate to three cycles: annual, weekly,
and daily. Each can be adapted to the dataset, allowing the model to adapt to
its specific time dynamics.

To illustrate the application of these basic seasonality parameters, consider
the following example code:

1. test period = 21

2. df train = df[:-test period]

3. df test = df[-test period:]

4. # Initialize and Fit the Prophet model with
5. # custom seasonality settings (Model 1)

6. m = Prophet (

7. seasonality mode='multiplicative',
8. daily seasonality=False,

9. weekly seasonality=True,
10. yearly seasonality=4,
11. seasonality prior scale=10.0
12. ) .fit(df train)

13. # Generate a DataFrame for future predictions
14. # covering 21 business days

15. future = m.make future dataframe (periods=21,

16. freg='B")
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17. # Predict future values and plot the forecast
18. forecast = m.predict (future)

19. # Plot the forecast (Figure 10.3)

20. figl = m.plot (forecast)

21. # Re-initialize the Prophet model

22. # with increased regqularization

23. # for seasonality (Model 2)

24. m2 = Prophet (

25. seasonality mode='multiplicative',
26. daily seasonality=False,

27. weekly seasonality=False,

28. yearly seasonality=4,

29 seasonality prior scale=0.001

30. ) .fit(df train)

31. # Make new predictions and plot the forecast
32. # with increased regularization
33. forecast2 = m2.predict (future)

34. # Plot the new forecast (Figure 10.4)

35. fig2 = m2.plot (forecast2)

The code provides predictions of future NASDAQ index values based on his-
torical data. Here is what the different parts of the code mean:

The seasonality mode parameter determines how the model handles
seasonality. The multiplicative’ option means that the seasonal effect
is multiplied by the trend to get the forecast (see Chapter 7, Time-Series
Analysis and Financial Data Forecasting, specifically the information on
the Holt-Winters model).

daily_seasonality,weekly_seasonality,and yearly season-
ality control whether the model will fit daily, weekly, or yearly sea-
sonality. Setting one of these to True tells Prophet to expect and model
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seasonality patterns at that time scale. The yearly seasonality=4 set-
ting uses four Fourier terms to capture yearly seasonality, which allows
the model to fit more complex annual patterns.

= seasonality prior scale is a regularization parameter. A higher
value (such as 10) allows the model to fit more flexible seasonal effects.
A lower value (such as 0.001) applies stronger regularization to pre-
vent overfitting by making the seasonality component smoother and less

flexible.

= m.make future dataframe (periods=21, freg="'B') is used to
create a DataFrame containing future dates for which predictions are
required. periods=21 indicates the number of future points to pre-
dict, and freq="B" indicates that these points are business days, which
excludes weekends and possibly holidays depending on the market
considered.

The results of the code execution are depicted in Figure 10.3 and Figure 10.4:
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FIGURE 10.3 Prophet model forecast with basic seasonality settings

Seasonality modeling in Prophet hinges on two pivotal parameters: the Fourier
order, which dictates the number of terms in the series to grasp the intrica-
cies of fluctuations, and the seasonality prior scale, a regularization
parameter that governs the model’s flexibility. The Fourier terms or order
parameter shapes the model’s sensitivity to seasonal shifts. A higher Fourier
order allows the model to detect more nuanced seasonal variations in the
training dataset, as depicted in Figure 10.3:
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FIGURE 10.4 Prophet model forecast with increased regularization for seasonality

While this increased sensitivity helps capture complex patterns, it may carry
the risk of overfitting—conversely, the seasonality prior scale param-
eter balances overfitting by adjusting the strength of the model’s seasonal
components. Setting a lower seasonality prior scale value limits the
seasonal flexibility of the model, resulting in a more generalized and poten-
tially more reliable forecast, as shown in Figure 10.4, where the trend is more
significant in the forecast than seasonality.

In addition to the basic seasonality, Prophet adds custom seasonality through
the .add_seasonality () method. This method is beneficial when the data
exhibits non-standard seasonal patterns that do not align with the typical daily,
weekly, or yearly cycles. Execute the following code to understand the custom
seasonality example:

1. # Re-initialize the Prophet model with custom
seasonality

2. # and Fourier terms (Model 3)

3. m3 = Prophet (seasonality mode='multiplicative',

4. daily seasonality=False,



10.
11,
12.
13.
14.
15.
16.
17
18.

19,
20.
21.
22.
23.
24.
25.

TIME-SERIES ANALYSIS AND FORECASTING WITH THE FB PROPHET LiBRARY © 409

weekly seasonality=False,
yearly seasonality=4
) .add seasonality(
name='monthly"',
period=21,
fourier order=4,
prior scale=10
) .add_seasonality(
name="'weekly',
period=5,
fourier order=5,
prior scale=10
) .fit (df train)

future = m3.make future dataframe (periods=21,
freg='B")

# Making and plotting predictions (Figure 10.5)
forecast3 = m3.predict (future)

Prophet.plot (m3, forecast3)

# Components Visualization (Figure 10.6)
m3.plot components (forecast3)

# Print the last 2 forecast Components

print (forecast3.tail (2) .transpose())
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The results are depicted in Figure 10.5 and Figure 10.6:

687 688
ds 2023-09-27 00:00:00 2023-09-28 00:00:00
trend 1644.1684 1644.965134
yhat lower 13652.134438 13648.101081
yhat upper 14923.250511 14903.73936
trend lower 1593.097457 1588.877566
trend upper 1693.375513 1701.042052
monthly -0.000921 -0.008026
monthly lower -0.000921 -0.008026
monthly upper -0.000921 -0.008026
multiplicative terms 7.695638 7.685072
multiplicative terms lower 7.695638 7.685072
multiplicative terms upper 7.695638 7.685072
weekly 7.933842 7.935297
weekly lower 7.933842 7.935297
weekly upper 7.933842 7.935297
yearly -0.237283 -0.242199
yearly lower -0.237283 -0.242199
yearly upper -0.237283 -0.242199
additive terms 0.0 0.0
additive terms_ lower 0.0 0.0
additive terms upper 0.0 0.0
vhat 14297.09381 14286.640356

The code example uses the Prophet library to enhance a time-series forecast-
ing model by incorporating custom seasonality. Each call to .add season-
ality() defines a new seasonal component with a specific name, period,
Fourier order, and prior scale as used in the code:
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= name is the title of the custom seasonality.

= period is the length of the seasonality cycle. For example, period=21
means the model expects the seasonality to repeat every 21 days.

m fourier order isthe number of Fourier terms to use when modeling
this seasonality.

= prior scale is a regularization parameter that adjusts the strength of
this seasonality model.

The forecasted DataFrame, forecast3, is a valuable resource containing
information about the trend and seasonal impact associated with each predicted
data point. To better understand these insights, explore Figures 10.5 and 10.6:
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FIGURE 10.5 Monthly and weekly custom seasonality effects in a Prophet forecast

Figure 10.5 visualizes the modeling results based on the Prophet.plot (m3,
forecast3) function. It provides essential information about the predicted
value yhat, and the yhat lower and yhat upper, representing uncertainty
intervals for the model’s predictions. By default, the uncertainty interval is set
to 0. 8, equivalent to an 80% uncertainty interval for the predicted values:
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FIGURE 10.6 Components of Prophet’s forecast with custom seasonality

The comparison of the weekly trend in Figures 10.2 and 10.6 shows that the
results vary significantly. The weekly seasonality figures are very similar, but
Figure 10.2 does not detect changes from Monday to Friday; otherwise, Figure
10.6 demonstrates an increase in market activity on Wednesday and a fall on
Thursday. Additionally, Figure 10.6 allows us to analyze the monthly seasonal-
ity, which shows peaks around the 7th and 18th business days of each month.

Changepoints Adjusting

The second crucial feature of Prophet forecasting is the trends change-
points. We considered similar problems in Chapter 5, Investment and
Trading Strategies, within the technical and graphic analysis tasks framework.
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Changepoints are pivotal moments where the data’s trajectory shifts, indicat-
ing either a surge or a decline in the trend. Execute the following code to
understand the changepoints and forecasted data trend impacts:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19,
20.
21.
22.
23.

from prophet.plot import add changepoints to plot
# Initialize Prophet with high sensitivity

# to changepoints

m = Prophet (changepoint prior scale=0.9)

forecast = m.fit (df train).predict (future)

# Plot forecast with changepoint prior scale=0.9
# (Figure 10.7)

fig = m.plot (forecast)

a = add_changepoints to plot (fig.gca(), m,
forecast)

# Initialize Prophet with low sensitivity
# to changepoints
m = Prophet (changepoint prior scale=0.005)
forecast = m.fit (df train).predict (future)
# Plot forecast with changepoint prior scale=0.005
# (Figure 10.8)
fig = m.plot (forecast)
a = add changepoints to plot(fig.gca(), m, forecast)
# Prophet with manual changepoints and
# intermediate sensitivity
m = Prophet (

changepoints=['2021-11-19",

'2022-10-14",

'2023-07-18"]



forecast)

m,
5
m,

14
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=5)

(df train) .predict (future)

forecast)

m.fit (df train) .predict (future)

m.fit

m.plot (forecast)

m.plot (

add changepoints to plot (fig.gca

Prophet (n changepoints

# Plot forecast with custom changepoints
# Plot forecast with n changepoints
a = add changepoints to plot(fig.gcal(),

# Prophet specifying a fixed number of
# changepoints without manual dates

forecast

# (Figure 10.9)
fig

forecast

# (Figure 10.10)
fig

forecast)

a
m

24.
25.
26.
27.
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35.
36.
37.
17000 4
16000
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The results are depicted in Figures 10.7-10.10:
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FIGURE 10.7 Visualization of the Prophet model's sensitivity to trend changepoints
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Adjusting the changepoint prior scale in the Prophet model directly
impacts its responsiveness to changepoints. A higher changepoint prior
scale value, such as 0. 9 (Figure 10.7), renders the model highly sensitive to
such shifts, allowing it to detect more changepoints and react more swiftly to
changes at the end of the trendline:
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FIGURE 10.8 Visualization of the Prophet model’s sensitivity to trend changepoints
(changepoint_prior_scale = 0.005)

A lower value, such as 0.005 (Figure 10.8), implies a more conservative
approach, detecting fewer changepoints and resulting in a smoother overall
trendline:
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FIGURE 10.9 Visualization of the Prophet model’s sensitivity to trend changepoints
(changepoints=[2021-11-19’, ‘2022-10-14’, ‘2023-07-18’])
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Adjusting changepoints can be further done by specifying custom dates man-
ually; see Figure 10.8, where we define changepoints=['2021-11-19",
'2022-10-14"', '2023-07-18"'7]:
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FIGURE 10.10 Visualization of the Prophet model’s sensitivity to trend changepoints
(n_changepoints=5)

The fixed number of changepoints can be automatically detected without
manually specifying their dates (Figure 10.9). This allows you to determine
the dates of trend changes more accurately.

This flexibility in the changepoint-defining tools allows the analyst to influ-
ence the model directly based on domain knowledge or rely on the model’s
algorithmic prowess to identify these pivotal moments. Thus, adjustments
(manual or automatic) for seasonality and changepoints are crucial to refining
model forecasts, as they allow the model to account for both regular patterns
and significant shifts in trend. Seasonality adjustments capture repeated fluc-
tuations, while changepoint adjustments help the model respond to structural
breaks in the dataset.

ADDITIONAL REGRESSORS

Advanced time-series data analysis, which integrates additional regressors in
the Prophet model, can be a good solution for achieving the best prediction
accuracy. The regressors can include lagged indices or any other features that
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can be fully predicted and their impact on the target variable. Let us describe
an example of the predicted Apple Inc. share price adjusted close with the
influence of dividend pay-offs as the special events and one-day lagged high,
low, and closed-open indicators.

10.
11.
12.
13.

14.
15.
l6.
17.
18.
19,
20.

# Create the DataFrame for Prophet with lagged
regressors

data = nasdag_assets.xs('AAPL', level=l, axis=1l)
df = pd.DataFrame ({

'ds': data.index,

'y': data['Adj Close'],

'High lagl': data['High'].shift (1),

'Low lagl': data['Low'].shift(1l),

'techl': (data['Close']l.shift(l) > data
["Open'].shift (1))

}) .dropna ()

# Split data into training and testing sets
df train = df[:-21]

df test = df[-21:]

# Define special events - dividends payouts as
special events

dividends events = pd.DataFrame ({

'holiday': 'dividend event',
'ds': data[data['Dividends'] != 0].index,
'lower window': -1, # Day before dividend payout

'upper window': 1, # Day after dividend payout
})

# Initialize Prophet model with multiplicative
seasonality
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21.
22.
23.
24.
25.
26.
27.
28.
29
30.

31.
32.
33.
34.

35.

36.

# and special events

m = Prophet (seasonality mode='multiplicative',
holidays=dividends events)

# Add external regressors to the model

m.add regressor ('High lagl')

m.add regressor ('Low lagl')

m.add regressor ('techl')

# Fit the model with training data

m.fit (df train)

# Make predictions on both training and test
datasets

forecast = m.predict (df)
# Plotting the forecast
Prophet.plot (m, forecast)

# Calculate and print the Mean Absolute
Percentage Error (MAPE) on test data

mape = mean absolute percentage error (df test['y'],
forecast['yhat'][-21:])*100

print (f"MAPE for the test data: {mape:.2f}%")

The code results are depicted in Figure 10.11.

The example uses the Prophet forecasting library to create a predictive model
with special considerations for additional regressors and events, as follows:

= A DataFrame was created on the NASDAQ assets data for the AAPL
stock. The DataFrame includes the ‘Adj Close’ prices alongside lagged
values of the ‘High” and ‘Low’ prices, which are shifted by one day using
the .shift (1) method. Additionally, it includes a technical indicator,
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‘techl’, which is a Boolean value indicating whether the 'Close" price
was higher than the ‘Open’ price the previous day (similar to how analysis
metrics work).

= Holidays and special events are based on the dividend event dates. This
is done by creating a DataFrame (dividends events) where each divi-
dend event is marked by the day it occurs, with windows to capture the
daybeﬂﬂeandaﬂertheevmﬁ.Thelower_windowandupper_window
parameters, set to -1 and 1, respectively, indicate that the model should
consider the impact of the dividend payout one day before and after the

dividend date.

= The .add_regressor () method includes the lagged ‘High” and ‘Low’
prices and the ‘techl’ indicator as additional regressors in the model.
The full syntax is:

m.add regressor (name, prior.scale = None, standardize =
"auto", mode = None)

° name is a string that specifies the name of the regressor.

* prior scale isan optional argument that allows the scale (regulari-
zation) of the prior for this regressor to be set.

* The standardize argument dictates whether the regres-
sor should be standardized in the standard normal distribution
means (standardize='auto' or standardize=True) or not
(standardize=False).

° mode is an optional argument, usually None, that can be set to ‘addi-
tive or multiplicative’to specify how the regressor will interact
with the trend.

In the code context, the holidays parameter in the Prophet model initializa-
tion incorporates dividends as special events that could influence the stock
price. The add_regressor () method allows for the integration of additional
data series. By considering these additional factors, the model becomes more
sophisticated.
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The results of the code example are depicted in Figure 10.11:
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FIGURE 10.11 Enhanced forecast accuracy with additional regressors of the Prophet model
Figure 10.11 shows the Prophet model performance with these enhancements

and the MAPE for test datasets. We can observe a significant increase in fore-
cast accuracy. Furthermore, the MAPE for this model is equal to 1.13%.

CROSS-VALIDATION AND HYPERPARAMETER TUNING

Despite additional regressors, seasonality parameters, and trend changepoints
making it easy to tune the Prophet model to high accuracy, problems may
arise in overfitting or determining the best parameters of the model. These
problems can also be solved using the Prophet library. Firstly, cross-validation
functions can help avoid overfitting. Secondly, combining the parameters’
loops and the cross-validation functions provides an application for hyperpa-
rameter tuning.

Cross-Validation and Preventing Overfitting

Cross-validation is critical in modeling and robust predictions, particularly
when fine-tuning predictive Prophet models, to ensure they generalize well
to new data. By systematically testing the model on different subsets of data,
we can identify the model’s performance and prevent overfitting when the
model is too closely fitted to the training data and performs poorly on unseen
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data. The provided code illustrates how cross-validation is employed and how
results are visualized within the Prophet framework:

1. from prophet.diagnostics import cross validation,
performance metrics

2. from prophet.plot import plot cross validation metric
3. # Load the data into a DataFrame 'df'

4. data = nasdaqg assets.xs('AZN', level=l, axis=1)
5. df = pd.DataFrame ({

6. 'ds': data.index,

7. 'y': data['Ad]j Close']

8. 1

9. test period = 5
10. df train = df[:-test period]
11. df test = df[-test period:]
12. # Initialize and fit the Prophet model
13. m = Prophet()
14. m.fit(df train)
15. # Perform cross-validation

l6. df cv = cross validation(m, initial='504 days',
period='126 days', horizon='5 days')

17. # Calculate performance metrics
18. df p = performance metrics(df cv)
19. # Plot cross-validation metric

20. fig = plot cross validation metric(df cv, metric=
'mape')

21. # Print Cross-Validation Table

22. print (df p)
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The code results are depicted in Figure 10.12, as follows:

horizon mse rmse mae mape mdape smape \
0 1 days .271056 .507002 .958291 .014455 .003739 .014719
1 2 days .790078 .946812 .526941 .024452 .023193 .024374
2 3 days .422492 .724425 .348240 .036748 .036590 .036744
3 4 days .927198 .434584 .332173 .036073 .035725 .035933
4 5 days .970388 .443438 .079578 .031822 .027852 .032071

The highlights of cross-validation functions are:

= The cross_validation function is used to perform rolling forecast ori-
gin cross-validation on the time-series data, with the parameters ini-
tial, period, and horizon specifying the length of the training period,
the spacing between cut-off dates, and the forecast horizon, respectively:

The initial parameter defines the size of the initial training period.
In the case of 504 days, it indicates that the first 504 days of data from
the beginning of the time series will be used to train the initial model
before cross-validation begins.

The period parameter determines the spacing between cut-off dates
in the cross-validation procedure. Here, 126 days suggests a new
cross-validation fold will be started every 126 days. Each fold involves
shifting the initial training period forward by this period and making
predictions over the horizon.

horizon specifies the length of time for which predictions will be
made during each fold of the cross-validation. After each new training
period, the model will make predictions for the following 5 days.

m The performance metrics function calculates metrics such as the
MSE, RMSE, MAPE, and others that provide insights into the model’s
accuracy.

= Theplot cross validation metric function generates avisual rep-
resentation of the model’s performance using the MAPE, and the results
are printed out for review.
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FIGURE 10.12 Dynamics of the cross-validated MAPE

The code results, derived from the code provided, present the performance
of a Prophet forecasting model assessed through cross-validation. The MAPE
values (by the resulting table values) presented per day (from 1 day to 5 days)
suggest how the models prediction accuracy changes over the consecutive
days of the forecast horizon. Figure 10.12 shows a graph of MAPE values for
four cross-validation cycles. The chart shows that the average metric value is
between 2.5% and 3%. In the cross-validated MAPE dynamics, we see a pro-
gression that typically informs adjustments to the model to balance the trade-
off between capturing the data’s trend and seasonality without overfitting.

Choosing parameters for the cross_validation function is paramount for
forming a stable model. A minimal initial period will increase the forecast
error due to cross-validation since there is a higher probability of a significant
change in the data. Small period values lead to a substantial increase in the
execution time of the cross-validation function. Most often, this does not lead
to significant results. The research problem determines the forecasting hori-
zon parameter, usually within a reasonable forecast timeline. Predicting daily
prices for 21 business days based on 1 year of data will give too large an error
or uncertainty interval.

Hyperparameter Tuning

Hyperparameter tuning with Prophet involves finding the perfect blend of
parameters and adjusting for the best prediction accuracy on the test data, as
for other ML models. It also involves iteratively experimenting with various



424 « FiInaNCIAL DATA ANALYSIS USING PYTHON

sets of parameters. This process is crucial because there is a delicate bal-
ance to strike even with sophisticated relations, regressors, and seasonality
adjustments.

Let us execute the following code to examine the hyperparameter tuning
example:

1. import itertools

2. # Parameter grid for tuning

3. param grid = {

4. 'changepoint prior scale': [0.01, 0.5, 0.9],
5. 'seasonality prior scale': [0.01, 8.0, 10.0],
6. 'seasonality mode': ['additive', 'multiplicative']
7. 3}

8. # Generate all combinations of parameters

9. all params = [dict(zip(param grid.keys(), v)) for v in
itertools.product (*param grid.values())]

10. mapes = [] # Store the MAPEs for each params

11. # Use cross-validation to evaluate all parameters
12. for params in all params:

13. m = Prophet (**params) .fit (df train)

14. df cv = cross_validation(m, initial='504 days',
period='126 days', horizon='5 days')

15. df p = performance metrics(df cv, rolling
window=1)

16. mapes.append (df p['mape'].values[0])
17. # Find the best parameters

18. tuning results = pd.DataFrame(all params)
19. tuning results['mape'] = mapes

20. print(tuning results.transpose())

21. best params = all params|[np.argmin (mapes) ]
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print (best params)

# Comparing the models

# Initialize and fit the basic Prophet model
ml = Prophet().fit(df train)

# Predict on the test dataset

forecastl = ml.predict (df)

# Calculate MAPE on the test dataset for the
basic model

mapel = mean absolute percentage
error (forecastl['yhat'] [-test period:],

df test['y']) * 100

print (f"Basic model for test data: MAPE =
{mapel:.2f}%")

# Initialize and Fit the Prophet model with
custom tunned parameters

m2 = Prophet (

changepoint prior scale=best params
[ 'changepoint prior scale'],

seasonality prior scale=best params
['seasonality prior scale'],

seasonality mode=best params|['seasonality mode']
) .fit (df train)
# Predict on the test dataset with the tuned model
forecast2 = m2.predict (df)

# Calculate MAPE on the test dataset for the
tuned model

mape2 = mean_ absolute percentage error
(forecast2['yhat'] [-test period:],

df test['y']) * 100

print (f"Tuned model for test data: MAPE =
{mape2:.2f}%")
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The code results (truncated) are:

0 1 2
changepoint prior scale 0.01 0.01 0.01
seasonality prior scale 0.01 0.01 8.0
seasonality mode additive multiplicative additive
mape 0.041357 0.040257 0.040865
(...)

12 13 14
changepoint prior scale 0.9 0.9 0.9
seasonality prior scale 0.01 0.01 8.0
seasonality mode additive multiplicative additive
mape 0.018522 0.016789 0.014944

16 17
changepoint prior scale 0.9 0.9
seasonality prior scale 10.0 10.0
seasonality mode additive multiplicative
mape 0.015737 0.013292
{'changepoint prior scale': 0.9, 'seasonality prior scale':
'seasonality mode': 'multiplicative'}
Basic model for test data: MAPE = 6.15%
Tuned model for test data: MAPE = 0.97%

3\
.01
8.0
multiplicative

0.040475

multiplicative

0.010564

As we can see, for the code results, it was possible to reduce the MAPE of
forecast data on the test dataset from 16.15% to 0.97%. The presented exam-
ple, however, is only a training example of using the hyperparameter tuning
method. The prophet class in the Prophet Python library has a lot of other
parameters and methods that allow the tinning hyperparameters of the model
to fit the forecasting model best. Table 10.1 summarizes the key parameters,
their default values, and their purpose:



TIME-SERIES ANALYSIS AND FORECASTING WITH THE FB PROPHET LiBRARY © 427

TABLE 10.1 The essential parameters methods of the Prophet class for the model tuning

Parameter

Default value

Description

growth

'"linear'

Specifies the trend model. Can be 'linear!

for a linear trend model or ' logistic!' fora
model with a carrying capacity. The logistic model
needs the 'cap' and 'floor' columns in the
input DataFrame.

changepoints

None

Optionally specify the dates of potential
changepoints. If not specified, Prophet will
automatically select them.

n_changepoints

25

The number of automatically selected
changepoints if changepoints is not specified.

changepoint range

The proportion of the history where trend
changepoints will be estimated. 0. 8 means the
first 80% of the time series are used.

yearly seasonality,
weekly seasonality,
daily seasonality

'auto'

Fit yearly, weekly, and daily seasonality. Can be
True, False, or 'auto", or specify the Fourier
order of each seasonality type.

holidays

None

A DataFrame specifying holiday or special events
dates to include in the model.

seasonality mode

'additive'

Type of seasonality model. It can be
'additive' or 'multiplicative’.

seasonality prior scale,
holidays prior scale

10.0
10.0

Strength or the regularization level of the
seasonality model and holiday. Larger values
allow the model to fit larger fluctuations; smaller
values dampen the seasonality or special events.

changepoint prior scale

0.05

The flexibility of the automatic changepoint
selection. Larger values allow for more flexible
trend changes.

mcmc_samples

The number of MCMC samples to draw for the
Bayesian estimation of uncertainty intervals.
Setting this to a positive integer activates full
Bayesian inference.

interval width

The width of the uncertainty intervals provided
for the forecast. A value of 0. 8 means 80%
uncertainty intervals.

uncertainty samples

1000

The number of simulated draws used to estimate
uncertainty intervals for the forecast.

.add_regressor ()

None

Adds an additional regressor to the model. This
regressor should be present in the DataFrame
passed to the . fit method.

.add_seasonality ()

None

Adds a custom seasonality to the model. Tt must
specify the name, period, and Fourier order for
the seasonality.

.add country holidays()

None

Incorporates holidays for the specified country
into the model. The country code should be
passed as a parameter.
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Thus, continuous tuning and cross-validation create a new vision for the
model results. They are crucial for all ML models and help optimize predic-
tive accuracy. Even using a minimal set of selected parameters made it pos-
sible to significantly reduce the forecast error. All the parameters mentioned
are in your hands; try to achieve even greater accuracy.

CONCLUSION

Prophet is an advanced library in time-series analysis and forecasting. It com-
bines the advantages of classical ARIMA models and ML methods. Its intui-
tive interface and comprehensive analytic capabilities range from identifying
trends and seasonal patterns to accounting for covariates and special events.
Prophet’s application in analyzing and forecasting time-series data makes it
accessible and effective in predictive analytics, which can significantly improve
decision-making in financial and related fields.

Cross-validation and hyperparameter tuning with Prophet demonstrate the
tool’s capabilities in refining time-series models for reliable forecasting. The
cross-validation process guards against overfitting, making the model more
effective. The application of hyperparameter tuning further highlights the
powerful potential of Prophet, where different combinations of parameters
are used to determine the most accurate prediction model. Using Prophet’s
basic and advanced parameters can provide relatively easy access to accurate
and valuable results.

QUESTIONS

1. What is the primary benefit of using Prophet’s seasonality parameters in
time-series forecasting?

2. What does the multiplicative’ option for the seasonality mode
parameter imply in the context of the Prophet model?

3. How can the Fourier series and seasonality prior scale param-
eters influence the model’s tendency to overfit or underfit the data?

4. What is the impact of changepoint prior scale on the model’s sen-
sitivity to trend changes?

5. How do you add a regressor to the Prophet model, and what are the impli-
cations of its prior scale?
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6. What is the purpose of including lagged values of other variables as addi-
tional regressors, and how do they affect the forecast?

7. Describe the process and purpose of cross-validation in the context of
Prophet’s forecasting model.

8. Explain how you would interpret the results of a hyperparameter tuning
process in Prophet.

KEY TERMS

= Regularization is used to prevent overfitting in the context of Facebook’s
Prophet. This has an effect on time-series forecasting and reduces overfit-
ting. Regularization introduces a penalty on the magnitude of the consid-
ered effects, encouraging the model to keep these effects small unless the
data strongly suggests otherwise. It is like smoothing the time component,
ensuring that the model captures only the most significant patterns and
does not react too strongly to noise or minor fluctuations in the data.

= A changepoint, in the context of Facebooks Prophet, is a point in time
where the time series experiences a significant shift in its trend. It rep-
resents the moment when the underlying growth rate of the time series
changes.

= A Fourier series decomposes a function (e.g., the seasonality of a time
series) into the sum of sinusoidal functions, each with different frequen-
cies and amplitudes. Fourier series are used to assess complex seasonality
with regular patterns and variations over time.
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APPENDIX

PytHoN CoODE EXAMPLES FOR
FINANCE

CREATING A PYTHONFINANCE VIRTUAL ENVIRONMENT

Creating a PythonFinance virtual environment using conda involves speci-
fying the environment's name and the packages you need (see Chapter 1,
Getting Started with Python for Finance). However, we can easily use a . ym1
file to install the required libraries for the book's examples. Execute the fol-
lowing command in a Unix-based OS terminal or Windows CMD: conda
env create -f PythonFinanceConda.yml. This command sets up the
environment based on the configurations defined in the . ym1 file, including
dependencies and channels, and often points to conda-forge for a more
comprehensive package selection.
PythonFinanceConda.yml
name: PythonFinance
channels:

- conda-forge

- defaults
dependencies:

- python=3.9

- numpy
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- pandas

- openpyxl

- matplotlib

- seaborn

- plotly

- bokeh

- scipy

- statsmodels
- scikit-learn
- ta-1lib

- mplfinance

- lightgbm

- xgboost

- pandas-datareader
- quandl

- yfinance

- mplfinance

- arch-py

- prophet

- pmdarima

- beautifulsoup4
- requests

- jupyter

- jupyterlab

- ipykernel

- spyder

- spyder-kernels
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The last four lines in PythonFinanceConda.yml are for installing optional
packages to support the core offline IDEs: Jupiter Notebook and Spyder.

IMPORTING LIBRARIES

1,

10.
11.
12.
13.
14.

15.
le6.

# Import core analytical libraries
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import itertools

# Import specific libraries for Finance
import yfinance as yf

import talib

import mplfinance as mpf

from pmdarima import auto arima

from scipy.optimize import minimize
from prophet import Prophet

from prophet.diagnostics import cross validation,
performance metrics

from arch import arch model

from sklearn.metrics import mean absolute
percentage error

FETCHING STOCK PRICE DATA FROM YAHOO FINANCE

1,
2.
3o

# List of the selected NASDAQ tickers
nasdaqg tickers = [

'MRNA', 'DLTR', 'ZzS', 'MCHP', 'SBUX', 'HON',
'Jgb', 'DDOG',
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10.

11,
12.

13.
14.
15.

le.

17.

18.

19,
20.
21.

22.
23.

"AMAT', 'AAPL', 'AMGN', 'INTU', 'PCAR',
'MDLZ', 'CSGP',

'"FTNT', 'KDP', 'META', 'VRSK', 'MAR', 'MRVL',
"AZN',

"IIMN', 'ENPH', 'SIRI', 'MELI', 'ZM', 'TSLA',
"BKR', 'URBN'

]

# Fetching a DataFrame with a Single-Column Index

def fetch yfinance single stock data(ticker,

start=None, end=None, actions=True) :

wn

Fetches historical stock prices for a given
ticker and calculates RoR and LogRoR.

Parameters:

- ticker: A single ticker symbol as a string
or a list of ticker symbols.

- start:
None,

Start date for fetching data. If
fetches as much data as possible.

- end: End date for fetching data. If None,

defaults to the current date.

- actions: Boolean flag to control the

execution an aditional data fetching.

Returns:

- DataFrame with stock prices and additional
columns for RoR and LogRoR if actions is True.
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# Fetch historical data

data = yf.download(ticker, start=start,
end=end, actions=actions)

# Ensure data is a DataFrame (yf.download
returns a DataFrame for multiple tickers or a
Series for a single ticker)

if isinstance(data, pd.Series):

data = data.to frame (name='Adj Close')

# Calculating daily percentage change (RoR)
and Logarithmic Rate of Return (LogRoR)

data['RoR'"] = data['Adj Close'].pct change()

data['LogRoR'] = np.log(data['Ad]j Close'] /
data['Adj Close'].shift (1))

return data

# Initialize an empty DataFrame to store the
concatenated data

nasdaq_assets df = pd.DataFrame ()

# Iterate over each ticker and fetch its data
for ticker in nasdaq tickers:

ticker data = fetch yfinance single stock
data (ticker, actions=True)

# If data was fetched successfully, append it
to the collective DataFrame

if ticker data is not None:
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46. # Adding a 'Ticker' column to identify
the stock in the collective DataFrame

47 . ticker data['Ticker'] = ticker

48.

49, # Appending the data

50. nasdaq assets df = pd.concat ([nasdaqg

assets df, ticker datal)
5l

52. # Now, nasdaq assets df contains the historical
stock prices, RoR, and LogRoR for all specified
NASDAQ tickers

53. print(nasdaq assets_df.head())
54.
55. # Fetching a DataFrame with a Multi-Column Index

56. def fetch yfinance stocks data(tickers,

57. start=None,

58. end=None,

59. actions=True) :

60. o

61. Fetches historical stock data, calculates

percentage changes and logRoR,

62. and creates a MultiIndex DataFrame.
63.

64. Parameters:

65. - tickers: List of ticker symbols.

66. - start: Start date for fetching data.
67. - end: End date for fetching data.

68. - actions: Boolean flag to control the
execution an aditional data fetching.
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69.

70. Returns:

71. - A MultiIndex DataFrame with 'Adj Close',
'Volume', 'RoR', and 'logRoR'.

72. mwwn

73.

74. # Download stock data

75. df = yf.download (tickers=tickers,
start=start, end=end, actions=actions)

76.

77. # Calculate percentage change and 1ogRoR for
"Adj Close'

78. pct change = df['Adj Close'].pct change()

79. logRoR = np.log(df['Adj Close'] / df['Adj
Close'].shift (1))

80.

81. # Preparing the MultiIndex for new columns

82. pct change.columns = pd.MultiIndex.from
product ([['RoR"'], pct change.columns])

83. logRoR.columns = pd.MultiIndex.from
product ([['logRoR'], logRoR.columns])

84.

85. # Concatenating the new 'RoR' and 'logRoR'
DataFrames with the original DataFrame

86. df = pd.concat([df, pct change, logRoR],
axis=1)

87. df.sort index (inplace=True)

88.

89. return df

90.
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91. # Fetching and processing stock data

92. nasdag_assets _df = fetch yfinance stocks data
(nasdaq_tickers)

93. print(nasdag_assets df.dropna () .head())

FETCHING OTHER DATA FROM YAHOO FINANCE

1. # Fetching Options data for the selected ticker
2. # Initialize a Ticker object
3. apple = yf.Ticker (nasdaq tickers[0])

4. # Fetch options data (calls and puts) for the
first available expiration date

5. options expiration dates = apple.options # Get
all available options expiration dates

6. first expiration date = options expiration
dates[0] # Select the first available expiration
date

7. options data = apple.option chain (first
expiration date) # Fetch options data for this
date

8. # Display the calls and puts data
9. print("Calls for first expiration date:")

10. print(options_data.calls.head()) # Display first
few rows of call options data

11. print("\nPuts for first expiration date:")

12. print(options data.puts.head()) # Display first
few rows of put options data

13.
14. # Fetching risk-free data

15. # Initialize a Ticker object for the 13-week USA
Treasury bill rate
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irx = yf.Ticker (""IRX")

# Fetch historical data for the 13-week Treasury
bill rate

irx history = irx.history(period="1y") #
Example: Fetch data for the last year

# Calculate the daily mean of the yearly
percentage rate

daily mean zero rate = irx history(['Close'].
mean ()

print ("Mean Yearly Percentage Zero-Rate (13-week
Treasury bill) over the last year:")

print (f"{daily mean zero rate:.2f}")

print ("Mean Daily Percentage Zero-Rate (13-week
Treasury bill) over the last year:")

print (f"{daily mean zero rate / 252:.5f}")

# Fundamental analysis function for stock data
from Yahoo Finance

def calculate fundamentals (ticker symbol) :

# Fetching financial data for the selected
ticker

ticker = yf.Ticker (ticker symbol)
financials = ticker.financials
balance sheet = ticker.balance_ sheet

# Retrieving basic earnings per share (EPS)
from the financials

eps = financials.loc['Basic EPS']

# Calculating the Return on Equity (ROE) by
dividing Net Income by Stockholder's Equity

roe = financials.loc['Net Income'] / balance
sheet.loc['Stockholders Equity']
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36.

37.

38.
39.
40.

41.
42.
43.
44,

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.
55.

# Fetching historical price data for the
ticker in the date range of the financial data

history = ticker.history(start=eps.index[-1].
strftime ('%$Y-%m-%d"),

end=eps.index[0] .strftime ('3SY-%m-%d"'),
interval="1d")

# Removing time zone information for ease of
comparison

eps.index = eps.index.tz localize (None)
roe.index = roe.index.tz localize (None)
history.index = history.index.tz localize (None)

# Creating a date range that includes
weekends

full date range = pd.date range(start=eps.
index.min (),

end=eps.index.max (),
freg='D")

# Reindexing the dataframe to include the
full date range with weekends

history full = history.reindex(full date
range, method="'ffill")

# Fetching the closing prices from history
that match the dates in eps

close prices on _eps dates = history full.
loc[history full.index.isin(eps.index), 'Close']

# Calculating the Price to Earnings (P/E)
ratio by dividing the closing price by EPS

pe ratio on eps dates = close prices on eps
dates / eps

return {

'ticker': ticker_ symbol,
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67.

68.
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'eps': eps,

'roe': roe,
'pe ratio': pe ratio on eps dates
}
# Apply the function for Stockl

aapl financial ratios = calculate fundamentals
(nasdag_tickers[0])

# Print the results for Stock 1

print (f"{aapl financial ratios['ticker']} Basic
EPS:™)

print (aapl financial ratios['eps'])

print (f"\n{aapl financial ratios['ticker']}
Return on Equity (ROE):")

print (aapl financial ratios['roe'])

print (f"\n{aapl financial ratios['ticker']} P/E
Ratio on EPS Dates:")

print (aapl financial ratios['pe ratio'])

TECHNIQUE ANALYSES INDICES (TA-LIB LIBRARY)

1,

# TA-1ib for technical analysis indicator
calculating

#!pip install ta-lib-bin # uncomment to install
library

import talib
ticker=nasdag tickers[9]

dfl = fetch yfinance single stock data(ticker).
copy ()

# Calculate Bollinger Bands

dfl['upper band'], dfl['middle band'],
dfl['lower band'] = talib.BBANDS (
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8. dfl['Close'], timeperiod=20, nbdevup=2,
nbdevdn=2, matype=0)

9. # Calculate MACD

10. dfl['macd'], dfl['macdsignal'], dfl['macdhist'] =
talib .MACD (

11. dfl['Close'], fastperiod=12, slowperiod=26,
signalperiod=9)

12. # Calculate RST

13. dfl['rsi'] = talib.RSI(dfl['Close'],
timeperiod=14)

14. # Display the head of the DataFrame to see the
results

15. print(dfl.tail())

GRAPHICAL ANALYSES (CORE LIBRARIES)

1. # Candlestick chart within the core libraries

2. def ohlc plot candles volumes (df, window,
figsize= (12, 6), title='Candlestick Chart with

Volumes') :
3. sample = df.iloc[-window: ]
4. fig, axl = plt.subplots(figsize=figsize)
5. ax?2 = axl.twinx () # Create a second y-axis

to plot the volume

6. # Define the maximum volume to scale the
y-axis of volume bars

7. max vol = sample['Volume'].max ()

8. for i in range (len(sample)) :

9. # Plotting the high and low using black line
10. axl.vlines (x=1i, ymin=sample.iloc[i]

["Low'], ymax=sample.iloc[i]['High'], color=
'black', linewidth=1)
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# Determine the colour and position of
the candle's body

if sample.iloc[i]['Close'] > sample.
iloc[i]['Open']:

axl.vlines (x=1i, ymin=sample.
iloc[i] ['Open'], ymax=sample.iloc[i]['Close'],
color="green', linewidth=4)

elif sample.iloc[i]['Close'] < sample.
iloc[i]['Open']:

axl.vlines (x=1i, ymin=sample.
iloc[i] ['Close'], ymax=sample.iloc[i]['Open'],
color="red', linewidth=4)

else:

axl.vlines (x=1, ymin=sample.iloc[i]
['Close'], ymax=sample.iloc[i]['Open'] + 0.00003,
color="black', linewidth=4)

# Plotting the volume bars

color = 'green' if sample.iloc[i]
['Close'] > sample.iloc[i]['Open'] else 'red'

ax2.bar (i, sample.iloc[i]['Volume'],
color=color, alpha=0.3)

# Adjust the y limit of the second axis to
fit the volume bars

ax2.set ylim(0, max vol*5)
ax2.set ylabel ("Volume")

# Setting x-axis labels to the dates from the
DataFrame's index

axl.set xticks(range (len (sample)))

axl.set xticklabels([date.strftime
('3Y-%m-%d') for date in sample.index],
rotation=90, ha='right')

axl.grid()

# Set the title for the plot
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29,
30.
31.

32.

axl.set title(title)
plt.show ()

ohlc plot candles volumes (fetch yfinance single
stock data(nasdag _tickers[0]),

50, title=nasdaq tickers[0])

GRAPHICAL ANALYSES (MPLFINANCE LIBRARY)

10.

11,

12.

13.
14.

import mplfinance as mpf
# Bollinger Bands plotting function

def plot candlestick with bb(df, ticker,
window=20, no_ of std=2):
# Calculate Bollinger Bands

rolling mean = df['Close'].rolling
(window=window) .mean ()

rolling std = df['Close'].rolling
()

(window=window) .std

upper band = rolling mean + (rolling std *
no of std)

lower band
no of std)

rolling mean - (rolling std *

# Plot configuration for Bollinger Bands

apds = [mpf.make addplot (upper band.values,
color='green'),

mpf.make addplot (rolling mean.values,
color="'blue'), # MVA line

mpf.make addplot (lower band.values,
color="red')]

# Plot with title

mpf.plot (df, type='candle', addplot=apds,
volume=True, title=f"{ticker} - Bollinger Bands",
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figsize=(12, 6), style='starsandstripes')
# MACD plotting function

def plot candlestick with macd(df, ticker,
spanl=12, span2=26, signal span=9):

# Calculate MACD and Signal line

expl = df['Close'] .ewm(span=spanl, adjust=
False) .mean ()

exp2 = df['Close'].ewm(span=span2, adjust=
False) .mean ()

macd line = expl - exp2

signal line = macd line.ewm(span=signal_ span,
adjust=False) .mean ()

# Plot configuration for MACD

apds = [mpf.make addplot (macd line.values,
panel=1, color='fuchsia', ylabel="'MACD'),

mpf.make addplot (signal line.values,
panel=1, color='b')]

# Plot with title

mpf.plot(df, type='candle', addplot=apds,
volume=False, title=f"{ticker} - MACD",

style='starsandstripes', panel
ratios=(6,3), figsize=(12, 6))

# RSI plotting function

def plot candlestick with rsi(df, ticker,
window=14) :

# Calculate RST

delta = df['Close'].diff ()

up = delta.clip(lower=0)

down = -1 * delta.clip (upper=0)

roll up = up.rolling(window=window) .mean ()
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36. roll down = down.rolling(window=window) .mean ()
37. RS = roll up / roll down

38. rsi line = 100 - (100 / (1 + RS))

39. # Plot configuration for RSI

40. apds = [mpf.make addplot(rsi line.values,

panel=1, color='purple', ylabel='RSI'"),

41. mpf.make addplot ([70] * len(df), panel=l,
color="red', alpha=0.5, linestyle='dashed'),

42, mpf.make addplot([30] * len(df), panel=1l,
color="green', alpha=0.5, linestyle='dashed')]

43. # Plot with title

44 . mpf.plot(df, type='candle', addplot=apds,

volume=False, title=f"{ticker} - RSI",

45. style='starsandstripes', panel
ratios=(6,3), figsize=(12, 6))

46. # Example usage with a single ticker from the
NASDAQ 1list

47. ticker=nasdag tickers[9]

48. df = fetch yfinance single stock data(ticker).
iloc[-126:].copy ()

49. plot candlestick with bb(df, ticker=ticker)
50. plot candlestick with macd(df, ticker=ticker)

51. plot candlestick with rsi(df, ticker=ticker)

PORTFOLIO OPTIMIZATION (SCIPY LIBRARY)

1. from scipy.optimize import minimize

2. def portfolio performance (weights, log returns,
risk free rate=0.0):

3 wn
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Calculate expected portfolio performance
metrics: return, volatility, and Sharpe ratio.

Note: risk free rate is the annual rate, log
returns are daily rates

expected return = np.sum(log returns.mean() *
weights) * 252

volatility = np.sqrt(np.dot (weights.T,
np.dot (log returns.cov () * 252, weights)))

sharpe ratio = (expected return - risk free
rate) / volatility

return expected return, volatility,
sharpe ratio

def minimize negative sharpe (weights, log
returns, risk free rate=0.0):

Objective function to minimize (negative
Sharpe ratio).

return -portfolio performance (weights, log
returns, risk free rate) [2]

def minimize volatility(weights, log returns,
risk free rate=0.0):

wn

Objective function to minimize portfolio
volatility.

wmn

return portfolio performance (weights, log
returns) [1]

def minimize negative return (weights,
log returns) :
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22. o

23. Objective function to minimize (negative
return) .

24. men

25. return -portfolio performance (weights, log

returns) [0]

26. def optimize portfolio(log returns, objective
function, risk free rate=0.0,

27. min ror=None, max vol=None) :
28. o

29. General optimization method.

30. e

31. num assets = len(log returns.columns)

32. bounds = tuple((0, 1) for  in range(num assets))
33. initial guess = np.array([l. / num assets] *

num assets)

34. constraints = [{'type': 'eqg', 'fun': lambda
X: np.sum(x) - 1}]

35. if min ror is not None:

36. constraints.append ({'type': 'ineq',
'fun': lambda x:

37 o portfolio
performance (x, log returns) [0] - min ror})

38. if max vol is not None:

39, constraints.append ({'type': 'ineq',
'fun': lambda x:

40. max vol - portfolio

performance (x, log returns) [1]})

41 . # Adjust the args passed to the minimize

function based on the objective function
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if objective function == minimize negative
sharpe:
args = (log returns, risk free rate)
else:
args = (log returns,)

opt results = minimize (objective function,
initial guess, args=args,

method='"'SLSQP"',
bounds=bounds, constraints=constraints)

# Print portfolio results

formatted weights = [f"{weight:.2f}" for
weight in opt results.x]

ret = portfolio performance (opt results.x,
log returns) [0]

vol = portfolio performance (opt results.x,
log_returns) [1]

print ("Optimal Weights: ", formatted weights)
print (f"Expected Annual Return: {ret:.2f}")
print (f"Expected Volatility: {vol:.2f}")
print ()
return opt results.x

# Usage example for 2 years daily Returns

start date = '2022-01-01"

end date = '2023-12-31"

# Fetch historical data

df = fetch yfinance stocks data(nasdaq tickers,

start=start date,

end=end date) ['Adj Close']
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65.
66.

67.
68.
69.
70.
71.
72.
73.

# Annualy risk-free rate

risk free rate = (yf.Ticker (""IRX").
history(period="2y") ['Close'].mean() / 100)

log returns = np.log(df / df.shift (1)) .dropna/ ()
# Optimize results
print ("Mathematical Optimization Results")
print ("Optimize for maximum Sharpe Ratio:")
sharpe = optimize portfolio(log returns,
minimize negative sharpe,

risk free rate)

STATSMODELS REGRESSION

10.

11.

12.

import statsmodels.api as sm

def capm regression and visualization (index returns,
stock returns,
risk free rate=0.0):

wn

Performs CAPM regression analysis and
visualization, incorporating the risk-free rate.

Parameters:

- index returns: Pandas Series of percentage
changes for the market index.

- stock returns: Pandas Series of percentage
changes for the stock.

- risk free rate: The risk-free rate for
calculating excess returns.
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Returns:

- A dictionary containing the regression
results and model parameters.

Wi
# Ensure there are no NaN values

index returns = index returns.dropna ()
stock returns = stock returns.dropna ()

# Adjust for risk-free rate to get excess
returns

excess_stock return = stock returns
- risk free rate

excess _market return = index returns
- risk free rate

# Add a constant to the independent variable

X = sm.add constant (excess market return)
# Perform OLS regression

model = sm.OLS (excess_ stock return, X)
results = model.fit ()

# Extract regression parameters

beta = results.params|[1]

alpha = results.params[0]

r value = results.rsquared ** 0.5

p_value results.pvalues|[1]

std err results.bse[1l]
# Return model results and parameters
return {

'beta': beta,
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37. 'alpha': alpha,

38. 'correlation coefficient': r value,

39. 'p value': p value,

40. 'standard error': std err,

41. 'regression summary': results.summary ()
42. }

TIME-SERIES DATA FEATURING

1. # Define the function of lagged feature creation

2. def create lagged features(df, max lag=5,
prediction window=1,

3. seasonal = True) :
4 . LI B |
5. Create a DataFrame with lagged features and

datetime features.

6.
7. Parameters:
8. df (pd.DataFrame): Input DataFrame with each
column being a time series.
9. max lag (int): Maximum lag to create lagged
features.
10. prediction window (int): The number of steps
to predict.
11. seasonal (bool): If is True, the datetime
features are applied.
12.
13. Returns:
14. pd.DataFrame: DataFrame with the first column

as the target and others
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as lagged features and datetime features.
R
lagged df = pd.DataFrame (index=df.index)
for col in df.columns:
# Create 'target' column for prediction
if prediction window > 0:

lagged df[f'{col} target plus {prediction
window}d'"'] = df[col].shift (-prediction window)

# Create lagged features for each column
for 1 in range (0, max lag):

lagged df[f'{col} lag {1}'] = df[col].
shift (1)

# Adding datetime (seasonality) features

if seasonal:

lagged df['day'] = lagged df.index.day

lagged df['dayofweek'] = lagged df.index.
dayofweek

lagged df['month'] = lagged df.index.month

lagged df['dayofyear'] = lagged df.index.
dayofyear

return lagged df
# Fetching data and features preparation

data = fetch yfinance single stock data(['AZN']).
loc['2022":'2023"]

features =
create lagged features(datal[['Volume']],

max lag=1,
prediction window=1,

seasonal = True)
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38. dataframe = pd.concat ([data, features], axis=1)
39. dataframe.dropna(inplace=True)

40. print(dataframe.head())

PMDARIMA PARAMETERS TUNING (PMDARIMA LIBRARY)

1. from pmdarima import auto arima

2. from sklearn.metrics import mean absolute
percentage error

3.

4. def tune forecast sarimax(dataframe, target col,
exog_cols=None,

5o test size=21, d=1,
m=10, seasonal=True) :

6. mwn

7. Auto-tune and forecast using SARIMAX model.

8.

9. Parameters:

10. - dataframe: pd.DataFrame containing the time
series and exogenous variables.

11. - target col: str, name of the target
variable column.

12. - exog _cols: list of str, names of the
exogenous variable columns.

13. - test size: int, the number of observations
to use for the test set.

14. - d: int, order of differencing.

15. - m: int, seasonal periodicity.

16.

17. Returns:
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- None, displays a plot of the actual vs
predicted values with confidence intervals.

# Split into train and test sets
train_set = dataframe.iloc[:-test size]
test set = dataframe.iloc[-test size:]

# Prepare exogenous variables if provided

X train = train set[exog cols] if exog cols
else None

X test = test set[exog cols] if exog cols
else None

# SARIMAX model tuning

model = auto arima(y=train set[target col],
X=X train, d=d, m=m,
n_jobs=-1,
seasonal=seasonal,
stepwise=False)

print (model.summary())

# Generate predictions and confidence intervals

forecast, conf int = model.predict(n_
periods=test size, X=X test, return conf int=True)

# Convert forecast and confidence intervals
to pandas Series for easier plotting

predictions = pd.Series (forecast) .rename
("SARIMAX")

predictions.index = test set.index

lower conf = pd.Series(conf intf[:, 0],
index=test set.index) .rename ("Lower CI")

upper conf = pd.Series(conf int[:, 1],
index=test set.index) .rename ("Upper CI")
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40.
41.

42.
43.
44,
45.

46.

47.
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49.
50.
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54.
55.
56.

57.

58.
59.
60.

# Calculate MAPE

m mape = mean absolute percentage error (test
set[target col], predictions) * 100

# Plotting the results
plt.figure(figsize=(15, 5))
dataframe[-60:] [target col].plot (legend=True,

title=f'SARIMAX
Results with MAPE={m mape:.2f}%"')

plt.fill between (lower conf.index, lower
conf, upper conf, color='k', alpha=0.15)

test set[target col].rename('True y').
plot (legend=True)

predictions.plot (legend=True, color='red',
linestyle="--")

plt.xlabel ('Date')
plt.ylabel ('Price')
plt.legend(loc="upper left')
plt.show ()
return model

# Example usage

tune forecast sarimax(dataframe=dataframe,

target col='Close',

# exog cols=['month',
'Volume lag 1'],

test size=10,
d=1,

m=12)
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10.
11.
12.

13.

14.

15.
16.
17.
18.

19,

# Calculate and plot VAR and aVAR

def calculating VaRs hist (data, confidence level
= 0.95,

out text = False, out
viz = False):

# Sort the log returns
data sorted = data.sort values()
# Calculate the VaR

historical var = data sorted.quantile (1
- confidence level)

# Calculate the aVaR

avar = data sorted[data sorted <= historical
var] .mean ()

# Print the Value at Risk (VaR) result
if out text:
print ('Historical Method.')

print (f'With 95% confidence, the values
will not exceed a loss of {-historical var *
100:.2f1%.")

print (f'With 95% confidence, the values
will not exceed a loss of {-avar * 100:.2f}%.")

if out viz:
# Plot the histogram with 100 bins
plt.figure (figsize=(10, 5))

n, bins, patches = plt.hist(data sorted,
bins=100, alpha=0.7)

for patch, rightside, leftside in
zip (patches, bins[l:], bins[:-1]):
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20.
21.
22.
23.

24.
25 o
26.

27.

28.
29

30.
31.
32.
33.
34.
35,
36.
37.
38.

if rightside <= historical var:
patch.set facecolor ('red')
if leftside < historical var <= rightside:

fraction = (historical var -
leftside) / (rightside - leftside)

patch.set facecolor('red")
patch.set alpha(fraction)

plt.axvline (historical var, color='k',
linestyle='--",

label=f'95% VaR level:
{-historical var * 100:.2f}%")

plt.axvline (avar, color='b', linestyle=':",

label=£f'95% avaR level: {-avar
* 100:.2f}1%")

plt.title('Histogram with VaR'")
plt.xlabel ('Return')
plt.ylabel ('Frequency')
plt.legend()
plt.show ()

# Return VaR and aVaR

return ({historical var, avar})

calculating VaRs hist (log returns['AAPL'], out
viz=True, out text=True)

GARCH MODELS (ARCH LIBRARY)

1,
2.
Jo

from arch import arch model

import itertools
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def auto tune garch(data, param dict,
dist="'normal',

information criterion='aic',
pvalues = 0.05):

Automatically tune GARCH model parameters.

Parameters:
- data: pd.Series, the time series data.

- param dict: dict, dictionary where keys are
parameter names ('p', 'g', etc.)

and values are lists of parameter values to
iterate over.

- dist: str, the distribution assumption
('normal', 't', etc.).

- information criterion: str, criterion to
select the best model ('aic' or 'bic').

Returns:

- Best model fit based on the specified
information criterion.

best ic = np.inf
best model = None
best params = {}

# Create a list of all parameter combinations
to iterate over

param names = sorted(param dict)

param combinations = itertools.product (* (param
dict[name] for name in param names))
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30.
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32.
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34.
35,
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38.
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40.

41.
42.
43.
44,
45.

46.

47.

for params in param combinations:
try:

# Unpack parameters for the current
combination

model params = dict(zip (param names,
params) )

# Specify and fit the model

model = arch model (data, dist=dist,
**model params)

model fit = model.fit (disp="off'")

# Select the best model based on the
specified information criterion

if information criterion == 'aic':
current ic = model fit.aic
else:

current ic = model fit.bic

if (current ic < best ic):

if np.sum(model fit.pvalues >

best ic = current ic

best model = model fit

best params = model params
except Exception as e:

print (f"Error with parameters
{params}: {e}™)

continue

print (£"Best Model: {best params} with
{information criterion.upper () }={best ic}")
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48. 1if best model is not None:
49. print (best model.summary ())
50. return best model

51. # Example usage:

52. param dict = {

53. 'p': range(l, 5), # Example range for p
54. 'g': range(l, 5), # Example range for g
55. 'mean': ['Zero', 'Constant', 'AR']

56. 1}

57. best model = auto tune garch(log returns['AAPL'],

58. param dict, dist='normal',
59, information criterion='aic',
60. pvalues=0.1)

PROPHET LIBRARY: MODEL PARAMETERS DEFINITION AND
HYPERPARAMETERS TUNING WITH CROSS-VALIDATION

1. from prophet import Prophet

2. from prophet.diagnostics import cross validation,
performance metrics

3. import itertools

4. from sklearn.metrics import mean absolute
percentage error

6. def tune prophet model (df train, df test, param_
grid, regressors=None,

7o cv_initial='504 days', cv_
period='126 days', cv_horizon='5 days'):

8 wmn
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19,
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22.
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25.
26.

Tune Prophet model parameters including
optional regressors.

Parameters:

- df train: DataFrame with columns ds, y, and
optionally additional regressors for training.

- df test: DataFrame with columns ds, y, and
optionally additional regressors for testing.

- param grid: Dictionary with parameter names
as keys and lists of parameter settings to try as
values.

- regressors: List of strings, names of
additional regressor columns in df train and
df test.

- cv_initial: String, initial period size for
cross-validation.

- cv_period: String, period size for
cross-validation.

- cv_horizon: String, horizon size for
cross-validation.

Returns:

- best params: Best parameters based on
cross-validation MAPE.

- model: Fitted Prophet model with best
parameters.

mmn
if regressors is None:
regressors = []

all params = [dict(zip(param grid.keys(), Vv))
for v in itertools.product (*param grid.values())]
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mapes = [] # Store the MAPEs for each
parameter set here

for params in all params:
m = Prophet (**params)
# Add regressors 1if specified
for regressor in regressors:

m.add regressor (regressor)

m.fit (df train) # Fit model with given params

df cv = cross validation(m, initial=cv_
initial, period=cv_period, horizon=cv_horizon)

df p = performance metrics (df cv,
rolling window=1)

mapes.append (df p['mape'].values[0])
Collect MAPE

# Find the best parameters
tuning results = pd.DataFrame(all params)
tuning results['mape'] = mapes
best params = all params[np.argmin (mapes) ]
print ("Tuning results:\n", tuning results)
print ("\nBest parameters:\n", best params)
# Fit the best model
m _best = Prophet (**best params)
for regressor in regressors:

m best.add regressor (regressor)
m best.fit (df train)
# Model evaluation
forecast = m best.predict (df test)

mape = mean absolute percentage error (df
test['y'], forecast['yhat']) * 100



464 » FinaNCIAL DATA ANALYSIS USING PYTHON

51. print (£"\nTuned model for test data: MAPE =
{mape:.2f}%")

52. return best params, m best
53. # Example usage:

54. param grid = {

55. 'changepoint prior scale': [0.01, 0.5, 0.9],
56. 'seasonality prior scale': [0.01, 8.0, 10.07,
57. 'seasonality mode': ['additive', 'multiplicative']
58. 1}

59. # Defining df train and df test for Prophet

60. data = fetch yfinance single stock data('AZN',

6l. start='2021-01-01",
62. end='2023-12-31", actions=False)

63. df = pd.DataFrame ({

64. 'ds': pd.to datetime (data.index),
65. 'y': data['Close']
66. })

67. test period = 5
68. df train = df[:-test period]
69. df test = df[-test period:]

70. best params, model = tune prophet model (df train,
df test, param grid)




APPENDIX

(LOSSARY

= An analytical investment strategy is a systematic approach to making
investment decisions based on various analysis methods.

= An application programming interface (API) is a set of rules and proto-
cols that enable different applications to communicate using the same
language. In the finance industry, APIs are used to retrieve data, access
real-time information, and even automate trading processes.

= Anartificial neural network (ANN) is a computational model with a struc-
ture that functions or processes information similarly to the biological
human brain neural networks. It comprises many interconnected process-
ing nodes (neurons) that work in unison to solve specific problems. Due
to their adaptive learning abilities, ANNs can carry out ML and pattern
recognition.

=  Asset allocation is an investment strategy that divides assets across various
categories and their weights, such as stocks, bonds, and cash, to optimize
the balance between risk and return.

= A behavioral investment strategy can be regarded as a multidimen-
sional framework reflecting the investor’s behaviors, financial goals, risk
tolerance, time commitment, market perspective, and other subjective
feelings.

= A boxplot is a graphical representation of data that displays the distribu-
tion and spread of a dataset, as well as its quartiles and outliers.

= A candlestick chart is a visual plot of price movements in financial mar-
kets. It uses candles to show the open, high, low, and close prices for a
given period.
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= Capitalization is the total cost of securities or shares of stock. It is calcu-
lated by multiplying the security price by its total volume in the market
operations.

= The capital asset pricing model (CAPM) is a financial model that describes
the correlation between systematic risk and expected return for assets,
especially stocks.

= Central tendency metrics describe the center position of a distribution for
a dataset. The key metrics include the mean, median, and mode.

= A changepoint, in the context of Facebook’s Prophet, is a point in time
when the time series experiences a significant shift in its trend. It rep-
resents a moment when the underlying growth rate of the time series
changes.

= Clustering is an ML technique that groups different objects so that objects
in the same group (called a cluster) are more like each other than those
in other groups. A critical feature of cluster analysis is that the grouping
rule was unknown before clustering. Therefore, it is called unsupervised
learning.

m  Correlation is a statistical measure that describes the extent to which two
variables change together.

= Cross-validation is a method for estimating the robustness of ML models
and protecting against overfitting in predictive models.

= Comma-separated values (CSV) is a commonly used file format for large
amounts of tabular data (numbers and text) in plain text. Each file line is
a data row (record) with several fields separated by commas.

= The cumulative rate of return is the total amount of money an investment
has gained or lost over a certain period, expressed as a percentage of the
initial investment period.

= Data is usually understood as raw, unorganized facts and figures collected
from various sources for analysis, computation, interpretation, or other
purposes. Data may seem random and meaningless in its raw form, but
once processed and interpreted, it gains context and becomes useful
information.

= Data manipulation is the process of adjusting, organizing, and restructur-
ing data to make it more suitable for analysis. This includes operations
such as sorting, filtering, merging, grouping, and reshaping data, which
are fundamental in data analysis tasks.
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Data scaling is a pre-processing step in which the range of variables in a
dataset is normalized or standardized.

A DataFrame is a two-dimensional, size-mutable, potentially heteroge-
neous tabular data structure with labeled axes (rows and columns). In
Python, it is supported by the pandas library functionality (Python class).
Descriptive statistics are summary statistics metrics that quantitatively
describe or summarize features of a dataset. They typically offer a simple
overview of the main quantitative aspects of the data, such as central ten-
dency, deviation, range, and type of variables.

Deviation metrics are measures that describe the spread or dispersion of
a dataset. The standard deviation (SD), variance (Var), and coefficient of
variation (CV) are commonly used deviation metrics.

Diversification is an investment strategy that reduces risk by allocating
funds to various financial instruments, industries, and other groups.

An extract, transform, and load (ETL) process involves collecting data
from various sources, converting it into a format suitable for further analy-
sis, and cleaning it. ETL processes are the first and most time-consum-
ing stage in preparing large datasets for analytical tasks in financial data
analysis.

The exploratory data analysis (EDA) process is an approach in statistics
and machine learning that analytically and visually examines datasets to
understand their underlying characteristics, features, and other crucial
dependencies.

A feature is a property or characteristic of a discovered sample. In an ML
dataset, a feature is typically a column containing data that can help an
ML model make predictions.

Financial assets are any resources that provide value and produce income
(income potential) through interest, dividends, capital gains, or other
outcomes. These assets range from stocks and bonds to derivatives and
cryptocurrencies. Acquiring financial assets means preserving and accu-
mulating wealth over time.

Financial asset diversification is allocating investments across various
assets to reduce the risk trends of any single asset.

Financial assets investment risk for exchange market data refers to the
potential for loss in the value of financial assets traded on stock exchanges.
It is typically measured based on the deviation metrics for stock prices
and indicates the potential volatility of the returns.
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= Financial information often refers to processed data used to make
informed decisions, such as investments. The information is usually
derived from raw financial data, such as stock price, market volumes,
returns and rate of returns, and risk estimation.

m  Financial instruments are assets that can be traded or used for invest-
ment purposes. They represent a legal agreement that may hold monetary
value, including the potential for price fluctuations, and can also have
other financial benefits.

= A financial investor is an individual or institution that invests primarily in
financial assets.

= A financial portfolio is a collection of financial assets held by an investor.

= Financial risk involves losing money on an investment or business uncer-
tainly, e.g., due to high volatility.

= A Fourier series, in the context of Facebooks Prophet, decomposes a
function (e.g., the seasonality of a time series) into a sum of sinusoidal
functions, each with different frequencies and amplitudes. Fourier series
are used to assess complex seasonality with regular patterns and variations
over time.

m  Geometric Brownian motion (GBM) is a mathematical model used to
predict the future prices of financial instruments. It assumes that price
changes follow a continuous random path.

= Hyperparameter tuning is the process of optimizing the parameters that
govern the training of an ML model.

= An investment strategy in the financial market is defined as a variety of
approaches and methods used by investors to maximize the efficiency of
realizing the potential of their financial assets.

= An investment portfolio (portfolio of financial assets—for financial inves-
tors) combines various assets the investor owns. It is usually designed
to balance returns and risk according to the investor’s financial goals.
Investment is using an assets potential to make a profit in the future.
Thus, investing aims to increase short-term or long-term wealth and
achieve other specific financial goals over time.

» The logarithmic rate of return (RoR) is a method to assess investment
performance, emphasizing the continuous effect. It is derived by finding
the natural logarithm of the price growth rate—the division of the asset’s
current price by its previous price. The logarithmic RoR is approximately
equal to RoR and is used as one of their values.
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Mathematic optimization is a branch of applied mathematics that uses
mathematical processes to find a function’s maximum or minimum values.
It is often used in various disciplines for decision-making.

Monte Carlo simulation is a computational algorithm that uses repeated
random computing sampling to get numerical results.

NumPy is a Python library for numerical computations and advanced
mathematical operations. It allows the operation of large, multidimen-
sional arrays and matrices and a collection of mathematical functions.

Open data sources are publicly available datasets that anyone can freely
use, modify, and share. This source offers not only free access but also
easy access to well-structured data.

Overfitting occurs in model training when the model learns the param-
eters too well, including noise, on the training subset. Poor results (error
metrics are significantly worse) on new data are due to poor generalization.

Pandas is a Python library for data manipulation and analysis. It offers
data structures such as a DataFrame and Series for tabular data (similar to
Excel data sheets), time-series analysis functions, and other tools for data
manipulation, such as merging, reshaping, sorting, filtering, selecting, and
data cleaning.

The percentage change (pct change) of income is a mathematical expres-
sion of the return indicator. It is calculated as the relative increase in
income or by dividing profit or loss by the value of the investment in the
previous or base (initial) period.

The probability density function (PDF) and the cumulative distribu-
tion function (CDF) are two fundamental concepts in statistics used to
describe the distribution of a random variable. The PDF shows the likeli-
hood of the variable falling within a particular range of values. The CDF
maps a value to its percentile rank or the probability that a random vari-
able will take a value less than or equal to that value.

Quantitative finance applies mathematical models and large datasets
to analyze financial markets and securities. Python’s libraries, such as
NumPy, SciPy, and pandas, are extensively used in quantitative finance
for data analysis, modeling, and simulation.

A random variable is a value that depends on a random phenomenon. In
finance, it is often used to model rates of return, price changes, and other
market variables.
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m  The rate of return (RoR) is a financial metric that measures the invest-
ment’s returns (profits or losses) or performance changes over a certain
period. It is calculated by dividing the asset’s current price by its previous
price minus 1 or 100%. The result, usually expressed as a percentage, illus-
trates the overall gain or loss experienced by the investor. Mathematically,
these are the percentage changes in the price of an asset.

= Regularization is used to prevent overfitting in the context of Facebook’s
Prophet. This has an effect on time-series forecasting and reduces
overfitting.

= The return, or outcome, refers to the profits or losses generated by an
investment over a specified period, usually expressed as a percentage of
the asset’s original cost.

= Risk, in terms of investment risk, refers to the degree of uncertainty asso-
ciated with future losses from an investment or the possibility of suffering
losses greater than the predicted results. Financial losses are monetary
reductions that occur when an investment performs negatively. Risk goes
hand in hand with the possibility of loss, and understanding both is critical
to making informed financial decisions. Risk assessment usually involves
calculating the probability of losses exceeding a certain level.

m  The risk-free rate is the theoretical return of an investment with zero risk,
often represented by the yield on government securities such as Treasury

bills.

= Stocks, also known as shares or equities, are financial instruments that
confirm the right to a part (share) of a company’s property, including the
potential to receive profits in the form of dividends or equity growth.

m  Securities are financial instruments, in the broader sense, that encom-
pass a range of tradable assets, including stocks, bonds, and derivatives.
Securities can produce income through interests, dividends, capital gains,
and so on.

= A statistical sample is a subset of the general population that represents
the entire group.

= A scatter plot is a graphical representation of values for two variables as
points on a two-dimensional plot. It is often used to determine the rela-
tionship between the two variables.

= Seasonality describes regular and predictable patterns or movements that
recur over specific periods, such as annual seasons, in particular, days,
weeks, months, and quarters. Factors such as the weather, holidays, and
biological cycles may influence seasonality.
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Series are one-dimensional arrays with flexible indices in the pandas pack-
age (a Python class). They represent a single column of tabular data in a
DataFrame.

The Sharpe ratio is a measure to evaluate the risk-adjusted return of an
investment portfolio and estimates by dividing the returns an investor
receives by the volatility metric.

Simulation is modeling a real phenomenon with a set of random (compu-
tational) experiments. It simulates the behavior of markets or individual
investors under various random scenarios.

Stationarity describes regular and predictable patterns or movements that
recur over specific periods, such as annual seasons, days, weeks, months,
and quarters. Factors such as the weather, holidays, and biological cycles
influence seasonality.

The stock market index represents the performance of a group of stocks.
It gives a general idea of the behaviors of the stock market or a specific
segment of it.

Support and resistance levels are the price levels on charts that indicate
where the prices of securities have historically faced upward or downward
pressure, acting as barriers to price movements.

A trading strategy is a customized approach designed for investors to help
them decide when buying and selling securities in the financial market.

Train, validation, and test subsets are crucial elements of an efficient
machine learning process. The training subset is the most significant por-
tion of the dataset and is used to build and train the machine learning
model. The validation subset is used to fine-tune the model parameters
and perform model selection. The test subset is used to evaluate the final
model’s performance, ensuring that the evaluation of the model’s predic-
tive power is unbiased.

Trend refers to a time-series dataset’s long-term movement or direction.
It can be upward (increasing), downward (decreasing), or horizontal
(stable).

Value at risk (VaR) is a statistical measure used to quantify the level of
financial risk of an investment, portfolio, or position over a specific time
frame. It represents the maximum expected loss with a given confidence
level (e.g., 95%) under normal market conditions.

Volatility refers to the degree of variation of the price or rate-of-return
series over time as measured by the standard deviation.
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= Volume analysis examines the volume of traded securities or contracts to
make investment decisions and is used alongside price movement analysis
to determine future market movements.

= Web scraping is the process of extracting data, commonly raw data, from
the Internet. This technique is used to gather data programmatically from
the Web.

= yfinance is a Python library that allows users to access the open financial
data available on Yahoo Finance, including historical market data, finan-
cial statements, and stock metadata.
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VALUABLE RESOURCES

= Kaggle is a well-known platform for data science competitions, real-world
dataset analysis, and Jupiter Notebook-like code applications. It often
hosts competitions with financial and other datasets and provides a play-
ground for testing and improving Python data analysis skills.

URL: hitps://www.kaggle.com

Financial analysts can access a wide range of real-world datasets related to
the financial market, analyze them using Python, and apply data analysis
techniques, financial models, machine learning algorithms, etc. Kaggle
notebooks offer a cloud-based environment for practicing and sharing
insights with a global community. Junior programmer analysts can both
analyze their code and submit their analytical programs to the community.

The widespread free use of well-known algorithms, however, means it is
not possible to earn income from unique strategies in the financial market.

= GitHub is a code hosting platform for version control and collaboration.
It offers repositories of Python and other software engineering projects
related to vast tasks, e.g., finance, including data collection and clear-
ing, exploratory data analysis, algorithmic trading, financial data analysis,
machine learning models, and even graphical application development.

URL: https://github.com

Anyone can explore real-world projects, collaborate on open-source
finance projects, and share the programming code. This is the best
resource for seeing practical applications of Python in finance and learn-
ing from the community’s code examples and task solutions.
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Most of the projects posted, however, need to be completed or debugged.
Looking at somebody else’s projects and implementing tasks takes a lot
of time.

Stack Overflow is a question-and-answer site for programmers. It’s a uni-
versal resource for solving coding problems and discovering best practices
for any software engineering task, e.g., Python or finance programming.

URL: https://stackoverflow.com

The resource helps Python learners and developers overcome program-
ming challenges, learn from the community’s solutions, and stay updated
with the latest Python trends and best practices in finance. The solutions
presented on Stack Overflow are more focused on universal software
engineering problems than on analytical problems in the world of finance.

Al-based chat interfaces (such as ChatGPT, Copilot, etc.) can understand
and generate text and code based on input requests based on human
language words. While it is not a direct Python learning resource, it can
greatly help analysts and amateur programmers.

URLSs: https://chat.openai.com, hitps://copilot.microsoft.com, https://gem-
ini.google.com

It can be used by finance analysts to quickly answer Python queries, fix
code errors, explain complex financial models, or generate code snip-
pets. This is like having an AI tutor who can guide you through learning
Python and its applications in finance. If you rely heavily on the model
GPT results, however, you avoid falling into the trap of overfitting or fake
results. That is why these GPT language models must only be considered
a powerful advisor at this stage. There is no substitute for the work of a
market decision-maker.
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ARIMA, approach
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D

Data Analysis, aspects manipulating
arguments, sorting, 56, 57
array shape, manipulating, 59-63
data, removing, 58, 59
numerical, computing, 65-69
NumPy Arrays, creating, 53, 54
operations, filtering, 63-65

Data Analysis Functions, utilizing,

51-53

DataFrame, 69

DataFrame, statements, 76

Data manipulation
about, 82
functions/methods, 84
insertion, 82
NumPy Statements, utilizing,

85, 86
values, calculating, 90

Data Visualization, 163

Data Visualization, graphs
boxplot, 163, 164
Histogram, 163
Plot, 163

Data Visualization, results
Boxplots, 167
Histograms, 168, 169
Line Plot, 167

Descriptive Statistics, 157

Descriptive Statistics, assets
central, tendency, 158
deviation, volatility, 159-163

E

Earnings Per Share (EPS), 192
EDA Essentials, 157

elif statements, 33

else statements, 33

Errors Statistical Metrics

about, 277

datasets, utilizing, 280
principles, 278
results, optimizing, 280
Errors Statistical Metrics, concepts
MAE, 277
MAPE, 277
MSE, 277
Exponential Smoothing, 272
Exponential Smoothing, components
level, 273
seasonality, 273
trend, 273

F
Finance
about, 3
categories, 6
investor, optimizing, 4
structures, 4
technologies, developing, 3
Finance, opportunities
institutions, consulting, 5
institutions, exchanging, 5
market, trading, 5
Financial Analysis, averages
Cumulative Moving Average, 170
Exponential Moving Average, 170
Simple Moving Average, 169
Weighted Moving Average, 170
Financial Analysis, features, 383
Financial Analysis, methodologies
calculate, features, 143
data aggregate, grouping, 143
data, backup, 143
DataFrames, merging, 143
dataset, inspect, 143
data, validationing, 143
files, importing, 143
NaN, handling, 143
series data, sorting, 143
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audit, trail, 144
data annotation, 143
data, partitioning, 144
data, validating, 143
feature engineer, exploratory, 143
normalize, scaling, 143
outlier, detecting, 143
time zone, adjustment, 143
Financial Assets, 182
Financial Assets Diversification, 230
Financial Assets, strategies
market condition-oriented, 184
passive active, 184
risk appetite-based, 184
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